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1 Introduction

The use of symmetry is the most basic and most useful of tools available to a theoretical
physicist. All symmetries of a classical physical system do not automatically graduate to
quantum mechanical symmetries of the corresponding quantum system. These are called
anomalies. Consider a physical system governed by a classical action Scl. Scl is invariant
under a symmetry group G, i.e. δGScl = 0. If the quantum mechanical action Sq, ob-
tained by quantising the classical system, does not respect symmetry under G (δGSq 6= 0),
then G is said to be anomalous. Anomalies can be discrete or continuous, and anomalies
can arise in global or gauge symmetries. Global anomalies can have interesting physical
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consequences. These may mean e.g. that classical selection rules are not obeyed in the
quantized theory and that some processes disallowed by the classical analysis may actually
take place in the quantum world. Anomalous global symmetries are also very useful tools
for non-pertubative analysis of quantum field theories. Anomalous gauge symmetries, on
the other hand, are indicators of sickness and need to be canceled in order to have a phys-
ically consistent theory. Anomalies have had a rich history and we point to the excellent
reviews [1, 2] for further details.

The discussion of anomalies in the past, with due justification, have principally fo-
cussed on relativistic quantum field theories. In more recent times, there has been work
on anomalies in the context of non-relativistic systems [3–10]. In our paper, we initiate
a discussion of anomalies for the case of field theories living on null hypersurfaces, also
called Carrollian field theories1. Our explorations in this paper will be limited to confor-
mal cousins of Carrollian field theories and the question of breaking of conformal invariance
at a quantum level. In other words, we will discuss Weyl symmetry and Weyl anomaly in
the context of two-dimensional field theories living on null surfaces.

Weyl, Carroll, BMS. Classically, Weyl invariance of a system is the invariance of the
classical action under a local rescaling of the metric

gµν(x) 7→ e2Ω(x)gµν(x). (1.1)

For generally covariant theories, conformal invariance is a direct consequence of Weyl in-
variance. Conformal transformations are the ones that change the metric upto some Weyl
scaling. Hence for theories that are Weyl invariant, conformal symmetry would arise as
residual symmetries after fixing a background choice. A direct consequence of Weyl invari-
ance is the vanishing of the trace of the energy-momentum tensor of a field theory. Weyl
symmetry is anomalous in the quantum regime and this leads to a breaking of conformal
symmetry. In two dimensions, where the underlying symmetry of conformal field theories
enhance to two copies the Virasoro algebra, the Weyl anomaly is proportional to the central
charge multiplied by the Ricci scalar of the manifold the CFT lives on. We will review all
of this basically textbook material briefly in the next section.

Our focus in this paper is on theories which are Carrollian instead of Poincare in-
variant. The wonderfully named Carroll group (after Lewis Carroll of Alice’s Adventures
in Wonderland fame) is obtained by a priori a rather bizarre contraction of the Poincare
group, where the speed of light goes to zero [12, 13]. Interestingly, these theories encompass
theories living on null hypersurfaces. Two of the most important classes of null hypersur-
faces that we encounter in physics are the null boundary of asymptotically flat spacetimes
and the event horizons of generic black holes. If we are interested in defining field theories
that live on null surfaces, it is of interest that the degrees of freedom of the field theory
don’t leave this null surface at a later time. Any massive degree of freedom cannot travel

1See, however, [11] for a discussion of anomalies in 2d Warped CFTs. These turn out to be Carrollian
CFTs for scaling exponent z = 0. We are however interested in z = 1 theories, that can be obtained as an
ultra-relativistic limit of 2d CFTs, as we go on to explain in the paper.
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at the speed of light and hence would not do the job. So it is natural to consider massless
Carrollian theories, which are tantamount to conformal Carrollian theories.

For asymptotically flat spacetimes, the asymptotic symmetry groups at null infinity
are the Bondi-Metzner-Sachs (BMS) groups [14, 15], which in dimensions three [17, 18]
and four are infinite dimensional groups. After a long hiatus since its original discovery
in the context of four dimensional spacetimes in the late 1960s, the theoretical physics
community has now woken up to the realisation that the BMS group should be omnipresent
in the discussions of scattering theory in quantum field theories defined in asymptotically
flat spacetimes. Following the lead of Strominger [19], a large volume of literature has
built up linking the BMS group with soft theorems and memory effects in a triangle of
relations. We refer the interested reader to [20] for a detailed discussion on these issues
and related references.

The conformal Carrollian field theories that we are discussing in this work are
also BMS-invariant field theories. This stems from the isomorphism between these
groups [21–23]. This isomorphism was discovered following an even more startling ob-
servation of the isomorphism between Galilean conformal algebras and the BMS alge-
bra [24]. Field theories defined on these Carrollian backgrounds suffer from the absence of
a non-degenerate metric; the theories are defined on a fibre-bundle structure rather than
a (pseudo-) Riemmannian one. Our task of investigating Weyl symmetry would thus be
complicated by this feature. In what follows, we shall be exclusively focussing on conformal
Carrollian or BMS invariant theories in 2 spacetime dimension.

BMS applications: flat holography and tensionless strings. For the sake of the
uninitiated reader, let us pause to give a bit of context to why we are interested in inves-
tigating theories that seem very exotic at the outset.

Holography in Flat Spacetimes. The Holographic Principle [25, 26] has changed the
way we look at quantum gravity and AdS/CFT [27] is by far the most impressive of our
present tools to attack this age-old problem of bringing quantum mechanics and gravity
together. Although there has been spectacular progress in understanding Anti de Sitter
spacetime and its dual field theories, particularly in the context of the original Maldacena
correspondence between string theory on AdS5× S5 and N = 4 Super Yang Mills theory
in d = 4, progress has surprisingly been much less impressive in non-AdS scenarios. The
question of holography for asymptotically flat spacetimes, a subject that is clearly more
relevant to the real world, especially for applications in say astrophysics and astrophysical
black holes, has been receiving some attention more recently. Some of the earlier works
include [24, 28–30]. More recent attempts based on holography of the celestial sphere have
built up following Strominger et al. These are somewhat tangential to our work here and
we shall refer the reader to [20] again for a more detailed exposition.

In 3d asymptotically flat bulk and two dimensional boundary theory, progress has been
somewhat better. The symmetry group in question is BMS3. Following the assertion that
the putative dual theory has to be a BMS-invariant 2d field theory in [24, 31], a body of
work has emerged, a selected, non-exhaustive list of which includes [32–52]. The study of 2d
BMS invariant field theories is thus important to building on this proposed correspondence.
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Dual theories to generic black holes. As we remarked earlier, Carrollian structures
appear on generic null surfaces. Hence if we are looking at building field theories which live
on generic black hole horizons, it is natural to consider Carrollian theories. (See [53] for a
detailed analysis of the emergence of Carrollian structures on black hole event horizons.)
Also, as per our previous argument, if we want degrees of freedom of the theories not
to leave the null surface, we must necessarily consider massless or conformal Carrollian
theories. There have been attempts at understanding these horizon BMS symmetries in
recent times e.g. in [54]. BMS-invariant field theories thus can act as putative duals for
generic black holes. A derivation of the entropy of black holes based on the BMS-Cardy
formula [32] can be found in [55, 56].

The theory of tensionless strings. Understanding the ultra-high energy regime
of string theory has been long sought-after, especially after the work of Gross and
Mende [57, 58] who found substantial simplifications in string scattering in this domain.
This is the regime explored by the tensionless limit of string theory, where the worldsheet
of the string becomes null and the worldsheet metric becomes degenerate. In this limit,
the worldsheet conformal symmetry is replaced by BMS3, which now arises as residual
symmetries of the tensionless worldsheet [59, 60]. So the theory of tensionless strings is or-
ganised by this underlying BMS algebra in the same way as usual string theory is dictated
by worldsheet conformal invariance [61]. This is thus another very important place where
two dimensional BMS invariant theories play a pivotal role 2. It is important to stress here
that the BMS symmetries that arise here are gauge symmetries, as opposed to the case of
putative dual theories to flatspace, where BMS symmetries are global symmetries of the
field theory.

Galilean CFTs. As mentioned above, there is a rather startling duality between non-
relativistic systems (where speed of light c→∞) and ultra-relativistic or Carrollian systems
(c → 0) in spacetime dimensions d = 2 [24]. In general dimensions, both systems have
degenerate metrics and hence non-Riemannian background structures. These structures
are fibre bundles. In the case of non-relativistic systems, the base of the fibre bundle is the
time direction IRt and the fibres are (d− 1) dimensional spatial slices IRd−1 [71, 72]. The
Carrollian limit interchanges the base and the fibre [21]. In the case of d = 2, the base and
fibre are both one dimensional and interchanging them does not change the background
symmetry algebra. So Carrollian and Galilean algebras in d = 2 are isomorphic and the
isomorphism extends to their conformal counterparts, the Carrollian conformal and the
Galilean conformal algebras. Hence, results constructed for 2d Carrollian CFTs are valid
(upto an exchange of spatial and temporal directions for coordinate dependent answers)
for 2d Galilean CFTs and vice-versa.

2It is of interest to note here that some rather unique phenomena in the quantum tensionless strings
have been recently unearthed [62–64], a lot of which is based on a better understanding of the underlying
BMS algebra.
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Weyl anomaly and BMS. The Weyl anomaly has had a very rich history dating back
almost five decades3 and has found applications in diverse fields such as quantum gravity,
black hole physics, inflationary cosmology, string theory and statistical physics. We are now
concerned about the form of Weyl symmetry and Weyl anomaly in 2d BMS-invariant field
theories, which as stated above, would be useful for understanding aspects of holography
in asymptotically flat 3d spacetime, or for tensionless string theories. It is possible that
this construction would find similar applications in logarithmic corrections to entropies of
Flat space cosmologies in 3d [65], aspects of inflationary cosmology, and even statistical
physics. Our constructions of the Weyl symmetry and its anomaly in this paper would be
purely from the field theoretic side. One can envision that a holographic computation in flat
spacetimes, following the lead of [66] and with suitable modifications for the asymptotically
flat case, would reproduce the answers we obtain in this paper.

