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Abstract: Most of the inflationary scenarios that try to explain the origin of Primordial
Black Holes (PBHs) from the enhancements of the power spectrum to values of order one,
at the relevant scales, run into clashes with the Effective Field Theory (EFT) criteria or
fail to enhance the power spectrum to such large amplitudes. In this paper, we unravel
a mechanism for enhancing the power spectrum during inflation that does not use the
flattening of the potential or reduction of the sound speed of scalar perturbations. The
mechanism is based on this observation in the formalism of Extended EFT of inflation
(EEFToI) with the sixth order polynomial dispersion relation for scalar perturbations that
if the quartic coefficient in the dispersion relation is negative and smaller than a certain
threshold, the amplitude of the power spectrum is enhanced substantially. The instability
mechanism must arrange to kick in at the scales of interest related to the mass of the PBHs
one would like to produce, which can be ten(s) of solar mass PBHs, suitable for LIGO
events, or 10−17 − 10−13 solar mass PBHs, which can comprise the whole dark matter
energy density. We argue that the strong coupling is avoided for the range of parameters
that the mechanisms enhance the power spectrum to the required amount.
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1 Introduction

The LIGO discovery of the gravitational waves, from the merging of the binary of black
holes (BH) [1, 2], revitalized the interest in the PBHs as the dark matter candidates,
especially in the mass range fewM� . Mbh . few × 10M� [3–5]. It is possible that these
black holes are primordial and are born before nucleosynthesis, hence constitute all or part
of the dark matter component of the energy budget of the universe.

Several mechanisms have been put forward to explain the formation of such PBHs
during the early universe cosmology. One example of such a mechanism is bubble colli-
sion [6]. In this scenario, a first-order phase transition from a metastable false vacuum,
which proceeds through nucleation of the bubbles of the true phase, can lead to the forma-
tion of PBHs, if an enough number of bubbles collide at a point. This can be shown to be
happening if the nucleation rate per unit four-volume is substantial but not instantaneous.
The mass of such PBHs is proportional to the horizon mass, ∼ M2

P
/H. In [7], assuming

that the QCD phase transition is a first-order one, the mass of most PBHs produced during
the phase transition is shown to be of the order of 1030g, which is about 10−3 solar mass.
In a similar context, the formation of a vacuum bubble or spherical walls during inflation
is shown to be able to produce black holes after the termination of inflation [8–10]. The
fate of the resulting black hole would depend on the mass or radius of the ensued bubble or
domain wall, which can lead to an ordinary black hole or a baby universe separated from
the parent FRW universe by a wormhole. In another scenario, shrinkage of a small fraction
of cosmic string loops by a factor 1

Gµ leads to the formation of black holes [11, 12]. Such
black holes emit γ-rays, which their lack of observation puts an upper bound Gµ . 10−6.
Incidentally, the bound on cosmic string tension from the limit on stochastic gravitational-
wave background [13, 14] from the European Pulsar Timing Array and the PLANCK 2013

– 1 –



J
H
E
P
0
7
(
2
0
2
1
)
0
8
7

data is at most only an order of magnitude tighter [15]. However, more recent modeling
of the cosmic string with realistic loop distribution with string microstructures, such as
cusps and kinks, set a tighter bound of Gµ . 10−11 on the string tension [14]. In the
context of cosmic strings, it has recently been shown that PBHs can also form from the
collapse of a small segment of cosmic string in the neighborhood of a cusp [16]. Such a
model only accounts for a small fraction of dark matter energy density, though. Another
way to produce PBHs is from the domination of exotic superheavy particles in the context
of Grand Unified Theories (GUTs) [17]. This effect has been used to put some constraints
on the GUTs.

The collapse of large density fluctuations is another mechanism of the formation of
PBHs [18]. In this scenario, horizon reentry of a mode with large fluctuating amplitude
during the ensuing radiation domination era leads to domination of gravity pressure in the
over-dense region and its collapse to the black hole. Since inflation is the prime candi-
date for the generation of primordial fluctuations from which large-scale structures arise,
it may also produce fluctuations at smaller wavelengths. This will give us unparalleled
information about fluctuations at smaller wavelengths than the CMB scales and hence the
nature of inflation. On the other hand with lensing, pulsar timing and other astrophysical
techniques [19–23], we can put very tight constraints on the initial energy density of PBHs
β′(MPBH) = ρPBH/ρ in various mass ranges. These constraints can be used to limit the
primordial power spectra of curvature perturbations in the inflationary models. Another
advantage of this approach is that it can produce PBHs with different masses, from the
subsolar to the supersolar, depending on the horizon size when corresponding modes with
large amplitude re-enter the horizon. This feature is contrary to the astrophysical black
holes that should have a mass above 3M�.

In the context of standard inflationary scenarios where quantum fluctuations start from
the vacuum, the inflaton potential determines the amplitude of primordial perturbations
and their scale dependence. Observational limits on the power spectrum of curvature
perturbations can then substantially help us constraining the inflationary models. At the
moment, the latest probes of the primordial power spectrum with CMB scales [24] with
large scale structure surveys reveal the shape of the power spectrum on the scales between
∼ 1 Mpc − 3000 Mpc to be an almost scale-invariant power-law form. On the other hand,
limits on the PBHs abundances with different masses can be applied over a wider interval of
scales [18, 25] i.e. 10−23 Mpc − 100 Mpc. Although the constraints on the PBHs abundances
are not very tight in some mass ranges, their wide range of masses, which depends on the
wavelength of the density perturbations when it re-enters the horizon, could be used to
limit the shape of the primordial power spectrum in a much vaster range of scales than what
is probed by the CMB and LSS surveys. If the density power spectrum of perturbations
had an exactly scale-invariant power spectrum of order O(10−9) which is the measured
value at the largest CMB scales, the PBHs abundance would be β′(MPBH) ∼ e−108 , which
is too small. It essentially means that PBHs from inflation do not exist. To have a
substantial value for the mass fraction of PBHs, one has to depart from scale invariance
in scales of interest for the PBH formation. Different effects and phenomena, which fall
into two different classes of gravitational and evaporation constraints, limit the PBH mass
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fraction depending on their mass [26]. In some mass ranges (more specifically 10−20M� .
M . 10−17M�) the abundance of PBHs has to be β′(MPBH) . 10−22. Assuming that
the power spectrum could be approximated by the scale-invariant power-law form in the
region of interest, this, in general, would constraint the amplitude of the power spectrum
of the primordial fluctuations [27] to be PS . O(10−1 − 10−2). However, since the mass
variance is related to the power spectrum via an integration (see section 3), in addition
to the amplitude, the shape of the power spectrum is also important. For instance, using
numerical analysis of the gravitational collapse and peak theory, one can show that for
a power spectrum with a top-hat profile, while the enhancement in the power spectrum
should be of the order O(10−2), this value grows to the order of O(10−1) for a narrow peak
profile if it is assumed that the whole cold dark matter budget of the universe comes from
the PBHs [28].

