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1 Introduction

The Axion-like particle (ALP) is a natural and well motivated extension of the standard
model. It is a pseudo Nambu-Goldstone boson, arising from the spontaneous symmetry
breaking (SSB) of an approximate global U(1), thus naturally light. It may be viewed
as generalization of the QCD axion, which was originally invented to solve the Strong CP
problem [1–4], but axion-like particles are well motivated in their own right [5]. The axion’s
couplings to the Standard Model (SM) fields are commonly suppressed by the SSB scale
f . In the limit that f is much bigger than the electroweak scale, which is the scenario we
focus on in this work, axions become weakly coupled. Since weakly interacting light bosons
are sufficiently stable, axion-like particles provide a natural candidate for the dark matter
(DM) [6–8]. They are, however, challenging to search for due to their elusive nature [9].

Searches and constraints on ALPs focus mainly on the axion-two-photon vertex
gaγaF F̃ , where a represents the axion field, F represents a photon field and gaγ ∝ 1/f .
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Some of the strongest constraints on gaγ rely on the production of ALPs in the stel-
lar cores and in supernovae via the Primakoff process. For example, the observed
lifetimes of the horizontal branch (HB) stars from galactic globular clusters constrains
|gaγ | < 6.6× 10−11GeV−1(95%CL)1 [10], because the emitted ALPs could result in exces-
sive energy losses thus shortened lifetimes of those stars. In the case of SN 1987A, the
duration of the observed neutrino burst places a limit on new sources of energy loss, such
as an emission of axions through their coupling to baryons [11]. In addition, the lack of
γ-ray signal, which the emitted ALPs can convert into in the galactic B-field, places a limit
as strong as |gaγ | < 5.3 × 10−12GeV−1 for ma . 4.4 × 10−10 eV [12]. Moreover, the direct
search for solar axions established a limit of |gaγ | < 6.6×10−11GeV−1 forma < 0.02 eV [13],
by looking for axion-photon conversion in a static magnetic field. However, the constraints
from the HB star cooling, SN 1987A and the solar axions depend on the astrophysical envi-
ronment where the ALPs are sourced. These bounds could only be as stringent as how well
their corresponding astrophysical environments are understood (e.g. [14] for SN1987A). In
contrast, laboratory searches have the advantage that both the source and detection of
ALPs can be well controlled, therefore they are important complementary probes.

A classic laboratory setup for ALP searches is known as the light-shining-through-walls
(LSW). In these experiments, a large number of photons are kept in an enclosed region
with a strong constant background magnetic field. We will call this region the emitter or
production cavity. In the presence of the gaγ interaction, photons will convert to axions, and
escape the enclosure. A similar strong field region, which we call the receiver or detection
cavity, is set up nearby to detect axions that convert back to photons. The current best
limit from LSW is achieved by the OSQAR experiment: |gaγ | < 3.5 × 10−8GeV−1 for
ma < 0.3 eV [15]. Operating at optical frequencies with high finesse cavities, the ALPS
experiment took advantage of resonant production and detection [16, 17] and achieved
a limit [18] comparable to that set by OSQAR, with the prospect of an improvement
by a factor ∼ 103 in ALPS II [19]. At microwave frequencies, the LSW setup has been
implemented by the CROWS experiment and has set a comparable limit [20].

In this work we propose a LSW axion search strategy using superconducting radio-
frequency (SRF) cavities in the GHz range. SRF cavities can have an exceptionally high
quality factor, potentially Q & 1010 (see [21] for a review). This can help boost the
number of photons in the emitter and also the detectable signal power in the receiver. This
is already put to use at the Dark SRF, an ongoing LSW experiment at Fermilab searching
for dark photons [22, 23]. Dark SRF has demonstrated a large field in the emitter cavity,
of order Epeak ∼ 72 MV/m in its high power run.2 In addition, Dark SRF demonstrated
frequency stabilization of order a Hz with a rigid cavity cage and piezo actuators [23].
Large constant magnetic fields, however, could result in flux penetration in the SRF cavity,
ruining its high Q property. To circumvent this problem we will rely on oscillatory cavity
modes [24] that will be excited in both the receiver and the emitter.

