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1 Introduction

The study of properties of entanglement has had a profound impact on the study of
AdS/CFT, with its first and perhaps most important result being the Ryu-Takayanagi
(RT) formula [1] relating areas of boundary-homologous minimal surfaces in the grav-
ity theory to entanglement entropies of subregions in the boundary CFT. Recently, the
study of bulk minimal surfaces and their boundary dual quantities has generalized away
from the boundary-homologous requirement to the entanglement wedge cross section [2, 3].
Conjectures for the boundary dual of this so-called EW surface include entanglement of
purification [2, 3], logarithmic negativity [4], and odd entropy [5]. In the context of the
entanglement of purification, the conjectured duality has been generalized to multipartite
and conditional cases and tested in a number of ways; see for example [6–12].

A further conjectured dual to the entanglement wedge cross section is the reflected
entropy,1 first proposed in ref. [13].2 This proposal relates the area of the entanglement
wedge cross section to the area of a RT surface in a “doubled” geometry that holographically
corresponds to a canonical purification of the original entanglement wedge. Consequently,
the area of the EW surface is given by the entanglement entropy of a boundary subregion
in the canonically-purified state. In refs. [14–16], this proposal was generalized to the
multipartite case. In particular, in all three generalizations, the multipartite entanglement

1An intriguing possibility is that all of the correspondences proposed thus far coincide in an appropriate
limit (e.g., as GN → 0) or for an appropriate class of states.

2This proposal is natural, in that the doubled spacetime automatically includes a surface of twice the
area of the entanglement wedge cross section as a RT surface of the double of the boundary subregion,
and the doubling scheme is further highly suggestive of the so-called “canonical purification/double” of a
quantum state. The correspondence is further supported by a replica calculation performed in ref. [13].
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wedge cross section maps onto a RT surface in a replicated geometry that consists of copies
of the entanglement wedge. The number of copies needed depends on number of parties
(i.e., boundary subregions) in the original wedge.

This replication will be the central topic studied in this work. In the previous con-
structions, the focus was on generating a single replicated geometry on which a single,
specific multipartite EW surface could be converted into (a fraction of) a RT surface. This
naturally leads to the question of whether multiple different EW surfaces corresponding
to different multipartite reflected entropies can all be converted into distinct RT surfaces
on a single replicated geometry. In this case, as the replicated geometry would obey the
holographic entanglement entropy inequalities studied in refs. [17–20], one would obtain
potentially novel inequalities relating the EW surface areas of the original geometry.

In this work, we answer this question in the affirmative. Beginning with an entangle-
ment wedge for some fixed set of boundary subregions, one can construct a larger manifold
on which certain RT surfaces correspond to EW surfaces for different numbers of boundary
parties. The larger manifold is constructed out of copies of the original wedge and its CPT
conjugate, in a manner we will make explicit. This construction allows us to prove new,
nontrivial inequalities relating EW surfaces of different party numbers, e.g., eqs. (3.5), (3.8),
and (3.11).

The organization of this paper is as follows. In section 2, we review the relevant back-
ground on multipartite entanglement wedge cross sections and the replication techniques
referenced above. In section 3, we work through an explicit construction of a replicated
geometry that converts bipartite, tripartite, and four-partite EW surfaces into RT surfaces.
Using our construction, we are able to demonstrate new inequalities — among EW surfaces
of different party number — that are derivable from holographic entanglement entropy in-
equalities on the replicated geometry. In section 4, we generalize our construction to make
it applicable to arbitrary numbers of parties and spacetime dimensions. Finally, in section 5
we conclude with connections to existing replicated geometry methods and comments on
future research directions.

