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1 Introduction

5-brane web diagrams in Type IIB string theory [1, 2] are a useful tool to study various
aspects of five-dimensional (5d) A/ = 1 supersymmetric field theories. One application of
5-brane web diagrams may be the computation of the Nekrasov partition functions of 5d
theories realized on 5-brane webs. Since some 5-brane web diagrams are dual to Calabi-
Yau threefolds in M-theory [3], the Nekrasov partition functions of the 5d theories on the
self-dual 2-background may be interpreted as the all genus topological string partition
functions for the dual Calabi-Yau threefolds [4, 5]. When 5-brane web diagrams are dual
to toric Calabi-Yau threefolds one can compute the Nekrasov partition functions of the 5d
theories [6-9] by the topological vertex formalism [10, 11]. In terms of 5d gauge theories
such cases correspond to gauge theories with SU-type gauge groups.!

Tt is also possible to realize certain non-Lagrangian theories such as the Eg theory from 5-brane webs
dual to toric Calabi-Yau threefolds.



On the other hand, a large class of 5d gauge theories with a superconformal fixed
point has been classified from a field theoretic analysis [12-14] and also from M-theory
compactified on Calabi-Yau threefolds [15-30]. Then natural questions are twofolds. One
is if we can realize other gauge theories from 5-brane webs. The other is if we can compute
the Nekrasov partition functions of the 5d theories realized on the 5-brane webs using
the topological vertex formalism. It is indeed possible to realize different gauge groups?
such as SO(N) and Sp(N) by introducing orientifolds in 5-brane web diagrams [31-34].
We can further realize an exceptional gauge group G2 from 5-brane webs with an O5-
plane [35]. Recently 5-brane webs for SU(6) gauge theories with hypermultiplets in the
rank-3 antisymmetric representation have been constructed in [36, 37]. Interestingly it is
also possible to compute the Nekrasov partition functions of most of the theories realized on
the 5-brane webs by extending the topological vertex formalism. In [38—41], the formalism
has been extended for 5-brane webs with configurations where some 5-branes jump over
other 5-branes. Such configurations may appear, for example, in 5-brane webs with a
resolved O7 -plane. The topological vertex formalism for 5-brane webs with Ob5-planes
has also been developed in [42-44].

A new type of web diagrams was introduced in [45]. Each of the web diagram is given
by gluing three or four toric diagrams. The gluing may be interpreted as gauging the
diagonal part of flavor symmetries of three or four matter theories. We call the former
type of the gluing trivalent gluing or trivalent gauging while we call the latter type of the
gluing quadrivalent gluing or quadrivalent gauging. Using web diagrams with a trivalent
gluing it is possible to construct the 5d pure Eg, E7, Fs gauge theories. Furthermore a
prescription of applying the topological vertex to web diagrams with a trivalent gluing or
quadrivalent gluing has also been developed in [45] and the Nekrasov partition functions
of the 5d pure FEg, F7, Eg gauge theories have been computed.

Therefore including the webs with a trivalent gluing it was possible to realize excep-
tional gauge groups from web diagrams but one exception in the classification of simple Lie
algebras is Fy. In this paper we fill in the last piece and provide web diagrams using the
trivalent or quadrivalent gluing for all the exceptional gauge groups Go, Fy, Fg, F'7, Eg. The
web diagrams considered in [45] are made from a trivalent or quadrivalent gluing of toric
diagrams and hence only simple-laced Lie algebras were realized. We extend the construc-
tion by considering trivalent or quadrivalent gluing of non-toric diagrams, which enables us
to realize non-simply-laced Lie algebras. More concretely the web diagrams we construct
include the ones for the 5d G2 gauge theory with 4 flavors, the 5d Fy gauge theory with 3
flavors, the 5d Eg gauge theory with 4 flavors and the 5d E7 gauge theory with 3 flavors
(with mass parameters only for 2 flavors). Since the web diagrams are given by a trivalent
or quadrivalent gluing it is possible to compute the Nekrasov partition functions of those
theories and we give explicit expressions of the partition functions.

Let us summarize our strategy to obtain the web diagrams. In order to obtain the web
diagrams we make use of 5d gauge theory descriptions of six-dimensional (6d) conformal
matter theories on a circle. A 6d conformal matter theory is realized on M5-branes probing

2In this paper we do not distinguish the global structure of gauge groups.



an ADE singularity [46]. We will call a theory realized on k Mb5-branes probing a G-type
singularity (G, G)g, which has the flavor symmetry G x G. Through a chain of string
dualities, the theory of type (G,G)i on a circle has a 5d gauge theory description given
by a quiver theory whose quiver diagram is given by the affine G Dynkin diagram. We
call such a quiver theory as an affine G Dynkin quiver theory [46]. It is possible to realize
these theories from web diagrams with a trivalent gluing for G = FEjg, E7, Eg or with a
quadrivalent gluing for G = D4. The web diagrams show a part of the global symmetries
explicitly from parallel external lines. Then one can perform Higgsings of these theories,
which yields web diagrams made from the trivalent or quadrivalent gluing of non-toric
diagrams. The low energy theories after the Higgsings may be determined by utilizing the
analysis in [47]. One difference from the cases in [47] is that we consider Higgsings of 6d
theories on a circle and hence the Higgsings may give rise to a 5d theory that is obtained
from a circle compactification of a 6d theory with a twist. Note that we always keep the
radius of the circle finite unless we take a 5d limit, and the Kaluza-Klein (KK) modes are
not decoupled in the resulting Higgsed theories. The low energy theories which can be
realized from the Higgsings of the web diagrams include circle compactifications of the 6d
G5 gauge theory with 4 flavors from G = Dy, k = 2, the 6d F4 gauge theory with 3 flavors
and the 6d Fg gauge theory with 4 flavors from G = Eg, k = 2, the 6d E7 gauge theory
with 3 flavors from G = Fr, k = 2, and each theory possesses a tensor multiplet in 6d.
Hence we can construct the web diagrams for the theories and their 5d limits yield the
web diagrams for the 5d gauge theories with the exceptional gauge groups. Since the web
diagrams are constructed by a trivalent or quadrivalent gluing, it is possible to compute
the partition functions of the 6d theories on T2 x R*.

Along the way of obtaining the web diagrams for the exceptional gauge theories, we
also obtain web diagrams of various theories which arise from the Higgsings of (G, G)2
on a circle. It is also possible to gauge one of the flavor symmetries of (G,G); and we
call the theory (G,G)r where G stands for the gauged symmetry group. We can similarly
construct web diagrams which arise from Higgsings of (G,G)y on a circle. For example a
Higgsing of (E7, Ev); on a circle yields a circle compactification of the 6d E7 gauge theory
with a half-hypermultiplet in the fundamental representation in addition to a fundamental
hypermultiplet and a tensor multiplet. Other examples of such theories are 5d SU(3) gauge
theory with the Chern-Simons (CS) level 9 from G = D4,k = 1 and the 5d SU(4) gauge
theory with the CS level 8 from G = Eg, k = 1, each of which may be realized from a circle
compactification of a 6d theory with a twist [19, 48]. A 5-brane web diagram of the former
theory has been constructed in [49]. The partition functions of the theories on S! x R*
has been recently computed in [43, 44, 50]. We give a quadrivalent or trivalent gluing
realization by web diagrams of the theories and compute the Nekrasov partition functions
of the theories using the web diagrams.

The organization of this paper is as follows. In section 2, we consider 6d theories which
are described by (G, G)2 with G = Dy, Fg, E;. We then peform Higgsings, which can be
seen from the corresponding web diagrams, and identify the low energy theories for each
Higgsing. In section 3, we compute the Nekrasov partition functions of gauge theories with
exceptional gauge groups and also the Nekrasov partition functions of the marginal pure



SU(3),SU(4) gauge theories by utilizing the construction of the web diagrams in section 2.
We summarize our results and discuss future directions in section 4. For completeness we
describe the relation between the Higgsings of web diagrams for the (Eg, Fg); and the low
energy theories in appendix A. Appendix B summarizes the topological vertex formalism

which we use in section 3.

2 Brane webs and Higgs branches of conformal matter theories on
a circle

In this section we study certain Higgsings of 6d theories on a circle that are given by
gauging two minimal conformal matter theories.? More specifically the parent 6d theories
we consider are (Dg, Dy)2, (Eg, Eg)2 and (E7, Er)s. Circle compactifications of the 6d
theories lead to 5d affine Dynkin quiver theories which can be realized by the trivalent or
quadrivalent gluings of 5-brane web diagrams. Since we are interested in using the web
diagrams to compute their partition functions, we will focus on Higgsings that can be
manifestly realized from the diagrams. It turns out that such limited Higgsings yield web
diagrams for 6d theories with an exceptional gauge group Gs, Fy, Fg, E7 on a circle. In
fact, we can also realize the web diagrams for the 5d pure SU(3) gauge theory with the CS
level 9 and the 5d pure SU(4) gauge theory with the CS level 8.

2.1 Twisted compactifications of 6d theories

The main focus of this paper is certain Higgsings of 6d theories, (Dy4, Dy)2, (Eg, Eg)2 and
(E7,E7)2 on a circle. In fact it will turn out that the Higgsed theories may be divided
into two classes. Some of the Higgsed theories are simple circle compactifications of 6d
theories while the other Higgsed theories arise from circle compactificationsof 6d theories
with twists. Here we first collect basic properties of circle compactifications of 6d theories
with or without twists and set up the notation which we will use in the later sections.

A circle compactification with or without a twist of a 6d N = (1,0) superconformal
field theory (SCFT) may admit a 5d description. In the 5d description the KK modes
arise as non-perturbative effects and the information of the KK modes are still contained
in the 5d theory. Such 5d theories are sometimes dubbed as 5d KK theories. Let us
first focus on 5d KK theories which are obtained from 6d theories on a circle. 5d N =1
KK theories can be obtained from M-theory compactified on certain Calabi-Yau threefolds
each of which is given by an elliptic fibration over a base B [51-54]. The base B is non-
compact as we consider 5d KK theories with gravity decoupled. Then relevant physics is
mainly characterized by a compact complex surface S inside each Calabi-Yau threefold.
The complex surface S is given by a collection of Hirzebruch surfaces S, with some points
blown up [19, 25]. The number of the Hirzebruch surfaces gives the dimension of the
Coulomb branch moduli space of the corresponding 5d KK theory.

In fact the compact complex surface S may be also seen as a collection of P'’s on each
of which we have an elliptic fiber. The P!’s are inside the base B and the elliptic fiber may

3Some Higgsings may give rise to free hypermultiplets in the Higgsed theories but we will not mention
their existence explicitly.



be degenerated on some of the base curves. Each component in the degenerated elliptic
fiber on a P! base C; corresponds to a collection of P! fibers fa,i in Hirzebruch surfaces S, ;
in S. The intersections between the P! fibers fai With a fixed 7 form a Dynkin diagram of
an affine Lie algebra in the sense that the negative of the intersection numbers given by

Cab = —fa,i - Sby (2.1)

becomes the Cartan matrix for the affine Lie algebra. We will use this viewpoint for
specifying the geometry as well as the corresponding 5d KK theory. More specifically we
will use the following notation, which obeys the one in [25]. Let Q¥ be the negative of
the intersection number between the C; and the C; in B. Also suppose the elliptic fiber
on the C; degenerates to P! fibers whose intersection forms a Dynkin diagram of an affine
Lie algebra g(l) with the Cartan matrix given by (2.1). Although Q¥ with j # i can be

)

0, —1, —2, we will only encounter examples with Q¥ = —1. When Q% = —1 we write
o
Q® — QY (2.2)

When the associated Lie algebra is trivial, we write 91(;1) = 5p(0)M) when Q% = 1 and
ggl) = su(1)™M) when Q% = 2. In the case of g; = sp(n;) without fundamental hypermulti-
plets, there can be two types depending on the 6d discrete theta angle. When the discrete
theta angle is physically relevant we will write the discrete theta angle as the subscript of
sp(n;). For g; = sp(0) the discrete theta is only physical when its adjacent node has an
su(8) gauge algebra [55].

The notation (2.2) is also useful to read off the corresponding 6d uplift. In the 6d uplift,
the number of the base P!’s is the number of tensor multiplets. g; gives the gauge algebra
and it determines vector multiplets in the theory. Furthermore, the content of hypermulti-
plets is almost fixed by the anomaly cancellation once the intersection matrix Q¥ is given.*
There can be hypermultiplets in a representation R; of g; and also hypermultiplets in a
mixed representation R;; of g;®gj. When Q% = 1,g; = sp(n;), 7 =k, g; = 50(7) or s0(8)
and QY = —1, there may be two possibilities for the mixed representation between sp(n;)
and so(7) or s0(8). The two possibilities are (V,V) and (V,S). Here V represents the

vector representation and S denotes the spinor representation. We will use (2.2) for (V,V)

“When we consider 6d theories with a tensor multiplet there are some cases where g; and Q" are
not enough to fix the matter content. For g; = su(m) m > 3 with Q" = 1 the matter content is either
(m+8) hypermultiplets in the fundamental representation and a hypermultiplet in the rank-2 antisymmetric
representation or (m — 8) hypermultiplets in the fundamental representation and a hypermultiplet in the
rank-2 symmetric representation. The latter case can be distinguished by denoting it by su(m). For
g = su(6) there is further a different case which has 15 hypermultiplets in the fundamental representation
and a half-hypermultiplet in the rank-3 antisymmetric representation, which can be differentiated by su(g).
Finally when g = s0(12) with Q" = k (k = 1,2), we have either (8 — k) hypermultiplets in the vector
representation and (4 — k) half-hypermultiplets in the spinor representation or (8 — k) hypermultiplets in
the vector representation, (3—k) half-hypermultiplets in the spinor representation and a half-hypermultiplet
in the cospinor representation. The latter case may be distinguished by 50(1/\2).



and the case with (V,S) is written by®

ol
Q... I (2.3)

for the corresponding geometry and the 5d KK theory.

Although the notation above will be enough to specify the theories in the examples we
will consider later, we will also put flavor symmetry algebras in a square bracket below Q.
However there are some subtle cases. When we have su(n) (n > 3) algebras, then U(1)
global symmetries associated to matter of the su(n)’s may be broken by Adler-Bell-Jackiw
(ABJ) anomalies. The remaining U(1) symmetry may not be localized on a base curve and
we will not write Abelian symmetries associated to matter of su(n) algebras explicitly. In
the case of one flavor we will write Ny = 1 below Q. Another subtle case is

su(2)
2

. 24
[50(7)] 24

Although the naive flavor symmetry algebra expected from the tensor branch effective
field theory is s0(8), the geometry indicates that only the so(7) subalgebra is realized at
the ultraviolet (UV) fixed point. This reduction of the symmetry also necessary for the
consistency with the dualities in lower dimensional theories [56]. When we have more than
one factors of (2.4), determining the flavor symmetry could be complicated. Hence we will
only write the number of flavors of su(2) in those cases. A prescription to determine flavor
symmetries in the subtle cases has been presented in [57].

We then consider geometries which give rise to 5d N/ = 1 KK theories coming from
twisted compactifications of 6d theories. One type of twists arises from permutation of
base P! curves C;. For a permutation i — o (i), when the characterization of a 6d theory
satisfies

9o(i) = Bi» (2.5)
Qoo(@) = i (2.6)

and also Ry(;) = Ri, Ro(i)o(j) = Rij, we can consider a geometry that realizes a 5d KK
theory from a circle compactification of the 6d theory with the twist. The number of base
P'’s becomes the number of orbits under the permutation of o. Let I,.J parametrize the
orbits. Then the intersection matrix after the twist becomes

QY =304, (2.7)
JjeJ

where i denotes a node in the orbit /. Then the intersection form Q!/ may become non-

symmetric. The intersection form (2.7) may be interpreted as a Dirac paring between BPS

®For 50(8) the physically relevant case is

sp(n;) 50(8) Ep(nj)
1 e B — 1

)

due to the outer automorphism of so(8).



strings and particles [58]. When QZ/ > QJ/ > 0 we put the number —Q/ above the line
between the node I and the node J. In particular when Q7 > QJ!  the line between the
nodes is replaced with an arrow from [ to J. In the case when the diagonal entry changes
by ¢ = Q% — QL we can introduce £; edges for the node I but we will not have this case
in this paper.

We can consider other type of twists which acts non-trivially on components of the
elliptic fiber without exchanging base P! curves. In order to see which twist is possible we
here carefully analyze discrete components of a flavor symmetry acting on hypermultiplets
in a gauge theory with eight real supercharges. We will divide the analysis by the type of
representations of a gauge group. In this section we analyze only the classical subgroup;
there can be a gauge-flavor mixed anomaly which reduces the flavor group.

Complex representation. We denote the scalars in the hypermultiplets by @ eR
collectively. Here we assume the total representation R is the direct sum of Ny copies
of the same irreducible complex representation R of the gauge group and Ny copies of
its complex conjugate: R = R®Nr @ R®Ns. We write each component as Q = ( Z,@f)
where a and a are the gauge-representation indices and 7 is the flavor index. Q admits the
antisymmetric gauge-invariant bilinear form:

(@, P) = 64(QL P — PIQ9). (2.8)

For the flavor symmetry to commute with the R-symmetry, it should preserve the bilinear
form. A unitary matrix U € U(Ny) acting as (QF, Qi) — (U Q7 (Ui;)*Q;) preserves (2.8)
and the kinetic term.® However, the discrete component of the symmetry can come when
we consider the charge conjugation on the gauge index: a <> a. To preserve (2.8), the
corresponding symmetry M should act on the hypermultiplets as

M : ( fm@?) = (_ N?vaz)' (29)

Note that M does not square to the identity, and rather M? = —1, which is a nontrivial
element in U(Ny). Formally, an element of the classical global symmetry group F' can be
written as a pair (U, M?®) with a = 0, 1, and the multiplication among them is

(Up, M) - (U, M®2) = ((=1)192U (CH - Us), M@+azmod 2y, (2.10)

where C is the charge conjugation automorphism: C'- Uy = Uj. In other words, the global
group F is the extension of Zy by U(Ny):

1= UNy) = F = Zo— 1. (2.11)

As (U,1) and (U,M) is not connected by a path in F, the F has two disconnected
components:
7T0(F) = ZQ. (212)

In 6d the U(1) part of U(N;) can be explicitly broken by the ABJ-type anomaly. We do not take that
effect into account here. Also, if the gauge group has a nontrivial center, the flavor group faithfully acting
on the local operators is the quotient of the group F' in the main text by the center.



When Ny is even, we have an order 2 element M= (QNf,M); M? =1. Here, the Qp, is
the symplectic identity matrix of size Ny:

0 In

Oy, = 1y, R (2.13)
2

where Iy is the N x N identity matrix. We can use U and M instead of M to generate the
whole group F', which means F' is isomorphic to the semidirect product U(Nf) x Zy. In
other words when Ny is even we can regard the matter content as % half-hypermultiplets
in R and % half-hypermultiplets in R, and M just swaps them. When N; is odd we do
not have such a splitting and F' is not isomorphic to the semidirect product. In particular,
when Ny =1 the group F is called the Pin(2)~ group.

We are interested in circle compactifications twisted by an element (7', M) disconnected
from the identity. The global symmetry of the reduced theory is the commutant of the
twist element in the global group F. If we conjugate (7, M) by a general element (U, M?),
we get

(U, M) - (T, M) - (U,M*) ™! = ((-=1)*UC® - T, Mot med 2y . ((—1)2ca. UT, M9)

= (UEC*-TU", M). (214)

When Ny is even and we take T" to be the symplectic identity 7" = Qy,, i.e. the twist

element is M, the commutant is Sp (%) X Zo. When Ny is odd, we can take T" to be the
following Ny x Ny matrix Q’Nf:

0 Iny1 0
2
N, = —INf;l 0 0 (2.15)
0 0 1

The connected part of the remaining flavor group is Sp (Nf;l). Another choice of the
twist is T' = Iy, ." In this case, the remaining flavor symmetry is an O(N #)-extension of Zs.
When Ny is even, this extension is trivial. As the twist involves an outer automorphism
of the gauge group, the twisted compactification also reduces the gauge group. Then a
gauge algebra g of a gauge group after the twisted compactification may be thought of as a
twisted affine Lie algebra in the sense that the intersection matrix given by (2.1) gives rise
to the Cartan matrix of the twisted affine Lie algebra. As the twisted Lie algebra comes

from an order two outer automorphism of g we will denote the twisted affine Lie algebra
by g2,

Ny
"For a generic T, the connected part of the remaining flavor group is broken down to U(1) { : J . This
breaking and also the enhancement to two different groups (Sp and SO) can be easily be seen from the
T-duality between the shift-orientifold and a pair of orientifolds with opposite charges when the system
can be realized by branes in the string theory [59]. When Ny is odd, one of the branes is trapped at the
orientifold in the T-dual frame cutting down the rank by a half.



We will encounter this type of twist in later sections and the examples we will see

include
su(n) su(n)@
2 — 2 (2.16)
[su(2n)] [su(2n)(2)]
for n > 3 and®
6 eé2)
n — no_ . (2.17)
[su(6—n)@u(1)] [5u(6—n)<2)]

Note that the twist is possible even when n is odd in (2.17) [30]. The subalgebra without
the affine node of su(n)® is sp (|2]), which is the algebra of the continuous part of the
flavor symmetry obtained above.

Pseudo-real representation. Next, consider the case where the hypermultiplets are
in a pseudo-real representation. To be precise, we assumes that the scalars Q = (Q%)
are in the direct sum R of 2Ny copies of an irreducible pseudo-real representation R:
R = RN Again, a is the gauge index and i is the flavor index. Here, by convention,
Ny takes values in half-integers. The supersymmetry with eight supercharges requires an
antisymmetric gauge-invariant bilinear form. The pseudo-real representation R is equipped
with an invariant antisymmetric form J, so we can just use it:

(@, Py = 6;J°QLP). (2.18)

When 2Ny is even, the classical flavor group F' preserving this pairing and the kinetic term
is ' = O(2N;,C)NU(2N¢) = O(2Ny). In particular, it has disconnected part:

70(F) = m0(O(2N))) = Zo. (2.19)

When 2Ny is odd, then a Zs element of determinant —1 in O(2Ny) is gauged and the flavor
symmetry becomes SO(2Ny).

When 2N is even, if this disconnected component survives under quantum (ABJ-
type) anomalies, we can do a twisted compactification using an element T disconnected
from the identity in O(2Ny). A choice with a maximal remaining flavor group is T' =
diag(1,1,---,1,—1), and the connected component of the remaining group is SO(2N; —1).
This twist does not involve an outer automorphism of the gauge group, so the gauge group
can remain the same after the compactification. When 2N is odd, SO(2Ny) is connected
and we do not have a non-trivial element disconnected from the identity.

Strictly real representation. Lastly, we consider the hypermultiplets in Ny copies of
a strictly real irreducible representation R of a gauge group. The scalars in the multiplets
value in the 2N copies of the complexification of R, and the paring is

(@, P) = Q;;57Q" P}, (2.20)

where S§% is the invariant symmetric bilinear form of R. The flavor group preserving this
pairing and the kinetic term is Sp(/Ny) and in particular it is connected. Hence there is no
non-trivial element 7" which is disconnected from the identity.

8When n = 4 the flavor symmetry algebra becomes 5u(2)<1).



So far we have focused on gauge theories with hypermultiplets in a single representa-
tion. When we consider gauge theories with hypermultiplets in multiple representations the
flavor symmetry group consists of multiple factors. Then it is possible to consider a twist
which exchanges the same factors of the flavor symmetry. Let us consider cases where the
exchange is induced from a non-trivial outer automorphism of a gauge algebra g. An outer
automorphism of a Lie algebra g may be understood from an automorphism of a Dynkin
diagram of g. The relevant gauge algebras in 6d gauge theories are g = s0(8) and so(12)
since the spinor representation is not allowed when g = so(2m) m > 7 due to the anomaly
cancellation condition. Both Lie algebras have an order two outer automorphism whereas
50(8) admits an order three outer automorphism. 6d SO(8) and SO(12) gauge theories may
admit two spinor representations with different chirality which are not related by complex
conjugation. We will call one of them as the spinor representation and the other as the
cospinor representation. The order two outer automorphism exchanges the spinor represen-
tation with the cospinor representation while the order three outer automorphism induces
an exchange among the vector, spinor and cospinor representation of s0(8). Therefore the
twist by the order two automorphism is possible when the number of (half-)hypermultiplets®
in the spinor representation is equal to the number of (half-)hypermultiplets in the cospinor
representation. The twist by the order three outer automorphism of s0(8) is possible when
the numbers of hypermultiplets in the vector, spinor and cospinor representations are all
the same. After the twisted compactifications, the gauge algebras become twisted affine
Lie algebras. The twists by the order two outer automorphism of so(8) and so0(12) yield
50(8)® and s0(12)( respectively and the twist by the order three outer automorphism
50(8) gives 50(8)®). The examples we will see later include

s0(8) 50(8)(2)

n (1 <n<4), (2.21)
[sp(4—n)@sp(4—n)Bsp(4—n)]

n )
[sp(4—n)(D@sp(4—n) D]
for the twist which involves the order two outer automorphism and

(3)
) — QT d<n<a, (2.22)
[sp(4—n)@sp(4—n)Bsp(4—n)] [sp(4—n) (D]

for the twist which involves the order three outer automorphism.

For a 6d gauge theory with a single gauge group, one may consider a combination
of a twist which exchanges different representations and a twist which acts on a single
representation. Since the latter twist for a strictly real representation is trivial a non-
trivial case may happen for a pseudo-real representation. Then the only possibility of the
gauge algebra is s0(12). In order to have the combination of the twists, the 6d theory
needs to have even number of half-hypermultiplets in the spinor representation and the
same number of half-hypermultiplets in the cospinor representation. However there is no

9The spinor and the cospinor representations are pseudo-real for g = so(12). In this case half-
hypermultiplets are allowed. On the other hand, the spinor and the cospinor representations of SO(8)
are real and thus half-hypermultiplets are not allowed.
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6d SO(12) gauge theory with such matter content which has a SCFT fixed point and we
do not have an example of with the combination of the twists.'?

In general, it is also possible to consider a twist which acts non-trivially on components
of the elliptic fiber and the base P! curves of a 6d theory has the corresponding discrete
symmetry.

After a twisted compactification a 5d KK theory is characterized with gauge algebras
gng ) and QL7 of (2.7). The corresponding Calabi-Yau threefolds in M-theory compact-
ifications become genus one fibered Calabi-Yau threefolds [25]. The gauge algebra gng )
represents how the torus fiber is degenerated and components f4 r of the torus fiber form a

Dynkin diagram of g&qj ) where the Cartan matrix is given by (2.1). Namely each f4 cor-

responds to a node in the Dynkin diagram of g(Iq’ ). Then for each base curve it is possible

to define a fiber

fr=> dafar (2.23)
A
where dj is a mark associated to each node of the Dynkin diagram of ggq" ). The gluing rule
of the fiber (2.23) on base curves next to each other is found to be [25]

ar (—le) fr~ay (—Qf{]) fr. (2.24)
2.2 (D4, D,4) conformal matter

We start from Higgsings of the theory (Dg4, D4)2 on a circle. The Higgsings have been
studied in [61] by using a 5-brane web with two O5-planes. Here we will redo the analysis
by realizing the theories using the quadrivalent gluing of four 5-brane web diagrams.

The basic building block is the minimal (Dy, D4) conformal matter. The minimal
(Dy, Dy) conformal matter theory is nothing but the E-string theory. The E-string theory
compactified on a circle may be realized by the SU(2) gauging of four 5d 75 theories. The
Ty theory is formally thought of as the [SU(2)] — SU(1) theory where [G] implies a flavor
node with the flavor symmetry group G. Then gauging the diagonal part of the flavor
symmetry groups of four copies of the T5 theory yields an affine D4 Dynkin quiver theory,

SU(1)

SU(1) — SU|(2) —SU(1). (2.25)

|
SU(1)
Each SU(1) node may be interpreted as two flavors attached to the middle SU(2) node [62,
63]. Hence (2.25) is equivalent to the SU(2) gauge theory with eight flavors, which has
a UV completion as the E-string theory. The discrete theta angle of the SU(2) node is
unphysical since it can be absorbed by the sign of the mass parameter of a hypermultiplet
in the fundamental representation.