1All the limits quoted below will be of 95%CL.
2Dark SRF quotes the accelerating electric field, Eacc ∼ 40 MV/m, which is the average magnitude of

the field along the cavity axis. For the elliptical cavities of Dark SRF this field is a factor of ∼ 1.8 lower
than the peak field.
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Figure 1. A schematic sketch of the setup.

The setup is shown in figure 1. The emitter and the receiver are assumed to be two iden-
tical cavities placed in close proximity. The ALPs are sourced by running two distinct cavity
modes at frequencies ω1, ω0 in the emitter cavity. The modes are chosen to have a non-
vanishing ~E · ~B between them. The resultant axion field will oscillate with frequencies ωa =
ω± ≡ |ω0±ω1|, and have an amplitude ∼ gaγVpc( ~E1· ~B0)/r, where Vpc represents the volume
of the production cavity. The receiver cavity is populated with one of the two modes that is
responsible for the ALP production, say mode-0. In the presence of this spectator mode the
axion has a probability of converting into a photon with a frequency |ω0±ωa|. In particular,
the mode E1 can be produced on resonance in the detection cavity and will be our signal.

Several axion searches based on SRF cavities have been proposed [24–28] and are
related to our work. In [24] and [25, 26] a similar receiver cavity setup was proposed for
a resonant search for axion dark matter in the GHz and the kHz range respectively and a
broadband DM search was proposed in [29]. LSW searches test the existence of the ALP
as a degree of freedom, without requiring it to make up the dark matter, and are thus
complementary. Our LSW proposal shares feature with [27] and [28] in which the axion
is searched for irrespective of dark matter. Indeed, the axion production discussed here
using two modes is similar to these works. In [27] the conversion back to photon occurs in
an auxiliary toroidal magnetic field and then gets transferred to be amplified in an empty
cavity. The additional toroidal magnet and pick-up loop would need to be of high quality, to
avoid introduction of losses. In comparison to this work, our proposal does not require the
additional conversion region, simplifying the design. In [28] a single cavity is used and the
signal mode is a third mode within the axion-producing cavity, satisfying ωsignal = 2ω0±ω1.
Here a major challenge is the mitigation of the nonlinear effects that may lead to leakages
of power from a spectator to the signal mode, particularly since the signal mode is at a
harmonic of excited modes (as in [28, 29]) or near it (as in [25, 26]). In our proposal, the
large separation, of order GHz, between the pump and signal modes may assist in this
noise mitigation. Each of these theoretically proposed methods presents its own challenges
and should be studied experimentally.

This paper is organized as follows. In section 2 we review the dynamics of electromag-
netism coupled to an axion-like particle. In section 3 we discuss our setup and estimate
the axion production and signal rate. In section 4 we estimate the reach of the setup and
discuss some potential backgrounds and in section 5 we conclude.
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2 Review of axion electrodynamics

We briefly review aspects of axion electrodynamics [27, 30–32], the theory that describes the
dynamics of coupled axions and photons. Consider an axion field a and an electromagnetic
field Fµν with the interaction between them:

L = −1
4(Fµν)2 + 1

2(∂µa)2 − 1
2m

2
aa

2 − 1
4gaγaFµνF̃

µν . (2.1)

The equations of motion for ~E and ~B are given by the Maxwell equations dressed with
axionic terms:

~∇× ~E = −∂t ~B, ~∇ · ~E = −gaγ ~B · ~∇a,
~∇× ~B = ∂t ~E − gaγ( ~E × ~∇a− ~B∂ta), ~∇ · ~B = 0,

(2.2)

where Ei ≡ F0i, Bi ≡ 1
2ε
ijkFjk. Equation (2.2) leads to a wave equation for ~E given by

~∇2 ~E − ∂2
t
~E = −gaγ∂t( ~E × ~∇a) + gaγ∂t( ~B∂ta)− gaγ ~∇( ~B · ~∇a). (2.3)

Terrestrial experiments looking for axion DM (aDM ) rely on the term gaγ∂t( ~B∂taDM ),
since ~∇aDM is suppressed by the dark matter virial velocity, of order 10−3. The signal
field ~E can then be obtained by solving the wave equation perturbatively in the presence
of a spectator field ~B and the oscillating background aDM .