It was realized that [29, 30] PBHs abundance places an upper bound on the
spectral index of power-law power spectrum of primordial curvature perturbations1 as
nS ≤ (1.23− 1.25). At this time, from CMB observations we can accurately measure nS
and we know that nS = 0.9649±0.0042 [24]. As stated above, a power-law power spectrum
with such spectral index in all scales never allows for a significant number of PBHs. For
generating 30M� PBHs in scales of about k30M� ≈ 3 × 105 Mpc−1, the spectral index
should have been around nS ≈ 1.85 at the CMB pivot scale. One may assume that the
power spectrum has a red tilt on the CMB scales compatible with the Planck 2018 data,
but outside the probed scale obtains a blue spectral index at the scales relevant to the
formation of PBHs. One can readily verify that the spectral index in the blue part should
be as large as nS ' 2.925 or 1.582 . nS . 1.685, respectively, to be able to accommodate
the formation of PBHs with few × 10M� or the ones with 10−17M� . M . 10−13M�.
Scenarios of running mass inflation [31] can in principle accommodate such power spec-
tra. However, with only running of the scalar spectral index in the observationally allowed
range, dn

S
d ln k = −0.0066± 0.0070, one can not realize such a power spectrum. One then has

to resort to the running of the running to achieve large amplitudes for the power spectrum
at the scales of interest [32, 33]. Besides, to avoid the overproduction of the PBHs at small
scales, one has to consider running of the running [34]. A working model would then need
three parameters. At the moment, the final verdict is that it is difficult to use these kinds of
models to produce 30M� PBHs, although they can be used to produced PBHs in the mass
range 10−17M� . M . 10−13M� that can compose the whole dark matter density [35].
Another way to accommodate an enhancement in the power spectrum at the scales of in-
terest for PBH formation is considering a near inflection point [36] in the inflaton potential,
i.e. V ′(φ0) ' V ′′(φ0) ' 0 [37, 38]. The enhancement could be roughly understood noting
the fact that the power spectrum is proportional to V 3/2/V ′, and for the modes that exit
during the inflection point inflation, the power spectrum should increase. The detailed
numerical calculation verifies this enhancement, although the shape of the power spectrum
will not be completely the same as what the slow-roll expression suggests. Of course, these
models require careful fine-tuning near the inflection region to obtain the scalar spectral

1These limits arise from either this assumption that ΩPBH,0 < 1 or from the evaporation of PBHs.
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index and amplitude of the power spectrum at the CMB scales compatible with the Planck
data. It has been shown that the maximum enhancement of the power spectrum which
can be achieved through such scenarios is PS ∼ 10−4 at most [39], which is not suitable for
PBH production [28]. There are still models that claim that they have obtained a larger
amplitude for density perturbations through this mechanism [40] suitable for the sufficient
production of PBHs. Temporary slow-roll violation may also occur through double infla-
tion models like hybrid inflation, where two scalar fields control inflationary dynamics [41].
In the simple hybrid model, we have a massive scalar field with a false vacuum energy
density and the other scalar field, which controls the mass of the former. Inflation ends at
a critical value where the massive field becomes tachyonic [42]. If, on the other hand, the
other direction does not become too steep to end inflation, like how it does in the case of
the simple hybrid model, the power spectrum will obtain a large amplitude at the scales
around the transition [43].

One can also assume a periodic structure in the inflationary potential at the small
scales that leads to PBH formation. When the inflaton passes through such structures, the
parametric resonance gives rise to the large curvature perturbations and consequently the
PBH formation upon reentry and production of stochastic gravitational waves [44].

Another parameter in the power spectrum that one can fiddle with to enhance it at
the scales of interest is the sound speed. The power spectrum for scalar perturbations is
inversely proportional to c2

S
, and hence by reducing it, one can achieve an enhancement

in the power spectrum [45]. The reduced sound speeds could be realized in inflationary
models in which the inflaton’s kinetic terms are non-canonical [46], where an example of it
in string theory is DBI inflation [47]. However, in such scenarios, even if one assumes that
the amplitude of the power spectrum is enhanced to the conservative value of 0.1, cS should
be lowered to values as small as 0.0014. This is smaller than the lower bound that the
Effective Field Theory of Inflation (EFToI) sets on cS from unitarity, i.e. cS & 0.003 [48].
With cS ' 0.003, in the horizon mass range 10−17M� . M . 10−13M�, one can at most
achieve enhancements up to ' 10−4, which as argued by [28], is hardly enough to account
for the whole dark matter.

Besides the form of the potential or the speed of propagation of scalar perturbations,
the dispersion relation for the scalar perturbations can affect the amplitude of the power
spectrum, too [49, 50]. In particular, it has been shown that, in this case, it is possible to
obtain a large amplitude for scalar perturbations. The dispersion relation could be realized
in the formalism of Extended Effective Field Theory of Inflation [51], which somehow
legitimizes the k6 correction to the dispersion relation of the scalar perturbation when it is
accompanied by smaller orders. If in such a scenario, the coefficient of the quartic term is
negative and its value over the square of the coefficient of the sextic term is smaller than
a threshold, the power spectrum grows. Still, one has to make sure that the sixth order
correction at the horizon crossing is subdominant relative to the other term, to be able to
say that the effective field theory is not strongly coupled at horizon crossing. We will make
sure that in the scenario that we discuss, for the numerical values of the coefficients that
lead to copious PBH formation, this criterion is honored.