Outline for the rest of the paper. A brief outline of the paper is as follows. In
section 2, we revisit the well-known features of Weyl invariance and Weyl anomaly in the
context of 2d CFTs, in an effort to set notation and set the stage for our explorations of
Weyl symmetry in BMS invariant field theories. In section 3, we give a brief review of the
BMS algebra and 2d field theories invariant under the BMS3 algebra, which we will call
BMS field theories or BMSFTs for short. We review some basic notions that we would
require for calculations with 2d BMSFTs later in the paper. In section 4, we introduce TT
OPEs and delta functions on our Carrollian backgrounds and show how the delta function
leads to Ward identities and correlation functions which match and generalise answers
in [41]. Armed with these formulae, we compute the BMS Weyl anomaly in section 5. We
conclude with a summary and discussions about current and future directions of further
research in section 6. A number of appendices contain more details about our computations
that are omitted in the main body of the paper.

2 A quick recap: conformal symmetry and Weyl anomaly

As is very well known, the power of conformal symmetry in two dimensions is greatly
enhanced by the underlying infinite dimensional Virasoro algebra (two copies of it):

[Ln,Lm] = (n−m)Ln+m + c

12(n3 − n)δn+m,0,

[L̄n, L̄m] = (n−m)L̄n+m + c̄

12(n3 − n)δn+m,0, (2.1)

[Ln, L̄m] = 0.

Here Ln and L̄n are the holomorphic and anti-holomorphic generators of the algebra re-
spectively, whereas c and c̄ are the central charges. For the purposes of this section, we
shall take c = c̄. We present a brief discussion of the c 6= c̄ case at the end of the section.

We now investigate Weyl invariance and its implications on the stress energy tensor.
Consider a field theory coupled to some non-trivial background described by the action

S[Φ, gµν ] =
∫
d2x
√
−gL[Φ, gµν ]. (2.2)

3For a wonderful memoir of the development of Weyl anomaly, the reader is pointed to [67].
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Variation of the action with respect to the metric is

δS[Φ, gµν ] = 1
2π

∫
d2x
√
−g Tµνδgµν , where Tµν = 2π√

−g
δS

δgµν
(2.3)

is the energy-momentum (EM) tensor. Under Weyl transformation (1.1), the metric
changes by an overall scale factor. For an infinitesimal Weyl transformation, this is just
δgµν = 2Ω(x)gµν . The variation of the action under the infinitesimal Weyl scaling becomes

δS[Φ, gµν ] = − 1
2π

∫
d2x
√
−g 2 Ω(x)Tµµ. (2.4)

Thus, we see that field theories invariant under Weyl transformations have Tµµ = 0. This
vanishing of trace of EM tensor is a defining feature of conformal field theories.

Although the above statement defines CFTs at classical level, the trace of EM tensor
suffers from an anomaly and no longer vanishes in quantum theories. This is because of
the presence of central charge in Virasoro algebra. The central charge captures the effect of
soft breaking of conformal symmetry in the presence of a scale. When the theory lives on a
curved background, the curvature introduces a scale in the theory. In d = 2, the presence
of the central charge c in the algebra leads to the trace anomaly

〈Tµµ〉 = c

12R. (2.5)

Here R is the Ricci scalar of the background manifold. Below we derive this result.

Derivation of trace anomaly. To set the stage for our calculations for the Weyl or
trace anomalies in BMS invariant field theories later in the paper, we now briefly review
a derivation of the same in 2d CFTs [68]. We will do this for CFTs on backgrounds that
are infinitesimally close to flat space. For this purpose, consider a CFT on a complex
plane parametrized by coordinates (z, z̄). The Operator Product Expansion (OPE) of the
holomorphic (T (z) ≡ Tzz(z)) and antiholomorphic (T̄ (z̄) ≡ Tz̄z̄(z̄)) parts of EM tensor of
a 2d CFT are given by

T (z)T (z′) ∼ c

2(z − z′)4 + 2T (z′)
(z − z′)2 + ∂′T (z′)

(z − z′) + reg

T̄ (z̄)T̄ (z̄′) ∼ c̄

2(z̄ − z̄′)4 + 2T̄ (z̄′)
(z̄ − z̄′)2 + ∂̄′T̄ (z̄′)

(z̄ − z̄′) + reg (2.6)

where ‘reg’ denotes regular terms as (z, z̄) → (z′, z̄′). We will adopt the following short-
hands for the off-diagonal components of the EM tensor

T ≡ Tz̄z(z, z̄), T̄ ≡ Tzz̄(z, z̄), (2.7)

The components of the conservation equation ∂µTµν = 0 are

∂̄T + ∂T = 0, ∂T̄ + ∂̄T̄ = 0, (2.8)

Using the first of the above equations and TT OPE, we can write

∂∂′T T ′ = ∂̄∂̄′TT ′ = ∂̄∂̄′
(

c

2 (z − z′)4 + · · ·
)

= ∂̄∂̄′
(
c

12∂
2∂′
( 1
z − z′

))
. (2.9)
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Here T ′ is a shorthand for writing T (z′, z̄′). Using the delta function

∂̄
1

z − z′
= 2πδ(2)(z − z′, z̄ − z̄′), (2.10)

the above equation becomes

∂∂′T T ′ = πc

6 ∂̄
′∂2∂′δ(2)(z − z′, z̄ − z̄′), (2.11)

which implies
T T ′ = πc

6 ∂̄
′∂δ(2)(z − z′, z̄ − z̄′) . (2.12)

Similarly using the second conservation equation, T̄ T̄ OPE and an δ-function identity
similar to (2.10), we get

T̄ T̄ ′ = πc

6 ∂
′∂̄δ(2)(z − z′, z̄ − z̄′). (2.13)

Using the conservation equations and T T̄ OPE we can also show that T T̄ ′ ∼ reg. Then
the OPE of trace (Tµµ = 2(T + T̄ )) is

TµµT
′ν
ν = 4(T T ′ + T̄ T̄ ′) = 2πc

3
(
∂̄′∂δ(2)(z − z′, z̄ − z̄′) + ∂′∂̄δ(2)(z − z′, z̄ − z̄′)

)
. (2.14)

Now consider an infinitesimal Weyl transformation of the plane metric, i.e. δgµν = 2Ωδµν ,
where Ω(z, z̄) is small. We can expand 〈Tµµ〉g in Ω as

〈Tµµ〉g = 〈Tµµ〉δ + δ〈Tµµ〉δ + (higher order in Ω), (2.15)

where the subscript ‘g’ denotes that the expectation value is evaluated in a CFT on a
background metric gµν . From the definition, 〈Tµµ〉δ = 1

Z

∫
DΦe−STµµ, we can compute the

change in 〈Tµµ〉δ under an infinitesimal Weyl transformation δgµν = 2Ωδµν as

δ〈Tµµ〉δ = 1
Z

∫
DΦe−S

(
− δS

δgαβ
δgαβTµµ

)
= 1
Z

∫
DΦe−S

∫
d2z′

2π TµµT
′ν
νΩ′. (2.16)

Substituting the TµµT ′νν OPE (2.14) and simplifying, we get

δ〈Tµµ〉δ = 2πc
3

∫
d2z′

(
∂̄′∂δ(2)(z−z′, z̄−z̄′)+∂′∂̄δ(2)(z−z′, z̄−z̄′)

)
Ω′=−2c

3 ∂∂̄Ω. (2.17)

Now, since the anomaly arises from regulating short distance divergences, 〈Tµµ〉 is same for
all states in the theory. So 〈Tµµ〉 is equal to some geometric quantity of the background
metric, which must be local and dimension 2, i.e. the Ricci scalar R. The Weyl anomaly
vanishes on the plane due to translational invariance i.e. 〈Tµµ〉δ = 0. This is consistent with
the above argument. Now when we consider deformations away from the plane, starting
with a metric of the form:

gµν = e2Ωδµν ⇒ R = −8e−2Ω∂∂̄Ω ⇒ R ≈ −8∂∂̄Ω for infinitesimal Ω.

Putting all these together and (2.17) in (2.15), we can write the trace anomaly

〈Tµµ〉g = −2c
3 ∂∂̄Ω + (higher order in Ω) = c

12R. (2.18)

The above is of course very well known and basically text book material. But it is important
for us to keep this logical sequence in mind as we build towards a similar derivation of the
Weyl anomaly, now in the context of 2d field theories governed by a different symmetry,
i.e. the BMS3 algebra.
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Unequal central terms. We had assumed at the beginning of the section that we would
take c = c̄ in our derivations of the Weyl anomaly. Now let us briefly comment on the
choice and what happens if we choose unequal left and right central terms. From the point
of view of the 2d field theory, c 6= c̄ implies a violation of parity in the theory. From the
context of AdS3/CFT2, this shows up when one adds a gravitational Chern-Simons term
to the Einstein-Hilbert action. The resulting theory, called Topologically Massive Gravity,
is one where a diffeomorphism anomaly arises. The stress-energy tensor is not conserved
any more:

∇µTµν = k(c− c̄)gµνεαβ∂α∂σΓσµβ . (2.19)

In the above k is a constant and k(c− c̄) is the coefficient of the diffeomorphism anomaly.
This anomaly can be equivalently traded for a Lorentz anomaly:

Θµν −Θνµ = k(c− c̄)εµνR, (2.20)

where the improved stress tensor Θµν is no longer symmetric, but now does obey the
conservation equation ∇µΘµν = 0. It is clear that our earlier simple-minded derivation
of the Weyl anomaly would run into rough waters here. The expression for the Weyl
anomaly actually depends on the formulation. For a stress tensor that yields consistency
with Wess-Zumino conditions, the Weyl anomaly gets a correction proportional to c − c̄.
For a covariant stress tensor, constructed at the expense of not satisfying the Wess-Zumino
conditions, one get the same expression as (2.18), with c replaced by 1

2(c + c̄). Finally,
for a non-symmetric stress tensor where we have traded the gravitational anomaly for a
Lorentz anomaly, the Weyl anomaly is again the same as the covariant case, albeit that the
conservation equation now holds. We point the reader to [73, 74] for further details on this.