Turning to the axion, the a field obeys an equation of motion given by

∂2a+m2
aa = −gaγ ~E · ~B . (2.4)

We can thus make use of a configuration with ~E · ~B 6= 0 as a source of axions in the
laboratory. Assume that ~E · ~B ∝ eiωt, the axion field a at an arbitrary point ~x outside the
source enclosing ~y can be written as

a(~x, t) = −gaγeiωt
∫
Vsource

d3~y
e−ik|~x−~y|

4π|~x− ~y|
(
~E · ~B

)
ω
, (2.5)

where k =
√
ω2 −m2

a. In summary, equation (2.5) allows us to produce axions using
configurations with parallel electric and magnetic fields at a controlled frequency; equa-
tion (2.3) enables us to detect these axions by letting it interact with a spectator electric
or magnetic field. In contrast to axion DM searches, the produced axions have a sizable
momentum, i.e. ~∇a is large, so that all three terms on the r.h.s. of equation (2.3) can
potentially contribute to the signal.

3 Experimental set up

For the calculations in this work we consider two identical cylindrical cavities3 with radius
R and height L. They are arranged to be aligned along their central axes, which is the

3SRF cavities used in experiments are often of elliptical shape, but their cavity modes share similar
features with cylindrical ones.
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Figure 2. Coordinate setups.

z−axis. In the emitter, we run two cavity modes with the same peak field value Epeak
and with a non-zero ~E · ~B. In the receiver, we run one cavity mode as the spectator,
also with Epeak. The emitter sources an ALP field a ∼ −gaγV ~E · ~Beiωat/(4πr) based on
equation (2.5), where ωa equals to the sum or difference of the frequencies of the two cavity
modes, ω±. Since a falls off as 1/r, the second cavity that acts as the detector should be
placed in the close vicinity of the first cavity. The choice of the modes will affect the
coupling of the axion to both cavities, and thus the sensitivity. Below we give details of
the production of ALPs in this setup and then proceed to their detection.

3.1 Production of ALPs

From equation (2.5), at a point ~x outside the production cavity (or emitter) we can de-
compose the axion field as,

a(~x, t) = a+(~x, t) + a−(~x, t),

a±(~x, t) = −gaγe−iω±t
∫
Vpc

d3y
eik|~x−~y|

4π|~x− ~y|
(
~E · ~B

)
ω±
,

(3.1)

where k =
√
ω2
± −m2

a. Since it is in the receiver that a’s amplitude will be of our interest,
~x will be a generic point inside the receiver. Since the two cylindrical cavities are aligned
in their z−axes, a(~x) has a rotational symmetry. Without loss of generality, the distance
between a point in the detector ~x = (r, 0, z) with respect to the origin at the bottom center
of the receiver ~o (cf. figure 2), and a point in the emitter ~y = (r′, θ′, z′) with respect to the
origin at the bottom center of the emitter ~o′, is given by

|~x− ~y| =
√

(z + d− z′)2 + r2 + r′2 − 2r′r cos θ′, (3.2)

where d is the distance between the centers of the cavities, i.e. d = |~o−~o′|. The laboratory
produced a has both spatial and temporal dependence. In particular,

~∇xa± = gaγe
−iω±t

∫
V
d3y

(
~E · ~B

)
ω±

eik|~x−~y|(1− ik|~x− ~y|)
4π|~x− ~y|3

 r − r
′ cos θ′

0
d+ z − z′

 . (3.3)
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To a have non-vanishing ~E · ~B, the two cavity modes must be chosen carefully. In
general, ( ~E · ~B)ω± will be a linear combination of products of Bessel functions. More
details of its form are given in appendix A. In summary, the emitter produces two axion
field a±, each having its own frequency ω± and amplitude sourced by ( ~E · ~B)ω± .