9T here may be a 6d little string theory with so(12) gauge algebra and eight hypermultiplets in the vector
representation, two half-hypermultiplets in the spinor representation and two half-hypermultiplets in the
cospinor representation [60]. In this case it may be possible to consider a combination of a twist which
exchanges the spinor representation and the cospinor representation and a twist which makes use of an
element disconnected from identify in O(2) x O(2) of the flavor symmetry.
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i quadrivalent

gluing

Figure 1. The web diagram for the minimal (Dy4, D4) conformal matter theory on a circle.

The 5d affine Dy Dynkin quiver theory (2.25) is realized by the quadrivalent gluing of
four 5-brane web diagrams each of which gives the T, theory. The web diagram is depicted
in figure 1. A (p,q) 7-brane may be put on the end of an external (p,q) 5-brane and the
symmetry on the 7-branes implies a flavor symmetry of the web diagram [64]. For example
when we focus on the upper left diagram in figure 1, we can put a (1, —1) 7-brane on the
end of each external (1, —1) 5-brane. The two (1, —1) 7-brane may be put on top of each
other after a deformation, and hence it implies an SU(2) flavor symmetry. In total the
manifest flavor symmetry from the diagram in figure 1 is SU(2)® which is a subgroup of
SO(8) x SO(8). More specifically the SU(2)* flavor symmetry on the upper side of the
diagram is a subgroup of one SO(8) and the other SU(2)* flavor symmetry on the lower
side of the diagram is a subgroup of the other SO(8). Therefore the eight external legs
altogether on the upper side will be associated to one SO(8) and the eight external legs on
the lower side will be associated to the other SO(8).

On the other hand, the E-string theory can be also realized by an F-theory compactifi-
cation on a non-compact elliptically fibered Calabi-Yau threefold. In terms of the notation
introduced in section 2.1 the geometry of the E-string is represented by

sp(0)()
1
41

where the algebra in the bracket below the self-intersection number represents the flavor

: (2.26)

algebra. Namely the diagram in figure 1 is a web diagram realization of the theory (2.26).

Let us then consider combining two minimal (Dg4, D4) conformal matter theories to
obtain (Dyg, Dy)2. We take SO(8) subgroup of each Eg flavor symmetry and gauge the
diagonal subgroup of SO(8) x SO(8). The resulting theory then becomes (Dy4, Ds)2 and
(D4, Dy)2 on a circle is described by

sp(0)D) s0(8)D)  sp(0)D)
1 — 4 - 1

. (2.27)
[50(8)(1)] [50(8)(1)}

The theory (2.27) has a 5d gauge theory description and it is given by the following affine
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= quadrivalent i quadrivalent

gluing gluing

Figure 2. (a): The web diagram for the theory in (2.27), which gives a circle compactification of
(D4, Dy)3. (b): The web diagram for the theory in (2.29), which gives a circle compactification of
(D47 &)1 .

D4 Dynkin quiver theory,

SU(2)o — SU(4)o — SU(2)p. (2.28)

The subscript of SU(4) stands for the CS level and the subscript of SU(2) represents the
discrete theta angle. Hereafter also a subscript of an SU(n) gauge node represents the
CS level and a subscript of an Sp(n) gauge node stands for the discrete theta angle for
simplicity. The SO(8) gauging may be also realized from the viewpoint of the web diagram
by combining two copies of the diagram in figure 1. Remember that the eight external
legs on the lower side of the diagram are associated to one of the SO(8). Hence the SO(8)
gauging is realized by connecting the eight external lines to another copy of the diagram.
The diagram after the gauging is given in figure 2(a). The quadrivalent gluing part is fixed
by requiring that the gauging locally gives the SU(4) gauge group with the zero CS level.

We are interested in Higgsings of the theory (2.27) or (2.28). Since we will eventually
use the web diagram for computing the partition functions of some theories, we focus on
Higgsings which can be explicitly seen from the diagram. Since the SU(2)® flavor symmetry
is manifestly seen from the diagram in figure 2(a), we consider Higgsings which break a
part of or all the SU(2)®. Note that such a Higgsing is realized non-perturbatively as
the Higgs branches appearing when instanton particles become massless in terms of the
affine Dy Dynkin quiver theory (2.28). In the following we will label the Higgsing by
[(a1,a2,a3,a4), (b1, ba, b3, by)] where a;,b; (i = 1,2,3,4) are either 0 or 2, and 0 means no
Higgsing and 2 means the Higgsing which breaks one SU(2). The two brackets implies the
two SU(2)* each of which is a subgroup of SO(8).
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gluing

(a) (b)

Figure 3. (a): The Higgsing which breaks an SU(2) for one of the four diagrams which are glued
together in figure 2(b). (b): The web diagram of the theory which is realized after the Higgsing of
the type (2,0,0,0).

Before studying the Higgsings labeled by [(a1,as2,as,aq), (b1, b2, b3, by)] for the the-
ory (2.27) or (2.28), it is useful to consider Higgsings of the theory (D4, Dy4) on a circle.
The theory is described by

sp(0)® s0(8)M)
1 - 4 (2.29)
[50(8)(1)}

and its web diagram is depicted in figure 2(b). The SU(2)* flavor symmetry in SO(8) can
be explicitly seen from the diagram and we consider Higgsings which break the SU(2)*. We
will label the Higgsings by (a1, as,as,as) where a; (i = 1,2,3,4) are 2 or 0, which again
means whether the Higgsing breaks an SU(2) or not. In terms of the web diagram, the
SU(2) Higgsing is realized by putting two parallel external 5-branes on one 7-brane, which
is depicted in figure 3(a). For example, the theory obtained after the Higgsing of the type
(2,0,0,0) is realized by the web diagram where one of the four diagrams in figure 2(b) is
replaced with the diagram on the right in figure 3(a), which is illustrated in figure 3(b).
Higgsings of a conformal matter theory are characterized by nilpotent orbits of a Lie
algebra associated to the flavor symmetry of the theory and the correspondence between
the nilpotent orbits and the resulting theories at low energies after the Higgsings have been
determined in [47]. Hence we will relate the Higgsing label (a1, a2, as, a4) with the nilpotent
orbits of 50(8) to determine the theory obtained after applying the Higgsing (a1, as, as, as)
to the theory (D4, Dy4) on a circle. One difference is that the analysis in [47] has considered
Higgsings of 6d theories without a circle compactification but here we consider Higgsings
of the 6d theory on a circle. Therefore the Higgsings may give rise to a theory that is
obtained by a twisted compactification of a 6d theory, which has been also noted in [61].
Let us then relate the Higgsings labeled by (aq, as, as, aq) with the nilpotent orbits of
50(8). The breaking labeled by (a1, as, as, a4) of the SU(2)* flavor symmetry is achieved by
giving a vacuum expectation value (vev) to a nilpotent element in s0(8). The four SU(2)’s
are associated to the four nodes except for the middle node in the affine D4 Dynkin diagram
and the Higgsing of a; = 2 breaks an SU(2) associated to one of the four nodes. We assign
a; (1 =1,2,3,4) to the four nodes in the affine Dy Dynkin diagram as in figure 4. From
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ai

a
[21_11010] O [01_11210]

[_1121_11_1]
[0,-1,0,0] [0,-1,0,2]
dg as

Figure 4. The affine Dy Dynkin diagram with the affine node given in black. The four digits
in a bracket indicate the Dynkin label for each node. a; next to a circle implies that this node is
Higgsed when a; = 2.

the assignment in figure 4 it is possible to find an explicit nilpotent element corresponding
to the Higgsing labeled by (a1, as, as, as). In this case the orbit of the nilpotent element is

characterized by a certain partition of 8 and the end result of the correspondence is'!

(0,0,0,0) +» [1,1,1,1,1,1,1,1],
(2,0,0,0),(0,2,0,0),(0,0,2,0), (0,0,0,2) < [2,2,1,1,1,1],
(2,2,0,0),(0,0,2,2) > [2,2,2,2]],
(2,0,2,0),(0,2,0,2) < [2,2,2, 21, (2.30)
(2,0,0,2),(0,2,2,0) > [3,1,1,1,1,1],
(2,2,2,0),(2,2,0,2),(2,0,2,2),(0,2,2,2) < [3,2,2,1],
(2,2,2,2) + [3,3,1,1].

Since the four nodes associated to a1, as, a3, a4 are equivalent to each other, all the Higgsings
with the labels of two 2’s and two 0’s lead to the same theory although they are associated
to three different nilpotent orbits.

Using the correspondence (2.30) it is possible to relate the Higgsings labeled by (a1, a9,
as,ays) with the theories after the Higgsings from the result in [47]. However, there is
one more step to identify the Higgsed theory after the Higgsing (a1, a9, as,as) since the
Higgsings considered in [47] are Higgsings of 6d theories without a circle compactification.
The Higgsings in our cases may lead to circle compactifications of the Higgsed 6d theories
with twists. Indeed some of the Higgsings necessarily involves a Higgsing associated to an
affine node of a Dynkin diagram. In those cases we expect that the resulting theories are 5d
KK theories obtained by twisted compactifications of 6d theories if the original 6d theories
on S' admit a non-trivial twist. For practical computations, we will take the following
strategy to determine if the Higgsed theory is that from a twisted compactification of a
6d theory. If the numbers of Coulomb branch moduli and mass parameters of the 5d KK

11n this paper, generally, we do the nilpotent Higgsing using the element ey = Za p(Fa) where o runs
through the simple roots of a subalgebra h and p is the embedding into the ambient algebra. To identify
the nilpotent orbit containing ey, we computed the corresponding weighted Dynkin diagram, explained in,
e.g. [65], helped by the Mathematica package LieART [66, 67]. From the weighted Dynkin diagram one can
read off the corresponding partition when the ambient algebra is classical, or the Bala-Cater (B-C) label
when the ambient algebra is exceptional.
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Higgsing partition twist theory
sp(0)M so(8)™M)
(0,0,0,0) [18] 1 I — 4
[s0(8)M]
s0(8)(M)
(2,0,0,0) [22,14] 1 3
[sp(1) M esp(1)Depsp(1) (V)]
s0(7)(M)
[sp(2)(™)]
©)
g
(2,2,2,0) 3,22, 1] 1 3
[sp(1)(]
su(3)(®
(2,2,2,2) [32,17] Zo 3

Table 1. Higgsings associated to SU(2)* of (2.29).

theory obtained by a circle compactification of the 6d Higgsed theory in [47] agree with
the numbers of Coulomb branch moduli and mass parameters read from the web diagrams,
then we identify the Higgsed theory with a circle compactification of the 6d Higgsed theory
in [47] without a twist. If the numbers do not match with each other, then we identify the
Higgsed theory with a twisted compactification of the 6d theory in [47]. We can determine
the twist from a discrete symmetry of the Higgsed theories and also the matching of the
numbers of Coulomb branch moduli and mass parameters after the twist.

Using this strategy it is possible to determine the relation between the Higgsing
(a1,a2,as,a4) and the Higgsed theories and the result is summarized in table 1. The
Higgsing label in table 1 is in the order a; > as > ag > a4 since the other orders give the
same theory. We can see in table 1 that a twisted compactification of a 6d theory already
appears in this example. Let us closely look at the Higgsing (2, 2,2,2), which is in the last
row in table 1. The web diagram for the (2,2,2,2) Higgsing is depicted in figure 5(a). The
Higgsing necessarily involves a Higgsing which breaks an SU(2) associated to the affine
node of the affine Dy Dynkin diagram. In this case, we expect that the resulting theory is
given by a twisted compactification of the 6d theory. In terms of the relation (2.30) the
Higgsings (2, 2,2,2) corresponds to the partition [3,3,1,1]. The Higgsing giving a vev of
the nilpotent orbit labeled by [3,3,1, 1] of the 6d theory (D4, D4) gives rise to [47],

su(3)
3. (2.31)

A circle compactification without a twist of the theory (2.31) yields a 5d KK theory with
3 Coulomb branch moduli and one mass parameter. On the other hand the number of
Coulomb branch moduli from the web diagram in figure 5(a) is 2 and it has one mass
parameter. Namely we have a mismatch of the number of the Coulomb branch moduli,
which also suggests that the Higgsing (2,2, 2,2) generates a theory obtained by a twisted
compactification of a 6d theory. To see which twist is possible, note that the 6d pure SU(3)
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quadrivalent

gluing

(a) (b)

Figure 5. (a): The web diagram of the theory obtained after the Higgsing (2,2,2,2). (b): The
Dynkin diagram of the twisted affine Lie algebra su(3)(?). The lines in red and blue in figure 5(a)
correspond to the nodes in red and blue in this figure respectively.

gauge theory has a discrete symmetry given by the charge conjugation. Hence it is possible
to consider the twisted compactification of the theory (2.31) which yields

su(3)2)
3 . (2.32)

The twist formally corresponds to Ny = 0 of the complex representation discussed in
section 2.1. The 5d KK theory described by (2.32) has 2 Coulomb branch moduli and one
mass parameter and the numbers agree with those from the web diagram in figure 5(a).
Therefore we argue that the web diagram in figure 5(a) corresponds to the geometry (2.32).
It is also possible to see the appearance of the twisted affine Lie algebra 511(3)(2) from the
web diagram in figure 5. By using the intersection numbers given by (2.1), the intersection
matrix between the fiber class in red and that in blue in figure 5(a) becomes the Cartan
matrix of the twisted affine Lie algebra su(3)() and the fibers form the Dynkin diagram of
su(3)@, which is depicted in figure 5(b).

It has been also argued that the theory (2.32) gives rise to the 5d SU(3) gauge theory
with the CS level 9 [19] and hence the diagram in figure 5(a) gives a realization of the 5d
pure SU(3) gauge theory with the CS level 9 using the web diagram with the quadrivalent
gluing. W-bosons corresponding to simple roots of SU(3) are associated to the fiber class
in green and that in blue in figure 5(a).

One can also clearly see a pattern of the change of the Dynkin diagrams by the succes-
sive Higgsings associated to the SU(2). For the each SU(2) Higgsing the algebra changes as
50(8) (M) = so(7)(D) — gél) — su(3)? starting from (2,0, 0,0). The change of the Dynkin
diagram is depicted in figure 6. Namely the effect of each SU(2) Higgsing in terms of the
Dynkin diagram is that it folds the diagram by identifying two nodes with one line added
between the middle node and the identified node. The appearance of su(3)®) is natural
from this respect.
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Figure 6. The change of the Dynkin diagram in the process of the successive Higgsings of SU(2).

gluing

Figure 7. (a): The web diagram of the theory obtained after the Higgsing (2,2,2,0). (b): The

Dynkin diagram of the affine Lie algebra gél). The lines in red, blue and magenta in figure 7(a)

correspond to the nodes in red, blue and magenta in this figure respectively.

It is also illustrative to see how the torus fiber changes in the process (2,2,2,0) —
(2,2,2,2). The web diagram after the Higgsing (2,2, 2,0) is depicted in figure 7(a). The
intersection among the fiber classes fo, fi, fo form the affine Gy Dynkin diagram as in
figure 7(b). In this case the elliptic fiber is given by the combination (2.23), which becomes

fggm = fo+2fi+3f, (2.33)

and an M2-brane which is wrapped on the curve (2.33) corresponds to a KK mode with
unit momentum in the 5d KK theory. The mass of the particle is R%d where Rgq is the
radius of the S! compactification of the 6d theory which is 6d G5 gauge theory with one
flavor and a tensor multiplet. By performing the Higgsing which breaks the remaining
SU(2) flavor symmetry we obtain the web diagram in figure 5(a) where fj is identified with

f2. Then the combination (2.33) can be written as

fkx = fo+2fi+3fa=2fi +4fa. (2.34)
On the other hand the fiber (2.23) for the twisted affine Lie algebra su(3)®) is given by
fou@ = f1+2f2. (2.35)

Combining (2.34) with (2.35) gives
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Figure 8. The labeling of [(a1,az,as,a4), (b1,ba,bs, by)] for each SU(2) in the web diagram in
figure 2(a).

Then an M2-brane wrapped on fsu(3)<2) corresponds to a fractional KK mode with mass

1
2Rgq °

We then move on to the Higgsings labeled by [(a1, a2, as,a4), (b1, b2, b3.bs)] of the the-
ory (2.27). The notation here is that when a; or b; is 2 then we perform the Higgsing for
the parallel external lines next to a; or b; in figure 8. For obtaining the theory after the
Higgsing labeled by [(a1, a2, a3, as), (b1, b2, b3.bs)], we can combine the theory which arises
from (a1, ag,as, as) with the theory from (b1, b, b3, bs) when either of the theories still has
the s0(8)(M) algebra. More specifically, suppose we consider the Higgsing (a1, az, a3, as) or
(b1, ba, b, by) which gives

62 s0(8)(M)
ng — (4 - nl), (237)
and the other Higgsing which gives
9 :
(4 —my) — i, (2.38)

when we apply the Higgsing to the theory (2.29). Then the rule of the combining the two
theories is given by

s0(8)(D) o) /
{%22 (4 —n)| + [(4 —my) — 7%22]
(2.39)
g2 i 95
— ng—(4—n1—m1)—m2.

The flavor algebra can be determined from the matter content which satisfies the anomaly
cancellation as in [68] with a possible twist.

When both the (a1, as, as, as) and (b1, by, bs, by) cases Higgs the so(8)(1) algebra in each
theory we need to be careful of combining the two theories. For example let us consider the
cases where two of a; and two of b; are 2 and the others are zero. All such cases have one base
curve with the self-intersection number —2. Hence we can specify the theory by determining
the algebra on the curve. The algebra can be determined from the Higgsed web diagrams by
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Figure 9. The change of the Dynkin diagram after the Higgsings of (2,2,0,0) and then the
Higgsing of (0,0,2,2).

computing the Cartan matrix of the algebra using (2.1). There are three possible Higgsings
and the correspondence between the Higgsings and the resulting theories is

s0(7)(D)

((2,2,0,0),(2,2,0,0)] < 9 , (2.40)
[sp(1) (M @ep(4) (V)]
(1)
g

((2,2,0,0),(2,0,2,0)] < 5 (2.41)
()]
(0@

(2,2,0,0),(0,0,2,2)] « 2 (2.42)

[su(8)] ’

where we fixed (a1, a9, a3, a4) = (2,2,0,0) since the other choices give the same result after
the appropriate rearrangement of b;’s. Also for (2.41), (b1, ba, b3, bs) = (2,0,0,2),(0,2,2,0)
and (0,2,0,2) yield the same result as (2.41). Note that the Higgsing (2.40) does not
change the number of the Coulomb branch moduli compared to [(2,2,0,0), (2,0,0,0)], In
other words the change of [(2,2,0,0),(2,0,0,0)] into [(2,2,0,0),(2,2,0,0)] is not a Higgs-
ing but simply tuning a mass parameter. Note that the twisted affine Lie algebra 5u(4)(2)
appears in (2.42), which comes from the twist of (2.16). It is also illustrative to see the
change in terms of the Dynkin diagram for the Higgsing (2.42), which is depicted in figure 9.

Next we consider the cases where three of a;’s and two of b;’s are two and the others
are zero. The correspondence between the Higgsings and the resulting theories is

g(l)

[(2,2,2,0),(2,2,0,0)],[(2,2,2,0), (2,0,2,0)],[(2,2,2,0),(0,2,2,0)] <> : (Z( )], (2.43)
sp(4)(

(2,2,2,0),(2,0,0,2),[(2,2,2,0),(0,2,0,2)}.[(2,2,2,0),(0,0,2,2)] &> [?;i:] (244
su(6)(2

We again fixed (a1, as, a3, as) = (2,2,2,0) without loss of generality. In the theory of (2.43)
one mass parameter is turned off compared to the general case.
The other cases where we have more than five 2’s in [(a1, ag, as, a4), (b1, b2, b3, by)] do
not lead to new theories. The case of [(2,2,2,2,0),(2,2,2,0)] gives rise to
o)
5 (2.45)
[sp(4) D]

with two mass parameters turned off. The other yields
su(3)(

2 2.46
[su(6)®] ( )
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and the number of mass parameters which are turned off is the number of 2’s in [(a1, a2, as,
a4), (bl, bg, bg, b4)] minus 5.

The result of the relation between the Higgsings of [(a1, a2, as, as), (b1, b2, b3, bs)] and
the resulting theories is summarize in table 2. In table 2 we fixed a1 > a2 > a3 > a4. The
subscript (n,m) (n +m = 4) for (b1, ba, b3, bs) means that the permutation of the first n
entries and the permutation of the next m entries give the same theory. For the permutation
of all the four entries, we simply wrote 4 for the subscript. The number of prime marks

implies the number of mass parameters which are turned off compared to the general cases.

In fact the theories listed in table 2 have a 5d gauge theory description. The origi-
nal theory (2.27) has a 5d gauge theory description (2.28). Higgsing one SU(2) yields a
hypermultiplet in the rank-2 antisymmetric representation of SU(4) and also change the
CS level by £1 [32]. In our convention a Higgsing of a; = 2 increases the CS level by
one and a Higgsing of b; = 2 decreases the CS level by one. The rank-2 antisymmetric
representation of SU(4) is a real representation and the flavor symmetry is Sp(Ny) for
Ny hypermultiplets in the rank-2 antisymmetric representation of SU(4). For example we
consider a Higgsing a; = 2 and we have a rank-2 antisymmetric hypermultiplet, the SU(2)
associated to b; is the flavor symmetry associated to the rank-2 antisymmetric hypermul-
tiplet. Then the Higgsing b; = 2 changes the gauge group SU(4) into Sp(2). Similarly the
quiver Sp(2)g — SU(2)¢ has an SU(2)? flavor symmetry and Higgsing one SU(2) gives a
hypermultiplet in the rank-2 antisymmetric representation of Sp(2). In this way, one can
find a 5d gauge theory description for each theory labeled by [(a1, ag, a3, a4), (b1, b2, b3, bs)].
The result is summarized in the third column in table 2. The negative sign of the CS level
for each theory can be obtained by switching (a1, ag, as,as) with (b1, ba,bs,bs). From this
perspective the number of the prime marks means the number of massless rank-2 antisym-
metric hypermultiplets of Sp(2). Some of the 5d theories in table 2 have a single gauge
group and the classification of UV complete 5d gauge theories with a simple gauge group
has been done in [29]. The result in table 2 is consistent with the result in [29].

2.3 (FEs, Eg) conformal matter

Next we consider the theory (FEg, Eg)2 which is obtained by gauging two minimal (FEg, Eg)
conformal matter theories and study Higgsings of the theory (Eg, Fg)2 on a circle. For that
we can basically repeat the process of what we have done for Higgsing the theory (2.27) in
section 2.2.

The basic building block is the minimal (Eg, Eg) conformal matter theory or (Eg, Eg)1.
Using the notation in section 2.1, the theory (Fg, Eg)1 on a circle is described by

w0 @@ sp0)®
-3 - 1 . (2.47)

GG

It also has a 5d gauge theory description and it is given by the following affine Eg Dynkin
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Higgsing theory A 5d description
SU(2)o
sp(0)) so(8)M) sp(0))
[(0,0,0,0),(0,0,0,0)] L= -1 SU(2)o — SU(4)o — SU(2)o
[50(8)“)] [50(8)(1)] |
SU(2)o
SU(2)o
s0(8) (D p(0)V) |
[(2,0,0,0),(0,0,0,0)] 3 - 1 SU(2)p — SU(4) 11 — [AS]
[sp(1)Measp(1)Mesp(1)D]  [s0(8)(V] |
SU(2)o
SU(2)o
so(7)() sp(0)(D) |
[(27 27 07 0)7 (07 07 07 0)] - 1 SU(2)0 - SU(4)i2 - [2AS]
)] [eo(9))]
SU(2)o
|
so(8)V SU(2)o — SU(4)0 — [2A8]

[(2,0,0,0),(2,0,0,0)4]

2
[sp(2) M @sp(2) D esp(2)(D]

SU(2)o — Sp(2)o — SU(2)o

[(2,2,2,0),(0,0,0,0)]

o) s
3 - 1
[p0®] ]

SU(2)o — SU(4)+3 — [3AS]

SU(2)o — SU(4)+1 — [3AS]
2)

[(2,2,0,0),(2,0,0,0)4] 50(72)<1> SU(2),
[(2,2,0,0),(2,2,0,0)] [sp(1)D@sp(4) )] |
SU(2)o — Sp(2)o — [AS]
su(3)@  sp0)(M
[(2,2,2,2),(0,0,0,0)] 3 - [}2)} SU(4)+4 — [4AS]
[(2,2,2,0),(2,0,0,0)]
[(2, ,0,0),(2,0,2,0)2,] 5’ SU(4)4o — [4AS]
[(2,2,2,0),(2,2,0,0)31] [sp(4)(1)] SU(2)o — Sp(2)g — [2AS]
[( ’ 7 70))(2’27270)]//
(2,2,0,0),(0,0,2,2)] 3" SU)o — [4AS]
[su(S)(Q)]
((2,2,2,2),(2,0,0,0)4]
[(2,2,2,0),(2,0,0,2)3,]
su(3)(®
2 Sp(2)o — [3AS]

2 2 2,2),(2,2,0,0) ]
),(2,2,2,0)4]"
[(2,2,2,2),(2,2,2,2)]"

[su(6)]

Table 2. Higgsings associated to SU(2)* x SU(2)* of (2.27). AS represents a hypermultiplet in the
rank-2 antisymmetric representation of a gauge group which is connected to [AS].
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Figure 10. The web diagram for the minimal (Fg, Eg) conformal matter theory on a circle. The
trivalent gluing is done so that the central SU(3) gauge node has the zero CS level.

quiver theory,
SU(1)
|
SU(2)
|
SU(1) — SU(2) — SU(3)p — SU(2) — SU(1). (2.48)
Each SU(1) gauge node may be understood are two flavors attached to the adjacent SU(2)
gauge node and the discrete theta of the SU(2) gauge nodes are not physical. This theory
can be realized by the trivalent SU(3) gauging of three copies of the 5d T3 theory. The web
diagram is depicted in figure 10. The web diagram shows SU(3)? x SU(3)? flavor symmetry
explicitly which is a subgroup of Eg x Eg. To obtain the theory of (Eg, Fg)2, we connect
the two copies of the minimal (Eg, Fg) conformal matter theories by gauging the diagonal
subgroup of Fg x Eg each of which comes from each minimal (Eg, Fs) conformal matter
theory. Then the resulting theory, which is (Eg, Fg)2, on a circle is given by

(0D su@D sp)® e ) ®  su@)® sp(0)D)
1 3 1

R — -6 - — — , (2.49)
) 1
and its bd gauge theory description is
SU(2)o
Sl
SU(2)g — SU(4)p — SU}G)O —SU(4)o — SU(2)p. (2.50)

The web diagram of the theory (2.49) or equivalently (2.50) is obtained by applying the
same gauging to the two copies of the diagram in figure 10 and it is depicted in figure 11.
The trivalent gauging part is fixed by requiring that the SU(6) gauge node has the CS level
zero. The web diagram shows the SU(3)? x SU(3)? flavor symmetry explicitly which is a
subgroup of Eg x Eg.

We are interested in Higgsings of the theory (2.49). Since we will make use of web
diagrams for computing the partition functions later, we focus on the Higgsings breaking
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Figure 11. The web diagram for the theory (2.49), which is (FEg, Fg)2 on S*.

SU(3)3 x SU(3)3, which can be realized by the web diagram with several external 5-branes
put on a 7-brane. Before studying such Higgsings we first consider the theory (Es, )
which is obtained by gauging one of the Eg flavor symmetries of the minimal (FEg, Eg)
conformal matter theory and study Higgsings of the theory (Eg, Eg) on a circle. Namely
the theory we first consider is given by

sp(0) D su@® sp0)® el
1 — 3 - 1 -6, (2.51)

1

and it is realized on the web diagram in figure 12(a). The web diagram in figure 12(a)
shows the SU(3)? flavor symmetry explicitly and we consider Higgsings which break the
SU(3)? flavor symmetry. The Higgsings can be labeled by (a1, a2, a3) where a; (i = 1,2, 3)
are either 0,2 or 3 and a; = n means the Higgsings which breaks SU(n) inside an SU(3).
For identifying the theories after the Higgsings we take the same strategy which we
have done in section 2.2. In the current cases, the Higgsings are characterized by nilpotent
orbits of eg. Since it is not associated to a classical group the nilpotent orbits are not any
more labeled by partitions but we can still classify them by the B-C labels or weighted
Dynkin diagrams. We associate a1, as and a3 to nodes of the affine g Dynkin diagram as
in figure 12(b). Then we can compute the weighted Dynkin diagrams corresponding to the
Higgsings (a1, a2,a3). The weighted Dynkin diagrams are related to the B-C labels and
hence we can utilize the relation between the B-C labels and the Higgsed theories obtained
in [47]. When a Higgsing breaks a symmetry associated to the affine node of the affine Eg
Dynkin diagram, then the Higgsing may give rise to a 5d KK theory from a twisted compact-
ification of a 6d theory. The twist may be inferred from the matching between the numbers
of Coulomb branch moduli and the mass parameters of the 5d KK theory from the twisted
compactification and those from the web diagram. The result is summarized in table 3.
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Figure 12. (a): The web diagram for the theory (2.51), which is (Es, Eg) on S*. (b): The affine
Eg Dynkin diagram with the affine node given in black. a; next to a dotted circle implies that one
node in the dotted circle is Higgsed when a; = 2 and two nodes in the dotted circle are Higgsed
when a; = 3.