3 BMS field theories: a reminder of the basics

The asymptotic symmetries of flat spacetimes in three dimensions at the null boundary
I ±, which is topologically IRnull × S1, is encapsulated in the BMS3 algebra:

[Ln, Lm] = (n−m)Ln+m + cL
12n(n2 − 1)δn+m,0,

[Ln,Mm] = (n−m)Mn+m + cM
12 n(n2 − 1)δn+m,0, (3.1)

[Mn,Mm] = 0.

Here Ln and Mn generate diffeomorphisms of the S1 at I ± (superrotations) and angle
dependent translations of the null direction (supertranslation) respectively. cL and cM are
central terms which for Einstein gravity become cL = 0, cM = 3

G [18].
Our prescription of Minkowskian holography draws heavily on the evolution of

AdS/CFT from the seminal work of Brown and Henneaux [16], who famously computed
the asymptotic symmetries of AdS3 to obtain two copies of the Virasoro algebra that have
since been understood as the global symmetries of the dual 2d field theory. Following this
lead, it has been proposed [24, 31] that the dual of 3d Minkowski spacetimes is a 2d field
theory living on I ± which has BMS3 as its underlying symmetry. We shall call these field
theories BMS field theories or BMSFTs in short.
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3.1 Null cylinder and null plane

Since we would like a holographic understanding of Minkowski spacetimes, and we have just
mentioned that the BMSFT sits on I ± which has the topology of cylinder, a convenient
representation of the generators of the BMS3 algebra in terms of differential operators is
the so-called cylinder representation:

Ln = ieinσ(∂σ + inτ∂τ ), Mn = ieinσ∂τ . (3.2)

where σ is the angular coordinate of the S1 and τ parametrises the null direction IRnull.
We will also find it particularly useful to speak of the plane representation where the field
theory is defined on IRnull × IR. Here the S1 in the cylinder representation is unwrapped.
The generators here take the form

Ln = −xn+1∂x − (n+ 1)xnt∂t, Mn = xn+1∂t. (3.3)

The map from the null cylinder to the null plane is

t = −iτeiσ, x = eiσ. (3.4)

The energy momentum tensors of the 2d BMSFT can be defined through the genera-
tors [69]:

T1(x, t) =
∑
n

[
Ln + (n+ 2) t

x
Mn

]
x−n−2, T2(x, t) =

∑
n

Mnx
−n−2. (3.5)

One can also find the expressions of the EM tensor on the cylinder and these are related
to each other by the BMS version of the Schwartzian derivative [70]:

T1(σ, τ) =
∑
n

(Ln − inτMn)e−inσ + cL
24 , T2(σ, τ) =

∑
n

Mne
−inσ + cM

24 . (3.6)

We would be interested in building representations of the BMS algebra in analogy with the
Virasoro algebra and hence would construct highest weight representations. The states of
the theory are labeled by quantum numbers that are the eigenvalues of L0 and M0:

L0|hL, hM 〉 = hL|hL, hM 〉, M0|hL, hM 〉 = hM |hL, hM 〉. (3.7)

As is evident from the algebra, the operators Ln and Mn for n > 0 lower the hL eigenvalue
of a state. We will demand that this spectrum is bounded from below. This leads to a
definition of a primary state (|hL, hM 〉p):

Ln|hL, hM 〉p = 0, Mn|hL, hM 〉p = 0, ∀ n > 0. (3.8)

Towers of states called the BMS modules can be built by the action of the raising operators
L−n and M−n on each of the primary states of the spectrum.
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3.2 BMS from CFT

Asymptotically flat spacetimes can be obtained from asymptotically AdS spacetimes by
taking the radius of AdS to infinity. It is thus expected that the symmetries map into each
other in this singular limit. At the level of the asymptotic symmetry algebras, this limit is
perceived as an Inönü-Wigner contraction:

Ln = Ln − L̄−n, Mn = ε(Ln + L̄−n), (3.9)

where L and L̄ represent the left and right moving Virasoros of the 2d CFT. One can
think of this limit in terms of the spacetime coordinates. The boundary topology of global
AdS is a cylinder and the limit takes us to the null boundary of flat space I ± which as
we discussed earlier is a null cylinder IRnull × S1. The limit can thus be thought of as
an ultra-relativistic (UR) boost. In terms of spacetime coordinates, if we start with the
Virasoro generators on the cylinder

Ln = einw∂w, L̄n = einw̄∂w̄, (3.10)

where w = τ + σ, w̄ = τ − σ, the UR limit is

σ → σ, τ → ετ, ε→ 0. (3.11)

This is a limit where the speed of light in this 2d field theory goes to zero and hence
the theory is a non-Lorentzian theory. This closing of lightcones is a peculiar feature and
these theories have been dubbed Carrollian theory. It is easy to check that the limit (3.11)
on (3.10) naturally generates the linear combinations of (3.9) and results in the expressions
of the BMS generators we presented earlier in (3.2). Using this map (3.11), the map
between the eigenvalues of L0, L̄0 and L0,M0 simply becomes

hL = h− h̄, hM = ε(h+ h̄). (3.12)

We mentioned a peculiar duality in d = 2 between the ultra-relativistic or c → 0 and
the non-relativistic or c → ∞ theories in the introduction. It is instructive to check that
the limit diametrically opposite to (3.11) [71]:

σ → εσ, τ → τ, ε→ 0 (3.13)

that send the speed of light to infinity instead of zero results in the linear combinations [75]:

Ln = Ln + L̄n, Mn = ε(Ln − L̄n), (3.14)

which again yield the BMS from two copies of the Virasoro. The generators that arise from
contracting (3.10) using the non-relativistic (NR) limit (3.13) are

Ln = ieinτ (∂τ + inσ∂σ), Mn = ieinτ∂σ. (3.15)

which is identical to (3.2) with an interchange of τ ↔ σ. The limit from 2d CFT to BMS3
gives us a vital tool for cross-checking answers obtained by just using symmetries of BMS.
Many of the answers, e.g. the expressions of the BMS EM tensors, can be easily arrived at
when we look at the corresponding CFT expressions and carefully implement the limit.

– 10 –
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3.3 From Carroll to BMS

Generic null manifolds are endowed with a Carrollian structure that replaces the Rieman-
nian structure due to the lack of a non-degenerate metric. The basic geometric quantities
that locally describe a Carrollian manifold are a no-where vanishing vector field ζ and a de-
generate metric h̄. As we remarked earlier in our introduction, BMS structures arise when
we look at the conformal version of Carrollian symmetry. In this case, we can look at the
conformal isometries of Carrollian manifolds we have just defined [21–23]. The conformal
structures can be defined on these manifolds by

Lξζ = λ1ζ, Lξh̄ = λ2h̄, (3.16)

where L is the Lie derivative of these fields under a co-ordinate transformation by ξ.
The standard flat Carroll structure, arising from a generalisation of usual Minkowskian
spacetime, is given by a topology R× Rd. In a coordinate chart (u, xi) with i = 1, . . . d

ζ = ∂

∂u
, h̄ = δijdx

idxj . (3.17)

Solving the above equations (3.16) in the case of the flat Carroll structure (3.17), one can
find an expression for the vector field ξ. The individual independent components close to
what is called the conformal Carroll algebra. When space and time dialate in the same way
(in the language above this amounts to λ2/λ1 = −2), as is expected when one is computing
the asymptotic symmetries of a relativistic spacetime, the symmetry algebra can be shown
to be isomorphic to the BMS algebra. The process of UR contractions mentioned above
also lead us to the same vector fields. Thus the limiting analysis is a rather nice way
of understanding such manifolds and the physics on these manifolds, starting out from
relativistic physics and usual Riemannian manifolds.

4 Warming up: delta functions, Ward identities and correlators

Before we delve into the details of the calculation of the Weyl anomaly for BMSFTs, in
this section, we touch upon some of the ingredients we would require for our calculations.
We begin by presenting the OPE of the BMS energy momentum tensors. A delta-function
identity would be required for the Weyl anomaly calculation. We would present such an
identity for Carrollian manifolds. As a check of our proposed identity, we would then
reproduce the Ward identities and the known form of the stress-energy two point function
of the 2d BMSFT. We will first present analysis on the null plane before indicating how
the same works for the null cylinder.

4.1 BMSFT on a null plane

We begin with a 2d BMSFT on a null plane which is a (1 + 1) dimensional flat Carrollian
background with topology IRnull × IR. Let t and x be the coordinates along IRnull and IR
respectively. We propose a representation of the delta function on a null plane:

∂t1∂x1G(t1, x1; t2, x2) = 2πδ(2)(t12, x12); G(t1, x1; t2, x2) = log(t12x12) (4.1)

– 11 –
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where xij = xi − xj . Now for our other basic ingredient, the BMS stress-tensor OPE. On
the null plane this reads

T1(t1, x1)T1(t2, x2) ∼ cL
2x4

12
− 2t12cM

x5
12

+ 2T ′1
x2

12
− 4t12T

′
2

x3
12

+ ∂x2T
′
1

x12
− t12(∂t2T ′1 + ∂x2T

′
2)

2x2
12

+ reg,

T1(t1, x1)T2(t2, x2) ∼ cM
2x4

12
+ 2T ′2
x2

12
+ ∂x′T ′2

x12
+ reg, (4.2)

T2(t1, x1)T2(t2, x2) ∼ reg.

