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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) has opened a new
chapter in elementary particle physics. For the first time, we have an experimentally
established theory of particle physics that can be consistently extrapolated to energy scales
many orders of magnitude larger than what we can hope to directly probe experimentally.
On the other hand, there is no doubt that there is new physics beyond the Standard Model
(SM): neutrino masses, dark matter, the matter-antimatter asymmetry, and inflation all
cannot be explained by the SM. In addition, there are serious conceptual problems with
the SM, most importantly the absence of a natural explanation of the electroweak scale
and the cosmological constant. Although there can be little doubt that the SM is not the
ultimate theory of nature, none of these open questions unambiguously point to a scale
that can be probed in future experiments.

The situation was very different before the experimental discovery of the Higgs boson.
Unitarity arguments indicated that the theory of electroweak interactions is incomplete
without a Higgs sector at or below the TeV scale. It was established in the 1970s that
unitarity of amplitudes at high energy requires the theory to be a spontaneously broken
gauge theory [1–4] (see [5–7] for a modern approach). Lee, Quigg, and Thacker [8, 9] turned
this into a quantitative constraint, showing that tree-level unitarity of longitudinal vector
boson scattering could be used to give a bound on the energy scale of the Higgs sector
(see also refs. [10–13]). This bound was a major motivation for the Large Hadron Collider
(LHC), which indeed discovered the Higgs boson in the predicted mass range.

A very important part of the continuing high-energy collider program is the experi-
mental study of the newly-discovered Higgs boson. The Higgs boson is unlike any other
elementary particle: it has spin 0 and no other quantum numbers that distinguish it from
the vacuum. The Higgs mass has been measured at the percent level, and if the SM is
assumed to be correct, this fixes all the parameters of the theory to high accuracy. On the
other hand, the couplings of a single Higgs boson to other SM fields have been measured
only at the 20% level, while the coupling of the Higgs to itself is only bounded to be . 10
times the SM prediction. Because the parameters of the SM have already been determined
much more accurately, measurements of the Higgs couplings are best viewed as a search
for physics beyond the SM.

All this is well known. However, what is often not sufficiently emphasized is that if
these measurements find a deviation from the SM predictions, then they directly point to
a scale of new physics, in exactly the same way that the work of Lee, Quigg, and Thacker
pointed to the scale of the Higgs sector before its discovery. The reason is that the SM is
the unique UV complete theory with the observed particle content. This means that any
deviation from the SM can only be explained by either new light degrees of freedom or new
interactions that ruin the UV completeness of the theory. This UV incompleteness shows
up in violations of tree-level unitarity, just as for the SM without the Higgs. Tree-level
unitarity violation is a sign of strong coupling in the UV, which requires new physics at or
below that scale.
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As our results will show, upcoming HL-LHC measurements of Higgs couplings probe
new physics at the scale of a few TeV or below. This scale is not sufficiently large that
we can confidently neglect higher-dimension operators in the Standard Model effective
field theory (SMEFT). Therefore, in this paper we adopt a completely model-independent
approach to the interpretation of the measurements of Higgs couplings. We describe these
couplings by the following effective Lagrangian in unitary gauge:

L = LSM − δ3
m2
h

2v h
3 − δ4

m2
h

8v2h
4 −

∞∑
n= 5

cn
n!

m2
h

vn−2h
n + · · ·

+ δZ1
m2
Z

v
hZµZµ + δW1

2m2
W

v
hWµ+W−µ + δZ2

m2
Z

2v2 h
2ZµZµ + δW2

m2
W

v2 h2Wµ+W−µ

+
∞∑
n= 3

[
cZn
n!

m2
Z

vn
hnZµZµ + cWn

n!
2m2

W

vn
hnWµ+W−µ

]
+ · · ·

− δt1
mt

v
ht̄t−

∞∑
n=2

ctn
n!
mt

vn
hnt̄t+ · · · .

(1.1)

Here LSM is the SM Lagrangian, h is the real scalar field that parameterizes the physical
Higgs boson (with 〈h〉 = 0), Zµ, W±µ are the SM gauge fields, and t is a Dirac spinor field
parameterizing the top quark. The δ parameters parameterize deviations in couplings that
are already present in the SM, while the c parameters denote additional couplings that
are not present in the SM.1 The ellipses denote terms with additional derivatives and/or
powers of the SM fields. The parameters in LSM are measured at the percent level or better
by precision measurements of electroweak processes and the mass of the Higgs boson. The
parameters δV 1 and δt1 are currently constrained at the 20% level, while δ3, δV 2, and ct2 are
more weakly constrained. These couplings will be measured with significant improvements
in accuracy at the upcoming HL-LHC run as well as at future colliders, motivating the focus
on these couplings. As already mentioned above, any deviation from the SM predictions in
these measurements is a sign of physics beyond the SM and points to a scale of new physics
that can be explored experimentally. To do this, we assume that there are no additional
particles below some UV scale Emax, and determine Emax by requiring that the theory
satisfies tree-level unitarity up to the scale Emax.

The implications of unitarity for extensions of the SM has been extensively studied,
but there are a number of new features to the present analysis.

• We use a completely model-independent bottom-up approach. In particular, we
do not make any assumption about the infinitely many unconstrained couplings in
eq. (1.1) other than that they are compatible with existing measurements. For exam-
ple, we allow cancelations among measured and unmeasured couplings. In this way,
we obtain unitarity constraints that are valid independently of these parameters, and

1The δ parameters in eq. (1.1) are directly related to the κ parameters used in experimental determina-
tions of Higgs boson couplings [14], e.g. κZ = 1 + δZ1 and κt = 1 + δt1.
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show that marginalizing over them conservatively does not substantially improve the
bounds.

• Previous work has focused on unitarity constraints on 2 → 2 partial wave ampli-
tudes [8–11, 15, 16] and inclusive cross sections [12, 13, 17–19]. We follow ref. [20]
and directly impose unitarity constraints on dimensionless n → m amplitudes that
are generalizations of 2 → 2 partial wave amplitudes. With this technique, we ob-
tain unitarity bounds that can be numerically stronger than those found in previous
analyses. In addition, these amplitudes have interesting properties, e.g. potential IR
enhancements and disconnected contributions, that merit further investigation.

• We discuss the interplay between different SM deviations in determining the scale of
new physics. For example, the dominant unitarity-violating process arising from δt1
also depends on δV 1. More phenomenologically, double Higgs production constrains
a combination of δ3, δV 2, and ct2, and we work out the constraints on the scale of
new physics in this expanded parameter space.

• Without assuming any effective Lagrangian power counting scheme, we show that if
the scale of new physics is much larger than the TeV scale, the deviations are well-
described by the leading higher-dimension gauge invariant operators, as in SMEFT.
We give quantitative estimates of the errors of the SMEFT predictions purely from
unitarity.

The outline of this paper is as follows. In section 2 we consider the Higgs cubic
coupling, extending the results of ref. [20] in several ways. First, we use this as an example
to give a more detailed discussion of the model-independence of the unitarity bound and
the effective field theory framework we use to obtain it. We then show that marginalizing
over unmeasured couplings does not substantially improve the unitarity bound, and we
show that if the scale of new physics is high, the quartic Higgs coupling is approximately
described by the predictions of the Standard Model effective field theory. In section 3 and
section 4 we analyze these same questions for the hV V and ht̄t couplings, respectively.
In these cases, we find that measurements at HL-LHC that are consistent with current
constraints may point to a scale of new physics in the few TeV range, a scale that can
be directly explored at the HL-LHC and future colliders. In section 5, we consider the
couplings hhV V and hht̄t, which can also be probed by future colliders, and show that
upcoming measurements of these couplings can also point to new physics at the few TeV
scale. In section 6 we summarize our conclusions, and an appendix gives details of our
calculation techniques and a summary of the calculations used in the main text.

2 New physics from the Higgs self-coupling

In this section we discuss the model-independent bound on the scale of new physics from
measurements of the cubic Higgs self-coupling. This section is based on ref. [20], but goes
beyond it in a number of respects. First, we include a more complete discussion of the
model-independence of the bound and the role of additional deviations from the SM that
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Figure 1. Feynman diagrams contributing to scattering processes involving six electroweak gauge
bosons.

are poorly constrained. Specifically, we explain why couplings with additional derivatives
and powers of gauge fields do not affect the bounds. We also show that marginalizing over
the infinitely unmeasured couplings does not substantially improve the bound. Second,
we show that if the scale of unitarity violation is large compared to 1TeV, unitarity alone
implies that the deviation in the Higgs quartic coupling is related to that of the Higgs
cubic coupling as predicted by the dimension-6 operator (H†H)3. We are able to give a
quantitative estimate of the error purely from bottom-up considerations.

2.1 Model-independent bound on the scale of new physics

Suppose that the experimentally measured value of the Higgs cubic coupling differs from
the prediction of the SM. Obviously, this implies that there is physics beyond the SM, but
at what scale? One possibility is that this physics is near the electroweak scale, for example
additional Higgs bosons that mix with the observed Higgs boson. In this case, the new
states can be potentially produced and observed in direct searches. But it is also possible
that the new physics responsible for the deviation is at higher energies that are not directly
probed by current experiments. Because the SM is the unique UV complete theory with
the observed particle content, the scale of this new physics cannot be arbitrarily high. One
sign of this is that any effective theory that can explain this result without the addition of
new light particles violates tree-level unitarity at high energies. This scale can be computed
without any additional assumptions, and gives an upper bound on the scale of new physics.

In a theory without gauge interactions, a cubic scalar interaction is a relevant coupling
whose effects are small at high energies. Nonetheless, a deviation of the Higgs cubic coupling
from the SM prediction implies a breakdown of tree-level unitarity at high energies. For
example, this can be seen in the process VLVLVL → VLVLVL, where VL is a longitudinally
polarized W or Z. This has a tree-level contribution from the Higgs cubic coupling, as
shown in figure 1. By itself, this contributes to dimensionless amplitudes2 with high-
energy behavior ∼ E2/v2, which would violate unitarity at high energy, but in the SM this
diagram cancels with other diagrams to give high-energy behavior that respects unitarity.
If the Higgs cubic coupling deviates from the SM prediction, this cancellation is destroyed,
and the amplitude violates unitarity at high energies.

The scale of unitarity violation depends on the high-energy behavior of the amplitude.
The calculation of this can be considerably simplified using the equivalence theorem, which

2We use amplitudes that are many-particle generalizations of partial wave amplitudes normalized so
that the unitarity bound is |M̂| < 1. See appendix A for details.
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tells us that the leading high-energy behavior of scattering amplitudes for longitudinally
polarized gauge bosons is given by the amplitude for the corresponding ‘eaten’ Nambu-
Goldstone bosons [4, 21]. We assume that experiments can be described by the effective
Lagrangian eq. (1.1), with no new degrees of freedom below some energy scale Emax & TeV.
In this section, we focus on the couplings δ3 and δ4 in eq. (1.1), which parameterize the
deviations of the Higgs cubic and quartic couplings coupling from the SM values:

δ3 =
gh3 − g(SM)

h3

g
(SM)
h3

, δ4 =
gh4 − g(SM)

h4

g
(SM)
h4

, (2.1)

while the cn parameters in eq. (1.1) are couplings that are not present in the SM.
The Lagrangian eq. (1.1) is written in unitary gauge. To use the equivalence theorem to

compute the leading high-energy behavior of amplitudes, we must restore the dependence
on the Nambu-Goldstone fields. We do this by writing the Higgs doublet in a general
gauge as

H = 1√
2

(
G1 + iG2

v + h+ iG3

)
, (2.2)

where ~G = (G1, G2, G3) parameterizes the custodial SU(2) triplet of ‘eaten’ Nambu-
Goldstone bosons. We use a linear parameterization of the Nambu-Goldstone fields because
the SM part of the Lagrangian has manifestly good high-energy behavior when written in
terms of these fields. To use the equivalence theorem, we must restore the dependence on
the Nambu-Goldstone of the non-SM couplings in eq. (1.1). We do this by writing them
in terms of the Higgs doublet eq. (2.2):

X ≡
√

2H†H − v = h+
~G2

2(v + h) −
~G4

8(v + h)3 +O

(
~G6

(v + h)5

)
. (2.3)

Because X = h in unitary gauge, the generalization of eq. (1.1) to a general gauge is
obtained simply by the substitution h → X [19, 20]. Note that X is non-analytic at
H = 0, but we are interested in the expansion around 〈H〉 6= 0.

