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1 Introduction

The origin of the flavor structure of the Standard Model (SM) is one of the most challenging
problems in particle physics. The observed mass eigenvalues of the matter fields have a
large hierarchy, which is more than 106 among them. This hierarchy can not be explained
in the framework of the SM, since the Yukawa couplings are free parameters in the SM.
Thus, we require a beyond the SM mechanism naturally reproducing it.

The modular symmetry is a recently proposed solution for the flavor puzzle [1, 2].
In this model, the action is assumed to be invariant under the (inhomogeneous) modular
group Γ ' PSL(2,Z), which is the quotient group of SL(2,Z) divided by its center {I,−I}.
In this model, coupling constants are no longer free parameters, but modular forms. The
modular forms are specific holomorphic functions of the complex parameter known as the
modulus. They form unitary representations of the quotient group of the modular group:
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ΓN = Γ/Γ(N). Γ(N) is known as a principle congruence subgroup of Γ. ΓN is isomorphic
to a non-Abelian discrete group. In particular, it is isomorphic to a finite group when
the level N is lower than 6 [3]. Therefore, coupling constants, as well as the dynamical
fields, transform as unitary representations of the non-Abelian finite group in this model.
This is attractive for particle phenomenologist since discrete symmetries are well-known
candidate solutions for the flavor puzzle, especially for the lepton flavor structure, [4–8].1

Indeed, various modular invariant models which successfully reproduce the SM have been
constructed in these years, e.g. for Γ2 [14–17], Γ3 [1, 2, 14, 17–24], Γ4 [17, 20, 25–28],
Γ5 [17, 28, 29], Γ7 [30], and the double covering groups of the modular groups [17, 31–37].
A combined symmetry of the modular symmetry with the conventional flavor symmetries
or CP-symmetry is also considered in [38–45].

The Froggatt-Nielsen (FN) mechanism is another well-known possible solution for the
flavor puzzle [46]. In the original FN mechanism, the matter fields such as the left-handed
quarks Qi and the right-handed quarks uci and dci are assumed to be charged under an extra
gauge group denoted by U(1)FN, which prohibits the tree level Yukawa coupling except for
the top quark. An extra scalar field φ, which is a trivial singlet under the SM gauge group, is
introduced to spontaneously break U(1)FN. Since the effective Yukawa couplings are given
by higher order couplings suppressed by its vacuum expectation value (〈φ〉/Λ)n, where n
is a difference of U(1)FN charges between generations, the mass hierarchy is controlled by
the U(1)FN charges of the quark fields. It is interesting that in the FN model the mass
ratios are also related to the mixing angles, so that it naturally explains a realistic mass
hierarchy and the mixing angles of the quark sector simultaneously if 〈φ〉/Λ is chosen to
the Cabibbo angle [13].

We consider an FN-like mechanism in the framework of modular symmetries. In anal-
ogy to the FN mechanism, the modular weights of the fermion fields play the role of U(1)FN
charges. An extra SM singlet φ with a negative modular weight is introduced, which com-
pensates the modular weights of the fermion fields. The effective couplings are given by
higher dimensional operators suppressed by powers of (φ/Λ)n, where n is a difference of
modular weights between generations. The Yukawa coupling itself is also controlled by the
modular weights of the fermion fields, since the modular forms are classified by modular
weights. This FN-like mechanism based on modular symmetry has been recently consid-
ered to explain the large mass hierarchy in [28, 47–49].2 We note that while in the previous
model the mass hierarchy originates from powers of the weighton vev, the resulting quark
mass matrices do not fully simulate the FN-like structure, so that the relationship between
two origins of mass hierarchy and the small mixing angles becomes more subtle than that
of the FN model.

In this paper, we present new flavor models for the quark sector based on the FN-like
mechanism with modular symmetry. In our models, it is assumed that the three generations
of singlet quarks have a common representation under the modular symmetry, so that we see
the same order of suppression factors appearing in each column or each row of the Yukawa

1For reviews, see [9–12] and other approaches including continuous flavor symmetry and the GUT are
shortly reviewed in [13].

2Another approach to the mass hierarchy by the residual modular symmetry can be found in [17, 50].
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matrices, where the two different suppression factors (the exponentially suppressed factor in
the modular forms and a power suppression by φ/Λ) are incorporated, respectively. Thus,
our models can simply reproduce the characteristic structure of the FN-like mass matrices.
We illustrate this mechanism in models with different finite modular groups of Γ′3,Γ′4 and Γ′5
in detail. Following ref. [47], we analyze an approximate expression for the mass ratios and
the mixing angles, where a hierarchical mass structure which relates to the mixing angles
is easily obtained with a suitable choice of the modular parameters and the singlet vev.
We then numerically confirm this mechanism by a fit analysis, where we find parameter
sets for the realistic mass hierarchy and mixing angles with O(1) coefficients. The validity
of the approximate estimation and the stability against changes of free parameters are also
numerically investigated through the parameter dependence of the results.

This paper is organized as follows. In section 2, we briefly review the modular symme-
try. We also explain two possible origins of the hierarchy for the modular symmetry; one is
the hierarchy among the modular forms, and the other is FN mechanism. In section 3, we
consider a Froggatt-Nielsen like superpotential with the modular group of level 3. In this
model, a hierarchical mass matrix is realized by incorporating both of the above possible
origins. In section 4, we generalize the previous model to the modular group of higher
levels. In section 5, we investigate our models statistically. Section 6 is devoted to the
conclusion. We also review the modular forms of level 3, 4, and 5 in the appendices.

2 Modular symmetry and the Froggatt-Nielsen mechanism

In this section, we briefly review the modular symmetry and the Froggatt-Nielsen mecha-
nism. We also introduce our notations mostly based on [1].

The modular symmetry is a recently proposed model building framework. In this
model, the action is assumed to include a complex parameter known as the complex struc-
ture modulus τ ∈ H. The complex structure parameterizes the geometry of torus. Torus
is invariant under the linear fractional transformation,

τ → γτ = aτ + b

cτ + d
, (2.1)

where γ =
(
a b

c d

)
∈ SL(2,Z) since τ and γτ generate the same lattice. It is obvious that

both γ and −γ equivalently act on τ . Thus, the torus is invariant under PSL(2,Z) ≡
SL(2,Z)/Z2. This is the (inhomogeneous) modular group Γ. The modular group is gener-
ated by two generators,

S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
, (2.2)

and these generators satisfying the following relations

S2 = (ST )3 = I, (2.3)
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where I is the identity. In this paper, we abuse elements of SL(2,Z) to denote the cor-
responding elements of the modular group SL(2,Z)/Z2. For instance, S is the element of
SL(2,Z) originally, but the same symbol also denotes the equivalence class in the modular
group. The modular group acts on the effective action. For instance, coupling constants
such as Yukawa couplings depend on the moduli τ . They transform under the modular
group through the modular transformation of τ . To construct a modular invariant action,
coupling constants should form representations of the modular group, and such functions
are known as the modular forms.

Before considering modular forms, we introduce the principal congruence subgroup of
level N in Γ, which is usually represented by Γ(N). Γ(N) is given by

Γ(N) =
{(

a b

c d

)
∈ Γ

∣∣∣∣∣ a = d = 1 and b = c = 0 mod N

}
. (2.4)

The modular forms of level N and weight k are holomorphic functions satisfying the fol-
lowing transformation

f(γτ) = (cτ + d)kf(τ), (2.5)

for any γ in Γ(N). The prefactor (cτ + d)k is so-called automorphy factor. Since linear
combinations of the modular forms of level N and weight k are also modular forms of level
N and weight k, they form a linear space, which is denoted by Mk(Γ(N)). Mk(Γ(N)) is
finite dimensional. The modular forms form unitary representations of the quotient group
ΓN = Γ/Γ(N) up to the automorphy factor,

fi(γτ) = (cτ + d)kρ(γ)ijfj(τ), (2.6)

where {fi} is a basis ofMk(ΓN ), and ρ is a unitary representation of ΓN . The generators
of ΓN are satisfying the following relations,3

S2 = (ST )3 = TN = I. (2.7)

ΓN is isomorphic to the non-Abelian finite group when N is smaller than 6: Γ2 ' S3,Γ3 '
A4,Γ4 ' S4,Γ5 ' A5 [3]. Note that the definition of the automorphy factor has ambiguity
since the modular group is divided by its center. Hence the modular forms are well-defined
only if the modular weight is even. If we consider the double covering group of the modular
group instead of the usual modular group, modular forms of odd modular weights can be
defined as well. The double covering group of the modular group is known as homogeneous
modular group Γ′. To distinguish Γ from Γ′, Γ is called inhomogeneous modular group. Γ′

is nothing but SL(2,Z) itself, and there are no ambiguities of sign of c and d. The principal
congruence subgroup of level N in the homogeneous modular group, and its quotient group
Γ′N is similarly obtained as

Γ′N = Γ′/Γ′(N), (2.8)
3We abuse elements of SL(2,Z)2 to denote elements of ΓN too.
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where Γ′(N) is a subgroup of Γ′ whose element is equivalent to I mod N . The generator
of Γ′N are satisfying the similar relations:

S2 = R, (ST )3 = I, TN = I, TR = RT, R2 = I. (2.9)

Γ′N is isomorphic to non-Abelian finite group when N < 6, too: Γ′2 = Γ2 ' S3, Γ′3 ' T ′,
Γ′4 ' S′4 and Γ′5 ' A′5 [31]. The modular symmetry is originally inspired by string com-
pactifications [53–59]. From the stringy perspective, the coupling constants and dynamical
fields transform under the homogeneous modular group rather than the inhomogeneous
modular group [39, 40, 60–64] and metaplectic group [65]. Hence we consider modular
symmetric model based on Γ′ in this paper.

Throughout this paper, we assume global supersymmetry. The matter fields such as
quarks are denoted by chiral superfields. We assume that they transform as the modular
forms of level N and weight k,

γ : Φi → (cτ + d)kiρΦ(γ)ijΦj , (2.10)

where Φi is a matter field and ρΦ(γ) is a unitary matrix. The action of chiral superfields
Φi is given by two functions, the Kähler potential K and the superpotential W ,

S =
∫
d4xd2θd2θ̄K(Φi, Φ̄i, τ, τ̄) +

∫
d4xd2θW (Φi, τ) + (h.c.).

The typical modular invariant action is given as4

K =
∑
i

ΦiΦ̄i

Im τ−ki
, (2.11)

W =
∑

(fi1i2...in(τ)Φi1Φi2 . . .Φin)1, (2.12)

where fi1i2...in(τ) is a modular form of weight k satisfying

k + ki1 + . . .+ kin = 0, (2.13)

so that the modular weight of the superpotential is zero.5 The modular weight plays a
similar role of the charge of U(1) gauge symmetry. (fi1i2...in(τ)Φi1Φi2 . . .Φin)1 denotes the
trivial singlet component of the tensor product of the chiral superfields and the modular

4This form of Kähler potential is given by string compactifications at tree level. The general form of
the modular invariant Kähler potential includes modular forms and other couplings. Such additional terms
may affect results [66], but we ignore their effects in the present paper for simplicity.

5From local supersymmetry, the modulus τ is a vacuum expectation value of a dynamical field, and the
Kähler potential includes the kinetic term of the moduli field:

K = −h ln(τ + τ̄).

This term implies that the modular weight of the superpotential is h rather than zero, and the modular
invariant condition (2.13) is changed to k+ki1 + . . .+kin = h. However it is always possible to cancel it by
shifting the modular weight of the chiral superfields. Therefore, we assume (2.13) throughout this paper.
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form. We consider canonically normalized couplings rather than the holomorphic couplings.
The canonically normalized field Φ̃i is given by

Φ̃i = Im τki/2Φi, (2.14)

and the canonically normalized n-point coupling f̃i1i2...in is given by

f̃i1i2...in = Im τ−
k1+k2+...+kn

2 fi1i2...in(τ) = Im τk/2fi1i2...in(τ), (2.15)

where k is the modular weight of fi1i2...in itself.
In order to be invariant under modular symmetry, the allowed Yukawa couplings are

also given in term of the modular forms, which are classified by modular weights. In the
followings, we discuss the properties of the modular forms.

2.1 Hierarchy in the modular forms

The modular forms naturally have a hierarchy. To illustrate this point clearly, we consider
the modular forms of level 3 as a concrete example. The modular forms of level 3 and
weight k form a k + 1 dimensional linear space Mk(Γ(3)) [31, 32]. The modular forms of
weight 1 are given by

ê1(τ) ≡ η3(3τ)
η(τ) , ê2(τ) ≡ η3(τ/3)

η(τ) , (2.16)

where η(τ) is the Dedekind eta function,

η(τ) = q1/24
∞∏
n=1

(1− qn), q ≡ e2πiτ .

Note that since we consider the homogeneous modular group, odd weight modular forms
can be defined. The modular transformations of ê1 and ê2 are given byê1(τ + 1) = ei2π/3ê1(τ), ê2(τ + 1) = 3(1− ei2π/3)ê1(τ) + ê2(τ),

ê1(−1/τ) = 3−3/2(−iτ)ê2(τ), ê2(−1/τ) = 33/2(−iτ)ê1(τ),
(2.17)

and we can check that the action of the modular group is closed in this space. Since
the modular forms form representations of Γ′3, they can be decomposed to the irreducible
representations of Γ′3 ' T ′. The irreducible representations of T ′ are as follows,6

1,1′,1′′,2,2′,2′′,3. (2.18)

ê1, ê2 form 2 of T ′ by

Y
(1)

2 (τ) =
(
Y1(τ)
Y2(τ)

)
=
(√

2ei7π/12ê1(τ)
ê1(τ) + 1

3 ê2(τ)

)
. (2.19)

6Their matrix representations are summarized in appendix A.
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The modular forms of higher weights are constructed by the tensor products of the modular
forms of weight 1, e.g. the modular forms of weight 2 are given by

Y
(2)

3 = (Y (1)
2 ⊗ Y (1)

2 )3 =
(
eiπ/6Y 2

2 ,
√

2ei7π/12Y1Y2, Y
2

1

)t
, (2.20)

and they form 3 of T ′. We can obtain the higher weight modular forms in a similar way.
The modular forms have q-expansion. Y (1)

2 (τ) is expanded as

Y1(τ) =
√

2ei7π/12q1/3
(
1 + q + 2q2 + 2q4 + q5 + 2q6 + · · ·

)
,

Y2(τ) = 1/3 + 2q + 2q3 + 2q4 + 2q7 + 2q9 + · · · . (2.21)

Thus, Y1 � Y2 for large Im τ . This is a general feature for the modular forms which
transform as 2 of T ′. The matrix representation of ρ2(T ) are given by

ρ2(T ) =
(
ω 0
0 1

)
, (ω = e2πi/3). (2.22)

It is clear that q1/M transforms under T as

q1/M → e2πi(τ+1)/M = e2πi/Mq1/M . (2.23)

Thus, the modular forms which transform as 2 of T ′ must have the q-expansion of the
following form,

Y
(k)

2 =
(
Y

(k)
2,1
Y

(k)
2,2

)
=
(
q1/3∑

n∈NC
(k)
n qn∑

n∈ND
(k)
n qn

)
, (2.24)

where C(k)
n and D(k)

n are coefficients independent of τ . Thus, we can generally approximate
the modular forms of 2 as

Y
(k)

2 ∼ (q1/3, 1)T , (2.25)

for large Im τ . More precisely, the leading terms of the q-expansions are not uniquely
determined by the matrix representations of T . They always have ambiguity of integer
powers of q. Thus, the modular forms are approximated as

Y
(k)

2,1 ∼ q
1/3+M1 , Y

(k)
2,2 ∼ q

M2 , (2.26)

where M1 and M2 are appropriate integer numbers. To determine the correct hierarchy,
we must calculate the explicit forms of the modular forms. Nevertheless, we obtain the
hierarchical values in either case since the powers of q of the leading terms can not be the
same. The matrix representation of T for other representations are given in appendix A.
The modular forms of the other representations have q-expansion of

Y
(k)

1 =
∑

C(k)
n qn, Y

(k)
1′ = q1/3∑C(k)

n qn, Y
(k)

1′′ = q2/3∑C(k)
n qn,

Y
(k)

2′ =
(
q2/3∑C

(k)
n qn

q1/3∑D
(k)
n qn

)
, Y

(k)
2′′ =

( ∑
C

(k)
n qn

q2/3∑D
(k)
n qn

)
, Y

(k)
3 =


∑
C

(k)
n qn

q1/3∑D
(k)
n qn

q2/3∑E
(k)
n qn

 , (2.27)
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and they are approximated by

Y
(k)

1 ∼ 1, Y
(k)

1′ ∼ q
1/3, Y

(k)
1′′ ∼ q

2/3,

Y
(k)

2′ ∼
(
q2/3

q1/3

)
, Y

(k)
2′′ ∼

(
1
q2/3

)
, Y

(k)
3 ∼

 1
q1/3

q2/3

 . (2.28)

Therefore, the modular forms naturally have large hierarchy for large Im τ .
This feature is general for the modular group of other levels. We summarize the result

of Γ′4 in appendix B, and that of Γ′5 in appendix C.