The structure of the paper is as follows. First, we review the formalism of EEFToI [51]
which now has to incorporate time-dependence for the coefficients of the operators in the
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unitary gauge action of the EEFToI. In particular, the time dependence should provide us
with a negative quartic coefficient in the dispersion relation, which should kick in about the
scales of interest for PBH formation. We resort to numerics to find the scale-dependent
power spectrum, which, in particular, shows a bump that can be arranged to be of the
order of one by tuning the negative quartic coupling to be smaller than a threshold. We
show that the width of the bump in the spectrum is the same as the time span for which
the quartic coupling is negative, but it starts off with a delay with respect to the onset of
the change in the dispersion relation. This means that it only leads to the boost of the
spectrum for the modes that are still about three e-folds within the Hubble radius when
the quartic coefficient becomes negative. Similarly, the termination of the epoch of the
negativity of the quartic coefficient in the dispersion relation will not be shutting down
the amplification in the power spectrum immediately. We argue that the strong coupling
is avoided for the parameters we have chosen to produce the PBHs with the desired mass
range. We finally conclude the paper in the last section and lay down plans to continue
this research line.

2 PBH from Extended EFT of inflation

2.1 Extended EFT of inflation and sixth order dispersion relations

The main idea of Effective Field Theories (EFTs) is that the effect of the higher energy
scales within a theory could be encoded in an infinite number of higher dimensional oper-
ators in such an approach. The idea has proven to be useful in quantifying the effect of
high energy physics in particle physics and condensed matter and was extended to the area
of inflation in [48, 52]. To establish the EFT of inflation for a single scalar field [48], one
should note that even though the space-time expands in de Sitter format during inflation,
the accelerated expansion has finally come to an end. This implies the time-translation
associated with the de-Sitter space-time has been spontaneously broken. Like any sym-
metry, its breaking suggests the existence of a Goldstone boson, which is adsorbed in the
metric. In particular, in a single field inflationary background, one can go to a gauge in
which the Goldstone boson, which transforms nonlinearly under the time diffeomorphism,
is eaten by the metric that would acquire a longitudinal mode and thus will have three
degrees of freedom. In this gauge, which is known as the unitary gauge, the inflaton fluc-
tuations are absent, i.e. the surfaces of constant time and constant inflaton coincide. The
remaining symmetries in this gauge are the spatial diffeomorphisms. One can write down
the most general form of the action in the unitary gauge by including all the operators
that respect these symmetries. The tree-level operators in the Lagrangian will be those
that yield the single field slow-roll inflation. Higher mass dimensional operators would
correspond to deviations from the slow-roll inflation. The approach would allow one to
consider the realization of K-inflation and Ghost inflation within a single framework. How-
ever, the modification of the dispersion relation beyond the quartic order was not allowed
by the original work. Based on the energy scaling of the Goldstone boson, π, they argued
that when the dispersion relation ω2 ∝ k2n with n ≥ 3, the interacting operators become
dominant at the infrared and invalidate the effective field theory approach. However, as
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discussed in [51, 53], this is not necessarily the case if the unitary gauge action renders
lower-order corrections to the dispersion relation dominant at the horizon crossing. This
is what motivated the formalism of the Extended Field Theory of Inflation (EEFToI).
Whether the formalism allows going beyond the sixth order dispersion relation is some-
thing that one has to investigate thoroughly, but the possibility of such a construction will
not bear upon the main theme of this paper. What is important to our proposal here is
that there is an intermediate phase of domination by a term in the dispersion relation that
comes with a negative sign. This intermediate phase is encompassed between at least two
phases in which the dispersion relation is positive definite. In the deep UV, the positive
definiteness of the dispersion relation helps us stabilize the fluctuations and define a unique
positive frequency WKB vacuum. As long as the modes exit the horizon in the regime of
domination of quadratic or quartic part of the dispersion relation, one can show that the
Effective Field Theory is still viable. On the other hand, if the mode spends long enough
under the influence of the term that comes with a negative contribution in the dispersion
relation, the amplitude of fluctuations can get amplified while their wavelengths are still
smaller than the Hubble length. Hence, beyond the sixth order corrections to the dispersion
relation is irrelevant to our proposal in this paper.

As noted above, once one goes to the unitary gauge, the most general action up to
mass dimension four that can be written from the operators that respect the remaining
spatial diffeomorphism, take the form,

L = M2
Pl

[1
2 R+ Ḣ g00 −

(
3H2 + Ḣ

)]

+ M4
2

2! (g00 + 1)2 + M̄3
1

2 (g00 + 1)δKµ
µ −

M̄2
2

2 (δKµ
µ)2 − M̄2

3
2 δKµ

ν δK
ν
µ

+ M̄4
2 ∇

µg00∇νδKµν −
δ2
2 (∇µδKν

ν)2

− δ3
2 (∇µδKµ

ν)(∇γδKγν)− δ4
2 ∇

µδKνµ∇νδKσ
σ , (2.1)

where terms proportional to (∇µδKνγ)(∇µδKνγ) and (∇µδKµ
ν)(∇γδKγν) are dropped as

they lead to Ostrogradski ghosts [54] in the second order action for tensor and scalar
perturbations [51].2 All the couplings in the unitary gauge action (2.1), regardless of their
mass dimension, can be functions of time, as any function of time respects the remaining
spatial diffeomorphism symmetry too. We will use this time dependence later to create
a time-dependence in the coefficients of the dispersion relation. Using the Stückelberg
method to make the Goldstone boson π explicit in the action and in the limit where
Ḣ → 0, one can find the following equation of motion for uk ≡ a πk, which is related to

2The only term that modifies the action of the tensor perturbations is − M̄
2
3

2 δKµ
ν δK

ν
µ, which modifies

the speed of propagation of tensor modes as,

c2T =
(

1− M̄2
3

M2
Pl

)−1

.