The X3 term contains interactions with arbitrarily high powers of the fields h and
~G. However, such vertices also get contributions from terms of the form Xn with n ≥ 4,
and these terms are unconstrained experimentally. In order to obtain a bound we call our
model-independent bound, we only consider processes that do not get corrections from the
unmeasured couplings δn for n ≥ 4. From eq. (2.3) we have

X3 ∼ h3 + ~G2(h2 + h3 + · · · ) + ~G4(h+ h2 + · · · ) + ~G6(1 + h+ · · · )
+ ~G8(1 + h+ · · · ) + ~G10(1 + h+ · · · ) + · · · ,

X4 ∼ h4 + ~G2(h3 + h4 + · · · ) + ~G4(h2 + h3 + · · · ) + ~G6(h+ h2 + · · · )
+ ~G8(1 + h+ · · · ) + ~G10(1 + h+ · · · ) + · · · ,

X5 ∼ h5 + ~G2(h4 + h5 + · · · ) + ~G4(h3 + h4 + · · · ) + ~G6(h2 + h3 + · · · )
+ ~G8(h+ h2 + · · · ) + ~G10(1 + h+ · · · ) + · · · .

(2.4)
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where we have set v = 1 and ignored numerical factors. We note that the h~G4 and ~G6

couplings violate unitarity at high energies, and are not affected by the unconstrained terms
Xn for n ≥ 4. We see that the unitarity-violating amplitudes that depend only on δ3 are
(restoring factors of v)

M̂(VLVL → VLVLh) ∼ λδ3
E

v
, M̂(VLVLVL → VLVLVL) ∼ λδ3

E2

v2 . (2.5)

The strongest constraint comes from W+
LW

+
LW

−
L →W+

LW
+
LW

−
L and gives the bound

Emax '
14 TeV
|δ3|1/2 . (2.6)

For details of the calculations, see ref. [20] and the appendix of this paper.
Experimental sensitivity to a deviation in the Higgs cubic coupling comes mainly from

measurements of di-Higgs production.3 However, a deviation in this process can also be
explained by new physics contributions to the h2V 2 or h2t̄t couplings. This will be dis-
cussed in section 5 below, where we show that a model-independent unitarity bound can
be obtained by considering these couplings together.

2.2 Model-independence of the bound

We claim that the bound eq. (2.6) is valid independently of the infinitely many uncon-
strained couplings that parameterize possible deviations from the SM. In this subsection,
we discuss this point in more detail.

The discussion above has assumed that a measured deviation in the Higgs trilinear cou-
pling is explained by a h3 coupling with no derivatives. (The same assumption is made by
the experimental searches for this deviation.) However, there are infinitely many derivative
couplings that can contribute to an observed deviation in the Higgs cubic coupling:

∆L =
∞∑
n= 1

c3,n
m2
h

v2n+1∂
2nh3. (2.7)

Here we have only shown the schematic dependence of the derivatives, but not the detailed
Lorentz structure. If the experimentally measured h3 coupling deviates from the Standard
Model prediction, this is potentially due to some combination of the c3,n couplings above.
If the deviation is dominated by a single coupling c3,n, this requires

δgh3

g
(SM)
h3

∼ c3,n

(
mh

v

)2n
, (2.8)

since the Higgs coupling extraction is dominated at energies ∼ mh. The V 3
L → V 3

L process
leads to a unitarity violating scale (neglecting order one numerical factors)

Emax ∼ mh

128π3v4

m4
h

g
(SM)
h3

δgh3

1/(2n+2)

. (2.9)

3It is also possible to constrain a cubic deviation by looking for the hV 4 process in VBF production of
hV 2 [22].
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If one takes δgh3/g
(SM)
h3 ∼ δ3 to compare with the earlier bound eq. (2.6), one finds the

unitarity bound gets more stringent with increasing n and thus interpreting a Higgs trilinear
deviation with the operator with the fewest derivatives leads to the most conservative new
physics bound.

An important assumption in the argument above is that the number of derivatives in an
operator determines its scaling with energy. In particular, we assume that each additional
derivative give an additional factor of ∂ ∼ E in scattering amplitudes at high energy. This
is what is expected in general, but it can fail in certain choices of operator basis. This is
because field redefinitions and integration by parts in the effective Lagrangian do not affect
scattering amplitudes, so there are ‘flat directions’ in the space of effective Lagrangians.
For example, the field redefinition h→ h−(δ3/2v)h2 can be used to eliminate the deviation
in the h3 coupling, but will induce correlated couplings of the form h2�h, h2V 2 and h2t̄t.
In this basis, the h2�h, h2V 2 couplings typically lead to E4 growth in the V 6

L amplitude
as expected from counting derivatives, but with the correlated values induced by the field
redefinition the leading growth is canceled, resulting in the same E2 growth as the original
h3 deviation. Thus, a basis which eliminates h3 is a poor basis for our purposes, since
it obscures the energy scaling through non-trivial cancellations. To our knowledge, it has
never been proven that there exists a basis where the naïve energy scaling holds, even
though this assumption is commonly used in applications of effective field theory. In this
paper we will assume that such a basis exists, and leave further investigation of this point
for future work.4

Since the unitarity bound eq. (2.6) comes from scattering of gauge bosons, we must also
consider effective couplings involving gauge fields. For example, from the unitary-gauge
diagrams shown in figure 1 we can see that a deviation in the hV 2 and h2V 2 couplings
can also give rise to unitarity violation in the V 6

L amplitude at high energy. The hV 2 and
h2V 2 couplings are phenomenologically interesting in their own right, and will be studied
in detail in section 3 and section 5 respectively below. Here we preview some of the results
of section 3 to understand how modifications of the hV 2 and h2V 2 couplings contribute
to the V 6

L amplitude. To use the equivalence theorem, we restore the Nambu-Goldstone
bosons in the gauge boson fields in unitary gauge (see eq. (3.3) below):

gVµ → gVµ + ∂µG

v
+ h∂µG

v2 + · · · , (2.10)

where g is the gauge coupling. This gives (temporarily setting v = 1)

X(gV )2 ∼ ∂2[ ~G2(h+ h2 + · · · ) + ~G4(1 + h+ · · · ) + ~G6(1 + h+ · · · ) + · · · ],
X2(gV )2 ∼ ∂2[ ~G2(h2 + h3 + · · · ) + ~G4(h+ h2 + · · · ) + ~G6(1 + h+ · · · ) + · · · ],
X3(gV )2 ∼ ∂2[ ~G2(h3 + h4 + · · · ) + ~G4(h2 + h3 + · · · ) + ~G6(h+ h2 + · · · ) + · · · ].

(2.11)

Here we have assumed custodial symmetry so that the Nambu-Goldstones appear in a
custodial singlet ~G2. These give a contribution to the V 6

L amplitude (restoring the factors
4A natural guess is that this basis can be defined using amplitude methods [5, 23], where the connection

between the number of derivatives and the energy scaling of amplitudes is manifest.
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of v)

∆M̂(VLVLVL → VLVLVL) ∼ (δV 1 + δV 2)E
4

v4 , (2.12)

where δV 1 and δV 2 are defined in eq. (1.1) and their coefficients in the above equation are
only schematic. We see that deviations in the hV 2 and h2V 2 couplings contribute to the
amplitude the same way as higher-derivative couplings at high energy, and therefore they
can only lower the scale of unitarity violation. Similar results hold for modifications of the
V 3 and V 4 couplings, as well as terms with additional derivatives. These give contributions
to the V 6

L amplitude that grow even faster with energy, and therefore do not invalidate the
bound eq. (2.6).

To determine the unitarity bounds from a Higgs cubic coupling deviation, we conser-
vatively assume that δV 1, δV 2, and higher-derivative couplings are zero and focus on the δ3
coupling. Contributions to the amplitude that are higher order in δ3 involve propagators
that give additional 1/E2 suppression at high energies, so the leading unitarity violation
is given by a single insertion of δ3 even for δ3 & 1.5

2.3 The optimal bound

The bound eq. (2.6) makes no assumption about the nature of the new physics other than
that it is at high scales, and is valid independently of the values of the infinitely many
unmeasured couplings δ4, cn in eq. (1.1). However, it is not guaranteed this it is the best
possible bound, because it does not take the effects of all possible unmeasured couplings
into account. The reason is the following. If we allow additional unmeasured couplings to
be nonzero, these predict additional higher-body processes that depend on δ3 as well as the
unmeasured couplings. Requiring that these additional processes do not violate unitarity
below the scale eq. (2.6) places additional constraints on these couplings.6 It is possible
that there is no choice of the new couplings that satisfies the unitarity bound eq. (2.6),
in which case we obtain a stronger unitarity bound. In other words, an optimal bound
is obtained by marginalizing over the unmeasured couplings, while the bound eq. (2.6) is
independent of these couplings.

We have not found a general method to obtain the optimal bound. However, in the
case of the V 6

L amplitude we can constrain the optimal bound to show that it does not
significantly improve the bound eq. (2.6). To do this, we consider a theory consisting of the
SM plus the dimension-6 interaction (H†H)3. This corresponds to a particular choice of
the higher dimension Xn operators that includes terms only up to six scalars (see eq. (2.2)).
Therefore, for this choice of couplings we can simply check all unitarity violating processes
and put a bound on the scale of unitarity violation. The optimal bound will always be
weaker than the unitarity violating scale obtained from the (H†H)3 theory, since this
corresponds to a particular choice for the infinitely many unconstrained couplings. If this

5For other processes, we will find that the leading contributions to the unitarity bound include diagrams
with propagators, for example eq. (4.5).

6In fact, we know that at least some of these couplings must be nonzero, because the theory with only
δ3 6= 0 violates unitarity at the TeV scale [19, 20].
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Figure 2. The unitarity bound as a function of the deviation in the h3 coupling. The optimal
bound lies between the model-independent and SMEFT estimates. The band around the model-
independent scale reflects the uncertainty of the bound from varying the unitarity constraint to
1
2 ≤ |M̂| ≤ 2. For comparison, we show projected 95% C.L. limits on δ3 from a combination at
HL-LHC and a 100TeV pp collider from [24].

scale is the same as eq. (2.6), we will know that this is the optimal bound; if not, we learn
that the optimal bound is between the bound eq. (2.6) and the one just described.

We find that the strongest bound in the (H†H)3 theory comes from the V 6
L amplitude

for small values of δ3, but for larger values the process hh→ hhh dominates and gives

Emax '
32 TeV
|δ3|

. (2.13)

The results are plotted in figure 2. The scale of tree-level unitarity violation is an estimate
for the scale of strong coupling, and is therefore subject to theoretical uncertainty. As
a rough parameterization of this uncertainty, we vary the constraint from 1

2 < |M| <
2. Within this range, we see that there is no important difference between the model-
independent bound and the optimal bound.