2.2 Froggatt-Nielsen mechanism

The Froggatt-Nielsen (FN) mechanism is a well-known candidate solution for the flavor
puzzle. In FN mechanism, one introduces an extra Abelian gauge group U(1)FN, and
assumes that the matter fields such as the left-handed quark field Qi and the right-handed
quark fields uci , dci are charged under U(1)FN. We assume that Higgs fields Hu and Hd are
neutral under U(1)FN. The Yukawa couplings are prohibited by U(1)FN unless the sum of
U(1)FN charges of the corresponding fields are canceled. We introduce an extra scalar field
φ which has the U(1)FN charge of −1. We also assume that φ is the trivial singlet under
the SM gauge group. After the U(1)FN is spontaneously broken down at high energy scale
Λ, φ obtains vacuum expectation value 〈φ〉 and the effective superpotential for the quarks
would be given by

Wu =
∑
i,j

C
(u)
ij φ̃

fui+fQjQjHuu
c
i , Wd =

∑
i,j

C
(d)
ij φ̃

fdi
+fQjQjHdd

c
i ,

where φ̃ = 〈φ〉 /Λ, and fQi and fui,di
are the charge of the quarks respectively. C(u)

ij and
C

(d)
ij are free parameters supposed to be order 1. If φ̃ is sufficiently small (and the U(1)FN

charges of the quarks are large enough), effective Yukawa couplings much less than 1 are
obtained.

A typical example for the quark charges reproducing the observed mass eigenvalues
and the mixing angles is given by

fQ1 = 3, fQ2 = 2, fQ3 = 0,
fuc

1
= 3, fuc

2
= 2, fuc

3
= 0,

fdc
1

= 2, fdc
2

= 1, fdc
3

= 1.

In this case, Yukawa couplings of order 1 are prohibited except for the top quark, and
the light quark mass terms are given by nonrenormalizable higher order terms. The quark
mass matrix is given by [51]

Mu ∼

φ̃
6 φ̃5 φ̃3

φ̃5 φ̃4 φ̃2

φ̃3 φ̃2 φ̃0

 vu√
2
, Md ∼

φ̃
5 φ̃4 φ̃4

φ̃4 φ̃3 φ̃3

φ̃2 φ̃1 φ̃1

 vd√
2
. (2.29)

– 8 –



J
H
E
P
0
7
(
2
0
2
1
)
0
6
8

The left-handed quarks Qi are on the left side of the mass matrix, and the right-handed
quarks uci , dci are on the right side in our notation [52]. The mass matrix is diagonalized by
two unitary matrices V f

L and V f
R as V f

LMfV
f†
R = Mdiagonal

f , and the Cabibbo-Kobayashi-
Maskawa (CKM) matrix is given by VCKM = V u

L V
d†
L . The mass eigenvalues of (2.29) are

approximated by mu ∼ φ̃6vu,mc ∼ φ̃4vu and mt ∼ vu for the up sector, and they are given
as md ∼ φ̃5vd,ms ∼ φ̃3vd and mb ∼ φ̃vu for the down sector.

In terms of the mixing angles, we consider two-flavor model at first for simplicity.
Suppose that the mass matrix of the up and down quarks are given by

Mu =
(
ε1ε2 ε2
ε1 1

)
, Md =

(
δ1δ2 δ2
δ1 1

)
,

where εi, δj are small parameters. The eigenvalues of Mu are obtained by the following
eigenvalue equations,

det(MuM
†
u − λI) = 0.

We obtain

λ = 0, (1 + ε21)(1 + ε22).

The diagonalizing matrices are given by

(V u
L )† = 1√

1 + ε22

(
1 ε2
−ε2 1

)
=
(

1 ε2
−ε2 1

)
+O(ε22),

(V u
R )† = 1√

1 + ε21

(
1 ε1
−ε1 1

)
=
(

1 ε1
−ε1 1

)
+O(ε21).

The calculation for the down sector is completely parallel, and we obtain the CKM matrix

V u
L (V d

L )† ∼
(

1 + ε2δ2 δ2 − ε2
ε2 − δ2 1 + ε2δ2

)
. (2.30)

Thus, the mixing angle is approximated by the difference between the ε2 and δ2. For three-
flavor model, the mixing angles θIJ is approximately given by the mass matrix focusing on

the corresponding two quarks, that is
(
MII MIJ

MJI MJJ

)
. Hence we obtain

θ12 ∼
M12
M22

, θ23 ∼
M23
M33

, θ13 ∼
M13
M33

. (2.31)

The approximated CKM matrix of (2.29) is written as

VCKM ∼

 1 φ̃ φ̃3

φ̃ 1 φ̃2

φ̃3 φ̃2 1

 . (2.32)

It is interesting that the observed values of CKM matrix are given by

θ12 ≡ θC ∼ 0.2, θ23 ∼ 0.03, θ13 ∼ 0.003, (2.33)

and the realistic mixing angles are realized if φ̃ is equivalent to the Cabibbo angle θC .
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weight k representations
1 2
2 3
3 2,2′′

4 1,1′,3
5 2,2′,2′′

6 1, 2× 3
...

...

Table 1. Irreducible decomposition ofMk(Γ(3)).

3 Froggatt-Nielsen like mechanism with Γ′
3

The FN-like mechanism based on the modular symmetry is first proposed in [47], and
similar idea is also proposed in [28]. In this model, the extra U(1) symmetry is not required,
but a similar role is played by the modular group. In this section, we explain this idea. We
also explain a difference between our model and the previous ones.

We consider a modular symmetric models with Γ′3 = T ′ at first. It is straightforward
to generalize the idea to the modular group of another level. Suppose that the quark fields
Qi = (U iL, Di

L)t, uci , dci have modular weight of kQi,uj ,dk
, and their representations under

the finite modular group are denoted by ρQ, ρu, ρd, respectively. We can set the modular
weights of the Higgs fields to zero without loss of generality since they can be absorbed by
shifting the modular weight of the other fields. We also assume that the Higgs fields are
the trivial singlet of the modular group. The tree-level superpotential is given by

Wu =
∑(

Y
(−kQi

−kuj )
ij (τ)Qiucj

)
1
Hu, Wd =

∑(
Y

(−kQi
−kdj

)
ij (τ)Qidcj

)
1
Hd, (3.1)

where the Yukawa couplings Y
(−kQi

−kuj )
ij and Y

(−kQi
−kdj

)
ij are the modular forms of weight

−kQi − kuj and −kQi − kdj
. Suppose ρQ = 3 and ρu = ρd = 1 of T ′, and their modular

weights are given by

kQ1 = kQ2 = kQ3 = kQ = 0,
ku1 = +1, ku2 = −3, ku3 = −6,
kd1 = 0, kd2 = −3, kd3 = −5,

where odd modular weights to the quark fields are allowed if we consider the double covering
group of the modular group. In this case, the Yukawa couplings must be 3. We show the
modular forms of level 3 and weight k < 7 in table 1. The tree level couplings are prohibited
except for uc3 because of the absence of the triplet modular forms for the odd weights. Hence
the modular invariant superpotential is obtained as

Wu =
[
γu
((
Y

(6)
3,I + ruY

(6)
3,II

)
Q
)

1
uc3

]
Hu, Wd = 0, (3.2)
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where Y (6)
3,I and Y

(6)
3,II denote the two modular forms of weight 6 which transform as the

triplet under T ′. γu and ru are arbitrary coefficients supposed to be order 1. The explicit
form of Y (6)

3,I and Y (6)
3,II are given by (A.5). γu is real and ru is complex since the phase of

γu can be absorbed by redefinition of uc3. This superpotential would corresponds to the
Yukawa couplings of the top quark. The other couplings are given as non-renormalizable
higher order couplings. We introduce a new chiral superfield φ whose modular weight is
−1. This φ is called weighton since it carries the unit of modular weight [47]. We assume
that φ is the trivial singlet under both T ′ and the SM gauge group. After breaking the
modular symmetry, φ develops its vev, and the effective superpotential should be given by

W tri
u =

[
αuφ̃

3
(
Y

(2)
3 Q

)
1
uc1+βuφ̃

(
Y

(4)
3 Q

)
1
uc2+γu

((
Y

(6)
3,I +ruY (6)

3,II

)
Q
)

1
uc3

]
Hu,

W tri
d =

[
αdφ̃

2
(
Y

(2)
3 Q

)
1
dc1+βdφ̃

(
Y

(4)
3 Q

)
1
dc2+γdφ̃

((
Y

(6)
3,I +rdY

(6)
3,II

)
Q
)

1
dc3

]
Hd, (3.3)

where φ̃ denotes 〈φ〉 /Λ and Λ is the cutoff scale. αf , βf , γf and rf , where f denotes u
or d, are order 1 parameters. The superscript tri explicitly indicates that the left-handed
quarks form the triplet. In our basis, the irreducible decomposition of 3⊗ 3 is given by7

Y
(k)

1
Y

(k)
2
Y

(k)
3


3

⊗

Q1
Q2
Q3


3

=
(
Y

(k)
1 Q1 + Y

(k)
2 Q3 + Y

(k)
3 Q2

)
1

+ · · · . (3.4)

If Im τ is large, the modular forms Y
(k)

1,2,3 are approximated by q0,1/3,2/3 respectively
(see (2.27)). Then the superpotential is approximated for large Im τ as

W tri
u ∼

[
αuφ̃

3
(
Q1 + q1/3Q3 + q2/3Q2

)
uc1 + βuφ̃

(
Q1 + q1/3Q3 + q2/3Q2

)
uc2

+ γu
(
Q1 + q1/3Q3 + q2/3Q2

)
uc3

]
Hu,

W tri
d ∼

[
αdφ̃

2
(
Q1 + q1/3Q3 + q2/3Q2

)
dc1 + βdφ̃

(
Q1 + q1/3Q3 + q2/3Q2

)
dc2

+ γdφ̃
(
Q1 + q1/3Q3 + q2/3Q2

)
dc3

]
Hd, (3.5)

and the mass matrix is approximated by

M tri
u ∼

 φ̃3 φ̃1 φ̃0

φ̃3q2/3 φ̃1q2/3 φ̃0q2/3

φ̃3q1/3 φ̃1q1/3 φ̃0q1/3

 vu√
2
, M tri

d ∼

 φ̃2 φ̃1 φ̃1

φ̃2q2/3 φ̃1q2/3 φ̃1q2/3

φ̃2q1/3 φ̃1q1/3 φ̃1q1/3

 vd√
2
. (3.6)

We can always exchange the indices of the quark fields freely. We redefine the left-handed
quark fields Qi as

Q1 → Q3, Q2 → Q1, Q3 → Q2, (3.7)

and the mass matrix is rewritten as

M tri
u ∼

φ̃
3q2/3 φ̃1q2/3 φ̃0q2/3

φ̃3q1/3 φ̃1q1/3 φ̃0q1/3

φ̃3 φ̃1 φ̃0

 vu√
2
, M tri

d ∼

φ̃
2q2/3 φ̃1q2/3 φ̃1q2/3

φ̃2q1/3 φ̃1q1/3 φ̃1q1/3

φ̃2 φ̃1 φ̃1

 vd√
2
. (3.8)

7The Clebsch-Gordon (CG) coefficients of T ′ in our notation are summarized in appendix A.
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The determinants of these two matrices are proportional to φ̃4q, and the largest eigenvalue
is of order of φ̃0q0. Thus, we have a natural hierarchy. It is the same as the FN mech-
anism (2.29). If q1/3 ∼ φ̃3/2, we obtain the FN-like mass matrix. Thus, we expect that
these mass matrices reproduce the mass hierarchies and the mixing angles of the quarks.

Note that the right-handed quarks uci (and dci ) must be the same representation to
realize FN-like mass matrix. For example, suppose uc2 is assigned to 1′′, and uc3 to 1′,
and the other right-handed quarks are the trivial singlet 1. In this case, the effective
superpotential of the up sector is changed to

W ′u =
[
αuφ̃

3
(
Y

(2)
3 Q

)
1
uc1 + βuφ̃

(
Y

(4)
3 Q

)
1′
uc2 + γu

((
Y

(6)
3,I + ruY

(6)
3,II

)
Q
)

1′′
uc3

]
Hu. (3.9)

The CG coefficients in terms of (3 × 3)1′′ , and (3 × 3)1′ are summarized in (A.2). The
mass matrix is approximated by

M ′u ∼

 φ̃3 φ̃1q1/3 φ̃0q2/3

φ̃3q2/3 φ̃1 φ̃0q1/3

φ̃3q1/3 φ̃1q2/3 φ̃0

 vu√
2
. (3.10)

The eigenvalues of (3.10) are approximated by φ̃3vu, φ̃
1vu, and φ̃0vu in the limit of Im τ →

+∞. It may reproduce the small values of the mixing angles since it is close to diagonal
matrix. Indeed, in the previous modular symmetric models, the mass matrices are the
same form as (3.10). In this case, however, the source of the mass hierarchy and that of
the Cabibbo angles are independent each other [47]. On the other hand in the case of the
“FN-like” mass matrices in (3.8) they are related each other through the moduli parameters
and the singlet vev. As it will be discussed later, the empirical relations between mass ratios
and the mixing angles in (2.31) can also be realized with O(1) coefficients. For our purpose
it is important to assume that the right-handed quarks are the same representation under
modular symmetry.

To construct a mass matrix similar to (3.8), we have a restriction on the modular
weights too. Since the components of the modular forms are aligned in the same order at
each row in our model, the weight of the Yukawa couplings of each generation must be
different to realize the full rank matrix. The modular forms of weight higher than 5 are
required at least. The modular forms of modular weight higher than 5 is also required for
the CP-phase. The complex phases of the modular forms do not affect the CP-phase for
large Im τ , since the mass matrix is approximated by (3.8), and the phase of q, i.e. Re τ ,
can be absorbed by field redefinition of Qi. The phase of coefficients αf , βf and γf , as well
as that of φ are also absorbed by ui and dj . Hence ru and rd in (3.3) are the only source of
CP-violation in our model.8 Such a CP-phase appears if Mk(Γ(3)) has multiple triplets.
It is satisfied when the modular weight is higher than 5.

8More generally, Im τ = +∞ is a point invariant under τ → −τ∗, which is the generalized CP-
transformation for the modular symmetry [67, 68]. Thus, the superpotential must include explicit breaking
term for large Im τ .
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We also comment on the sub-leading terms. Suppose that the leading Yukawa term is
given by

W ⊃ φ̃k
(
Y

(`)
3 Q

)
1
f cjHf , f = u or d, (3.11)

then we have sub-leading couplings,

∆W = α′f φ̃
k+2

(
Y

(`+2)
3 Q

)
1
f cjHf . (3.12)

The sub-leading term is suppressed by φ̃2 compared to the leading term because the weight
of the modular forms which is 3 of T ′ must be even and positive. As shown in the following
analysis, φ̃ is of order 10−2 for the realistic models, and we can omit the sub-leading terms.
This also implies that the smallest value of k (the power of φ̃ in the leading Yukawa term)
should be lower than 2 in general. The only exception is the Yukawa term in which the
modular weight of the Yukawa coupling is the lowest, that is, ` = 2 in the case of Y (`)

3 . In
this case it is possible to assign an arbitrary positive power of φ̃ at the leading order, since
there is no modular form with lower modular weight ` < 2 for Y (`)

3 (See table 1).
Finally, we obtain the general superpotential of our FN-like model with Γ′3:

W tri
u =

[
αuφ̃

I
(
QY

(k1)
3

)
1
uc1 + βuφ̃

J
(
QY

(k2)
3

)
1
uc2 + γuφ̃

K
(
QY

(k3)
3

)
1
uc3

]
Hu,

W tri
d =

[
αdφ̃

L
(
QY

(`1)
3

)
1
dc1 + βdφ̃

M
(
QY

(`2)
3

)
1
dc2 + γdφ̃

N
(
QY

(`3)
3

)
1
dc3

]
Hd, (3.13)

where I, J,K,L,M,N and ki, `i are integer numbers satisfying the following conditions:

−I + kQ + k1 + ku1 = 0,
−J + kQ + k2 + ku2 = 0,
−K + kQ + k3 + ku3 = 0,
−L+ kQ + `1 + kd1 = 0,
−M + kQ + `2 + kd2 = 0,
−N + kQ + `3 + kd3 = 0. (3.14)

As mentioned above, if ki or `i is equal to 2, the corresponding capital index can be arbitrary
integer number, otherwise the capital indices must be 0 or 1. (k1, k2, k3) = (`1, `2, `3) =
(2, 4, 6) is the smallest weight full rank model, which has the smallest number of free param-
eters because the dimension ofMk(Γ(3)) monotonically increases as the weight k increases.