2 Background and definitions

LetM be an asymptotically locally AdS (alAdS) manifold in d+ 1 spacetime dimensions
that is holographically dual to a state of a CFT in d spacetime dimensions, which we can
think of as existing at the boundary of the bulk alAdS spacetime, ∂M. For simplicity,
suppose that M is static or that it possesses a maximal spacelike slice that is a moment
of time reflection symmetry. Let Σ denote this slice (or choose a maximal spacelike slice
if M is static) and let A ⊆ ∂Σ be a closed subregion on the boundary of M. In this
setting, the RT formula gives a simple expression for the leading contribution to the von
Neumann entropy of the CFT’s reduced state on A [1]. Let m(A) denote the smallest-area
(d− 1)-dimensional minimal surface contained in Σ that is homologous to A (or one such
surface if there are several with the same minimum area). Then the RT formula reads

S(ρA) = |m(A)|
4GN

+ (subleading), (2.1)
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Figure 1. The Cauchy surface Σ with entanglement wedge (blue) bounded by the given RT surface
(red) and containing the multipartite entanglement wedge cross section (green) for: [Left] n = 4
boundary regions and d = 2, with the part of the partition of ∂WABCD that contains A, denoted
Ã, additionally shown in dashed purple. [Right] n = 3 boundary regions A, B, and C in a CFT of
spacetime dimension d = 3.

where we use |·| to denote surface area. Given A andm(A), we may define the entanglement
wedge of A, denoted WA, as the (d-dimensional) interior of A ∪m(A) on Σ in this static
or time-symmetric setting.3

Now suppose that A is the union of n ≥ 2 nonintersecting subregions:

A = A1 ∪ · · · ∪ An, Ai ∩Aj = ∅ when i 6= j. (2.2)

Intuitively speaking, the n-partite entanglement wedge cross section, which we denote by
ΓA1···An , is the smallest-area (d−1)-dimensional minimal surface that is anchored to m(A)
and that partitions off n subsets of WA, each of which is connected to a single boundary
component Ai. In more precise language, let Ã1, . . . , Ãn be a partition of A ∪ m(A) such
that ∪n

i=1Ãi = A ∪m(A), Ai ⊆ Ãi, and any pair of distinct regions Ãi and Ãj only possibly
meet at their boundaries (in other words, ãi ∩ ãj = ∅ for any open subsets ãi ⊂ Ãi and
ãj ⊂ Ãj whenever i 6= j). Then, minimizing over all choices of partitions Ã1, . . . , Ãn,
ΓA1···An is the smallest-area (d−1)-dimensional minimal surface contained within WA such
that ΓA1···An∩m(A) = ∪n

i=1∂Ãi and that is homologous to A∪m(A). A couple of examples
are illustrated in figure 1. Also notice that ΓA1···An = ∅ is a possibility, occurring when
the entanglement wedge consists of n disconnected components.

Given ΓA1···An , its area defines the quantity EW (A1 : · · · : An) in analogy with the RT
formula (2.1),

EW (A1 : · · · : An) = |ΓA1···An |
4GN

. (2.3)

In the case of two boundary regions, there is substantial evidence [13] that, to leading
order,

EW (A : B) = 1
2SR(A : B), (2.4)

3Note that our entanglement wedge should be denoted as the homology region corresponding to our
boundary subregions, as our entanglement wedge is, strictly speaking, the intersection of the entanglement
wedge proper with the given time slice.
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where SR(A : B) is the reflected entropy of the reduced state on AB. For finite-dimensional
Hilbert spaces4 HA and HB, a straightforward definition of SR is as follows: let ρAB be
a density matrix in L(HAB), and choose orthonormal bases of HA and HB so that we
can write

ρAB =
∑

ii′jj′

ρii′jj′ |i〉〈i′|A ⊗ |j〉〈j′|B (2.5)

for a collection of matrix elements ρii′jj′ . The canonical purification of ρAB is a pure state
on a doubled Hilbert space HAA′BB′ , with HA′

∼= HA and HB′
∼= HB, given by

|Ψ〉 =
∑

ii′jj′

√
ρii′jj′ |i〉A|i′〉A′ |j〉B|j′〉B′ . (2.6)

The state |Ψ〉 has the property that ρAB = TrA′B′ |Ψ〉〈Ψ|. The reflected entropy is then
defined as SR(A : B) = S(ρAA′) or, written in a more symmetric way,