2.4 SMEFT predictions from unitarity

If the scale of new physics is high, we expect that the new physics must be of the decoupling
type. This means that the effects of the new physics at low energies can be captured by
adding to the SM a series of higher-dimension gauge-invariant operators. This is the
SMEFT framework. If experiments reveal a deviation in one or more SM measurements,
without any sign of new physics, it is most natural to interpret the results in terms of
SMEFT.

SMEFT is predictive because the same SMEFT operator controls more than one ob-
servable. However, these predictions assume that we can neglect higher-dimension terms,
and the size of these corrections is unknown without further theoretical input. We now
show that we can make an interesting quantitative statement about this purely from uni-
tarity considerations. Specifically, we show that if the scale of new physics is much larger
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than the TeV scale, we can bound the error of the SMEFT prediction, and this error bound
gets better as the scale of new physics gets larger.

To be specific, we assume that δ3 6= 0, and the energy scale of new physics is lower
than some value Emax. In this case, we expect that the observed deviation in the Higgs
cubic coupling can be explained by the dimension-6 SMEFT operator7

δLSMEFT = 1
M2

(
H†H − v2

2

)3

. (2.14)

This form of the operator keeps the Higgs mass and electroweak VEV at their tree level
values, but modifies the Higgs mass parameter and quartic coupling. If this operator
dominates, it predicts

δ3 = 2v4

M2m2
h

, δ4 = 6δ3, c5 = c6 = 45δ3. (2.15)

We expect these predictions to become more accurate if the scale of new physics is larger
since these additional couplings themselves generate new unitarity violating amplitudes
which require coupling correlations to be canceled.

To make this quantitative, we simply require that any deviation in the quartic coupling
does not give rise to tree-level unitarity violation below the scale Emax. This requirement
not only bounds the quartic coupling from being too large, but it also predicts that its
deviation must be close to the prediction of the dimension-6 SMEFT operator eq. (2.14):

ε4 = δ4 − δdim 6
4

δdim 6
4

� 1. (2.16)

The reason for this is that adding a X4 term to the effective Lagrangian means that there
are now additional processes that violate unitarity, which are not affected by couplings of
the form Xn with n ≥ 5. The one that is most sensitive to new physics is the process
W+
LW

+
LW

−
LW

−
L →W+

LW
+
LW

−
LW

−
L , which gives the bound

Emax '
8.7 TeV

|δ4 − 6δ3|1/4 . (2.17)

The denominator vanishes for δ4 = 6δ3 because the SMEFT operator does not contain a ~G8

term. Requiring that the theory violates unitarity above some scale that is large compared
to 1TeV therefore requires that the deviations are close to the SMEFT prediction δ4 = 6δ3.
Taking into account all of the processes predicted by the X3 and X4 couplings, the results
are shown in figure 3. For example, we see that for Emax ∼ 10 TeV, the deviation in the
quartic coupling is within ∼ 10% of the value predicted by dimension-6 SMEFT. This
shows that not finding new physics below some scale can be complementary to direct
searches [25–27] in constraining the quartic coupling.

7Technically, this operator is a linear combination of dimension 0, 2, 4 and 6 operators, but we will refer
to these linear combinations by their highest dimension.
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Figure 3. Unitarity violating scales from processes that depend on δ3 and δ4 as a function of the
fractional deviation ε4 from the dimension-6 SMEFT prediction (see eqs. (2.15) and (2.16)).

3 New physics from hV V couplings

The Higgs couplings to vector bosons V = W±, Z provides another sensitive probe for
new physics. In this section, we work out the model-independent constraints on the scale
of new physics from measurements of these couplings. Note that we will not consider
Higgs coupling to massless gauge bosons, which can be probed by h → γγ, Zγ, gg. These
lie outside the thrust of this paper because they do not lead to high-energy growth in
VL scattering. Also, because these couplings are loop-induced in the Standard Model, we
expect that deviations from the Standard Model predictions will give rather weak unitarity
constraints.

3.1 Model-independent bound on the scale of new physics

It is well known that a deviation in the hV V couplings leads to unitarity violation in
longitudinal W and Z scattering at high energies (see [8, 9] and more recently [28]). In
the SM, the Higgs exchange contribution cancels the E2 growth of other diagrams, so any
modification of the hV V coupling will ruin this cancellation and lead to unitarity violation.
We can reproduce this result using the same model-independent bottom-up approach we
used for the h3 coupling. We write down the most general deviations from the SM involving
the Higgs and vector bosons that are quadratic in the W and Z gauge boson fields:

L = LSM − αδT
(1

2m
2
ZZ

µZµ

)
+ δZ1

m2
Z

v
hZµZµ + δW1

2m2
W

v
hWµ+W−µ

+ δZ2
m2
Z

2v2 h
2ZµZµ + δW2

m2
W

v2 h2Wµ+W−µ + cZ3
m2
Z

3!v3h
3ZµZµ + · · · ,

(3.1)
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where h is the scalar field that parameterizes the physical Higgs boson (see eq. (2.2)). As
before, we do not assume any power counting for the higher terms, we only assume that
their values are compatible with experimental constraints. Our bounds are obtained by
marginalizing over the values of the infinitely many unmeasured couplings. For now, we
do not assume that custodial symmetry is preserved by the deviations from the SM, and
therefore we have included an additional contribution to the T parameter from shifting the
Z mass.

To understand the implications of the couplings in eq. (3.1) for processes involving
longitudinally polarized vectors at high energy, we use the equivalence theorem. To do
this, we write the new couplings in eq. (3.1) in terms of gauge invariant operators using

Ĥ = H√
H†H

=
(

0
1

)
+O( ~G). (3.2)

This transforms under electroweak gauge symmetry just like a Higgs doublet. This allows
us to write the vector fields in terms of gauge-invariant operators:

Ĥ†iDµĤ = −mZ

v
Zµ −

1
v
∂µG

0 + · · · ,

˜̂
H†iDµĤ =

√
2mW

v
W+
µ + i

√
2
v
∂µG

+ + · · · ,

Ĥ†iDµ
˜̂
H =

√
2mW

v
W−µ −

i
√

2
v
∂µG

− + · · · ,

(3.3)

where we have defined

˜̂
H = εĤ∗, ε =

(
0 1
−1 0

)
. (3.4)

We then use eq. (3.3) to write eq. (3.1) as a sum of gauge invariant operators. We
therefore have

L = LSM −
αv2δT

2 |Ĥ†DµĤ|2 + δZ1vX|Ĥ†DµĤ|2 + δW1vX| ˜̂H†DµĤ|2 + · · · , (3.5)

where X is defined in eq. (2.3). We can now expand this expression in powers of the
Nambu-Goldstone fields ~G and Higgs field h using

Ĥ =
(

1 +
~G2

(v + h)2

)−1/2


√

2G+

v + h

1 + i
G0

v + h


=
(

0
1

)
+ 1
v + h

(√
2G+

iG0

)
−

~G2

2(v + h)2

(
0
1

)
+O( ~G3). (3.6)
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The only model-independent couplings arising from δT, δZ1 and δW1 are then

δL = αδT + δZ1
v

h∂µG0∂µG
0 + 2δW1

v
h∂µG+∂µG

− + αδT

v
(∂µh∂µG0)G0

+ iαδT

v
∂µG

0(G−∂µG+ −G+∂µG−) + αδT

2v2 (G+∂µG
− −G−∂µG+)2

+ 2αδT + δZ1
2v2 ( ~G)2∂µG0∂µG

0 + δW1
v2 ( ~G)2∂µG+∂µG

−

+ i

v2

[
(3αδT − 2δW1 + 2δZ1)h∂µG0 + αδT G0∂µh

]
(G+∂µG

− −G−∂µG+)

+ i

v3 (2αδT − δW1 + δZ1)( ~G)2∂µG0(G+∂µG
− −G−∂µG+).

(3.7)

Interactions involving higher powers of Nambu-Goldstone or Higgs fields can be gen-
erated by next order couplings such as δZ2 and δW2, which are much less constrained
experimentally. Notice that the δT term contributes to these interactions at the same or-
der as δZ1, δW1. However, given the stringent experimental constraints on the T parameter,
αδT . 0.001, these effects are subdominant because we are considering significantly larger
deviations δZ1, δW1 ∼ 0.1, so we will often neglect δT in the following discussion.8

The unitarity constraints on δZ1 and δW1 come from the amplitudes VLVL → VLh,
VLVL → VLVL, and VLVLVL → VLVL. These get contributions from a contact term from
eq. (3.7) while the last two also have a contribution from a Higgs exchange giving the
schematic form:

M̂(VLVL → VLh) ∼ (δV 1)E
2

v2 ,

M̂(VLVL → VLVL) ∼ (δV 1 + δ2
V 1)E

2

v2 ,

M̂(VLVLVL → VLVL) ∼ (δV 1 + δ2
V 1)E

3

v3 .

(3.8)

Because of the experimental constraint |δV 1| . 0.2, we neglect the quadratic terms. The
processes that give the strongest constraints are:

W+
LW

+
L →W+

LW
+
L : Emax '

1.2 TeV
|δW1|1/2 ,

ZLZL →W+
LW

−
L : Emax '

1.5 TeV
|δZ1 + δW1|1/2 ,

W+
L h→W+

L ZL : Emax '
1.0 TeV

|δZ1 − δW1|1/2 ,

W+
LW

+
LW

−
L →W+

L ZL : Emax '
1.5 TeV

|δZ1 − δW1|1/3 .

(3.9)

8Ref. [29] recently pointed out that the WLWLZLh amplitude violates unitarity only if custodial sym-
metry is broken. This can be verified by the fourth line in eq. (3.7). From the last line, we see that this
also extends to the ZLW

4
L and Z3

LW
2
L amplitudes.
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Figure 4. The unitarity-violating scale that depends on δZ1 and δW1 assuming that custodial sym-
metry is not preserved. The solid black line represents the current ATLAS 95% C.L. constraints [30]
while the dotted black line gives the HL-LHC projections [24].

There are no unitarity constraints depending on δZ1 alone. This is because the ZZ → ZZ

amplitude does not grow at high energies, since it is proportional to s+ t+u = 4m2
Z . Note

that a measured deviation on one or both of these couplings of order of the current 2σ
bounds |δZ1|, |δW1| ∼ 0.2 would imply new physics below a few TeV, a scale that can be
explored at the HL-LHC itself. We plot the strongest bounds from eq. (3.9) in figure 4,
together with the ATLAS limits on δZ1 and δW1 [30] and the HL-LHC projections [24].
Notice that δZ1 = δW1 (the positive diagonal on the plot) corresponds to the custodial
symmetry limit which has weaker unitarity bounds than the maximally custodial violating
direction δZ1 = −δW1, due to the last two processes in eq. (3.9).

3.2 Optimal bound with custodial symmetry

As emphasized in section 2.1, bounds such as eq. (3.9) make no assumptions about the
nature of the new physics other than that it is at high scales, and are valid indepen-
dently of the values of the infinitely many unmeasured couplings. However, as discussed
in section 2.3, marginalizing over these unmeasured couplings may give a stronger bound,
which we call the optimal bound. In this section we show that if we assume that the new
physics preserves custodial symmetry, the model-independent bound from eq. (3.9) is in
fact optimal. We will discuss the case without custodial symmetry in section 3.4 below.