3.1 Models with the singlet left-handed quarks

We construct a similar model by exchanging the representations of Qi and (uci , dci ). Suppose
that Qi are the trivial singlet of T ′, and uci and dci form the triplet of T ′, then we obtain
the following superpotential:

W sing
u =

[
αuφ̃

IQ1
(
Y

(k1)
3 uc

)
1

+ βuφ̃
JQ2

(
Y

(k2)
3 uc

)
1

+ γuφ̃
KQ3

(
Y

(k3)
3 uc

)
1

]
Hu,

W sing
d =

[
αdφ̃

LQ1
(
Y

(`1)
3 dc

)
1

+ βdφ̃
MQ2

(
Y

(`2)
3 dc

)
1

+ γdφ̃
NQ3

(
Y

(`3)
3 dc

)
1

]
Hd, (3.15)
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where uc = (uc1, uc2, uc3)t and dc = (dc1, dc2, dc3)t, which form 3 of T ′. In this case, the powers
of φ̃ and the modular weights of the fields satisfy the following conditions,

−I + kQ1 + k1 + ku = 0,
−J + kQ2 + k2 + ku = 0,
−K + kQ3 + k3 + ku = 0,
−L+ kQ1 + `1 + kd = 0,
−M + kQ2 + `2 + kd = 0,
−N + kQ2 + `3 + kd = 0. (3.16)

The mass matrices are approximated as

M sing
u ∼

 φ̃
Iq2/3 φ̃Iq1/3 φ̃I

φ̃Jq2/3 φ̃Jq1/3 φ̃J

φ̃Kq2/3 φ̃Kq1/3 φ̃K

 vu√
2
, M sing

d ∼

 φ̃
Lq2/3 φ̃Lq1/3 φ̃L

φ̃Mq2/3 φ̃Mq1/3 φ̃M

φ̃Nq2/3 φ̃Nq1/3 φ̃N

 vd√
2
. (3.17)

We also obtain the hierarchical mass matrix. In fact, this mass matrix is the transposed
matrix of the previous one in (3.8).

(k1, k2, k3) = (`1, `2, `3) = (2, 4, 6) is the model with the lowest weight modular forms.
In this case, the constraints (3.16) implies

I − L = J −M = K −N = −kd + ku. (3.18)

3.2 Numerical analysis of mass ratios and the mixing angles of Γ′
3 models

The origin of the modular symmetry is the geometrical symmetry of the extra dimensions.
Hence we should evaluate the Yukawa couplings at the compactification scale. We assume
that the compactification scale is the GUT scale (2× 1016 GeV). The Yukawa couplings at
high energy scale receives quantum corrections, and they are given by solving the renor-
malization group equation. They depend on the physics beyond the standard model. In
this paper, we assume a minimal SUSY breaking scenario with tan β = 5 [69, 70]. At the
GUT scale, the Yukawa couplings are calculated as

yobs
u = (2.92± 1.81)× 10−6, yobs

c = (1.43± 0.100)× 10−3, yobs
t = 0.534± 0.0341.

yobs
d = (4.81± 1.06)× 10−6, yobs

s = (9.52± 1.03)× 10−5, yobs
b = (6.95± 0.175)× 10−3,

We explicitly show 1σ interval for every observable. In the following analysis, we concen-
trate on the ratios of the Yukawa couplings rather than the Yukawa couplings themselves,
since the overall factor is irrelevant to our study. The ratios of the Yukawa couplings are
calculated as

yobs
u /yobs

t = (5.47± 3.41)× 10−6, yobs
c /yobs

t = (2.68± 0.254)× 10−3,

yobs
d /yobs

b = (6.92± 1.54)× 10−4, yobs
s /yobs

b = (1.37± 0.152)× 10−2,

yobs
b /yobs

t = (1.30± 0.0893)× 10−2. (3.19)
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Similarly, the mixing angles and CP -phase consistent with the experimental results at the
GUT scale are given by

θobs
12 = 0.22736± 0.00142, θobs

23 = 0.03585± 0.00670,
θobs

13 = 0.003145± 0.000490, δobs
CP = 1.206± 0.108.

Our notation of the mixing angles and the CP-phase is based on the PDG [52]. The quark
sector has 9 observables to fit.

In this section, we analyze the mass hierarchy and the mixing angles of our FN-like
model. The superpotential with Γ′3 are summarized in (3.13) and (3.15). We consider the
superpotential with the lowest weight modular forms.

Model with triplet left-handed quarks. First we consider the FN-like model based
on the superpotential of (3.13). Before investigating the numerical analysis, we should
study the structure of the mass matrix analytically. The physical mass matrix is given in
terms of the canonically normalized Yukawa couplings in (2.15) as

Mu =


αuφ̃

IY
(2)

3 βuφ̃
JY

(4)
3 γuφ̃

K(Y (6)
3,I + ruY

(6)
3,II)

αuφ̃
IY

(2)
2 βuφ̃

JY
(4)

2 γuφ̃
K(Y (6)

2,I + ruY
(6)

2,II)
αuφ̃

IY
(2)

1 βuφ̃
JY

(4)
1 γuφ̃

K(Y (6)
1,I + ruY

(6)
1,II)


Im τ1

Im τ2

Im τ3

 vu√
2
,

Md =


αdφ̃

LY
(2)

3 βdφ̃
M (Y (6)

3,I + rdY
(6)

3,II) γdφ̃NY
(4)

3
αdφ̃

LY
(2)

2 βdφ̃
M (Y (6)

2,I + rdY
(6)

2,II) γdφ̃NY
(4)

2
αdφ̃

LY
(2)

1 βdφ̃
M (Y (6)

1,I + rdY
(6)

1,II) γdφ̃NY
(4)

1


Im τ1

Im τ3

Im τ2

 vd√
2
, (3.20)

where we note that in order to clearly see a FN-like hierarchy we redefine the indices of
the quark fields as

Q1 → Q3, Q2 → Q1, Q3 → Q2, d2 ↔ d3, (3.21)

where we implicitly assume the following conditions9

I ≥ J ≥ K, L ≥M ≥ N. (3.22)

Thus, the largest Yukawa coupling for the down sector would be γdφ̃NY
(4)

1 , while that for
the up sector γuφ̃K(Y (6)

1,I + ruY
(6)

1,II). Using explicit q-expansions in appendix A we obtain
an approximate estimation of the mixing angles for large Im τ as

θ12 ∼

∣∣∣∣∣∣Y
(4)

3

Y
(4)

2
−
Y

(6)
3,I + rdY

(6)
3,II

Y
(6)

2,I + rdY
(6)

2,II

∣∣∣∣∣∣ ∼ 15
∣∣∣∣∣rd + 1

5
rd + 1

2
q1/3

∣∣∣∣∣ ,
θ23 ∼

∣∣∣∣∣∣Y
(6)

2,I + ruY
(6)

2,II

Y
(6)

1,I + ruY
(6)

1,II
− Y

(4)
2

Y
(4)

1

∣∣∣∣∣∣ ∼ 12
∣∣∣(1 + ru)q1/3

∣∣∣ ,
θ13 ∼

∣∣∣∣∣∣Y
(6)

3,I + ruY
(6)

3,II

Y
(6)

1,I + ruY
(6)

1,II
− Y

(4)
3

Y
(4)

1

∣∣∣∣∣∣ ∼ 72
∣∣∣(1− ru)q2/3

∣∣∣ . (3.23)

9We can consider other possibilities with different powers. We find the model in (3.20) with the condi-
tions (3.22) the best in our numerical analysis.
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Q1,2,3 uc1 uc2 uc2 dc1 dc2 dc3 Hu Hd φ

Γ′3 = T ′ 3 1 1 1 1 1 1 1 1 1
kI −2 2 −1 −4 2 −3 −1 0 0 −1

Table 2. The representations and the modular weights of the chiral superfields.

We see that the approximate mixing angles do not depend on φ̃, αu,d, βu,d, and γu,d. The
first relation implies 15|q1/3| ∼ θC ∼ 10−1, which is satisfied when Im τ ∼ 2.4. The other
two conditions are rewritten as

θ23 ∼
4|1 + ru|

5 θC ∼ 8|1 + ru| × 10−2,

θ13 ∼
8|1− ru|

25 θ2
C ∼ 3|1− ru| × 10−3.

Then we can realize the observed values for ru = O(1). We also obtain a natural hierarchical
structure for the mass ratios which are suppressed by powers of θC and φ̃ as

yu/yt ∼
162
25 Im τ−2αu

γu
φ̃I−Kθ2

C ∼ 1× 10−2αu
γu
φ̃I−K ,

yc/yt ∼
18
5 Im τ−1βu

γu
φ̃J−KθC ∼ 2× 10−1βu

γu
φ̃J−K , (3.24)

for the up sector, and

yd/yb ∼
162
225Im τ−1αd

γd
φ̃L−Nθ2

C ∼ 3× 10−3αd
γd
φ̃L−N ,

ys/yb ∼
8
9
|rd + 1

2 |βd
γd

φ̃M−NθC ∼ 2× 10−2 |rd + 1
2 |βd

γd
φ̃M−N ,

yb/yt ∼ 9Im τ−1 γd
γu
φ̃N−K ∼ 4γd

γu
φ̃N−K , (3.25)

for the down sector, where we use Im τ ∼ 2.4. We solve these equations under the condi-
tions (3.22). For simplicity we assume φ̃ = 10−2 for the later estimation. We then find a
solution of I = 2, J = 1,K = 0,M = 1, N = 1, and L = 1 or 2, which can reproduce the
observed mass ratios in (3.19) with O(1) coefficients of αu,d

γu,d
,
βu,d

γu,d
, γd
γu
, and ru,d.

To confirm our analysis we construct an explicit model which satisfies the above con-
ditions. The representations and modular weights of the quark fields are summarized in
table 2. The mass matrix is given by (3.20) with I = 2, J = 1, K = 0, and L = 2,
M = N = 1. We set Re τ = 0 since the complex phase factor in the modular forms is
negligibly small for large Im τ . We also assume absolute value of rf is 1 at first. Thus,
we have 8 free parameters: αu/γu, βu/γu, ru, αd/γd, βd/γd, rd, Im τ and γd/γu. φ̃ is not
counted as a d.o.f since it is absorbed by the coefficients. The best fit parameters in our
search are given by

αu/γu = 0.1904, βu/γu = 2.427, ru = e−2.764i,

αd/γd = 4.946, βd/γd = 0.5614, rd = e2.462i,

γd/γu = 0.3400, τ = 2.406i, φ̃ = 1× 10−2. (3.26)
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The most hierarchical parameter is βu/αu = 12.7 in this parameter set. The FN-like mass
matrices are successfully obtained as,

|Mu| = γu

3.846× 10−9 3.932× 10−6 4.464× 10−5

1.979× 10−7 6.743× 10−5 2.193× 10−3

5.090× 10−6 1.734× 10−3 1.911× 10−2

 vu√
2
,

|Md| = γd

9.991× 10−8 2.661× 10−7 1.620× 10−6

5.140× 10−6 1.188× 10−5 2.778× 10−5

1.322× 10−4 1.073× 10−4 7.147× 10−4

 vd√
2
. (3.27)

As the result, we obtain the following mass eigenvalues and mixing angles,

yu/yt = 4.19× 10−6, yc/yt = 2.67× 10−3, yd/yb = 7.69× 10−4, ys/yb = 1.56× 10−2,

yb/yt = 1.30× 10−2, θ12 = 0.227, θ23 = 0.0300, θ13 = 0.00074, δCP = 1.20. (3.28)

In this case, though we have only 8 free parameters, all mixing angles and mass eigenvalues
except for the mixing angles θ13 are reproduced within 2σ range of the observed values. In
this case, χ2, which is given by

χ2 =
∑

x∈Observables

(
x− xobs

σx

)2

, (3.29)

where Observables = {yu/yt, yc/yt, yd/yb, ys/yb, yb/yt, σ12, σ23, σ13, δCP }, is estimated as
χ2 ∼ 27.

If we relax the restriction on |r|, we can realize the observed values more precisely,
while the number of free parameters is more than observed values. A benchmark value is
obtained as

αu/γu = 0.3320, βu/γu = 2.159, ru = 0.8888e−2.649i,

αd/γd = 2.976, βd/γd = 3.665, rd = 0.6941e−3.375i,

γd/γu = 0.2509, τ = 2.448i, φ̃ = 1× 10−2.

The most hierarchical parameter is βu/γd = 8.61 in this parameter set, and all the coeffi-
cients can be the same order. The mass matrix is given by

|Mu| =γu

5.720× 10−9 3.035× 10−6 5.688× 10−5

3.214× 10−7 5.685× 10−5 7.260× 10−4

9.030× 10−6 1.597× 10−3 2.013× 10−2

 vu√
2
,

|Md| =γd

5.127× 10−8 1.755× 10−6 1.406× 10−6

2.881× 10−6 1.248× 10−5 2.634× 10−5

8.095× 10−5 7.376× 10−4 7.399× 10−4

 vd√
2
. (3.30)

We obtain the following mass eigenvalues and mixing angles

yu/yt = 4.22×10−6, yc/yt = 2.68×10−3, yd/yb = 6.96×10−4, ys/yb = 1.38×10−2,

yb/yt = 1.30×10−2, θ12 = 0.227, θ23 = 0.0355, θ13 = 0.00314, δCP = 1.21.

In this case, all the observables are within 0.4σ range, and χ2 ∼ 0.1. Hence we can realize
the realistic values without hierarchical parameters.
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Q1 Q2 Q3 uc1,2,3 dc1,2,3 Hu Hd φ

Γ′3 = T ′ 1 1 1 3 3 1 1 1
kI 0 −3 −6 0 0 0 0 −1

Table 3. The representation of the quark and the Higgs fields.

Model with singlet left-handed quarks. Here we consider a model with singlet left-
handed quarks based on the superpotential of (3.15). Changing the flavor indices of the
right-handed quarks for both up and down sectors as f c1 → f c3 , f

c
3 → f c2 , and f c2 → f c1 , we

obtain

Mu =

Im τ1

Im τ2

Im τ3



αuφ̃

IY
(2)

3 βuφ̃
JY

(4)
3 γuφ̃

K(Y (6)
3,I + ruY

(6)
3,II)

αuφ̃
IY

(2)
2 βuφ̃

JY
(4)

2 γuφ̃
K(Y (6)

2,I + ruY
(6)

2,II)
αuφ̃

IY
(2)

1 βuφ̃
JY

(4)
1 γuφ̃

K(Y (6)
1,I + ruY

(6)
1,II)


t

vu√
2
,

Md =

Im τ1

Im τ2

Im τ3



αdφ̃

LY
(2)

3 βdφ̃
MY

(4)
3 γdφ̃

N (Y (6)
3,I + rdY

(6)
3,II)

αdφ̃
LY

(2)
2 βdφ̃

MY
(4)

2 γdφ̃
N (Y (6)

2,I + rdY
(6)

2,II)
αdφ̃

LY
(2)

1 βdφ̃
MY

(4)
1 γdφ̃

N (Y (6)
1,I + rdY

(6)
1,II)


t

vd√
2
, (3.31)

which is the transposed matrix of (3.20). In the case of the lowest weight modular forms,
we have additional conditions of (3.18), which implies I−J = L−M and J−K = M −N .
Thus, the same powers of φ̃ arise in the mass ratios for both the up and down sectors. In
fact, an approximate expression of the mass ratios are given by

yu/yt ∼ 2
(1

3

)−6
Im τ−2αu

γu
φ̃I−Kq2/3,

yc/yt ∼ 2
(1

3

)−3
Im τ−1βu

γu
φ̃J−Kq1/3,

yd/yb ∼ 2
(1

3

)−6
Im τ−2αd

γd
φ̃I−Kq2/3,

ys/yb ∼ 2
(1

3

)−3
Im τ−1βd

γd
φ̃J−Kq1/3,

yb/yt ∼
γd
γu
. (3.32)

Therefore, unnatural hierarchical coefficients are inevitable to obtain the realistic mass
hierarchy.