SR(A : B) = 1
2 [S(ρAA′) + S(ρBB′)] , (2.7)

where ρAA′ = TrBB′ |Ψ〉〈Ψ| and ρBB′ = TrAA′ |Ψ〉〈Ψ|.
Given a reduced CFT state ρAB that has an entanglement wedge WAB, it has been

argued that the holographic dual of its canonical purification is constructed by taking
a CPT-conjugate copy of the wedge, WA∗B∗ , and gluing it to WAB along m(AB) and
m(A∗B∗), with the canonical purification itself being supported on the CPT-doubled space
AA∗BB∗ [13]. When A∪B 6= ∂Σ and A and B do not share any portions of their boundaries
(and if ΓAB is nonempty), it follows that the components of ΓAB and ΓA∗B∗ join up to form
closed minimal surfaces without boundary, since ∂ΓAB lies on m(AB). If A ∪B makes up
the entire conformal boundary or the boundaries of A and B touch, then ΓAB and ΓA∗B∗

can join to form boundary-anchored minimal surfaces, or they may already individually be
surfaces without boundary in the bulk. In all cases, it therefore follows that the two cross
sections ΓAB and ΓA∗B∗ join up to form minimal surfaces that are homologous to AA∗

and BB∗, i.e., RT surfaces, and so it is pictorially clear that eq. (2.4) holds. (See figure 2
for examples.)

The key idea from the holographic construction above that we wish to focus on is that
the bulk-anchored cross section ΓAB is realized as a conventional boundary-homologous
minimal surface on a larger replicated manifold. Alternatively, according to the holographic
dictionary, EW (A : B) is realized as a conventional holographic entanglement entropy.
Similar constructions, such as those described in refs. [14, 15], map multipartite cross
sections to minimal surfaces in even larger manifolds. However, these constructions are only
ever guaranteed to compute EW (A1 : A2 : · · · : An) alone as an entanglement entropy. Our
goal, which we take up in the following section, will be to construct a replicated manifold
on which a substantial family of m-partite EW surfaces are simultaneously realized as
entanglement entropies for all 1 < m ≤ n.

Although it is not directly relevant to the construction that we will pursue, for the sake
of completeness we note that EW (A1 : · · · : An) is similarly conjectured to be proportional

4See ref. [13] for a careful discussion of the continuum CFT case.
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Figure 2. Doubling WAB and gluing along m(AB) produces the geometry that is holographically
dual to the canonical purification of ρAB . [Top] Two disjoint boundary regions for a state that con-
tains a black hole in the bulk. ΓAB and its CPT conjugate join up to form two disjoint closed loops
that are together homologous to AA∗. [Bottom] Two boundary regions that share a boundary. ΓAB

and its CPT conjugate join up to form a boundary-anchored geodesic that is homologous to AA∗.

to a multipartite version of reflected entropy in the boundary CFT [14]. However, less work
has been done to precisely establish the correspondence as compared to the bipartite case.

While we focus on the static or time reflection-symmetric cases here, in principle there
is no obstruction to working with a fully time-dependent spacetime M. In such a setting,
the minimal RT surface is replaced by the extremal Hubeny-Rangamani-Takayanagi (HRT)
surface [21], and the entanglement wedge is a (d+ 1)-dimensional bulk spacetime domain
of dependence [22]. Nevertheless, within the covariant construction, one can still pick out
a preferred bulk Cauchy surface that contains the HRT surface (a maximin surface [23]) so
that cross sections may be computed and the gluing may be carried out according to the
methods outlined above [14].

3 Construction and inequalities for four parties

3.1 Four-party construction

Before presenting our general algorithm for extracting inequalities among EW surfaces of
general party number, it will be illuminating to first consider a concrete example. Let us
take a CFT in 1 + 1 dimensions, dual to an asymptotically AdS3 bulk, and identify four
subregions on a spacelike slice of the boundary, which we label as A, B, C, and D, defining
an entanglement wedge W depicted in figure 3. We will require that the four subregions
be chosen such that W is in the fully-connected phase, and for simplicity let us further
assume that A, B, C, and D are each comprised of a single, simply-connected interval on
the boundary.
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Within W , we can identify various multiparty entanglement wedge surfaces, e.g., bi-
partite surfaces like EW (AB : CD), tripartite surfaces like EW (AB : C : D), and the
four-partite surface EW (A : B : C : D). We would like to reinterpret the areas of these var-
ious EW surfaces as a holographic entanglement entropy, which will allow us to construct
new inequalities among the entanglement wedge cross sections. To do so, let us replicate
our original entanglement wedge W , with the ultimate goal of constructing a larger space-
time in which the cross sections are transformed into RT surfaces. The Israel junction
conditions imply that we can glue together spacetimes along extremal codimension-one
surfaces in general spacetime dimension [13, 24]. For the static, (2+1)-dimensional case at
hand, this means that we can form a spacelike slice of a larger geometry by gluing together
copies of spacelike regions along the same geodesic in the two copies.