.
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the gauge perturbations of the comoving hypersurface ζk = −H
a uk,

d2uk
dx2 +

(
c2
S

+ αx2 + βx4 − 2
x2

)
uk = 0 . (2.2)

where x ≡ kτ and uk = a πk. Above we have chosen δ3 = −3δ4, to get rid of the friction
term in the equation of motion and also mixing with gravity at super-Planckian momenta,
when the mode is deep inside the horizon, (cf. [53]). The parameters in the equation of
motion (2.2) is defined as where,

c2
S
≡ F2
G1

, (2.3)

α ≡ D2
G1

, (2.4)

β ≡ C2
G1

, (2.5)

where

F2 ≡ −2M2
PlḢ − M̄3

1H − 3H2M̄2
2 − M̄2

3H
2 − 9

2δ4H
4 − M̄4H

3 , (2.6)

G1 ≡ −2M2
PlḢ + 4M4

2 − 6M̄3
1H − 9H2M̄2

2 − 3H2M̄2
3 −

81
2 H

4δ4 − 9M̄4H
3 (2.7)

D2 ≡ M̄2
2H

2 + M̄2
3H

2 − 17
2 δ4H

4 − M̄4H
3 , (2.8)

C2 ≡ −2δ4H
4 . (2.9)

As noted in [53], it is always possible to make c2
S
remain arbitrarily close to 1. For this to

be satisfied, the following relation between the couplings should be satisfied

4M4
2 = 5M̄3

1H + 6H2M̄2
2 + 2H2M̄2

3 + 36H4δ4 + 8M̄4H
3 . (2.10)

This will help us in avoiding the strong coupling in the EEFToI, despite the large amplitude
of the two-point functions possible. We also assume that β > 0 to be able to define a positive
frequency WKB-like vacuum. That means that the parameters C2 and G2 will have the
same sign throughout. We will also assume that β is positive throughout the inflation. For
simplicity, we also assume that β is almost constant and time-independent for the scales
that exit during the last 60 e-folds. On the other hand, we assume that the parameter
D2 on the CMB scales have the same sign as G1, but the time-dependence of the relevant
couplings in the definition ofD2 is such that it flips sign in some intermediate-scales relevant
for PBH formation. This could mean that the values of two of those parameters vary at
two separate times of (phenomenological) interest almost instantaneously. As we will see
in the next section, if the resulted quartic and sextic couplings satisfy certain relations,
the amplitude of the fluctuations will increase substantially to the level that can lead to
the formation of PBHs upon reentry during the ensuing radiation dominated phase. For
simplicity, we assume that the absolute value of α before and after the sign flipping is the
same. Such behavior in α can be approximated by the following function

α(t) = α0

[
1 + tanh

(exp(N2)− exp(t)
∆N

)
− tanh

(exp(N1)− exp(t)
∆N

)]
, (2.11)
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Figure 1. The plot shows the time-dependence of α with parameters N1 = 17, N2 = 24 and
α0 = 0.01. ∆N is assumed to be 0.01.

where α0 > 0 and t quantifies the number of e-foldings from the CMB scales to the end
of inflation, where the end of inflation corresponds to t = 60. The value of α swings from
α0 to −α0 between N1 < N < N2 e-foldings. The transition takes ∆N e-foldings, which
we will assume to be much less than an e-foldings. A plot of α(t) as a function of number
of e-folds is shown in figure 1. As explained above, the values of c2

S
and β are assumed

to remain positive and constant throughout this transition. In particular we assume that
c2
S

= 1 and β
α2

0
= const. The mechanism that we would like to suggest for the formation of

PBHs is based on the observation in [51] is that for α < 0 the amplitude of scalar power
spectrum grows, while the mode is still inside the horizon. In particular it was shown that
if β

α2 < 1
4 , the enhancement becomes large. Such fluctuations with large amplitude can

lead to copious production of PBHs, once they re-enter the horizon during the radiation-
dominated phase. The instability has to kick in at the right scales in order for the mass of
the formed PBHs to fall in the phenomenologically motivated range. In particular, as we
will see, there is a time delay in the rise and fall of the spectrum, which should be taken
into account when the fundamental physics that has led to the growth of fluctuations is
linked to the mass of the produced PBHs.

2.2 Numerical behavior of EEFToI dispersion relation

In this section, we numerically solve the eq. (2.2) with the time-dependent expression, (2.11)
and compute the power spectrum of the scalar perturbations for the modes that exit the
horizon during the last 60 e-foldings on inflation. To achieve this goal, one must note that
due to the extra quadratic and quartic terms in (2.2), the standard Bunch-Davies vacuum
mode can no longer be used as the initial condition for the mode equation x → −∞. In
this case, since βx4 is the dominant term in the far remote past, the normalized WKB
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positive frequency mode function, which would minimize the Hamiltonian [49]

vk(x) = lim
x→−∞

uk(x) = i

√
πx

12 H
(1)
1
6

(
x3
√
β

3

)
.

Therefore, to solve equation (2.2) numerically, we will impose the following boundary
conditions when x→ −∞ [55]

uk(x) = vk(x) ,
u′k(x) = v′k(x) .

It is useful to define the ratio γ as follows,

γ ≡
PEEFToI

S

PBD
S

, (2.12)

where PEEFToI

S
is the power spectrum of scalar perturbations in the EEFToI and

PBD

S
= H2/8π2cSε is the standard Bunch-Davies power spectrum of scalar perturbations.