3.2 Detection of ALPs

After ALPs escape the emitter, some of them can convert back to photons in the receiver
with a frequency |ωa±ω0| in the background of the cavity mode-0 . In particular, photons
with frequency equal to cavity mode-1 will be produced on resonance, and constitute the
signal mode. The amplitude of this signal mode-1 can be solved via the wave equation (2.3).
The details of this calculation can be found in appendix B.

Let the spectating mode be

~Bspe(t, ~x) = ~B0(~x)b0(t), ~Espe(t, ~x) = ~E0(~x)e0(t), (3.4)

where b0(t) ∼ ie0(t) ∼ eiω0t. We define the characteristic amplitude for the spectator as

E0 (= B0) ≡
( 1
V

∫
V
| ~E0(~x)|2

)1/2
≡ η0Epeak, (3.5)

where η0 ∼ 1. Similarly, we write the axion field in the factorized form

a(~x, t) ≡ a(~x)f(t), where f(t) ∼ e−iωat. (3.6)

Let the signal mode be

~Esig(t, ~x) = ~E1(~x)e1(t), e1(t) ∼ eiω1t, (3.7)

where ~E1 is the amplitude we are looking for.
Using the characteristic amplitude for the signal,

E1 ≡
( 1
V

∫
V
| ~E1(~x)|2

)1/2
, (3.8)

the solution to equation (2.3) is

E1ẽ1(ω) = −iωgaγE0
ω2 − ω2

1 − iωω1/Q1
×
∫
dω′

2π ẽ0(ω − ω′)f̃(ω′)
(
α+ βω′ + 1

ω
γ

)
, (3.9)

where

α ≡
∫
V
~E∗1 · ( ~E0 × ~∇a)√∫

V | ~E1|2
√∫

V | ~E0|2
, β ≡

∫
V
~E∗1 · ( ~B0a)√∫

V | ~E1|2
√∫

V | ~B0|2
, γ ≡

∫
V
~E∗1 · (~∇( ~B0 · ~∇a))√∫
V | ~E1|2

√∫
V | ~B0|2

.

(3.10)
f̃ , ẽ0, ẽ1 are the Fourier transforms of f(t), e0(t), e1(t), respectively.

Figure 3 compares α, β and γ for two setups, in which both emitters use a transverse
electric (TE) mode and a transverse magnetic (TM) mode to produce axions. The setup
on the left (blue) runs the TE mode as the spectator and looks for the TM mode in the
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Figure 3. Comparisons of α, β and γ given by equation (3.10), assuming gaγ = 5 ×
10−11GeV−1, Epeak = 80MV/m. ω+ = ω011

TE + ω010
TM, ω1 is the frequency of the signal mode for

each detector. Production and detection cavities are cylindrical with R = L = 0.1766m, and are
aligned in z with (0.1m + L) between their centers.

detector, whereas the setup on the right (red) does the opposite. It is clear that the main
contribution to the signal in the blue setup is from γ, which involves interaction between
~∇a and the cavity modes. This is not the case in the red setup, where the dominating
component is β, which involves a instead. The sharp cutoff at ∼ 10−5 eV is precisely where
ω+ sits. Axions with a mass bigger than ω+ cannot be produced on shell, thus resulting
in a rapid drop in signal. The quick rise in signal very close to this threshold is due to the
phase matching between the massive axion field and the low-lying cavity modes.

Now the signal power can be easily computed. The steady state average power output
in the receiver can be expressed as

Psig = ω1
Q1

∫
V
| ~E1(~x)|2〈|e1(t)2|〉, (3.11)

where Q1 is the quality factor for ω1. Using Equations (3.8) and (3.9), we obtain

Psig = 1
16π2

ω1V g
2
aγE2

0
Q1

∫
dω

ω2

(ω2 − ω2
1)2 + ω2ω2

1/Q
2
1

×
{
Se0(ω + ωa)|α− βωa + γ/ω|2 + Se0(ω − ωa)|α+ βωa + γ/ω|2

}
,

(3.12)

where Se0 takes the form

Se0(ω) = π2(δ(ω + ω0) + δ(ω − ω0)), (3.13)

and can be interpreted as the power spectral density. Using the frequency matching con-
dition ω1 ± ω0 = ωa±,