Let us look at the case (3,3,3). The web diagram after applying the Higgsing (3, 3, 3)
is depicted in figure 13(a). In this case the Higgsing involves the affine node of the affine
Eg¢ Dynkin diagram in figure 12(b). Hence we expect that the Higgsed theory is a twisted
compactification of a 6d theory. In 6d, the Higgsing associated to the B-C label Dy(a)
yields [47]

50(8)
4. (2.52)

Indeed, this theory has a discrete S3 symmetry related to the outer automorphism of s0(8)
and we can consider a compactification of the theory on a circle with a twist given by Zs
or Z3. From (2.21) and (2.22) with n = 4, the Zs twist gives

s50(8)(2)
4 (2.53)
while the Z3 twist yields
50(8)(3)
4 . (2.54)

The 5d KK theory of (2.53) has 4 Coulomb branch moduli and the 5d KK theory of (2.54)
contains 3 Coulomb branch moduli. On the other hand the web diagram in figure 13(a)
has 3 Coulomb branch moduli. This implies that the (3,3,3) Higgsing gives (2.54) which
is a circle compactification of (2.52) with the Zs twist. This theory is listed in the last row
of table 3.
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Higgsing | B-C Label | twist theory
PO®  w@®  spO® o)
(0,0,0) 0 1 1. - 3 - 1 -
)
a@® s e
(2,0,0) Ay 1 [ 2()]— 1 -6
su(6)(d
su@® ) g
(2,2,0) 24, 1 2 - 1 -
[so()D]  [u(1)D)]
a@®® @ !
5 Ly 1\ns - -
(2,2,2) | 3Ai(ns) 1 2 1 6
[su(2) D] [su(3)™]
pO® e sp(O)®
(3,0,0) Ay 1 1 —6-— 1
[511(3)(1)] [511(3)(1)]
HO® e
(3,2,0) | Ay+4; | 1 1 - 5
[511(3)(1)] [u(l)(1>]
(3.3,0) | 24 | Q@ 1
’ 9y 2 [ggl):|
el
1
(3,2,2) | Ay +2A 1 4
[5u(2)(1)@u(1)(1)]
:
(3,3,2) 245 + Ay 1
[sp(1)™)]
s0(8)(3)
(3>373) D4(a1) ZB

Table 3. Higgsings associated to SU(3)3 of (2.51).

We can also determine the algebra on the (—4)-curve from the web diagram after
the Higgsing labeled by (3, 3,3), which is depicted in figure 13(a). By using the intersec-
tion (2.1) it is possible to see that the intersection among the three fiber classes in red,
blue and green in figure 13(a) forms the Dynkin diagram of the twisted affine Lie algebra
50(8)®) as in figure 13(b). It has been also argued that the theory (2.54) gives rise to the
5d SU(4) gauge theory with the CS level 8 [48]. Hence the diagram in figure 13(a) realizes
the 5d pure SU(4) gauge theory with the CS level 8 and we will compute the partition

function of the theory using this diagram in section 3.5.

Let us also see the change of fibers in the process (3, 3,2) — (3, 3,3). The web diagram
after the Higgsing (3, 3, 2) is depicted in figure 14(a). The fiber classes fo, f1, f2, f3, f4 form
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(a) (b)

Figure 13. (a): The web diagram of the theory obtained after the Higgsing (3,3,3). (b): The
Dynkin diagram of the twisted affine Lie algebra s50(8)®) which is formed by the colored lines in
figure 13(a). The lines in red, blue and green in figure 13(a) correspond to the nodes in red, blue
and green in this figure respectively.

trivalent

gluing

—h
N

"sasssmmnng

(a) (b)

Figure 14. (a): The web diagram of the theory obtained after the Higgsing (3,3,2). (b): The
Dynkin diagram of the affine Lie algebra ffll) which is formed by the colored lines in figure 13(a).
The lines in magenta, cyan, red, blue and green in figure 13(a) correspond to the nodes in magenta,
cyan, red, blue and green in this figure respectively.
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Figure 15. The labeling of [(a1, as, as), (b1, ba, b3)] for each SU(3) in the web diagram in figure 11.

the Dynkin diagram of fil) as in figure 14(b). The elliptic fiber of (2.23) is given by

kK = ffiw =fo+2fi+3fa+4f3+2fs. (2.55)

An M2-brane wrapped on (2.55) gives a KK mode with mass R%d. When we further
apply the further Higgsing to the diagram in figure 14(a), the diagram becomes the one in

figure 13(a) with the identification of fibers fi; = f3, fo = f4. Then (2.55) is

frx = fa+2f3+3fa+4fs+2f4 =38, (2.56)

where

Jeo9)® = f2+ 2[5+ fa, (2.57)

which is the fiber (2.23) for the twisted affine Lie algebra s0(8)(®). Then an M2-brane
which is wrapped on the curve (2.57) gives a fractional KK mode with mass ﬁ.

We then consider Higgsings of the theory (2.49). Since we focus on Higgsings which
break the SU(3)3 x SU(3)3 flavor symmetry which can be explicitly seen from the diagram
in figure 11, the Higgsings can be labeled by [(a1, a2, as), (b1, ba, b3)] where a;,b; (i = 1,2, 3)
are either 0,2 or 3. We associate a;,b; (i = 1,2,3) to the web diagram as in figure 15 and
a; = n or b; = n means the Higgsing which breaks SU(n) inside the SU(3) corresponding
to a; or b; in figure 15. When we apply a Higgsing of (ai,as,ag) or (by,be,b3) to the
theory (2.51), then the Higgsed theory is the one listed in table 3. When we consider
a Higgsing [(a1,a2,as3), (b1, b2, b3)] where either of the Higgsing (ai,as,as) or (b1, ba,bs)
preserves the eél) algebra, then the theory after the Higgsing [(a1,as2,as), (b1, b2, b3)] is
given by combining the theory from (a1, a2, as) and the one from (b1, ba, b3) by the rule,

(1)
%6
[-.-%33—%22—(6—711)

/

5]

+ (6—m1)—m2—m3~~-

(2.58)

/
g3 g2 i g5 g5
—)--~n3—n2—(6—n1—ml)—mg—m3,~~.

~ 98 —



[(3,3,0),(3,3,0)]

[ggm} [sp(1)™] [gglu}

Higgsing Theory A 5d description
SU(2)g — SU(4)g — Sp(3)o — [AS]
[(3,3,0),(3,2,0)3] sp(0)) ffif sp(0)™) SUf)o

SU(2)o — SU(6)+1 — [AS]
[AS] — SU(4)+1 — Sp(3)~ — SU(2)o

[(37 37 0)7 (37 Ov 3)2,1]

sp(0)M) s0(8)(
1 - 4

[s0(8)(®)]

sp(0))
1

[s0(8)®)]

SU(2)o — Sp(3)o — SU(2)o

% sp(0)()
1

O] (0]

[AS] — SU(4)+1 — Sp(3)o — [AS]
SU(2)o — SU(6)+1 — [2AS]

s0(8)3)  sp(0)M
3 - 1

[5;3(1)(1)] [50(8)(3>]

[AS] = Sp(3)o — SU(2)o

o
2
[511(4)(1) @u(l)(lﬂ

Sp(2)o — SU(6)o — [2AS]
Sp(2)o — Sp(3)o — Sp(2)o

[(3,3,2), (3,2, 2)s] i) SU(6)11 — [3AS]
((3,3,2),(3,3,2)2.1]) [sp(3) D] Sp(2)o — Sp(3)o — [AS]
[(3)372)’ (3’2’3)271] 50(8)3)

[(3,3,3),(3,3,2)) 2 Sp(3)o — [2AS]

((3,3,3), (3,3,3)]" [sp2)®]

Table 4. Higgsings associated to SU(3)% x SU(3)? of (2.49). The table includes the cases where
both (a1, ag,as) and (b1, be, bs) Higgs the eél) algebra in (2.49). The other cases which is not listed
in this table can be obtained by the rule (2.58).

When both (a1, az,a3) and (b1, be, bs) Higgs the e(ﬁl) algebra then we work out the
corresponding Higgsed web diagrams explicitly to determine the algebra on each curve.
The result of such cases is summarized in table 4. Table 4 also includes single node cases
which we will use for computing the partition functions later. For (ai,as2,as), we fixed
a1 > ag > a3z and the other notation also follows from the one in table 2.

Applying the Higgsings to the theory (2.50), which is a gauge theory description
of (2.49), we can obtain 5d gauge theory descriptions of the theories after the Higgsings. We
can focus on one tail SU(6)g —SU(4)g — SU(2) of the quiver (2.50) and see how it changes
by a Higgsing (a;, b;) associated to the tail. An SU(2) Higgsing is the same as the one we
considered in section 2.2. Namely (a;,b;) = (2,0),(0,2) leads to SU(6)g — SU(4)+1 — [AS]
and (a;,b;) = (2,2) yields SU(6)g — Sp(2)p. For the Higgsing (a;,b;) = (3,0), which is
given in the diagram on the left in figure 16, moving a 7-brane yields the diagram on
the right in figure 16. The web diagram realizes the SU(6); — SU(2)¢ theory. Similarly
the Higgsing (a;,b;) = (0,3) gives rise to SU(6)_; — SU(2)g. Furthermore the Higgsing
(@i, bi) = (3,2),(2,3) give rise to SU(6); — [AS] and SU(6)_; — [AS] respectively [32]. Fi-
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Figure 16. A deformation of the diagram after the Higgsings which breaks SU(3) to a diagram of
the SU(6); — SU(2)( theory.

nally the Higgsing given by (a;,b;) = (3,3) yields the Sp(3) gauge theory with the zero
discrete theta angle. Namely we have the following Higgsing chain,

SU(6)o — SU(4)o — SU(2)o

a; =2, =0 / N a; =0,b;, =2
SU(6)o — SU(4)1 — [AS] SU(6)o — SU(4)-1 — [AS]

4 =3b;=0 | N ai=2,b;=2 L ai=00b =3
SU(6)1 — SU(2)o SU(6)o — Sp(2)o SU(6)—1 — SU(2)o
Noa;=3,b;=2 Noai=2,b;=3
SU(6); — [AS] SU(6)-1 — [AS]

Noai=3,b;=3

Sp(3)o (2.59)
We can also use
SU(6)r —SU(4)o —SU(2)0 G Hiees  Sp(3)g—juir (mod 2r)» (2.60)

and
[AS] — SU(6)r, — SU(4)o — SU(2)g ~ (33) Hiees  [AS] — Sp(3)g—jk+1/x (mod 27), (2:61)

for some small values of k. Then we can obtain a 5d gauge theory description for each
theory given by the Higgsing labeled by [(a1, a2, as), (b1, ba, bs)] from the Higgsing chain
in (2.59) as well as (2.60) and (2.61). For the theories listed in table 4, their 5d gauge
theory descriptions are displayed in the third column in table 4.

2.4 (E7, Er) conformal matter

Lastly we consider the theory (E7, E7)2 which is obtained by gauging two minimal (E7, E7)
conformal matter theories and study Higgsings of the theory (E7, E7)2 on a circle. The basic
building block is the minimal (E7, E7) conformal matter theory and the theory (E7, Er);
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Figure 17. The web diagram for the minimal (F7, E7) conformal matter theory on a circle. The
trivalent gluing is done so that the central SU(4) gauge node has the zero CS level.

on S is given by'?

sp(0)D  su(2)D so(D)M su(2)D sp0)D)
1 - 2 3 2 - 1 . (2.62)

5 I )

The theory (F7, E7); on a circle has a 5d gauge theory description, which is the following
affine E7 Dynkin quiver theory,

SU(2)o
SU(1) — SU(2) — SU(3) — SU(4)p — SU(3)o — SU(2) — SU(1). (2.63)

Again one SU(1) node represents two flavors attached to the adjacent SU(2) gauge node
and the discrete theta angle of such SU(2) gauge node is unphysical. The 5d theory (2.63)
may be realized on a web diagram with a trivalent SU(4) gauging. The web diagram is
depicted in figure 17. The two upper diagrams are the web diagrams for the Ty theory.
From the diagram, the external legs extending in the upper direction and the lower direction
explicitly show two copies of an SU(4) x SU(4) x SU(2) flavor symmetry, which is a subgroup
of E7 x E7. We can again construct the theory (E7, E7)2 by combining two minimal (E;, E7)
conformal matter theories. The theory (E7, E7)2 on a circle is

sp(0)D sy (2)®  so()D su(2)D sp0)D) 2(71> sp(0)D sy (2)D so()D su(2)Msp(0)D)
1 — 2 «+ 3 == 2 — 1 —8— 1 — 2 =« 3 w 2 1

d " [+

(2.64)

This theory (2.64) also has a 5d gauge theory description given by

SU(4)o

SU@%—SUM%—SU@%—SU&%—SU@M—SUMM—SU@%, (2.65)

12 Although a dotted line is used between a (—2)-curve with su(2)™ and the (—3)-curve with so(7)™
in (2.62), we do not have an ambiguity in this case since there is no matter in the vector representation for
the theory characterized by so(7)™") on the (—3)-curve.
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Figure 18. The web diagram for the theory (2.64) or (2.65), which is (E7, E7)s on S*.

and the web diagram realizing (2.65) is depicted in figure 18. The trivalent SU(8) gauging
is fixed by requiring that the SU(8) gauge theory has no CS level. The web diagram in
figure 18 shows the (SU(4)? x SU(2)) x (SU(4)? x SU(2)) flavor symmetry explicitly.

We are interested in the theories which are obtained after Higgsing (2.64). Before
studying Higgsings of the theory (2.64), it is again useful to study Higgsings of the theory
(E7, B7) on ST given by,

sp(0)D 52D so(7)D su(2)™ sp0)D) 2(71)
1 - 2 - 3 = 2 - 1 —=8. (2.66)
7

The web diagram of this theory is depicted in figure 19(a). The flavor symmetry associated
to the lower external legs are gauged and we are left with an E; flavor symmetry out of
which an SU(4) x SU(4) x SU(2) flavor symmetry can be explicitly seen from the diagram.
We label Higgsings which break the SU(4) x SU(4) x SU(2) flavor symmetry by (a1, az, as).
ap,az,az are associated to the SU(4),SU(4),SU(2) of the SU(4) x SU(2) x SU(2) flavor
symmetry, and aj,ag are either 0,2,3,4 or (2,2) and ag is either 0 or 2. a; = n means
an SU(n) part is broken and a; = (2,2) or az = (2,2) corresponds to the Higgsing which
breaks an SU(2) x SU(2) inside an SU(4).

We can identify the theories after a Higgsing labeled by (ai,as2,a3) by making use
of the result in [47] using the same strategy in section 2.2 and 2.3. We first associate
(a1, ag,as) to the nodes in the affine F7 Dynkin diagram as in figure 19(b) and then compute
the weighted Dynkin diagram corresponding to the Higgsing (ay, a2, a3). Then using the
relation between the weighted Dynkin diagrams and the B-C labels we can identify the
B-C labels of the Higgsings. In [47], various Higgsings of a theory obtained by connecting
(E7, E7) minimal conformal matter theories have been determined and they are classified by
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Figure 19. (a): The web diagram for the theory (2.66), which is (E7, E7) on S'. (b): The affine
E; Dynkin diagram with the affine node given in black. a; next to a dotted circle implies that k
consecutive nodes in the dotted line are Higgsed when a; = k+ 1. When a1 = (2,2) (a2 = (2,2))
then this implies a Higgsing of the two nodes except for the middle one in the three nodes circled
by the dotted line next to a; (as2).

nilpotent orbits of e7 or the B-C labels. From the relation between the Higgsing (a1, as, a3)
and the B-C label, we can associate the Higgsing (a1, az, a3) to the corresponding Higgsed
theory obtained in [47]. Again some of the Higgsings break a symmetry corresponding
to the affine node of the affine E7 Dynkin diagram and such a case may correspond to
a twisted compactifications of a 6d theory when the original 6d theory has a discrete
symmetry discussed in section 2.1. The twist may be inferred from the matching between
the numbers of Coulomb branch moduli and the mass parameters of the 5d KK theory
from the twisted compactification and those from the web diagram. We summarize the
result in table 5.

For the Higgsing (4,4, 0) or (4,4, 2) one can see that the twisted et(f) algebra is realized
from the corresponding web diagram. For example, the web diagram for the case of (4,4, 2)
is depicted in figure 20(a). By using the intersection (2.1), the intersection among the fiber
classes drawn as lines in non-black color in figure 20(a) yields the Dynkin diagram of the
twisted affine Lie algebra of eéz). The explicit relation between the fiber classes and the
nodes of the Dynkin diagram is also depicted in figure 20(b). In the (4,4,2) case, the
6d theory is the Fg gauge theory with a single fundamental hypermultiplet and a tensor
multiplet. The analysis in section 2.1 shows that this theory admits a non-trivial twist,
which breaks the flavor group down to a discrete group. This indicates that the reduced
theory does not have any matter hypermultiplet, which is the case of (2.17) with n = 5.
The reference [30] has also proposed the same twist and the analysis here is consistent

with it.
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Higgsing B-C Label | twist theory
0.0.0 0 . sp(()1>(1) su(22)<1) 50(?3)(1) 5u(22)(1> 5‘,(01)<1) egl)
( M ) I:e(l)] - p— —
7
M@ (M@ au@® spo)® el
(2,0,0),(0,0,2) A 1 1 e 3 e 2 — 1 —38
[50(12)(1)}
#O® s ® @@ spo)® el
(2,2,0),((2,2),0,0),(0,2,2) 2A; 1 1 - 3 e 2 - 1 =
[so(M]  [sp(1)(V]
so(7) (D) (2D sy L
(2,2,2),((2,2),2,0) (34,) 1 2 e 2 -1 -8
[sp(1) D @sp(3) (V)]
o) @@ apo® Y
((2,2),0,2) (341)" 1 3 — 2 — 1 -8
]
i) aw@® s e
((2,2),2,2) 44, 1 2 — 2 — 1 -8
[sp(3)(V)]
5u(4)(1) 5u(2)(1) 5p(0)(1) eg”
(3,0,0) A, 1 2 — 2 — 1 —38
[su(6)(D]
@)@ @@ sp)® P
((2,2),(2,2),0) A, Zs 2 — 2 — 1 -8
[5u(6)(2)]
5u(32)(1) su(2)M) sp(01><1> ot
(3,2,0),(3,0,2) As+ Ay 1 [su@®]  [Ny=1]
flavor: su(4)® @u(1)®
a@®  aw@®  po® P
((272)7(272)72) A2+A1 Z2 2 — 2 — 1 — 8
[su(4)(2)]
5u(22)(1) su(22)(1> 5p((;i)(1) e(71)
((2,2),3,0),(3,2,2) Az +2A, 1 [N;=2] [Ny=2]
flavor:  su(2)M @su(2)® @su(2)®
su(2)(1) su(l)(l) sp(O)(l) °<71)
(3,3,0) 245 1 2 — 2 — 1 -8
Ex [ )]
a)® @@ sp)® etV
((2,2),3,2) As+34 1 2 — 2 — 1 -8
(][]
su(l)(l) 5u(1)(1) 5p(0)(1> 9;1)
(3,3,2) 245+ Ay 1 2 — 2 - 1 -
[5u(2)(1)] [5u(2)(1)]
aw@® @@ ) apo)®
(4,0,0) As 1 2 — 1 —8— 1
[50(7)(1>] [511(2)(1)]
/ am®  sp@® @) o)™
)4y 3 1 — — _
(4,2,0) (Az+A;) 1 2 1 8 1
[su2M]  [su(2)D)] [su2)™]
4 Az+Ar)” aw@® s e
(5072) ( 3+ 1) 1 2 - 1 -
[so(m™] [Nr=3]

continued on the next page ...
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.. continued from the previous page

Higgsing B-C Label | twist theory
am®  spo)® Y
(4,2,2) As+2A; 1 2 - 1 - 7
[su(2)(1)] [5u(2)(1)] [Nf:%
@@ < epo)®
(45(252)70) D4(CL1) Za 1 — 1
[su2)™] [su(2))]
spO® eV
(47(272)72) D4(al)+A1 Za 1 < 7
[su @] [Ny=3]
5')(0)(1) e(l)
(4,3,0) As+ Az 1 1 _ ¢
[su(Q)(l)] [50(2)(1)]
oD
(4,3,2) Az+Ax+ A 1 75
[50(3)(1>]
@™ e
(45470) A4 Z2 1 — 6
[5u(3)(2)]
el?
(47472) A4+A1 Z2 5

Table 5. Higgsings associated to SU(4)2xSU(2) of (2.66). Ny :% implies a half-hypermultiplet
in the fundamental representation.

It turns out that some of the Higgsings of the theory (E7, E7) on S! correspond to
twisted compactifications where the twist exchanges tensor multiplets of the parent 6d
theory. For example, let us consider the Higgsing (4, (2,2),0). The Higgsing necessarily
involves the affine node of the affine E7 Dynkin diagram in figure 19(b) and we expect that
the Higgsing gives a 5d KK theory which is obtained by a twisted compactification of a
6d theory. In 6d, the Higgsing associated to the B-C label D4(a;) of the theory (E7, E7)

gives [47]

sp(0)(M) e;l) sp((i)(l) .
1 - — .
[su(2)™] | [su(2)®] (2.67)
sp(0)()
1
[su(2)M]

The 5d KK theory from (2.67) has 11 Coulomb branch moduli and 4 mass parameters. On
the other hand the web diagram of the theory after the Higgsing (4,(2,2),0) is depicted
in figure 21. The 5d theory from the web diagram has 10 Coulomb branch moduli and
3 mass parameters and hence there is a mismatch of the number of parameters. We can
see that the theory (2.67) has a symmetry which exchanges some of the E-string theories
attached to the (—8)-curve. In order to generate a 5d KK theory with 10 Coulomb branch
moduli let us consider a twist which exchanges two of the E-string theories in (2.67). For
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trivalent

gluing

(a) (b)

Figure 20. (a): The web diagram of the theory obtained after the Higgsing (4,4,2). (b): The
Dynkin diagram of the twisted affine Lie algebra eéz) which is formed by the colored lines in fig-
ure 20(a). Each line in non-black color in figure 13(a) corresponds to the node in the same color in
this figure.

trivalent

gluing

Figure 21. The web diagram of the theory obtained after the Higgsing (4, (2,2),0).
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concreteness we label the nodes as

ap(0) ) etV sp(0)(M)

Li = 8 — 13 (2.68)
[511(2)(1)] | [5u(2)(1)]

sp(0)(V)

4

[511(2)(1)]

where the subscripts of Q% represent the label. The intersection matrix between the base
curves is given by

1 =10 0
-1 8 —1-1

OPala1) — 011 0 (2.69)
0 -1 0 1

Then we consider a Z5 twist which exchanges the third node with the fourth node. The
matrix after the twist computed by (2.7) becomes

1 -1 0
QP — | 1 8 —2 . (2.70)
0 -1 1

From (2.70) the 5d KK theory after the twist can be represented by

pO® & s
11 — 82 — 13 . (271)
[511(2)(1)] [5u(2)(1)]

The 5d KK theory from (2.71) has 10 Coulomb branch moduli and 3 mass parameters.
which agree with the numbers from the web diagram in figure 21. Therefore we claim that
the (4,(2,2),0) Higgsing gives rise to the 5d KK theory of (2.71).

In fact we can see the web diagram in figure 21 is consistent with (2.70). The Coulomb
branch moduli for the left and right E-strings in (2.71) come from the faces in the upper-
right and lower-right diagrams in figure 21 respectively. After performing flop transitions,
we can extract the diagram corresponding to the left E-string and it is drawn in figure 22.
The geometry of the E-string is characterized by a rational elliptic surface or del Pezzo 9
surface (dPg) and curves in dPg are spanned by the hyperplane class [ of P? and exceptional
curve classes x; (i = 1,---,9). The genus one curve is then given by

5p(0)<1) Z T, (2.72)

where the subscript of the sp(0)(!) implies the first node in (2.71). From the embedding of
the diagram in figure 22 into the diagram in figure 21, we can see that the eight (—2)-curve
classes next to the double arrows in figure 22 are the fibers which form the affine £7 Dynkin
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Figure 22. The web diagram of dPg which corresponds to the E-string on the left in (2.71). [ is
the hyperplane class of P2 and x; (i = 1,---,9) are the exceptional curve classes. A curve class
next to a double arrow implies that the length of the double arrow is related to the volume of the
curve class.

diagram for the egl) gauge algebra in the center of (2.71). Then the genus one fiber on the

(—8)-curve in (2.71) is given by
fegn = (l — T — Tog — .’Bg) + 2(.@2 — 1'4) + 3(1‘4 — .%'5) + 4(%‘5 — $6) + 3($6 — $7>

+2(z7 — x8) + (8 — x9) + 2(l — x2 — T4 — T5)
9
i=1

Hence the torus fiber on the left (—1)-curve and that on the center (—8)-curve in (2.71) is

(2.73)

glued as
Fopoyo ~ Few- (2.74)

We then consider the E-string on the right of (2.71). The web diagram corresponding
to the right E-string in figure 21 is depicted in figure 23. The torus fiber class of the dPyg
is again given by

9
fsp(O)gl) =3l — Zx;, (2.75)
i=1

where the subscript of the sp(0)(M) represents the third node in (2.71). The eight (—2)-
curve classes next to the double arrows in figure 23 are fiber classes which form the affine
E7 Dynkin diagram for the 2(71) gauge algebra in (2.71). In terms of the curve classes in

figure 23 the torus fiber on the (—8)-curve is given by

foo = (' =2y — w3 —a7) + 2(ay — @) + 3" — 73 — w5 — a5) + 45 — z3)

/

+ 3(wy — o) +2(I' — o) — w3 — a)) + (2] — %) + 2(zg — xg)

9
=2 (31’ - Zx;> :
i=1

(2.76)
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A —-
1 1 1 1
I'-x"1-X'3-X'4 X', I'-x";-x"'5-X"
1 X'
[ X3 2
X'37X's
A —-
X' =X X'c-X' 1!
8 9 5 X 8||_Xl2_X13_X|5 X 2 X 6

Figure 23. The web diagram of dPy which corresponds to the E-string on the right in (2.71).
The notation for the curve classes is the same as the one in figure 22. The curve classes here are
represented with a prime mark.

Therefore the torus fiber on the right (—1)-curve and that on the center (—8)-curve in (2.71)
is glued by

f<n “'Qf o) (2.77)
Therefore, from (2.74) and (2.77), the torus ﬁbers are glued by
Fopoy0 ~ Feo ~ 2 000 (2.78)
On the other hand the gluing rule (2.24) implies
<_Q£Z§(1al)) fp( )(1) ~ ( fﬁ;l )f(l) (279)
(24 1~ (-924) £ o0

The gluing relations (2.79), (2.80) with (2.70) are completely consistent with (2.78) and
this gives a support for the claim that the Higgsing (4, (2,2),0) gives rise to the 5d KK
theory from (2.71).

Let us then consider Higgsings of the theory (2.49). We can label the Higgsings by
[(a1, a2, a3), (b1, ba, b3)] associated to a breaking of the [(SU(4)% x SU(2)) x (SU(4)? x SU(2))]
flavor symmetry which can be seen from the parallel external legs in figure 24. We will use
the same notation which we used in table 5 for (a1, as,as) and similarly for (b1, be, b3). For
most of the cases we can make use of the Higgsings in table 5. When we apply a Higgsing
(a1, a2,as) or (b, ba, bs) to (2.66), the resulting theory is the one given in table 5. If either
of the Higgsed theories contains the 2(71) algebra, the theory associated to the Higgsing
[(a1,a2,a3), (b1, b2, b3)] is given by combining the theory from (aj,as,as) with the theory
from (b1, by, b3) by the following rule,

/
9 a5 A

(1)
&7
["-7%%—79122—(8—711) (8 =my) —mgy —mig---

g3 g2 i o g
—)"-’I’L3—7”L2—(8—’I’L1—ml)—THQ—mg"'. (2.81)
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= trivalent =

gluing

as

A bs

Figure 24. The labeling of [(a1, as,as), (b1, bz, bs)] for each (SU(4)% x SU(2)) x (SU(4)? x SU(2))
in the web diagram in figure 18.