Due to the sextic and quartic correction terms in the dispersion relation of EEFToI, we
expect that γ deviates from unity. In [51] numerically solving for the (2.2), the values of
γ for 0.01 ≤ |α| ≤ 2 and 0 ≤ β ≤ 2 were obtained. The exploration revealed that for the
positive values of α not only there is no cue of an enhancement in the power spectrum but,
conversely, the factor γ would get suppressed further as α and β increases. For example for
values of α = β = 0.2, one would get γ = 0.717, and for α = β = 1 one obtains γ = 0.40.
On the other hand, in the case where α < 0, depending on the value of ratio β/α2 and α,
one could find considerable enhancements for the modulation factor, γ. In [55], since the
dispersion relation was motivated from its counterpart in the Minkowski background, the
ratio was varied in the interval 1

4 ≤
β
α2 <

1
3 to preclude the Minkowski counterpart of the

dispersion relation becoming tachyonic. Nonetheless, even in this interval, one would get
an enhancements as large as γ ' 14.77, for α ' −0.2 and β

α2 = 1
4 . As stated above, in [51]

however, the sixth order dispersion relation was motivated within the formalism of EFT of
inflation, and a priori, there is no need to constrain the parameters such that β

α2 ≥ 1
4 . One

is allowed to explore the smaller ratios so long as upon the horizon crossing, the sixth order
correction to the dispersion relation is subdominant with respect to the quadratic or quar-
tic terms. For example, in [51], it was noticed that for α = −0.01 and β/α2 = 0.2, values
as large as ∼ 1000 PBD

S
is obtained. This was suggestive that by reducing the ratio β/α2

0
further, one would be able to reach larger enhancements in the amplitude of scalar pertur-
bations. Indeed with the ratio β/α2

0 ' 0.15, the amplitude of the power spectrum could
reach enhancements of order 108 − 109, which would raise the amplitude of perturbations
close to one. However, this should only happen for the scales of interest that lead to PBHs
of proper mass. The possibility that in the EEFToI, the couplings in the unitary gauge
action can be functions of time might properly accommodate this feature. In particular,
it can be arranged that the dispersion relation leads to the standard Bunch-Davies power
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Figure 2. This figure shows the top-hat plot of γ against wavenumber k, resulted from the α
behavior plotted in Fig. 1. The instability appeared in scales k = e−21H − e−17H would be
corresponded to the PBHs formation of masses 10−17M�−10−13M� which can account for 10−100%
of the dark matter density.

spectrum at the CMB scales accompanied by an enhancement of order 108−109PBD
S

for the
scales of interest for PBH formation. As we stated above, for having a large value of γ, one
has to impose β/α2 < 0.25 and α < 0. We choose α a function of time which has α0 > 0
before N1 e-folds before the end of inflation and then plummets very fast to −α0 from N1
to N2 e-folds before the end of inflation. This can be achieved if one of the contributing
factors in the definition of α has some sort of jump or phase transition in its evolution.
Finally, α raises back to a small positive value, α0 due to transition in another contributing
coupling in the unitary gauge action. The parameter α keeps this value until inflation ends
(See figure 1). As stated before, we set β to be constant such that z ≡ β/α2

0 < 1
4 . A

precise numerical analysis shows that for this choice of the coefficients of quartic and sextic
corrections in the dispersion relation, we would see the general behavior anticipated for
the modulation factor γ(k), i.e. the ratio keeps being a positive constant value of order one
during the wavenumber interval and then it reaches the desired large-amplitude once the
transition to negative values happen. However, it is also noticed that the power spectrum
does not momentarily reach large values once the instability happens. For the modes that
are on the verge of horizon crossing, the power spectrum amplitude remains almost intact
when the transition to negative values of quartic coupling occurs. It takes roughly about
Nd ∼ 3 e-folds until the mode starts feeling the dominance of the negative quartic term in
the dispersion relation. Then for the total number of e-folds that the quartic coupling is
negative, the power spectrum receives a large modulation factor. This would mean that
the effect of quartic coupling being negative extends to the modes that exit the horizon
when the quartic coupling is positive. This shows that the process of amplification of the
mode occurs while the mode is inside the horizon. It is not something that occurs right at
the horizon crossing. This point must be considered when ascribing the mass of produced
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Figure 3. The upper figure illustrates the generic behavior of the modulating factor, γ. In these
three different plots, we have fixed N1 = 30 and put N2 = 20, 25, 29 for blue, green, and red lines,
respectively. The delay parameter δn is almost the same in all these plots and turns out to be about
3 e-folds. In the lower figure, the enhancement occurs in scales k = e−37.5H − e−36.5H would lead
to the formation of PBHs with a mass about 30M�.

PBHs to the onset and duration of the negative quartic dispersion relation, which comes
from a more fundamental physics. The range of enhancement observed in the k space
would be

e−(N1+Nd)H . k . e−(N2+Nd)H . (2.13)

Of course, the transition from γ ' O(108 − 109) to γ ' O(1) and vice versa do not
occur smoothly. In between, there will be some modulated oscillations in the amplitude
of the power spectrum. As we will review in the next section, the masses of the produced
PBHs depend on the fluctuations with an amplitude of order one exiting the horizon. For
instance, for the formation of PBHs of ∼ 30M�, the modes that exit the horizon about
23 e-folding after the largest CMB scales, corresponding to the mode that exit 37 e-folds
before the end of inflation, should have had such an amplitude. Figure 3 shows that for
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α0 = 0.01 and z = 0.15 such amplitudes for the modulation factor can be achieved. The
upper graph shows that regardless of the duration of the interval in which the quartic
coupling is negative, there is a delay of almost the same magnitude, Nd ∼ 3 e-foldings.
The lower graph shows the case in which the enhancement occurs for the range of k, leading
to the formation of PBHs of order 30M�.

2.3 EFT compatibility

It was pointed out in [48] that the pure sextic dispersion relation is not compatible with the
EFT criteria, as in the low energy limit, the interacting terms in the third-order Lagrangian
(terms like π̇(∇π)2), become strong at low energy. However, in the presence of quartic and
quadratic terms in the dispersion relation, they are the terms that can become dominant at
low energy. In particular, if at the horizon crossing, the contribution of the sixth order term
in the dispersion relation is subdominant with respect to the quadratic or quartic terms,
one can safely ignore the non-linear evolution inside the horizon.3 In analogy with [55], such
higher-order corrections to the dispersion relation is expected to only lead to f loc

NL ∼ few,
which can be made compatible with the EFT criterion,

fNL × P1/2
S

. 1 . (2.14)

In particular for the example we considered here with the numerical values for the co-
efficients α0 = −0.01 and β

α2
0
' 0.15, one can easily check that horizon crossing occurs

at x3 ' −1.42883 (this is slightly earlier than x = −
√

2, which happens for a Lorentzian
dispersion relation ω2 = k2). This corresponds to the largest root of the effective frequency,

ω2(x) = c2
S

+ αx2 + βx4 − 2
x2 (2.15)

with cS = 1, α = −0.01 and β = 0.15α2. At x3, the ratios of the sixth and fourth-
order terms to the quadratic one are, respectively, ∼ 6.25× 10−5 and ∼ 0.02 and thus are
negligible. In particular, the sixth order term, which could cause difficulty, can be safely
ignored at the horizon crossing.

