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1 Introduction

Over past several years, many powerful methods have been developed to study the corre-
lation functions of local operators in holographic CFTs when it is possible to exploit the
dual description in terms of a weakly coupled gravity theory. A beautiful example is the
study of holographic correlators in type IIB string theory on AdS5 × S5. In particular, in
supergravity limit, a very compact formula in Mellin space was obtained for the tree-level
correlation functions of four one-half BPS single-trace operators with arbitrary conformal
weights [1, 2]. These results, combining with other powerful techniques and ideas, such
as analytical bootstrap program, supersymmetric localisation, have led to many further
developments in understanding the holographic correlation functions in AdS5 × S5. For
instance, the methodology allows constructing loop corrections to these correlators as well
as determining higher-derivative contributions arising from α′-expansion of superstring
theory [3–25].

One of the remarkable properties of these holographic correlators in AdS5×S5 super-
gravity, which will be mostly relevant for our study, is that the correlators of operators
with different conformal weights are in fact all related to each other due to a hidden ten-
dimensional conformal symmetry [26]. This hidden conformal symmetry allows packaging
the four-point holographic correlators of operators with different conformal weights into a
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single four-point correlator of scalar operators in ten dimensions. This observation leads to
a recursion relation that relates holographic correlators of operators with higher weights to
the lowest-weight one, and the solution of the recursion relation yields precisely the formula
originally given in [1]. This observation has been further explored for the holographic cor-
relators in AdS5 × S5 beyond the tree-level approximation [12], and the fate of the hidden
symmetry, when higher-derivative stringy effects are included, has been studied in [27–29].

Analogous hidden conformal symmetries have been found for other holographic theo-
ries. In particular, it was found that four-point tree-level holographic correlators of type
IIB supergravity in AdS3 × S3 ×M4 (the internal space M4 can be T 4 or K3 surface) also
exhibit a hidden symmetry [30, 31].1 In the case of AdS3 × S3, the hidden symmetry was
found to be a six-dimensional conformal symmetry. Supergravity in AdS3 × S3 has half
maximal supersymmetry, and contains two super multiplets: gravity multiplet and tensor
multiplet. It was found that for the correlators in tensor multiplet, just as in the case of
AdS5 × S5, the tree-level holographic correlators of four chiral primary operators (CPOs)
in tensor multiplet can again be packaged into a single correlator of scalar operators in
a six-dimensional CFT. This six-dimensional correlator serves as a generating function,
which generates holographic correlators of operators with arbitrary weights. Equivalently,
the hidden symmetry leads to a recursion relation which can be solved explicitly and gives
rise to a compact formula for all tree-level four-point holographic correlators in AdS3×S3

for CPOs in tensor multiplet, which puts our understanding of these correlators at the
same level of the holographic correlators in AdS5 × S5.

The hidden six-dimensional conformal symmetry for holographic correlators in AdS3×
S3 has recently been extended to more general four-point correlators in [31], including those
with CPOs in gravity multiplet. It was found that the correlators of operators in gravity
multiplet are described by a single correlator involving self-dual 3-forms (instead of simple
scalars as in the case of tensor multiplet) in a six-dimensional CFT. This paper aims at
a better understanding of holographic correlators in AdS3 × S3, especially with operators
in gravity multiplet. We will be mainly concerned with the mixed correlators, with two
operators in gravity multiplet and the other two in tensor multiplet.

With this new understanding of the hidden conformal symmetry, again a recursion
relation was obtained for the mixed correlators of operators in both tensor and gravity
multiplets [31]. The main focus of this paper is to solve the recursion relation, and to
obtain a compact formula for the mixed correlators of operators with arbitrary conformal
weights. The results arising directly from solving the recursion relation are in fact rather
lengthy and complex for the correlators involving operators in gravity multiplet. They are
greatly simplified by a better understanding of their analytic structures in Mellin space. We
will also make contact with the known flat-space scattering amplitudes by taking flat-space
limit on the Mellin amplitudes, and find a perfect match.

The paper is organised as follows. In section 2, we will begin by reviewing the hidden
6D conformal symmetry for the holographic correlators in AdS3×S3 of operators in tensor
multiplet as well as the recursion relation arsing from the hidden conformal symmetry. We

1See recent work [32] for the study of hidden symmetries of correlation functions in other holographic the-
ories.
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will solve the recursion relation and obtain a compact formula for the correlators in Mellin
space. The study of correlators in tensor multiplet serves a warm-up for understanding
the correlators with operators in gravity multiplet. In this section 3, we will review the
main results [31], where a recursion relation was obtained from the hidden 6D conformal
symmetry for mixed correlators involving operators in both tensor and gravity multiplets.
However, we find that the solution arising from solving directly the recursion relation is
rather lengthy and it is obscured to any simple structures in the formula. The result can be
greatly simplified by carefully analysing the analytic structures of the correlators in Mellin
space, and a much more compact expression is obtained. We verify the final expression is
local, in the sense that all the multiple poles cancel out non-trivially. We further study
various limits (including flat-space limit and maximally R-symmetry violating limit) of the
results. We conclude and comment on future research directions in section 4.

2 Hidden 6D conformal symmetry in AdS3 × S3

It was observed in [26] that tree-level holographic correlation functions of four BPS scalar
operators in AdS5×S5 obeys a remarkable 10D hidden conformal symmetry, which allows
packaging the correlators of operators with different conformal weights into a single correla-
tor of four scalars in a 10D CFT. This 10D hidden conformal symmetry leads to a powerful
recursion relation that relates correlators of operators with higher weights to those with
lowest weights. Solving the recursion relation explicitly gives rise to a compact expression
for all tree-level correlators of four BPS operators, in agreement with the results of [1].

This observation has been extended to four-point correlation functions in AdS3 ×
S3 ×M4, where the internal manifold M4 can either be four torus T 4 or the K3 surface.
Compared to the case of AdS5 × S5, due to the fact that the AdS3 × S3 background has
only half maximal supersymmetry, the structure of hidden symmetry is more involved.
In particular, the 6D (2, 0) supergravity contains tensor and gravity multiplets, for the
correlators of operators in tensor multiplet, the situation is very similar to the case of
AdS5 × S5, where the four-point tree-level correlators of BPS operators with different
conformal weights are packaged into a single four-point correlation function of scalars in a
6D CFT [30]. However, when the operators in gravity multiplet are involved, the structures
become much richer. It was understood in [31] that the tree-level four-point holographic
correlators with two operators in tensor multiplet and two in gravity multiplet are, again,
described by a single CFT6 correlator, but now with two scalars and two self-dual 3-forms
in six dimensions.