We focus on the custodial symmetry limit where δT = 0 and δW1 = δZ1 ≡ δV 1. This
limit is well-motivated by the strong experimental bounds on the T parameter. We consider
the dimension-6 SMEFT operator

δLSMEFT = 1
M2

(
H†H − v2

2

)
|DµH|2. (3.10)

This does not contribute to the T parameter, and gives a custodial symmetry preserving
deviation to the hV V couplings. Making a field redefinition to remove the momentum-
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Figure 5. The unitarity bound as a function of the deviation in the hV V coupling. The optimal
bound lies between the model-independent and SMEFT estimate from the dimension-6 operator
eq. (3.10) and thus they are the same. The band around the model-independent scale results from
varying the unitarity bound to 1

2 ≤ |M̂| ≤ 2. For comparison, we show the 95% C.L. limits on δV 1
from ATLAS [30] and a projected HL-LHC combination [24].

dependent terms h∂h2 and h2∂h2, we find that this operator predicts

δV 1 = v2

2M2 , δV 2 = 4δV 1, cV 3 = 8δV 1, cV 4 = 8δV 1, (3.11)

where δV 2 = δZ2 = δW2, and cV n = 0 for n ≥ 5. Using this, we can calculate the additional
amplitudes predicted by eq. (3.10) that violate unitarity, namely h2Z2

L and h2W 2
L and

check whether these give a lower scale of unitarity violation for a given value of δV 1. We
find that these new processes give weaker or equivalent bounds to the model-independent
bound for δZ1 = δW1,

Emax '
1.1 TeV
|δV 1|1/2 , (3.12)

which is therefore also the optimal bound in this case. This is shown in figure 5 along with
the constraints from ATLAS and a HL-LHC projection, showing the potential to constrain
new physics below ∼ 5TeV.

3.3 SMEFT predictions from unitarity with custodial symmetry

If the scale of new physics is high, we expect that an observed deviation in the Higgs
couplings can be described by the lowest-dimension SMEFT operator. In this section we
assume that the new physics preserves custodial symmetry, and consider the question of
the accuracy of the SMEFT prediction, following the logic explained in section 2.4. The
dimension-6 SMEFT operator eq. (3.10) predicts δV 2 = 4δV 1, and we define

εV 2 ≡
δV 2 − δdim 6

V 2
δdim 6
V 2

. (3.13)
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Figure 6. Unitarity violating scales from processes that depend on δV 1 and δV 2 as a function of
the fractional deviation of δV 2 from its SMEFT prediction, δV 2 = 4δV 1(1 + εV 2).

When we include both δV 1 and δV 2, we have the additional model-independent processes
hh→ VLVL, hVLVL → VLVL and VLVLVL → VLVLVL. Requiring that these do not violate
unitarity constrains Emax for a given value of εV 2. The results are shown in figure 6. The
results are qualitatively similar to the case of the Higgs self-interaction. The predictions of
SMEFT become accurate for Emax & 10 TeV, corresponding to values of δV 1 much smaller
than what will be probed in upcoming experiments, and since the unitarity-violating scale
is low even for δV 1 of O(1%), in this case a general value of δV 2 does not change the
bound much.

3.4 Optimal bound without custodial symmetry

We now consider the unitarity bounds for the case δZ1 6= δW1. This case is somewhat
unnatural, in the sense that for values of δZ1 and δW1 that violate custodial symmetry at a
level that is observable in upcoming experiments, the small observed T parameter appears
to require an unnatural cancellation. Nonetheless, δZ1 and δW1 will be independently
measured, and it is interesting to explore the implications of δZ1 6= δW1.

For concreteness we consider the case δZ1 6= 0, δW1 ' 0, αδT ' 0. In order to explain
this in SMEFT, we must introduce the dimension-8 operator

1
M4

(
H†H − v2

2

)
|H†DµH|2, (3.14)

which has been chosen so that δT = 0. This operator predicts the following coupling
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Figure 7. The unitarity bound as a function of the deviation in the hZZ coupling, assuming
δW1 = 0, δT = 0. The optimal bound lies between the model-independent and SMEFT estimate
from the dimension-8 operator eq. (3.14). The band around the model-independent scale results
from varying the unitarity bound to 1

2 ≤ |M̂| ≤ 2. For comparison, we show the 95% C.L. limits
on δZ1 from ATLAS [30] and a projected HL-LHC combination [24].

deviations:

δZ1 = v4

4M4 , δW1 = 0, δZ2 = 8δZ1, δW2 = −δZ1,

cZ3 = 40δZ1, cW3 = −8δZ1, cZ4 = 136δZ1, cW4 = −32δZ1, (3.15)

cZ5 = 288δZ1, cW5 = −72δZ1, cZ6 = 288δZ1, cW6 = −72δZ1.

There are now many more unitarity-violating amplitudes, and the unitarity violating scale
that we obtain assuming that the dimension-8 operator dominates is somewhat stronger
than the model-independent bound. The results are shown in figure 7.

4 New physics from ht̄t couplings

The Higgs couplings to top quarks ht̄t provides another sensitive probe of new physics. In
this section we work out the model-independent constraints on the scale of new physics
from measurements of this coupling.

4.1 Model-independent bound

If the ht̄t coupling deviates from the SM value, processes such as tt̄→W+
LW

−
L will violate

unitarity at high energy. This observation goes back to ref. [10], which put a bound on
the scale of fermion mass generation in a theory without a Higgs boson. The diagrams
contributing to this process in unitary gauge are shown in figure 8. We see that they are
sensitive to both the t̄th coupling and the hV V coupling, and we will see that the unitarity
bound depends on both δt1 and δV 1 in eq. (1.1). Unitarity violation for more general top
couplings in 2→ 2 processes has been recently studied in [31, 32].
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Figure 8. Feynman diagrams contributing to tt̄→W+
LW

−
L in unitary gauge.

As in the previous sections, we use the equivalence theorem to compute the high-energy
behavior of amplitudes involving longitudinally polarized vector bosons and Higgs fields.
We do this by writing the deviations from the SM in eq. (1.1) that depend on the top quark
in a general gauge:

δL = −mt(Q̄L ˜̂
HtR + h.c.)

(
δt1
X

v
+ ct2

X2

2!v2 + · · ·
)
, (4.1)

where X is given by eq. (2.3) and ˜̂
H is given by eqs. (3.2) and (3.4). Expanding these

terms in terms of the Higgs and Nambu-Goldstone bosons gives

Q̄L
˜̂
HtR + h.c. = 1√

1 + ~G2

(v+h)2

(
t̄t− 1

v + h

[
G0t̄iγ5t+

√
2G−b̄LtR +

√
2G+t̄RbL

])
. (4.2)

This leads to the following interaction pattern (temporarily setting v = 1)

t̄tX ∼ ttc[h+ iG0(h+ · · · ) + ~G2(1 + · · · ) + iG0 ~G2(1 + · · · ) + ~G4(1 + · · · ) + · · · ]
+ btcG+[(h+ · · · ) + ~G2(1 + · · · ) + ~G4(1 + · · · ) + · · · ] + h.c.,

t̄tX2 ∼ ttc[h2 + iG0(h2 + · · · ) + ~G2(h+ · · · ) + iG0 ~G2(h+ · · · ) + ~G4(1 + · · · ) + · · · ]
+ btcG+[(h2 + · · · ) + ~G2(h+ · · · ) + ~G4(1 + · · · ) + · · · ] + h.c.,

t̄tX3 ∼ ttc[h3 + iG0(h3 + · · · ) + ~G2(h2 + · · · ) + iG0 ~G2(h2 + · · · ) + ~G4(h+ · · · ) + · · · ]
+ btcG+[(h3 + · · · ) + ~G2(h2 + · · · ) + ~G4(h+ · · · ) + · · · ] + h.c.,

(4.3)

where the parentheses allow arbitrary higher powers of h. Examining the structure of the
interactions in eq. (4.3), we see that the model-independent couplings that depend only on
δt1 are

δL ⊃− δt1
mt

v

[(
h+ 1

2v
~G2
)
t̄t−

(
h+ 1

2v
~G2
)
G0

v
t̄iγ5t

]
(4.4)

+ δt1

√
2mt

v2

[(
h+ 1

2v
~G2
)
G−b̄LtR + h.c.

]
.

As discussed previously in section 2.2, we can also consider tth interactions with additional
derivatives, but again we expect these will give a parametrically lower scale of unitarity
violation, and therefore in terms of new physics bounds, it is conservative to interpret a tth
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coupling deviation in terms of the coupling with no derivatives. We can then determine
the schematic form for the following model-independent amplitudes:

M̂(q̄q → VLVL) ∼ yt (δt1 + δV 1 + δt1δV 1) E
v
,

M̂(q̄q → VLh) ∼ yt (δt1 + δV 1) E
v
,

M̂(q̄q → VLVLVL) ∼ yt
(
δt1 + δV 1 + δt1δV 1 + δ2

V 1

) E2

v2 ,

(4.5)

where q = t, b. For the b̄t initial state processes, the first process vanishes. Amplitudes
related to these by crossing have the same scaling. The terms depending on δV 1 arise from
diagrams with propagators (see eq. (3.7)). The 2 derivatives in vertices from δV 1 cancel
the energy suppression of the extra propagators, so these contributions are the same order.
For contributions with a propagator, there is a possibility of log(E/m) terms arising from
the phase space integrals in the amplitudes. By direct calculation, we show that these are
absent in all of the terms in eq. (4.5), except possibly for the δ2

V 1 term in the last line.
This contribution is numerically small even if a log is present, and so we will neglect all
quadratic contributions.

The best bounds on δt1 from these processes are

tRt̄R →W+
LW

−
L : Emax '

5.1 TeV
|δt1 + δV 1|

,

tRb̄R →W+
L h : Emax '

3.6 TeV
|δt1 − δV 1|

,

tRb̄R →W+
LW

+
LW

−
L : Emax '

3.3 TeV√
|δt1 − 1

3δV 1|
,

(4.6)

where we assume custodial symmetry δZ1 = δW1 = δV 1. As already mentioned above,
these bounds are numerically stronger than previous bounds [10, 12, 13].

Figure 9 shows the unitarity violating scale from these processes as a function of δt1
and δV 1, together with projected HL-LHC constraints on these couplings. From this graph,
we see that upcoming measurements of δV 1 are sensitive to lower scales of new physics.
However, if measurements of hV V agree with the SM, a deviation in the ht̄t coupling at
HL-LHC that is compatible with current constraints can still point to a scale of new physics
below 8TeV.

4.2 Optimal bound

To further discuss the implications of δt1, we consider a scenario where δt1 is nonzero, but
all the other Higgs couplings are compatible with the SM. To estimate the scale of new
physics in this scenario, it is conservative to assume δW1, δZ1 = 0, since unitarity bounds
from eq. (3.9) are stronger than eq. (4.1). As in previous sections, we consider the optimal
bound obtained by marginalizing over the infinitely many unmeasured couplings. The
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Figure 9. Unitarity violating scales given values of δt1 and δV 1. The solid line represents the
95% C.L. at the LHC [30] and the dashed line is the HL-LHC projection for ATLAS [33].

optimal bound can be constrained by considering the SMEFT operator

δLSMEFT = yt
M2

(
H†H − v2

2

)
(Q̄LH̃tR + h.c.), (4.7)

which gives

δt1 = − v2

M2 , ct2 = ct3 = 3δt1, (4.8)

and ctn = 0 for n ≥ 4. This imposes additional unitarity bounds. We find that the bounds
for the model-independent processes considered above give the most stringent bound for
small δt1, but for larger values of δt1 the strongest bound comes from t̄RtR → hh, which
gives

Emax '
2.4 TeV
|δt1|

. (4.9)

However, this only dominates over the bounds in eq. (4.1) for δt1 & 0.6, which is larger
than allowed by current constraints. In figure 10 we show the unitarity bounds on δt1
along with the experimental bounds from ATLAS and the projected sensitivity of a HL-
LHC combination.