Let us take four copies of W , labeled W 1 through W 4, as well as two additional copies
labeled W 2′ and W 3′ . To allow for a bulk theory containing fermions or charged matter,
let the fields in even-numbered copies (W 2, W 4, and W 2′) be CPT conjugates of the
odd-numbered copies.

We write the bulk geodesic that connects an endpoint of A to the adjacent one of B
as (A,B), etc., and will write an identification of a given geodesic (E,F ) in wedge U with
the corresponding one in wedge V as U (E,F )←→ V . From our six copies of W , let us build a
single geometry by making the following identifications, depicted in figure 3:

W 1 (A,B)←→ W 2

W 2 (B,C)←→ W 3

W 3 (C,D)←→ W 4,

(3.1)

along with
W 1 (B,C)←→ W 2′

W 1 (C,D)←→ W 2′

W 2′ (A,B)←→ W 3

W 2 (C,D)←→ W 3′

W 3′ (A,B)←→ W 4

W 3′ (B,C)←→ W 4.

(3.2)

The end product is a connected manifold, where one of the boundaries is formed by the
disjoint union of A1A2, A2′A3, A3′A4, D1D2′ , D2D3′ , and D3D4 along with six copies
of the geodesic segment (D,A), where we write Ai for the copy of A in wedge W i and
analogously for the other regions.

We construct our final spacetime by taking M0 and its CPT conjugate M∗0 and gluing
them along all of the corresponding copies of the (D,A) geodesic (the blue edges in the
figures). The result is a Cauchy surface for a spacetime M whose only boundaries are
closed loops made of copies of the original boundary subregions of W ; see figure 4. A
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glue along geodesics

Figure 3. The entanglement wedge of A,B,C,D is replicated and glued to form a manifold M0
on which multipartite entanglement wedge cross sections are mapped to (A,D)-anchored geodesics.
For illustration, the surface corresponding to EW (A : B : C : D) is mapped to a geodesic that
subtends A1A2A3′

A4B3′
B4C2C3C3′

C4D2D3′ (shown in green), and the surface corresponding to
EW (A : B : CD) is mapped to a geodesic that subtends A1A2C1C2′

D1D2′ (shown in orange).

consequence of this construction is that the surface corresponding to EW (A : B : C : D)
in W becomes, in the replicated-and-glued geometry M0, a single geodesic anchored to
two different copies of (D,A) that passes through W 1, W 2, W 3, and W 4. Other geodesics
can be identified in M0 that correspond to various bipartite and tripartite entanglement
wedge cross sections; see figure 5. In fact, M0 contains RT surfaces corresponding to all
two-, three-, and four-party EW surfaces that respect the ordering of the parties A, B, C,
and D. The correspondences between various RT and EW surfaces still hold in M as they
did in M0.

The construction that we have proposed here can be thought of as a compromise
between minimizing the number of copies and symmetry. A minimum of four copies (W 1

through W 4) are needed to obtain the four-party EW surface as a RT surface. We then
introduced two additional copies (W 2′ andW 3′) in order to obtain the two- and three-party
EW surfaces. In principle, at least one RT surface for each two- and three-party EW would
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Figure 4. M0 and its CPT conjugateM∗
0 are glued along the open (A,D) geodesics to form the final

manifold M on which the geodesics that correspond to EW surfaces of the original entanglement
wedge are closed loops.

have been obtainable had we introduced only one of W 2′ or W 3′ ; however, using all of
the copies as described above ensures that the boundary components of M0 that consist
of bulk geodesics are only made up of copies of the (D,A) geodesic. In particular, this
structure lets us straightforwardly generalize the construction to higher party numbers, as
we describe in section 4. We come back to the question of other possible gluing schemes
in section 5.