Here we use the shorthand T ′ ≡ T (x2, t2). The above can be derived intrinsically from
the symmetries of the algebra or from the limit of the relativistic TT OPE. From this,
it is easy to derive the two-point correlation functions of the BMS EM tensor. These are
given by

〈T1(t1, x1)T1(t2, x2)〉 = cL
2x4

12
− 2t12cM

x5
12

, 〈T1(t1, x1)T2(t2, x2)〉 = cM
2x4

12
, (4.3)

while 〈T2T2〉 vanishes. Again, these can be derived entirely from the algebra of the gener-
ators (3.1). We shall now rederive these results from using the delta-function identity we
have proposed.

Ward identities and stress-energy correlators. In this part, we shall be adopting
techniques outlined in [41]. The calculations there were performed on the null cylinder.
Our formulation in this subsection would be on the plane, before moving onto the cylinder
in the next subsection for completeness. We also have a non-zero cL. So the results are
somewhat more general. We begin by considering a deformation to a 2d free BMSFT on
a Carrollian plane, described by an action S0, by sources µL and µM for the stress tensor
components :

Sµ = S0 −
∫
dtdx

[
µL(t, x)T1(t, x) + µM (t, x)T2(t, x)

]
, (4.4)

where we localize the sources at some point (t′, x′) as

µL(t, x) = εLδ
(2)(t− t′, x− x′), µM (t, x) = εMδ

(2)(t− t′, x− x′) . (4.5)

Here εL and εM are small expansion parameters. The expectation value of T1 in the µ-
deformed theory gives the 2-point correlators of T1 and T2 in the free theory as

〈T1(t, x)〉µ = 〈T1(t, x) exp
∫
dt′′dx′′

(
µL(t′′, x′′)T1(t′′, x′′) + µM (t′′, x′′)T2(t′′, x′′)

)
〉0

= 〈T1(t, x)〉0 + εL〈T1(t, x)T1(t′, x′)〉0 + εM 〈T1(t, x)T2(t′, x′)〉0 +O(ε2). (4.6)

Similarly for T2:

〈T2(t, x)〉µ = 〈T2(t, x)〉0 + εL〈T2(t, x)T1(t′, x′)〉0 + εM 〈T2(t, x)T2(t′, x′)〉0 +O(ε2). (4.7)

Now we defineM = 〈T2〉µ, N = 〈T1〉µ and expand in εL/M as

M =M(0) +M(1) + · · · , N = N (0) +N (1) + · · · , (4.8)
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whereM(n) ∼ O(εn) and so on. Then comparing with (4.6) and (4.7), we have

M(0) = 〈T2〉0, M(1) = εL〈T2T
′
1〉0 + εM 〈T2T

′
2〉0,

N (0) = 〈T1〉0, N (1) = εL〈T1T
′
1〉0 + εM 〈T1T

′
2〉0. (4.9)

Here we have reverted to the shorthand T1 ≡ T1(t, x), T ′1 ≡ T1(t′, x′), and so on. The
classical conservation equations in the free theory can be written as

∂tT2 = 0 → ∂tM(0) = 0, ∂tT1 = ∂xT2 → ∂tN (0) = ∂xM(0). (4.10)

To derive Ward identities we compute derivatives of 〈T1〉µ and 〈T2〉µ as follows. Let us first
consider the time derivative of 〈T2〉µ :

∂t〈T2〉µ = 〈(−∂tSµ)T2 + ∂tT2〉µ =
〈 ∫

dt′dx′
(
µ′L∂t(T2T

′
1) + µ′M∂t(T ′2T2)

)〉
µ
, (4.11)

where we have used ∂tS0 = 0 and a conservation equation ∂tT2 = 0. We use the OPEs (4.2)
to simplify ∂t〈T2〉µ further as

∂t〈T2〉µ =
〈∫

dt′dx′µ′L∂t

(
cM

2 (x− x′)4 + 2T ′2
(x− x′)2 + ∂x′T ′2

(x− x′) + reg

)〉
µ

=
〈∫

dt′dx′µ′L

[
cM
12 ∂t∂

2
x∂
′
x

( 1
∆x

)
− 2T ′2∂t∂x

( 1
∆x

)
+ ∂x′T ′2∂t

( 1
∆x

)]〉
µ

(4.12)

where ∆x = x− x′ and ∆t = t− t′. Using the delta function (4.1) as

∂t

( 1
∆x

)
= 2πδ(2)(∆t,∆x) ≡ 2πδ(2),

we get

∂t〈T2〉µ =
〈

2π
∫
dt′dx′µ′L

[
cM
12 ∂

2
x∂
′
xδ

(2) − 2T ′2∂xδ(2) + ∂x′T ′2δ
(2)
] 〉

µ

=
〈

2π
(
−cM12 ∂

3
xµL − 2∂x (T2µL) + µL∂xT2

)〉
µ
,

⇒ − 1
2π∂tM = cM

12 ∂
3
xµL + 2M∂xµL + µL∂xM. (4.13)

Thus we obtain the first Ward identity for the stress tensor component M = ∂t〈T2〉µ.
Expanding M as in (4.8) and using (4.5), the leading term gives a conservation equation
∂tM(0) = 0 and O(ε) terms give a Ward identity forM(1) as

− 1
2π∂tM

(1) = εL

[
cM
12 ∂

3
xδ

(2) + 2M(0)∂xδ
(2) + δ(2)∂xM(0)

]
. (4.14)

Now let us consider the time derivative of 〈T1〉µ :

∂t〈T1〉µ =
〈 ∫

dt′dx′
(
µ′L∂t(T1T

′
1) + µ′M∂t(T1T

′
2)
)

+ ∂tT1
〉
µ

(4.15)
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Using the form of the OPEs, the delta function (4.1), and the conservation equation
∂tT1 = ∂xT2 (details in appendix A.1), the above gives rise to our second Ward identity

1
2π (∂xM−∂tN ) = cL

12∂
3
xµL+2N∂xµL+µL∂xN+ cM

12 ∂
3
xµM+2M∂xµM+µM∂xM. (4.16)

Expanding N andM as in (4.8) and using (4.5), the leading term gives the conservation
equation ∂tN (0) = ∂xM(0) and O(ε) terms give a Ward identity for N (1) as

− 1
2π (∂tN (1) − ∂xM(1)) = εL

[
cL
12∂

3
xδ

(2) + 2N (0)∂xδ
(2) + δ(2)∂xN (0)

]
+ εM

[
cM
12 ∂

3
xδ

(2) + 2M(0)∂xδ
(2) + δ(2)∂xM(0)

]
. (4.17)

Now using the valuesM(0) = 0 = N (0) on a plane and the delta function (4.1), we integrate
the above Ward identities (4.14) and (4.17) to get

M(1) = εL
cM

2∆x4 , N (1) = εL

(
cL

2∆x4 −
2cM∆t

∆x5

)
+ εM

cM
2∆x4 . (4.18)

Comparing these with (4.9), we get the desired 〈TiTj〉 correlators as

〈T1(t,x)T1(t′,x′)〉= cL
2∆x4−

2cM∆t
∆x5 , 〈T1(t,x)T2(t′,x′)〉= cM

2∆x4 , 〈T2(t,x)T2(t′,x′)〉= 0.
(4.19)

These are of course in keeping with our initial observations (4.2) and hence a robust check of
the validity of our proposed delta function identity. The method above can be generalised
to compute arbitrary point correlation functions for BMS stress tensors on the null plane.

4.2 BMSFT on a null cylinder

We now present the analogous results of the analysis in the previous subsection for the case
of 2d BMSFTs on the null cylinder. The null cylinder is a flat Carrollian manifold with
topology IRnull × S1. Let τ be the null time coordinate along IRnull and σ ∼ σ + 2π be the
spatial coordinate parametrizing S1. Similar to the case of BMSFT on a null plane, we
need a representation of the delta function. A delta function on a null cylinder, introduced
in [41], is

∂τ∂σG(τ − τ ′, σ − σ′) = 2πδ(2)(τ − τ ′, σ − σ′);

G(τ − τ ′, σ − σ′) = log
[(
τ − τ ′

)
sin
(σ − σ′

2
)]
, (4.20)

with the normalization
∫
dτdσδ(2)(τ, σ) = 1. This delta function was already justified

in [41] by reproducing correlators of stress tensor components in a BMSFT on a null
cylinder, dual to Einstein gravity with cL = 0. However for completeness and for generic
theories with cL 6= 0, we briefly discuss the Ward identities and 2-point correlators of stress
tensor components in appendix A.2. The important results are listed below.
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TT OPE on cylinder:

T
(1)
1 T

(2)
1 ∼ cL

2s4
12
− cL

12s2
12
− 2cMτ12c12

2s4
12

+ 2cMτ12c12
24s2

12
+ 2T (2)

1
s2

12
− 2T (2)

2 τ12c12
s2

12

+ ∂σ2T
(2)
1

s12
− (∂τ2T

(2)
1 + ∂σ2T

(2)
2 )τ12c12

4s12
+ reg, (4.21a)

T
(1)
1 T

(2)
2 ∼ cM

2s4
12
− cM

12s2
12

+ 2T (2)
2
s2

12
+ (∂τ2T

(2)
1 + ∂σ2T

(2)
2 )

2s12
+ reg, (4.21b)

T
(1)
2 T

(2)
2 ∼ reg, (4.21c)

where we have defined T (i)
a ≡ Ta(τi, σi) for a = 1, 2, and sij ≡ 2 sin(σi−σj2 ), cij ≡ cot(σi−σj2 ),

τij = τi − τj . Here ‘reg’ denotes regular terms as (τ1, σ1)→ (τ2, σ2).

Ward identities:

− 1
2π∂τM = cM

12 ∂
3
σµL + 2M∂σµL + µL∂σM. (4.22)

− 1
2π (∂τN − ∂σM) = cL

12∂
3
σµL + 2N∂σµL + µL∂σN + cM

12 ∂
3
σµM + 2M∂σµM + µM∂σM.

As was stated before, these results generalise the analysis of [41] to non-zero values of cL.
The formulae would be useful when we derive the BMS version of the Weyl anomaly for
the BMSFTs on the null cylinder.