Below we will review the hidden 6D conformal symmetry, especially its implications on
the recursion relation for the four-point holographic correlators in AdS3× S3. As a warm-
up, we will begin with the simpler case where all the operators are in tensor multiplet. In
next section, we will study the more involved case, where the correlators contain operators
with two of them in tensor multiplet and the other two in gravity multiplet.
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2.1 Four-point correlators of operators in tensor multiplet

2.1.1 Flat space superamplitudes

In flat-space, the four-point superamplitude in 6D (2, 0) supergravity of states in tensor
multiplet takes a simple form, given as2

Atensor
4 = G6 δ

8
( 4∑
i=1

qi

)
δ6
( 4∑
i=1

pi

)(
δf1f2δf3f4

s + δf2f3δf1f4

t + δf1f3δf2f4

u

)
, (2.1)

where s, t,u are Mandelstam variables defined as s = (p1 + p2)2, t = (p2 + p3)2,u =
(p1 + p3)2, obeying s + t + u = 0. And G6 is the Newton constant in 6D and δ8(

∑4
i=1 qi)

is due to the conservation of the supercharge, which reflects 6D (2, 0) supersymmetry.
Explicitly, the supercharge is defined as qA,Ii = λAi,aη

a,I
i , with I = 1, 2. Here we have used

the spinor-helicity formalism for 6D massless momentum

pi µ(Γµ)AB = λAi aλ
B,a
i = 1

2ε
ABCDλ̃i ,C âλ̃

â
iD . (2.2)

The index i indicates the external particle, µ is a vector index and A,B, . . ., are spinor
indices of 6D Lorentz group, and a and â are SU(2)× SU(2) indices labelling the 6D little
group SO(4) for massless particles. To describe the 6D (2, 0) supersymmetry we have
introduced Grassmann variables ηa,Ii , which can be used to package all the on-shell states
into a on-shell superfield [33]. Finally, fi are flavour indices of the states in tensor multiplet.

After stripping off the supercharge conservation factor δ8(
∑4
i=1 qi), the amplitude is

identical to the four-point tree-level amplitude of φ3 theory (with a flavour symmetry),
which is conformal invariant in 6D. This property (and the results of AdS5 × S5) has led
to the conjecture of hidden 6D conformal symmetry for four-point tree-level holographic
correlators in AdS3 × S3 of operators in tensor multiplet.

2.1.2 Hidden 6D conformal symmetry and recursion relation in tensor multi-
plet

In general, four-point correlators of CPOs in the 2D CFT that is dual to type IIB string
theory on AdS3 × S3 that we will consider take the following form,

〈Ok1Ok2Ok3Ok4〉 =
(
|ζ13|k

−
21+k−43 |ζ23|−k

−
21+k−43

|ζ12|k
+
12+k−43 |ζ34|2k4

)[
G(0)
{ki} +

∣∣∣1− αcz1− αc

∣∣∣2 G̃{ki}(z, z̄;αc, ᾱc)
]
,

(2.3)
where ki’s are the conformal dimensions of the operators, and k−ij = ki − kj and k+

ij...l =
ki + kj + . . .+ kl. The cross ratios are defined as

|ξij |2 = |zij |
2

t2ij
, αc = A1 ·A3A2 ·A4

A1 ·A4A2 ·A3
, z = z14z23

z13z24
, (2.4)

and zij = zi − zj and tij = ti − tj . To describe the R-symmetry group SU(2)L × SU(2)R
of the CFT (or equivalently the isometry of S3), we have associated each operator with

2More details regarding all tree-level superamplitudes in 6D (2, 0) supergravity in flat-space can be found
in [33, 34].
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spinors Aαi , Āα̇i , or equivalently a SO(4) null vector tµi = (σαα̇)µAαi Āα̇i . The role of these
R-symmetry factors will become more explicit when we consider concrete examples.

The separation of the full correlator into G(0)
{ki} and G̃{ki} such that G(0)

{ki} is a simple
rational function of cross ratios, whereas G̃{ki} is the “dynamical part”, which contains the
so-called D-functions and contributes non-trivially to Mellin amplitudes, which will be our
main focus. Finally, the prefactor

∣∣∣1−αcz1−αc

∣∣∣2 is fixed by the half maximal supersymmetry
and super conformal symmetry of the theory [30, 35]. We will call G̃{ki} as the reduced

correlator, whereas the full result including the prefactor
∣∣∣1−αcz1−αc

∣∣∣2 as the non-reduced cor-
relator.3

To study holographic correlators, it is convenient to express them in Mellin space
when it is possible. The Mellin amplitude of the connected part of a correlation function
is defined through a Mellin transform [36, 37],

G̃{ki}(U, V ) =
∫

ds

4πi
dt

4πi U
s−k+

34
2 +LV

t−min{k+
23, k

+
14}

2 Γ̃{ki}(s, t)M̃{ki}(s, t) , (2.5)

where M̃{ki}(s, t) is the reduced Mellin amplitude, ũ =
∑4
i=1 ki− s− t− 2, the cross ratios

U, V are defined as
U = (1− z)(1− z̄) , V = zz̄ . (2.6)

and Γ̃{ki}(s, t) is a product of Γ-functions

Γ̃{ki}(s, t) = Γ
(
k+

12−s
2

)
Γ
(
k+

34−s
2

)
Γ
(
k+

14− t
2

)
Γ
(
k+

23− t
2

)
Γ
(
k+

13− ũ
2

)
Γ
(
k+

24− ũ
2

)
.

(2.7)
Finally, L = k4 if k+

14 ≤ k+
23, and L = k+

234−k1
2 if k+

14 > k+
23. Without losing generality, we

will only focus on the first case, namely k+
14 ≤ k

+
23.

One may put back the factor
∣∣∣1−αcz1−αc

∣∣∣2 in (2.3) to obtain the non-reduced correlator.
To study the Mellin amplitude, we express his factor in terms of cross ratios U and V ,∣∣∣1− αcz1− αc

∣∣∣2 = 1
2(τ − σ + 1) + U

2 (σ + τ − 1) + V

2 (σ − τ + 1)− τ

2 (αc − ᾱc)(z − z̄) , (2.8)

where
σ = αc ᾱc

(1− αc)(1− ᾱc)
, τ = 1

(1− αc)(1− ᾱc)
. (2.9)

The factor (αc − ᾱc)(z − z̄) (which we will encounter again later) contains square roots in
terms of cross ratios U, V , and it is incompatible with the definition of Mellin amplitudes
we used in (2.5). So we will have to drop this piece when we consider the Mellin amplitude
for non-reduced correlator.4 The same consideration was also used in [30]. In general, the
non-reduced Mellin amplitudeM{ki}(s, t) is defined as

G{ki}(U, V ) =
∫

ds

4πi
dt

4πi U
s−k+

34
2 +LV

t−min{k+
23, k

+
14}

2 Γ{ki}(s, t)M{ki}(s, t) , (2.10)

3The complete non-reduced correlator should also include the rational function part, G(0)
{ki}

. We will be
mostly concerned with the non-rational terms and their corresponding Mellin amplitudes.

4This can be achieved by summing over the correlator and its conjugate, namely αc ↔ ᾱc.
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with u =
∑
i ki − s− t and

Γ{ki}(s, t) = Γ
(
k+

12−s
2

)
Γ
(
k+

34−s
2

)
Γ
(
k+

14− t
2

)
Γ
(
k+

23− t
2

)
Γ
(
k+

13−u
2

)
Γ
(
k+

24−u
2

)
.