3.2 Inequalities

Let us use the four-party construction detailed in section 3.1 to derive new inequalities
among EW surfaces. These new inequalities are direct consequences of relationships be-
tween various entanglement entropies computed on the replicated geometry M . Since M
is topologically a sphere with fourteen punctures, as one can see from figure 4, a complete
characterization of all potential EW relations derivable from this construction would re-
quire implementation of the fourteen-party holographic entropy cone,5 which would not be
tractable [17, 20]. Instead, it will be useful — and will give a flavor of the power of this
construction — to consider new EW inequalities that we can derive from three notable
entanglement relations: subadditivity (SA), strong subadditivity (SSA), and monogamy of
mutual information (MMI). We will give a single example of each in turn; while this is by

5The holographic entropy cone is defined as the conical region in the space of von Neumann entropies of
all subsystems, whose faces are defined by entanglement inequalities satisfied either by all quantum states
— e.g., SA and SSA — or holographic states, e.g., MMI [18].
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Figure 5. (A,D)-anchored geodesics on M0 that correspond to all EW surfaces achievable with
our construction, with surfaces of different types shown as shades of different colors. The (inte-
ger multiple of the) EW that each geodesic’s length computes is indicated. [Top] The four-party
EW (A : B : C : D) surfaces. [Middle] Three-party surfaces. [Bottom] Two-party surfaces.
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no means exhaustive, it will suffice to illustrate the types of inequalities generable using
this method.

First, let us consider SA:

S(R1R2) ≤ S(R1) + S(R2). (3.3)

Identifying R1 and R2 with various choices of regions on the boundary of M , we obtain
new inequalities upper-bounding the four-party EW surface in terms of various two- and
three-party quantities. Choosing

R1 = A4A3′(A4A3′)∗D3D4(D3D4)∗B4B3′(B4B3′)∗C2C3C4C3′(C2C3C4C3′)∗

R2 = A3A2′(A3A2′)∗
(3.4)

and translating eq. (3.3) into EW surfaces (see figure 6), we find

EW (A : B : C : D) ≤ 2EW (A : BCD) + EW (AB : C : D). (3.5)

Let us next consider how to obtain new EW relations from SSA:

S(R1R2R3) + S(R2) ≤ S(R1R2) + S(R2R3). (3.6)

Taking
R1 = A4A3′(A4A3′)∗B4B3′(B4B3′)∗C2C3C4C3′(C2C3C4C3′)∗

R2 = D3D4(D3D4)∗

R3 = A3A2′(A3A2′)∗,

(3.7)

we find a new relation among two-, three-, and four-party EW surfaces (see figure 6):

EW (A : B : C : D) + 2EW (ABC : D) ≤ EW (A : BC : D) + EW (AB : C : D). (3.8)

Finally, let us turn to MMI. Unlike SA or SSA, MMI is not satisfied for general
quantum states, but holds holographically in the large-N limit [18]. The statement of
MMI is

S(R1) + S(R2) + S(R3) + S(R1R2R3)− S(R1R2)− S(R2R3)− S(R3R1) ≤ 0. (3.9)

The left-hand side of eq. (3.9) equals I3(R1:R2:R3), the tripartite mutual information.
Taking R1,2,3 as follows,

R1 = A2′A3(A2′A3)∗

R2 = C1C2′(C1C2′)∗

R3 = D1D2′(D1D2′)∗,

(3.10)

implies another new inequality among two-, three-, and four-party EW quantities (see
figure 6):

EW (A:B:CD) + 2 [EW (A:BCD) + EW (C:DAB) + EW (D:ABC)]
≤ EW (A:B:C:D) + EW (A:BC:D) + 2EW (AB:CD).

(3.11)
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Notably, while we proved an upper bound on the four-party EW surface via SSA in eq. (3.8),
we find a lower bound on the four-party EW in eq. (3.11).

It is unknown whether the inequalities in eqs. (3.5), (3.8), and (3.11) are tight. To
establish tightness, one would need to find holographic states saturating these inequalities,
a task we leave to future study. A further open question is to what degree these inequalities
are true only for holographic states or for quantum states more generally. If these inequal-
ities are true only for holographic states, they provide yet more constraints that quantum
states must satisfy in order to potentially possess a semiclassical gravity dual. These novel
inequalities are of particular interest because they mix party number, e.g., bounding the
four-party EW surface in terms of its two- and three-party counterparts.