5 BMS-Weyl symmetry and trace anomaly

In this section, we study aspects of BMS-Weyl symmetry and trace anomaly in BMSFTs
in (1 + 1) dimensions. These theories live on Carrollian background spacetimes and we
will mostly focus on field theories coupled to flat Carrollian backgrounds, using zweibein
formulation (see appendix B for some details).

5.1 Weyl invariance and stress tensor

In relativistic CFTs, a consequence of conformal invariance is vanishing of the trace of the
stress tensor classically. Analogously in BMSFTs, the BMS-Weyl symmetry also leads to
vanishing of the trace of the stress tensor. To see this, consider a 2d BMSFT described by
an action S[φ, eaα] for some field φ(τ, σ) on a Carrollian background described by zweibeins
eaα(τ, σ). Here τ and σ are null time and spatial coordinates respectively. We define the
stress tensor in this theory as a variation of the action with respect to zweibeins as

Tαβ ≡
eαa
2e

δS

δeβa
, (5.1)

where e = det(eaα) is the determinant. In terms of zweibeins, the BMS-Weyl transformation
is given by

eaα → eΩ(τ,σ)eaα , eαa → e−Ω(τ,σ)eαa ; e→ e2Ω(τ,σ)e . (5.2)

The above definition is equivalent to the one in the existing literature [52, 83–85]. (See
appendix B for some further discussion on this.)
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For small Ω(τ, σ), we have an infinitesimal BMS-Weyl transformation δeαa = −Ωeαa
under which the action S[φ, eaα] changes as

δS =
∫
d2σ2 e eaαTαβδeβa = −2

∫
d2σ eΩTαα . (5.3)

Thus we see that invariance of the theory under BMS-Weyl transformation, i.e. δS = 0
leads to vanishing of the trace of the stress tensor.

5.2 Avoiding the diff anomaly

We saw briefly in section 2 that our discussions of the Weyl anomaly can be complicated by
the presence of a diffeomorphism anomaly in 2d CFTs which is reflected in the difference
between the central terms c− c̄. This is reflective of a violation of parity in the 2d theory.
In our discussions of 2d BMSFTs, we wish to also avoid the diffeomorphism anomaly in
our present considerations. In these 2d BMSFTs, there is no a priori notion of left and
right movers and hence perhaps it is somewhat unclear what one needs to do to avoid the
gravitational anomaly. Here we give an explanation of this from the point of the proposed
bulk dual, as well as some purely field theoretic arguments.

2d BMSFTs are putative duals to gravitational theories in 3d asymptotically flat space-
times. When one considers 3d Einstein gravity, the central charges of the dual BMSFT are
given by:

cL = 0, cM = 3
G
. (5.4)

We note here that Einstein gravity is a parity invariant theory. In order to get a theory
with a non-zero cL, one needs to add a gravitational Chern-Simons (GCS) term to the
Einstein-Hilbert action. The resulting theory, called Topologically Massive Gravity [76],
thus has an action

STMG = SEH + SGCS + Sbdy (5.5)

=
∫
d3x
√
−g

{
R+ 1

2µε
λµνΓρλσ

(
∂µΓσρν + 2

3ΓσµτΓτνρ
)}

+ Sbdy

where Sbdy is a boundary term put in to make the variational problem well defined [36, 37].
An asymptotic symmetry analysis of its boundary following with appropriate asymptoti-
cally flat boundary conditions [33] yields that the ASG is again given by the BMS3, where
now both central terms are switched on and are

cL = 3
µG

, cM = 3
G
. (5.6)

The GCS term clearly violates parity and induces a handedness in the theory. Hence in
terms of the dual BMSFT, the violation of parity is encoded in switching on a non-zero
cL. This is also clear from our discussions of the ultra-relativistic limit, where

cL = c− c̄, cM = ε(c+ c̄). (5.7)
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Finally, just from the point of view of the boundary theory, without evoking a dual bulk or
the existence of a limit, there is a clear hint of this condition. Let us envision a situation
where

cL = 24k, cM = 0 (5.8)

where k some constant. By an analysis of null vectors, it can be shown [33, 75] that in this
case, the BMS3 algebra reduces to a single copy of a Virasoro algebra. This is also known
as the chiral limit of BMS3 in literature, and clearly this is a limit where the resulting field
theory is purely chiral. This limit, from the point of view of the dual bulk, is where one
takes the double scaling limit

G→∞, µ→ 0, keeping fixed µG = 1
8k . (5.9)

The gravitational theory then reduces to just the GCS term and this is what is called
Chern-Simons gravity. The conjecture of CS gravity with asymptotically flat boundary
conditions being dual a chiral half of a 2d CFT is known as the Flatspace Chiral Gravity
conjecture [33]. For some further work on this, the reader is referred to [77–79].

The upshot of all this discussion is the fact that cL 6= 0 theories are naturally par-
ity violating and would lead to diffeomorphism anomalies in the 2d BMSFTs. This is a
complication that we will look to avoid in the current paper and will come back to in
future work.

5.3 BMS trace anomaly

For relativistic 2d CFTs coupled to non-trivial background, the trace of the stress tensor,
which vanishes classically, suffers from a quantum anomaly. This trace anomaly arises
because the underlying Virasoro symmetry algebra admits a central extension. We are
now interested in quantum field theories that are BMS invariant. The BMS3 algebra (3.1),
like the Virasoro, is centrally extended. The expectation is that these central extensions
in BMS3 algebra would lead to a trace anomaly in 2d BMSFTs. In what follows, we will
obtain expression for this BMS trace or Weyl anomaly.

As we saw in section 2, in relativistic CFTs, the trace anomaly can be computed by
considering an infinitesimal Weyl transformation of the flat background, i.e. δgµν = 2Ωδµν
and expanding the trace of the stress tensor in powers of Ω. We now proceed to obtain the
trace anomaly in 2d BMSFTs by doing an analogous computation. To do so, we consider
a 2d BMSFT on a flat Carrollian background described by zweibeins

eaµ = δaµ and eµa = δµa ,

where a = 1, 2 and µ = τ, σ are tangent space and spacetime indices respectively. (See
appendix B for more details on Carrollian geometry.) Consider that we are performing an
infinitesimal Weyl transformation of the flat Carrollian background:

eaα(τ, σ) = eΩ(τ,σ)δaα =⇒ δeaα(τ, σ) = Ω(τ, σ)δaα
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for Ω(τ, σ) small. Then in the quantum theory on a background described by eaα(τ, σ), the
expectation value of the trace of the stress tensor can be expanded in powers of Ω as

〈Tαα(τ, σ)〉e = 〈Tαα(τ, σ)〉δ + δ〈Tαα(τ, σ)〉δ +O(Ω2), (5.10)

where δ〈Tαα(σ)〉δ ∼ O(Ω) and the subscript e denotes that the quantity is evaluated
in the theory on a background described by eaα. Translational invariance implies that
〈Tαα(τ, σ)〉δ = 0 for a flat Carrollian background. The expansion of the trace becomes

〈Tαα(τ, σ)〉e = δ〈Tαα(τ, σ)〉δ +O(Ω2). (5.11)

Using the definition of the expectation value

〈Tαα(τ, σ)〉e = 1
Z

∫
Dφe−S[φ,eaα]Tαα(τ, σ)

and (5.3), we can compute the variation δ〈Tαα(τ, σ)〉δ under an infinitesimal Weyl trans-
formation δeaα(τ, σ) = Ω(τ, σ)δaα as

δ〈Tαα(τ, σ)〉δ = 1
Z

∫
Dφe−S[φ,δaα](−δS)Tαα(τ, σ)

= 1
Z

∫
Dφe−S[φ,δaα]Tαα(τ, σ)

∫
d2σ′ (−2)e(τ ′, σ′) eaβ(τ ′, σ′)T βρ(τ ′, σ′)δeρa(τ ′, σ′)

= 1
Z

∫
Dφe−S[φ,δaα]

∫
d2σ′2Tαα(τ, σ)T ββ(τ ′, σ′)Ω(τ ′, σ′), (5.12)

where we have used e = 1 for eaα(τ, σ) = δaα.
We know that the trace of the stress tensor vanishes classically. However in quantum

theory, the TααT
′β
β OPE is non-vanishing and leads to contact terms which contribute to the

anomaly, as can be seen from (5.12). Following a computation as in relativistic CFTs, we
now obtain the TααT

′β
β OPE using the OPEs of the stress tensor components and the stress

tensor conservation. The β = τ, σ components of the stress tensor conservation equation
∂αT

α
β = 0 are

∂τT
τ
τ + ∂σT

σ
τ = 0, ∂τT τσ + ∂σT

σ
σ = 0. (5.13)

From section 3, we have Tαα = T ττ+T σσ = 0 classically and T (cl)
1 = T τσ, T

(cl)
2 = T ττ = −T σσ.