We show an explicit model. The modular weights and representations for the best fit
model are summarized in table 3. The mass matrices are given by (3.31) with I = L = 2,
J = M = 1, K = N = 0. The best fit values are given by

αu/γu = 7.851× 10−3, βu/γu = 0.1294, ru = 1.203e−2.369i,

αd/γd = 1.967, βd/γd = 0.4558, rd = 2.398e−4.534i,

γd/γu = 9.617× 10−3, τ = 1.573i, φ̃ = 1× 10−2,
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where hierarchical coefficients are required. We obtain the mass matrix,

|Mu| = γu

3.395× 10−9 3.053× 10−8 1.373× 10−7

2.935× 10−6 8.824× 10−6 3.936× 10−5

7.375× 10−4 2.166× 10−3 5.359× 10−3

 vu√
2
,

|Md| = γd

8.507× 10−7 7.651× 10−6 3.441× 10−5

1.034× 10−5 3.110× 10−5 1.387× 10−4

1.298× 10−3 5.611× 10−3 5.387× 10−3

 vd√
2
. (3.33)

The mixing angles and the mass ratios are calculated as

yu/yt = 5.74× 10−6, yc/yt = 2.70× 10−3, yd/yb = 7.97× 10−4, ys/yb = 1.38× 10−2,

yb/yt = 1.30× 10−2, θ12 = 0.227, θ23 = 0.00612, θ13 = 0.00306, δCP = 1.11,

where χ2 ∼ 20. Even though we relax the constraints on |r|, we can not realize the observed
values in this model.

As shown above, in the case of the lowest modular weight forms, hierarchical param-
eters should be required even if we consider other modular groups of higher levels. Thus,
singlet left-handed quark model is not suitable for our purpose. Hereafter we only consider
the models where the left-handed quarks form a triplet of the modular group.

4 Froggatt-Nielsen like mechanism with the modular groups of higher
levels

It is straightforward to generalize this mechanism to the modular group of the other levels.
The only requirement is the existence of triplet modular forms which have hierarchical
components. This condition is satisfied for the modular group of level N ≥ 3.

4.1 FN-like mechanism with the modular group of level 4

The algebra of Γ′4 is summarized in appendix B. Γ′4 is isomorphic to S′4 ' SL(2,Z4). It has
four triplet representations, 3, 3̂, 3′ and 3̂′. The matrix representations of T in this algebra
are summarized in table 8 in appendix B. The triplet modular forms are approximated as

Y
(k)

3 ∼

q
1/2

q3/4

q1/4

 , Y
(k)

3̂ ∼

q
1/4

q2/4

1

 , Y
(k)

3′ ∼

 1
q1/4

q3/4

 , Y
(k)

3̂′ ∼

q
3/4

1
q2/4

 , (4.1)

for large Im τ . Thus, the FN-like hierarchical mass matrix can be realized in the similar
way. We consider four classes of the modular invariant superpotentials:

W1 =
[
αf φ̃

I
(
QY

(k1)
3

)
1
f c1 + βf φ̃

J
(
QY

(k2)
3

)
1
f c2 + γf φ̃

K
(
QY

(k3)
3

)
1
f c3

]
Hf ,

W2 =
[
αf φ̃

I
(
QY

(k1)
3̂

)
1
f c1 + βf φ̃

J
(
QY

(k2)
3̂

)
1
f c2 + γf φ̃

K
(
QY

(k3)
3̂

)
1
f c3

]
Hf ,

W3 =
[
αf φ̃

I
(
QY

(k1)
3′

)
1
f c1 + βf φ̃

J
(
QY

(k2)
3′

)
1
f c2 + γf φ̃

K
(
QY

(k3)
3′

)
1
f c3

]
Hf ,

W4 =
[
αf φ̃

I
(
QY

(k1)
3̂′

)
1
f c1 + βf φ̃

J
(
QY

(k2)
3̂′

)
1
f c2 + γf φ̃

K
(
QY

(k3)
3̂′

)
1
f c3

]
Hf . (4.2)
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f denotes the flavor u or d, and φ is the trivial singlet carrying modular weight −1, i.e.
weighton. We can assign f ci to the trivial singlet 3 of Γ′4 without loss of generality. Qci is
assigned to 3 for Wi, 3̂′ for W2, 3′ for W3, and 3̂ for W4. The CG coefficients of the tensor
products of the triplets are given by (B.2). We obtain the mass matrix,

M1,2,3,4 ∼


φ̃IY

(k1)
1 φ̃JY

(k2)
1 φ̃KY

(k3)
1

φ̃IY
(k1)

3 φ̃JY
(k2)

3 φ̃KY
(k3)

3
φ̃IY

(k1)
2 φ̃JY

(k2)
2 φ̃KY

(k3)
2

 vf√
2
, (4.3)

where Y (kj)
i is the i-th component of the corresponding triplet modular form of weight kj .

The mass matrix is approximated as

M1 ∼

φ̃
Iq1/2 φ̃Jq1/2 φ̃Kq1/2

φ̃Iq1/4 φ̃Jq1/4 φ̃Kq1/4

φ̃Iq3/4 φ̃Jq3/4 φ̃Kq3/4

 vf√
2
, M2 ∼

φ̃
Iq1/4 φ̃Jq1/4 φ̃Kq1/4

φ̃I φ̃J φ̃K

φ̃Iq1/2 φ̃Jq1/2 φ̃Kq1/2

 vf√
2
,

M3 ∼

 φ̃I φ̃J φ̃K

φ̃Iq3/4 φ̃Jq3/4 φ̃Kq3/4

φ̃Iq1/4 φ̃Jq1/4 φ̃Kq1/4

 vf√
2
, M4 ∼

φ̃
Iq3/4 φ̃Jq3/4 φ̃Kq3/4

φ̃Iq1/2 φ̃Jq1/2 φ̃Kq1/2

φ̃I φ̃J φ̃K

 vf√
2
, (4.4)

for large Im τ . We obtain the FN-like mass matrix and hierarchical mass eigenvalues.
We can choose the superpotential of the up sector and that of the down sector from

W1, W2, W3 and W4 individually. Thus, we have 16 classes of FN-like models with Γ′4 in
principal. However, we find that it is difficult to obtain the observed mixing angles if we use
a different type of the superpotential for each sector. As shown in (4.1) the position of the
largest component is different for each representation. If we use a different representation
for each sector, we can not obtain FN-like Yukawa matrices for both sectors simultaneously,
where the order of the contribution to a mixing angle from each sector could be different,
and one of the mixing angles may become large.10

We have the same constraints on the power of φ̃ as those in Γ′3. Namely, the powers
of φ̃ are 0 or 1 in general, but they can be arbitrary positive integer if the corresponding
Yukawa coupling is the lowest weight modular form. The lowest weight is 1 for 3̂, 2 for 3′,
3 for 3̂′ and 4 for 3.

Lowest weight models. The superpotential Wi has several free parameters. They are
proportional to the number of the triplet modular forms in the superpotential. In order to
minimize the number of the free parameters we consider the model with the lowest weight
modular forms. They are given by

W1 =
[
αf φ̃

I
(
QY

(4)
3

)
1
f c1 +βf φ̃J

(
QY

(6)
3

)
1
f c2 +γf φ̃K

(
Q
(
Y

(8)
3,I +rfY

(8)
3,II

))
1
f c3

]
Hf ,

W2 =
[
αf φ̃

I
(
QY

(1)
3̂

)
1
f c1 +βf φ̃J

(
QY

(3)
3̂

)
1
f c2 +γf φ̃K

(
Q
(
Y

(5)
3̂,I +rfY

(5)
3̂,II

))
1
f c3

]
Hf ,

W3 =
[
αf φ̃

I
(
QY

(2)
3′
)

1
f c1 +βf φ̃J

(
QY

(4)
3′
)

1
f c2 +γf φ̃K

(
Q
(
Y

(6)
3′,I+rfY

(6)
3′,II

))
1
f c3

]
Hf ,

W4 =
[
αf φ̃

I
(
QY

(3)
3̂′

)
1
f c1 +βf φ̃J

(
QY

(5)
3̂′

)
1
f c2 +γf φ̃K

(
Q
(
Y

(7)
3̂′,I+rfY

(7)
3̂′,II

))
1
f c3

]
Hf . (4.5)

10More precisely, 3 and 3̂ have the same order with different numerical factors in q-expansion (see ap-
pendix B), so that we could obtain the FN-like Yukawa matrices for a model using 3 and 3̂. We find,
however, that this model is not realistic. In fact, one can check that the modular forms of 3̂ of weight k
and the modular forms of 3 of weight k + 3 are linearly dependent for k = 1, 3, 5.
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The total number of the free parameters are the same as that of the superpotential of
Γ′3. αf , βf , γf are real numbers, and rf is a complex number. Thus, we have five real
parameters for each sector. I can be an arbitrary positive integer number, but J and K
are restricted to 0 or 1.

4.2 FN-like mechanism with the modular group of level 5

The algebra of Γ′5 is summarized in appendix C. Γ′5 is isomorphic to A′5 ' SL(2,Z5) having
two triplets 3 and 3′. Their matrix representations are shown in table 10. The triplet
modular forms are approximated as

Y
(k)

3 ∼

 1
q1/5

q4/5

 , Y
(k)

3′ ∼

 1
q2/5

q3/5

 , (4.6)

for large Im τ . We can construct the FN-like model in the same way. We have two classes
of the FN-like superpotential,

W1 =
[
αf φ̃

I
(
QY

(k1)
3

)
1
f c1 + βf φ̃

J
(
QY

(k2)
3

)
1
f c2 + γf φ̃

K
(
QY

(k3)
3

)
1
f c3

]
Hf ,

W2 =
[
αf φ̃

I
(
QY

(k1)
3′

)
1
f c1 + βf φ̃

J
(
QY

(k2)
3′

)
1
f c2 + γf φ̃

K
(
QY

(k3)
3′

)
1
f c3

]
Hf , (4.7)

with the triplet left-handed quarks. We assume that f ci is the trivial singlet, and Qi form
a triplet of Γ′5. The CG coefficients are summarized in (C.1). The mass matrices are
approximated as

M1 ∼

 φ̃I φ̃J φ̃K

φ̃Iq4/5 φ̃Jq4/5 φ̃Kq4/5

φ̃Iq1/5 φ̃Jq1/5 φ̃Kq1/5

 vf√
2
, M2 ∼

 φ̃I φ̃J φ̃K

φ̃Iq3/5 φ̃Jq3/5 φ̃Kq3/5

φ̃Iq2/5 φ̃Jq2/5 φ̃Kq2/5

 vf√
2
,

for large Im τ . Thus, we obtain FN-like hierarchical eigenvalues for both cases. We have
2 possibilities of the representations of the Yukawa couplings both for the up and down
sectors. We note, however, that since the tensor product of 3 and 3′ has no singlet,
the Yukawa couplings and Q should be the same representation. Therefore, we have 2
possibilities of either 3 or 3′ for both up and down sectors.

We have the same constraints on the power of φ̃ as in the previous models. In this
case, the lowest weight is 2 both for 3 and 3′.

Lowest weight models. The superpotential including the lowest weight modular forms
are given by

W1 =
[
αf φ̃

I
(
QY

(2)
3

)
1
f c1 +βf φ̃J

(
QY

(4)
3

)
1
f c2 +γf φ̃K

(
Q
(
Y

(6)
3,I +rfY

(6)
3,II

))
1
f c3

]
Hf ,

W2 =
[
αf φ̃

I
(
QY

(2)
3′
)

1
f c1 +βf φ̃J

(
QY

(4)
3′
)

1
f c2 +γf φ̃K

(
Q
(
Y

(6)
3′,I+rfY

(6)
3′,II

))
1
f c3

]
Hf . (4.8)

The number of the free parameters are the same as that of the superpotential of Γ′3 and Γ′4.
αf , βf , γf are real, and rf is a complex number. We have five real parameters for each sector.
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4.3 Realistic models without hierarchical parameters with Γ′
4 and Γ′

5

In this subsection, we analyze the model with the modular group of level 4 and 5. We show
some typical models for illustration purpose.

Yukawa couplings of 3 representation in Γ′
4. We consider the FN-like mechanism

based on the superpotential W1 in (4.5), i.e. the Yukawa couplings are 3 in Γ′4. We obtain
the mass matrix

Mu =


αuφ̃

IY
(4)

2 βuφ̃
JY

(6)
2 γuφ̃

K(Y (8)
2,I + ruY

(8)
2,II)

αuφ̃
IY

(4)
1 βuφ̃

JY
(6)

1 γuφ̃
K(Y (8)

1,I + ruY
(8)

1,II)
αuφ̃

IY
(4)

3 βuφ̃
JY

(6)
3 γuφ̃

K(Y (8)
3,I + ruY

(8)
3,II)


Im τ2

Im τ3

Im τ4

 vu√
2
,

Md =


αdφ̃

LY
(4)

2 βdφ̃
M (Y (8)

2,I + rdY
(8)

2,II) γdφ̃NY
(6)

2
αdφ̃

LY
(4)

1 βdφ̃
M (Y (8)

1,I + rdY
(8)

1,II) γdφ̃NY
(6)

1
αdφ̃

LY
(4)

3 βdφ̃
M (Y (8)

3,I + rdY
(8)

3,II) γdφ̃NY
(6)

3


Im τ2

Im τ4

Im τ3

 vd√
2
. (4.9)

We assume I ≥ J ≥ K and L ≥ M ≥ N to obtain a FN-like matrix. We also study
other possibilities, but the above mass matrix is the best one. The mixing angles are
approximated by

θ12 ∼

∣∣∣∣∣∣Y
(6)

2

Y
(6)

1
−
Y

(8)
2,I + rdY

(8)
2,II

Y
(8)

1,I + rdY
(8)

1,II

∣∣∣∣∣∣ ∼ 13√
2

∣∣∣∣∣
(

1 +
√

10
13rd

)
q1/4

∣∣∣∣∣ ∼ 9
∣∣∣(1 + 0.2r−1

d )q1/4
∣∣∣ ,

θ23 ∼

∣∣∣∣∣∣Y
(8)

1,I + ruY
(8)

1,II

Y
(8)

3,I + ruY
(8)

3,II
− Y

(6)
1

Y
(6)

3

∣∣∣∣∣∣ ∼ 4
√

5
∣∣∣∣∣
(
ru −

√
2
5

)
q1/4

∣∣∣∣∣ ∼ 9
∣∣∣(ru − 0.6)q1/4

∣∣∣ ,
θ13 ∼

∣∣∣∣∣∣Y
(8)

2,I + ruY
(8)

2,II

Y
(8)

3,I + ruY
(8)

3,II
− Y

(6)
2

Y
(6)

3

∣∣∣∣∣∣ ∼ 16
√

10
∣∣∣∣∣
(
ru + 1

2

√
5
2

)
q2/4

∣∣∣∣∣ ∼ 51
∣∣∣(ru + 0.8)q2/4

∣∣∣ .
The first condition implies 9|q1/4| ∼ θC ∼ 10−1, which implies Im τ ∼ 2.8. The remaining
conditions are rewritten as

θ23 ∼ |ru − 0.6| × 10−1, θ13 ∼ 6 |ru + 0.8| × 10−3.

and the realistic mixing angles are realized naturally with |ru−0.6| ∼ 10−1. Then the mass
ratios are approximated as

yu/yt ∼
16
√

10
3

(√
2

13

)2

Im τ−2αu
γu
φ̃I−Kθ2

C ∼ 3× 10−4αu
γu
φ̃I−K ,

yc/yt ∼
16
√

10
39 Im τ−1βu

γu
φ̃J−KθC ∼ 5× 10−2βu

γu
φ̃J−K ,

yd/yb ∼
16

(13)2 Im τ−1αd
γd
φ̃L−Nθ2

C ∼ 3× 10−4αd
γd
φ̃L−N ,

ys/yb ∼
6|rd|
13 Im τ

βd
γd
φ̃M−NθC ∼ 1× 10−1βd|rd|

γd
φ̃M−N ,

yb/yt ∼
4
3

√
5
2Im τ−1 γd

γu
φ̃N−K ∼ 7× 10−1 γd

γu
φ̃N−K . (4.10)
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Q1,2,3 uc1 uc2 uc2 dc1 dc2 dc3 Hu Hd φ

Γ′4 3 1 1 1 1 1 1 1 1 1
kI −1 −1 −4 −7 −1 −6 −4 0 0 −1

Table 4. The representations and the modular weights of the quarks. This is an explicit model
for superpotential with Yukawa coupling of 3 in S′

4.

These conditions imply φ̃ ∼ 2 × 10−2, I = J = 1,K = 0, L = M = N = 1, and all the
coefficients are O(1). Thus, we can naturally reproduce the observed values.