4 General construction for an arbitrary number of parties

In this section, we generalize our construction for n ≥ 2 parties. Doing so would allow us,
in principle, to derive yet more inequalities, for greater numbers of parties, analogous to
those in section 3. Such a process would ultimately form a cone among the holographically
allowed EW quantities (in analogy with the holographic entropy cone). While for brevity
we will not list more inequalities in this section, we will present the general construction
for arbitrary party number. The construction is an extension of the four-party case dis-
cussed in section 3, and so its assembly has a similar intuitive motivation: introduce a
minimal number of copies of the entanglement wedge so that EW surfaces for all party
numbers are realized as RT surfaces, while ultimately maintaining a certain amount of
geometric symmetry.

Let A1, A2, . . . , An be an ordered list of nonintersecting, simply-connected boundary
subregions with an entanglement wedge W that is in the fully-connected phase. The
output of our construction will be a manifold that consists of copies of W and its CPT
conjugate W ∗, glued together along minimal surfaces, on which RT surfaces correspond to
EW surfaces in W . The EW surfaces obtained in this way are the m-party cross sections
for all partitions of the ordered list A1, A2, . . . , An into m groups for 2 ≤ m ≤ n. In other
words, we obtain EW (α1 : · · · : αm) for all partitions

α1 = A1A2 · · ·Aq1

α2 = Aq1+1 · · ·Aq2

...
αm = Aqm−1+1 · · ·An

(4.1)

where 1 ≤ q1 < q2 < · · · < qm−1 < n.

4.1 Construction for 2+1 dimensions

We first consider the case where W is two-dimensional. Let us assume that A1, A2, . . . , An

are ordered sequentially around the boundary and, for now, assume that n is even. Denote
the geodesic that connects an endpoint of Ai to an endpoint of Ai+1 by (i, i + 1). The
algorithm for constructing the extended manifold M0 is as follows:

– 11 –
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D1D20
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C2C3

C30C4

S(R1)/2

S(R2)/2

S(R1R2)/2
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MMI

Figure 6. EW surfaces for the choices of Ri in eqs. (3.4), (3.7), and (3.10) (prior to the final
doubling of the manifold using the CPT conjugate), where we use SA, SSA, and MMI, respectively,
to derive the inequalities in eqs. (3.5), (3.8), and (3.11).
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1. Take n copies ofW that we labelW 1,W 2, . . . ,W n, as well as n−2 more copies that we
denote by W 2′ , . . . ,W (n−1)′ . Moreover, suppose that even-numbered copies are CPT
conjugates of odd-numbered copies so that the following identifications are possible.

2. Connect each copy W i to W i−1 by making the identification

W i (i−1,i)←→ W i−1

as well as to W i+1 by making the identification

W i (i,i+1)←→ W i+1

for each 2 ≤ i ≤ n − 1. W 1 and Wn do not have these first and last identifications,
respectively.

3. Connect each primed copy W i′ to the unprimed copy W i+1 by gluing along

W i′ (1,2)←→W i+1

W i′ (2,3)←→W i+1

...

W i′ (i−1,i)←→ W i+1

as well as to the unprimed copy W i−1 by gluing along

W i′ (i,i+1)←→ W i−1

W i′ (i+1,i+2)←→ W i−1

...

W i′ (n−1,n)←→ W i−1

for each 2 ≤ i ≤ n− 1.

The result is a connected manifold, M0, that is topologically a disc with punctures. The
exterior boundary of M0 is the disjoint union of A1

1A
2
1 and Ai′

1A
i+1
1 for 2 ≤ i ≤ n − 1,

Aj
nA

(j+1)′
n for 1 ≤ j ≤ n − 2 and An−1

n An
n, as well as the geodesic boundary (n, 1)q on

each copy for 1 ≤ q ≤ n and (n, 1)i′ for 2 ≤ i ≤ n − 1. As before, we use Aq
k to denote

the boundary subregion Ak on copy W q, and analogously we use (i, i + 1)q to denote the
geodesic (i, i+1) on copy W q. The interior boundaries are closed loops that are the unions
of two or four copies of the same boundary region Ai for 2 ≤ i ≤ n− 1.