(2.11)
From the definition of Mellin amplitudes in (2.5) and (2.10), it is straightforward to

see the translation between the reduced Mellin amplitude and the non-reduced Mellin
amplitude takes the following form,

UmV nM̃{ki}(s, t)→
Γ̃{ki}(s− 2m, t− 2n)

Γ{ki}(s, t)
M̃{ki}(s− 2m, t− 2n) . (2.12)

Use the result of the above relation and (2.8) (after dropping the term (αc − ᾱc)(z − z̄)),
we see that, for holographic correlators in AdS3 × S3, the non-reduced Mellin amplitude
M{ki}(s, t) is related to the reduced amplitude M̃{ki}(s, t) through the following relation,

M{ki}(s, t) = 1
8(τ − σ + 1)(k+

13 − u)(k+
24 − u)M̃{ki}(s, t)

+ 1
8(σ + τ − 1)(k+

12 − s)(k
+
34 − s)M̃{ki}(s−2, t)

+ 1
8(σ − τ + 1)(k+

14 − t)(k
+
23 − t)M̃{ki}(s, t−2) .

(2.13)

Let us now be concrete by considering the holographic correlators of CPOs in ten-
sor multiplet. In tensor multiplet, there is a family of CPOs, sk, with holomorphic and
antihomorphic conformal dimensions (h, h̄) = (k/2, k/2) with k = 1, 2, · · · , so that it has
dimension h + h̄ = k. They are in the (j, j̄) = (h, h̄) representation of R-symmetry group
SU(2)L × SU(2)R. The operator sk, after encoding the R-symmetry group factor, is then
defined as

sk(zi, z̄i, ti) = tiµ1 . . . tiµks
µ1...µk
k (zi, z̄i) , (2.14)

where tiµ is the SO(4) null vector associated with R-symmetry of the theory, as we in-
troduced earlier. The hidden conformal symmetry that we discussed earlier implies that
the four-point correlator of 〈sk1sk2sk3sk4〉 is described by a 6D correlator of scalar opera-
tors [30, 31]

G̃sk1sk2sk3sk4
= t212t

2
34|z2

13||z2
24|

|ξ12|k
+
12+k−43 |ξ34|2k4

|ξ13|k
−
21+k−43 |ξ23|k

−
43−k

−
21

g(Zi)
|Z12|4|Z34|4

∣∣∣∣
t
k1
1 t

k2
2 t

k3
3 t

k4
4

. (2.15)

Importantly, Zi is a 6D coordinate by combining the AdS3 and S3 coordinates,

Zi = (zi, z̄i, tµi ) , (2.16)

therefore |Zij |2 = |Zi − Zj |2 = |zij |2 + t2ij . To obtain the correlator 〈sk1sk2sk3sk4〉, we
simply Taylor expand G̃sk1sk2sk3sk4

and collect all the terms of the order tk1
1 t

k2
2 t

k3
3 t

k4
4 , as

indicated in the subscript in (2.15). Finally, g(Zi) is a function of cross ratios built out of
6D coordinates Zi, which is the consequence of the hidden conformal symmetry.
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2.2 Solution to the recursion relation

To extract the coefficient of tk1
1 t

k2
2 t

k3
3 t

k4
4 efficiently, we rescale t2ij → aiajt

2
ij , and express the

G̃sk1sk2sk3sk4
as a contour integral following the ideas of [26],

G̃sk1sk2sk3sk4
=
∮
ai=0

daia
−ki
i t212t

2
34|z2

13||z2
24|

|ξ12|k
+
12+k−43 |ξ34|2k4

|ξ13|k
−
21+k−43 |ξ23|k

−
43−k

−
21

× g(Zi(ai))
|z2

12 + a1a2t212|2|z2
34 + a3a4t234|2

.

After a suitable rescaling on the integration variables, we can further simplify the result
and express it in terms of cross ratios,5

G̃sk1sk2sk3sk4
= σk2−1τ

k−12−k
−
34

2 U
k+

12+k−43−4
2 V

k−21+k−34
2

∮
ai=0

daia
−ki
i

g (U ′, V ′)
(1 + a1a2

U σ )2(1 + a3a4)2 ,

(2.17)

where we have introduced the rescaled cross ratios U ′, V ′, which are defined as

U ′ = U
(1 + 1

σU a1a2)(1 + a3a4)
(1 + a1a3)(1 + a2a4) , V ′ = V

(1 + τ
σV a2a3)(1 + a1a4)

(1 + a1a3)(1 + a2a4) . (2.18)

The function g (U, V ) that serves as initial data of the recursion relation is determined by
the correlator of lowest-weight operators with ki = 1, and is given by6

g (U, V ) = U

∫
dsdt

(4πi)2U
s
2V

t
2−1Γ2

(
1− s

2

)
Γ2
(

1− t

2

)
Γ2
(

1− ũ

2

)
×
(
δf1f2δf3f4

s
+ δf2f3δf1f4

t
+ δf1f3δf2f4

ũ

)
,

with ũ = 2 − s − t. Here we have expressed the function in Mellin space, which can be
straightforwardly re-expressed in the coordinate space in terms of D-functions [35].

Perform the contour integral using (1 + x)n =
∑∞
i=0

Γ(i−n)
Γ(−n)

(−x)i
i! , and shift the integra-

tion variables by s→ s+ 2 + 2m1 − k+
12 and t→ t+ 2 + 2m5 − k+

23, we arrive at

G̃sk1sk2sk3sk4
=
∫

dsdt

(4πi)2

∞∑
m1=0,m2=0

σm2+
k−21+k−43

2 τk1−1−m12U
s+k−43

2 V
t−k+

14
2 Γ̃{ki}(s, t)

× 1∏6
i=1mi!

(
δf1f2δf3f4

s+2+2m1−k+
12

+ δf2f3δf1f4

t+2+2m5−k+
23

+ δf1f3δf2f4

ũ+2+2m2−k+
13

)
,

(2.19)

5With a bit abuse of terminology, here we refer the relation (2.17) (as well as its generalisation when the
gravity multiplet is included, as we will discuss in the next section) as a recursion relation, although it is not
a relation that relates the correlator G̃sk1sk2sk3sk4

with the correlator of operators with neighboring weights.
6This correlator was first obtained in [35] by taking a limit on the heavy-heavy-light-light correlators

computed in [38, 39].
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where Γ̃{ki}(s, t) is given in (2.7), and mi for i > 2 are determined in terms of m1,m2,

m3 = k1 −m12 − 1 , m4 = k−31 + k−42
2 +m1 ,

m5 = k+
12 + k−34

2 −m12 − 1 , m6 = k−21 + k−43
2 +m2 ,

with mij = mi + mj . Note, the summation on m1,m2 is truncated due to the factorials
mi! in the denominator. According to the definition of Mellin amplitudes given in (2.5),
we conclude that the reduced Mellin amplitude of 〈sk1sk2sk3sk4〉 is given by

M̃sk1sk2sk3sk4
(s, t) =

∞∑
m1=0,m2=0

σm2+
k−21+k−43

2 τk1−1−m12∏6
i=1mi!

×
(

δf1f2δf3f4

s+ 2 + 2m1 − k+
12

+ δf2f3δf1f4

t+ 2 + 2m5 − k+
23

+ δf1f3δf2f4

ũ+ 2 + 2m2 − k+
13

)
.

(2.20)

For the special case k1 = k2 = k and k3 = k4 = `, we find the formula is in agreement with
the result given in [40] (up to an overall factor of −2k` due to a different convention we
use here).