To confirm the above analysis, we construct an explicit example. The representations
and the modular weights of the quark fields are summarized in table 4. The mass matrix
is given by (4.9) with I = 2, J = 1,K = 0, and L = 2,M = N = 1. The best fit parameter
in our analysis is given by

αu/γu = 0.2514, βu/γu = 1.968, ru = e−0.3176i,

αd/γd = 0.8793, βd/γd = 0.3907, rd = e0.1469i,

γd/γu = 0.3906, τ = 2.851i, φ̃ = 4× 10−2. (4.11)

The largest hierarchy comes from βu/βd = 12.9. We set Re τ = 0 and |rf | = 1 again. We
obtain the following hierarchical mass matrices,

|Mu| = γu

1.423× 10−7 1.984× 10−5 1.191× 10−3

8.865× 10−7 4.945× 10−4 1.344× 10−2

2.76× 10−5 7.702× 10−3 1.323× 10−1

 vu√
2
,

|Md| = γd

4.977× 10−8 1.877× 10−5 1.009× 10−5

3.101× 10−6 2.100× 10−4 2.513× 10−4

9.658× 10−5 2.068× 10−3 3.914× 10−3

 vd√
2
. (4.12)

The mass eigenvalues and mixing angles are given as

yu/yt = 5.45× 10−6, yc/yt = 2.68× 10−3, yd/yb = 6.53× 10−4, ys/yb = 1.69× 10−2,

yb/yt = 1.30× 10−2, θ12 = 0.227, θ23 = 0.0430, θ13 = 0.00203, δCP = 1.31. (4.13)

The parameter which is the most apart from the observed value is θ13, and (θ13−θobs
13 )/σ13 ∼

2.3σ. We obtain χ2 ∼ 12, and almost all the parameters are within 2σ range.
Relaxing the restriction on |rf |, we can find parameter set which reproduce observed

values more precisely. A benchmark is given by

αu/γu = 1.130, βu/γu = 4.334, ru = 1.040e−0.2224i,

αd/γd = 2.193, βd/γd = 0.7258, rd = 0.8893e0.1228i,

γd/γu = 0.6361, τ = 2.901i, φ̃ = 2× 10−2.
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and the mot hierarchical term comes from αu/βd = 9.4. Thus, all the coefficients are the
same order. We obtain the mass matrices

|Mu| = γu

1.287× 10−8 1.791× 10−5 1.027× 10−3

8.671× 10−7 4.825× 10−4 1.259× 10−2

2.920× 10−5 8.123× 10−3 1.289× 10−1

 vu√
2
,

|Md| = γd

2.499× 10−8 1.339× 10−5 4.132× 10−6

1.683× 10−6 1.563× 10−4 1.113× 10−4

5.668× 10−5 1.871× 10−3 1.874× 10−3

 vd√
2
. (4.14)

The mass eigenvalues and mixing angles are given by

yu/yt = 5.70× 10−6, yc/yt = 2.68× 10−3, yd/yb = 6.92× 10−4, ys/yb = 1.37× 10−2,

yb/yt = 1.30× 10−2, θ12 = 0.227, θ23 = 0.0359, θ13 = 0.00314, δCP = 1.21. (4.15)

Thus, all parameters are included within 0.1σ interval, and χ2 < 0.01.

Yukawa couplings of 3̂′ in Γ′
4. The q-expansions of the modular forms of 3̂′ in Γ′4 are

different from the modular forms of 3. If the superpotential is given by W4 in (4.5), the
approximated mass matrix is given byM4 in (4.4). This matrix is quite interesting because
the mixing angles are approximated by

θ12 ∼ |q1/4|, θ23 ∼ |q2/4|, θ13 ∼ |q3/4|. (4.16)

These relations are nothing but approximate mixing angles predicted in the FN mechanism.
Thus, this model seems to be the most promising candidate. We consider the model with
the following mass matrices,

Mu =


αuφ̃

IY
(3)

1 βuφ̃
JY

(5)
1 γuφ̃

K(Y (7)
1,I + ruY

(7)
1,II)

αuφ̃
IY

(3)
3 βuφ̃

JY
(5)

3 γuφ̃
K(Y (7)

3,I + ruY
(7)

3,II)
αuφ̃

IY
(3)

2 βuφ̃
JY

(5)
2 γuφ̃

K(Y (7)
2,I + ruY

(7)
2,II)


Im τ3/2

Im τ5/2

Im τ7/2

 vu√
2
,

Md =


αdφ̃

LY
(3)

1 βdφ̃
M (Y (7)

1,I + rdY
(7)

1,II) γdφ̃NY
(5)

1
αdφ̃

LY
(3)

3 βdφ̃
M (Y (7)

3,I + rdY
(7)

3,II) γdφ̃NY
(5)

3
αdφ̃

LY
(3)

2 βdφ̃
M (Y (7)

2,I + rdY
(7)

2,II) γdφ̃NY
(5)

2


Im τ3/2

Im τ7/2

Im τ5/2

 vd√
2
.

(4.17)

The precise q-expansion of the modular forms are summarized in appendix B. The
mixing angles are estimated as

θ12 ∼

∣∣∣∣∣∣Y
(5)

1

Y
(5)

3
−
Y

(7)
1,I + rdY

(7)
1,II

Y
(7)

3,I + rdY
(7)

3,II

∣∣∣∣∣∣ ∼ 22
√

2
3

∣∣∣∣1 + 14
22
√

37
1
rd

∣∣∣∣ |q1/4| ∼ 10
∣∣∣1 + 0.1r−1

d

∣∣∣ |q1/4|,

θ23 ∼

∣∣∣∣∣∣Y
(7)

3,I + ruY
(7)

3,II

Y
(7)

2,I + ruY
(7)

2,II
− Y

(5)
3

Y
(5)

2

∣∣∣∣∣∣ ∼ 12
√

37
∣∣∣∣ru − 1√

37

∣∣∣∣ |q2/4| ∼ 73 |ru − 0.2| |q2/4|,

θ13 ∼

∣∣∣∣∣∣Y
(7)

1,I + ruY
(7)

1,II

Y
(7)

2,I + ruY
(7)

2,II
− Y

(5)
1

Y
(5)

2

∣∣∣∣∣∣ ∼ 24
√

74
∣∣∣∣ru + 5√

37

∣∣∣∣ |q3/4| ∼ 206 |ru + 0.8| |q3/4|.
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Q1,2,3 uc1 uc2 uc2 dc1 dc2 dc3 Hu Hd φ

Γ′4 3̂ 1 1 1 1 1 1 1 1 1
kI −1 0 −3 −6 0 −5 −3 0 0 −1

Table 5. The representations and the modular weights of the quarks. This is an explicit model
for superpotential with Yukawa coupling of 3̂′ in S′

4.

The first relation implies 10|q1/4| ∼ θC ∼ 10−1, which implies Im τ ∼ 2.9. Substituting
this relation, we obtain

θ23 ∼ 0.7 |ru − 0.2| θ2
C , θ13 ∼ 0.2 |ru + 0.8| θ3

C . (4.18)

Thus, we obtain approximate relation of the mixing angles. The mass ratios are approxi-
mated as

yu/yt ∼
36
√

74
113 Im τ−2αu

γu
φ̃I−Kθ3

C ∼ 3× 10−5αu
γu
φ̃I−K ,

yc/yt ∼
9
√

37
242 Im τ−1βu

γu
φ̃J−Kθ2

C ∼ 8× 10−4βu
γu
φ̃J−K ,

yd/yb ∼
216

113
√

2
Im τ−1αd

γd
φ̃L−Nθ3

C ∼ 4× 10−5αd
γd
φ̃L−N ,

ys/yb ∼
81
242Im τ

βd
γd
|rd|φ̃M−Nθ2

C ∼ 1× 10−2βd
γd
|rd|φ̃M−N ,

yb/yt ∼
√

37
3 Im τ−1 γd

γu
φ̃N−K ∼ 7× 10−1 γd

γu
φ̃N−K . (4.19)

These relations imply φ̃ ∼ 2× 10−2, I = 1, J = K = 0 and L = M = N = 1.
To confirm the above estimation, we construct an explicit examples. The representa-

tions and the modular weights of the fields are summarized in table 5. This model generates
the mass matrix with I = 2, J = 1,K = 0, L = 2,M = N = 1. In this model, we can not
find a parameter set whose χ2 < 50 with |rf | = 1. We relax this constraint. The best fit
parameters in our analysis are given by

αu/γu = 1.516, βu/γu = 2.908, ru = 0.4535e2.051i,

αd/γd = 3.287, βd/γd = 0.9015, rd = 0.5514e0.5518i,

γd/γu = 0.3402, τ = 2.250i, φ̃ = 3× 10−2.

The largest hierarchy is βu/βd = 8.6 among them. The mass matrix is given by

|Mu| =γu

2.588× 10−6 2.632× 10−4 3.347× 10−3

2.352× 10−5 1.196× 10−3 4.197× 10−2

2.303× 10−3 1.171× 10−1 1.490× 10−0

 vu√
2
,

|Md| =γd

5.610× 10−6 1.861× 10−4 9.051× 10−5

5.099× 10−5 1.380× 10−3 4.114× 10−4

4.994× 10−3 4.030× 10−2 4.027× 10−2

 vd√
2
. (4.20)

– 25 –



J
H
E
P
0
7
(
2
0
2
1
)
0
6
8

The mixing angles and the mass ratios are calculated as

yu/yt = 5.70× 10−6, yc/yt = 2.68× 10−3, yd/yb = 6.92.× 10−4, ys/yb = 1.37× 10−2,

yb/yt = 1.30× 10−2, θ12 = 0.227, θ23 = 0.359, θ13 = 0.00314, δCP = 1.21, (4.21)

and we can realize all the parameters within 0.1σ range. χ2 < 0.01.

Yukawa couplings of 3′ in Γ′
5. We investigate the model based on W2 in (4.8). The

explicit form of the q-expansion of the modular forms are summarized in appendix C. We
also assume the lightest up-type quark (up-quark) corresponds to the modular form of
weight 4, and the second lightest up-type quark (charm quark) corresponds to the modular
form of weight 2. Thus, the mass matrix is given by

Mu =


βuφ̃

IY
(4)

3 αuφ̃
JY

(2)
3 γuφ̃

K(Y (6)
3,I + ruY

(6)
3,II)

βuφ̃
IY

(4)
2 αuφ̃

JY
(2)

2 γuφ̃
K(Y (6)

2,I + ruY
(6)

2,II)
βuφ̃

IY
(4)

1 αuφ̃
JY

(2)
1 γuφ̃

K(Y (6)
1,I + ruY

(6)
1,II)


Im τ2

Im τ1

Im τ3

 vu√
2
,

Md =


αdφ̃

LY
(2)

3 βdφ̃
MY

(4)
3 γdφ̃

N (Y (6)
3,I + rdY

(6)
3,II)

αdφ̃
LY

(2)
2 βdφ̃

MY
(4)

2 γdφ̃
N (Y (6)

2,I + rdY
(6)

2,II)
αdφ̃

LY
(2)

1 βdφ̃
MY

(4)
1 γdφ̃

N (Y (6)
1,I + rdY

(6)
1,II)


Im τ1

Im τ2

Im τ3

 vd√
2
. (4.22)

The approximate mixing angles are given by

θ12 ∼
23
14 |q

1/5|, θ23 ∼ 40
√

2
∣∣∣∣( 1
ru
− 1
rd

)
q2/5

∣∣∣∣ , θ13 ∼ 120
√

2
∣∣∣∣( 1
ru
− 1
rd

)
q3/5

∣∣∣∣ . (4.23)

Therefore, 2|q1/5| ∼ θC ∼ 10−1, which implies Im τ ∼ 2.4. We obtain

θ23 ∼ 2
∣∣∣∣ 1
ru
− 1
rd

∣∣∣∣× 10−1, θ13 ∼ 4
∣∣∣∣ 1
ru
− 1
rd

∣∣∣∣× 10−2.

In this case we can realize the observed values if | 1
ru
− 1

rd
| ∼ 10−1. On the other hand,

conditions for the mass eigenvalues are given by

yu/yt ∼
255√
12|ru|

(14
23

)3
θ3
CIm τ−1αu

γu
φ̃I−K ∼ 7× 10−3 αu

γu|ru|
φ̃I−K ,

yc/yt ∼
5
|ru|

(14
23

)2
θ2
CIm τ−2βu

γu
φ̃J−K ∼ 3× 10−3 βu

γu|ru|
φ̃J−K ,

yd/yb ∼
10
|rd|

(14
23

)3
θ3
CIm τ−2αd

γd
φ̃L−N ∼ 4× 10−4 αd

γd|rd|
φ̃L−N ,

ys/yb ∼
70√

12|rd|

(14
23

)2
θ2
CIm τ−1βd

γd
φ̃M−N ∼ 3× 10−2 βd

γd|rd|
φ̃M−N ,

yb/yt ∼
γd
γu
φ̃N−K . (4.24)

These conditions imply φ̃ ∼ 10−2, I = 1, J = K = 0 and L = M = N = 1. We can realize
the observed values naturally. An explicit model is given by table 6, which generates the
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Q1,2,3 uc1 uc2 uc2 dc1 dc2 dc3 Hu Hd φ

A′5 3′ 1 1 1 1 1 1 1 1 1
kI −1 −2 −1 −5 0 −2 −4 0 0 −1

Table 6. The representations and the modular weights of the quarks. This is an explicit model
for superpotential with Yukawa coupling of 3′ in A′

5.

mass matrix of (4.22) with I = 1, J = K = 0, L = M = N = 1. In this model, we can
not find a parameter set which reproduces the mixing angles and the mass ratios whose
χ2 < 30 with the constraints of |rf | = 1. Thus, we relax this constraint. One benchmark
value is given by

αu/γu = 0.1089, βu/γu = 0.4899, ru = 1.344e−3.500i,

αd/γd = 1.199, βd/γd = 2.026, rd = 1.719e−2.979i,

γd/γu = 0.7421, τ = 2.560i, φ̃ = 1× 10−2. (4.25)

We obtain

|Mu| = γu

1.195× 10−4 2.798× 10−3 7.022× 10−1

8.026× 10−4 3.490× 10−2 4.461× 10+0

5.046× 10−2 3.072× 10+0 7.811× 10+1

 vu√
2
,

|Md| = γd

6.849× 10−5 2.223× 10−3 7.251× 10−3

8.542× 10−4 1.493× 10−2 4.166× 10−2

7.518× 10−2 9.385× 10−1 9.987× 10−1

 vd√
2
. (4.26)

The mixing angles and mass ratios are obtained as

yu/yt = 4.20× 10−6, yc/yt = 2.67× 10−3, yd/yb = 6.69× 10−4, ys/yb = 1.41× 10−2,

yb/yt = 1.30× 10−2, θ12 = 0.227, θ23 = 0.0367, θ13 = 0.00304, δCP = 1.20. (4.27)

In this case χ2 ∼ 0.3 and realistic observed values are reproduced.

5 Stability of parameters

In the previous section we find realistic models which reproduce the observed quark mass
ratios and mixing angles with O(1) parameters. Our approximate estimations show that
the mixing angles depend only on Im τ and ru,d. We expect that they are rather stable
prediction in our model, if the overall coefficients are O(1). We study the validity of
the approximations used in our models and the stability of the results against changes of
the free parameters. For these purposes, we investigate the coefficient dependence of the
results. In the followings we use the previous model of table 6 in Γ′5 as an example.

To study the stability, we see the distributions of the results, where we randomly gen-
erate four free parameters of (αu/γu, βu/γu, αd/γd, βd/γd). Each parameter is generated as

x = exp(p log(101/2))xbest, x ∈ {αu/γu, βu/γu, αd/γd, βd/γd}, (5.1)
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(c) Distribution of θ13.
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(d) Distribution of δCP .

Figure 1. Distribution of the mixing angles and CP-phase. The blue bars denote the distributions
of the mixing angles and the CP-phase. The distributions have been normalized already. The
orange regions denote the 2σ ranges of the corresponding value.

where p follows the uniform distribution with minimum −1 and maximum 1. xbest is the
best fit value of the coefficients (4.25). Therefore, each of free coefficients fluctuates within
the range of xbest√

10 < x <
√

10xbest to keep the same order of magnitude. Distributions of
the mixing angles and the CP-phase are shown in figure 1. From the figure we find that the
realistic values of the mixing angles are realized without fine-tuning of the free coefficients.
Especially θ12 as well as θ23 are localized around the observed values, where approximately
half of the configurations reproduces the observed value of θ12 within 2σ range, and all the
configurations reproduce the observed value of θ23. While some configurations are out of 2σ
range for θ13, its order is realized without any fine-tuning as we expected. δCP is also nat-
urally realized, and more than half of the configurations can reproduce the observed value.