3 PBH formation

This section reviews the basic idea that the collapse of large densities may lead to a PBH
under certain conditions. When in the radiation-dominated era, a highly over-dense region
re-enters the cosmological horizon, it may overcome the pressure and collapse to find itself
as a PBH. Mathematically, these over-dense regions are described by sufficiently large
cosmological perturbations. Although the early universe after the inflationary era can be

3The interacting operator that determines the amplitude of non-gaussianity is π̇∇π2. This operator has
a negative energy scaling dimension if the dispersion relation is dominant by the sixth order term in the
polynomial dispersion relation. Namely the expectation value of this cubic operator grows if the sixth order
term in the dispersion relation remains dominant up to horizon crossing. However, with the dominance of
the quartic and quadratic terms in the dispersion relation, as the mode physical wavelength increases, the
growth of non-gaussianity stops and it remains small enough such that the perturbativity is honored.
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well-described by the FLRWmetric, we need to perturb this background to understand how
perturbed regions provide the opportunity of forming PBHs. Using spherical symmetry
assumption, at the super-horizon scales, one can write down the following approximate
form of metric to describe such regions:

ds2 = −dt2 + a2(t)e2ψ(r)
[
dr2 + r2dΩ2

]
, (3.1)

where a(t) is the scale factor and ψ(r) has the role of comoving curvature perturbation.
This departure from the FLRW metric leads us to a density contrast defined on comoving
hyper-surface. In the gradient expansion approximation, using Einstein equations, one can
show that [56] the comoving curvature perturbation is nonlinearly conserved and related
to the density contrast as

δρ

ρb
= −8

9
1

a2H2 e
− 5

2ψ(r)∇2e
1
2ψ(r), (3.2)

where ρb = 3M2
PH

2 is the energy density of the background. Initially, the comoving size of
these perturbed regions are much larger than the Hubble horizon, but when the universe
evolves, we expect that the comoving scales of these regions become of the order of Hubble
horizon scale. Because only perturbations on scales larger than Jeans length are able to
collapse to form PBHs, we need c2

sk
2 ≈ a2H2 (with c2

s = 1
3), at the time t = tf of collapse

of a over-density with wavenumber k (the time of PBH formation). This would give us a
straightforward criterion which states for PBH formation the density contrast should be
bigger than c2

s when the scale of interest reenters the horizon (or k = aH), namely

δρ

ρ
(tk) = c2

sk
2

H2a2
∣∣
t=tk

> c2
s = 1/3 (3.3)

where tk determines the horizon crossing time for a given scale k. This relation also implies
that the mass of the PBH at the formation time can be approximately identified with the
horizon mass. This is because one cannot here recognize a meaningful discriminant between
the Hubble horizon and Jeans length RJ = cS/H. In fact a more precise investigation [57]
unveils that at the formation time during the radiation dominated era, the mass of PBHs
is related to the horizon mass MH ≡ 4πρb

3H3 as the following,

MPBH = γ∗MH

∣∣
t=tf

= γ∗
2GH(tf ) , (3.4)

where the correction factor γ∗ in the simple analytic calculation has been estimated as
γ∗ ≈ 1

3
√

3 .
Because we consider the cosmological perturbations are related to a quantum origin, it

would be sensible to expect that their amplitudes have a statistical distribution. In fact, in
the spirit of perturbation theory, one should understand the density contrast as a statistical
variable with a very small mean value (which also implies a negligible mean value for ψ).
Therefore, for the PBH formation, we have to look for a large deviation from the mean
value. In the case of negligible non-Gaussianities, we may consider the density contrast
and the comoving curvature perturbation as approximate Gaussian variables which would
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be fully described by the two-point function of ψ using the linearized form of eq. (3.2),
namely

δρ

ρb
' −4

9
1

a2H2∇
2ψ(r). (3.5)

This immediately relates the power spectrum of the comoving curvature perturbation PS
with the power spectrum of the density contrast Pδ:

Pδ(k, k
′
, t) ' (2π)3δ3(k − k′)

(
k

aH

)4 16
81PS (k). (3.6)

Inflationary scenarios may provide us with mechanisms that using them the PBHs forma-
tion can be induced by the primordial fluctuations with this assumption that the over-
dense regions described above are sourced from the primordial curvature perturbations.
Such mechanisms have been designed so that the amplitudes of these primordial curvature
fluctuations get some large values at certain scales depended on the mass of PBHs. So we
need to find out how the mass of PBHs and the comoving scale of perturbations are related
to each other. Since PBHs are formed when over-densities re-enter the horizon, we can
identify the size of such regions with the comoving wavenumber k of the primordial pertur-
bations at the formation time, i.e., a(tf )H(tf ) ∝ k. Because for the radiation-dominated
universe, we have H ∝ 1

a2 , the relation between the Hubble parameter and the comoving
wavenumber of primordial fluctuations turns out to be H(tf ) ∝ k2. Using relation (3.4)
one can deduce that MPBH(k) ∝ k−2. A more rigorous analysis [58] reveals the following
approximation for scale dependency of the PBH mass

MPBH(k) ≈ 30 M�
(
γ∗
0.2

)(
g∗,form

10.75

)−1/6 ( k

2.9× 105Mpc−1

)−2
. (3.7)

Using this relation we can estimate the scale of instabilities in the power spectrum from
which PBHs of a specific mass come out. For example, for creating PBHs of mass 30M�,
the instabilities should be placed at the scale of k ∼ 2.9 × 105Mpc−1. Therefore there is
a hierarchy between the observable scales kCMB ∼ 0.002Mpc−1 namely CMB scales, and
the scales of PBHs of mass 30M� (which is not accessible by CMB) as k30M� ∼ e20kCMB .
Moreover, for PBHs of the range mass MPBH ∼ 10−17M�− 10−13M� which can constitute
10% − 100% dark matter abundance, the corresponding scale would be between 35.5 and
40 e-folds after the CMB scales exit.