We conclude this section by taking two interesting limits of the Mellin amplitudes:
flat-space limit and maximally R-symmetry violating (MRV) limit. We will consider the
limits on the full non-reduced Mellin amplitudes using (2.13). Flat-space limit is achieved
by setting s→∞, t→∞, which yields

Msk1sk2sk3sk4
(s, t)→ P{ki}(σ,τ) (ut+s tσ+suτ)

(
δf1f2δf3f4

s
+ δf1f4δf2f3

t
+ δf1f3δf2f4

u

)
,

(2.21)
where u→ −s− t in the flat-space limit, and the overall factor P{ki}(σ, τ) is given by

P{ki}(σ, τ) = −1
4

∞∑
m1=0,m2=0

σm2+
k−21+k−43

2 τk1−1−m12∏6
i=1mi!

. (2.22)

One may perform one of the summations in P{ki}(σ, τ) and express the result in terms of a
Hypergeometric function. We see that (2.21) is in agreement with the flat-space amplitude
given in (2.1). The factor (u t+s t σ+s u τ), arising from

∣∣∣1−αcz1−αc

∣∣∣2 as can be seen from (2.13),
represents the fact that the theory has half maximal supersymmetry factor. In the case
of maximal supersymmetric theories, it is (u t + s t σ + s u τ)2 that associates with the
supersymmetry [41, 42].

We now consider the MRV limit. This was first introduced in [42, 43] for the study of
holographic correlators in maximal supersymmetric theories. The limit chooses to align the
R-symmetry directions Aαi such that the u-channel contribution vanishes, namely we set
A1 ·A3 = A2 ·A4 = 0 and Ā1 · Ā3 = Ā2 · Ā4 = 0, which implies αc = ᾱc = 0. In terms of σ
and τ , we have σ → 0, τ → 1 in the MRV limit. So in this limit, the factor (αc− ᾱc)(z− z̄)
in (2.8) drops out, and the non-reduced Mellin amplitude is always well-defined.
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For the correlator given in (2.20), we see that in the MRV limit only m2 = −k−21+k−43
2

term of the m2 sum in (2.20) contributes, therefore we have

MMRV, sk1sk2sk3sk4
(s, t) = 1

4 (s+ t− k+
13)(s+ t− k+

24) (2.23)

×
∞∑

m1=0

(
δf1f2δf3f4

s+ 2 + 2m1 − k+
12

+ δf2f3δf1f4

t− 2m1 + k−23
+ δf1f3δf2f4

−s− t+ k+
13

)

× 1

Γ (m1 + 1) Γ (k2 −m1) Γ
(
k−12+k−34

2 + 1
)

Γ
(
k+

12−k
−
34

2 −m1

)
Γ
(
m1 + k+

34−k
+
12

2 + 1
) .

We note that the u-channel poles are cancelled by the prefactor (s+ t−k+
13), and there is a

zero in u-channel when s+ t− k+
24 = 0. These are the properties of holographic correlators

in the MRV limit that played key roles for constructing tree-level holographic correlators in
other AdS backgrounds with maximal supersymmetry, which include AdS5×S5, AdS4×S7,
and AdS7 × S4 [42, 43].

So far we have considered the MRV limit with the u-channel R-symmetry spinors
A1, A3 (and A2, A4) being aligned. One may also consider the MRV limit with the s-
channel R-symmetry spinors A1, A2 (and A3, A4) as well as their conjugates being aligned.
With this choice, we have αc = ᾱc = 1, and according to (2.9), σ = τ → ∞. Therefore,
in this limit, the terms with the highest degree in σ, τ dominate, and we find the Mellin
amplitude takes the following form,

MMRV′, sk1sk2sk3sk4
(s, t) = 1

4 σ
k+

12−k
−
43

2 (s− k+
12)(s− k+

34)

×
∞∑

m2=0

(
δf1f2δf3f4

s− k+
12

+ δf2f3δf1f4

t+ k−23
+ δf1f3δf2f4

−s− t+ k+
13

)

× 1

Γ(m2 + 1)Γ(k1 −m2)Γ(k
+
34−k

+
12

2 + 1)Γ(m2 + k+
24−k

+
13

2 )Γ(−m2 + k+
12−k

−
34

2 )
.

(2.24)

We see that in this choice of the MRV limit, there is no s-channel pole and has a zero at
(s− k+

34) = 0, as expected.

3 Four-point correlators of operators in tensor and gravity multiplets

3.1 Flat space superamplitudes

We will now consider the correlators involving operators in gravity multiplet. As we com-
mented, compared to the correlators of operators in tensor multiplet, these correlators are
more involved. Let us begin with the amplitudes in flat-space. The four-point superampli-
tude in 6D (2, 0) supergravity of general external states is given by [33]

A4 = G6δ
8
( 4∑
i=1

qi

)
δ6
( 4∑
i=1

pi

)
[1â12â23â34â4 ][1b̂1

2b̂2
3b̂3

4b̂4
]

s t u . (3.1)
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To simplify the discussion, we have assumed that the tensors have the same flavour, and
more general cases can be found in [33], which are constructed using twistor formula-
tion. The square parenthesis is defined as [iâ1jâ2kâ3 lâ4 ] := εABCDλ̃i A â1 λ̃j B â2 λ̃k C â3 λ̃l D â4 .
Importantly, as pointed out in [31], after stripping of the delta-function prefactors
G6δ

8(
∑4
i=1 qi)δ6(

∑4
i=1 pi), this general four-point superamplitude in 6D (2, 0) supergravity

is again invariant under 6D conformal transformation, which hints on hidden conformal
symmetry for all four-point tree-level holographic correlators (instead of just those in ten-
sor multiplet).

The superamplitude of given states can be obtained from (3.1) by appropriately choos-
ing the little group indices. For the states in tensor multiplet (they are the states without
free little group indices), we contract all the little group indices, the numerator simplifies:

[1â12â23â34â4 ][1â12â23â34â4 ] = s2 + t2 + u2 , (3.2)

we then find (3.1) reproduces (2.1) when the tensors have the same flavour, which is the case
we consider here. We are interested in the amplitudes with two states in tensor multiplet
and two in gravity multiplet (the states with free little group indices), for which we have

A4 = G6δ
8
( 4∑
i=1

qi

)
δ6
( 4∑
i=1

pi

)
[1â12â23â34â4 ][1â12â23b̂3

4b̂4
]

s t u
, (3.3)

where we contact the little-group indices for the first two states (they are in tensor multi-
plet) and leave the indices free for the last two states (they are in gravity multiplet). Here
we have also assumed two tensors have the same flavour, otherwise the amplitude vanishes,
said in another way, we have suppressed a flavour factor δf1f2 in (3.3), with f1, f2 being
the flavours of the tensors.

For the comparison of holographic correlators in AdS3, we compactify the above am-
plitude to three dimensions. This is done by reducing the 6D spinors to 3D spinor, which
effectively sets [1−2−3+4+] = −〈12〉〈34〉, where in 3D, the massless momentum can be
expressed as pαβi = λαi λ

β
i , and the angle braket is defined as 〈ij〉 = λαi λ

β
j εαβ , which relates

to Mandelstam variables by 〈ij〉2 = (pi + pj)2. We then obtain the dimension reduced
amplitude of four three-dimensional scalars from (3.3), given as

A4 = G6δ
8
( 4∑
i=1

qi

)
δ6
( 4∑
i=1

pi

)
s2 − t2 − u2

s t u = G6δ
8
( 4∑
i=1

qi

)
δ6
( 4∑
i=1

pi

)
2
s .