4.3 SMEFT predictions from unitarity

If the scale of new physics is high, we expect that an observed deviation in the Higgs
couplings can be described by the lowest-dimension SMEFT operator. In the case of the
t̄th coupling, this is the operator given in eq. (4.7), which makes the predictions eq. (4.8)
for the higher-order deviations. We can constrain the accuracy of these predictions from
unitarity, as outlined in previous sections. The results are shown in figure 11. As expected,
the SMEFT predictions are accurate only if the scale of new physics is & 10 TeV.
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Figure 10. The unitarity bound on δt1 assuming δW1, δZ1 = 0. The model-independent bound is
equal to the optimal bound for all values of δt1 shown. The band around the model-independent
scale results from varying the unitarity bound to 1

2 ≤ |M̂| ≤ 2. For comparison, we show the
95% C.L. limits on the coupling from ATLAS [30] and a projected HL-LHC combination [24].
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Figure 11. The unitarity bound from processes that depend on δt1, ct2 = 3δt1(1 + εt2) where
εt2 = 0 is the prediction of the dimension-6 SMEFT operator. Due to these amplitudes depending
on coupling δV 1, it has been set to zero in this plot.

5 New physics from hhV V and hht̄t couplings

In this section we discuss the implications of a deviation in the hhV V or hht̄t coupling,
parameterized respectively by δV 2 and ct2 in eq. (1.1). Since there are no symmetries to
prevent this, any new physics that contributes to these couplings should also contribute to
a comparable deviation in δV 1 and δt1, which will be measured to greater precision. On the
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other hand, it is possible that δV 1 and δt1 are suppressed by an accidental cancellation. In
any case, experimental constraints on δV 2 and ct2 will improve dramatically at the HL-LHC,
and will give us additional information about possible new physics. Another motivation for
studying these couplings is that they directly contribute to di-Higgs production. Therefore,
an anomalous rate for di-Higgs production may be due to δV 2 (in vector boson fusion) or
δt2 (from gluon fusion). Therefore we should consider these couplings in order to determine
the unitarity bounds from any future di-Higgs anomalies.

5.1 hhV V : model-independent bound on the scale of new physics

We now work out the model-independent bound on the scale of new physics coming from
an observation of δV 2 6= 0. This coupling can be measured from di-Higgs production via
vector boson fusion [34]. Although this process in principle is sensitive to an anomaly in
the h3 coupling, this sensitivity is strongly reduced by requiring large di-Higgs invariant
mass to suppress backgrounds. Because any new physics that contributes to δV 2 will also
contribute to δV 1, we assume that both couplings are nonzero in the present discussion.

The procedure we use to obtain the model-independent bound is an extension of the one
used in section 3 to include δV 2 6= 0. This adds the model-independent processes h2V 2

L ,
hV 4

L , and V 6
L . Because the δV 1 and δV 2 couplings each contain 2 derivatives additional

insertions of these vertices can cancel the 1/E2 from additional propagators. This means
that the leading diagrams at high energy include diagrams with multiple propagators.
We find

M̂(VLVL → hh) ∼
(
δV 1 + δV 2 + δ2

V 1

) E2

v2 ,

M̂(VLVL → VLVLh) ∼
(
δV 1 + δV 2 + δ2

V 1 + δV 1δV 2 + δ3
V 1

) E3

v3 ,

M̂(VLVLVL → VLVLVL) ∼
(
δV 1 + δV 2 + δ2

V 1 + δV 1δV 2 + δ2
V 1δV 2 + δ3

V 1 + δ4
V 1

) E4

v4 .

(5.1)

Amplitudes related to these by crossing have the same scaling. Current experimental
constraints give |δV 1| . 0.2, while δV 2 has a weak constraint of −1.8 ≤ δV 2 ≤ 1.9 at
95% C.L. [35]. We can therefore neglect the nonlinear terms in these amplitudes (which
are also much more difficult to compute). Assuming custodial symmetry (δZ1 = δW1,
δZ2 = δW2) the strongest bounds are

W+
LW

−
L → hh : Emax '

1.5 TeV
|δV 2 − 2δV 1|1/2 ,

ZLZL → hW+
LW

−
L : Emax '

1.9 TeV
|δV 2 − 4δV 1|1/3 ,

W+
LW

+
L ZL →W+

LW
+
L ZL : Emax '

2.6 TeV
|δV 2 − 4δV 1|1/4 .

(5.2)

In figure 12, we show the unitarity violating scale given values of δV 1 and δV 2 along with
the bounds on both coupling deviations from standard searches and a search for vector
boson fusion di-Higgs. The figure shows that HL-LHC searches for VBF di-Higgs could
find coupling deviations with unitarity bounds below 3TeV.
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Figure 12. Unitarity violating contours from δV 1 and δV 2. The solid lines represent the ATLAS
bound on δV 1 [30] while the δV 2 bound [35] is outside of the plot range. The dashed lines show the
projected bounds for δV 1 [24] and δV 2 at HL-LHC, where the δV 2 bounds are the 95% C.L. bounds
from doubling the 68% bounds from a projected vector boson fusion di-Higgs search [34].

5.2 hhV V : optimal bound and SMEFT predictions

We now consider the optimal bound obtained by marginalizing over the infinitely many
unmeasured couplings. As in previous sections, we do this by considering a scenario where
these couplings are given by a single SMEFT operator. In the present case, we use the
dimension-8 operator

1
M4

(
H†H − v2

2

)2

DµH†DµH, (5.3)

which gives custodial symmetry preserving couplings. Performing field redefinitions to
remove the Higgs self couplings at order 1/M4, we have find that the Higgs couplings to
the vector bosons are given by

δV 1 = 0, δV 2 = v4

M4 , cV 3 = 8δV 2, cV 4 = 32δV 2, cV 5 = 72δV 2, cV 6 = 72δV 2, (5.4)

and cV n = 0 for n ≥ 7. The unitarity bound obtained from this operator is always stronger
than the optimal bound, so the optimal bound lies between this bound and the model-
independent bound computed above. In figure 13, we plot both the model-independent
and the SMEFT unitarity bound as a function of δV 2, neglecting terms proportional to
δV 1, showing that the optimal bound is close to the model-independent one.

Next, we consider the accuracy of the SMEFT prediction for δV 2 from the operator
eq. (5.3). (We again consider the case where δV 1 = 0.) We expect the predictions of this
operator to become more accurate as the scale of new physics becomes large. In figure 14
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Figure 13. The unitarity bound from as a function of δV 2 neglecting small terms proportional to
δV 1. The optimal bound lies between the model-independent and SMEFT estimates. The band
around the model-independent bound results from varying the unitarity bound to 1

2 ≤ |M̂| ≤ 2.
For comparison, we show 95% C.L. limits on the coupling from the vector boson fusion di-Higgs
analysis projected for the HL-LHC and a 100TeV pp collider [34].

we plot the quantity

εV 3 = cV 3 − cdim 8
V 3

cdim 8
V 3

, (5.5)

where cdim 8
V 3 = 8δV 2. As in previous cases, we find that the SMEFT prediction becomes

accurate when the scale of new physics is larger than a TeV.

5.3 hht̄t: model-independent bound on the scale of new physics

We now consider a deviation in the hht̄t coupling ct2. The study of this coupling is strongly
motivated by the fact that di-Higgs production is sensitive to this coupling, and therefore
di-Higgs production does not measure the h3 coupling in a model-independent way [36].
However, measuring htt̄ and hhtt̄ production has been shown to break the degeneracies
between the hhh, ht̄t and hht̄t couplings [37–39].

In this subsection we focus on the unitarity bound on ct2. We are interested in model-
independent processes that do not depend on ctn for n ≥ 3. The relevant couplings are
given in eqs. (4.3) and (2.11). We can work out that the model-independent processes have
the schematic form at leading order in the energy expansion:

M̂(t̄t→ hh) ∼ ytct2
E

v
,

M̂(t̄t→ VLhh) ∼ yt
(
δt1 + ct2 + δV 1 + δV 2 + δt1δV 1 + δ2

V 1
) E2

v2 ,

M̂(t̄t→ VLVLh) ∼ yt
(
δt1 + ct2 + δV 1 + δV 2 + δt1δV 1 + δt1δV 2

+ ct2δV 1 + δ2
V 1 + δt1δ

2
V 1
) E2

v2 ,
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Figure 14. The unitarity bound from processes that depend on δV 2 and cV 3 = 8δV 2(1 + εV 3) to
linear order, where εV 3 = 0 correspond to the SMEFT predictions, assuming δV 1 = 0.

M̂(t̄t→ VLVLVLh) ∼ yt
(
δt1 + ct2 + δV 1 + δV 2 + δt1δV 1 + δt1δV 2

+ ct2δV 1 + δ2
V 1 + δV 1δV 2 + δt1δ

2
V 1 + δ3

V 1
) E3

v3 ,

M̂(t̄t→ VLVLVLVLVL) ∼ yt
(
δt1 + ct2 + δV 1 + δV 2 + δt1δV 1 + δt1δV 2 + ct2δV 1

+ δ2
V 1 + δV 1δV 2 + δt1δ

2
V 1 + δt1δV 1δV 2 + ct2δ

2
V 1

+ δ3
V 1 + δ2

V 1δV 2 + δt1δ
3
V 1 + δ4

V 1) E
4

v4 .

(5.6)

For t̄b initial states, the first and third process vanish while the second process does not have
a δt1 term. Amplitudes related to these by crossing have the same scaling. Again, due to
constraints on δt1, δV 1 we can neglect the nonlinear terms. At linear order, we see that only
the t̄t → hh amplitude is independent of δV 2, which is poorly constrained experimentally
and thus can substantially affect the constraints on ct2. These linear contributions involving
δV 1 and δV 2 involve diagrams with propagators, which are significantly more difficult to
compute so we have focused on the terms from δV 2. Due to this contamination from δV 2,
we will use only t̄t → hh to set unitarity bounds on ct2. The bounds taking into account
the dominant linear contributions are:

tRt̄R → hh : Emax '
7.2 TeV
|ct2|

,

tRt̄R →W+
LW

−
L h : Emax '

4.7 TeV
|ct2 − 2δt1 + 1

3δV 2|1/2 ,
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Figure 15. Unitarity violating contours from δ3 and ct2. The 95% C.L. projections from gluon
fusion di-Higgs searches are shown for the LHC (solid) and for the HL-LHC (dashed), which were
obtained by expanding the 1σ contours of [36] by 1.6 to estimate the 95% C.L. sensitivity.

tRb̄R →W+
L h

2 : Emax '
4.7 TeV

|ct2 − 2δt1 − 2
3δV 2|1/2 ,

tRb̄RW
−
L → hW+

LW
−
L : Emax '

3.9 TeV
|ct2 − 3δt1 + 1

2δV 2|1/3 ,

tRb̄RW
−
L →W+

LW
+
LW

−
LW

−
L : Emax '

4.2 TeV
|ct2 − 3δt1 + 1

3δV 2|1/4 .

(5.7)

In figure 15, we plot the unitarity violating scale as a function of ct2 and δ3. Superim-
posed on the plot are estimates of the current bounds and sensitivity to these parameters
from gluon fusion di-Higgs production [36]. We see that it is plausible that the HL-LHC
could find deviations that point to a scale of new physics below 3TeV, even allowing for
the experimental degeneracy between ct2 and δ3.