However, in the quantum theory, anticipating a non-vanishing Tαα, we define

T τσ = T1, T ττ = T2 + Tαα
2 , T σσ = −T2 + Tαα

2 . (5.14)

Then the second conservation equation (5.13) can be written as

∂τT1 − ∂σT2 + 1
2∂σT

α
α = 0, (5.15)

which leads to a differential equation for Tαα(τ, σ)T ββ(τ ′, σ′) as

∂σ∂σ′TααT
′β
β = 4

(
∂σ∂σ′T2T

′
2 − ∂σ∂τ ′T2T

′
1 − ∂τ∂σ′T1T

′
2 + ∂τ∂τ ′T1T

′
1
)
. (5.16)

Here we have used the shorthand T1 ≡ T1(τ, σ), T ′1 ≡ T1(τ ′, σ′) and so on. The analysis
leading to the differential equation (5.16) for the TααT

′β
β OPE is generic for a BMS3 invariant

field theory on any flat Carrollian background. In subsequent sections, we focus on two
particular flat Carrollian backgrounds : a degenerate plane and a degenerate cylinder.
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5.4 Anomaly for null plane

We begin on the null plane, where the null time coordinate is given by t and the un-
wrapped spatial coordinate by x. The BMS generators are given by (3.3). The relevant
delta-function identity and the EM-tensor OPEs we would be using are given by (4.1)
and (4.2) respectively. We will be turning off cL in order to avoid complications arising out
of diffeomorphism anomalies and the possible non-conservation of the stress tensor, as dis-
cussed earlier. Armed with this information, we now write the differential equation (5.16)
for the TααT

′β
β OPE in (t, x) coordinates:

∂x∂x′Tαα(t, x)T ββ(t′, x′) = 4
(
∂t∂t′T1(t, x)T1(t′, x′)− ∂t∂x′T1(t, x)T2(t′, x′)

− ∂x∂t′T1(t, x)T2(t′, x′) + ∂x∂x′T2(t, x)T2(t′, x′)
)
. (5.17)

Substituting the central terms in the OPEs (4.2)in (5.17) and simplifying, we get

∂x∂x′Tαα(t, x)T ββ(t′, x′) = cM
3 (∂t∂2

x + ∂x∂t′∂x − ∂t∂2
x)∂2

x′

( 1
x− x′

)
(5.18)

Using the delta function (4.1) and ∂xG = (x− x′)−1, ∂x′G = −(x− x′)−1, this gives

Tαα(t, x)T ββ(t′, x′) = −2πcM
3 ∂x∂x′δ(2)(∆t,∆x), (5.19)

where ∆t = t− t′ and ∆x = x−x′. Under an infinitesimal Weyl transformation of the null
plane δeaα = Ωδaα, we have from (5.12)

δ〈Tαα(t, x)〉δ =
∫
dt′dx′2Tαα(t, x)T ββ(t′, x′)Ω(t′, x′). (5.20)

Substituting the Tαα(t, x)T ββ(t′, x′) OPE (5.19) and simplifying, we get

δ〈Tαα(t, x)〉δ = 4π
3 cM∂

2
xΩ. (5.21)

Further using (5.11), we get the trace anomaly in a 2d BMSFT on a slightly curved Carroll
background described by eaα(t, x) = eΩ(t,x)δaα, with Ω(t, x) small, as

〈Tαα〉e = 4π
3 cM∂

2
xΩ + (higher order in Ω). (5.22)

5.5 Anomaly for null cylinder

On the cylinder, we use the delta function identity (4.20) and the form of the TT OPE (4.21).
Now to solve the differential equation (5.16), we substitute the central terms in the
OPEs (4.21) in (5.16) to get

∂σ∂σ′TααT
′β
β = 2cM

[
∂τ∂τ ′

(
−2∆τcσσ′

s4
σσ′

+ ∆τcσσ′

6s2
σσ′

)
−∂σ∂τ ′

(
1
s4
σσ′
− 1

6s2
σσ′

)
−∂σ′∂τ

(
1
s4
σσ′
− 1

6s2
σσ′

)]
.

where sσσ′ ≡ 2 sin(σ−σ′

2 ), cσσ′ ≡ cot(σ−σ′

2 ), ∆τ = τ − τ ′. Simplifying further using the
Green’s function in (4.20), we get

∂σ∂σ′Tαα(τ, σ)T ββ(τ ′, σ′) = cM
3
(
−∂τ∂4

σ∂σ′G+ ∂τ ′∂3
σ∂

2
σ′G− ∂τ∂3

σ∂
2
σ′G

)
, (5.23)
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which upon using the delta function (4.20) gives the Tαα(τ, σ)T ββ(τ ′, σ′) OPE

Tαα(τ, σ)T ββ(τ ′, σ′) = −2π
3 cM∂σ∂σ′δ(2)(τ − τ ′, σ − σ′). (5.24)

Substituting this OPE in the variation of the trace (5.12) under an infinitesimal BMS-Weyl
transformation of the cylinder δeaα = Ωδaα, we get

δ〈Tαα(τ,σ)〉δ =−4π
3

∫
d2σ′

[
cM∂σ∂σ′δ(2)(τ−τ ′,σ−σ′)

]
Ω(τ ′,σ′) = 4π

3 cM∂
2
σΩ(τ,σ). (5.25)

Using 〈Tαα(τ, σ)〉δ = 0, and the expression for δ〈Tαα(τ, σ)〉δ above in (5.11), we get the trace
anomaly in a 2d BMSFT on a slightly curved background described by eaα(τ, σ) = eΩ(τ,σ)δaα,
to first order in Ω:

〈Tαα(τ, σ)〉e = 4π
3 cM∂

2
σΩ(τ, σ). (5.26)

This expression for the anomaly on the null cylinder (5.26) is the same as on the null plane.
Our main result of this paper is the above expression for the BMS Weyl anomaly.

5.6 Transformation of the partition function

Now we turn to the transformation of partition functions under Weyl transformation. We
first revisit the case for usual 2d CFTs, where the Liouville action arises as a response of
Weyl variations to matter conformal theories. We then go on to considering 2d BMSFTs,
where we will end up with a Carrollian version of Liouville theory, which is interestingly
distinct from the BMS-Liouville theories that have been studied in the literature [35, 80].

Liouville theory arising from 2d CFT partition function. Consider two metrics
related to each other by

ḡαβ = e2Ω(x)δαβ . (5.27)

We choose to work with a flat Euclidean background and perturbations around it. Variation
of the metric with respect to the Weyl factor changes the partition function Z[ḡ,Φ] as

1
Z

∂Z

∂Ω = 1
Z

∫
DΦe−S

[
− ∂S

∂ḡαβ

∂ḡαβ
∂Ω

]
= 1
Z

∫
DΦe−S

[
−
√
ḡTαα

]
. (5.28)

Now if we use the expression for trace anomaly given by equation (2.5), then

1
Z

∂Z

∂Ω =
√
ḡ

(
c

6π R̄ − µ
)

= − c

6π
√
g
(
2∇2Ω + µe2Ω

)
. (5.29)

We can solve the above equation by integrating the partition function with respect to the
Weyl factor. This relates the partition functions on different backgrounds which differ by
the Weyl factor Ω(x). The solution is

Z[ḡ] = Z[g] exp
[
−
∫
d2σ
√
g

(
µe2Ω − c

6πg
αβ∂αΩ∂βΩ

)]
. (5.30)

The action inside the exponential governs the dynamics for the Weyl factor. With some
redefinitions of the parameters we can write the above as

Z[ḡ] = Z[g] expSL, (5.31)
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where the Liouville action SL is given by

SL(Ω, g) =
∫
d2σ
√
g

{
c

6πg
αβ∂αΩ∂βΩ− Λe2Ω

}
. (5.32)

Here the second term in the action is the Liouville potential.

Carrollian Liouville theory. We now study the transformation of the BMSFT partition
function under a Weyl transformation. Let Z[e] be the partition function for a 2d BMSFT,
with an action S[φ, eaα], on a Carrollian background described by eaα(τ, σ). Then under
an infinitesimal BMS-Weyl transformation e′aα = eΩeaα; δe′aα = Ωeaα, the partition function
changes as

1
Z

δZ

δΩ = 1
Z

∫
Dφe−S[φ,e′a

α ]
(
− δS
δΩ

)
= 1
Z

∫
Dφe−S[φ,e′a

α ]
(
− δS

δe′αa

δe′αa
δΩ

)
= 1
Z

∫
Dφe−S[φ,e′a

α ] (2 e′ T ′αα) = 2 e′〈Tαα〉e′ . (5.33)

Choosing eaα = δaα, i.e. a cylinder gives e′ = eΩ, and using the expression for the anom-
aly (5.26), we get

δ

δΩ logZ = 8π
3 cM∂

2
σΩ. (5.34)

This change in Z can be obtained by variation of a local action with respect to Ω(τ, σ) as

logZ[e′]− logZ[e] = 8π
3 cM

∫
d2σ ∂σΩ∂σΩ, (5.35)

which can also be written as

Z[e′] = Z[e]eScL ; ScL = 8π
3 cM

∫
d2σ ∂σΩ∂σΩ. (5.36)

The action SL is the Carrollian analogue of the Liouville action (5.32) which arises in
relativistic CFTs. It can be shown that this action is invariant under BMS3 transfor-
mations [82]. Like in the usual 2d CFT case, where the potential term appears due to
renormalisation, one can envision that a similar term may arise in this context as well. In
this case, the action would take the form

ŜcL =
∫
d2σ

(
cM∂σΩ∂σΩ− µe2Ω). (5.37)

It is interesting to note that the action here is different from the ones obtained by the flat
limit of the Liouville CFT. Liouville theory has been used in the boundary dynamics of
AdS3 at the classical level [35, 80]. The flat versions have been used to provide a similar
holographic description of 3d flat spacetime. It would be of interest to figure out what this
new version leads to in terms of flat holography.
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6 Conclusions

Summary. In this paper, we have provided a first derivation for a quantum anomaly in
a BMS invariant field theory. Specifically, we have found the form of the Weyl anomaly
or equivalently the trace anomaly in 2d BMSFTs. For this we needed the form of the
OPEs of the stress tensors defined in these field theories and importantly a delta-function
identity for the Carrollian manifolds on which these theories are defined. We proposed
such an identity for the BMSFTs defined on a null plane and showed that the identity
correctly reproduced the stress energy correlation functions. While working on the null
cylinder, we used an identity proposed earlier in [41], which had also produced n-point
correlation functions of the BMS EM tensors, which were also checked by a limit from
relativistic answers as well as matched with a holographic computation in 3d flat space
using the Chern-Simons formulation. Our calculations on the null cylinder yielded more
general results, for e.g. the Ward identities, as unlike in [41], we chose to work with non-
vanishing cL. For purposes of computing the Weyl anomaly, without contamination from
potential diffeomorphism anomalies, we then worked with cL = 0. The final expression for
the BMS Weyl anomaly for both the plane and the cylinder for small perturbations away
from a flat Carrollian manifold gives:

〈Tαα(τ, σ)〉e = 4π
3 cM∂

2
σΩ(τ, σ). (6.1)

Finally, we looked at the change in the BMS partition functions under Weyl transformations
and found a Carrollian version of the Liouville action (5.36). This was different from the
ones found earlier in e.g. [35].