(3.4)

The structure of this result is expected. When compactified to 4D, the (2, 0) supergravity
becomes supersymmetric multiple-U(1) Einstein-Maxwell theory. Both the scalar arising
from the 6D graviton multiplet and the scalar from the 6D tensor multiplet are matters
of Einstein-Maxwell theory [33], but they belong to different U(1)’s of Maxwell theory,
therefore they do not couple to a 4D graviton, which reflects in (3.4) by the fact that there
are no t- or u-channel poles. This fact implies only the s-channel pole is allowed, and a
further reduction to 3D does not change the structure.
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3.2 Correlators with gravity multiplet operators and hidden conformal sym-
metry

A family of CPOs in gravity multiplet that we will consider here are scalar operators which
have left-right symmetry (h, h̄) = (k/2, k/2), with k = 2, 3, . . ., we will denote them as
σk. As we see, they have similar structures as the operators sk that we studied in the
previous section. However, these operators arise from the Kaluza-Klein reduction of the
supergravitons in 6D (2, 0) supergravity over the S3,7 therefore the interaction couplings
involving σk operators are rather different from those of operators sk. For instance, a cou-
pling of three σ’s is allowed but not for three s’s [44]. As already indicated in the flat-space
amplitudes (3.1), these properties make the correlators in gravity multiplet much more
complicated comparing to those in tensor multiplet. As in the case of sk, to incorporate
the R-symmetry we introduce the SO(4) null vector ti µ in the definition of the operators,
which are given by

σk(zi, z̄i; ti) = ti µ1 . . . ti µkσ
µ1...µk
k (zi, z̄i) . (3.5)

As we will see that, unlike the correlators of sk that we studied in the previous section, even
for the reduced correlators, when the operators σk are involved, the correlators cannot be
expressed in terms of σ, τ and U, V only. To describe these correlators, it is necessary to use
αc, ᾱc and z, z̄. This should be closely related to the fact that the flat-space superamplitude
involving graviton states, as given in (3.3), cannot be expressed in terms of Mandelstam
variables only.

As we already anticipated earlier when we discussed the flat-space amplitudes, and
as understood in [31], the holographic correlators 〈sk1sk2σk3σk4〉 also exhibit a hidden
conformal symmetry, just as for the correlators in tensor multiplet. In particular, the
holographic correlators for arbitrary conformal weights ki can be described by a single
6D CFT correlator with two scalar operators (corresponding to sk1 and sk2) and two 3-
forms (corresponding to σk3 and σk4). In practice, this leads to a recursion relation that
determines 〈sk1sk2σk3σk4〉 for any ki in terms of initial datas which can be obtained from
four-point correlators of operators with low conformal weights. Explicitly, the correlator
〈sk1sk2σk3σk4〉 is described by [31]

G̃sk1sk2σk3σk4
= t212t

2
34|z2

13||z2
24|

|ξ12|k
+
12+k−43 |ξ34|2k4

|ξ13|k
−
21+k−43 |ξ23|k

−
43−k

−
21

1
|Z12|4|Z34|8

{
g1 (Z) t234|z34|2

+ g2 (Z)
[(
t214t

2
23 − t213t

2
24

) |z34|2

|Z12|2
+ t234

|z14|2|z23|2 − |z13|2|z24|2

|Z12|2

]
+ g3 (Z)

[(
t213t

2
24 + t214t

2
23
)
|z34|2 + t234

(
|z14|2|z23|2 + |z13|2|z24|2

)
2|Z12|2

(3.6)

− t212t
2
34|z13|2|z24|2 (z + z̄)

|Z12|4
− t213t

2
14|z23|2|z24|2 + t223t

2
24|z13|2|z14|2

|Z12|4

−
t213t

2
24
(
|z12|2|z34|2 − |z13|2|z24|2

)
+ t214t

2
23
(
|z12|2|z34|2 − |z14|2|z23|2

)
|Z12|4

− 4 εµ1µ2µ3µ4t
µ1
1 tµ2

2 tµ3
3 tµ4

4 (z − z̄) |z13|2|z24|2

|Z12|4

]}∣∣∣∣
t
k1
1 t

k2
2 t

k3
3 t

k4
4

,

7See the tables 1, 2, 3 in [30] for more details of the spectrum in AdS3 × S3 supergravity.
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where, again, the correlator 〈sk1sk2σk3σk4〉 is obtained by Taylor expanding the above
expression to the order tk1

1 t
k2
2 t

k3
3 t

k4
4 . We have suppressed the flavour factor δf1f2 of the

tensors in the above expression.
Compare to the correlators of operators in tensor multiplet, we now have more unknown

functions that is because, unlike the scalars, the self-dual 3-forms in 6D allow for more
independent structures. In particular, it was found there are three of them [31], which are
associated with the unknown functions g1, g2 and g3 in (3.6). These functions that serve as
initial data of the recursion relation are determined by comparing with the known results
of correlators 〈s1s1σ2σ2〉 and 〈s2s2σ2σ2〉, and they are given by [31]

g1 (U,V ) =
∫

dsdt

(4πi)2U
s
2V

t
2−2 (s−6)(s−4)

6(s−2) Γ2
(
2− s

2

)
Γ2
(
2− t

2

)
Γ2
(
s+t

2 −2
)
, (3.7)

g2 (U,V ) =
∫

dsdt

(4πi)2U
s
2V

t
2−2 (s−6)(s−4)(s+2t−8)

12(t−2)(s+t−6) Γ2
(
2− s

2

)
Γ2
(
2− t

2

)
Γ2
(
s+t

2 −2
)
,

g3 (U,V ) =
∫

dsdt

(4πi)2U
s
2V

t
2−2 (s−6)(s−4)2

6(t−2)(s+t−6)Γ2
(
2− s

2

)
Γ2
(
2− t

2

)
Γ2
(
s+t

2 −2
)
.

It is worth noting that not any initial data (namely g1, g2, g3 given in (3.7)) would
generate sensible correlation functions of operators with higher conformal weights. There-
fore, we expect the recursion relation can even constrain the initial data. Surprisingly,
we find that the initial data is in fact uniquely fixed by simple consistency conditions of
correlators generated from the recursion relation. Concretely, we begin by assuming the
following ansatzs for the initial data,

g1 (U,V ) =
∫

dsdt

(4πi)2U
s
2V

t
2−2

∑
ai,js

itj

s−2 Γ2
(
2− s

2

)
Γ2
(
2− t

2

)
Γ2
(
s+t

2 −2
)
, (3.8)

g2 (U,V ) =
∫

dsdt

(4πi)2U
s
2V

t
2−2

(∑
bi,js

itj

t−2 +
∑
ci,js

itj

s+t−6

)
Γ2
(
2− s

2

)
Γ2
(
2− t

2

)
Γ2
(
s+t

2 −2
)
,

g3 (U,V ) =
∫

dsdt

(4πi)2U
s
2V

t
2−2

(∑
di,js

itj

t−2 +
∑
ei,js

itj

s+t−6

)
Γ2
(
2− s

2

)
Γ2
(
2− t

2

)
Γ2
(
s+t

2 −2
)
.