4 PBHs mass fraction

In the last section, we saw how extended EFT modify the scalar perturbation power spec-
trum respect to the standard Bunch-Davies power spectrum. To see the observational effect
of this modification, one can investigate the abundance of formed PBHs, which represents
the mass fraction of PBHs at the formation time (radiation dominated era) as β′, which
can be defined as

β′ = ρPBH

ρcr
|formation time (4.1)
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Figure 4. This figure shows the fraction of PBH mass relative to dark matter in the present time
coming up from γ in figure 2, in terms of its mass with the parameter δth = 0.5.

where ρcr is the total energy density. To state the condition for a collapse to a PBH is
usually stated in terms of the smoothed density contrast at horizon crossing (HC), δHC(R).
If δHC(R) > δth ∼ O(1) [59–62] a fluctuation on a scale R(MPBH) will collapse to form a
PBH, with mass MPBH around the horizon mass.4 In order to calculate the mass fraction,
we just need to relate the PBH mass M to the comoving smoothing scale R when the scale
enters the horizon, k = aH. One can show that in the radiation dominated era

R

1 Mpc = 5.54× 10−24 1
γ∗

(
MPBH

1g

)1/2 ( g∗
3.36

)1/6
(4.2)

where g∗ the number of relativistic degrees of freedom, is expected to be of order 100 in the
early universe and γ∗ ∼ 0.2 during the radiation era. To calculate PBH mass fraction, one
needs to evaluate, σ(R), the variance of the density fluctuations on the mass scale MPBH

σ2(R) =
∫ ∞

0
W̃ 2(k,R)PS (k, t)dk

k
, (4.3)

for the probability distribution of the smoothed density contrast. Here Pδ(k, t) is the power
spectrum of the (unsmoothed) density contrast, Pδ(k, t) ≡ k3

2π2 〈|δk|2〉. The W̃ (k,R) is the
Fourier transform of the window function, which is used to smooth the density contrast.
In this paper, we will use the Fourier transform of a volume-normalized Gaussian window
function as W̃ (k,R) = exp(−k2R2

2 ) . The probability distribution function of the density
fluctuations is given, β′ can be regarded as the probability that the density contrast is
larger than the threshold for PBH formation, and one can evaluate the mass fraction of
PBHs for a Gaussian distribution as

β′(MPBH) =
∫ ∞
δth

P (δHC(R)) dδHC(R) = 1√
2πσHC(R)

∫ ∞
δth

exp
(
− δ2

HC(R)
2σ2

HC(R)

)
dδHC(R) .

(4.4)
4Though the naive calculation [57] tells us that the PBH formation occurs when the density perturbation

becomes comparable to δth = 1/3, more general analysis raises this value to δth = 0.7 [59, 62].
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Figure 5. This figure shows the fraction of PBH mass relative to dark matter in the present time
coming up from the lower blue plot in figure 3, in terms of its mass with the parameters δth = 0.5.

Using this mass fraction one can evaluate the fraction of PBH mass relative to dark matter
in the present time as

f(MPBH) = 2.7× 108
(
γ∗
0.2

)1/2 ( g∗
10.75

)−1/4 ( M

M�

)−1/2
β′(M). (4.5)

The constraints on the PBH initial mass fraction, β′(MPBH), can therefore be translated
into constraints on the mass variance by inverting this expression. There is a wide range of
constraints on the PBH abundance, from their various gravitational effects and the conse-
quences of their evaporation, which apply over different mass ranges. These constraints are
mass-dependent and lie in the range β′(MPBH) < 10−20 − 10−5 [23, 26, 63]. The power of
these PBH abundance constraints is apparent when we consider the resulting constraints
on σHC(R) which are in the range σHC(R)/δth < 0.1− 0.2. In other words a small change
in σHC(R)/δth leads to a huge change in β′, and respectively f(M). Figure 5 shows that
we can get enough PBH which can give us a significant part of dark matter. It also demon-
strates modulated oscillations in the mass function of the PBHs, which is the result of its
exponential sensitivity to the changes in the power spectrum. On the other hand, figure 4
shows that we can get enough solar PBH mass which forms binaries, and we can see their
merging effect in LIGO.

5 Concluding remarks

In this paper, we proposed a mechanism to enhance the power spectrum at the relevant
scales to the PBH formation threshold. The mechanism was based on the observation that
the dispersion relation with a negative interim slope can substantially enhance the two-
point function if the coefficient of the negative term in the dispersion relation is smaller
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than a threshold. An example of such dispersion relations is the sixth order dispersion
relation embedded in the EEFToI [51]. In the effective field theory approach, even if the
coefficients of the operators in the unitary gauge action are time-dependent, the spatial
diffeomorphism is respected. Since the coefficients of the sixth order dispersion relation
are related to these time-dependent coefficients, we conceived a situation that the quartic
coupling swings from a small positive value to a small negative one, which lasts for some
number of e-folds, and then becomes positive again, while the sextic and the speed of sound
were kept nearly constant. We also confined ourselves to the parameter space region in
which the sound speed remained close to one. This way, we would be able to avoid large
non-gaussianities. We assumed that these changes of signs happen almost instantaneously,
and thus we can safely ignore the transient effects. Interestingly, we found the impact
of this change of sign in the dispersion relation is imprinted on the power spectrum of
perturbations only after a couple of e-folds, confirming that the enhancement occurs while
the modes are well inside the horizon. The amplification occurs because of the influence of
the negative contribution of the quartic term in the dispersion relation, which leads to an
exponential growth in the mode function, subsequently the power spectrum. The smaller
the absolute value of the quartic coefficient, the longer the mode spends under the influence
of this term, hence the larger the amplitude of the power spectrum. Also, if the absolute
value of the coefficient of the quartic term in the dispersion over the sixth order one is
smaller than a threshold, this enhancement will be more pronounced. We showed that for
reasonable values of the quartic and the sixth order coefficients in the dispersion relation,
the power spectrum is augmented with the desired modulation factor, although the sixth
order term in the dispersion relation is negligible in comparison with the quartic one which
itself, in turn, is small in comparison with the Lorentzian term, k2. This helps us to avoid
the strong coupling at the horizon crossing.