Our analysis would be of use not only for studies of Minkowskian holography, through
these 2d BMSFTs, but to non-relativistic systems due to the duality between Galilean and
Carrollian systems in d = 2, and also to the study of tensionless strings.

Discussions. There are several directions of research that require immediate attention.
First and foremost, it would be important to understand geometrically what the form
of the BMS-Weyl anomaly is and whether it can be given a form similar to (the second
equality of) (2.18). Our present investigations indicate that one can indeed give an answer
analogous to (2.18) in terms of the geometric data of the Carrollian manifold. This will be
presented in upcoming work.

Our principle follow-up work would be to generalise our construction to theories with
cL 6= 0. As described in the paper, these theories would be parity violating and would
have a diffeomorphism anomaly, which in turn would lead to a non-conservation of our EM
tensor. In relativistic theories, this anomaly can be traded for a Lorentz anomaly making
the EM tensor asymmetric. In our non-Lorentzian boundary theory, the EM tensor is
already asymmetric, so perhaps the natural avenue to take is to ensure the conservation
of the EM tensor and figure out where this leads and whether the resulting “improved”
stress tensor has something akin to Lorentz anomaly, perhaps a Carroll anomaly. We wish
to also investigate consistent (as in consistent with Wess-Zumino conditions) and covariant
versions of the Weyl anomaly to figure out potential changes in our formulae.

– 22 –



J
H
E
P
0
7
(
2
0
2
1
)
1
0
1

It would also be good to re-derive our results in other methods, e.g. using the Fujikawa
procedure of path integrals. These methods would all need to be re-examined however as we
have an underlying degenerate metric structure and a non-Riemmannian manifold where
these field theories live. We are also interested in a holographic check of our anomaly using
methods similar to [66], now for 3d asymptotically flat spacetimes. Some of the above are
works in progress.

Our version of the Carrollian Liouville action throws up very interesting avenues of
further research. The difference with the limiting analysis of [35] is intriguing. It would
mean that there is potentially another limit that yields the Carrollian Liouville action.
(We try and distinguish it from the earlier work in the literature by calling this Carrollian
Liouville as opposed to BMS Liouville.) It would be instructive to construct this limit
explicitly in the relativistic Liouville theory and understand what it means. It would also
be very interesting to figure out how one can modify the analysis of [80] to get the Carrollian
Liouville theory starting out from a Chern-Simons formulation of 3d asymptotically flat
gravity, then going over to a WZW model and then doing a Hamiltonian reduction.

Finally, it would be of interest to see how our results would fit in with non-relativistic
anomalies. The algebra and the underlying field theory stays the same. Hence the answers,
obtained from an intrinsic analysis, like we have in this paper, are supposed to hold,
upto identifications of the space and time directions. But clearly there is something very
interesting and mysterious happening here. The identification of central charges are flipped
in the NR limit:

cL = c+ c̄, cM = ε(c− c̄). (6.2)

It seems that requiring no diffeomorphism anomaly would lead to cM = 0, but as stated
earlier, this reduces the symmetries to a single copy of Virasoro algebra and the theory
to a chiral half of a 2d CFT. This is clearly chiral and hence should be associated with a
gravitational anomaly. It is hence far from clear what a gravitational anomaly means in
the NR limit, and consequently what the correct form of the Weyl anomaly should be. We
wish to investigate this in the near future with the hope of clarifying the above and other
related confusions.
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A Ward identities and correlators in BMSFTs: details

A.1 BMSFT on null plane

Here we provide some details of the computation of the Ward identity (4.16) on the null
plane. The time derivative of 〈T1〉µ in the µ-deformed theory is

∂t〈T1〉µ =
〈 ∫

dt′dx′
(
µ′L∂t(T1T

′
1) + µ′M∂t(T1T

′
2)
)

+ ∂tT1
〉
µ
. (A.1)

Using the OPEs (4.2), this simplifies to

∂t〈T1〉µ =
〈∫

dt′dx′
(
µ′L∂t

[
cL

2(∆x)4−
2cM (∆t)

(∆x)5 + 2T ′1
(∆x)2−

4T ′2 (∆t)
(∆x)3 + ∂x′T ′1

(∆x)−
∂t′T

′
1 (∆t)

(∆x)2

]

+µ′M∂t

[
cM

2(∆x)4 + 2T ′2
(∆x)2 + ∂x′T ′2

(∆x)

])
+∂tT1

〉
µ
,

=
〈∫

dt′dx′
(
µ′L

[
cL
12∂

2
x∂
′
x∂t

( 1
∆x

)
−2T ′1∂x∂t

( 1
∆x

)
+∂′xT ′1∂t

( 1
∆x

)]
+µ′M

[
cM
12 ∂

2
x∂
′
x∂t

( 1
∆x

)
−2T ′2∂x∂t

( 1
∆x

)
+∂′xT ′2∂t

( 1
∆x

)]
+µ′L

[
−2cM

∆x5−
4T ′2
∆x3−

∂′tT
′
1

∆x2

]
+∂tT1

+∆tµ′L
[
−2cM∂t

( 1
∆x5

)
−4T ′2∂t

( 1
∆x3

)
−∂′tT ′1∂t

( 1
∆x

)])〉
µ
. (A.2)

Using the delta function (4.1), we see that each term in the 4th line above is proportional
to
∫
dt′dx′∆tδ(2)(∆t,∆x) ∼ 0. We can write the 3rd line above in terms ofM as

∂xM = ∂x〈T2〉µ =
〈 ∫

dt′dx′µ′L∂x(T2T
′1) + ∂xT2

〉
µ

=
〈 ∫

dt′dx′µ′L

[
−2cM

∆x5 −
4T ′2
∆x3 −

∂′tT
′
1

∆x2

]
+ ∂xT2

〉
µ
. (A.3)

Substituting this expression for ∂xM and using the conservation equation ∂tT1 =∂xT2, (A.2)
simplifies to

1
2π (∂t〈T1〉µ−∂xM) =

〈
−cL12∂

3
xµL−2∂x(µLT1)+µL∂xT1−

cM
12 ∂

3
xµM−2∂x(µMT2)+µM∂xT2

〉
µ
,

(A.4)
which upon using N = 〈T1〉µ andM = 〈T2〉µ is written as (4.17).

A.2 BMSFT on null cylinder

The derivation of correlators of the stress tensor components from Ward identities using
the delta function (4.20) was given in [41] for 2d BMSFTs on cylinder with cL = 0. Here
we generalize the analysis for cL 6= 0. Since the details of this analysis are same as in 4.1,
we present only key steps and results here.
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We consider a deformation to a free 2d BMSFT on a null cylinder, described by an
action S0, by localized sources for the stress tensor components :

Sµ = S0 −
∫
dτdσ(µL(τ, σ)T1(τ, σ) + µM (τ, σ)T2(τ, σ)); (A.5)

µL(τ, σ) = εLδ
(2)(τ − τ ′, σ − σ′) , µM (τ, σ) = εMδ

(2)(τ − τ ′, σ − σ′). (A.6)

The expectation values of T1, T2 in the deformed theory are related to the correlators of
T1, T2 in the free theory as

〈T1(τ,σ)〉µ = 〈T1(τ,σ)〉0+εL〈T1(τ,σ)T1(τ ′,σ′)〉0+εM 〈T1(τ,σ)T2(τ ′,σ′)〉0+O(ε2), (A.7)

〈T2(τ,σ)〉µ = 〈T2(τ,σ)〉0+εL〈T2(τ,σ)T1(τ ′,σ′)〉0+εM 〈T2(τ,σ)T2(τ ′,σ′)〉0+O(ε2). (A.8)

DefiningM = 〈T2〉µ, N = 〈T1〉µ and expanding in εL/M as

M =M(0) +M(1) + · · · , N = N (0) +N (1) + · · · , (A.9)

whereM(n) ∼ O(εn) and so on, we get

M(0) = 〈T2〉0, M(1) = εL〈T2T
′
1〉0 + εM 〈T2T

′
2〉0,

N (0) = 〈T1〉0, N (1) = εL〈T1T
′
1〉0 + εM 〈T1T

′
2〉0. (A.10)

Here we have reverted to the shorthand T1 = T1(τ, σ), T ′1 = T1(τ ′, σ′), Now we take the
time derivative of 〈T2〉µ, and use ∂τS0 = 0, a conservation equation ∂τT2 = 0 and the
OPEs (4.21) to get

∂τ 〈T2〉µ =
〈 ∫

dτ ′dσ′
(
µ′L∂τ (T2T

′
1) + µ′M∂τ (T ′2T2)

)〉
µ

(A.11)

=
〈 ∫

dτ ′dσ′µ′L∂τ

[
cM

2
(
2 sin ∆σ

2
)4 − cM

12
(
2 sin ∆σ

2
)2 + 2T ′2(

2 sin ∆σ
2
)2 + ∂σ′T ′2

2 sin ∆σ
2

] 〉
µ
,

where ∆σ = σ − σ′ and ∆τ = τ − τ ′. Using the delta function (4.20), we can write

∂σ′∂4
σG+∂σ′∂2

σG=−3
4

cos ∆σ
2(

sin ∆σ
2

)5 , ∂τ

(
1

2sin ∆σ
2

)
= ∂τ

(
∂σG+ 1

2 tan ∆σ
4

)
= ∂τ∂σG,

(A.12)
since tan ∆σ

4 is non-singular as ∆σ → 0. Using these expressions and the delta func-
tion (4.20), ∂τ 〈T2〉µ simplifies to

∂τ 〈T2〉µ =
〈 ∫

dτ ′dσ′µ′L∂τ

[
cM
12 ∂

2
σ∂σ′ (∂σG) + 2T ′2∂σ′ (∂σG) + ∂σ′T ′2 (∂σG)