Higgsing Theory A 5d description
sp(0)® o) sp(0)®
O s S SU(4)o — Sp(4)o — [AS]
[(4,4,0),(4,4,0)] [su3)@]  [su2)®]  [su(3)?)]
(1)
‘7 (rank 1) — SU(8) — [2AS]
4,3,2), (4,3,2)2.1] 5
A 2 1o6) V] (rank 1) — Sp(4)o — Sp(3)o
0% PO
[[((;1, j 22)) ((j ;L (?))]J/ [ ¢ o [5 s : (rank 2) — Sp(4), — [AS]
)y ) ) Ey 5u(3) 2 5u(3) 2
(2)
[(474? 2)7 (473> 2)2 1]/ %s
’ 2 k 1) — Sp(4)o — [AS
[(4,4,2), (4,4,2)]" ey (rank 1) —Sp(4)o — [AS]

Table 6. Higgsings associated to (SU(4)? x SU(2)) x (SU(4)? x SU(2)) of (2.64). The table

includes the cases where both (a1, as,as) and (b, ba, bs) Higgs the e(71) algebra. The other cases
which are not listed in this table can be obtained by the rule (2.81).

Since the resulting theories are obtained straightforwardly from this rule, we will not display
such cases explicitly.

When both Higgsings change the e(71)

the Higgsing to the diagram in figure 24. In this example there are only three such cases,
[(4,4,0),(4,4,0)],[(4,4,2),(4,4,0)],[(4,4,2), (4,4, 2)]. For all the three cases the algebra on
the glued curve turns out to be 662

algebra, we work out each case by applying

from the web diagrams and the result is summarized
in table 6. The order of aq,as,as is fixed as a1 > as > ag without loss of generality and
we use the same notation as that we used in table 2. Table 6 also contains a single node
theory with the egl) algebra which we will use in the computation of the partition function
in section 3.4.
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As in table 2 or table 4, the number of the prime marks in the left column in table 6
implies the number of mass parameters which are turned off. Such cases also appear in
table 2 and table 4 and it has an interpretation of turning off mass parameters of the rank-2
antisymmetric hypermultiplets of an Sp gauge group in a 5d description. However the case
of [(4,3,2),(4,3,2)21] is different from those cases. When we apply the Higgsing (4, 3, 2)
to (2.66), the resulting theory is the 5d KK theory from a circle compactification of the 6d
FE; gauge theory with a hypermultiplet and a half-hypermultiplet in the fundamental repre-
sentation of E7 as well as a tensor multiplet. Hence the Higgsing [(4, 3, 2), (4, 3,2)2,1]" yields
a bd KK theory from a circle compactification of the 6d Fr gauge theory with two hypermul-
tiplets and two half-hypermultiplets in the fundamental representation of E7 in addition to
a tensor multiplet. Then the web diagram corresponding to the Higgsing [(4, 3,2), (4, 3, 2)]
has three mass parameters; two are mass parameters for the fundamental hypermultiplets
and one is the radius of the circle. In general we may turn on a mass parameter for two
half-hypermultiplets and they behave as a massive hypermultiplet. However the diagram
for the Higgsing [(4, 3,2), (4, 3,2)2.1]" does not admit such a mass parameter and the prime
mark of [(4, 3,2), (4,3,2)]" implies the restriction of turning on the mass parameter in terms
of the web diagram. Similarly the theories obtained by further Higgsings from the diagram
of [(4,3,2),(4,3,2)2,1] also have at least one less number of mass parameters compared
to a generic case. For example the Higgsing [(4,4,2), (4,3,2)2,1] yields the eéz) on a (—2)-
curve and the flavor algebra is su(4)®). From the web diagram it has two mass parameters
although the 5u(4)(2) algebra in general implies three mass parameters. The theory labeled
by [(4,4,2),(4,4,2)] further tunes one more mass parameter of the same theory.

We can also consider 5d gauge theory descriptions after the Higgsing [(a1, a2, as),
(b1, b9, b3)]. Examples of 5d gauge theory descriptions are written in the third column in
table 6. The original theory (2.65) has two long quiver tails given by SU(8)g — SU(6)¢ —
SU(4)o — SU(2)g. The theory exhibits an SU(4) x SU(4) flavor symmetry, The (4, 3) and
(3,4) Higgsings yield the SU(8) gauge theory with a hypermultiplet in the rank-2 antisym-
metric representation with the CS level +1 and —1 respectively [32]. This Higgsing gives
the presence of the antisymmetric hypermultiplets in table 6. Furthermore we have

SU(8)x — SU(6)0 — SU(4)o — SU(2)o 4 Hiees  Sp(4)p_ji1jr (mod 2m)  (2:82)

—

[AS] = SU(8) — SU(6)o — SU(4)o — SU(2)o  (44) Higes  [AS] — Sp(4) =i+ 1}x (mod 27):
(2.83)

for some small values of k£ (rank 1) and (rank 2) are non-Lagrangian theories and the rank
indicates the dimension of the Coulomb branch moduli space. The web diagram of the
theories are depicted in figure 25. The theories show an explicit SU(8) flavor symmetry. For
the last and the second to the last case in table 6, an Sp(4) subgroup of the SU(8) is gauged.

3 Partition functions of 6d/5d exceptional gauge theories

In this section, we compute the partition functions of some 6d theories on T2 x R?, which are
obtained in section 2, by the topological vertex formalism using the trivalent/quadrivalent
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rank 2 rank 1

Figure 25. The web diagrams for the theory denoted by (rank 1) and the theory denoted by
(rank 2) in table 6.

gluing prescription proposed in [45]. We will also take a 5d limit of the partition functions
and compare their perturbative part with the known results. Let us also stress that we
can compute the partition functions for all the 6d theories considered in section 2. We
here select some interesting examples with exceptional gauge groups and compute their
partition functions.

3.1 6d/5d G2 gauge theory with matter

We begin with the computation of the partition functions for the 6d G5 gauge theory with
four flavors and a tensor multiplet on 72 x R*. We will also take a 5d limit to obtain the
partition function of the 5d Gy gauge theory with four flavors on S* x R%.

ggl) on (—2)-curve. The 6d G2 gauge theory with four flavors and a tensor multiplet
compactified on a circle arises on the [(2,2,2,0),(2,0,0,0)] Higgs branch of the 6d theory
(D4, Dy)o on St as in table 2. The original theory (D4, D4)2 on S is the affine Dy Dynkin
quiver theory (2.28) and it is realized on the web diagram in figure 2(a). Then a web
diagram corresponding to the geometry ggl) on (—2)-curve, which yields the 6d G2 gauge
theory with four flavors and a tensor multiplet compactified on S', can be obtained by ap-
plying the [(2,2,2,0),(2,0,0,0)] Higgsing to the diagram in figure 2(a). From the diagram
in figure 2(a) we can explicitly see the flavor symmetry SU(2)* x SU(2)* from parallel exter-
nal legs in the diagram. Then the [(2,2,2,0),(2,0,0,0)] Higgsing breaks three SU(2)’s in
one SU(2)* and another SU(2) in the other SU(2)*. The Higgsing which breaks one SU(2)
is carried out by binding two parallel external 5-branes on one 7-brane [69]. Then the web
diagram after applying the [(2,2,2,0),(2,0,0,0)] Higgsing yields the diagram in figure 26.
The intersection between the fiber classes of the three faces forms the affine G2 Dynkin
diagram, which gives rise to the affine G Lie algebra, in a similar matter to figure 7.
Since the circle compactification of the 6d G2 gauge theory with four flavors and a
tensor multiplet is realized on the web diagram in figure 26 with the quadrivalent gluing,
we can apply the topological vertex [10, 11] with the gluing prescription developed in [45] to
the diagram for computing the partition function of the 6d theory compactified on T2 x R*.
Ref. [45] considered examples which are made from a trivalent or quadrivalent gluing of
toric diagrams. The examples include 6d/5d pure SO(8), Eg, E7, Es gauge theories, namely
gauge theories with simply-laced gauge groups. Here we generalize the computations into a
trivalent or quadrivalent gluing of non-toric diagrams, which will give rise to cases of non-
simply-laced gauge groups as well as gauge theories with exceptional gauge groups with
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: quadrivalent

gluing

Figure 26. (a): The web diagram for gél) on (—2)-curve.

o)

Ha

Figure 27. The diagram on the right-hand side shows the assignment of Young diagrams for
applying the topological vertex to the diagram on the left-hand side.

matter. Although each piece we glue is a non-toric diagram it is still possible to apply the
topological vertex to a non-toric diagram when it is given by a Higgsing of a toric diagram.
As briefly reviewed in section B.1, the end result in the unrefined cases is that we can
simply apply the topological vertex in a usual way with trivial Young diagrams assigned
for all the external legs including 5-branes put on a single 7-brane [38-41]. For example
for applying the topological vertex to the diagram on the left-hand side in figure 27, which
is one of the four diagrams which we glue in figure 26, we can use the diagram on the
right-hand side in figure 27.

Let us compute the partition function for the 6d G5 gauge theory with four flavors and
a tensor multiplet on T2 x R?* using the topological vertex with the quadrivalent gluing
prescription. For that we first apply the topological vertex to each of the four diagrams
in figure 26. Namely we apply the topological vertex to the diagrams in figure 28(a)—
figure 28(d). We also choose a parametrization as shown in figure 28. Each parameter
represents a Kéhler parameter in the dual geometry and it is related to the length of the
corresponding line.!> Note also that we need to assign non-trivial Young diagrams for
gluing lines. The Kahler parameters for the fiber classes which form the affine Go Dynkin
diagram is given in figure 29.

3More precisely a parameter Q in the figures is related to length ¢ of a line by Q = e~*.
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M1 P>,Q1 Q3P4

> b1P,QiQsP;
QiP1] P, 2 Q,P;

Qe Qs
QP | P2 g QP

Ha P,Q,Q4P;
0) (0]

(a) (b)

M1P2Q; Q3P
Q1Py

Qs
QiPy

(c) (d)

Figure 28. Assignment of Young diagrams (u1, t2, i3, fta, A1, A2, Az, A3) and Kéhler parameters
(Q1,Q2,Q3,Qs, P1, P>,Qp) for each of the four diagrams in figure 26.

QsPo P> QP

OO0

Figure 29. The Kahler parameters of the fibers which form the affine G5 Dynkin diagram.

In figure 28, we also write the parameters associated to the gluing lines. We assigned
the Kahler parameter P, for the length of the gluing line which is the second or third from
the top. The length of the top and the bottom gluing lines can be determined from the
local structure around the quadrivalent gluing [70]. To determine the K&hler parameters,
we first write down a diagram which shows local structure of the gluing. Although we
cannot depict the whole diagram on a plane, it is possible to write down a local diagram
focusing on the quadrivalent gluing on a plane. A 5d gauge theory description of the
original 6d theory (Dy, Dy)2 on St before the Higgsing [(2,2,2,0), (2,0, 0, 0)] was the affine
D, Dynkin quiver theory given in (2.28). The affine D, Dynkin quiver theory consists of
the central SU(4) gauge node and four tails with SU(2) gauge groups. The web diagram
representing a hypermultiplet in the bifundamental representation between the SU(4) and
one of the four SU(2)’s is depicted in figure 30(a) where i = 1,2, 3,4 for the four tails. The
SU(4) gauge theory part in the affine Dy Dynkin quiver theory is obtained by gluing four
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-2
P,a;a,a38,Qy,

A / EEEEEEEEEEES®
Q asa;! asay?t Qr,
— f1 — 3y P, az
EEEEEEEEEEESR
EEEEEEEEEEER sz
QfZ EEEEEEEEEENN
EEEEEEEEEEEN — b, P, b,
bsb; b,b,? Qr,
P—— Qf3
EEEEEEEEEEEN
EEEEEEEN PZblbzb3b4Qf4-2

(a) (b)

Figure 30. (a): A web diagram which describes a hypermultiplet in the bifundamental represen-
tation between the SU(4) and an SU(2) in the affine D4 Dynkin quiver theory (2.28). (b): A web
diagram which describes the SU(4)q gauge theory with 8 flavors.

copies of the diagram in figure 30(a) and hence it is locally given by the SU(4) gauge theory
with 2 x 4 = 8 flavors with the zero Chern-Simons level. A web diagram which describes
the SU(4) gauge theory is depicted in figure 30(b). For one SU(2) Higgsing associated with
upper external legs in figure 2(a) induces tuning a; = 0 for an i. On the other hand one
SU(2) Higgsing associated with lower external legs in figure 2(a) induces tuning b; = 0 for
an i. Then performing the [(2,2,2,0),(2,0,0,0)] Higgsing is realized by the tuning

ap = a2 =as = Qfla bl = Qf3 (31)

After the tuning the remaining parameters are related to the parameters in figure 28 by

Qp =Qp =P, Qp=0Qs, (3.2)
and
ar=Q3, br=Q1, b3=0Q2, bs=0Q4. (3.3)
Then the Kéhler parameters for the top and the bottom horizontal lines in figure 30(b)
become
PyarazazasQ;” = PaQ1Qs Py, (3.4)
Pobibob3bsQ}? = PaQaQaPy (3.5)

which are exactly the Kédhler parameters for the top and the bottom gluing lines written
in figure 28.

In terms of the computation the only remaining part which we still need to determine
is the framing factors for the gluing lines. Comparing the web diagram before the Higgsing
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in figure 2(a) and the one after the Higgsing in figure 26, the (p, ¢)-charge of the 5-branes
attached to the gluing lines does not change. This implies that the framing factors also do
not change by the Higgsing. The framing factors before the Higgsing can be read off from
the local diagram around the central SU(4) gauge node given in figure 30(b). Therefore we
will use the framing factors for the four gluing lines depicted in figure 30(b) for the framing
factors of the four gluing lines in figure 26.

We now have all the ingredients for computing the partition function of the theory
realized by the web diagram in figure 26. First we apply the topological vertex to the four
diagrams in figure 28. Some formulae of the topological vertex formalism are summarized
in appendix B. The contribution from each diagram is given by

2% (Qp. Q) (AL))
= q% >y ]2 (H Zug (Q)> 111,114 (QBlel) s (@B) 5 (3.6)
i=1

735 (QB,{Qa}, {P})
= q% Sy il (H Zuﬁ (q)> s (@B) L, 1, (QBQIPY) T, (Q1P)
=1
S (=PI IMIPANIR) (7 (0020 () Z,,, 5, (QBQIP)

>\1

i @OV \ (Q1)IY, ,, (P1), (3.7)
Z25 (Qp, {Qu}, {P})

— g2 S w2 (H Zu2(9)> s (QB) Ty (QBQIP) T, (Q1PY)
=1

> (_QlQQ_IPl)MQ‘ ((PalHDS) (Z/\z@)ZA;(Q)) e (@BQR1Q2P)

A2
I;j_g,)\g (QBQQ)I/Z,,\Q (Q2)I)—\’—27M4 (QIQQ_IPI) ) (38)
78 (QB,{Qa}, {P})
_ QQZl et P (HZ ) e Q1P Q1P T, (QBQ )

=1

A (@QB)Z, 12,4 (@1 P) T, 1435144 (Q1P1)
3 (=Pl (—PonQf)Mq% 2ims a(MPHINP) ( Z/\Z-(Q)Z)\g(Q))
i=3,4

A3,
m s (Q1Q3 1P1) 1 (QBQ1Q4P) Iy, a2 (Q3) Iy, s (@BQ3) Ty, y, (QBQ3Q4)*
I} (QBRsQIP) T (QBQ0) T, Q0T ,, (1@ 1), (3.9)
where we defined
75,@) = I (1-Qd )™ (3.10)
ij=1
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The notation of the form {A,} implies Ay, Ag,--- collectively and we will use this no-
tation in the later expressions also. When we simply sum over the Young diagrams
wi, (i = 1,2,3,4) for the product of the four factors (3.6)—(3.9) with the appropriate
Kahler parameters and the framing factors for the gluing legs, it does not lead to the cor-
rect result. One of the points of the quadrivalent gluing prescription is that we need to
divide each of the four functions (3.6)—(3.9) roughly by the square root of the SU(4) vector
multiplet contribution before the summation of the Young diagrams. More precisely we
divide each of them by

4
23O (Qp AQu) ABy)) = g Lima I0IP (Hz@(q)) [T Ziow (Qr@up Q)

1<i<j<4

(3.11)

where Qy,’s are given by (3.2). Since we divide (3.6)—(3.9) by (3.11), we need to introduce
SU(4) vector multiplet contribution when we glue the four functions. The final result of
the partition function is then given by

Zﬁ(”( 2)

Z —PQ P1Q3)M (- p2)|u2|+|u3\(_p2Q2Q4p1—1)|u4\
{ui}

{M " (QpAQu} AP 215" (@5, {Qu} APY) Fiun () o (9) Fus (@)™ Frua(@)
1{#1 L (Qp.{Qu} AR 284, (Q5.{Qu} AR} 287, (@5, {Qu}. {P})
284 (@B AQa}ARY) (3.12)

where we defined

7% (Qp. {Qa}. {P})

AL , o 1B }) = 3.13
G, {mi} (QB {Q } { b}) {S‘L[le(4 (QB’{QG} {Pb}) ( )

for j =1,2,3,4 and
" (Qp Q) (P} = g3 Zm (Il lI) 78005 (9 4@y (B)).  (3.14)

In general, 6d (and also 5d) partition functions computed from the topological vertex
or the localization method may contain an extra factor [38, 71-74] which is characterized
by a factor independent from Coulomb branch moduli of 5d theories in the partition func-
tions. We will use this nomenclature throughout this paper. The extra factor can contain
contributions which are not in the BPS spectrum of 5d KK theories and we will focus on the
part with the extra factor removed in the later comparison. The partition function (3.12)
may contain an extra factor and we consider factoring out the extra factor from (3.12). For
that we reparametrize the length of lines in figure 28 in terms of Coulomb branch moduli
and mass parameters in a 5d description.

First let us introduce mass parameters. In a web diagram, length between parallel
external legs does not depend on Coulomb branch moduli and hence we can assign a mass
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parameter to the length between parallel external legs. From the web diagram in figure 28,
each of figure 28(b), figure 28(c), figure 28(d) contain two parallel external legs and we can
parametrize the lengths between them by mass parameters M|, M5, My, M) as

Pi=M], QiPiQ;'=M), PQiPQ3;' =M, PQ1PQ;" = Mj. (3.15)

The web diagram in figure 30(b) implies that the length of the top gluing line in figure 28
also characterizes the length between parallel external legs and we can assign

PoQ1Q3P, = M. (3.16)

On the other hand it is possible to introduce the Coulomb branch moduli by utilizing
the intersection number between a complex surface and a complex curve in the dual geom-
etry. Namely the dependence of the Coulomb branch moduli A} (i = 1,--- ,rank(G)) for
the Kéhler parameter Q¢ of a complex curve C' may be assigned by

Qc o A", (3.17)

¢ = —(C - S;) with a complex compact surface S;

where nlc is the intersection number n
which corresponds to a compact face in a web diagram. In the current example we have
three faces including the face whose fiber class gives the affine node in the affine Go Dynkin
diagram in figure 29. When we consider a geometry which consists of an elliptic fiber whose
degeneration is given by an affine Lie algebra g1 over a rational curve, the class of the

elliptic fiber is given by (2.23) and its Kéhler parameter is obtained by

TLd—l

Q=[] F&, (3.18)
a=0

where ng is the number of nodes for the affine Dynkin diagram for g(*), Fj is the Kihler
parameter for the fiber class of each surface and d; is the mark of the corresponding node
of the affine Dynkin diagram. In the case of the web diagram in figure 26 for the geometry
of ggl) on (—2)-curve, it is given by

Qr = (Q3P0)(P2)?(Q1P1)* = Mg M;,. (3.19)

With this parametrization we can determine an extra factor from the partition func-

tion (3.12) by identifying a factor which only depends on M/ (i =0,1,2,3,4). Denoting such
1)

a factor by Z:2 { 2)(Mé,]\/.l'{,Mé,]\/.l'é,Mi) the partition function (3.12) can be written as

extra

1)
7 7(72)
Zi0) Loy = Zolbr gy (AGHAMIY) Zeer™ (Mg, M3, M3, M, My) (3.20)

We argue that the partition function 26(‘11) (2) ({AL}, {M]}) in (3.12) yields the partition
92 s\
function of the 6d Gy gauge theory with four flavors and a tensor multiplet on 7% x R* with

(1)
an extra factor removed. Note that the extra factor part Z>2 (=2) (M, My, Mg, M, M})

extra
in (3.20) is not trivial as the diagram in figure 26 has parallel external lines.

48 —



quadrivalent I

gluing

Figure 31. The web diagram for 5d G5 gauge theory with 4 flavors.

5d G2 gauge theory with 4 flavors. It is possible to take a 5d limit to the web diagram
in figure 26 and obtain a web diagram for the 5d G5 gauge theory with four flavors. Note
that the web diagram in figure 26 realizes the 6d G2 gauge theory with four flavors and a
tensor multiplet compactified on a circle S'. Let the radius of the circle Rgq. When we
consider the dual geometry in M-theory then the Kéahler parameter of the elliptic class,
Qr, is roughly related to the radius by

1

Q ~ e Fad (3.21)

from the duality between M-theory and F-theory. Then the 5d limit Rgq — 0 of the 6d
theory on S' amounts to @, — 0. In the current case, the limit can be realized by taking
Py — 0 with the other Kéhler parameters P,, Qp, Qp (a = 1,2,b =1,2,3,4) fixed. In terms
of the affine G3 Dynkin diagram in figure 29 formed by the fiber classes of the three faces,
the 5d limit decouples the fiber class associated to the affine node. Hence the intersection
form between the remaining fiber classes yields the GGo Dynkin diagram, leading to the Go
Lie algebra for the 5d G5 gauge group. The diagram after applying the limit Py — 0 to
the web diagram in figure 26 is depicted in figure 31. Since it corresponds to the 5d limit
of the 6d G5 gauge theory with four flavors and a tensor multiplet on S*, the web diagram
in figure 31 realizes the 5d G2 gauge theory with four flavors.

It is then straightforward to compute the partition function of the 5d G> gauge theory
with four flavors on S x R* by applying the 5d limit to the partition function (3.12). The
5d partition function after the limit Py — 0 may also contain an extra factor and it can be
extracted by writing the partition function in terms of the gauge theory parameters of the
5d G4 gauge theory with four flavors. The parametrization of the Coulomb branch moduli
can be done in the same way as the parametrization of the 6d case given by (3.17). Note
that the fiber class for the affine node of the affine G5 Dynkin diagram is decoupled and
the fiber classes form the Gy Dynkin diagram. Then for a line corresponding to a state
of a root or a weight with the Dynkin label [l1,ls] of the Gy Lie algebra, the Coulomb
branch moduli dependence becomes At A% since the intersection number (3.17) becomes
the Dynkin label of the Lie algebra. In particular the Kéahler parameters P,, Q1 P; for the
fiber classes in figure 29 only depend on the Coulomb branch moduli and we parametrize
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them by
Q1P = ATA; Py = A7 A3, (3.22)

Similarly, when fiber classes of surfaces form a Dynkin diagram of a Lie algebra g, we will
parametrize the Kéhler parameter for a fiber class f with the Dynkin label [I1, 12, - - - Lank(g)]

by
rank(g)

Q= II A% (3.23)
i=1

in the later computations of 5d partition functions.

Since the diagram in figure 31 contains four flavors there are four mass parameters
for the flavors. A part of the contribution from the four flavors corresponding to a weight
in the fundamental representation comes from a string with the length Q1,Q2, Q3 or Q4
and hence the four parameters depend on the four mass parameters. The Coulomb branch
moduli dependence of the four Kéhler parameters can be read off from the intersection
numbers between the line and the faces as the intersection numbers correspond to the
Dynkin labels. The Dynkin labels of the weights corresponding to the four parameters is

Q 2,1, Q2 :[2,-1], @3 :[1,-1] Qs : [1,-1]. (3.24)
Hence we introduce four mass parameters My, My, M3, My by
Q1= AIA MY, Qo= ATATIMy Y, Qs = AjATTMGY, Qu= AjAT M. (3.25)

There is one more mass parameter associated to the instanton fugacity. A way to
determine the dependence on the instanton fugacity is the comparison with the effective
prepotential on a Coulomb branch. For a 5d gauge theory with a gauge group G and
matter in the representation Ry, the effective prepotential on a Coulomb branch is given
by [12, 13, 15]

1 K 1
Fla) = gmohijaia; + g Ligk@iajoe + 75 ( Silreal -3 |wea+ mf’?)) , (3.26)

reroots f weRy

where a; (i = 1,2,--- ,rank(G)) are the Coulomb branch moduli, mq is the inverse of
the squared gauge coupling, « is the classical CS level, my is the mass parameter for the
matter labeled by f. r is a root of the Lie algebra of G, w is a weight of the representation
Ry. Also we defined h;; = Tr(T;7}) and dij, = %Tr (Ti{T}, Ty }) where T;’s are the Cartan
generators. The derivative g%: yields the tension of a monopole string. From a 5-brane
web diagram a monopole string is given by a D3-brane filling a face and the tension is the
area of the face.

Let us then apply (3.26) to the case of the 5d G2 gauge theory with four flavors
realized on the web diagram in figure 31. The parameters in (3.26) are related to the
Kéhler parameters by A, = e™® M; = e™ ™, (b = 1,2,i = 1,2,3,4). The phase from
the root part is determined by the choice (3.22). The phase from the matter part is also
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determined from (3.25) from the fact that the effective mass is positive if it is given by a
linear combination with positive coefficients of the lengths of lines in the web diagram in
figure 31. Then the monopole string tension from the derivative by as becomes

OF(a)
Oas

= (=3a1 + 2a2)(—2a1 + 2az + mo + m3 + my). (3.27)

From the relation between the tension of a monopole string and the area of a face (3.27)
should be equal to the area of the central face in figure 31. From the diagram in figure 30(b),
the middle face is still locally described by Fg after the Higgsing and its area is simply given
by gp(—3a1 + 2a2) with Qp = e~ %. Hence we identify

Qp = A72ASM3 MMy, (3.28)
where My = e~ ™0, Note that we have

QBQ3Q4 = M. (3.29)

The relation (3.29) means that the length between parallel horizontal external lines turns
out to be my.

As mentioned before, the partition function of the 5d G2 gauge theory with four flavors
is obtained by applying the limit Py — 0 to (3.12) up to an extra factor. Namely we have

Z5d — Z6d
g2+4F 0s".(=2) | py=0

= 2§§+4F ({Ab}7 {MZ}) ZQQ+4F (M07 My, My, Ms, M4) ’ (330)

extra

and we argue Z 9551 "k ({Av}, {M;}) yields the partition function of the 5d G gauge theory
with four flavors on S* x R?* except for an extra factor which is independent of the Coulomb
branch moduli.