5.4 hht̄t: optimal bound and SMEFT predictions

To obtain the relations between c2t and higher order couplings, we use the dimension-8
SMEFT operator

yt
M4

(
H†H − v2

2

)2

(Q̄LH̃tR + h.c.) , (5.8)

which gives the predictions

δt1 = 0, ct2 = −2 v4

M4 , ct3 = 6ct2, ct4 = 15ct2, ct5 = 15ct2, (5.9)
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Figure 16. The unitarity bounds from both the model-independent approach and the SMEFT
dimension-8 prediction, the optimized bound from marginalizing over other couplings should be
somewhere between these two lines. We assume δt1 = δV 1 = δV 2 = 0. We also plot the projected
95% C.L. limits on the coupling from the gluon fusion di-Higgs analysis at the HL-LHC and a
100TeV pp collider [36].
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Figure 17. The unitarity bound from processes that depend only on ct2 and ct3 = 6ct2(1+ε3) when
δt1 = δV 1 = δV 2 = 0. Setting εt3 = 0 corresponds to the SMEFT prediction from the dimension-8
operator.

and ctn = 0 for n ≥ 6. As in the previous cases, we can use eq. (5.9) to obtain unitar-
ity bounds from processes that we classified as model-independent. Figure 16 shows the
unitarity bounds predicted by the model independent approach and the SMEFT operator,
where we assume δt1 = δV 1 = δV 2 = 0 to focus on ct2. Thus, the optimal bound is still
within our estimated uncertainty of the model-independent bound.

Once again, we can see the effect that a high scale of unitarity violation (compared
to 1TeV) has on the SMEFT predictions in eq. (5.9). Figure 17 shows the unitarity scale
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dependence on εt3 where ct3 = 6ct2(1 + εt3) and we assume δt1 = δV 1 = δV 2 = 0. As with
the other couplings, at high scales of unitarity violation (e.g. 10TeV), ct3 is close to its
SMEFT value.

6 Conclusions

In this paper, we have investigated the scale of unitarity violation due to nonstandard
Higgs self-couplings, and Higgs couplings to W/Z bosons and top quarks. In the SM, good
high energy behavior for multiparticle scattering amplitudes relies on delicate cancellations
among the various Higgs couplings. If these cancellations are upset by new physics contri-
butions to the Higgs couplings, this leads to tree-level unitarity violation at high energies,
signaling the breakdown of perturbation theory and the onset of new physics. In this way,
we can give a model-independent bound on the scale of new physics directly from any
observed deviation from the SM prediction for Higgs couplings.

In this work, we focused on the couplings h3, h4, hV V , h2V V , ht̄t, and h2t̄t where
V = W or Z, which will be probed at the HL-LHC and future colliders. In the SM,
these couplings are predicted at the percent level while current constraints are only at the
10%–100% level. Upcoming experiments will significantly improve these constraints, giving
many opportunities to discover physics beyond the SM. Our work translates these searches
into a direct probe of the scale of new physics.

For the hV V, ht̄t couplings, the current constraints allow coupling values that require
new physics below 3TeV for W/Z couplings, and below 8TeV for the top coupling. The
Higgs trilinear coupling is much more weakly constrained, allowing a scale of new physics as
low as 4TeV. The couplings hht̄t and hhV V are of particular interest for di-Higgs searches
in gluon-fusion and vector boson fusion, and their constraints allow a scale of new physics
as low as 2TeV. These results show that measurements of Higgs couplings can point to a
scale of new physics within the kinematic reach for HL-LHC and future colliders.

Unitarity bounds can also place indirect constraints on couplings that are difficult to
measure directly, such as the h4 coupling. For example if there is a nonstandard Higgs
trilinear coupling, we show that to keep the new physics bound above 10TeV, the quartic
coupling must closely approximate the coupling correlation from the dimension-6 SMEFT
operator (H†H)3. We present similar results for the W/Z and top couplings as well. We
emphasize that these predictions do not make any assumptions about the smallness of
higher-dimension operators, and rely only on unitarity.

Our main conclusion is that, from a purely data-driven viewpoint, our current knowl-
edge of the Higgs couplings allows new physics at the few TeV scale. This scale will be
extensively probed at the HL-LHC and future colliders, both through direct searches and
Higgs coupling measurements, and there is a great deal of room for discovery in both types
of analyses. In particular, the scales probed by the upcoming HL-LHC are not sufficiently
large that we can confidently neglect higher-dimension operators in SMEFT. We have
therefore adopted a completely bottom-up and model-independent approach to translating
these measurements into direct statements about the scale of new physics. We hope that

– 29 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
6

these results will be useful in interpreting and further motivating the precision study of
the Higgs boson’s properties.

Acknowledgments

We thank T. Cohen, X. Lu, and D. Soper for discussions. The work of SC was supported in
part by the U.S. Department of Energy under Grant Number DE-SC0011640. The work of
ML and MC was supported in part by the U.S. Department of Energy under grant DE-SC-
0009999. The work of FA was supported by the OCEVU Labex (ANR-11-LABX-0060) and
the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir”
French government program, managed by the ANR.

A Calculation techniques and results

In this appendix we define the multi-particle amplitudes we use to obtain the unitarity
bounds, explain how they are computed, discuss potential infrared enhancements, and give
the results of the calculations used in the main text. We extend the results of ref. [20]
to include fermions, momentum-dependent couplings, and tree-level diagrams with propa-
gators.

A.1 Scalar amplitudes

We first discuss amplitudes involving only scalar fields, which includes amplitudes with
longitudinal W and Z bosons when we use the equivalence theorem. Given r species of
scalars φ1, . . . , φr we define the states

|P ; k1, . . . , kr〉 ≡ Ck1,...,kr

∫
d4xe−iP ·xφ

(−)
1 (x)k1 · · ·φ(−)

r (x)kr |0〉

= Ck1,...,kr

∫
dΦk(P ; p1, . . . , pk) |φ1(p1) · · ·φr(pk)〉. (A.1)

Here k1, . . . , kr are non-negative integers that give the number of each species of particle in
the state, φ(−)

i is the negative frequency (creation operator) part of the interaction picture
field φi, |φ1(p1) · · ·φr(pk)〉 is an ordinary k-particle state with k = k1 + · · ·+ kr, and

dΦk(P ; p1, . . . , pk) = d3p1
(2π)3

1
2E1
· · · d

3pk
(2π)3

1
2Ek

(2π)4δ4(p1 + · · ·+ pk − P ) (A.2)

is the Lorentz invariant k-body phase space. These states are s-wave states defined by
integrating k-particle states over the full phase space. The normalization of the states is
chosen to be

〈P ′; k′|P ; k〉 = (2π)4δ4(P ′ − P )δk′k, (A.3)

where we use the abbreviations

|P ; k〉 = |P ; k1, . . . , kr〉, δk′k = δk′1k1 · · · δk′rkr , Ck = Ck1,...,kr . (A.4)
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The normalization constant is given by
1
|Ck|2

= k1! · · · kr!Φk(P ), (A.5)

where

Φk(P ) =
∫
dΦk(P ) = 1

8π(k − 1)!(k − 2)!

(
E

4π

)2k−4
, (A.6)

is the total volume of phase space for massless particles with center of mass energy E=
√
P 2.

We then consider S-matrix elements between these states:

〈P ′; k′|T |P ; k〉 = (2π)4δ4(P ′ − P )M̂(P ; k1, . . . , kr → k′1, . . . , k
′
r), (A.7)

where S = 1 + iT . The amplitude M̂ is Lorentz invariant and depends only on Pµ, so it is
a function of E only. With the normalization eq. (A.3), unitarity of the S matrix implies
that these amplitudes satisfy

|M̂| ≤ 1. (A.8)

For non-forward amplitudes this follows directly from the unitarity of the S-matrix. For
forward amplitudes (k′i = ki) a few additional steps are required to show that this holds
for tree-level amplitudes, see ref. [20]. This is the unitarity constraint we employ in this
paper.

The Feynman rules for these amplitudes follow straightforwardly from the standard
rules. The result is that the amplitude M̂ are obtained from the standard Lorentz invariant
amplitudeM by averaging over the initial and final state phase space:

M̂fi(P ) = C∗fCi

∫
dΦf (P )dΦi(P )Mfi, (A.9)

whereMfi is the usual Lorentz-invariant amplitude.9 Because we are averaging over final
state momenta, these amplitudes have contributions from disconnected diagrams, with each
disconnected component contributing a M̂ factor, leading to a form M̂ ∝ ΠiM̂i. However,
the leading contribution to high-energy amplitudes always comes from connected diagrams.

In simple cases, these amplitudes can be computed in terms of the total volume of
phase space given in eq. (A.6). For example, for a single insertion of a coupling with no
derivatives we have

〈P ′; k′|
∫
d4xφn1

1 (x) · · ·φnr
r (x)|P ; k〉

(2π)4δ4(P ′ − P ) = C∗k′Ckn1! · · ·nr!Φk′(P )Φk(P ) (A.10)

= 1
Ck′C

∗
k

n1! · · ·nr!
k1! · · · kr!k′1! · · · k′r!

, (A.11)

9In more detail, eq. (A.9) is

M̂(P ; k1, . . . , kr → k′1, . . . , k
′
r) = C∗k′Ck

∫
dΦk′ (P ; p′1, . . . , p′k′ )dΦk(P ; p1, . . . , pk)

× M(φ1(p1) · · ·φr(pk)→ φ1(p′1) · · ·φr(p′k′ )).
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where we assume ni = ki + k′i. For diagrams with a single insertion of a vertex containing
derivatives, we use the identities∫

dΦk(P ; p1, . . . , pk)pµ1 = Pµ

k
Φk(P ), (A.12)∫

dΦk(P ; p1, . . . , pk)p1 · p2 = P 2

2
(k

2
)Φk(P ), (A.13)

which hold for the case where all particles are massless.

A.2 States with one fermion

We consider a state containing a single fermion and k scalars

|P ; k1, . . . , kr, α, a〉 ≡ C ′k
∫
d4xe−iP ·xφ

(−)
1 (x)k1 · · ·φ(−)

r (x)krψ
a(−)
Lα (x)|0〉

= C ′k

∫
dΦk+1(P ; p1, . . . , pk, q)vαL(q)|φ1(p1) · · ·φr(pk)ψaR(q)〉, (A.14)

where ψL is a left-handed Weyl spinor field, α is a spinor index, and a is a gauge index
(e.g. a color index). Note that these states are given by phase space integrals of scattering
states weighted by a spinor wavefunction, so eq. (A.9) is modified for amplitudes involving
these states. (In the example above, the state created by the left-handed spinor field is a
right-handed antifermion.) The normalization of these states is given by

〈P ′; k, β, b|P ; k, α, a〉 = (2π)4δ4(P ′ − P )k1! · · · kr!|C ′k|2
∫
dΦk+1(P ; p1, . . . , pk, q)qµσαβ̇µ δab

= (2π)4δ4(P ′ − P )k1! · · · kr!|C ′k|2δab
P · σαβ̇

k + 1 Φk+1, (A.15)

where we used eq. (A.12). We choose the states eq. (A.14) to have normalization

〈P ′; k′, β, b|P ; k, α, a〉 = (2π)4δ4(P ′ − P )δabδk′k
P · σαβ̇

E
. (A.16)

Note that in the Pµ rest frame we have P · σαβ̇/E = δαβ̇ , so this is the natural generaliza-
tion of the normalization condition eq. (A.3). The normalization constants are therefore
given by

1
|C ′k|2

= k1! · · · kr!
E

k + 1Φk+1(P ). (A.17)

A.3 States with two fermions

We now consider states with two fermions and k scalars of the form

|P ; k1, . . . , kr, L/R〉 ≡ C ′′k
∫
d4x e−iP ·xφ

(−)
1 (x)k1 · · ·φ(−)

r (x)krψ
a(−)
R/L(x)ψa(−)

L/R (x)|0〉

= C ′′k

∫
dΦk+2(P ; p1, . . . , pk, q, q

′)uR/L(q′)vL/R(q)

×
∑
a

|φ1(p1) · · ·φr(pk)ψaR/L(q′)ψaR/L(q)〉 , (A.18)
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where ψL (ψR) are left-handed (right-handed) Weyl spinors. In the massless limit the
states | . . . L〉 and | . . . R〉 are orthogonal s-wave states, with the L (R) state containing
a fermion-antifermion pair which are both right-handed (left-handed) in helicity. These
states are normalized as in eq. (A.3) if we choose

1
|C ′′k |2

= k1! · · · kr!
2NE2

(k + 1)(k + 2)Φk+2(P ), (A.19)

where a = 1, . . . , N and for a top quark, N = Nc. To compute amplitudes for these states,
we use

〈P ′; k′|
∫
d4xφ1(x)n1 · · ·φr(x)nrψL/R(x)ψR/L(x)|P ; k, L/R〉

(2π)4δ4(P ′ − P )

= C∗k′C
′′
k n1! · · ·nr!