Figure 2 shows the distributions of the mass ratios. Figures 2a and 2b show that yu/yt
and yc/yt are uniformly distributed as we expected. On the other hand, the mass ratios of
the down sectors in figures 2c and 2d do not follow the uniform distribution. It is consistent
with the fact that Md is less hierarchical than Mu and the largest components of the mass
matrix is exchangeable if the coefficients are significantly apart from the best fit point (see
also figure 3a for singular behavior). However, the mass ratios are localized around the
observed values even forMd. Thus, the physical parameters are stable under perturbations
of the coefficients.

The parameter dependence of the mixing angles and the mass eigenvalues are shown
in figure 3. The mass ratios in up sector and down sector depend on |ru| and |rd|, respec-
tively. We also find that θ12 drastically changes, although it is independent of |ru,d| in our
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(d) Distribution of ys/yb.

Figure 2. Distribution of the mass ratios. The blue bars denote the distributions of the mass
ratios. The distributions have been normalized already. The orange region denotes the 2σ region
of the corresponding value.

approximation (4.23). This is because large |rd| can exchange the largest component of Md

as well and our approximation is no longer valid in such regions. In fact, figure 3b shows
that θ12 have a peak around |rd| ∼ 3, and figure 3a shows that ys and yd get closer at the
same point, where our approximation becomes invalid and the mixing angles are unstable.
Apart from such region, the order of all the mixing angles are correctly reproduced. We
also show the αu,d dependence in comparison. In contrast to ru,d, the mixing angles are
almost independent of αu and αd, which is consistent with the approximation in (4.23).

Similar results can be obtained in the models with Γ′3 and Γ′4. Therefore, in any cases
of our FN-like models the approximate estimation is valid and useful to analyze the relation
between the mass ratios and the mixing angles, especially for the up-type mass matrix due
to its large hierarchy. On the other hand, the down-type mass matrix is less hierarchical
and the mixing angles may fluctuate depending on the coefficients in the down sectors.
Nevertheless, all of our models can reproduce the correct orders of the mixing angles and
the mass ratios under perturbations of the O(1) coefficients.

6 Conclusion

We have studied the mass hierarchy and the mixing angles in the quark sector based on
the FN-like mechanism in the framework of modular symmetries. We have assumed that
each singlet quark has a common representation under the modular symmetry but with
a different modular weight, which is important to obtain the CP-phase as well as a full
rank mass matrix. We have introduced a scalar φ with a negative modular weight. The
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Figure 3. Parameter dependence of the mass ratios, mixing angles and CP-phase. We show |ru,d|
dependence since the mixing angles are explicitly depend on them at the leading order. We also
show αd and αu dependence of the parameters for comparison purpose. The observables (except
for the corresponding mass eigenvalues) are almost independent of αu and αd.
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allowed Yukawa couplings are then suppressed by powers of the scalar vev (〈φ〉/Λ) due to
the FN-like mechanism, and the mass hierarchy is originated from powers of 〈φ〉/Λ and the
hierarchical modular forms. Using q-expansions of the modular forms we have analyzed
an approximate expression of the Yukawa matrices, where the same order of suppression
factors appears in each column or each row of the Yukawa matrices, so that our models can
simply realize the FN-like matrices for the up sector and down sector simultaneously. We
have illustrated this mechanism in models with different finite modular groups of Γ′3,Γ′4 and
Γ′5 in detail. As a result, all of our models can reproduce the correct orders of observed mass
ratios and mixing angles by choosing the modular parameters and the singlet vev. The
best model is constructed in the model with Γ′4, where the Yukawa couplings and the left-
handed quarks Q have to be the same representation to obtain small mixing angles. In this
model, we have approximately reproduced all the 9 observables by tuning 8 parameters, for
which we do not require any unnatural hierarchical coefficients. A statistical investigation
has also been carried out to study the stability of our results. We have shown that the
approximate estimation is valid and our results are stable against perturbations of the O(1)
coefficients, especially for the up sector due to its large hierarchical structure.

Throughout this paper, we have not studied the lepton sector, while it is interesting
to see if the lepton mass spectra and the neutrino mixing angles can be realized based on
these models. We have assumed that φ is stabilized and is safely decoupled. To stabilize
the weighton, one has to require a superpotential in terms of φ. The superpotential of φ
is modular invariant as well. Thus, it is also restricted by the weight and representations.
We should investigate its vacuum structure to see if φ can develop our desired value of vev.
The potential of φ is also interesting from the phenomenological point of view. φ may be
related to beyond the SM physics, such as SUSY breaking, soft-terms, and µ-terms. The
deviation between Majorana mass scale and GUT scale may originate from the vev of φ,
too. We assume φ is the trivial singlet of the finite modular group. φ can be a non-trivial
singlet such as 1̂ in S′4, and such φ possibly changes the phenomenology. In this case φ4

is the trivial singlet, and it looks like a flavon of the usual Z4 flavor symmetric models.
Such a flavon may be important for physics around the standard model [71]. The stringy
origin of our model is also unclear and it should be investigated. However, these topics are
beyond our scope in this paper, and we will study them elsewhere.
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A The modular group of level 3

In this appendix, we briefly review the modular forms of level 3 and develop our notation.
Complete explanation is not our purpose. We would provide a minimal toolkit necessary
for our analysis.

– 31 –



J
H
E
P
0
7
(
2
0
2
1
)
0
6
8

r S T R

1 1 1 1
1′ 1 ω 1
1′′ 1 ω2 1

2 − 1√
3

(
i

√
2eiπ/12

−
√

2e−iπ/12 i

) (
ω 0
0 1

)
−I2×2

2′ − 1√
3

(
i

√
2eiπ/12

−
√

2e−iπ/12 i

)
ω

(
ω 0
0 1

)
−I2×2

2′′ − 1√
3

(
i

√
2eiπ/12

−
√

2e−iπ/12 i

)
ω2
(
ω 0
0 1

)
−I2×2

3 −1
3

−1 2 2
2 −1 2
2 2 −1


1 0 0

0 ω 0
0 0 ω2

 I3×3

Table 7. The matrix representations of S and T . ω = e2πi/3. Our notation is based on [31].

Γ′3 is isomorphic to T ′. T ′ has seven irreducible representations,

1,1′,1′′,2,2′,2′′,3. (A.1)

T ′ is generated by S, T and R. Thus, it is sufficient to study the matrix representations
of these two elements. The matrix representations of T ′ have ambiguities. In this paper,
we follow the notation of [31]. The matrix representations are summarized in table 7.

The irreducible decomposition of the tensor product of the singlets are trivial:

1⊗ 1 = 1′ ⊗ 1′′ = 1,
1⊗ 1′ = 1′′ ⊗ 1′′ = 1′,
1⊗ 1′′ = 1′ ⊗ 1′ = 1′′.

We also study the irreducible decomposition of the tensor product including 3, i.e. Clebsh-
Gordon coefficients. It is given byα1
α2
α3


3

⊗

β1
β2
β3


3

=(α1β1+α2β3+α3β2)1+(α1β2+α2β1+α3β3)1′+(α1β3+α2β2+α3β1)1′′

+

2α1β1−α2β3−α3β2
2α3β3−α1β2−α2β1
2α2β2−α1β3−α3β1


3S

+

α2β3−α3β2
α1β2−α2β1
α3β1−α1β3


3A

. (A.2)

Modular forms. The modular forms of level 3 and weight k are given by tensor products
of the modular forms of level 3 and weight 1 (2.19). In this appendix, we consider modular
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forms which are 3 of T ′. The complete set of the modular forms whose weights are lower
than 6 can be found in [31]. The modular forms of weight 2 are given by the tensor product,

Y
(2)

3 = (Y (1)
2 ⊗ Y (1)

2 )3S =

 eiπ/6Y 2
2√

2eiπ7/12Y1Y2
Y 2

1

 ∼


1
9e
πi/6

−2
3e
πi/6q1/3

−2eπi/6q2/3

 . (A.3)

We can obtain the modular forms of higher weights as

Y
(4)

3 =


√

2eiπ7/12Y 3
1 Y2 − eiπ/3Y 4

2
−Y 4

1 − (1− i)Y1Y
3

2
3eiπ/6Y 2

1 Y
2

2

 ∼


1
81e

4πi/3

2
27e

4πi/3q1/3

2
3e

4πi/3q2/3

 (A.4)

and

Y
(6)

3,I =

 −2(1− i)Y 3
1 Y

3
2 + iY 6

2
−4eiπ/6Y 4

1 Y
2

2 − (1− i)eiπ/6Y1Y
5

2
2
√

2eiπ7/12Y 5
1 Y2 + eiπ/3Y 2

1 Y
4

2

 ∼ i

81


1
9

−2
3q

1/3

−2q2/3

 ,

Y
(6)

3,II =

 Y 6
1 − 2(1− i)Y 3

1 Y
3

2
eiπ/6Y 4

1 Y
2

2 − 2(1− i)eiπ/6Y1Y
5

2
−4eiπ/3Y 2

1 Y
4

2 + (1 + i)eiπ/3Y 5
1 Y2

 ∼ i

81

 −24q
−4

3q
1/3

8q2/3

 . (A.5)

These expansions are consistent with (2.27).

B The modular forms of level 4

Γ′4 is isomorphic to S′4 ' SL(2,Z4), which is a double covering group of S4. S′4 has the
following irreducible representations,

1, 1̂,1′, 1̂′,2, 2̂,3, 3̂,3′, 3̂′. (B.1)

Our notation follows [33]. The matrix representations are summarized in table 8. The
complete table of the irreducible decomposition of the tensor products, and their CG
coefficients also be found in [33]. We summarize necessary part here. 1̂ corresponds to
eiπ/2. 1̂2 = 1′, and (1′)2 = 1. Thus, the irreducible decomposition of the tensor product
of the singlets are trivial:

1⊗ 1 = 1̂⊗ 1̂′ = 1′ ⊗ 1′ = 1, 1⊗ 1′ = 1̂⊗ 1̂ = 1̂′ ⊗ 1̂′ = 1′,

1⊗ 1̂ = 1′ ⊗ l̂1′ = 1̂, 1⊗ 1̂′ = 1′ ⊗ 1̂ = 1̂′,

We also require the irreducible decomposition of the tensor products including the triplets,
and their Clebsh-Gordon coefficients. They are classified to two cases. For the first case,
the irreducible decomposition are given by

3⊗ 3 = 1⊕ 2⊕ 3⊕ 3′,
3⊗ 3̂ = 1̂⊕ 2̂⊕ 3̂⊕ 3̂′,

3′ ⊗ 3′ = 1⊕ 2⊕ 3⊕ 3′,
3′ ⊗ 3̂′ = 1̂⊕ 2̂⊕ 3̂⊕ 3̂′,
3̂⊗ 3̂ = 1⊕ 2⊕ 3⊕ 3′,
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r S T R

1 1 1 1
1̂ i −i −1
1′ −1 −1 1
1̂′ −i i −1

2 1
2

(
−1

√
3

−
√

3 1

) (
1 0
0 −1

)
I2×2

2̂ i
2

(
−1

√
3

−
√

3 1

) (
−i 0
0 i

)
−I2×2

3 −1
2

 0
√

2
√

2√
2 −1 1√
2 1 −1


−1 0 0

0 −i 0
0 0 i

 I3×3

3̂ − i
2

 0
√

2
√

2√
2 −1 1√
2 1 −1


i 0 0

0 −1 0
0 0 1

 −I3×3

3′ 1
2

 0
√

2
√

2√
2 −1 1√
2 1 −1


1 0 0

0 i 0
0 0 −i

 I3×3

3̂′ i
2

 0
√

2
√

2√
2 −1 1√
2 1 −1


−i 0 0

0 1 0
0 0 −1

 −I3×3

Table 8. The matrix representations of the generators of Γ′
4. Our notation is based on [33].

and the CG-coefficients for these five cases are given as followsα1
α2
α3

⊗
β1
β2
β3

 = 1√
3

(α1β1 + α2β3 + α3β2) + 1√
2

(
(2α1β1 − α2β3 − α3β2)/

√
3

α2β2 + α3β3

)

+ 1√
2

 α3β3 − α2β2
α1β3 + α3β1
−α1β2 − α2β1

+ 1√
2

α3β2 − α2β3
α2β1 − α1β2
α1β3 − α3β1

 . (B.2)

For the second case, the irreducible decomposition of the tensor products are given by

3⊗ 3′ = 1′ ⊕ 2⊕ 3⊕ 3′,
3⊗ 3̂′ = 1̂′ ⊕ 2̂⊕ 3̂⊕ 3̂′,
3′ ⊗ 3̂ = 1̂′ ⊕ 2̂⊕ 3̂⊕ 3̂′,
3̂⊗ 3̂ = 1′ ⊕ 2⊕ 3⊕ 3′,

3̂′ ⊗ 3̂′ = 1′ ⊕ 2⊕ 3⊕ 3′,
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weight k representations

1 3̂
2 2,3′

3 1̂′, 3̂, 3̂′

4 1,2,3,3′

5 2̂, 2× 3̂, 3̂′

6 1,1′,2,2′,3, 2× 3′
...

...

Table 9. Irreducible decomposition ofMk(Γ(4)).

and the CG-coefficients are summarized byα1
α2
α3

⊗
β1
β2
β3

 = 1√
3

(α1β1 + α2β3 + α3β2) + 1√
2

(
α2β2 + α3β3

(−2α1β1 + α2β3 + α3β2)/
√

3

)

+ 1√
2

α3β2 − α2β3
α2β1 − α1β2
α1β3 − α3β1

+ 1√
2

 α3β3 − α2β2
α1β3 + α3β1
−α1β2 − α2β1

 . (B.3)

Modular forms. The modular forms of level 4 and weight k are given by tensor products
of the modular forms of level 4 and weight 1. The modular forms of weight 1 form 3̂ of S′4,
and they are given by

Y
(1)

3̂ (τ) =


√

2εθ
ε2

−θ2

 ,
where ε and θ are given by

ε(τ) ≡ 2η2(4τ)
η(2τ) , θ(τ) ≡ η5(2τ)

η2(τ)η2(4τ) ,

where η(τ) is the Dedekind eta function. ε(τ) and θ(τ) are expanded by

ε(τ) = 2
∞∑
k=1

q
(2k−1)2

4 = 2q
1
4 + 2q

9
4 + 2q

25
4 + . . .

θ(τ) = 1 + 2
∞∑
k=1

q
(2k)2

4 = 1 + 2q1 + 2q4 + 2q9 + . . .