In order to check the validity of the result (3.30), we compare the perturbative part
of (3.30) with the universal formula for the perturbative part of the 5d Nekrasov partition
function of the 5d G2 gauge theory with four flavors. The perturbative part also depends
on a phase of the dual Calabi-Yau threefold and we use the phase corresponding to the
diagram in figure 31, which is the same phase as the one which we used in the evaluation
of (3.26). Then the perturbative part of the partition function of the 5d Gy gauge theory
with four flavors becomes

Z5d pert _ Zgz Zgz Zgz Zgz Z92 Zgz

go+4F cartan “roots “flavor 1“/flavor 2“/flavor 3““flavor 4°

(3.31)
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where each factor is given by

2
ZEQ = PE 3.32
cartan — _(1 _ q)2:| ) ( )
[ 9 A3 A3 A A2
Z19020ts = PE (1 _qq)2 <A2 + Aig + A1+ Ax + Ii + A3>‘| (333)
[ A2 M, A? Ay AMy A _
792 — PE|— g 1 1 A My + — M
flavor 1 — i (1— q)z ( A, + A0, + A1 My + M + e + A M, + My | )
(3.34)
i A2N, A2 A AMy A ]
792 — PE|— q 172 1 A My + 22 2 M
flavor 2 — i (1 _ q)Q ( A, + A0, + A1 Mo + M, + A, + A1 Mo + Mo - )
(3.35)
r A2 A A A A ]
ZgQ — PE |- q 1 A+ M. 1 71 2 2 _—
flavor 3 — i (1 _ q)Q <A2M3 + A1 M3 + Ay Ms + Ms + A1 Ms + A%M?’ + Ms | )
(3.36)
r A2 Aq A A A 1 ]
ZQQ PE B q 1 A M 1 2 2 _
flavor 4 — IRCETIE <A2M4 T ArMa Ao M, T A1M4 A%Mz} + My )|
(3.37)

On the other hand, the perturbative part of (3.30) can be extracted by taking the limit
My — 0 or @p — 0. The diagram in figure 31 splits into a upper half part and a lower
half part. The partition function from the upper half diagram gives

A3 A2 Ay A A2 A
eHF _pp| 4 (21 21 4 g, 22 - LA M+ 2L
upper (1 — q)2 AQ AZ 1+ Az Al + A3 A2M3 + A1 M3 + M3
Aq Ay Ay 2 1
T, T A, A%MJ (5 Mg) H ’ (3:38)

when we consider the summation until the order PYQ$RS where Rz := Q1P1Q5'. The
partition function from the lower half diagram is given by

Zier

=PE [(1_61(]) { <?ii2+3141+ 3;14 + ig + iz +A2>
< Jj\{;flleAZ]i/[leAfj/fleAfj/fl
< A A, T A,

A1 Ay Ao Ao
A1 M.
< 2M4+ VR, T Ao, A M, AM4

LA Aoy A A%)
_|_

2 1 MMy M M, 1 )H
OM+ M2 —2My+ M2 — a2
—|—( 1+ M7 2+ M5 M4+M4%+ My M1M4+M2M4+M1M2M4 ’
(3.39)
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when we consider the summation until the order P} P7Q3Q3Q3R3R3R} where Ry := P!,
Ry = Q1Q2_1P1, Ry = QnglPl. Indeed we can see that

4
4F AF
ng);élrFZﬁ;V—zr - Zggo'ﬂs (H Ziliganor z) Zgitta, pert» (340)
i=1
where Zg"vor ; is Zﬁ;vor ; with the Coulomb branch independent part removed and
1 2 1
g2+4F 2 2
Ze)%tra, pert — PE _2M1 + Ml - 2M2 + M2 + ﬁg + Mg — E =+ 7MZ
My M- M. M 1
+ (3.41)

My MMy MoMy  MyMaMy|
Hence (3.30) in the limit @p — 0 reproduced the terms carrying gauge charges in the
perturbative part of the Nekrasov partition function.

3.2 6d/5d F, gauge theory with matter

The next example is the partition function of the 6d F, gauge theory with three flavors
and a tensor multiplet on 72 x R*. In fact the partition function may be also obtained
from the partition function of the Eg gauge theory with four flavors and a tensor multiplet,
which will be discussed in section 3.3, by tuning parameters which realize the Higgsing
from Eg to Fy. However we will compute the partition function of the Fj; gauge theory
independently here in order to demonstrate the direct application of the topological vertex
to F; web diagrams.

511) on (—2)-curve. The 6d Fy gauge theory with three flavors and a tensor multiplet

compactified on a circle arises as a low energy theory on the [(3,3,2), (3,2, 2)] Higgs branch
of the 6d theory (Es, Eg)2 on S as in table 4. A 5d gauge theory description of the
original 6d theory (FEs, Eg)2 is the affine Eg Dynkin quiver theory in (2.50). The affine Fjg
Dynkin quiver theory can be realized on a web diagram with a trivalent gluing and the
diagram has been already depicted in figure 11. Then the web diagram corresponding to
the geometry fgl) on (—2)-curve, which yields the 6d F; gauge theory with three flavors and
a tensor multiplet compactified on S, can be obtained by performing the [(3, 3,2), (3,2, 2)]
Higgsing to the web diagram in figure 11. The web diagram after the Higgsing is depicted
in figure 32(a). The fiber classes of the five faces form the affine F; Dynkin diagram in
a similar manner to figure 14 as expected. As with the G2 case, we can consider the 5d
limit of the web diagram in figure 32(a). The 5d limit was achieved by decoupling the
fiber class associated to the affine node. We can also take a decoupling limit for the fiber
class corresponding to the affine node of the affine F; Dynkin diagram, leading to the Fj
Dynkin diagram, and the resulting web diagram is drawn in figure 32(b). The decoupling
realizes the 5d limit and the web diagram in figure 32(b) yields the 5d Fy gauge theory
with 3 hypermultiplets in the fundamental representation.

Since the theories are realized on the web diagrams with the trivalent gluing it is
possible to compute the partition functions using the topological vertex. For that we
first parametrize the length of the lines in the web diagram as in figure 33. The Ké&hler
parameters of the fiber classes which form the affine F;y Dynkin diagram are also depicted
in figure 34.
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Figure 32. (a). The web diagram for the geometry ffll) on (—2)-curve. (b). The web diagram for
5d F, gauge theory with 3 flavors.
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Figure 33. Parametrization of the web diagram for the geometry fil) on (—2)-curve in figure 32(a).

As we have done in the case of the G2 theory in section 3.1, the parametrization of the
gluing lines written in figure 33(a) can be understood from the Higgsing condition imposed
on the web diagram for the original affine Fg Dynkin quiver theory. From the viewpoint of
the central SU(6) gauge node, each quiver tail adds 4 flavors to the SU(6) gauge node. The
local diagram around the SU(6) part coming from each quiver tail is given in figure 35(a).
We also assign Kéhler parameters for some lines in the figure where i is either 1,2 or 3
representing the three quiver tails. Hence the central SU(6) node is locally described by
the SU(6) gauge theory with 4 x 3 = 12 flavors with the zero Chern-Simons level. A 5-
brane web diagram of the SU(6) gauge theory is depicted in figure 35(b), where the Kéhler
parameter for the two middle lines is set to be P,. Then we consider the tuning condition
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Figure 34. The Kahler parameters of the fibers which form the affine F; Dynkin diagram.

P,b1b,b3Qp "a12,a3Qr,
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Figure 35. (a). Local geometry near the SU(6) part of each quiver tail of the affine Eg Dynkin
quiver theory. (b). Local geometry which describes the SU(6), gauge theory with 12 flavors.

which realizes the [(3,3,2),(3,2,2)] Higgsing leading to ffll) on (—2)-curve from the web
diagram of the affine Fg Dynkin quiver theory. The SU(2) Higgsing for one of the quiver
tails imposes the condition,

a; =Qp, or di = Qys. (3.42)
On the other hand, the SU(3) Higgsing for one of the quiver tails imposes the condition,
a; = Qfla bz = Qf27 or ¢ = Qf4a dl = Qf5 (343)

Therefore, the [(3,3,2),(3,2,2)] Higgsing is achieved by tuning the Kéhler parameters in
figure 35(b) as

ap =ax=a3=Qyp, bi=by=0Qyp, c1=0Qy, di=dy=d3=0Qy. (3.44)
Then the lengths of the horizontal lines in figure 35(b) become

Pb3Q1,Qy, = P2Pi PiQ1Qo, (3.45)
PyboQy, = PoP3Q1Q2, (3.46)
Pycaes = PoQ1Q3, (3.47)
Pacoc3Q g, = PoP3Py(Q1Q)3, (3.48)
from the top to the bottom except for the middle two lines. Here we used the relation
Qp =Pk, Qp =01, Qp=Qp, Qp=Q1P, Q= P3Py, (3.49)

which follows from the parametrization in figure 33.
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Given the parametrization in figure 33, we can apply the topological vertex to the web
diagram in figure 32(a) using the trivalent gauging method. The only thing which we still
need to determine is the framing factors for the gluing lines. Comparing the web diagram
in figure 11 with the one in figure 32(a), the (p,q)-charges of the lines attached to the
gluing lines do not change after the Higgsing. Therefore the contribution of the framing
factors will not change by the Higgsing. The framing factors for the gluing lines before the
Higgsing can be read off from the web diagram of the SU(6) gauge theory with 12 flavors in
figure 35(b). With this information taken into account, the application of the topological
vertex to the web diagram in figure 32(a) gives rise to

o
4<1 ,(—2)

= Z(_p2pgp4QlQ2)lm\ (_p2p3QlQ2)lu2\ (_p2)|u3\+\u4|(_pQQlQS)Iusl (_P2P3p4Q1Q3)|N6|
{ui}

{u} (QBa{Qa} (P} Z {u} (QBa{Qa} {P}) fun (@)™ 1fu3(q)fu4(qylfu6(q)
71 QB AQL AR ZY 1 (@ AQLNARY) 2Ly, (@B, {Qu} {P}), (3.50)

where we defined

6 ~
Zips" (@ (Qu) (B)) = g T P (H zm<q>) [T Zo (@5 Q).

i=1 1<i<j<6
(3.51)

6
2 (Qu, {Qu}, {P2}) = g Kima WP (HZME(Q)> [ o (@1Q1@s0).

i=1 1<i<j<6
(3.52)
using (3.49), and
6 )2 6
20y (Q5.{Qa} {Po}) = g7 Xm0 (H Zug<q>> o (Qp,{Qa} AP}
Ly s (QBQ2P3 P4> 112,05 (QBQ1P3) s (@B) s (3.53)

6 t)12 6 =~
2}y Qe AQu} {P}) = 2 2 1] (quf(q>> Gy " (@5} (B)
Ius,u4(QB) U3, u5(QBQ1P3) Ha, u5(Q1P3)I;27“6 (QBQ%P??H)

S (= Pyl iezl ga(al P Il el 2+l 12) (ﬁzw(q)zy_t(q)>
i=1 '

V1,2

Ly (QBQ1P3 P4) Lot (QBQ2P3) 2 (QBQ%P3P4)
V1 V2(P ) V1 HG(P3P4>ZV+2 HG(P3)
,ug le(QBQl) /.L4,V1(Q1) V1 ,u5( 3)7 (354)
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6 t12 6 =
20 (@ AQa}, (o)) = A i ] @ﬂ;(q)) MCIACORER)

I; uo (QBQIPIPE) T, (Q1P3) T, (QBQ1PY)
L s (QBQ1P3) s (@B) Ly 1 (QBQIP3) T, (Q1P3)

pORERNECE el (H Z(0) 2y (q)>

A1,2,3,4 i=1
(~@5'@sp) ™ PPl (0 Qar) ™ (- BN
I; 3 (@1Q:°QsPiR) T, (@1Q5 PR T, (QBQiQsPEP:)
7} (Qs@1QsPT ' PIPY) T, (QuQs ' P PoPy)
Dl (QBQ2P1 P3P4) (QBQz Wi P4)
I e (QBQngleP*Pg P}, 5, (QpQ2Qs)°
fon
(
o

[As]

w(@BQ2Q3 P P3P4) N Mﬁ(QBQ1Q2P3P4)
Ij W(POBP) T, (QiQs ' PR T, (@1Q5 PPy
7t (@1Q7 Pg) e (QBQIQsP) T, |, (Q2)
Iy, (@BQ2) IS, (QBQ1Q2P) T | (QpQ3)
T (@I, 1 (1051 y). (3.55)

Again the partition function (3.50) may contain an extra factor. To see the extra factor
contribution we assign mass parameters for the length between parallel external legs. The
web diagram in figure 33(b) contains two parallel external legs and the web diagram in
figure 33(c) has two bunches of parallel external legs and hence we parametrize the lengths
between the parallel external legs by three mass parameters Mj, M), M5 as

P} = My, Q1Q5°Q3PyP Py = M), Q1Q3' PyP Py = M}, (3.56)

There is one more mass parameter associated to the gluing. From the web diagram in
figure 35(b), the external lines attached to the top gluing line are also parallel to each
other and we assign another mass parameter M) to

PyPiP,Q1Q2 = M. (3.57)

Note that the external lines attached to the bottom gluing line are also parallel to each
other and indeed the length between them is parametrized by mass parameters due to
the relation Q3Qz°P§ = M| 'MjM}. On the other hand the Coulomb branch moduli
dependence can be determined by (3.17). The class of the elliptic fiber is also given by the
general relation (3.18), which becomes

Qr = (PP ' PsPy)(Q3P1)? P3(Q1P5) (PsPy)? = MMy, (3.58)

for the current case.

— 57 —



Then the extra factor contained in (3.50) is characterized by a factor which depends
on only the mass parameters and the partition function of (3.50) can be written as

6d ~6d / / ) oAl oag gt
Zfi1)7(72) = Zfil)a(*Q) ({Aa}7 {Mz }) Zextra (M(]v Mlv M2a M37 ) . (359)

We claim that the partition function Z%%’(_Q) ({AL},{M]}) in (3.59) gives rise to the par-
tition function of the 6d Fj gauge theory with three flavors and a tensor multiplet on
T? x R* up to an extra factor. In this case also the extra factor in (3.59) is non-trivial as

the diagram in figure 32(a) has parallel external lines.

5d F; gauge theory with 3 flavors. We now take the 5d limit which amounts to
changing the diagram in figure 32(a) into the one in figure 32(b) and make a comparison
with the 5d partition function of the 5d Fy gauge theory with three flavors. In terms of the
Kahler parameters in figure 33, the 5d limit is realized by taking Py — 0 with the other
Kéhler parameters fixed. In this limit the Ké&hler parameter for the elliptic class (3.58)
becomes zero, which implies Rgq — 0 from the relation (3.21). Hence the application of
the limit Py — 0 to the partition function (3.66) yields the partition function of the 5d Fj
gauge theory with three flavors on S' x R* up to an extra factor.

We can parametrize the partition function by the gauge theory parameters. The
Coulomb branch moduli A; = e~ (i = 1,2,3,4) of the Fy gauge theory may be assigned
as with (3.23), and they are given by

Q3P = A2AY, Py=ATYARAS?, Q1P = AT AZALY, PPy = A'AZ (3.60)

On the other hand, strings associated with the Kéhler parameters Q1, Q2, Q3 yield weights
of the fundamental representation. It is possible to read off the Dynkin labels of the weights
from the intersection numbers between the curves and the compact surfaces in the dual
geometry and they are

Q1 : [0,-1,2,-1], Qo ¢ [1,-1,1,-1], Qs ¢ [1,-1,1,-1]. (3.61)
Hence we parametrize
Q1= AT ASATI MY, Qo= AJASTASATI My, Q3 = A1 ASTA3 AL M, (3.62)

where M; = e (i = 1,2,3). Then the length between parallel external lines in fig-
ure 33(b) becomes
P} = M}, (3.63)

which only depends on the mass parameter as expected. For determining the instanton
fugacity My we make use of the effective prepotential (3.26) and compare the derivative
with respect to ay with the area of the middle face in figure 32(b). The explicit evaluation
of the derivative of the prepotential with respect to as becomes

oOF

Do = (—a1 + 2a2 — 2a3)(2a2 — 2a3 + mo — 2mg — 2ms3). (3.64)
2
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The first factor in (3.64) is the length of the fiber class of the middle face and the second
factor corresponds to the length for @Qp. Hence we have

Qp = A3A; MMy 2 M2, (3.65)

where My = e~ ™°. It turns out that the length between horizontal external parallel lines
in figure 32(b) is my.
Then the application of the limit Py — 0 to (3.50) gives

5d _ r76d
Zf4+3F = Zf4,(*2) ’P():O
> 3F
= Z0% ap ({ AL} {M3}) ZI3T (Mo, My, My, Ms) . (3.66)
We argue that Zgﬂw ({Ap}, {M;}) is the partition function of the 5d Fy gauge theory with
3 hypermultiplets in the fundamental representation on S' x R* up to an extra factor.
We can give support for the claim by comparing the perturbative part of the partition
function (3.66) with the known result. From the universal formula for the perturbative part
of the Nekrasov partition function in appendix B.3, it is possible to express the perturbative
part of the partition function of the 5d F; gauge theory with three flavors by the following
five factors,

5d per
Zle-l-g(l?t = Z(f:;rtanZIéotsZg;vor IZIfiivor QZIfitvor 3 (367)
where each factor is given by
4q
Z}srian =PE [ ] , 3.68
' (1-¢q)? (3.68)
2 A% A2A; AsAL ALAT AL A AL A2A A2
2B =PE | (L1 A0 2801 DAl AL R | SR A 8
(1 — q) A2 A2 A2 Ag A4 A3 A2A4 A2
Ai AQA?JL A3A4 A2 A% A3 A2 Ai A2 A3
+24 + +A+ S+ e e
Ay A2 A, YT A ApAy Ay A2 AT A A
AgAy Agy A2 A}
T, T AA, AzA, T AmA )| (3.69)
q A%Ml A:Z)) A4A3M1 A3M1 A1A3M1 A3M1
7la —PE |-
flavor 1 (1-q)? ( AgAy  AgAqMy a4, A4 A, T4
AygAs As A1 A3 As AlMy | Ay Ay
Ay M —
oMy T A, T A T A Tt T T A, T
A A AIMy  AoMy A ALMy Ay AgM A3
s N 2 iV Aol | Acfudh | ApAdl A
A4M1 A1A4M1 A3 A3 A3 A1A3 A3M1
Ay A1 Ay AxAy
2M .
+A3M1+A3M1+A1A3M1+ 1], (3.70)
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P3P | b,
—D—R -
Q1P3 |J3P2 3R RZ
1
QB ‘ 2
Qip
Q,P; M4 P, AT
S —
PsP, [ M5
M6

Figure 36. A parametrization of the web which is obtained after applying the 5d limit to the
diagram in figure 33(c).

AZMy A AsMs  AsMs  AjAsMy A AsM,  AsM.
Zf4 —PE |- q 3412 4 31VID 34VI2 14134VLQ 134VLQ 34VI2
flavor 2 [ (1—q>2<A2A4 A, AL T Ay Ay A
Az My As A1 A3 As AyMy A1 AyMy
Ay M
A2 A, T Ao T A, T A T A, e
n A1 M n As Mo ﬂ AZMZ Ao Mo " A1 Ay Mo
Ay A1Ay - My As As As
A2A4M2 A2M2 A2 A1A4 A2A4M2
M. 71
Ads | AgAs T A, T A T Az T 2)1’ (3.71)
A2Ms  A4AsMs  AsMs A AsMs  AjAsMs  AsM.
Zf]}l 3:PE—q 34V13 433_’_33+133+133 3413
avor (1—q)% \ A2A4 Ay Ay Ay AxAy Ay
A3M3 Ag A1A3 Ag A4M3 A1A4M3
Ay M
A2 AN, T T AN A T Ay
AMy  AsMy Ay AZMy  AsMs A A Ms Ay AuM.
L AMs  AoMs  Ag AgMs | ApMs | AidalMy | AaAadMs
Ay A1Ay My Ag A3 Ag A1A3

AsMy Ay AjAs | AsALM
T - 243H%ﬂ. (3.72)

T, T M T A T A2

The perturbative partition function is different depending on phases. The phase was de-
termined by the choice (3.60) and (3.62).

We will compare the perturbative partition function (3.67) with the perturbative part
of (3.66). Since the partition function may contain an extra factor we focus on terms
which are independent of the Coulomb branch moduli. The perturbative part is obtained
by applying the limit My — 0 or @ — 0 to (3.66), which breaks the diagram in figure 32(b)
into the upper half part and the lower half part. For explicitly evaluating (3.66), it is useful
to introduce parameters R1, Ro, R3,T1,T5 as in figure 36. The newly introduced parameters
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are related by other parameters as
Ri=0Q3'QsP1, Ry=Q1Q;'Ps, R3=QQ3'P['PsPy, Ty=P'PsPi. (3.73)

We computed the Plethystic logarithm of upper half part until the order P3QSR}R3R3
and the lower half part until the order Py P$P{Q1Q3T2,'* and the result agrees with (3.67)
except for a Coulomb branch independent part. The Coulomb branch independent factor
in (3.66) reads

0] IR PSSV SHPELL BRELL P VYAV AT (3.74)
(1_q)2 2 2 Ml M12 1 2 3 5 .

until the orders we computed.

3.3 6d/5d Eg gauge theory with matter

We then consider the partition function of the 6d Eg gauge theory with four flavors and a
tensor multiplet on 72 x R* and its 5d limit.

eél) on (—2)-curve. The 6d Es gauge theory with four flavors and a tensor multiplet

compactified on a circle arises as a low energy theory on the [(3,2,2), (3,2, 2)] Higgs branch
of the 6d theory (Fg, Eg)2 on S! as in table 4. A 5d gauge theory description of the original
(Eg, Eg)2 theory on S! before the Higgsing is again the affine Eg Dynkin quiver theory given
in (2.50) and the quiver theory is realized on the web diagram in figure 11. Then applying
the [(3,2,2),(3,2,2)] Higgsing to the diagram in figure 11 yields the diagram in figure 37(a).
The fiber classes of the seven faces form the affine Fg Dynkin diagram in the sense that the
intersection numbers computed by (2.1) gives the Cartan matrix of eél). When we decouple
the fiber associated to the affine node, the remaining fibers form the Eg Dynkin diagram
and the resulting diagram is depicted in figure 37(b). The decoupling corresponds to the
5d limit and the theory realized on the web diagram in figure 37(b) is the 5d Eg gauge
theory with four flavors.

We consider applying the topological vertex as well as the trivalent gluing prescription
to the diagram in figure 37(a). For that we first parametrize the lengths of lines in the
diagram in figure 37(a) as in figure 38. In the parametrization in figure 38, the Kéahler
parameters of the fiber classes which form the affine Fg Dynkin diagram are given in
figure 39. The parametrization of the gluing lines can be determined by the Higgsing
argument done in section 3.2 since the web diagram in figure 37(a) is also obtained from
the Higgsing of the web diagram of the affine Fg Dynkin quiver theory. From the diagram
in figure 35(b) we consider the [(3,2,2), (3,2,2)] Higgsing and it is achieved by the tuning

ap = a2 =asz = Qf17 bl = Qf27 C1 = Qf47 dl = d2 = d3 = Qfs (375)

Then the application of the tuning condition (3.75) to the length of the color D5-branes in
figure 35(b) gives rise to the parametrization of the gluing lines written in figure 38(a).

MHere we choose T; as an independent parameter instead of P; since the summation of Ti is already
taken in (3.50).
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Figure 37. (a). The web diagram for the 6d theory given by eél) on (—2)-curve. (b). The web

diagram for 5d Eg gauge theory with 4 flavors.

b1 P4P1R,Q4Q,; /

PR 1 H2P,QiQ,
QiRy 1“3 P, ;

QB 1::|

QR, 1 Ha Py

P,R, 1 Hs P,Q:Q; :

POTETAAN

Figure 38. Parametrization of the web diagram for the geometry eél) on (—2)-curve in figure 37(a).

PiR,  QiRy Py QiPy PR,

Figure 39. The Kahler parameters of the fibers which form the affine Fg Dynkin diagram.
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It is now possible to apply the topological vertex to the diagram in figure 37(a). The
framing factors of the gluing lines do not change by the Higgsing in this case also and
they can be read off from the framing factors of the six color branes of the diagram in
figure 35(b). Then the topological vertex computation gives rise to

6d
Zeg(~2)

€6,

=Y (= PiPiRyQ1Q2)l" 1 (= P1Q1 Qo) 21 (— Py) s imal (— Py Q1 Qo) 3 (— PPy Ry Q1 Qo) e
{pi}

20 (QuAQub AP AR 2200 (Qp A Qu ) AP ARD)

Fun (@)™ s (@) frua (@)™ Fus (@)
Zi?{m} (QB7{QG}>{PIJ}7{R0}) ZSG{# ) QB){QG}?{Pb}g {Rc}) Z;G{# } QB,{Qa},{Pb}, {Rc}) R
(3.76)

where Z2UO% (Qp {Qu} AR} ARD) and ZVO% (Qp,{Qu}, (P}, {Re}) are (351)
and (3.52) respectlvely with

Qp = PRy, Qp =0O1R1, Qp=Qp, Q =0Q1R1, Qp =PiRs. (3.77)
The other factors of (3.76) are

6 t)]2 6 =
2804y (@5, 1Quh AP (ReE) =g Ko ] (H 2, <q>> EMECZRCARIORES)

=1
T (QBQIPERIRS) T, . (QBQIRY) T, 1, (@),
(3.78)

7501 (@Q5.{Qa}, {P}) = 7 T IHIP (ﬁ qu)) O (Qp{Qa} AP} {Re})
Ty 4o (QBRIPERIRS) T, 1y (QuR) T, 4, (QBQIRY)
T (QBQIRY) T, 1 (QB) T, 1 (QBQIRY) T, s (Q1RY)
3 g3 i (NIP+INR) (HZA 1Zy:(g )

A1,2,3,4

(_P)p\l‘(_Q Q§1P1)| 2‘( )|)\3|< Q Q3 1P2)
Iy s (PLR)ZT, \ (PIRIR:) T\ (QpQ1Q3PiR1Ry)
T, QBQ3P1R1R2) Iy, 5, (R2) IF, ,(QBQ1Q3Ry)

(

T (QQ3R) I, . (Qs@PRR) Ty, (Q5@1Qs)?
(
(

[Aal

A QBQ3R2) N MG(QBlelRlRQ) o )\4(Q1_1Q3R2)
Iy, 06\ @1Q@3 P1R132> M HG(Q1Q32P131) o (1)
T2 QBQIQsR) Iy, |, (QU)I) . (QBQ1)T,, 5, (Q3)
Iy s (QBQ1Q3R1> s (@BQ3) Y, %(Q1Q3 Rl);
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28+ (Qp.AQa}, {P}) = g2 Zima IHIF (ﬁ%q)) O (QpAQa}. (P} {Re})
T, o (QBQIPERIRS) T, 1 (QuR) T, (QBQ1 i)
T (QBRIRY) T 1 (Q8) T 1 (QBQIRY) T, s (Q1 RY)
S g i (NIEHINR) (HZ/\’ )Zye(q )

i
)‘1234

<—P3>' (@i )™ () (~ @201 )
Ty (PR3 T, o (PsRsRa) T, (QpQaQuPsR3Ry)
' (QBQ4P3R3R4) VY (R4> 5 2 (QBQ2QuRY)
Ty v (@R I}, (@3PS ) T, ) (Q5QaQu)?
75 . (QsQ3R) T, (QBQ2P3R3R4) 5 (03 QuRy)
T5, 1 (@2Q1" P3R3R4) (Q2Q42P3R3)I (Rs)
I, ,(@BQ2QuRs) I, Mg(Qz) 3, (@BQ2) M47A/2(Q4)

T3 . (QBQ3QuRS) T, (QBQI T, , (Q2Q1 " Rs),
(3.79)

X4

where we used
Ry =Q1Q;'R1,  Ry=PiPy'Ry. (3.80)

The partition function in (3.76) may contain an extra factor which is independent
of Coulomb branch moduli. The parametrization of the Coulomb branch moduli is given
n (3.17). Mass parameters can be assigned to the lengths between parallel external lines in
figure 38. From the figure 38, we can explicitly see parallel external lines and we parametrize

PP Ri=Mj, QIQ3°PiPyRi=M;, Qi1Qy'PoPsRi=Mj, Qi1Q3Q; PoPsRy = M]
(3.81)
Also, the web diagram in figure 35(b) implies that the external lines attached to the top
gluing line are parallel to each other and we assign

Q1Q2P1PyRy = M. (3.82)
The class of the elliptic fiber from (3.18) becomes
Qr = (P1R)(Q1R1)*(P))(Q1P1)*(PaR2) (Q2Ps)* (PoPL Py ' Ry) = Mg” M M. (3.83)

Then the partition function of (3.76) can be written as

7 ) (-2)
28 =20 Ly (AL} (1Y) 2202 (0 b M MG AT (384)

extra
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1) (_
where 2%, (Mg, My, My, Mg, M) is an extra factor which is independent from the

extra
Coulomb branch moduli. We argue that the partition function ZG(C})( 2 (ALY, {M]})
eg s(—
in (3.84) yields the partition function of the 6d Eg gauge theory with four flavors and
a tensor multiplet on 72 x R* up to an extra factor.

5d Eg gauge theory with 4 flavors. The 5d limit which yields the diagram in fig-
ure 37(b) is again realized by taking the limit Py — 0 with the other Kéhler parameters
fixed. The Kéahler parameter for the elliptic class (3.83) also becomes @, — 0 as desired.
Therefore applying the limit to (3.84) yields the partition function of the 5d Eg gauge
theory with four flavors on S' x R* up to an extra factor.