] 〉
µ

=
〈

2π
∫
dτ ′dσ′µ′L

[
cM
12 ∂

2
σ∂σ′δ(2) + 2T ′2∂σ′δ(2) + δ(2)∂σ′T ′2

] 〉
µ

=
〈

2π
(
−cM12 ∂

3
σµL − ∂σ (2T2µL) + ∂σT2µL

)〉
µ
,

⇒ − 1
2π∂τM = cM

12 ∂
3
σµL + 2M∂σµL + µL∂σM. (A.13)
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Similarly
∂τ 〈T1〉µ =

〈 ∫
dτ ′dσ′

(
µ′L∂τ (T1T

′
1) + µ′M∂τ (T1T

′
2)
)

+ ∂τT1
〉
µ
. (A.14)

The µM term in (A.14) is same as the µL term in ∂τ 〈T2〉µ above. Let us simplify the µL
term :∫

dτ ′dσ′µ′L∂τ

[
cL

2(2 sin(∆σ
2 ))4

− cL

12(2 sin(∆σ
2 ))2

−
2cM (∆τ) cos(∆σ

2 )
(2 sin(∆σ

2 ))5
+

2cM (∆τ) cos(∆σ
2 )

12(2 sin(∆σ
2 ))3

+ 2T1(τ ′, σ′)
(2 sin(∆σ

2 ))2
−

4T2(τ ′, σ′) cos(∆σ
2 )

(2 sin(∆σ
2 ))3

+ ∂σ′T1(τ ′, σ′)
2 sin(∆σ

2 )
− ∂σ′T2(τ ′, σ′)(∆τ)

(2 sin(∆σ
2 ))2

]

=
∫
dτ ′dσ′

(
µ′L∂τ

[
cL
12∂

2
σ∂σ′(∂σG) + 2T ′1∂σ′(∂σG) + ∂σ′T ′1(∂σG)

]
(A.15)

+ µ′L

[
2cM

(
−

cos ∆σ
2(

2 sin ∆σ
2
)5 +

cos ∆σ
2

12
(
2 sin ∆σ

2
)3
)
−

4T ′2 cos ∆σ
2(

2 sin ∆σ
2
)3 − ∂σ′T ′2 cos ∆σ

2(
2 sin ∆σ

2
)2
]

+ ∆τµ′L∂τ

[
2cM

(
−

cos ∆σ
2(

2 sin ∆σ
2
)5 +

cos ∆σ
2

12
(
2 sin ∆σ

2
)3
)
−

4T ′2 cos ∆σ
2(

2 sin ∆σ
2
)3 − ∂σ′T ′2 cos ∆σ

2(
2 sin ∆σ

2
)2
])
.

The 3rd line in the above expression is proportional to
∫
dτ ′dσ′∆τδ(2)(∆τ,∆σ) ∼ 0 and

the 2nd line can be expressed in terms ofM as

∂σM =
〈 ∫

dτ ′dσ′
(
µ′L∂σ(T2T

′
1) + µ′M∂σ(T2T

′
2)
)

+ ∂σT2
〉
µ

=
〈 ∫

dτ ′dσ′µ′L∂σ

[
cM

2(2 sin(∆σ
2 ))4

− cM

12(2 sin(∆σ
2 ))2

+ 2T2(τ ′, σ′)
(2 sin(∆σ

2 ))2

+ (∂τ ′T1(τ ′, σ′) + ∂σ′T2(τ ′, σ′))
4 sin(∆σ

2 )

]
+ ∂σT2

〉
µ

=
〈 ∫

dτ ′dσ′µ′L

[
2cM

(
−

cos ∆σ
2(

2 sin ∆σ
2
)5 +

cos ∆σ
2

12
(
2 sin ∆σ

2
)3
)
−

4T ′2 cos ∆σ
2(

2 sin ∆σ
2
)3

−
∂σ′T ′2 cos ∆σ

2(
2 sin ∆σ

2
)2
]

+ ∂σT2
〉
µ
. (A.16)

Then using these expressions, we get

∂τ 〈T1〉µ =
〈

2π
(
−cL12∂

3
σµL − ∂σ(2T1µL) + µL∂σT1

− cM
12 ∂

3
σµM − 2T2∂σµM − µM∂σT2

)〉
µ

+ ∂σM,

i.e. − 1
2π (∂τN − ∂σM) = cL

12∂
3
σµL + 2N∂σµL + µL∂σN

+ cM
12 ∂

3
σµM + 2M∂σµM + µM∂σM. (A.17)

Now expanding the Ward identities (A.13), (A.17) using the expansion (A.9) and the
expression for the sources (A.6), we get:
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(i) Conservation equations from the leading term

∂τM(0) = 0 , ∂τN (0) = ∂σM(0), (A.18)

(ii) Ward identities forM(1) and N (1) from O(ε) terms

− 1
2π∂τM

(1) = εL

[
cM
12 ∂

3
σδ

(2) + 2M(0)∂σδ
(2) + δ(2)∂σM(0)

]
, (A.19)

− 1
2π
(
∂τN (1) − ∂σM(1)

)
= εL

[
cL
12∂

3
σδ

(2) + 2N (0)∂σδ
(2) + δ(2)∂σN (0)

]
+ εM

[
cM
12 ∂

3
σδ

(2) + 2M(0)∂σδ
(2) + δ(2)∂σM(0)

]
. (A.20)

Using the values M(0) = cM
24 and N (0) = cL

24 in a free BMS3 invariant field theory on a
cylinder and the delta function (4.20), we solve the above Ward identities to get

M(1) = εL
cM

2
(
2 sin ∆σ

2
)4 , N (1) = εL

(
cL

2
(
2 sin ∆σ

2
)4 − 2cM∆τ cos ∆σ

2(
2 sin ∆σ

2
)5

)
+ εM

cM

2
(
2 sin ∆σ

2
)4 .

(A.21)
Comparing these with (A.10), we get the desired correlators as

〈T1T
′
1〉 = cL

2
(
2 sin ∆σ

2
)4 − 2cM∆τ cos ∆σ

2(
2 sin ∆σ

2
)5 , 〈T1T

′
2〉 = cM

2
(
2 sin ∆σ

2
)4 , 〈T2T

′
2〉 = 0. (A.22)

The above method can be generalised to obtain arbitrary N -point functions of the BMS
EM tensors. For cL = 0, the results were also verified holographically by a computation
in 3d asymptotically flat Einstein gravity. In order to reproduce the results with a non-
zero cL, one would need to look at a generalisation of the bulk calculation to theories of
topologically massive gravity where one can generate two non-zero central charges.

B Zweibein formulation

The zweibein formulation of Carrollian geometries is discussed in [50, 51, 81]. In the
zweibein formulation, a (1 + 1) dimensional Carrollian geometry is described by the zwei-
beins e0

α(τ, σ) and e1
α(τ, σ), with their inverses eα0 (τ, σ) and eα1 (τ, σ) defined through the

relations

e0
αe
α
0 = 1, e1

αe
α
1 = 1, e0

αe
α
1 = 0, e1

αe
α
0 = 0, e0

αe
β
0 + e1

αe
β
1 = δβα. (B.1)

For our discussion, we collectively write e0
α and e1

α as eaα and the inverses as eαa , in terms
of which the above relations become

eaαe
α
b = δab , eaαe

β
a = δβα. (B.2)

Here α, β are spacetime indices denoting the coordinates (τ, σ) and a, b, · · · = 0, 1 are
tangent space indices. We introduce antisymmetric symbols εαβ and εab defined as
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ετσ = 1 = −ετσ and ε01 = 1 = −ε01, which satisfy εαρε
ρβ = δβα and εacε

cb = δba. Us-
ing these antisymmetric symbols, we can write the determinants e = det(eaα), 1

e = det(eαa )
and inverse zweibeins as

e = εαβe0
αe

1
β = 1

2εabe
a
αe
b
βε
βα,

1
e

= 1
2ε

abeαae
β
b εβα, eαa = 1

e
εαβebβεba. (B.3)

Under spacetime diffeomorphisms ξα → ξ′α(ξ), the zweibeins transform as

e′αa = ∂ξ′α

∂ξβ
eβa . (B.4)

A flat Carrollian spacetime in (1 + 1) dimensions, with a degenerate metric, given by

ds2 = gαβdσ
αdσβ = −0 · dτ2 + dσ2, ζ = ∂

∂τ
, Γαβρ = 0, (B.5)

is described by zweibeins
eaα = δaα, eαa = δαa . (B.6)

Carroll-Weyl and BMS-Weyl transformations. In [52, 83, 84] (see also [85]), Car-
rollian geometry is described in the metric formulation. In this formulation in [83], Carroll-
Weyl transformations are defined such that the metric data describing the temporal part
of the geometry scales differently than the non-degenerate metric on the spatial hyper-
surface, the difference in scaling being governed by a real number z. For z = 2

N , for
integer N the conformal isometries of the Carrollian spacetime form the conformal Carroll
algebra ccarrN (d + 1) of level N [21–23]. It was shown that for N = 2 (z = 1), the con-
formal Carroll algebra ccarr2(d+ 1) is isomorphic to BMS algebra in d+ 2 dimensions i.e.
ccarr2(d+1) ' bms(d+2). In particular, for our case of d = 1, we have ccarr2(2) ' bms3. Also
for Carrollian spacetimes describing null hypersurfaces embedded in pseudo-Riemannian
spacetimes and for those obtained by the ultrarelativistic limit, the Weyl transformation
has z = 1 [52, 84].

In the zweibein formulation, the Carroll-Weyl transformation defined in [83] for general
z, can be written as

e0
µ → ezΩ(τ,σ)e0

µ, hµν → e2Ω(τ,σ)hµν , (B.7)

where hµν = e1
µe

1
ν . For z = 1, this Carroll-Weyl transformation gives the BMS-Weyl

transformation (5.2).
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