2NE2

(k + 2)(k + 1)Φk′(P )Φk+2(P ),

= 1
Ck′(C ′′k )∗

n1! · · ·nr!
k1! · · · kr!k′1! · · · k′r!

, (A.20)

〈P ′; k′|
∫
d4xφ1(x)n1 · · ·φr(x)nrψL/R(x)ψR/L(x)|P ; k,R/L〉

(2π)4δ4(P ′ − P ) = 0. (A.21)

A.4 Example calculations

We now give some examples of calculations involving these rules. The amplitudes involving
a single insertion of a vertex without derivatives is straightforward using the formulas given
above, and will not be discussed further. Diagrams with derivatives are less trivial because
the derivatives may act on fields that are connected with either initial or final state particles.
For example, consider

〈P ′; 2|
∫
d4xφ2(∂φ)2|P ; 2〉

(2π)4δ4(P ′ − P ) =
∫
d4x

[
〈P ′; 2|φ2|0〉〈0|(∂φ)2|P ; 2〉

+ 〈P ′; 2|(∂φ)2|0〉〈0|φ2|P ; 2〉

+ 4〈P ′; 2|φ∂µφ|0〉〈0|φ∂µφ|P ; 2〉
]

= 4|C2|2
(
−2 · 1

2E
2 + 4 · −iP

µ

2
iPµ
2

)
Φ2(P )2 = 0. (A.22)

The cancellation can be understood at the level of the ordinary amplitude from the fact
that crossing symmetry implies that the amplitude is proportional to s + t + u = 4m2

φ,
which vanishes in the massless limit.

We now give an example of a diagram that contains a propagator:

〈P ′; 0, 0, 2|
∫
d4x(∂φ3)2φ2

∫
d4yφ2(∂φ1)2|P ′; 2, 0, 0〉

(2π)4δ4(P ′ − P )

= |C2|2
∫
dΦ2(P ′; p′1, p′2)dΦ2(P ; p1, p2)(2p′1 · p′2)(2p1 · p2) i

P 2

= |C2|2
i

E2
[
E2Φ2(P )

]2
. (A.23)
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Diagrams with propagators are generally subleading at high energies compared to diagrams
with a single insertion. There are a few relevant exceptions, which are discussed in the
main paper.

A.5 IR enhancement

The amplitudes M̂ are dimensionless, and once coupling constants have been factored out,
they depend on a single dimensionful variable E in the massless limit. The dependence on
E is therefore determined by dimensional analysis, provided that there are no. IR enhance-
ments in the massless limit. Such IR enhancements can arise because the integration over
initial and final state phase space can go over regions where internal propagators go on
shell. We now present arguments that such IR enhancements do not invalidate the leading
large E scaling for any of the processes used to set the unitarity bounds in this paper.
First, we show that many (but not all) possible IR enhancements can be ruled out by a
simple parametric argument. Second, we give a diagrammatic argument that IR enhance-
ments can modify the naïve power counting by at most corrections of order log(E/m)n for
some positive integer n, where m is the mass of a SM particle such as mW or mh. Finally,
we point out that the gauge boson equivalence theorem itself is invalid in the phase space
region of the potential IR enhancements, since these are regions where some Lorentz in-
variants pi ·pj ∼ m2

W rather than E2. Therefore, phase space integration over these regions
is suspect. (We note that this issue arises already for 2→ 2 partial wave amplitudes.) We
argue that, because the singular phase space regions are parametrically small, they cannot
give rise to additional log(E/mW ) enhancements, and therefore the Goldstone amplitudes
correctly give the correct leading behavior at large E.

For the parametric argument, consider an amplitude with leading large-E behavior

M̂ ∼ C
(
E

v

)n (E
m

)r
log(E/m)s, (A.24)

where C is a BSM coupling, m is an IR mass (such as mW or mh), and n, r, s are non-
negative integers. Observe that if r + s > 0 this becomes arbitrarily large for any fixed E
in the limit m→ 0 with v and c fixed. But the amplitude cannot become arbitrarily large
in this limit because the massless limit is equivalent to a weak-coupling limit where the
SM couplings g, λ, yt → 0. The coupling C is held fixed in this limit, but can be chosen to
be arbitrarily small. It is clear that we cannot have unitarity violation at arbitrary energy
scales in this limit, so IR enhancements of the form eq. (A.24) are ruled out.

Note that the combinations λδ3, λδ4, λcn, ytδt1, and ytctn should be viewed as BSM
couplings that are held fixed in the limit λ, yt → 0. On the other hand, the couplings δV 1,
δV 2, and cV n for n ≥ 3 should be held fixed in the g → 0 limit, since these give Nambu-
Goldstone interactions of finite strength in this limit. This limit rules out many possible
IR enhancements, but it is not sufficient to justify the power counting of the amplitudes
in eqs. (2.5), (3.8), (4.5), (5.1), and (5.6). In particular, it does not rule out power IR
enhancements proportional to additional powers of the SM couplings g, λ, yt, for example

λ
E2

m2
h

∼ E2

v2 , yt
E

mt
∼ E

v
, g2 E

2

m2
W

∼ E2

v2 , (A.25)
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which have a finite weak-coupling limit as well as log terms such as

λ ln(E2/m2
h), yt ln(E/mt), g2 ln(E2/m2

W ), (A.26)

which go to zero as λ, yt, g → 0.
Next, by examining the structure of the exchange diagrams, we will now argue that

the IR enhancement of tree diagrams is at most logarithmic. In all the amplitudes we
computed, we find that such logs are absent, although they may well be present in more
complicated diagrams that we have not computed. As we point out below, even though
the equivalence theorem cannot be trusted in parts of the phase space where the IR en-
hancement occurs, it is valid for a parametrically large region that could contribute to a
logarithmic enhancement. Therefore, the absence of logs in our calculations prove that the
corresponding longitudinal gauge boson scattering amplitudes are free of logs. By excising
the small untrustworthy regions, we will then argue that the Nambu-Goldstone amplitudes
can be used to set a conservative limit on the unitarity violating scale. A better theoretical
understanding of these log corrections is desirable, but we will leave this for future work.

We now consider possible IR enhancements from a general tree diagram contributing
to the integrated amplitude M̂, whether computed in the full SM or using the equivalence
theorem. An IR divergence can arise only from integrating over a region where an internal
propagator becomes large. This can happen if the momentum flowing through an internal
line goes on shell, or is soft. If only a single propagator goes on shell, it is easy to understand
why the correction is at most logarithmic. Consider an internal line with momentum q−q′,
where q (q′) is the momentum of one of the initial (final) state particles. Then the relevant
part of the phase space integral is (in the massless limit)

d4q δ(q2)d4q′ δ(q′2) 1
(q − q′)2 ∝

d|~q |d|~q ′|d cos θ
1− cos θ , (A.27)

where θ is the angle between ~q and ~q ′. This integral diverges at most logarithmically
because the integral has a simple pole in cos θ, which is one of the integration variables. A
general propagator with more legs attached can be analyzed by considering the following
momenta structure P1+P2 → K1+K2 where P1 = (p1+· · ·+pr), P2 = (pr+1+· · ·+pn),K1 =
(k1 + · · ·+ ks),K2 = (ks+1 + · · ·+ km) and the momentum flowing through the propagator
is K1 − P1. By factorizing the incoming n-body phase into r + (n − r)-body phase space
and similarly for the outgoing, we also see this propagator gives a log when integrating
over cos θ = ~P1 · ~K1/(| ~P1|| ~K1|).

Next, we have to consider regions of the phase space integration where more than one
propagator gets large at the same time. In all the cases we studied, the denominator of each
of the large propagators has a linear zero that depends on an independent parameter, either
another angle or invariant mass of a set of particles, that is integrated over. That is, near
the singularity the integral behaves like

∫
dxdy/xy and not

∫
dx/x2. We checked this for

2→ 2 and 2→ 3 topologies, but we do not have a general proof for all topologies. However,
this makes intuitive sense given that a set of n internal propagators going onshell requires
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n independent conditions on the phase space. Integrating over each of these conditions,
then gives at most a logn(E/m) singularity.10

We now note that in cases where there is a log enhancement in an amplitude involving
longitudinal gauge bosons, it is not obvious whether the corresponding Nambu-Goldstone
amplitude correctly reproduces these logs. The gauge boson equivalence theorem guar-
antees that the Nambu-Goldstone amplitude correctly reproduces the full amplitude if
|pi · pj | � m2

V for all external 4-momenta pi and more generally for all Mandelstam invari-
ants. To see this, compare the exact dot products of longitudinal polarization vectors

εL(p1) · εL(p2) = E1E2
m2
V

( |~p1||~p2|
E1E2

− cos θ
)

(A.28)

with the approximation εµL(p) ' pµ/mV :

p1
mV
· p2
mV

= E1E2
m2
V

(
1− |~p1||~p2|

E1E2
cos θ

)
, (A.29)

where θ is the angle between ~p1 and ~p2. For E1,2 � m2
V and cos θ � 1, these are equal up

to corrections suppressed by m2
V /E

2. But for θ ∼ mV /E, the dot products are completely
different. (For θ = 0, they even have opposite sign.) This means that we cannot expect
the equivalence theorem to be correct in regions where some of the Mandelstam invariants
are small.

This is relevant for the present discussion because these regions are precisely the ones
where one or more internal propagators can go on shell in the massless limit, potentially
giving an IR enhancement. However, we note that the regions where the gauge boson
equivalence theorem does not apply are a parametrically small part of the phase space in-
tegral. Integrals over such regions cannot give rise to IR singularities of the form log(E/m),
which instead arise from integrals of the form ∼

∫
dx/x over a parametrically large range

∆x ∼ E/m. Thus, for example, when we obtain a Goldstone amplitude M̂ that does not
have a log(E/m) enhancement, we know that the corresponding gauge boson amplitude
also does not have such an IR enhancement. Omitting the singular region from the phase
space integral in a Goldstone amplitude without a log IR enhancement only changes the
answer by a small correction suppressed by powers of mW /E, and therefore gives a good
approximation to the exact amplitude.

The discussion above has been less systematic than we would like. It would be nice
to have a better understanding of the gauge boson equivalence theorem for partial wave
amplitudes, including the IR enhancements and subleading contributions. We leave this
for future work.

A.6 Results

We now give the results for the leading high-energy behavior for the processes used in the
main text in tables 1–10. All gauge bosons are understood to be longitudinally polarized.

10In ref. [2] it is stated without proof that the 2 → n partial wave amplitudes have at most logarithmic
singularities.
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Process × δV 1E
2

8πv2 Process × (δV 1− 1
2 δV 2)E2

8πv2

ZZ →W+W− −
√

2 hZ → hZ −1
W+W+ →W+W+ 1 ZZ → hh 1
ZW+ → ZW+ 1 hW+ → hW+ −1

W+W− →W+W− −1 hh→W+W−
√

2

Table 1. 4-body model-independent unitarity-violating process from modifications to the Higgs
coupling to W/Z bosons. The left-hand side amplitudes are model-independent since they only
depend on δV 1 while the ones on right-hand side depend on δV 2 as well.