We rewrite the 5d partition function by the gauge theory parameters. After taking the
limit the fiber classes of the six faces form the Fg Dynkin diagram. The Kéhler parameters
for the fiber classes depend only on the Coulomb branch moduli A; = e™% (i =1,2,---,6)
through the relation (3.23) and they are given by

PRy = A2AS', Q1R = AT ASAZY, Py=AJYAZATTALY, QP = AJTATALY,
PyRy = AJTAZ, QoP3 = A AR (3.85)

Q1,Q2,Q3, Q4 are related to the mass of matter and the Dynkin label of the corresponding
weights can be obtained by the negative of the intersection numbers as

Ql : [_1717_1717070]7 Q2 : [_1717_1707071]7 Q3 : [_1717_1717070]7

(3.86)
Q4 : [-1,1,-1,0,0,1].
Hence we introduce four mass parameters M; (i = 1,2, 3,4) by
Q1= A AT AMT! Qo = AT ARAT AMs, Qs = AT As AT AGM; (3.87)

Qs = AT Ay AZ T Ag M.

For identifying the instanton fugacity we use the effective prepotential (3.26). The middle
face in the SU(6) gauging is locally an Fj in the dual geometry and the area of the face cor-
responds to the derivative of the effective prepotential with respect to as which is given by

oOF

P = (—a2 + 2a3 — ag — ag)(—2ag + 2a3 + mo — 2mg — 2my). (3.88)
3

Hence we parametrize

Qp = Ay 2 AZMoMy > M, 2, (3.89)
for the instanton fugacity My = e~"0. The parametrization implies that the length between
the horizontal external lines in figure 33(c) is my.

Applying the limit Py — 0 to (3.76), the partition function with the gauge theory
parametrization becomes

54 _ 6d
ZegraF = Leg (~2)

Py=0
= 224 4 ({Ap}, {M;}) ZE52F (Mo, My, Mo, M3, My) . (3.90)

extra
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We claim that ZESHF ({Ap}, {M;}) gives the partition function of the 5d Eg gauge theory
with four flavors on S' x R* up to an extra factor.

Under this parametrization we compare the perturbative part of (3.90) with the uni-
versal formula of the perturbative part of the Nekrasov partition function of the Eg gauge
theory with 4 flavors. The perturbative part depends on the phase of the gauge theory

and it is determined by the choice (3.85) and (3.87). Using the result in section B.3, the
explicit form is given by

5d pert _ rreq 6 6 [ [ 6
Z26+4F - anrtaanootSZﬁavor 1Zﬁavor 2Zﬂavor 3Zﬂavor 4 (391)

where each factor is

6q
Zehan = PB | s (3.92)
90 (A2 A4A, AsAsAy AsAgAr  AgAy  AsAgA;  AsA,
Z3Sors=PE o + LT
' [(1—(1)2 <A2 Az Az Ay As Ay AsAs As
Ay AsAr Aghi A A3 AR AsAy | Aids | Ads
MoAs | Ag AgAg T AsAg A, A3 As T A; A
AsAs  AsAg  AgAg A2 Ay Ay Ashs A2
A 42 43
Ay T AA, T AnAs T A T A T A T AvAs T AyAyA,
AsA Ay AsAs AsAsAg AsAg A ALA A2
sda | As Asds | AsAsAs | Asds | ApAsds | A
AsAsAg A1 AsAy AsAq AgA1 A3AsA7 AsA
Ag A2A5 A2A3 A2A4
A T A A, T A A5A6A1>] ’ (3.93)
7 :PE{— q (A5A2M1+A2M1 Aoy AgAMy  AjAy Ay
flavor 1 (1*(])2 A3 Al A4 A3A5 A1A3M1 A3M1
As AsM,  AsAgMy  AsAgM,  AgMyi  AsM,
+A6M1 +A M+ A + As + A, + As + A
A3A5M1+A3M1 A1Ay A1 A5 ﬁ Ag n Az n Ay
AyAg AsAg  AsMy  AuMy My AMy,  AsMy  AsM,
As AsMy  A1AsMy A A M, A Ag A1 A3
.94
THAM, A, A, AsAy +A2M1+A6A2M1>]’ (3.94)
e :PE{— q (A5A2M2+A6A2M2+A2M2 AoMy  AygAsMsy  AgAa
flavor 2 (1 —Q)2 As A1 A3 Ay Ay AsAs Az Mo
As AsMy  AgAgMy  AsAgMy  A1AgMy  AgMy
A M.
+A6Mg+ 12+ A + As + m + A + A
A3M2+A4M2 A1 Mo A4M2+A3A5M2 A3MQ+£+ As
A1Ay A1 A5 Ag Ag Ay AsAg Mo AyMo
Ay AsMy  AyAsMs A1 AsMy  ArAgMs  AgAg
A, Ay Ay Audy AsAg A2M2>]’ (3.95)

and Zi5 .4, Zi5.or 4 arve the same as Zg® | and Zg8 o with Mj, My replaced with
M3, My respectively.
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The perturbative part of the partition function (3.90) may be obtained by taking the
limit My — 0 or @p — 0. In this case the diagram in figure 37(b) splits into the upper
part and the lower part. The separated two parts are identical to each other and hence the
partition function from the upper part will yield the square root of the root contribution
Z:8

roots and the contribution of the two flavors Zi5 |, Zg 5. On the other hand the

partition function from the lower part will give rise to the remaining square root of the

root contribution Z;5, and the contribution of the other two flavors Zg5 ., Zg8 .

roots
Namely we should obtain

[ _ eG [ e6 eg+4F
Zupper half — '/ ZrootsZﬂavor 1Zﬁavor 2Zextra 1 (3‘96)

where Z4F is a contribution from a possible extra factor from the upper half of the
diagram. We evaluated the partition function of the upper part by using (3.90) and found
the agreement with (3.96) until the order PZPZP2P?RIR3Q?Q% and the extra factor is

given by

M. M2
Zga = PE [ﬂ_(lq)Q <4Mf + M} + 2M2M, + M%)] , (3.97)

until the orders we computed.

3.4 6d/5d Er gauge theory with matter

As for final examples for gauge theory with an exceptional gauge group we consider 6d/5d
FE- gauge theories with matter. The fundamental representation of E7; is pseudo-real and
FE~ gauge theories can have half-hypermultiplets. The cases with half-hypermultiplets may
be intersecting in the sense that the application of the blow up formula of [50, 75, 76] may
need a subtle treatment due to the absence of unity blowup equations. Hence we here
compute the partition functions of two FE7 theories. One is the 6d E7 gauge theory with
one flavor and a half-hypermultiplet as well as a tensor multiplet. The other is the case
with the maximal number of flavors, namely the 6d Er gauge theory with three flavors. We
will write n hypermultiplets and a half-hypermultiplet in the fundamental representation
n+1
2

as flavors for simplicity.

egl) on (—5)-cruve. We start from the partition function of the 6d E7 gauge theory

with % flavors on 72 x R*. The 6d F; gauge theory with % flavors on S is realized from

the geometry of egl)

on (—5)-curve. From table 5 the E7 theory is obtained from the
(4,3,2) Higgsing of the theory (E7, E7); on S'. The web diagram of the original theory
(E7, E7)1 on St is depicted in figure 19(a). Then applying the Higgsing (4,3,2) to the
diagram in figure 19(a) yields the web diagram in figure 40(a) and hence the diagram in

figure 40(a) realizes the geometry 8(71)

on (—5)-curve. The fiber classes of the eight faces
form the affine Fy Dynkin diagram. Then we can also consider the 5d limit by decoupling
the fiber class corresponding to the affine node of the affine E7 Dynkin diagram, which
leads to the F; Dynkin diagram formed by the remaining fiber classes. In terms of the
web diagram in figure 40(a) the limit corresponds to decoupling the rightmost face in the

upper-right diagram in figure 40(a), which gives rise to the diagram in figure 40(b). Since
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(a) (b)

Figure 40. (a). The web diagram for the theory given by e(71) on (=5)-curve. (b). The web
diagram for 5d FE7; gauge theory with one fundamental hypermultiplet and a fundamental half-
hypermultiplet.

it corresponds to the 5d limit, the diagram in figure 40(b) realizes the 5d E7 gauge theory
with a hypermultiplet in the fundamental representation and a half-hypermultiplet in the
fundamental representation.

Since the web diagram in figure 40(a) is made by the trivalent gluing, it is possible
to apply the topological vertex to the diagram in figure 40(a) and compute the partition
function of the 6d Er gauge theory with a hypermultiplet in the fundamental representation,
a half-hypermultiplet in the fundamental representation and a tensor multiplet on 72 x R4,
For that we first parametrize the lengths of the 5-branes as in figure 41. The fiber classes
of the web diagram in figure 40(a) have formed the affine F;7 Dynkin diagram and the
parametrization for each node which follows from the one in figure 41 is depicted in figure 42.

We can determine the parametrization for the gluing lines in figure 41 by focusing on
the local structure of the trivalent gauging. From the web diagram in figure 19(a), a 5d
description of the theory (2.66) is given by

(rank 2)

(rank 6) — SU|(5) — (rank 6), (3.98)

where the rank 6 theories correspond to the theories from the upper diagrams in figure 19(a)
and the rank 2 theory is given by the lower diagram in figure 19(a). The SU(5) part in
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Figure 41. Parametrization of the web diagram for the geometry 2;1) on (—5)-curve in figure 40(a).

QiP:P5?RiRs

PRs  PiR; QiRy Py QiPy PRy PR

Figure 42. The Kahler parameters of the fibers which form the affine F; Dynkin diagram.

figure 19(a) consists of four faces corresponding to four Coulomb branch moduli. The
lowest face of the SU(5) corresponds to the Fy surface in the geometry of egl) on (—8)-
curve. Hence the local structure of the SU(5) gauging is given by combining two copies
of the diagram in figure 43(a) and the diagram in figure 43(b) with the constraint that
the lowest face becomes Fy. The Qy,, (i = 1,---,4) in figure 43 are the Coulomb branch
moduli of the SU(5). The combined diagram for the SU(5) is described by the diagram in
figure 44. Then the (4, 3,2) Higgsing can be done by tuning the parameters as

ap = a2 =asz = Qf1v bl = b2 = sz) C1 = Qfg (399)

After the tuning the Coulomb branch moduli of the SU(5) become the ones in figure 41(a),
namely

Qp = PR3, Qp =P Ry, Qp=QR, Q5 =QpB. (3.100)

Using the tuning condition (3.99) as well as the parametrization of the Coulomb branch
moduli in (3.100), we obtain the Kéhler parameters for the gluing lines in figure 44 written
in figure 41(a).

We can then apply the topological vertex to the diagram in figure 40(a) using the
parametrization in figure 41. Since the charge of 5-branes attached to the gluing lines does
not change by the (4, 3, 2) Higgsing, we can use the framing factors which can be read from
the diagram before the Higgsing in figure 44. Then the partition function computed by
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(a)

Figure 43. (a). Local geometry near the SU(5) part of the two rank 6 theories in (3.98). ¢ labels
the two rank 6 theories and i = 1,2. (b). Local geometry near the SU(5) part of the rank 2 theory
n (3.98).

20, -1
Psa;a,asb;b,b3¢1€,C5Qr, Q5

l ..........................

aya;! |a Qr,
P4byb,bsc;¢,Qr, 3

—\D P, bi

) P4 Cl. ...........................
............................ } Qs

Figure 44. Local geometry for the middle SU(5) gauge node of (3.98).

applying the topological vertex to the diagram in figure 40(a) is

A

= Z ( Q%P1P2P3P4R1R233>m1‘ (—Q%P1P3P4Rle)lml (—Q%P4R1)
{mi}

?E?’L (Qp:{Qa} 1P} {RD) 25, (1. {Qu} AP} {REY) i () Fas () Fia (@) s (0) 7
78 (@5 AQa} AP ARD) 257y Q. AQu} AR} ARY) Z57y, (@5 {Qu). AP} (Re}).

el pyyal+las|

(3.101)
where we defined
5
{SE%?)L (Qp,{Q.}, {P)}) = ¢2 LY laall? <1:[1 Zm(q))
I Z.. (ininH e ij,l) : (3.102)
1<i<j<5
5
230" Q. Qb {R}) = g X (nl zug<q>>
H I,L;',,/.LJ (Q iin+1 T ij—l) ; (3103)

1<i<j<5
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with Qy,, (¢ =1,---,4) given in (3.100). Furthermore the factors 292‘7{;”}(623’ {Qu}, {P},
{R.}), (j = 1,2,3) are the partition functions from the diagrams in figure 41(a), 41(b)
and 41(c) with the trivalent gluing prescription used. Each factor is given by

A {u 1 (@B AQa} {P} {Re})
S S 71 <H Zuﬁ(q)> e (Q8) /25O (Q A Qu} AP} (R
i1

3
I R > RIS (H zﬂ(q)> 32 S =lo0l) (el oy g
=1

V1,2,3,Ul,2,3,7777]/
S (Qlqu_p_usaQBQlqu_p_M) V2/77 <q—p—1/1) VB/U(q_p_VQ)

503 (—QBQTRIPY R Py RYq ™" )50 (47 )50,(QBQTRIPYR3G ™" 12) 55, (a7 72)

So1 (—QBQIRIG 7)1y (g7 711), (3.104)

2{Hz (QBv{Qa} {Po}, {Re})

:q% Z::lHﬂwz (1:[ Zuﬁ (C])> ?}?}5)1% (QB7{QG} {Pb} {R })
u3 14 (QlRl) 143,145 (QBQlRl) L, 105 (QB)

S gE (PP (HZA 1Zyi(g )(ﬁ(_pi)xi>

A0,1,2,V4,5,6,04,5,6 i=0
71,2,3,4,5,6,7,8,9

,ul Ao (P1P2R1) 11,\2 (P1P2R1R3) A0, A2 (R3)
Iy, ao (PRI, o\ (PURIR) I,y (R2) T (BTN, , (QU)IY, . (QBQ1)
q—%Zi:4(|\ufll2—2\|w|\2) <H Z,,t(q)

) Lo 5okl P=llowssl®) () Pyl (Ry o) 5l (Ry Py) el
=4

Sa 5 (47780 s (477785 /s (4777 ) 506 (—Q Q2 PLRSPERAPS g7~ )50 (g7 ~0)
Sos/m (477" ) S0y (@) QBQEPLRIPS) ™ 5,3, (470 ) 50, g (a7 ) (~QBQT P
s (PLP2 Ry R3q ™" ™) 81 7 (= Rsq ™ ™) sy (PLRIRaq ™" ™12) 1 10 (= Rog™"™2)
Sus s (QBA ")y 1y (~QBQ1G™" )51 (QBQUR1G™" ),

Z?e)?{u } (@s, {Qa}, {Pb}7 {Rc})

5
N %L (H Zﬂ;<q>> 1Z40y" QB AQa}. (P} {Re})

Ly (P1R2)Z,, (1 PIRIRS) T, (QBQ1P1R1R2) o Q1R T, (QpQ1Ry)

vt
A A _ 7 2 ~
T, (@) Z q! sl? Z,\ (P2R3)| slg +\|u7\|
A3,U7,07
71,2,3,4

1 t12 2
gz UlozllP=llorl®) g

(3.105)

Z,4(9)(Q1R1P; Py Ry)""!

v (TP 71) 50, (QEQI RIPS PyR3q™"™"7) 50, (q "™, PLRy Py R Py g P 71)
S /e (QBA )80 s (RBQLR1GTPTH) s, t/n4(—QBQ131P3q_p_’\4)s ((QpQ1RIPLR2q 1)
I;lv)\?) (P1P2P3 RZRS) 42,3 (P1P3 IRQ) A3, 143 (P3) A3, 14 (QlPSRl) A3, 15 (QBQlPBRl) .

(3.106)
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The partition function (3.101) may contain an extra factor. The extra factor may be
determined by parametrizing the lengths in terms of Coulomb branch moduli and mass
parameters. The Coulomb branch moduli dependence on each Kéhler parameter is given
by (3.17). The theory contains two mass parameters and we can associate them to the
length between parallel external legs. From the length between parallel external legs in
figure 41(b), we assign

PyPLPyRy = M. (3.107)

The diagram in figure 44 suggests that the external lines attached to the top gluing line
are parallel to each other and we parametrize the length by

QiP1PyPsPyRi RyR3 = M, (3.108)

With this parametrization the Kéahler parameter for the elliptic class given by (3.18)
becomes

Q- = (P2R3)(P1R2)*(Q1R1)*(Py)*(Q1P1)*(P2Ra)*(PyR3)(Q1 PaPi Ry R3)* = My My,

(3.109)
and it only depends on the mass parameters.

Then the partition function of (3.101) can be written as

~ W (g
2% o= 2% o (AL AMY) Zeans ™ (Mg, M) (3.110)

¢z ,(=5) e7 /,(=5)
(1)

Here ng’é 2 (Mg, M7) is an extra factor in (3.101) which is independent from the Coulomb

branch moduli. We claim that the partition function 26(‘%) 5) ({AL}, {M]}) in (3.110) gives
e; (-

the partition function of the 6d Er gauge theory with % flavors and a tensor multiplet on
T? x R* up to an extra factor.

5d E7; gauge theory with % flavors. We then apply the 5d limit to the partition
function (3.101). The 5d limit is given by decoupling the fiber class associated to the affine
node in figure 42 and the resulting web diagram is depicted in figure 40(b). In terms of
the Kéahler parameter assignment in figure 41 the limit is given by Py — 0 with the other
Kéhler parameters fixed. The Kéhler parameter of the elliptic class (3.109) becomes zero
in the limit. Hence the application of the limit Py — 0 to (3.101) gives rise to the partition
function of the 5d F; gauge theory with % flavors on S x R* up to an extra factor.

To identify the extra factor and also make a comparison later we rewrite the partition
function by the gauge theory parameters in the 5d E; gauge theory. The Coulomb branch
moduli dependence is determined by (3.17). In particular since the fiber classes forming
the F; Dynkin diagram in figure 42 correspond to simple roots of the F- Lie algebra,
Kéhler parameters for the fiber classes are parametrized by the Coulomb branch moduli
Aj=e %, (i=1,---,7) as

PyRy = ATASY, Q1P = AT AZATY, Py= AT AZATADY Q1Ry = A1 A3ASY
PiRy= A1 AZAY, PaR3=A;'AZ Q1P2PiR 1Ry = A3 A7 (3.111)
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On the other hand a string with length characterized by the Kéahler parameter () gives
rise to a hypermultiplet corresponding to a weight of the fundamental representation of
FE~. The Dynkin label may be read off from the intersection number between the curve
and the complex surfaces. The Dynkin label of the weights for ()7 is

Q1 : [0,1,-1,1,-1,0,0]. (3.112)
Hence we parametrize them by
Q1 = A A7 AL AT MY, (3.113)

with the mass parameter M; = e~ ™. The remaining mass parameter is the instanton
fugacity and it can be determined from the analysis of the effective prepotential given
in (3.26). Note that the lowest face in the diagram of the trivalent SU(5) gauging is
Fo. The volume of the surface or the area of the corresponding face is given by taking a
derivative of the effective prepotential with respect to a3 and it is given by

oF

S = (—ag + 2a3 — a4 — a7)(2a3 — ag + mo — 3my). (3.114)
3

Then the instanton fugacity My = e~™0 is given by
Qp = AZA; Mo, 3. (3.115)

The application of the limit Py — 0 to (3.76) with the gauge theory parametrization
becomes

5d _ r76d
Ze?-‘r%F - Z¢77(_5) ‘P():O

~ +3F
= 20 5 (A} {Mi}) Z5r2 (Mo, My). (3.116)

We argue that Z fir sp ({Ap}, {M;}) gives the partition function of the 5d E7 gauge theory
2
with % flavors on S! x R* up to an extra factor.

To check the validity of the partition function (3.116), we compare it with the perturba-
tive part of the Nekrasov partition function of the 5d F; gauge theory with % flavors using
the universal formula in section B.3. For the phase which gives the diagram in figure 45(b),
the perturbative partition function is given by

Z5d pert _ VA A Z§7 AL (3.117)

e7+%F cartan“‘roots ““flavor % flavor’
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where each factor is

7q
z. =PE| 1
cartan {(1_q)2:| )
_pp |2 AT | AsAr | AzAsA A4A6A1+A6A7A1+A7A1 AygAr A
(1-¢)2 \ Ay A Az Ay Az As As Ay A3As
A5A7A1+A2A1+A3A1+A4A1 AsAs A1 AgAr  AsAr AsA
Az Ag Az AgAs  AgAg  AgAuAg A7 AgAr  AsA;
A Ay A% A% As  AsAs Ay4Ag AsAg AxAg  AgAsAg
A5 o6 AT A8
T AT A AT Ty Ty A A T A
AgAr  AsA;  AgAr AgA; AsA;  ALA; AsAg ﬁ AZ
As Ay Ao As  AAy  AAs  AxAg  Ag  AzAs
+&+ A% +A2A4 AgAs  AjAjg ﬂ AsAs  AsAg AszAg
As  AsAe¢  AzAe¢  AzAg  AsAg  Ar  A4A7 AdAr AsAg
A2 A3 A A A3z A Ay As AsAg A4A
3 Asds  As | Asds Ay A5 Asds | Aads
AgAyAr  AsAsA;  AgAr  AsAgAr  Ar Ay A4AT AsAy
Ao AgAr AsA; AsA A7 AsAsA A2 A A
24gAr | Apdr  AyAudr  ApAsAr A5 | As 4

AzAr  AsAr A3AsAL AsAgAr AsA A5A1+A6A1

A3As  AsAg  AlAs A Ay A As
11
T aiAgdy T AA, T A A Ay T AsAndy T AgAndy )| (8.119)

(3.118)

z7

roots

+

+

AyM1As AsMi1As AgMi1As AgMiA, A-M1A
Z{ei;vor:PE|:_ q2(4 14y | AsMiAy | AgMhAy | AsMhAy | ArMy A,
(1—q) A1 A3 Ar1Ay As A As As
AsMiAs n AsMi Ay n M1 A, n MiAs " AgAs n AsAs A7 A,
A3As A3Ag A1Ag A7 A1A3My  A1AsMy o AsMy

A A1AyMy  AyAsMy AgMy AyAgMy As A7 M,y
AgM;+—"—"—
YL T A, A, T4, a4, At
n AgAr My A AcA My A;My  A;My A AM,  AsAM, AsM;
A, A3As A A, T AsAs o AAy A,

AgMy  AMy AsMy  AsMy  AsMy  AsAgMy  AyAsMy Az,
Ag Ag Ag A1 Ay Az Ag Ay AsAy AsAr
AgMy | AgAsMy | AvAg  AAs | AjAe | As | A7 n As
A¢A7  AsAcAr  AsMy  AyMy o AsMy My AiMy o AgM,
Ay Ag As AgMy  AsAsMy, A AgMy,  AszAgM,y
T, T A, T AAM, A, T AA, T A, AsA,
A1 A My AsMy A AsM; A1 AsM, Ay A1 A7 A1A3
* Ay +A6A2+ AgAy * A7 Ay +1\41A2+J\41A2+A7]\41142ﬂ
(3.120)
er _ g (A4A1+A5A1+A6A1+A7A1 é+A3A1+é A3 A5
{ (1—¢)2 \ A3 Ay As Ay A AA7 Ay ArAy
AsAg AsAr  AgAr  AyAsAr  AsAr  AgAn AsAs
t A Nt T T, T A, T A, AsAg T AA
As A, Ay As Ay As AsAs AsAs  AgAg A

+1474—1_1475—1_142146—i_x‘Tﬁ+Af7+1‘1774_143141 +144141 AsAq +141

Ay As
+A6A1+A7A1>} (3.121)

1 =
5 flavor
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To compare (3.117) with (3.116), we apply the My — 0 or Qp — 0 limit to (3.116)
in order to extract the perturbative part of the partition function. Then the diagram in
figure 40(b) splits into the upper half part and the lower half part. The lower half part is
exactly the half of the diagram of the 5d pure E; gauge theory obtained in [45], and hence
it yields the square root of the root contribution. Then the upper half part should give the
remaining contribution in (3.117) except for the Cartan contribution which is not captured
from the topological vertex. Hence we should obtain

Z¢7+%F N
upper half —

er+3F /
Zlowe? half — Zlfgots’ (3. 123)

3
where Z;Z;;F is a contribution from a possible extra factor. We evaluated the upper
half part and the lower half part from (3.116) in the limit @p — 0 until the order
QPP PJP?RIR3RS and found precise agreement with (3.122) and (3.123). The upper

half part has an extra factor and it is given by

3
A A A erto
roots “flavor % flavor ~extra

(3.122)

Ze

extra

— PE {(1_’1(])2 (601 + 4M12)] , (3.124)

until the order we computed.

2(71) on (—2)-curve. The other E7 theory we consider is the 6d E7 gauge theory with 3

flavors on S! and we compute its partition function on 72 x R%. The theory is realized from
the geometry given by egl) on (—2)-curve. The geometry of egl) on (—2)-curve is obtained
from the [(4,3,2), (4,3,2)] Higgsing of the theory (E7, E7)s on S' as in table 6. A 5d
gauge theory description of the original theory before the Higgsing is given by the affine E;
Dynkin quiver theory (2.65) and its realization using a web diagram is given in figure 18.
The application of the [(4,3,2), (4, 3,2)] Higgsing to the diagram in figure 18 should yield
the web diagram corresponding to the geometry 2(71 on (—2)-curve. The resulting web
diagram after the Higgsing is depicted in figure 45(a). Furthermore decoupling the fiber
class corresponding to the affine node for the affine F; Dynkin diagram is the 5d limit and
the diagram after the limit is depicted in figure 45(b). Since the limit is the 5d limit of the
6d E7 gauge theory with three flavors and a tensor multiplet on S, the web diagram in
figure 45(b) yields the 5d E7 gauge theory with three flavors.

One subtle point about the theory realized on the web in figure 45(a) is that the
diagram will not allow us to turn on a mass parameter for one of the 3 flavors. Note that
the diagram in figure 45(a) only has three mass parameters one of which is related to the
radius of the S' compactification. One can also see this from the comparison with the
diagram for e(71) on (—5)-curve given in figure 40(a). The upper half part of the diagram in
figure 40(a) yields the perturbative part of the Nekrasov partition function for 2 flavors as
in (3.122). The diagram in figure 45(a) is given by combining two copies of the upper half
part of the diagram in figure 40(a) and hence the resulting theory is expected to have two
massive hypermultiplets in the fundamental representation and two half-hypermultiplets
in the fundamental representation.
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(a) (b)

Figure 45. (a). The web diagram for the theory given by e(71) on (—2)-curve. (b). The web
diagram for 5d E7 gauge theory with 3 flavors but one mass parameter is turned off.

M1 P1P,P3P4Q:?RiRyR;3
P2Rs 1“2 P;PsP,Q:°RsR,

PsR.
172 Y3, PuQi%Ry

QlRl
QB

Q:Ry
PR, He™ P,Q1QaR;

P,Rs H77 P,P3P,Q;Q:R1R, \
»>-
Ho" P.P,P3PLQIQRRR; O

(a)

Hay P

Hs™ P,

Figure 46. Parametrization of the web diagram for the geometry 2(71) on (—2)-curve in figure 45(a).

We then consider applying the topological vertex as well as the trivalent gluing pre-
scription to the diagram in figure 45(a) to compute the partition function. For that we
choose the parametrization as in figure 46. The parametrization for each node of the affine
FE; Dynkin diagram which follows from figure 46 is again the same one depicted in fig-
ure 42. The parametrization for the gluing lines can be obtained by looking at the middle
SU(8) gauging part in the affine E; Dynkin quiver theory (2.65). Before the Higgsing
the local structure around the trivalent gluing is given by the SU(8) gauge theory with
6+ 6 + 4 = 16 flavors with the Chern-Simons level zero. It consists of two copies of the
diagram in figure 47(a) and the diagram in figure 47(b). The Qy,, (i = 1,---,7) in figure 47
are the Coulomb branch moduli of the middle SU(8). Then the local geometry around the
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(a)

Figure 47. (a). Local geometry near the SU(8) part of the two long quiver tails of the affine E7
Dynkin quiver theoriy (2.65). 4 labels the two long quiver tails and ¢ = 1,2. (b). Local geometry
near the SU(8) part of the short quiver tail of the affine E; Dynkin quiver theory (2.65).