ε(τ) ∼ 2q1/4 and θ(τ) ∼ 1 for large Im τ . The modular forms of higher weights are
constructed by their tensor products. We summarize the irreducible decompositions of
Mk(Γ(4)) in table 9. We concentrate on the modular forms which are triplets of S′4 since
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our Yukawa couplings are triplets.11 The modular forms of weight 2 are given by

Y
(2)

3′ (τ) = (Y (1)
3̂ ⊗ Y (1)

3̂ )3′ =


1√
2(θ4 − ε4)
−2εθ3

−2ε3θ

 ∼


1√
2

−4q1/4

−16q3/4

 .
The modular forms of weight 3 are given by

Y
(3)

3̂ (τ) =


εθ5+ε5θ

1
2
√

2(5ε2θ4−ε6)
1

2
√

2(θ6−5ε4θ2)

∼


2q1/4

10√
2q

2/4

1
2
√

2

 , Y
(3)

3̂′ (τ) = 1
2

−4
√

2ε3θ3

θ6+3ε4θ2

−3ε2θ4−ε6

∼
−16

√
2q3/4

1/2
−6q2/4

 .
The modular forms of weight 4 are given by

Y
(4)

3 (τ) = 3
2
√

2


√

2(ε2θ6 − ε6θ2)
ε3θ5 − ε7θ

−εθ7 + ε5θ3

 ∼ 3
2
√

2

4
√

2q2/4

8q3/4

−2q1/4

 ,

Y
(4)

3′ (τ) =


1
4(θ8 − ε8)

1
2
√

2(εθ7 + 7ε5θ3)
1

2
√

2(7ε3θ5 + ε7θ)

 ∼


1
4

1√
2q

1/3

28√
2q

3/4

 .
The modular forms of weight 5 are given by

Y
(5)

3̂,I (τ) =


6
√

2√
5 ε

5θ5

3
8
√

5(5ε2θ8 + 10ε6θ4 + ε10)
− 3

8
√

5(θ10 + 10ε5θ6 + 5ε8θ2)

 ∼


192
√

2√
5 q5/4

15
2
√

5q
2/4

− 3
8
√

5

 ,

Y
(5)

3̂,II(τ) =


3
4(εθ9 − 2ε5θ5 + ε9θ)

3√
2(−ε2θ8 + ε6θ4)

3√
2(−ε4θ6 + ε8θ2)

 ∼


3
2q

1/4

− 12√
2q

2/4

− 48√
2q

 ,

Y
(5)

3̂′ (τ) =


2(ε3θ7 + ε7θ3)

1
4
√

2(θ10 − 14ε4θ6 − 3ε8θ2)
1

4
√

2(3ε2θ8 + 14ε6θ4 − ε10)

 ∼


16q3/4

1
4
√

2
3√
2q

2/4

 .
The modular forms of weight 6 are given by

Y
(6)

3 (τ) =


3
2(ε2θ10 − ε10θ2)

3
4
√

2(5ε3θ9 − 6ε7θ5 + ε11θ)
3

4
√

2(εθ11 − 6ε5θ7 + 5ε9θ3)

 ∼


6q2/4

30√
2q

3/4

3
2
√

2q
1/4

 ,

Y
(6)

3′,I(τ) =


− 3

8
√

13(θ12 − 3ε4θ8 + 3ε8θ4 − ε12)
3
√

2√
13(3ε5θ7 + ε9θ3)

3
√

2√
13(ε3θ9 + 3ε7θ5)

 ∼

− 3

8
√

13
36
√

2√
13 q

5/4

24
√

2√
13 q

3/4

 ,

Y
(6)

3′,II(τ) =


3(ε4θ8 − ε8θ4)

− 3
4
√

2(ε5θ11 + 2ε5θ7 − 3ε9θ3)
3

4
√

2(3ε3θ9 − 2ε7θ5 − ε11θ)

 ∼


48q
− 24√

2q
5/4

18√
2q

3/4

 .
11The complete set of the modular forms whose weights are lower than 8 can be found in [33].
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r S T R

1 1 1 1

3 1√
5

 1 −
√

2 −
√

2
−
√

2 −(
√

5 + 1)/2 (
√

5− 1)/2
−
√

2 (
√

5− 1)/2 −(
√

5 + 1)/2


1 0 0

0 σ 0
0 0 σ4

 I3×3

3′ 1√
5

−1
√

2
√

2√
2 (−

√
5 + 1)/2 (

√
5 + 1)/2√

2 (
√

5 + 1)/2 (−
√

5 + 1)/2


1 0 0

0 σ2 0
0 0 σ3

 I3×3

Table 10. The matrix representations of the generators of Γ′
5. σ = e2iπ/5. We concentrate on the

modular forms of 3-dimensional representations, and omit the other representations in this table.
Our notation is based on [35].

For k = 7, we have

Y
(7)

3̂′,I(τ) =


3

4
√

37(7ε3θ9 + 50ε7θ7 + 7ε11θ3)
− 3

4
√

74(θ14 + 14ε4θ10 + 49ε8θ6)
3

4
√

74(49ε6θ8 + 14ε10θ4 + ε14)

 ∼


42√
37q

3/4

− 3
4
√

74
2352√

74 q
6/4

 ,

Y
(7)

3̂′,II(τ) =


9
4(ε3θ11 − 2ε7θ7 + ε11θ3)
9

4
√

2(ε4θ10 − 2ε8θ6 + ε12θ2)
− 9

4
√

2(ε2θ12 − 2ε6θ8 + ε10θ4)

 ∼


18q3/4

36√
2q

− 9√
2q

2/4

 .
For k = 8, we have

Y
(8)

3,I (τ) =


9
√

2
5(ε6θ10 − ε10θ6)

9
16
√

5(5ε3θ13 + 5ε7θ9 − 9ε11θ5 − ε15θ)
− 9

16
√

5(εθ15 + 9ε5θ11 − 5ε9θ7 − 5ε13θ3)

 ∼


576
√

2
5q

6/4

9
√

5
2 q3/4

− 9
8
√

5q
1/4

 ,

Y
(8)

3,II(τ) =


−9

8(ε2θ14 − 2ε6θ10 + 3ε10θ6 − ε14θ2)
9

2
√

2(ε3θ13 − 2ε7θ9 + ε11θ5)
− 9

2
√

2(ε5θ11 − 2ε9θ7 + ε13θ3)

 ∼

−9

2q
2/4

36√
2q

3/4

−144√
2 q

5/4

 .
These q-expansions are consistent with (4.1).

C The modular forms of level 5

Γ′5 is isomorphic to A′5 ' SL(2,Z5), which is a double covering group of A5. A′5 has the
following irreducible representations,

1, 2̂, 2̂′,3,3′,4, 4̂,5, 6̂.

Our notation follows [35]. We concentrate on the triplet representations. Their matrix
representations are summarized in table 10. The complete table of the irreducible decom-
position of the tensor products, and their CG coefficients also can be found in [35]. The
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irreducible decomposition of the tensor products of the triplets are given by

3⊗ 3 = 1⊕ 3⊕ 5,
3′ ⊗ 3′ = 1⊕ 3′ ⊕ 5,
3⊗ 3′ = 4⊕ 5,

and their CG-coefficients are given by

α1
α2
α3


3

⊗

β1
β2
β3


3

= 1√
3

(α1β1+α2β3+α3β2)+ 1√
2

α2β3−α3β2
α1β2−α2β1
α3β1−α1β3

+ 1√
6


2α1β1−α2β3−α3β2
−
√

3(α1β2+α2β1)√
6α2β2√
6α3β3√

3(α1β3+α3β1)

 ,

α1
α2
α3


3′

⊗

β1
β2
β3


3′

= 1√
3

(α1β1+α2β3+α3β2)+ 1√
2

α2β3−α3β2
α1β2−α2β1
α3β1−α1β3

+ 1√
6


2α1β1−α2β3−α3β2√

6α3β3
−
√

3(α1β2+α2β1)√
3(α1β3+α3β1)√

6α2β2

 ,

α1
α2
α3


3

⊗

β1
β2
β3


3′

= 1√
3


√

2α2β1+α3β2
−
√

2α1β2−α3β3
−
√

2α1β3−α2β2√
2α3β1+α2β3

+ 1√
3



√
3α2β1+α3β2

α2β1−
√

2α3β2
α1β2−

√
2α3β3

α1β3−
√

2α2β2
α3β1−

√
2α2β3

 . (C.1)

Modular forms. The modular forms of level 5 and weight k are given by tensor products
of the modular forms of level 5 and weight 1. The modular forms of weight 1 form 6̂ of A′5,
and they are given by

Y
(1)

6̂ (τ) ≡



Y1
Y2
Y3
Y4
Y5
Y6


=



ê1 − 3ê6
5
√

3ê2
10ê3
10ê4

5
√

2ê5
−3ê1 − ê6


, with êi = η15(5τ)

η3(τ) ki−1
2
5 ,

0
5
(5τ)k6−i2

5 ,
0
5
(5τ), (C.2)

where kr1,r2(τ) is the Klein form defined by

kr1,r2(τ) = q(r1−1)/2
z (1− qz)

∞∏
n=1

(1− qnqz)(1− qnq−1
z )(1− qn)−2, (C.3)

with (r1, r2) being a pair of rational number. z ≡ τr1 + r2 and qz ≡ e2πiz. The modular
forms of higher weights are constructed by its products.

êi ∼ q(i−1)/5 (C.4)
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weight k representations
1 6̂
2 3,3′,5
3 4̂, 2× 6̂
4 1,3,3′,4, 2× 5
5 2̂, 2̂′, 4̂, 3× 6̂
6 1, 2× 3, 2× 3′, 2× 4, 2× 5
...

...

Table 11. Irreducible decomposition ofMk(Γ(5)). Mk(Γ(5)) is a 5k+ 1 dimensional linear space.

for large Im τ . We summarize the irreducible decompositions of theMk(Γ(5)) in table 11.
We concentrate on the modular forms which are triplets of Γ′5. The weights of the triplet
modular forms always be positive and even for Γ′5. The complete set of the modular forms
whose weights are lower than 6 can be found in [35]. The triplet modular forms of weight
2 are given by

Y
(2)

3 (τ) = −3

Y
2

1 − 3Y1Y6 − Y 2
6

Y1Y2
−Y5Y6

 ∼ −3

 1
5
√

5q1/5

15
√

2q4/5

 ,

Y
(2)

3′ (τ) = 1
2


√

6(Y 2
1 − 2Y1Y6 − Y 2

6 )
−
√

3Y3(Y1 + Y6)√
3Y4(Y1 − Y6)

 ∼ 1
2

 −2
√

6
20
√

3q2/5

40
√

3q3/5

 .

The triplet modular forms of weight 4 are given by

Y
(4)

3 (τ) =
√

3
4

 (Y 2
1 + Y 2

6 )(7Y 2
1 − 18Y1Y6 − 7Y 2

2 )
Y2(13Y 3

1 − 3Y 2
1 Y6 − 29Y1Y

2
6 − 9Y 3

6 )
−Y5(9Y 3

1 − 29Y 2
1 Y6 + 3Y1Y

2
6 + 13Y 3

6 )

 ∼ √3
4

 −20
20
√

2q1/5

1140
√

2q4/5

 ,

Y
(4)

3′ (τ) = −1
2


√

2(Y 2
1 + Y 2

6 )(4Y 2
1 − 11Y1Y6 − 4Y 2

6 )
−Y3(Y1 − 2Y6)(7Y 2

1 − 3Y1Y6 − 2Y 2
6 )

Y4(2Y1 + Y6)(3Y 2
1 − 3Y1Y6 − 7Y 2

6 )

 ∼ −1
2

 10
√

2
140q2/5

510q3/5

 .
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The triplet modular forms of weight 6 are given by

Y
(6)

3,I (τ) = 9
√

2
16 (Y 2

1 −4Y1Y6−Y 2
6 )

(Y1−3Y6)(3Y1+Y6)(3Y 2
1 −2Y1Y6−3Y 2

6 )
2Y2(2Y 3

1 −9Y1Y
2

6 −3Y 3
6 )

2Y5(3Y 3
1 −9Y 2

1 Y6+2Y 3
6 )

∼ 9
√

2
4

 −1800q
20
√

2q1/5

−240
√

2q4/5

 ,

Y
(6)

3,II(τ) = 3
√

2(Y 4
1 −3Y 3

1 Y6−Y 2
1 Y

2
6 +3Y1Y

3
6 +Y 4

6 )

Y
2

1 −3Y1Y6−Y 2
6

Y1Y2
−Y5Y6

∼ 3
√

2

 1
5
√

2q1/5

15
√

2r4/5

 ,

Y
(6)

3′,I(τ) =−
√

3
2 (Y 2

1 −4Y1Y6−Y 2
6 )2

(3Y1+Y6)(Y1−3Y6)√
2Y1Y3√
2Y4Y6

∼−8
√

3

 100q
10
√

2q2/5

−30
√

2q3/5

 ,

Y
(6)

3′,II(τ) =−
√

6
2 (Y 4

1 −3Y 3
1 Y6−Y 2

1 Y
2

6 +3Y1Y
3

6 +Y 4
6 )


√

2(Y 2
1 −2Y1Y6−Y 2

6 )
−Y3(Y1+Y6)
Y4(Y1−Y6)

∼−√6
2

−2
√

2
20q2/5

40q3/5

 .
These q-expansions are consistent with ρ(T ).

– 40 –



J
H
E
P
0
7
(
2
0
2
1
)
0
6
8

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] F. Feruglio, Are neutrino masses modular forms?, in From My Vast Repertoire. . .: Guido
Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi eds. (2019) [DOI] [arXiv:1706.08749]
[INSPIRE].

[2] J.C. Criado and F. Feruglio, Modular Invariance Faces Precision Neutrino Data, SciPost
Phys. 5 (2018) 042 [arXiv:1807.01125] [INSPIRE].

[3] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton
Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

[4] P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino
oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

[5] P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino
mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].

[6] P.F. Harrison and W.G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and
the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [INSPIRE].

[7] I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a
non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045]
[INSPIRE].

[8] G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing,
Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

[9] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian
Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1
[arXiv:1003.3552] [INSPIRE].

[10] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, An
introduction to non-Abelian discrete symmetries for particle physicists, Lect. Notes Phys. 858
(2012) 1 [INSPIRE].

[11] H. Ishimori, T. Kobayashi, Y. Shimizu, H. Ohki, H. Okada and M. Tanimoto, Non-Abelian
discrete symmetry for flavors, Fortsch. Phys. 61 (2013) 441 [INSPIRE].

[12] S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog.
Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

[13] F. Feruglio, Pieces of the Flavour Puzzle, Eur. Phys. J. C 75 (2015) 373
[arXiv:1503.04071] [INSPIRE].

[14] T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups,
Phys. Rev. D 98 (2018) 016004 [arXiv:1803.10391] [INSPIRE].

[15] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular
S3-invariant flavor model in SU(5) grand unified theory, PTEP 2020 (2020) 053B05
[arXiv:1906.10341] [INSPIRE].

[16] H. Okada and Y. Orikasa, Modular S3 symmetric radiative seesaw model, Phys. Rev. D 100
(2019) 115037 [arXiv:1907.04716] [INSPIRE].

– 41 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/9789813238053_0012
https://arxiv.org/abs/1706.08749
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.08749
https://doi.org/10.21468/SciPostPhys.5.5.042
https://doi.org/10.21468/SciPostPhys.5.5.042
https://arxiv.org/abs/1807.01125
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.01125
https://doi.org/10.1016/j.nuclphysb.2012.01.017
https://arxiv.org/abs/1112.1340
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.1340
https://doi.org/10.1016/S0370-2693(02)01336-9
https://arxiv.org/abs/hep-ph/0202074
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0202074
https://doi.org/10.1016/S0370-2693(02)01753-7
https://arxiv.org/abs/hep-ph/0203209
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0203209
https://doi.org/10.1016/S0370-2693(03)00183-7
https://arxiv.org/abs/hep-ph/0302025
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0302025
https://doi.org/10.1016/j.physletb.2007.03.009
https://arxiv.org/abs/hep-ph/0607045
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0607045
https://doi.org/10.1103/RevModPhys.82.2701
https://arxiv.org/abs/1002.0211
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.0211
https://doi.org/10.1143/PTPS.183.1
https://arxiv.org/abs/1003.3552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.3552
https://doi.org/10.1007/978-3-642-30805-5
https://doi.org/10.1007/978-3-642-30805-5
https://inspirehep.net/search?p=find+J%20%22Lect.Notes%20Phys.%2C858%2C1%22
https://doi.org/10.1002/prop.201200124
https://inspirehep.net/search?p=find+J%20%22Fortsch.Phys.%2C61%2C441%22
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1088/0034-4885/76/5/056201
https://arxiv.org/abs/1301.1340
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.1340
https://doi.org/10.1140/epjc/s10052-015-3576-5
https://arxiv.org/abs/1503.04071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.04071
https://doi.org/10.1103/PhysRevD.98.016004
https://arxiv.org/abs/1803.10391
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10391
https://doi.org/10.1093/ptep/ptaa055
https://arxiv.org/abs/1906.10341
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10341
https://doi.org/10.1103/PhysRevD.100.115037
https://doi.org/10.1103/PhysRevD.100.115037
https://arxiv.org/abs/1907.04716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.04716


J
H
E
P
0
7
(
2
0
2
1
)
0
6
8

[17] P.P. Novichkov, J.T. Penedo and S.T. Petcov, Fermion mass hierarchies, large lepton mixing
and residual modular symmetries, JHEP 04 (2021) 206 [arXiv:2102.07488] [INSPIRE].

[18] P.P. Novichkov, S.T. Petcov and M. Tanimoto, Trimaximal Neutrino Mixing from Modular
A4 Invariance with Residual Symmetries, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289]
[INSPIRE].

[19] T. Asaka, Y. Heo, T.H. Tatsuishi and T. Yoshida, Modular A4 invariance and leptogenesis,
JHEP 01 (2020) 144 [arXiv:1909.06520] [INSPIRE].

[20] G.-J. Ding, S.F. King, X.-G. Liu and J.-N. Lu, Modular S4 and A4 symmetries and their
fixed points: new predictive examples of lepton mixing, JHEP 12 (2019) 030
[arXiv:1910.03460] [INSPIRE].

[21] H. Okada and M. Tanimoto, Modular invariant flavor model of A4 and hierarchical structures
at nearby fixed points, Phys. Rev. D 103 (2021) 015005 [arXiv:2009.14242] [INSPIRE].

[22] H. Okada and M. Tanimoto, Towards unification of quark and lepton flavors in A4 modular
invariance, Eur. Phys. J. C 81 (2021) 52 [arXiv:1905.13421] [INSPIRE].