Process × (δV 2−4δV 1)E3

96π2v3 Process × (δV 2−4δV 1)E3

96π2v3

hW+W+ →W+W+ √
2 hW−W+ → ZZ −2

hW+W− →W+W− −
√

2 ZW−W+ → hZ 0
W−W+W+ → hW+ 0 Z3 → hZ 0
ZZW+ → hW+ 0 Z2h→ Z2 0
hZW+ → ZW+ √

2 Z2h→W+W− −2

Table 2. 5-body unitarity-violating processes that depend on δV 2 and δV 1. One can see that the
dim-6 SMEFT prediction δV 2 = 4δV 1 gives vanishing amplitudes for all processes.

Process × δZ1E
2

8πv2 Process × δZ1E
3

24π2v3

ZZ → ZZ 0 W+W− → Z3 0
ZZ →W+W− − 1√

2

(
1 + λWZ

)
ZW+ → Z2W+ 0

ZW+ → ZW+ 1
2

(
1 + λWZ

)
Z2 → ZW+W− 0

W+W− →W+W− −λWZ W+W− → ZW+W− 0
W+W+ →W+W+ λWZ W+W+ → ZW+W+ 0
hW+ → ZW+ 3i

2

(
1− λWZ

)
ZW+ →W+W−W+ i

(
1− λWZ

)
W+W− → hZ 0

Table 3. 4-body and some 5-body unitarity-violating processes without assuming custodial sym-
metry. Here λWZ = δW 1

δZ1
= 1 in the custodial-preserving limit.

Also, note that since ZL is CP-odd, amplitudes involving an odd number of ZL’s will be
purely imaginary, however, these amplitudes can be made real by redefining the ZL states.
All other processes are related to the ones listed in the tables via charge conjugation and/or
crossing symmetry. All of these amplitudes are calculated in the contact approximation.
As eqs. (3.8), (4.5), (5.1), and (5.6) show, the nonlinear terms are small due to constraints
on δV 1, δt1. However, there are linear terms proportional to δV 1, δV 2 in the top processes
eqs. (4.5) and (5.6), so we’ve calculated the largest terms as shown in eqs. (4.1) and (5.7).
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Process × (δV 2−4δV 1)E4

384π3v4

ZZZ → ZZZ 0
W+W+W+ →W+W+W+ 1
ZW+W+ → ZW+W+ 1
ZW+W− → ZZZ −

√
2
3

ZZW+ →W+W+W− −2
3

ZZW+ → ZZW+ 2
3

ZW+W− → ZW+W− 1
3

W+W+W− →W+W+W− −1
3

Table 4. 6-body unitarity-violating processes that depend on δV 2 and δV 1. One can see that the
dim-6 SMEFT prediction δV 2 = 4δV 1 gives vanishing amplitudes for all processes.

Process × E4

1152π3v4

hZ2 → hZ2 [4δV 1 − 2δV 2 + 1
2cV 3]

h2Z → Z3 −
√

3
2 [4δV 1 − 2δV 2 + 1

2cV 3]
h2W+ → Z2W+ −1

2 [4δV 1 − 2δV 2 + 1
2cV 3]

h2Z → ZW+W− − 1√
2 [4δV 1 − 2δV 2 + 1

2cV 3]

h2W+ →W+W−W+ −[4δV 1 − 2δV 2 + 1
2cV 3]

hZW+ → hZW+ [36δV 1 − 13δV 2 + 2cV c]
hW+W+ → hW+W+ [36δV 1 − 13δV 2 + 2cV 3]
hW+W− → hW+W− −[28δV 1 − 9δV 2 + cV 3]
hZ2 → hW+W− −

√
2[32δV 1 − 11δV 2 + 3

2cV 3]

Table 5. 6-body unitarity-violating processes that depend on δV 1, δV 2, and cV 3. One can see
that the dim-6 SMEFT prediction δV 2 = 4δV 1 and cV 3 = 8δV 1 gives vanishing amplitudes for all
processes.

Process ×mtδt1E
8πv2 Process ×mtδt1E

8πv2

tRtR → Zh i
√
Nc tRW

+ → tLW
+ −1

2

tRtR → ZZ −
√

Nc
2 bRtR → hW+ √

2Nc

tRtR →W−W+ −
√
Nc tRh→ bLW

+ 1√
2

tRZ → tLh
i
2 tRW

− → bLh
1√
2

tRZ → tLZ −1
2

Process ×mtct2E
8πv2 Process ×mtct2E

8πv2

t̄RtR → hh −
√

Nc
2 tRh→ tLh −1

2

Table 6. 4-body model-independent unitarity-violating processes from the top sector.
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Process ×mtδt1E2

64π2v3 Process ×mtδt1E2

64π2v3

tRtR → ZZZ i
√

3Nc Z2 → tLbLW
+

√
2Nc

3

tRtR → ZW+W− i
√

2Nc ZW− → ZbLtL 2
√

Nc
3

tRZ → tLW
−W+ i√

3 tRZ → bLZW
+

√
2
3

tRZ → tLZZ i
√

3
2 tRW

− → bLZ
2 1√

3

tRW
+ → tLZW

+ i√
3 bRtR →W+W+W− 2

√
2Nc

W+W− → tLtLZ i
√

2Nc
3 W−W− → bLtLW

− 2
√

2Nc
3

W+Z → tLtLW
+ i

√
2Nc

3 W+W− → bLtLW
+ 4

√
Nc
3

ZZ → tLtLZ i
√

3Nc tRW
+ → bLW

+W+ 2
√

Nc
3

bRtR → Z2W+ √
2Nc tRW

− → bLW
−W+ 2

√
2Nc

3

Table 7. 5-body model-independent unitarity-violating processes from the top sector.

Process ×( 1
2 ct2−δt1)mtE2

32π2v3 Process ×( 1
2 ct2−δt1)mtE2

32π2v3

tRtR → Zh2 i
√
Nc tRtR →W+W−h −

√
2Nc

h2 → ZtLtL i
√

Nc
3 W+W− → tLtLh −

√
2Nc

3

Zh→ htLtL i
√

2Nc
3 W+h→ tLtLW

+ −
√

2Nc
3

tRZ → tLh
2 i√

6 tRW
+ → tLW

+h − 1√
3

tRh→ tLZh
i√
3 tRh→ tLW

+W− − 1√
3

tRtR → Z2h −
√
Nc bRtR →W+h2 √

2Nc

Z2 → tLtLh −
√

Nc
3 W−h→ bLtLh 2

√
Nc
3

Zh→ tLtLZ −
√

2Nc
3 h2 → bLtLW

+
√

2Nc
3

tRh→ tLZ
2 − 1√

6 tRW
− → bLh

2 1√
3

tRZ → tLZh − 1√
3 tRh→ bLW

+h
√

2
3

Table 8. 5-body unitarity-violating processes that depend on ct2 and δt1.
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Process × (3δt1−ct2)mtE3

256π3v4 Process × (3δt1−ct2)mtE3

256π3v4

tRtRZ → Z3
√

Nc
2 tRZ

2 → tLZh − i√
2

tRZ
2 → tLZ

2 1
2 tRtRZ → hW+W− −i

√
Nc
3

tRtRW
+ → Z2W+

√
Nc
6 tRZh→ tLW

+W− − i
3

tRtRZ → ZW+W−
√

Nc
3 bRtRW

− → hZ2 −
√

Nc
3

tRZ
2 → tLW

+W− 1
3
√

2 bRtRZ → hZW+ −
√

2Nc
3

tRZW
+ → tLZW

+ 1
3 tRZ

2 → bLW
+h −1

3

tRtRW
+ →W+W+W−

√
2Nc

3 tRZh→ bLZW
+ −

√
2

3

tRW
+W+ → tLW

+W+ 1
3 bRtRh→W+W+W− −2

√
Nc
3

tRW
+W− → tLW

+W− 2
3 bRtRW

− → hW+W− −2
√

2Nc
3

tRtRh→ Z3 −i
√

Nc
2 tRW

−W− → bLW
−h −2

3

tRtRZ → Z2h −i
√

3Nc
2 tRW

−h→ bLW
+W− −2

√
2

3

b̄RtRW
+ → hW+W+ −2

√
Nc
3

Table 9. 6-body unitarity-violating processes that depend on ct2 and δt1. One can see that the
dim-6 SMEFT prediction ct2 = 3δt1 gives vanishing amplitudes for all processes.
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Process × (ct2−3δt1)mtE4

1024π4v5 Process × (ct2−3δt1)mtE4

1024π4v5

tRtRZ → Z4 5i
4

√
Nc
3 ZW+W+ → tLtLW

+W+ i
√
Nc
6

tRtRW
+ →W+Z3 i

2

√
Nc
3 ZW+W− → tLtLZ

2 i
2

√
Nc
2

tRtRW
+ → ZW−W+W+ i

√
Nc
3 ZW+W− → tLtLW

+W− i
√
Nc
3

tRtRZ →W+W+W−W− i
3

√
Nc
2 W+W+W− → tLtLZW

+ i
3

√
Nc
2

tRZ
2 → tLZW

−W+ i
4 bRtRW

− → Z4 1
4

√
2Nc

3

tRZ
2 → tLZ

3 5i
4
√

6 bRtRZ →W+Z3 1
2

√
2Nc

3

tRW
+W+ → tLZW

+W+ i
6
√

2 Z3 → bLtLZW
+ 1

2

√
Nc
3

tRW
−W+ → tLZ

3 i
4
√

3 Z2W− → bLtLZ
2 1

2

√
Nc
2

tRW
−W+ → tLZW

+W− i
3
√

2 tRZ
2 → bLW

+Z2 1
4

tRZW
+ → tLZ

2W+ i
4 tRZW

− → bLZ
3

√
2

4
√

3

tRZW
+ → tLW

+W+W− i
6 bRtRW

+ →W+W+Z2
√
Nc
3

Z3 → tLtLZ
2 5i

4

√
Nc
3 bRtRW

− → Z2W+W−
√

2Nc
3

Z3 → tLtLW
+W− i

2

√
Nc
6 W+W−W− → bLtLZ

2 1
3

√
Nc
2

Z2W+ → tLtLZW
+ i

2

√
Nc
2 ZW−W− → bLtLZW

−
√
Nc
3

tRW
−W− → bLW

−Z2 1
6 W+W−W− → bLtLW

−W+ √
Nc

tRW
+W− → bLZ

2W+
√

2
6 W+W+W− → bLtLW

+W+
√

Nc
2

tRZW
− → bLZW

−W+ 1
3 tRW

+W+ → bLW
+W+W+ 1

2
√

3

bRtRW
+ →W+W+W+W−

√
2Nc

3 tRW
−W− → bLW

+W−W− 1
2

bRtRW
− →W−W−W+W+ √

Nc tRW
+W− → bLW

−W+W+ 1√
2

W−W−W− → bLtLW
−W−

√
Nc
6 tRZ

2 → bRW
+W−W+ 1

6

t̄RtRZ →W+W−Z2 i
√
Nc
2 b̄RtRZW

− →W+W−Z
√

2Nc
3

b̄RtRW
+W− → Z2W+

√
Nc
3 b̄RtRZ →W+W−W+Z

√
2Nc
3

Table 10. 7-body unitarity-violating processes that depend on ct2 and δt1. One can see that the
dim-6 SMEFT prediction ct2 = 3δt1 gives vanishing amplitudes for all processes.
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