-2 -
P4a;@,a3b1b,b3¢;C,C3Q¢, *Qr, !

l

a,a;™t Qr,
Psbibobscic,Qr,t | @3
b,b,? Qr.
—/ b0 P, bi 2 2
Qr
Co 3
G2 Pa 1 ...........................
............................ b Qs
—_d P dy \—
2 4 1 Qf5
R P,d.d e
e 44142
3 ! e,e;! Qre
fl ------------------------
i P,d;d,e;e5e5Qe.t |
fzfl 1 441M2T1E2E3Kfg 3 Qf7

1

Pad1dze;eesfifaf3Qe ' Qr,

Figure 48. Local geometry for the middle SU(8) gauge node in the affine ¢; Dynkin quiver.

SU(8) gauge theory with 16 flavors with the parametrization in figure 47 is described by
the diagram in figure 48. Then the [(4,3,2), (4, 3,2)] Higgsing is achieved by tuning the
parameters as

a1:a2:a3:Qf17 blszZQf27 clef37 dlef57 61:62:Qf67

(3.125)
Ji=fo=f3=0Qy,.
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and then the Coulomb branch of the SU(8) becomes the one in figure 46(a), namely

Qp =Qp = PR3, Qf =Qp =PiRy, Qp =Qp=01R, Qp=0Qp. (3.126)

Inserting the tuning (3.125) as well as (3.126) into the Kahler parameters for the gluing
lines in figure 48 gives rise to the parametrization in figure 46(a).

We can now apply the topological vertex formalism as well as the trivalent gluing
prescription to the diagram in figure 45(a). Since the tuning does not change the charges
of the 5-branes attached to the gluing lines, the framing factors for the gluing lines do
not change after the Higgsing. Therefore we use the same framing factors as those for the
gluing lines in figure 48. Then the partition function of the theory computed from the
topological vertex is given by

lp | |2 |p3 5
=Y (~QIPRPPR RoRs) " (~QIPLPs PR Ry) " (—QEPyRy )" (= Py HalHIkel

<_Q1Q2P4R1)|H6‘ (—Q1Q2P P3Py Ry Ry)"! (—Q1Q2 Py PyPs Py Ry Ry R3) !
Zo W (Qp Qb AR} AR 2,37 (Q5,{Qu}, {P}, {Re})

ful( ) 1fua(¢])fu4(Q)fus(Q>_1fu6( )~ 1fMS<Q)
Z;?{M} (QBa {Qa}’ {Pb}7 {RC}) Z;{H } (Q37 {Qa}7 {Pb}v {RC}) Z§7{M } (QB7 {Qa}7 {Pb}7 {RC}) )

(3.127)
where we defined
8
2 (Qp{Qu} (P} = g S Il (H Zula )
:L"’Lhu‘j (Q f1+1 ’ ij_l) 9 (3128)
1<z<]<8
8
{SE(}S)R (QB, {Qa} {Pb}) =q2 Zz el (1—[1 ZM )
/‘L’Lhu‘j ( sz+1 ’ ij—l) 9 (3129)
1<z<]<8

with Qy,, (¢ =1,---,7) given in (3.126). Furthermore the factors Z;7{M}(QB, {Qu}, {P},
{R.}), (j = 1,2,3) are the partition functions from the diagrams in figure 46(a), 46(b)
and 46(c) with the trivalent gluing prescription implemented, and they become

Zi,?{,ul} (QB?{Qa}v{Pb}v {Rc})
8 t2 8
:q%21=1||uz” (quf(Q)> {S/ijgs)R (QB {Qa} {Pb} {R })

i—1
L s (QBQ2P1 Py R232R2) 2,07 (QBQ%PER%R%) L a6 (QBQ%R%) Zus (@B),
(3.130)

— 78 —



Z;{u } (Q37 {Qa}, {Pb}v {Rc})
8
RS NIl (ngﬁ(q)) 129 Qi (Qu} A Ph ARY)

T (QeQIPEPERIRERS) T, . (QBQIPERIRS) Ty, (iR T, L (QBQi RY)
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Z q%Zf:U(H)‘iHQ"’_H)‘m <H Z/\ Z)\t >

20,1,2,3,4,5
2
. _ [As] 1\ 1Al _1\ s
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M o (PIPRO)T, o\ (PLPaRiRs) T (QeQ1Q2P1 PR Ro Ry R3)

Li o (QBQ1Q2PAPyRi Ry Ry R RY) I, (Rs) I 5, (QQ1Q2R2 Ry Rs)
T 0, (QBQiQaRy By Ry R’ TS, (QuQYPPRIRSRS) T, (QQ1Q2RaRY)’
T, 5, (QBQiQRa RS RY) Ty, (QpQIPIPRIRSRS) T, (RY) T, . (Q1Q3°PLPyRIRY)
7§ (QIQPPPR) T, (PR, (PIRIR) T, (QBQ1QoPy Ry Ry)
), 0 (QBQIQePIR Ry RY) T\ (Ro) T, o\ (QeQiQaRo) Ty, ., (QQIPIRARS)
o (QBQIQ)’TH, L\, (QQ1QRY) T, . (QBQIPIRIR,) T, 5, (RY)
Am( W PRI T, (Q1Q: PR ) T\ (R T (Qp@iQeR) TS, (Q1)
i (@BQVTY, L, (QBQIR) T}, (@), (@), (21Q5"By) (3.131)

2y (@ AQu} {P ) {Be})
8 t)2 8 =
= Al (.H Zuz(q)> Ziny " (@5.{Qa} AP} (Re})

T s (QBQIPEPIRIRSRS) T,y (PLR) T, L, (Q1PLRIR) T, L (QQuPLRY Ry)
T (QBQIPIRIR) T, (Q@3PERIRE) T, . (Q1R1) T,y (QBQ1RY)
T (QBch?) v (QBQIRIPIR: ) T, 0 (QB) T, 4 (QBQIRY)

Lynyin QBQIPIRIR) T, (Q1R1) T, . (Q1PIR1R2) T, . (P1R2)

S gl HIN P (HZA V2 a )(ﬁ(p2R3)|Ai|>

Ae,7 1=6
PAPyP; RoRs) T, o (QeQIPPAPsRIRRS) T, (Q@3PRR})
QuQIPP,PsRIRoRs ) Ty, (PiPoPy ' RoR3) T (PLPy ' Ry)

L (P3)Zy, ., (PRI, (QpQ1P3Ry)

T3, Q@R T, . (QQIPPsRIR) T (QBQIPSRY) TS, . (QBQiPsR))
Th o\ (QPsR) T | (Ps) T (P1P3— Ry) (3.132)
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(
(QBQ%P1P3R2R2) Iy
(

A7, 17
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where we defined
Ry =Q7'Q2Ry, Ry =Q7'Q2R3 (3.133)

for simplicity of the expressions.

The partition function (3.127) may contain an extra factor and we can identify it by
parametrizing the Kéhler parameters by mass parameters. The Coulomb branch moduli
dependence comes from (3.17). On the other hand we can assign mass parameters for the
lengths between parallel external lines. The diagram in figure 46(b) contains two bunches
of parallel external lines and we parametrize the lengths by

PyP PRy = M],  QiQy*PyPiPyR; = M). (3.134)

Furthermore the diagram in figure 48 implies that the external lines attached to the top
gluing line are parallel to each other and we assign

Q3P PoPsPyRi RyR3 = M. (3.135)

In this case the parametrization for the Kéhler parameter for the elliptic class (3.18) be-
comes

Q- = (P2R3)(P1R2)*(Q1R1)*(Py)*(Q1P1)?(P2R2)*(PyR3)(Q1 Pa PRy R3)* = My My,

(3.136)
which only depends on the mass parameters as expected.
Using the parametrization the partition function of (3.127) can be written as
(1)
6d 76d ez ',(—2)
Zeg)’(_Q) = Ze<71)7(_2) ({ALAMY) Zefira — (Mg, My, M), (3.137)

(1)

where 2.7, (Mg, M1, M3) is an extra factor in (3.127) which is independent from the

extra

Coulomb branch moduli. We argue that the partition function 26(‘%)( 2 (ALY, {M]})
er (=

in (3.137) yields the partition function of the 6d Er gauge theory with three flavors and a
tensor multiplet on 72 x R* up to an extra factor.

5d Er gauge theory with 3 flavors. We can apply the 5d limit to the partition
function (3.127) to obtain a 5d partition function. The diagram after the limit is depicted
in figure 45(b) and it realizes the 5d FE; gauge theory with 3 flavors but one flavor is
massless. In terms of the Kéahler parameters, this limit can be achieved by taking Py — 0
with the other Kéahler parameters fixed. Hence applying the limit Py — 0 to the partition
function (3.127) gives rise to the partition function of the 5d E; gauge theory with three
flavors up to an extra factor.

Let us rewrite the partition function by the gauge theory parameters of the E7 gauge
theory. Since the parametrization for the fiber classes forming the FE7 Dynkin diagram is
the same, the parametrization of the Coulomb branch moduli A; =e~% (i =1,---,7) are
again given by (3.111). As with the case of the 5d E7 gauge theory with % flavors, a string
with length characterized by the Kahler parameter )1 or ()2 gives rise to a hypermultiplet
corresponding to a weight of the fundamental representation of E7. From the intersection
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number between the curves and the complex surfaces in the dual geometry, the Dynkin
labels of the weights for )1 and Q2 are

@ :[0,1,-1,1,-1,0,0], Q2 : [0,1,—-1,1,-1,0,0]. (3.138)
Hence we parametrize them by
Q1= AoAT T AATI My, Qo = As AT ALAS M. (3.139)

Finally the instanton fugacity can be determined by evaluating the effective prepotential
in this case. The middle face in the diagram for the SU(8) gauging is Fy and the volume
of the surface or the area of the face computed from the effective prepotential becomes

oOF

Sa. = (702 +2a3 — a4 — a7)(2a3 — 2a4 + mo — 3my — 3ma). (3.140)
as

Hence the parametrization for the instanton fugacity is given by
Qp = AZA* MM > M, 3. (3.141)

Then it turns out that the Kéhler paramter for the length between the horizontal parallel
external lines in figure 46(b) is M.
Applying the 5d limit Py — 0 to (3.127) with the gauge theory parametrization gives

5d __ r76d
Ze7+3F - Ze7,(—2)

Py=0
= 754 a0 ({Ap}, {(M;}) ZEE3E (Mo, My, M) . (3.142)

extra

We claim that 25’7d+3F ({Ap},{M;}) in (3.142) gives the partition function of the 5d E7
gauge theory with 3 flavors on S' x R* up to an extra factor.

Using the parametrization (3.111), (3.139) and (3.141) for the partition function (3.142),
we compare the partition function (3.142) with the perturbative part of the Nekrasov par-
tition function of the 5d E7 gauge theory with 3 flavors. For the phase which gives the
diagram in figure 45(b), the perturbative partition function is given by

Z5d pert _ A AL A AL VA4 (3143)

e7+3F cartan ““roots“flavor 1““flavor 2““flavor 3’

er
where Z.7 .1

is (3.118), Z°7

roots

is (3.119), and Zg' ., is given by (3.120) with M; being
2

M; (i =1,2). Also Zg' AY where Z is (3.121) and it is the contribution
fl 5 flavor

avor 3 %ﬂavor
from a massless hypermultiplet or two half-hypermultiplets.

It is possible to compare (3.143) with (3.142) by taking the limit My — 0 or @p — 0.
Note that the diagram in figure 45(b) is symmetric under the reflection with respect to the
horizontal axis. After taking the limit Q5 — 0, the diagram splits into the upper half part
and the lower half part and they shapes are identical to each other. Hence it is enough
to compute the upper half part which gives a half of the contribution of (3.143) except
for the Cartan part. Firstly due to the symmetry under the reflection with respect to

the horizontal axis, the upper half part contains the square root of the root contributions.
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Ze7+3F

Since ()1 is contained in the upper half part, can be reproduced from the partition

flavor 1
function of the upper half diagram. Also Ps in the upper half diagram is related to a
contribution from a half-hypermultiplet, the square root of Zﬁ;jj’r% can be also reproduced

from the partition function of the upper half diagram. Namely the partition function from
the upper half diagram should give

e7+3F _ e7 e7 e7 e7+3F
Zupper half — '/ ZrootSZﬂavor 1V Zﬂavor BZextra ’ (3144)

757438 ig a contribution from an extra factor. Since the upper half of the diagram is

where Z.15

exactly the same as the upper half diagram of the web diagram in figure 40(a), the partition
function for the upper half part computed from (3.142) in the @p — 0 limit should also
give rise to (3.122), which we checked until the order Q] Py P3PjPZRIR3R3. We can see
that (3.144) is exactly the same as (3.122) and the extra factor in (3.144) is again given
by (3.124) until the order we computed.

3.5 5d marginal pure SU(n) gauge theories with n = 3,4

The Higgsings discussed in section 2 yield another interesting class of theories which are
pure gauge theories obtained by twisted compactifications of 6d theories. Such theories
include the 5d pure SU(3) gauge theory with the CS level 9 and the 5d pure SU(4) gauge
theory with the CS level 8 [14]. The pure SU(3) gauge theory with k = 9 arises as a
low energy theory on the Higgs branch labeled by (2,2,2,2) in table 1 of the 6d theory
(D4, Dg)1 on St On the other hand the pure SU(4) gauge theory with k = 8 is realized
on the Higgs branch labeled by (3,3,3) in table 3 of 6d theory (Fg, Fg)1 on S'. In this
section we compute the partition functions of the 5d pure SU(3) gauge theory with the CS
level x = 9 and the 5d pure SU(4) gauge theory with the CS level x = 8 on S* x R%. The
web diagrams of the theories can be obtained by applying the Higgsings to the diagram in
figure 2(b) for the marginal pure SU(3) gauge theory or the diagram in figure 12(a) for the
marginal pure SU(4) gauge theory. Both of the web diagrams are depicted in figure 49.

5d pure SU(3) gauge theory with k = 9. We begin with the computation of the
partition function of the pure SU(3) gauge theory with the CS level k = 9. For applying
the topological vertex to the diagram in figure 49(a), we parametrize the lengths of the
lines in the diagram as in figure 50. The parametrization of the gluing lines is determined
by applying the tuning condition of the Higgsing to the parametrization of the gluing
lines before the Higgsing. Before the Higgsing the gluing part is locally described by the
SU(3) gauge theory with four flavors. The local structure for one of the four pieces of the
quadrivalent gauging is depicted in figure 51(a). The local diagram for the SU(3) part is
given in figure 51(b). The shape of the diagram is determined by requiring that the lower
face in figure 51(b) corresponds to Fy in the dual geometry. The Higgsing is achieved by
imposing the condition

ap =az =az =a4 = Qy,, (3.145)

and the parameters Qy,, Q, are related to the parameters in figure 50 by

Qp = P, Qp, = Ps. (3.146)
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. trivalent

: quadrivalent

oluing . gluing
(a) (b)

Figure 49. (a). The web diagram for the 5d SU(3) gauge theory with the CS level £ = 9. (b).
The web diagram for the 5d SU(4) gauge theory with the CS level k = 8.

I“Il QBP12

Figure 50. Assignment of Young diagrams and K&hler parameters for one of the four diagrams in
figure 49(a). The parametrization of the other diagrams is also the same one as this.

Then the length of the top gluing line becomes
QpaiazazasQ;’ = QpPy. (3.147)

We then apply the topological vertex to the diagram in figure 49(a) with the
parametrization in figure 50. By comparing the diagram in figure 51(a) with each of
the diagrams in figure 49(a) the 5-brane charge attached to the gluing horizontal lines does
not change after the Higgsing and hence the framing factors for the gluing lines after the
Higgsing are the same as those read off from figure 51(b). The partition function computed
by the topological vertex yields

[ SU SU
Zsua, = > (-QuPE)"" (~Qp)IHsl 20Ok (P, py) 27 (P, y)
111,142,143 (3.148)

(@) (@) () 20,5 (P, Po),
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Qpa12,3324Qr,

(a) (b)

Figure 51. (a). The local diagram for one of the four parts which form the quadrivalent SU(3)
gauging. ¢ runs from 1 to 4 representing the four parts. (b). The local diagram which describes the
SU(3)_1 gauge theory with 4 flavors.

where we defined

SU(3 Ly
Z{m(} )L(P17P2) = 2 p 1Hm\| ) (

) H I;:i,uj(in "'ij,l), (3.149)

1<i<j<3

Z{S/[i'g»?))R(PlaPQ) = % i=1 H“ || (

3
112
3

]-:-[ > H I/i_i,/ij (va T ij—1)7 (3'150)

1<i<j<3

with Qy, and Qy, given by (3.146). The factor Z{SU(}E}) (Py, P») is the partition function from

the diagram in figure 50 divided by Z {m(} )R % (Py, Py) for the quadrivalent gluing prescription
and the exponent of the factor is due to the fact that the four diagrams give identical
contributions. The explict form of Z{SE_(}S) (P, Py) is

3
S 13738 t)2 = - S
Z{/E_gg)(Plv Py) = g2 > e ]l (I_Il ZME (q)> T, MB(P2)/Z{IE(}3)R(P17 P)

S PP HNIEHNE 2y, (g)s, (—PRRag ) s, (47 )
VA

sx (Prg= P13, Py PygP7H2).
(3.151)

In terms of the gauge theory parametrization, P;, P» are related to the Coulomb branch
moduli Ay, A, A3, (A1 A3A3 = 1) of the SU(3) gauge theory,

P =AjAyY, Py= AgAt (3.152)

On the other hand @ g is proportional to the instanton fugacity My. The instanton fugacity
is the Coulomb branch independent part of (Qp. The intersection numbers between the
curve with Kéhler parameter @ p and the top surface and the bottom surface in figure 49(a)
are 4 and —2 respectively. Hence the instanton fugacity is given by

Qp = MoP; >, (3.153)
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In fact My is related to the length of the top gluing line. This is consistent with the fact
that the external lines attached to the top gluing line are parallel to each other, which can
be seen from the diagram in figure 51(b). From (2.35) the Kéhler parameter Q¢ for

511(3)(2)
the fiber fﬁu(3)(2> is
2
Qfsu@)(?) = QpP; = M. (3.154)
Hence M, is related to the mass of a fractional KK mode.
Since the partition function (3.148) may contain an extra factor, we have
_ 7 SU(3)e
Z3U(3)e = 28U (3)s (A1, A2, A3, Mo) Zeyirs” (Mo), (3.155)

and we argue that ZSU(3)9 (A1, Ag, Az, Mp) is the partition function of the 5d pure SU(3)
gauge theory with the CS level K =9 on S' x R4 up to an extra factor.

The perturbative part of the partition function (3.148) is obtained by taking the
limit @Qp — 0. Then the quadrivalent gluing is cut off since nonzero contribution comes
from |u;| = @ for i = 1,--- ;4. The perturbative contribution can come from the part
ZEE(}B)L(PLPQ)Z{SIE(}?’)R(PLPQ) in (3.148) and then the contribution from (3.151) should
be one. Indeed we checked that (3.151) is trivial for |u;| = @, (i = 1,--- ,4) until the order
PYP).

We can also compute the one-instanton part and the Plethystic exponential of the
one-instanton part until the order P{P§ becomes

ZSU(3)9(A1,A27M0) _PE [QQBq
Z3u(3) (A1, A2,0) (1-q)?

+5P1P22+6P12P22+6P13P22+4P23+7P1P23+9P12P23’+10P13P§’ﬂ :

(1+P1 + P} 4+2Py 43P, Py+3P} Py +3P} P, +3P}

(3.156)

The partition function (3.156) perfectly agrees with the results in [43, 44, 50] which were
computed in different methods. We also have the extra factor and it is given by

q
(1-4¢)?

until the orders we computed. Since Qg P} is the Kihler parameter for the top gluing line,

75UB)o

extra (Mo) = PE 8QBP12 ) (3.157)

the extra factor is associated to the parallel external lines which can be explicitly seen from
the diagram in figure 51(b).

SU(4) with k = 8. Next we compute the partition function of the 5d pure SU(4) gauge
theory with the CS level x = 8 on S' x R*. We parametrize the lengths of the diagram in
figure 49(b) as in figure 52. The length of the gluing line is again determined by following
the Higgsing procedure. Before the Higgsing the gluing part is locally described by the
SU(4) gauge theory with six flavors. The local diagram for one of the three diagrams for
the trivalent SU(4) gauging is depicted in figure 53(a). Then gluing three copies of the
diagram in figure 53(a) yields the diagram in figure 53(b). The CS level of the SU(4) gauge

— 85 —



M1 QgP;P5?

Py

P>

i < — ~<—

P3

\

Figure 52. Assignment of Young diagrams and Kéhler parameters for one of the three diagrams
in figure 49(b). The parametrization of the other diagrams is also the same one as this.

Qgb;b,b3Qr,"a12,a5Q¢

& Ry B Qeb1b205Qn /3, ...
b, J— Q, b E
AN PN % 2
_Y------------"l----"t' Qf3 ............................ ’ Qf3
Qs
(a) (b)

Figure 53. (a). The local diagram for one of the tree parts which form the trivalent SU(4) gauging.
¢ runs from 1 to 3 representing the three parts. (b). The local diagram which describes the SU(4)_4
gauge theory with 6 flavors.

theory is fixed by requiring that the bottom surface in figure 53(b) corresponds to Fy in
the dual geometry. Then the (3,3,3) Higgsing is realized by imposing the condition

CL1:CL2:CL3:Qf1, blzbgzbngf2, (3158)
and the parameters Qy,,Qy,, @y, are related to the parameters in figure 52 by

Qp = P, Qp, = P, Qp, = Ps. (3.159)

Then the length of the gluing lines after the tuning becomes

QBbibabsQ7 a1a2a3Q;7 = QP P3, (3.160)
QBb1bzb3Q]721 =QpPj. (3.161)
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We then apply the topological vertex to the diagram in figure 49(b) with the
parametrization in figure 52. Again the framing factors for the gluing lines do not change
by the Higgsing and we read off the framing factors for the gluing lines from the diagram
in figure 53. The partition function computed by the topological vertex gives

Zsuie = 3 (~QuPiPE) "™ (—QuP2) "™ (~Qu)slt il 28V ((p,}) 25V ()
{mi}

L (@ Fus (@ F (@ 2,8 (P, Py, Py, (3.162)

where we defined

4
S 1\ 112 = _
z{;g‘*)L(Pl,PQ,Pg):qz(E1”“@">(I[12m<q>> Il Zu,, @@y ) (3.163)

1<i<j<4

1 4 112 4 ~
Z{S g) (Py, Py, P3) = q§(2i:1 [1411%) (H Z}ﬂq)) H I;i’uj(in - Qy,_),  (3.164)
i=1

1<i<j<4

with Qf,, Qf,, Qf, given by (3.159). The factor Z?Z§4)(P1, Py, P3) is the contribution from

the diagram in figure 52 with the trivalent gluing prescription implemented and the explicit
expression is

4
SU 154 ¢)2 ~ -
Z{ui§4)(P1,P2,P3) — g2 D ima el (l | Zyﬁ(Q)> ;.. M4(P4)/Z{u} R(Py, Py, Py)

=1
2
Z q||Vf\|2—|\V1||2+%HV§H2—%||V2H2—Z (SN =1 1Nal1?) H
V1,02,A1,A2 i=1
A A\t A )\t
Sy (P?PZZP?)Q r ”1) Suy (q r Al) Svy (_PZPSQ r M) Sua/n (q P )\2)
5\ /n (q_p_&) Sxg (Pag P74, PyPyq P7H3) (Pl)‘)‘1| . (3.165)

Let us rewrite the Kéhler parameters by the gauge theory parameters of the pure
SU(4) gauge theory. Py, Py, P3 are related to the Coulomb branch moduli Ay, Ay, A3, Ay,
(A1A2A3A4 == 1) by

= A1ASY Py = AyA3Y, Py = AzA;L (3.166)

() p is proportional to the instanton fugacity My and My is the Coulomb branch independent
part of @p. Since the intersection numbers between the curve with the Kéhler parameter
and the top, middle bottom surface in figure 49(b) are 0, 3, —2 respectively, we identify the
instanton fugacity as

Qp = MyP; ' Py (3.167)

Again M is related to the length of the top gluing line, which is consistent with the fact
that the external lines attached to the top gluing line are parallel to each other as can be
seen from the diagram in figure 53(b). From (2.57) the Ké&hler parameter Qf50(8)<3) for the
fiber f 8)(3) is

Qf

50(8

= QpP;P1 = M. (3.168)

Hence My is also related to the mass of a fractional KK mode.
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The partition function (3.148) may contain an extra factor and hence it can be written
as
Zsu(a)s = Zsu(4)s (A1, Az, Az, Ay, Mo)Z, Zows (M), (3.169)

and we argue that ZSU(4)8 (A1, Ag, As, Ay, M) is the partition function of the 5d pure SU(4)
gauge theory with the CS level K = 8 on S' x R4 up to an extra factor.

Then the perturbative part of the partition function (3.162) is given in the limit
®p — 0. In this case, the perturbative part of the pure SU(4) gauge theory with k = 8 can
be obtained from the ZSU 4z ({Fa}) Zy SU(4)R ({P,}). Then the contribution from (3.165)
needs to be one. We checked that (3. 165) with u; = @, (i = 1,2,3,4) becomes indeed
trivial until the order P} Py P5.

It is also possible to compute the one-instanton part and the Plethystic exponential of
the one-instanton part until the order PZP§P? becomes

Zsu(ays (A1, Ao, Az, Ay, Mp)
Zsu(ays (A1, Az, Az, A4,0)
2QBq
(1-q)*
+3P12P22P3+3P32+5P2P32+5P1P2P32+6P22P32+8P1P22P32+6P12P22P32ﬂ. (3.170)

=PE <1+P2+P1P2—|—P2 +P1 PQ +2P3+3P2P3—|—3P1P2P3+3P2 P3—|—4P1P2 P3

The partition function (3.170) perfectly agrees with the result obtained by a blow up
method in the unrefined limit computed in [50]. The partition function has an extra factor
and it is given by
Z99 WS (Mp) = PE | ~——9Qp P, P, ] (3.171)
extra 0 (1 — ) 2
until the orders we computed. Since QpP; P? is the Kihler parameter for the top gluing
line, the extra factor is associated to the parallel external lines in figure 53(b).

4 Conclusion

In this paper we constructed web diagrams using the trivalent or the quadrivalent gluing
for various 6d/5d theories. The theories were obtained from certain Higgsings of the 6d
conformal matter theories of type (G, G) with G = Dy, Eg, E7 on S'. The theories include
gauge theories with exceptional gauge groups, in particular the 6d G5 gauge theory with
4 flavors, 6d Fy gauge theories with 3 flavors, 6d Fg gauge theories with 4 flavors and also
6d E7 gauge theory with 3 flavors, each of which has contain a single tensor multiplet. By
taking the 5d limit, we also obtained web diagrams for the 5d version of the theories. From
Higgsings of (G, G)1 on S' with G = Dy, Eg, E; we could construct web diagrams for the
5d SU(3) gauge theory with the CS level 9, 5d SU(4) gauge theory with the CS level 8
and the 6d E; gauge theory with % flavors and a tensor multiplet. Since the web diagrams
are realized by the trivalent or the quadrivalent gluing we could apply the topological
vertex formalism to the web diagram and computed the Nekrasov partition functions of
the aforementioned theories. We also took the 5d limit of the 6d gauge theories with
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exceptional gauge groups and performed the consistency checks by seeing if the topological
vertex computations correctly reproduce the perturbative part of the partition functions.
We indeed found perfect matchings with the known perturbative contributions until the
orders we computed. For the partition functions of the marginal pure SU(3) and SU(4)
gauge theories we checked that the instanton parts also agree with the results which were
recently obtained in other methods in [43, 44, 50].

In general 5d gauge theories can possess the limited number of flavors for having a UV
completion. The upper bound of the number of flavors for having a 5d UV completion has
been obtained in [14, 28] and the numbers are 5 for Gg, 3 for Fy, 4 for Eg, and 3 for Er.
In this paper we constructed web diagrams for 5d G5 gauge theory with 4 flavors, 5d F}
gauge theory with 3 flavors, 5d Fg gauge theory with 4 flavors and 5d FE; gauge theory
with 3 flavors (with one mass parameter turned off). Furthermore, a 5-brane web for the
5d G2 gauge theory with 5 flavors has been constructed in [49]. For an Eg gauge theory
we cannot have a fundamental flavor and a web diagram for the pure Fg gauge theory has
been obtained in [45]. Hence we now have a web diagram description for all the gauge
theories with a single exceptional gauge group Gs, Fy, Eg, E7 or Eg and the maximal
number of flavors for having a 5d UV completion. We can also compute the Nekrasov
partition function of all of the theories using the topological vertex. Note that the web
diagram we constructed for the 5d E7 gauge theory with 3 flavors can incorporate only two
mass parameters for the three flavors. It would be interesting to construct a web diagram
for the 5d E7 gauge theory with three flavors with all the mass parameters turned on.