Here the summations on i, j are restricted by i + j ≤ 2 due to the two-derivative power
counting of supergravity. We have also used the fact that the functions should have correct
pole structures, which are dictated by the exchanged states. The ansatzs contain 30 free
parameters, namely the coefficients aij , bij , cij , dij , and eij in (3.8). We then require the
full correlators of higher weights that are generated from the recursion relation by plugging
the ansatzs (3.8) into (3.6) to have right pole structures and the correct power counting.
In particular, we know that the correlator Ms1s1σkσk(s, t) has and only has simple pole at
s = 0, since only the massless graviton and graviphoton are allowed to be exchanged in the
s channel. For as a two-derivative theory, we also know that Ms1s1σkσk(βs, βt) ∼ β in the
limit β → ∞. By imposing such conditions for k = 2, 3, we find that the anstazs of g1, g2
and g3 given in (3.8) are uniquely fixed up to an overall factor, and agree precisely with
what are given in (3.7) which were determined from explicit known results.
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3.3 Solution to the recursion relation

We will now solve the recursion relation following the same strategy of section 2.1.2 for the
simpler correlators of tensor multiplet. In particular, we express the recursion relation as
contour integrals. We also note that, due to the last term in (3.6) proportional to εµ1µ2µ3µ4 ,
it is not possible to express the correlator in terms of cross ratios U, V and σ, τ only, instead
it is necessary to use z, z̄ and αc, ᾱc. Therefore it is natural to separate the correlator into
two parts where one of them contains z, z̄ and αc, ᾱc (in the form of (αc− ᾱc)(z− z̄), arising
from the term that is proportional to εµ1µ2µ3µ4t

µ1
1 tµ2

2 tµ3
3 tµ4

4 in (3.6)), which we will denote
as the chiral sector G̃(c)

sk1sk2σk3σk4
, and the remaining part only depends on U, V and σ, τ ,

which is the non-chiral sector G̃(nc)
sk1sk2σk3σk4

. Therefore, we will express the full correlator as

G̃sk1sk2σk3σk4
= G̃(c)

sk1sk2σk3σk4
+ G̃(nc)

sk1sk2σk3σk4
, (3.9)

where G̃(c)
sk1sk2σk3σk4

and G̃(nc)
sk1sk2σk3σk4

are given in terms of contour integrals,

G̃(c)
sk1sk2σk3σk4

= (αc − ᾱc)(z − z̄)σk2−2τ
k−12−k

−
34

2 +1U
k+

12+k−43−8
2 V

k−21+k−34
2

×
∮
ai=0

dai a
1−k1
1 a1−k2

2 a1−k3
3 a1−k4

4
g3(U ′, V ′)

(1 + a1a2
U σ )4(1 + a3a4)4 , (3.10)

and

G̃(nc)
sk1sk2σk3σk4

=σk2−1τ
k−12−k

−
34

2 U
k+

12+k−43−4
2 V

k−21+k−34
2

∮
ai=0

daia
−k1
1 a−k2

2 a1−k3
3 a1−k4

4
1

(1+ a1a2
U σ )2(1+a3a4)4

×
{
g1(U ′,V ′)+ a1a2τ

(1+ a1a2
U σ

)UσF
(s)
2 (U ′,V ′)+ a1a2

(1+ a1a2
U σ

)U F
(a)
2 (U ′,V ′)+ V

(1+ a1a2
U σ

)U F
(s)
2 (U ′,V ′)

+ F
(a)
2 (U ′,V ′)

(1+ a1a2
U σ

)U +g3(U ′,V ′)
[
−a1a2(1−U+V )

(1+ a1a2
U σ

)2U2σ
− a2

1v+a2
2τ/σ

(1+ a1a2
U σ

)2U2−a1a2
(U−1)+τ/σ(U−V )

(1+ a1a2
U σ

)2U2

]}
, (3.11)

with U ′, V ′ given in (2.18). Here we have expressed the results in the form of contour
integrals, as we did in the previous section. Finally, F (s)

2 and F (a)
2 are linear combinations

of g2 and g3. In Mellin space, they are given by

F
(s)
2 = g3/2+g2 =

∫
dsdt

(4πi)2U
s
2V

t
2−2 (s−6) (s−4)

6(t−2) Γ2
(
2− s

2

)
Γ2
(
2− t

2

)
Γ2
(
s+ t

2 −2
)
,

F
(a)
2 = g3/2−g2 =−

∫
dsdt

(4πi)2U
s
2V

t
2−2 (s−6) (s−4)

6(s+ t−6) Γ2
(
2− s

2

)
Γ2
(
2− t

2

)
Γ2
(
s+ t

2 −2
)
.

(3.12)

In next subsections, we will solve the recursion relation for G̃(c)
sk1sk2σk3σk4

and G̃(nc)
sk1sk2σk3σk4

,
respectively.

3.3.1 The chiral sector

The recursion relation for the chiral sector G̃(c)
sk1sk2σk3σk4

as given in (3.10) is relatively
simple. It has an analogous structure as the correlators of tensor multiplet. After factoring
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out (αc − ᾱc)(z − z̄), we can then formally express G̃(c)
sk1sk2σk3σk4

in Mellin space using the
standard definition in (2.5), and the recursion relation can be solved in a similar manner
as for the correlators of tensor multiplet that we studied in the previous section. Since the
computation is very similar to that has been done for the correlators of tensor multiplet,
we will not repeat the steps here. Instead we will simply present the final result of this
particular part of the correlator, which is given by

G̃(c)
sk1sk2σk3σk4

= (αc− ᾱc)(z− z̄)
∫

dsdt

(4πi)2U
s+k−43

2 V
t−k+

14
2 Γ̃{ki}(s, t)

×
∞∑

m1,m2=0
σm2+

k−21+k−43
2 τk1−1−m12 (3.13)

× 1∏6
i=1mi!

2(k+
24− ũ)(k+

13− ũ)
3(s+2m1−k+

12 +2)(t+k−14−2m12−2)(−ũ+k+
13−2m2)

,

where

m3 = k1 −m12 − 2 , m4 = k−31 + k−42
2 +m1 ,

m5 = k+
12 + k−34

2 −m12 − 2 , m6 = k−21 + k−43
2 +m2 . (3.14)

The full non-reduced correlator is obtained by putting back the factor given in (2.8).
To have a well-defined non-reduced Mellin amplitude accodring to (2.10), one may combine
the factor (αc− ᾱc)(z− z̄) in (3.13) with the same factor in (2.8), so that (αc− ᾱc)2(z− z̄)2

is a simple polynomial in U, V and σ, τ , given as

(αc − ᾱc)2(z − z̄)2 = τ−2
[
(σ − τ)2 − 2(σ + τ) + 1

][
(U − V )2 − 2(U + V ) + 1

]
. (3.15)

So for this particular part of the chiral sector contribution, the non-reduced Mellin ampli-
tude is well-defined, and can be obtained explicitly from (3.15) and using the relation (2.12).
We find that, interestingly, this term vanishes in the flat-space limit. More precisely, the
leading two-derivative contribution arising from each term in (3.15) cancels out. We also
note G̃(c)

sk1sk2σk3σk4
vanishes in the MRV limit, due to (αc − ᾱc) = 0 in the limit.