[23] H. Okada and M. Tanimoto, Quark and lepton flavors with common modulus τ in A4
modular symmetry, arXiv:2005.00775 [INSPIRE].

[24] C.-Y. Yao, J.-N. Lu and G.-J. Ding, Modular Invariant A4 Models for Quarks and Leptons
with Generalized CP Symmetry, JHEP 05 (2021) 102 [arXiv:2012.13390] [INSPIRE].

[25] J.T. Penedo and S.T. Petcov, Lepton Masses and Mixing from Modular S4 Symmetry, Nucl.
Phys. B 939 (2019) 292 [arXiv:1806.11040] [INSPIRE].

[26] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular S4 models of lepton
masses and mixing, JHEP 04 (2019) 005 [arXiv:1811.04933] [INSPIRE].

[27] S. Mishra, Neutrino mixing and Leptogenesis with modular S3 symmetry in the framework of
type-III seesaw, arXiv:2008.02095 [INSPIRE].

[28] J.C. Criado, F. Feruglio and S.J.D. King, Modular Invariant Models of Lepton Masses at
Levels 4 and 5, JHEP 02 (2020) 001 [arXiv:1908.11867] [INSPIRE].

[29] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular A5 symmetry for flavour
model building, JHEP 04 (2019) 174 [arXiv:1812.02158] [INSPIRE].

[30] G.-J. Ding, S.F. King, C.-C. Li and Y.-L. Zhou, Modular Invariant Models of Leptons at
Level 7, JHEP 08 (2020) 164 [arXiv:2004.12662] [INSPIRE].

[31] X.-G. Liu and G.-J. Ding, Neutrino Masses and Mixing from Double Covering of Finite
Modular Groups, JHEP 08 (2019) 134 [arXiv:1907.01488] [INSPIRE].

[32] J.-N. Lu, X.-G. Liu and G.-J. Ding, Modular symmetry origin of texture zeros and quark
lepton unification, Phys. Rev. D 101 (2020) 115020 [arXiv:1912.07573] [INSPIRE].

[33] P.P. Novichkov, J.T. Penedo and S.T. Petcov, Double cover of modular S4 for flavour model
building, Nucl. Phys. B 963 (2021) 115301 [arXiv:2006.03058] [INSPIRE].

[34] X.-G. Liu, C.-Y. Yao and G.-J. Ding, Modular invariant quark and lepton models in double
covering of S4 modular group, Phys. Rev. D 103 (2021) 056013 [arXiv:2006.10722]
[INSPIRE].

[35] X. Wang, B. Yu and S. Zhou, Double covering of the modular A5 group and lepton flavor
mixing in the minimal seesaw model, Phys. Rev. D 103 (2021) 076005 [arXiv:2010.10159]
[INSPIRE].

– 42 –

https://doi.org/10.1007/JHEP04(2021)206
https://arxiv.org/abs/2102.07488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.07488
https://doi.org/10.1016/j.physletb.2019.04.043
https://arxiv.org/abs/1812.11289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11289
https://doi.org/10.1007/JHEP01(2020)144
https://arxiv.org/abs/1909.06520
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.06520
https://doi.org/10.1007/JHEP12(2019)030
https://arxiv.org/abs/1910.03460
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03460
https://doi.org/10.1103/PhysRevD.103.015005
https://arxiv.org/abs/2009.14242
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.14242
https://doi.org/10.1140/epjc/s10052-021-08845-y
https://arxiv.org/abs/1905.13421
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.13421
https://arxiv.org/abs/2005.00775
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.00775
https://doi.org/10.1007/JHEP05(2021)102
https://arxiv.org/abs/2012.13390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.13390
https://doi.org/10.1016/j.nuclphysb.2018.12.016
https://doi.org/10.1016/j.nuclphysb.2018.12.016
https://arxiv.org/abs/1806.11040
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.11040
https://doi.org/10.1007/JHEP04(2019)005
https://arxiv.org/abs/1811.04933
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.04933
https://arxiv.org/abs/2008.02095
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.02095
https://doi.org/10.1007/JHEP02(2020)001
https://arxiv.org/abs/1908.11867
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.11867
https://doi.org/10.1007/JHEP04(2019)174
https://arxiv.org/abs/1812.02158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.02158
https://doi.org/10.1007/JHEP08(2020)164
https://arxiv.org/abs/2004.12662
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.12662
https://doi.org/10.1007/JHEP08(2019)134
https://arxiv.org/abs/1907.01488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.01488
https://doi.org/10.1103/PhysRevD.101.115020
https://arxiv.org/abs/1912.07573
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.07573
https://doi.org/10.1016/j.nuclphysb.2020.115301
https://arxiv.org/abs/2006.03058
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03058
https://doi.org/10.1103/PhysRevD.103.056013
https://arxiv.org/abs/2006.10722
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10722
https://doi.org/10.1103/PhysRevD.103.076005
https://arxiv.org/abs/2010.10159
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.10159


J
H
E
P
0
7
(
2
0
2
1
)
0
6
8

[36] C.-Y. Yao, X.-G. Liu and G.-J. Ding, Fermion masses and mixing from the double cover and
metaplectic cover of the A5 modular group, Phys. Rev. D 103 (2021) 095013
[arXiv:2011.03501] [INSPIRE].

[37] X. Wang and S. Zhou, Explicit Perturbations to the Stabilizer τ = i of Modular A′
5 Symmetry

and Leptonic CP-violation, arXiv:2102.04358 [INSPIRE].

[38] H.P. Nilles, S. Ramos-Sánchez and P.K.S. Vaudrevange, Eclectic Flavor Groups, JHEP 02
(2020) 045 [arXiv:2001.01736] [INSPIRE].

[39] H. Ohki, S. Uemura and R. Watanabe, Modular flavor symmetry on a magnetized torus,
Phys. Rev. D 102 (2020) 085008 [arXiv:2003.04174] [INSPIRE].

[40] H.P. Nilles, S. Ramos-Sanchez and P.K.S. Vaudrevange, Lessons from eclectic flavor
symmetries, Nucl. Phys. B 957 (2020) 115098 [arXiv:2004.05200] [INSPIRE].

[41] H.P. Nilles, S. Ramos-Sánchez and P.K.S. Vaudrevange, Eclectic flavor scheme from
ten-dimensional string theory — I. Basic results, Phys. Lett. B 808 (2020) 135615
[arXiv:2006.03059] [INSPIRE].

[42] H.P. Nilles, S. Ramos-Sánchez and P.K.S. Vaudrevange, Eclectic flavor scheme from
ten-dimensional string theory — II detailed technical analysis, Nucl. Phys. B 966 (2021)
115367 [arXiv:2010.13798] [INSPIRE].

[43] A. Baur, M. Kade, H.P. Nilles, S. Ramos-Sanchez and P.K.S. Vaudrevange, The eclectic
flavor symmetry of the Z2 orbifold, JHEP 02 (2021) 018 [arXiv:2008.07534] [INSPIRE].

[44] A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, A String Theory of Flavor and
CP , Nucl. Phys. B 947 (2019) 114737 [arXiv:1908.00805] [INSPIRE].

[45] A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, Unification of Flavor, CP, and
Modular Symmetries, Phys. Lett. B 795 (2019) 7 [arXiv:1901.03251] [INSPIRE].

[46] C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and
CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

[47] S.J.D. King and S.F. King, Fermion mass hierarchies from modular symmetry, JHEP 09
(2020) 043 [arXiv:2002.00969] [INSPIRE].

[48] S.F. King and Y.-L. Zhou, Twin modular S4 with SU(5) GUT, JHEP 04 (2021) 291
[arXiv:2103.02633] [INSPIRE].

[49] M. Abbas, Fermion masses and mixing in modular A4 Symmetry, Phys. Rev. D 103 (2021)
056016 [arXiv:2002.01929] [INSPIRE].

[50] F. Feruglio, V. Gherardi, A. Romanino and A. Titov, Modular invariant dynamics and
fermion mass hierarchies around τ = i, JHEP 05 (2021) 242 [arXiv:2101.08718] [INSPIRE].

[51] S. Kanemura et al., CP violation due to multi Froggatt-Nielsen fields, Eur. Phys. J. C 51
(2007) 927 [arXiv:0704.0697] [INSPIRE].

[52] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020)
083C01 [INSPIRE].

[53] S. Hamidi and C. Vafa, Interactions on Orbifolds, Nucl. Phys. B 279 (1987) 465 [INSPIRE].

[54] L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The Conformal Field Theory of
Orbifolds, Nucl. Phys. B 282 (1987) 13 [INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevD.103.095013
https://arxiv.org/abs/2011.03501
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.03501
https://arxiv.org/abs/2102.04358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.04358
https://doi.org/10.1007/JHEP02(2020)045
https://doi.org/10.1007/JHEP02(2020)045
https://arxiv.org/abs/2001.01736
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.01736
https://doi.org/10.1103/PhysRevD.102.085008
https://arxiv.org/abs/2003.04174
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.04174
https://doi.org/10.1016/j.nuclphysb.2020.115098
https://arxiv.org/abs/2004.05200
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05200
https://doi.org/10.1016/j.physletb.2020.135615
https://arxiv.org/abs/2006.03059
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03059
https://doi.org/10.1016/j.nuclphysb.2021.115367
https://doi.org/10.1016/j.nuclphysb.2021.115367
https://arxiv.org/abs/2010.13798
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.13798
https://doi.org/10.1007/JHEP02(2021)018
https://arxiv.org/abs/2008.07534
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.07534
https://doi.org/10.1016/j.nuclphysb.2019.114737
https://arxiv.org/abs/1908.00805
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.00805
https://doi.org/10.1016/j.physletb.2019.03.066
https://arxiv.org/abs/1901.03251
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.03251
https://doi.org/10.1016/0550-3213(79)90316-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB147%2C277%22
https://doi.org/10.1007/JHEP09(2020)043
https://doi.org/10.1007/JHEP09(2020)043
https://arxiv.org/abs/2002.00969
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.00969
https://doi.org/10.1007/JHEP04(2021)291
https://arxiv.org/abs/2103.02633
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.02633
https://doi.org/10.1103/PhysRevD.103.056016
https://doi.org/10.1103/PhysRevD.103.056016
https://arxiv.org/abs/2002.01929
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.01929
https://doi.org/10.1007/JHEP05(2021)242
https://arxiv.org/abs/2101.08718
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.08718
https://doi.org/10.1140/epjc/s10052-007-0343-2
https://doi.org/10.1140/epjc/s10052-007-0343-2
https://arxiv.org/abs/0704.0697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.0697
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://inspirehep.net/search?p=find+J%20%22PTEP%2C2020%2C083C01%22
https://doi.org/10.1016/0550-3213(87)90006-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB279%2C465%22
https://doi.org/10.1016/0550-3213(87)90676-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB282%2C13%22


J
H
E
P
0
7
(
2
0
2
1
)
0
6
8

[55] J. Lauer, J. Mas and H.P. Nilles, Duality and the Role of Nonperturbative Effects on the
World Sheet, Phys. Lett. B 226 (1989) 251 [INSPIRE].

[56] W. Lerche, D. Lüst and N.P. Warner, Duality Symmetries in N = 2 Landau-Ginzburg
Models, Phys. Lett. B 231 (1989) 417 [INSPIRE].

[57] S. Ferrara, D. Lüst, A.D. Shapere and S. Theisen, Modular Invariance in Supersymmetric
Field Theories, Phys. Lett. B 225 (1989) 363 [INSPIRE].

[58] S. Ferrara, D. Lüst and S. Theisen, Target Space Modular Invariance and Low-Energy
Couplings in Orbifold Compactifications, Phys. Lett. B 233 (1989) 147 [INSPIRE].

[59] T. Kobayashi, S. Nagamoto and S. Uemura, Modular symmetry in magnetized/intersecting
D-brane models, PTEP 2017 (2017) 023B02 [arXiv:1608.06129] [INSPIRE].

[60] S. Kikuchi, T. Kobayashi, S. Takada, T.H. Tatsuishi and H. Uchida, Revisiting modular
symmetry in magnetized torus and orbifold compactifications, Phys. Rev. D 102 (2020)
105010 [arXiv:2005.12642] [INSPIRE].

[61] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, Modular symmetry by
orbifolding magnetized T 2 × T 2: realization of double cover of ΓN , JHEP 11 (2020) 101
[arXiv:2007.06188] [INSPIRE].

[62] S. Kikuchi, T. Kobayashi and H. Uchida, Modular flavor symmetries of three-generation
modes on magnetized toroidal orbifolds, arXiv:2101.00826 [INSPIRE].

[63] K. Hoshiya, S. Kikuchi, T. Kobayashi, Y. Ogawa and H. Uchida, Classification of
three-generation models by orbifolding magnetized T 2 × T 2, PTEP 2021 (2021) 033B05
[arXiv:2012.00751] [INSPIRE].

[64] Y. Tatsuta, Modular symmetry and zeros in magnetic compactifications, arXiv:2104.03855
[INSPIRE].

[65] Y. Almumin, M.-C. Chen, V. Knapp-Pérez, S. Ramos-Sánchez, M. Ratz and S. Shukla,
Metaplectic Flavor Symmetries from Magnetized Tori, JHEP 05 (2021) 078
[arXiv:2102.11286] [INSPIRE].

[66] M.-C. Chen, S. Ramos-Sánchez and M. Ratz, A note on the predictions of models with
modular flavor symmetries, Phys. Lett. B 801 (2020) 135153 [arXiv:1909.06910] [INSPIRE].

[67] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Generalised CP Symmetry in
Modular-Invariant Models of Flavour, JHEP 07 (2019) 165 [arXiv:1905.11970] [INSPIRE].

[68] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T.H. Tatsuishi and H. Uchida, CP
violation in modular invariant flavor models, Phys. Rev. D 101 (2020) 055046
[arXiv:1910.11553] [INSPIRE].

[69] S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11
(2013) 115 [arXiv:1306.6879] [INSPIRE].

[70] F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete
A4× SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].

[71] T. Higaki and J. Kawamura, A low-scale flavon model with a ZN symmetry, JHEP 03 (2020)
129 [arXiv:1911.09127] [INSPIRE].

– 44 –

https://doi.org/10.1016/0370-2693(89)91190-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB226%2C251%22
https://doi.org/10.1016/0370-2693(89)90686-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB231%2C417%22
https://doi.org/10.1016/0370-2693(89)90583-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB225%2C363%22
https://doi.org/10.1016/0370-2693(89)90631-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB233%2C147%22
https://doi.org/10.1093/ptep/ptw184
https://arxiv.org/abs/1608.06129
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.06129
https://doi.org/10.1103/PhysRevD.102.105010
https://doi.org/10.1103/PhysRevD.102.105010
https://arxiv.org/abs/2005.12642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12642
https://doi.org/10.1007/JHEP11(2020)101
https://arxiv.org/abs/2007.06188
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.06188
https://arxiv.org/abs/2101.00826
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.00826
https://doi.org/10.1093/ptep/ptab024
https://arxiv.org/abs/2012.00751
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.00751
https://arxiv.org/abs/2104.03855
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.03855
https://doi.org/10.1007/JHEP05(2021)078
https://arxiv.org/abs/2102.11286
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.11286
https://doi.org/10.1016/j.physletb.2019.135153
https://arxiv.org/abs/1909.06910
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.06910
https://doi.org/10.1007/JHEP07(2019)165
https://arxiv.org/abs/1905.11970
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.11970
https://doi.org/10.1103/PhysRevD.101.055046
https://arxiv.org/abs/1910.11553
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.11553
https://doi.org/10.1007/JHEP11(2013)115
https://doi.org/10.1007/JHEP11(2013)115
https://arxiv.org/abs/1306.6879
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.6879
https://doi.org/10.1007/JHEP06(2015)141
https://arxiv.org/abs/1503.03306
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.03306
https://doi.org/10.1007/JHEP03(2020)129
https://doi.org/10.1007/JHEP03(2020)129
https://arxiv.org/abs/1911.09127
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09127

	Introduction
	Modular symmetry and the Froggatt-Nielsen mechanism
	Hierarchy in the modular forms
	Froggatt-Nielsen mechanism

	Froggatt-Nielsen like mechanism with Gamma(3)'
	Models with the singlet left-handed quarks
	Numerical analysis of mass ratios and the mixing angles of Gamma(3)' models

	Froggatt-Nielsen like mechanism with the modular groups of higher  levels
	FN-like mechanism with the modular group of level 4
	FN-like mechanism with the modular group of level 5
	Realistic models without hierarchical parameters with Gamma(4)' and Gamma(5)'

	Stability of parameters
	Conclusion
	The modular group of level 3
	The modular forms of level 4
	The modular forms of level 5