As for higher order terms, as far as their coefficient is positive and small, there will not
be that much of modulation in the amplitude of the power spectrum. In fact, higher order
positive terms tend to suppress the amplitude of scalar density perturbations (although very
mildly). Only when the coefficient of one of these higher order terms becomes negative,
there is a possibility that one can enhance the power spectrum. Although in this article,
we designed our scenario with a the sixth order polynomial dispersion relation, in principle
this could have also been done with higher order polynomials. The only requirements are
that one is able to define a stable vacuum for the dispersion relation when the mode is deep
inside the horizon and also there is an intermediate term which appears with a negative
sign in the dispersion relation. If the negative intermediate term lasts long enough, the
desired enhancement of the power spectrum can be achieved. The reason we focused on
the sextic polynomial dispersion relation, is that we have an explicit construction of the
polynomial dispersion relation in the context of Extended EFT of inflation in [51].

Not only it can be arranged that the Extended EFT of inflation, with parameters
chosen so as to it leads to PBH formation, avoids the strong coupling in the IR and, in
particular, the horizon crossing, but it can also be arranged such that the new UV cutoff of
the theory remains well above the Hubble parameter. As pointed out in [51], the UV cutoff
in the Extended EFToI also comes from the same four-leg interacting operator (∂iπ∂iπ)2,
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which has the energy scaling dimension of 2/3 at high energies. The coefficient of this
dispersion relation is given by M4

2 , which is the coefficient of (1 + g00)2 term in the unitary
gauge action. On the other hand, the canonical field πc ∼

√
A0π, where A0 is defined as,

A0 = G1 + 9H4
(

3δ3 + 3
2δ4

)
− 9M̄4H

3 , (5.1)

where G1 is defined in eq. (2.6). The cutoff of the theory then turns out to be

Λ4 '
c7
S
A2

0
M4

2
, (5.2)

where now cS is given contains all the parameters of the Extended EFT of inflation. In
principle, by adjusting the coefficients in the unitary gauge action, one can set the cutoff
large enough such that Λ � H. In this work, we have assumed that the coefficients and
couplings in unitary gauge action were chosen such that cS ≈ 1, Now if A2

0 is arranged to be
much bigger than (4M4

2 − 2M2
PlḢ)2 and M4

2H
4, then the UV cutoff in the Extended EFT

of inflation would not only be much bigger than the Hubble parameter during inflation but
also UV cutoff in the EFToI [48].

In the above scenario, we had assumed that the quartic coefficient becomes negative
around the scale of interest and then swings back to positive values at smaller scales.
This was to avoid the overproduction of PBHs in the mass ranges that are not allowed
by observation. However, this may be avoided if one takes into account the fact that the
thermal history of the universe and sudden drops in the pressure of relativistic matter
at W±/Z0 decoupling, the quark-hadron transition and e+e− annihilation increases the
probability of primordial black hole (PBH) formation in the early universe and implies
several peaks in the PBH mass spectrum at 10−6, 1, 30, and 106 M� [64]. In this scenario,
it is still required that the primordial power spectrum is enhanced to order few× 0.01.

Due to the smallness of the sextic and quartic terms at the moment of horizon crossing,
and as we have focused on the region of parameter space in which the speed of propagations
of fluctuation is luminal, we expect that the non-gaussianity resulted from the setup to be
small. However, the resulted non-gaussianity from the setup still can be larger than the
slow-roll inflationary background. For the case of dispersion relations with the quartic
correction to the dispersion relation, predicted in the EFT of inflation [48], considering
interacting operators, it has been shown that the flattened configuration, in which two
of the momenta is collinear with the third one k1 = k2 + k3, could be enhanced. This
may compensate for the small slow-roll suppressed non-gaussianity and bring fflat

NL to the
order of few. With a finite value for the non-gaussianity, it might be possible to produce
PBHs from the tail of the non-gaussianity solely, as in [65] or [66]. This gives us further
motivation to look at the amount of generated non-gaussianity more closely in this scenario
in a separate work.

Last but not least, it is worth mentioning that the kind of dispersion relation that
we elaborated on seems to be difficult to be realized within a fundamental theories, such
as “local quantum field theory” or perturbative string theory. As it has been pointed out
by [67], higher order dispersion relations can only be implemented in such fundamental
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theories, if the coefficients of the higher order derivative interaction terms appear with
positive values in the Lagrangian. This corresponds to the dispersion relations in which
the coefficient of higher order corrections to the Lorentzian dispersion relation, ω2 = k2,
appear with negative sign. Otherwise, one will have superluminal propagations. This is
despite the fact that the theory’s Lagrangian may looks like a local Lorentz-invariant one.
This is true for both our Extended EFT of inflation, with the sextic polynomial dispersion
relation, and the ghost inflation with quartic (polynomial) dispersion relation. In both
cases one can write down an “apparently-local” form for the Lagrangian. However, looking
at the perturbations, one can see that the speed of propagation is larger than the speed of
light. Although in part of the parameter space that we focus on the quartic contribution
to the dispersion relation appears with negative sign, the sixth order term has a positive
coefficient, which gives rise to superluminal propagation, in particular in the regime when
the mode has a very small wavelength. It is conceivable that before the dispersion relation
becomes superluminal under the influence of the sixth order term, the Lorentzian dispersion
relation is recovered at very small wavelengths.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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