Another important feature is that the multiple poles in (3.13) do not cancel out even
after converted into non-reduced Mellin amplitude using (3.15), as described above. As
we will come back to this in the next section, these multiple poles precisely cancel with
the same multiple poles arising from the non-chiral sector G̃(nc)

sk1sk2σk3σk4
, such that the full

non-reduced Mellin amplitude only contains single poles, as it should be for a local theory.

3.3.2 The non-chiral sector

As shown in (3.11), the recursion relation for the non-chiral sector G̃(nc)
sk1sk2σk3σk4

is clearly
more complicated, which however is a function of U, V only and has a well-defined Mellin
representation. We have performed the contour integrals following the same methods,
however the answer obtained in this way turns out to be rather lengthy, and it is not
illuminating to present the expression here. Roughly, each term in (3.11) gives an expression
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that is similar to that of the correlators in tensor multiplet as given in (2.20) or those of the
chiral sector as given in (3.13), and it is not clear how to combine these terms together and
simplify them. However, we find that an equivalent but much more compact expression can
be obtained by exploring the analytic structures of the correlators in Mellin space. That
is what we will present in the following.

In particular, we express the result to manifest the pole structures of the Mellin am-
plitude,

M̃(nc)
sk1sk2σk3σk4

(s, t) = M̃(nc)
s (s, t) + M̃(nc)

s,t (s, t) + M̃(nc)
s,u (s, t) , (3.16)

where M̃(nc)
s (s, t) represents terms with single poles, M̃(nc)

s,t (s, t) is the contribution that
has simultaneous poles in both s and t channels and similarly M̃(nc)

s,u (s, t) contains s- and
u-channel poles. Furthermore, M̃(nc)

s,t (s, t) and M̃(nc)
s,u (s, t) are related to each other by a

simple permutation,

M̃(nc)
s,u (s, t) = M̃(nc)

s,t (s, ũ) |k1↔k2, σ↔τ . (3.17)

Therefore, we will focus on M̃(nc)
s,t (s, t) only.

Let us begin with the single-pole term, M̃(nc)
s (s, t). We find this term only contains

s-channel poles, and according to its behaviour as polynomials in σ and τ , we find it is
convenient to write M̃(nc)

s (s, t) as,

M̃(nc)
s (s, t) =

smax∑
sp=0

jmax∑
j=jmin

Rjsp,1τ +Rjsp, 0

s− sp
σjτ

sp+k−43
2 −j−1 , (3.18)

where smax = min{k+
12, k

+
34} − 2, and the j-sum runs from jmin = max{0, k

−
12+k−34

2 } to
jmax = min{ sp−k

−
12

2 ,
sp−k−34

2 }. The residues Rjsp,1,R
j
sp, 0 are independent of σ and τ , and

they are given by

Rjsp,1 = −
(−1)

k
+
1234

2 +k−
34
(
k2

3 + k2
4 − sp(sp + 2)− 2

)
3 Γj⊗

,

Rjsp, 0 = −
(−1)

k
+
1234

2 +k−
34
(
sp − k−12 − 2j

) (
sp − k−34 − 2j

)
3 Γj⊗

,

(3.19)

where Γj⊗ is a product of Γ functions

Γj⊗ = Γ(j + 1) Γ
(
k−12 + k−34

2 + j + 1
)

Γ
(
k+

12 − sp
2

)
Γ
(
k+

34 − sp
2

)
× Γ

(
k−21 + sp

2 + 1− j
)

Γ
(
k−43 + sp

2 + 1− j
)
. (3.20)

The term M̃(nc)
s,t (s, t), that contains poles in both s and t channels, has similar structures

and takes the following form,

M̃(nc)
s,t (s, t) =

smax∑
sp=0

jmax∑
j=jmin

Rjsp,tp

(s− sp)(t− tp)
σjτ

sp+k−43
2 −j−1 , (3.21)

– 15 –



J
H
E
P
0
7
(
2
0
2
1
)
1
2
5

where tp = k+
13 − sp + 2j, and we find the residue is given by

Rjsp,tp = (−1)
k

+
1234

2

3 Γj⊗

(
sp + k−21 − 2j

) (
sp + k−43 − 2j

) [
j

(
j − k−21 + k−43

2

)
x2

σ
(3.22)

+
(
j
(
k−21 + k−43 − 2

)
+ k+

24 − sp − 2− 2j2
)
x+ (2j + 1)

(
k−21 + k−43 − 2

)
− 4j2

+
(
sp
(
3− k+

1234 + sp
)

+
(
k+

12 k
+
34 − k

+
13 − 2k+

24 + 4
)
− j

2

(
k−21 + k−43 − 4− 2j

))
σ

− 1
4

(
k+

12 − sp − 2
) (
k+

34 − sp − 2
)

(σ − x)2
]
,

with x = τ − 1. Together with the result of G̃(c)
sk1sk2σk3σk4

in (3.13), we obtain the complete
solution for the holographic correlator 〈sk1sk2σk3σk4〉.

A few comments are in order. Firstly, we have verified that the simplified expres-
sion (3.16) agrees with the result obtained directly from solving recursion relation using
the methods similar to that in the previous section for studying the correlators of operators
in tensor multiplet. Secondly, the compact expression we obtained here suggests that the
holographic correlators in AdS3×S3 exhibit new structures that cannot be seen from hid-
den conformal symmetries, especially when operators in gravity multiplet are involved. As
we have emphasised, the solution obtained directly from (3.11) is rather complex. The ex-
pression we presented in (3.18) has quite different structure compared to the result (2.20)
for the correlators in tensor multiplet that is obtained directly from recursion relations.
The compact expression (3.18) rather has structures that are analogous to those of the
references [42, 43]. Finally, use the relation (2.13), we can again obtain the non-reduced
Mellin amplitude for the contribution of the non-chiral sector, M(nc)

sk1sk2σk3σk4
(s, t). Impor-

tantly, as we commented earlier, we findM(nc)
sk1sk2σk3σk4

(s, t) contains multiple poles (arising
from M̃(nc)

s,t (s, t) and M̃(nc)
s,u (s, t)), however, these poles cancel precisely with those from the

chiral sector. This cancellation provides a very non-trivial check on our results.

3.4 The flat-space and MRV limits

We will now study the flat-space and MRV limits of the non-reduced Mellin amplitude
Msk1sk2σk3σk4

(s, t). As we commented in the section 3.3.1, the chiral sector contribution
G(c)
sk1sk2σk3σk4

does not contribute in these limits. So we will focus on the contribution from
the non-chiral sector.