This particular construction guarantees that the original surface in W corresponding
to EW (A1 : · · · : An) becomes a geodesic inM0 that is anchored to (n, 1)1 and (n, 1)n. This
geodesic passes through each unprimed copy sequentially, and its segment on each tile W i

— that is, each copy of the original entanglement wedge — subtends Ai
i. Upon doubling

M0 by gluing it to its CPT conjugate M∗0 along all of the (n, 1) boundaries, this geodesic

– 13 –
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Figure 7. [Left] An example of segments of the surface corresponding to EW (α1 : · · · : αm) on
a single tile that subtend the collections of boundary subregions αi and αj , with i < j. [Right]
An inconsistent configuration; the blue and green segments cannot both be minimal if the dashed
parts have different length. If they have exactly the same length, then we can redefine one of the
segments by letting it run along the other’s dashed component.

becomes a closed, boundary-homologous minimal curve, or in other words, a RT surface.
The choice of n being even ensures that this gluing preserves parity consistently across the
final manifold.

In fact, there are in total 2n − 2 such geodesics on M0 — one for each tile, primed
or unprimed — that start and end on copies of (n, 1) and that correspond to the n-party
EW . Begin by picking a starting tile, on which the geodesic’s segment subtends A1. The
geodesic then passes through (1, 2), and its next segment on the next tile subtends A2, and
so on until n segments have been accumulated.

By extension, we see that any m-party EW surface for a partition of the form (4.1)
will map onto a geodesic that starts and ends on a boundary geodesic (n, 1) (possibly on
the same tile). On the starting tile, the geodesic’s segment subtends α1; on the next tile,
its segment subtends α2; and so on up to αm. The condition that the partition itself retain
the ordering of the boundary subregions ensures that the geodesic never intersects itself,
even if it visits the same tile multiple times.6 See figure 7 for illustration. Therefore, after
the final doubling, we see that these m-party EW surfaces end up corresponding to closed
boundary-homologous geodesics.

We initially assumed that n was even so that parity could be preserved across M0 and
M∗0 when they are joined. In the case where n is odd, we can avoid any inconsistencies
by performing two doublings. First, let M1 be the manifold obtained by gluing the tile
Wn in M0 to W 1 in M∗0 along (n, 1). In other words, we start by joining M0 and M∗0
in a different way. Then, take a CPT-transformed copy M∗1 and glue it to M1 along all
the remaining (n, 1) geodesics as before. The final result is a larger, redundant manifold
on which there are twice as many RT surfaces in correspondence with a given EW surface
in comparison to the case when n is even. The only exception to this count is for those
curves with endpoints on (n, 1)n in M0 and (n, 1)1 in M∗0 , which become joined when M1
is formed (and hence have doubled length compared to when n is even).

6It is technically possible, in a finely-tuned setup, that the geodesic could overlap with itself over some
non-zero length, although this does not change the final conclusion.
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Figure 8. A three-dimensional entanglement wedge for three boundary regions in the fully-
connected phase. Its bounding RT surface must be partitioned into components that connect
sequential pairs of boundary subregions, analogously to how geodesics connect pairs of boundary
subregions in two dimensions. For illustration, the component π1,2 connecting A1 to A2 is shaded.

4.2 Higher dimensions

Our results generalize straightforwardly to higher dimensions. For d > 2, the boundary
subregions do not in general inherit a unique ordering from the topology of the boundary
manifold, but we can choose such an ordering arbitrarily. For any such choice, we can
construct the replicated geometry M0 — and the final doubling to M — via the algorithm
described in section 4.1. As before, for simplicity we require either a static geometry or one
that possesses a time-symmetric Cauchy slice, so that we can apply RT rather than HRT.

Instead of geodesics, we glue along the minimal codimension-two surfaces
(codimension-one within a spatial slice) that are their analogues in the higher-dimensional
geometry, forming a partition of the boundary of the entanglement wedge, as depicted in
figure 8. To characterize this partition, first split each ∂Ai into two simply-connected com-
ponents ai and bi. The partition then consists of n pieces π1,2, π2,3, . . . , πn,1 such that, for
each 1 ≤ i ≤ n, πi,i+1 ⊃ ai, bi+1, πi,i+1 6⊃ aj , bj+1 for j 6= i, and ∪n

i=1πi,i+1 = m(A1 · · ·An)
(with all indices defined mod n so that n+ 1 ≡ 1). The pieces πi,i+1 are the analogues of
the geodesics (i, i + 1) in section 4.1; see figure 9. This gluing can be accomplished con-
sistently with the junction conditions since these surfaces are extremal, as shown in detail
in refs. [13, 24]. No shock wave in the energy-momentum tensor occurs at the junction
(though gravitational wave shocks in the Weyl tensor can appear in the nonstatic case if
the null geodesic congruence launched from the surface has nonzero shear).