As for the computations of the Nekrasov partition functions we have used the unrefined
topological vertex. The application of the refined topological vertex to web diagrams with
trivalent gluing has been already presented in [45]. It would be interesting to extend
the computations to the one for computing the refined Nekrasov partition functions by
utilizing the method. Also our checks for the obtained partition functions of the gauge
theories with an exceptional gauge group have focused on the perturbative part of the
5d partition functions. It would be also interesting to check the instanton part of the 5d
partition functions or the 6d partition functions themselves by comparing our result with
the results computed in other methods [50, 75-85].
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Figure 54. (a): The web diagram for the theory (A.1) or (A.2). (b): The web diagram for the
theory (A.3).

A Brane webs and Higgs branches of (Eg, Eg) conformal matter on
a circle

In section 2, we have considered theories obtained by applying certain Higgsings to the
theories (Dy, Dy4)2, (Fg,FEg)2 and (E7, E7) on S'. We focused on such examples since
the Higgsings yield gauge theories with a single exceptional gauge group and matter whose
partition functions we have computed in section 3. For completeness, we consider Higgsings
of the theory (Fs, Es); on S! in this appendix.

The minimal (Eg, Fg) conformal matter theory on a circle is given by

pO® s w@® g OO f) OO g w@® @O sp0)®
1.— 2 — 2 —-3-—1 —-5—-—1 —3- 2 — 2 — 1

4] gl

The theory has a 5d gauge theory description and it is given by the following affine Ejg

(A1)

Dynkin quiver theory
SU(3)o

SU(1) — SU(2) — SU(3)o — SU(4)o — SU(5)o — SU(6)o — SU(4)o — SU2)o.  (A.2)

From the gauge theory description (A.2), it is possible to write down a web diagram of the
theory using the trivalent gluing and the web diagram is depicted in figure 54(a). When
we gauge one of the Eg flavor symmetry of the minimal (FEs, Eg) conformal matter theory,
the resulting theory which we denote by (Eg, Eg) on a circle becomes

0@ D@ su@® g’ pO® 17 @@ o) su@® su(n)®  sp0)® el
1 9 —3_- 1 1 9 9 1

[eg)} —12, (A.3)

and its web diagram realization is given in figure 54(b).
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We study Higgsings of the theory (A.3) in this appendix. We focus on Higgsings
which can be realized from the web diagram in figure 54(b). From the web diagram we
can explicitly see an SU(6) x SU(3) x SU(2) flavor symmetry from the parallel external
lines going in the upper direction. Hence we consider Higgsings which break a part of the
SU(6) x SU(3) x SU(2) flavor symmetry. Such Higgsings can be labeled by (a1, a2, az) where
a1, az,as are associated to a breaking of SU(6), SU(3), SU(2) respectively. As before, a; =
(n1,ne, - --) implies a Higgsing which breaks SU(n1)xSU(ng)x- - in SU(6)xSU(3) xSU(2).
It is possible to obtain a weighted Dynkin diagram of the eg algebra from the Higgsing label
(a1,a2,a3). Then from the relation between a weighted Dynkin diagram and a B-C label,
we can utilize the result of [47] to read off the resulting theory after the Higgsing as we
have done in section 2.2, 2.3 and 2.4. The end result is summarized in table 7.

The Higgsings of the theory (Eg, Eg) on a circle in table 7 exhibits new cases. For
example let us consider the Higgsing (6,0,2). The Higgsing (6,0, 2) of the theory (Eg, Eg)
without a circle compactification gives rise to

su(2)  su(l)  sp(0) eg
2 - 2 — 1 — 10 . (A.4)
[92] [ninst=2]

The theory (A.4) includes a node with the eg gauge algebra on a (—10)-curve and iy = 2
is the number of small instantons. In general the number of small instantons for a node
with the eg algebra is given by
e
n ) A5
[ninst=12—n] ( )
for 1 < n < 12. We can move into a tensor branch of the theory and then nj,s E-string
theories are attached to the eg node. For example, on a tensor branch of the theory (A.4)

we have
su(2)  su(l)  sp(0) e sp(0)
9 — 2 — 1 —12 — 1. (A.6)
[92] |
sp(0)
1
A circle compactification of the theory (A.6) gives
u@® O O ) s
7 — 2 — 1 - 12 — 1 | (A7)

[951)} 5p(0‘)(1)
1

which has 14846 = 15 Coulomb branch moduli and 241 = 3 mass parameters in 5d. On
the other hand the web diagram after applying the Higgsing (6,0,2) gives a theory with
14 Coulomb branch moduli and 3 mass parameters. Note that the theory (A.6) has a Z
symmetry which exchanges two E-string theories which are only attached to the (—12)-
curve. Hence it is possible to consider a circle compactification of (A.6) with the Zs twist,
which gives

a@®  w@®® 0@ ) spO)®
g — 2 — 1 —123%771 . (A.8)
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B-C Label twist Higgsing
Theory
0 1 (0,0,0)
0@ su()®  su@® gl @@ fY sp@)® g8 @@ s sp)® el
1 -2 - 2 -3- 1 -5-1 -3- 2 - 2 - 1 =12
]
8
Ay 1 (2,0,0),(0,2,0),(0,0,2)
O su@® g8 @@ 1Y @@ o) aw@® ()@ sp0)® e
1 - 2 -3- 1 -5- 1 -3- 2 - 2 - 1 =12
]
244 1 (2,2,0),(2,0,2),(0,2,2),((2,2),0,0)
P SO Lo BT ISP (1) (SO ) P (1) (SR S0 ) (OO BTG D (CO NP (1) (OB
1 —3-"1 —-5—- 1 —3_- 9 — 2 — 1 —12
[s0(13)(D]
3A; 1 (2,2,2),((2,2),2,0),((2,2),0,2),((2,2,2),0,0)
O g p@® 1Y s0® 6 su@®  su()®  sp)® el
1 — — 1] —5—-"1 —3—- 92 — 92 _— 1 —12
(0] )]
Ay 1 (3,0,0), (0,3,0)
O @D 0@ 1Y sp@®  g)) @@ su(n)®  spo)® el
1 - 3 - 1 -5- 1 -3 - 2 - — 1 =12
)
As 7o ((2,2,2),0,2)
0D @)@ 0@ 1Y sp@® g u@®  awn)®  spo)® el
1 — 3 — 1 —5—-"1 —3— 9 — 9 — 1 —12
]
6
44, 1 ((2,2),2,2),((2,2,2),2,0)
o) p@® 1Y sp@® g @@ su()®  sp0)® el
2 -1 -5 -1 —-—-3- 2 - 2 - 1 =12
[sp(4) (D]
Ag+ Ay 1 (3,2,0),(3,0,2),(2,3,0),(0,3,2),((3,2),0,0)

continued on the next page ...
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. continued from the previous page

B-C Label ‘twist‘ Higgsing
su@ @ sp® 1Y @™ gl @)@ su(n)®  sp)® el
29 — 1 —5—-"1 —3—- 92 — 93 — 1 —12
[su(6)(M)]
A2+A1 ZQ ((2,2,2),2,2)
a@®@ @ 1 0@ o) su@®  su(n)®  sp)® el
9 — 1 —5—-"1 —3—- 92 — 9 — 1 —19
[su(6)>]
Ay +2A, 1 (3,2,2),((3,2),2,0),((3,2),0,2)
@@ @ 1Y @ ol su@® s sp0)® el
9 — 1 —5—-"1 —3_— 9 — 9 — "1 —12
[50(7)(1)] [511(2)(1)]
AS 1 (470’0)
(D 50D sp0)® g5 @@ s sp0)® el
1 — 4 -1 -3~ — 2 -1 —12
[50(11)(1>]
As+34A, 1 ((372)a272)
)@ sp@@ 1Y @™ gl @)@ su(n)®  sp)® el
[2(][1} ~ 1 —3- 92 — 3 -1 —19
su(2)(M) o
2
24, 1 (3,3,0)
0@ i @ o) @® sy sp0)» el
1 — 5 — 1 —3_-"92 — 9 — 1 —12
[gu)] |
2 sp(0)™)
1
]
24, Zo ((3,3),0,0)
$O® 4 1 @@ g sw@® )@ spO)® e
1 &5-"1 —3—- 92 — 9 — 1 —12
o]
2
249+ Ay 1 (3,3,2),((3,3),2,0),((3,3),0,2),((3,2),3,0)
(D

$O® PP s@® g a@® su)® sp(0)) e
1 - 4 - 1 -3 - 2 - 2 - 1 =12

0] 0]

continued on the next page ...
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. continued from the previous page

B-C Label | twist Higgsing

Az + A 1 (4,2,0),(4,0,2),((4,2),0,0)
$O)D 50D 0D g su@®  su(n)®  sp)® el
- 4 - 1 -3- 2 - 2 - 1 =12
50 su
o] [su)®)]
242 +24A, 1 ((3,3),2,2),((3,2),3,2)
D a0® o) w@® a)®  sp)® el
3 - 1 -3 - 2 - 2 - 1 =12
[sp(2) V]
Dy(ar) Zy ((4,2),0,2)
(0D 50®)@ 0D g (@@ su()®  sp)® el
1 — 4 — 1 —3—- 9 — 2 — "1 —12
[50(8)(2>]
D4(CL1) Z3 ((373)7370)
0D 50®)@ 0D g @@ su()®  sp)® el
1 — 4 — 1 —3_— 9 — 2 — "1 —192
[s0(8)®)]
A3+24, 1 (4,2,2),((4,2),2,0)
s0(9)() $O® g @ su()®  spO)® e
3 — -3 - 2 - 2 - 1 =12
[sp(2)Dsu(2) ]
Dy(a1)+A4A1 | 2 ((4,2),2,2)
s0(8)(2 0D g5 wu@®  su()®  spO)® e
3 - 1 -3 - 2 - 2 - 1 =12
[su(2)) @su(2)D)]
D4(a1)+A1 Z3 ((373)7372)
)@ 0@ g w@®  su)®  ap0)® el
3 — 1 —3— 9 — 2 — 1 —19
[su(2)(1)]
Az+ As 1 (4,3,0)
so(M® @@ g su@® () sp)® el
1 -3 - 2 - 2 - 1 =12

3 e
[5p(2)(1)] [50(2)(1)]

Ay 1 (5,0,0)

continued on the next page ...
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. continued from the previous page

B-C Label ‘twist‘ Higgsing
@@ 3D @) su()®  sp0)® eV
2 - 2 - 2 - 2 - 1 -
[su(5)™)]
Az +Ag+ A 1 (4,3,2),((4,2),3,0)
o) pO® g a@®  su()®  spO)® e
3 — 1 -3- 2 - 2 - 1 =12
[5p(1)(1)] [5u(2)(1)]
D4(G1)+A2 Z2 ((472)7372)
)@ O® gt w@®  su()® )@ e
3 - 1 -3 - 2 - -1 =12
[su(3)(2)]
A4+A1 1 (532a0)7(57032)
su(3)D 3D @)D su(1)D sp(0)D egl)
- 2 - 2 - 2 -1 =12
[5u(3)(1)] [Nle]
flavor:  su(3)M @u(1)M
A4+2A1 1 (572’2)
u@2)® a3 su@)® su()® spo)®
2 - 2 - 2 - 2 - 1 =12
Ny=1] ]
flavor:  su(2)M @u(1)M
A4+A2 1 (573’0)
2@ su@)® @)D sy(1)D  sp)® el
2 - 2 - 2 - 2 - 1 =12
[Np=2] [Np=1]
flavor:  su(2)M @su(2)M
Aj+As+ Ay | 1 (5,3,2)
su(1)®D su@)® @)D sy(1)D  sp@) D el
2 - 2 - 2 - 2 - 1 -12
[Np=1] [N;=1]
flavor:  su(2)(M
AS 1 (670’0)

continued on the next page ...
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. continued from the previous page

B-C Label ‘twist‘ Higgsing
su@® s ® @D ) s (O
2 — 2 — 1 —12- — 2
Y [su(2)V]

Eg(as3) Zy (6,0,2)

wa@® D sp@® ) sp(0)®
2 - 2 - 1 —-12= 1

]

As+ A 1 (67270)

a®®  sum® )™ el spO)®  sum)®
2 — 2 — 1 —1l2— 1 -

[5u(2)(1)] [5u(2)(1)]

E@(a3)+A1 Zo (6,2,2)

a®® s sp@® e sp(0)®)
2 - 2 - 1 —-125 1
[su(2) W]

Er(as) Z3 (6,3,0)

a®®  sp)D ) o sp(0)D
2 — 1 —123% 1
[su(2)M)]

ES(‘W) Zg (67 3, 2)

(0D, e o sp(O)®
1 &~12>5 1

Table 7. Higgsings labeled by (a1, a9, a3) for the theory (A.3).

The theory has 14 Coulomb branch moduli and 3 mass parameters and the numbers agree
with those from the Higgsed web diagram. Therefore we argue that the (6,0,2) Higgsing
of the theory (Es, Eg) on S! gives rise to (A.8). The theories after the Higgsings of (6,2, 2)
and (6, 3,0) can be determined in a similar way.
In the case of the (6, 3,2) Higgsing the 6d Higgsings gives rise to
7. (A.9)
[ninstzs]
On a tensor branch of the theory (A.9) five E-strings theories are attached to a (—12)-curve
with the eg gauge algebra. Then there are several possible twists which exchange some of
the E-strings. Since the (6, 3,0) Higgsing gives the Z3 twist and the (6,0, 2) Higgsing gives
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: trivalent :

E gluing =

Figure 55. The web diagram of the theory obtained after the Higgsing (6, 3, 2).

the Z, twist we expect that the (6, 3,2) yields the combination of the twists which becomes
Zs. Hence we propose that the theory after the (6, 3,2) Higgsing gives
1 (1) 1
QY 2 Gy 5 QY (A.10)
We can give support for the proposal (A.10) by examining the web diagram of the
Higgsed theory. The web diagram after applying the Higgsing (6, 3, 2) to the theory (Es, Eg)
on S! is drawn in figure 55. In order to see if the E-strings are connected to the (—12)-
curve as in (A.10), let us consider how the fiber (2.23) on each base curve are related to
each other. In the web diagram in figure 55, we have 10 faces for the 10 Coulomb branch
moduli. Among the 10 faces one in the upper-right diagram and another one in the lower-
right diagram in figure 55 are the two faces for the two E-string theories. We first focus on
the E-string whose face is in the lower-right diagram in figure 55. By performing some flop
transitions, it is possible to extract the web diagram for the E-string and the web diagram
is depicted in figure 56. The web diagram corresponds to a dPg surface and the torus fiber
of the surface is given by

9
fsp(o)gn =3l - Z x;. (A.11)
" i=1

The nine (—2)-curves written next to the double arrows in figure 56 are related to fibers
which form the affine Eg Dynkin diagram and the fiber (2.23) for the eél) algebra is given by

feél) = -2 —x3—x4) + 2(x4 — x5) + 3(x3 — 24) + 4(27 — T3)

+5(l —x1 — o — xg) + 6(w6 — x7) + 4(x7 — 23) + 2(x3 — T9) + 3(x2 — Tp) (

:2<gz_i§;xi).

A.12)
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X4‘X5 y

— |-X =X3=X

X3-X4 t \ 1 A3 24
X1_X3‘ / I-x
-X4

I_XI_XZ_XG‘

X2
X8'X9 <
— ||

X7-X8 XG_X7 XZ_XG

Figure 56. The web diagram of dPg which corresponds to the E-string whose compact surface is
contained in the lower-right diagram in figure 55. [ is the hyperplane class of P2 and x; (i = 1,--- ,9)
are the exceptional curve classes. A curve class next to a double arrow implies that the length of
the double arrow is related to the volume of the curve class.

X|4-X'7 XI _XI
1 4
I'-x";-X'3-X'4 X'y
X'
1 1 ! 2
X'3-X'g X3
A —

XI _XI T !
8 9 X'5-X|8 |'-X'2-X'3-X'5 X 2 X 6

Figure 57. The web diagram of dPg which corresponds to the E-string whose compact surface is
contained in the upper-right diagram in figure 55. The notation for the curve classes is the same
as the one in figure 56. The curve classes here are represented with a prime mark.

Hence we have the relation

2f5p(0)l(i) ~ feén. (A.13)

We then consider the E-string whose face is included in the upper-right diagram in
figure 55. The web diagram for the E-string theory extracted from the diagram in figure 55
is drawn in figure 57. The torus fiber class of this dPg is again given by

9
Fopoy ) = 3= . (A.14)
=1

On the other hand, the nine (—2)-curves written next to the double arrows in figure 57
are fibers which form the affine Eg Dynkin diagram of the egl). The fiber (2.23) of the eél)
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gauge algebra then becomes
oo = (' =@y — @ — 26) + 2wy — 2) + 3(a) — 27) + 4" — 2} — w3 — 7)

+5(2g — 25) + 6(a5 — 25) +4(0 — 2y — 2h — @) + 2(z) — ) + 3(ag — )

. (A.15)
=3 (31’ - Zx;> :
i=1
Therefore we obtain
3f5p(0)1<‘1r) ~ feél). (A.16)
From (A.13) and (A.16), the fiber (2.23) on each base curve is glued by
2o ~ e ~ 30 (A-17)

The relation is (A.17) is completely consistent with the gluing rule (2.24) for the the-
ory (A.10). The E-string with the fiber fsp(())(1> is identified with the E-string on the left
Ir
in (A.10) and the E-string with the fiber fﬁp(o)(l) is identified with the E-string on the right
in (A.10). These identifications are indeed expected. The (6, 3,0) Higgsing yields the theory
@ spO® e o sp0)D)
R - (A.18)
[su(2)™)]
and the rightmost E-string in (A.18) comes from the upper-right diagram in figure 54(b).
The (6,0, 2) Higgsing gives

a@® )@ 50D ) sp)®

g - 3 - 1 —I23%771 | (A.19)
£y

2

and the rightmost E-string in (A.19) comes from the lower-right diagram in figure 54(b).
These are the identifications which follows from (A.17).

We can also consider Higgsings of the theory (Eg, Eg)s on a circle. When we focus on
Higgsings of the flavor symmetry [SU(6) x SU(3) x SU(2)]* which can be explicitly seen from
the web diagram for (Eg, Fg)s on S', the Higgsings can be labeled by [(a1,a2,a3), (b1,ba,b3)]
where (a1,a2,a3) is associated to the Higgsings of one SU(6) x SU(3) x SU(2) and (b1,b2,b3)
is associated to the Higgsings of the other SU(6)xSU(3)xSU(2). Note that the Higgsing
(a1,a2,a3) of (Es,FEs), which is summarized in table 7, does not Higgs the eg algebra.
Hence the theory after applying the Higgsing [(a1,a2,a3), (b1,b2,bs)] to the theory (Es, Eg)2
on a circle can be obtained by combining the result in table 7. Namely if the Higgsing
[(a1,a2,a3)] of (Es,Es) on St gives

(1)
‘s
g — iy — (12 = nq), (A.20)
and the Higgsing [(by, b2, b3)] of (Es, Eg) on S* gives

(1)
4
g3 g2 8

ez —mg — (12 —my), (A.21)
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then the theory after applying the Higgsing [(a1, a2, a3), (b1, b2, b3)] to the theory (Eg, Eg)o
on a circle becomes

2(1) eéD ’ /
|: %%—7%3—(12—”1) + (12—m1)—7$7?2—7%3---
(1) , ,
B (12— — ) — 1 — (A.22)

When 12 — n; — my < 12, then the node with eél) is associated with nq + mjp small
(1)

instantons. On a tensor branch E-string theories are attached to the ey’ node and how
they are attached also follows from the corresponding Higgsings in table 7.

B Topological vertex formalism

In this appendix, we review some formulae of topological vertex which we have used for
computing the partition functions of some 6d or 5d theories in section 3.

B.1 Topological vertex

Given a 5-brane web diagram which is dual to a toric Calabi-Yau threefold, it is possible to
compute the Nekrasov partition function of a 5d theory realized on the web diagram using
the topological vertex [6-11]. For that, we decompose a 5-brane diagram into vertices with
three lines. A Young diagram is assigned to each line and we assign a function called the
topological vertex to each vertex of a web by

I

) — et 12+l P+l ~ v _ut_
v C/\/JJ/ =4q - ZH ZV(q) Zn SAt/n(q p )su/n(q p)7
A (B.1)
where
AP = Z)\Q for A= (A1, Aa,---), (B.2)
- . - -1
Zg)= T (1—gttatist) (B.3)
(i,5)€v
and we also defined
L(iyj) =vi—Jd, (i g) =vi—i. (B.4)

sx/n() is the skew Schur function. When the argument of a skew Schur function is ¢~*~",
it is defined as

—p— 1_ 3_ L_ L+l
Sa/m(a" V):S)\/TI(qQ VI g2V2 .. g2 VE g2 ’...)7 (B.5)
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for v = (v1,v9,- -+ ,vr). When the direction of an arrow of (B.1) is the opposite then the
corresponding Young diagram is transposed. For external lines we assign empty Young
diagrams. When we glue two vertices along a line with and a Young diagram v,

¢ .
v
“ (B.6)
we sum over the Young diagram v with a weight,
(—e O£, (g)etonen), (B.7)
where ) ,
B | L2 =1l
fulg) = (=D)%q > (B-8)

v1,v9 are (p, q)-charges for the 5-branes next to vy, vs in (B.6) and ¢ is the length of the
glued line. The topological string partition function is obtained by summing over all the
Young diagrams for the product of the topological vertices assigned to each vertex and the
framing factors together with the Kéhler parameters assigned to each internal line.

When a 5-brane web diagram contains parallel external lines then we need to further
subtract some factors from the topological string partition function computed for obtaining
the Nekrasov partition function for the 5d theory realized on the 5-brane web. When a
part of the 5-brane is given by (B.6) where the vertical parallel lines are external lines,
then the extra factor associated to the parallel external legs is given by

e e Q
;s (1-Qam) " =re |2, (B:9)

where PE(f(x1,x2,---)) stands for the Plethystic exponential,

PE(z) = Ext (i JWM) . (B.10)

n=1 n

Let the topological string partition function be Zi,, obtained by applying the topological
vertex to a diagram and let the product of all the extra factors be Zqxira, then the Nekrasov

partition function is given by
Ztop

Zextra'
Note that the Nekrasov partition function computed by the topological vertex does not

INek = (B.11)

contain the perturbative contribution of vector multiplets in the Cartan subalgebra. Such
a factor has a universal form given by

(B.12)

ZCartan =PE |:rank(G()q:| ;

(1—-4q)?
where rank(G) is the dimension of the Coulomb branch moduli space. The Nekrasov
partition function is then given by the product of (B.11) and (B.12).
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[0] P o

(a) (b)

Figure 58. (a): A part of a non-toric web diagram. (b): The diagram which we used for applying
the topological vertex to the diagram in figure 58(a).

)
s ] > :
‘ ; :
k ¢ M H

; N N ;
* 0’

.

N

-
‘e
-

03 *
Canas®

Figure 59. The diagram of the usual SU(NV) gauging.

In fact it is also possible to apply the topological vertex to certain non-toric Calabi-Yau
threefolds [38-41]. Consider a diagram in figure 58(a) where the three horizontal lines are
at the same height and all of them are external lines. When we introduce 7-branes at each
end of 5-branes, the three horizontal 5-branes are put on a single 7-brane. In this case
some of the horizontal 5-branes jump over other 5-branes so that the configuration satisfies
the s-rule. For applying the topological vertex to the diagram in figure 58(a), it turns out
that we can use the diagram in figure 58(b) where empty Young diagrams are assigned to
the horizontal lines. Similarly when several (p, q) 5-branes are put on a single 7-brane, we
can use the same trick by assigning empty Young diagrams on each of the (p,q) 5-brane.

B.2 Trivalent gluing prescription

The topological vertex formalism has been further extended in [45] to diagrams which
consists of a trivalent or quadrivalent gluing of web diagrams. For connecting two 5-brane
webs as in figure 59, we can simply sum over the Young diagrams assigned to the gluing
lines. In terms of the gauge theory description the gluing N parallel lines means SU(N)
gauging. It is in fact possible to extend the SU(V) gauging for the gluing of three diagrams
or four diagrams. We will call the gluing of three diagrams as trivalent gluing/gauging and
also we call the gluing of four diagrams as quadrivalent gluing/gauging. Such gluing may
be schematically drawn as figure 60(a) for the trivalent gauging and figure 60(b) for the
quadrivalent gauging. In this case simply summing over all the Young diagrams overcount
the Gopakumar-Vafa invariants of the corresponding topological string partition function.
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Figure 60. (a): A schematic drawing of the SU(N) trivalent gauging. (b): A schematic drawing
of the SU(N) quadrivalent gauging.

p

L . "
W s 0 u
Wi :
:. () a # N
_uN__, M3 ¢ Q,

M
H V;'\;—
(a) (b)

Figure 61. (a): The way of computing the contribution of each piece which we glue. (b): Another
strip diagram. Combining this diagram with the diagram drawn in the denominator in figure 61(a)
yields a diagram for a pure SU(N) gauge theory.

For computing the partition function of a theory realized on a diagram with trivalent
gluing or quadrivalent gluing, we can do in the following way. For each diagram which
we will glue, we divide the partition function computed by the topological vertex by the
contribution of a strip diagram with the same Young diagrams assigned to gluing legs
as in figure 61(a). We also use the same K&hler parameters for the lengths between the
gluing lines. The contribution of the strip diagram is roughly a half of the pure SU(NV)
Nekrasov partition function. Let Z;‘?{ij} ({pj} ={m,p2, - ,un}) for i = 1,2,3 be the
partition function computed by applying the topological vertex to each of the diagrams in
figure 60(a). Let ngj(}N)’R

in the denominator in figure 61(a) and we also denote the partition function of another

strip diagram in figure 61(b) by Z{SE(}N)’L. Then the partition function of the diagram in
J

be the partition function of the strip diagram which is written
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figure 60(a) is written as'®

N 3 Z)%P
_ n SU(N),L ,SU(N),R Ry
Ztrivalent — Z (H (_Pk)mkl fp,: (Q)> Z{Nj} Z{“j} H SU(N]),R' (B'l?’)
K142, 0N k=1 =1 Z{lu‘]}

Py, is the Kéhler parameter for the gluing line with the Young diagram puj. The power ng
of the framing factor can be determined from the local structure of the gluing. Namely it
is possible to locally write down a web diagram around the part of the trivalent SU(NV)
gauging and the power of the framing factor is determined by the usual way reviewed in
appendix B.1. Similarly for the diagram with the quadrivalent gauging, let zve {u } 1=
1,2, 3,4 be the partition function computed by applying the topological vertex to each of
the four diagrams in figure 60(b). Then the partition function of the diagram in figure 60(b)
is given by

4 Zp
|| SU(N),L ,SU(N),R i{ni}
—Pe)" S )> Z{uj} Z{uj} H L 75 (NJ),R' (B.14)
=1}

||:]2

Z quadrivalent = Z (
N

1,2,

Py is the Kéhler parameter for the gluing line and the power ny of the framing factor can
be determined in the same way.
B.3 Nekrasov partition function

We close this appendix by remarking the Nekrasov partition function. The Nekrasov
partition function consists of three factors,

ZNek = ZCartaanootsZweightsZinsta (B15)

where Zcartan Zroots Zweights 18 the perturbative contribution and Zi,s is the instanton con-
tribution. The perturbative contribution has a universal form. Zcgatan is the contribution
from vector multiplets of the Cartan subalgebra and it is given by (B.12). Zoots is the
contribution from vector multiplets of the roots of a gauge group G. The explicit form is

Zroots = PE 1 e > e, (B.16)
a€A+

where A is the set of the positive roots of the Lie algebra g of the gauge group G and

a = (ay,ag,- - ,arank(g)) is the Coulomb branch moduli in the Cartan subalgebra. Lastly
Zweights is the contribution from hypermultiplets in a representation Ry of g, which is
given by
Zeights = PE | — a9 2 Z Z e~lwsa=myl| (B.17)
f wrERy

15This prescription may be rephrased by the N, -vertex [70], which is a generalization of the 1, vertex
that is mirror of the standard topological vertex [86].
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where wy is a weight of the representation R;. f parametrizes different hypermultiplets

like the number of flavors.

On the other hand the explicit form of the instanton part Zj,s is more involved and

does not have a universal formula in general. Since we will not use the instanton partition

function in this paper, we do not present its explicit form here.
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