Let us begin with flat-space limit. It is easy to see that the Mellin amplitude is
dominated by the single pole term M̃(nc)

s (s, t) in this limit. The explicit form of the
correlator in flat-space limit is given by

M(nc)
sk1sk2σk3σk4

( s, t)|s,t→∞ →
u t+ s t σ + s u τ

s
P

(nc)
{ki} (σ, τ) , (3.23)

where the overall factor P (nc)
{ki} (σ, τ) is a polynomial in σ, τ ,

P
(nc)
{ki} (σ, τ) = −1

4

smax∑
sp=0

jmax∑
j=jmin

(Rjsp,1τ +Rjsp,0)σjτ
sp+k−43

2 −j−1 , (3.24)
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with Rjsp,1 and Rjsp,0 given in (3.19). We note, as required, the flat-space limit of the Mellin
amplitude has a two-derivative power counting and has precisely the same structure as the
flat-space superamplitude when compactified to 3D, as given in (3.4). In particular, they
both only contain a single pole in s-channel. As in the case of tensor multiplet, we see
again the appearance of the factor (u t + s t σ + s u τ), which represents the fact that the
theory has half maximal supersymmetry. We note for holographic correlators in other AdS
backgrounds, the corresponding flat-space prefactors that are analogous to P (nc)

{ki} (σ, τ) were
derived as an overlap factor of the in- and out-states, which are dressed with nontrivial
wavefunctions on a transverse sphere [32]. It would be very interesting to generalise the
derivation for the correlators we consider here.

The MRV limit of the non-reduced Mellin amplitude is defined as

MMRV,sk1sk2σk3σk4
(s, t) =M(nc)

sk1sk2σk3σk4
(s, t)

∣∣
αc→0,ᾱc→0 . (3.25)

We find that the term with s, u-channel poles, M̃(nc)
s,u (s, t), vanishes identically in the

MRV limit, and the single-pole term, M̃(nc)
s (s, t), and the term with poles in s, t-channels,

M̃(nc)
s,t (s, t), reduce to,

MMRV,sk1sk2σk3σk4
(s, t) =M(nc)

MRV,s(s, t) +M(nc)
MRV,s,t(s, t) , (3.26)

where

M(nc)
MRV,s(s, t) = (s+ t− k+

13)(s+ t− k+
24) (3.27)

×
smax∑
sp=0

1
(s− sp)

(−1)
k

+
1234

2 +k−
43
(
2− k−21 k

−
43 − k

2
3 − k2

4 − (k−21 + k−43 − 2)sp
)

12 Γj=0
⊗

,

and

M(nc)
MRV,s,t(s, t) = (s+ t− k+

13)(s+ t− k+
24) (3.28)

×
smax∑
sp=0

1
(s− sp) (t− tp)

(−1)
k

+
1234

2 +k−
43 (k−21 + k−43 − 2)(k−21 + sp)(k−43 + sp)

12 Γj=0
⊗

,

and Γj=0
⊗ is given in (3.20) with j being set to 0. Importantly, the apparent double poles

inM(nc)
MRV,s,t(s, t) in fact cancel out after the sum. This can be understood by the fact that

the residues at the double poles are all proportional to (α− ᾱ)2 (so that they cancel with
the contributions from chiral sector), which vanishes identically in the MRV limit.

We note that, there are no u-channel singularities sinceM(nc)
MRV,s,u(s, t) vanishes iden-

tically in the MRV limit as we commented earlier. Furthermore, the prefactor (s + t −
k+

13)(s + t − k+
24) in (3.27) and (3.28) gives arise zeros in u-channel. As we have already

emphasised in the previous section when we studied the correlators of operators in tensor
multiplet, these properties of the correlators in the MRV limit are crucial in the study of
holographic correlators in other AdS backgrounds.

Finally, let us remark that one may consider the other MRV limit with αc = ᾱc = 1,
for which, we find that the chiral sector contribution G(c)

sk1sk2σk3σk4
also vanishes due to the
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fact it is proportional to αc − ᾱc. The non-trivial contribution arising from the non-chiral
sector is given by the terms that have leading order term in σ, τ . Explicitly, we find

MMRV′,sk1sk2σk3σk4
(s, t) =M(nc)

MRV′,s(s, t) +M(nc)
MRV′,s,t(s, t) +M(nc)

MRV′,s,u(s, t) , (3.29)

where

M(nc)
MRV′,s(s, t) = (k+

12 − s)(k
+
34 − s)σ

smax+k−43
2 +1

×
jmax∑
j=jmin

1
(s− sp − 2)

Rjsp, 1

4 Γ⊗

∣∣∣∣∣
sp=smax

, (3.30)

and

M(nc)
MRV′,s,t(s, t) = (k+

12 − s)(k
+
34 − s)σ

smax+k−43
2 +1

×
jmax∑
j=jmin

1
(s− sp − 2)(t− tp)

Rjsp,tp

4 Γ⊗

∣∣∣∣∣
sp=smax

, (3.31)

and M(nc)
MRV′,s,u(s, t) = M(nc)

MRV′,s,t(s, u)|k1↔k2 . The apparent s-channel poles in (3.30)
and (3.31) are always cancelled by the pre-factor (k+

12 − s)(k
+
34 − s), so there are no singu-

larities in the s-channel.

4 Conclusion

In this paper, we present compact formulas for all four-point tree-level holographic cor-
relators in AdS3 × S3 in supergravity limit, with all the operators in tensor multiplet, as
well as for the mixed correlators where we have two operators in tensor multiplet and the
other two in gravity multiplet. The formulas are obtained by solving recursion relations
arising from a hidden 6D conformal symmetry of the theory [31] that relates correlators of
operators with higher weights to correlators of operators with lower weights. The recursion
relation for the mixed correlators involving operators in gravity multiplet is relatively more
complex compared to the one for the correlators involving only tensors. As we emphasised
that the expression of the mixed correlators obtained directly from the recursion relation
is rather lengthy, and a compact formula was found only after we carefully analyse the
analytical properties of the correlators and re-express the result in a form that manifests
the pole structures. The simple expression suggests new properties beyond the hidden con-
formal symmetry. It is therefore of interest to investigate if the expression can be obtained
by other means. We also studied the structures of the correlators by taking various lim-
its (that include flat-space limit and MRV limit) of the results, and interesting properties
were found in these limits. We have further verified that the multiple poles cancel out
non-trivially for the non-reduced Mellin amplitude.

It will be of interest to extend the analysis to the correlators of four operators all in
gravity multiplet, namely 〈σk1σk2σk3σk4〉. With the result of all these correlators, we will in
principle complete the computation of all the four-point tree-level holographic correlators
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in AdS3 × S3 in supergravity limit. It is expected that the correlators 〈σk1σk2σk3σk4〉 are
described by a single 6D CFT correlator of four self-dual 3-forms [31], due to the conjectured
hidden 6D conformal symmetry. The tree-level four-point correlators would allow the
computation of CFT datas such as anomalous dimensions of non-BPS operators, some of
which has been studied recently utilising the results of correlators in tensor multiplet [45,
46]. The complete tree-level results would also allow the construction of loop corrections
using analytical conformal bootstrap and unitarity methods. The loop corrections for
amplitudes in 6D (2, 0) supergravity are of particular interest, since the theory is anomalous
only if we have the right matter content. The study of the anomaly in flat-space amplitudes
in 6D (2, 0) supergravity was explored in [47]. It will be very interesting to extend these
ideas to the holographic correlators in AdS3 × S3. Finally, four-point correlators with
special multiple particle operators in tensor multiplet have been recently studied in [46],
and interesting structures were found, it is interesting to study analogous correlators but
now involving operators in gravity multiplet.
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