All of the inequalities among EW surfaces derivable from our construction — e.g.,
those we obtained in section 3.2—carry over to the higher-dimensional case. However,
these relations are more powerful in higher dimensions, since they hold under any chosen
ordering of the boundary regions. There may be other constructions possible, beyond that
presented in section 4.1, that apply for d > 2 but not for d = 2. Such constructions could
conceivably allow for the derivation of yet more exotic inequalities among the EW surfaces,
but we leave the investigation of this possibility to future work.
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Figure 9. Formation of M0 from four copies of a tripartite entanglement wedge in three (spatial)
dimensions. Copies of the wedge are joined along shaded parts of m(ABC) that have the same color.

5 Discussion

Given a n-party entanglement wedge W , we described how to construct a larger manifold
out of copies of W and its CPT conjugate on which the areas of certain RT surfaces
compute (integer multiples of) the areas of multipartite cross sections of W . Entanglement
entropy inequalities on the final manifold then translate to novel EW inequalities among
entanglement wedge cross sections with nonuniform party numbers. For a fixed ordering
of W ’s boundary regions, the construction gives the EW surfaces for all n-partite and
lower ordered partitions of the boundary regions, cf. eq. (4.1). The geometric aspects of
our construction work in arbitrary numbers of dimensions; however, the correspondence
between EW and entropic quantities in the boundary in arbitrary dimension is less fully
understood. While we presented our construction assuming that W was a time-symmetric
Cauchy surface or part of a static geometry, there do not appear to be obstructions in
principle to extending it to dynamical settings, although the details and boundary entropic
interpretation remain to be elucidated.
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This particular construction was originally motivated by the replicated construction
given by one of the authors in ref. [14]. This latter construction similarly computes the
n-party EW as an entanglement entropy on a larger manifold. It is simpler in that it requires
fewer copies of W ; however, it is only designed to obtain the n-party EW . In comparison,
the construction described in the present work can be thought of as an extension that uses
a minimal number of additional copies of W to obtain a large class of EW surfaces with
varying party number as RT surfaces on a single final manifold.

Other constructions that use different numbers of copies of W and that have different
gluing schemes are of course possible as well. For example, the topological proposal of
ref. [15] contains another such construction that computes the n-party EW . In terms of
the language of section 4, the construction in ref. [15] uses only the unprimed copies of W ,
which are then directly glued together to form a manifold without bulk geodesic boundaries
instead of introducing a CPT double (M∗0 ). The construction is elegant in that is uses a
minimal number of copies of W , but most EW surfaces aside from the n-party case do not
map onto RT surfaces, or at least not minimal surfaces without self-intersections.

Based on the above observations, it is plausible that there exist other schemes that
could overcome the ordering constraint on the EW surfaces that are simultaneously achiev-
able with the construction described in this work. These schemes could, e.g., use more
copies of W , leave more bulk geodesics as open boundaries prior to doubling, etc. The
investigation of more elaborate constructions is a possible line of future research.

Another potential area of investigation is to study whether replacing EW in these
inequalities with the various candidate boundary duals of EW can result in inequalities
that can be proven for all quantum states; this a potential method for differentiating
between these candidate boundary dual quantities.

A final interesting direction to pursue is to construct a holographic entropy cone that
combines the entanglement entropy inequalities [17, 20] with the EW inequalities. This
is in particular motivated by so-called “mixed” inequalities, involving both EW quantities
and normal entanglement entropies, suggesting that such a cone is not a simple tensor
product of an EW cone and an entanglement entropy cone. This new cone would therefore
be strictly more descriptive than the original holographic entropy cone and could lead to
novel insights about the forms of entanglement permitted in holographic states.
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