Psig = 1
8V E2

0g
2
aγ

Q1
ω1

(
|α|2 +

∣∣∣∣β(ω1 ± ω0) + γ

ω1

∣∣∣∣2
)
. (3.14)

– 7 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
3

10−8 10−7 10−6 10−5

ma [eV]

10−1

100

101

102

P
si
g
[1
0−

3
0
J
se
c−

1
]

P
bkg
th

Signal from ω+

spec: TM010

spec: TE011

10−8 10−7 10−6 10−5

ma [eV]

P
bkg
th

Signal from ω
−

spec: TM010

spec: TE011

Figure 4. Comparisons of signal power, assuming gaγ = 5 × 10−11GeV−1, Epeak = 80MV/m,
Q1 = 1010. ω± = ω011

TE ±ω010
TM. The red and blue lines correspond to the two setups in figure 3. Also

shown is the thermal background (grey) equal to kBT∆ω1 assuming the system is cooled down to
1.4 K and ∆ω1 = year−1.

3.2.1 Accounting for ωa = ω±

Recall that there are two frequencies of a produced from ~E· ~B in the production cavity, hence
a = a+ +a− ≡ a+(~x)f+(t)+a−(~x)f−(t). Therefore, the solution to equation (2.3) becomes

E1ẽ1(ω) = −iωgaγE0
ω2 − ω2

1 − iωω1/Q1
×
∫
dω′

2π ẽ0(ω − ω′)

×
{
f̃+(ω′)

(
α+ + β+ω

′ + 1
ω
γ+

)
+ f̃−(ω′)

(
α− + β−ω

′ + 1
ω
γ−

)}
,

(3.15)

where α±, β±, γ± are equation (3.10) with a replaced by a±. Since f̃±(ω) ∼ δ(ω − ω±),
〈f̃+(ω)f̃−(ω)〉 = 0. The signal power including contributions from both frequencies is
given by

Psig = P+
sig + P−sig, whereP±sig = Q1

8ω1
V g2

aγE2
0 ×

(
|α±|2 +

∣∣∣∣(ω1 ± ω0)β± + γ±
ω1

∣∣∣∣2 ). (3.16)

Figure 4 shows the signal power as function of axion mass. The left (right) panel
compares P+

sig (P−sig) for the two setups with the spectator and signal mode switched. It is
clear that P+

sig is always the dominating contribution to the signal power.

4 Physics reach

To explore the physics reach of the experimental setup above, one needs to compute its
signal-to-noise ratio (SNR). Given an integration time tint, the SNR is approximately given
by [33]:

SNR = Psig
Pnoise

√
tint∆ω1 = Psig

kBT∆ω1

√
tint∆ω1, (4.1)
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Figure 5. SNR = 5 contours in the plane of gaγ vs ma, assuming Epeak = 80MV/m, Q1 = 1010,
T = 1.4K, ∆ω1 = t−1

int , tint = 1year. The left (right) panel assumes cylindrical cavities with
R = L = 0.1766m (0.287m), aligned in z with (0.1m + L) between their centers. The red and blue
contours correspond to the two setups in figure 3. Also shown are the limits that are established
by CAST and projected by ALPS II.

where ∆ω1 is traditionally chosen as ω1/Q1 but can be as small as t−1
int [27]. We have

assumed that the dominant noise is from the thermal noise. Other sources of noise will be
discussed in the next subsection.

We may get an order of magnitude estimate of SNR in the limit that ma � ωa and
that the separation between the emitter and the detector is much larger than the cavity
size. From equation (2.5), the spatial part of a and its gradient are approximately given by

a(~x) ∼
η01gaγV E

2
peak

4πd , ~∇a(~x) ∼
ωaη01gaγV E

2
peak

4πd ẑ, (4.2)

where η01 < 1, characterizing the geometric overlap between the two modes that are
responsible for the ALP production in the emitter. From equation (3.9),

α

ωa
∼ β ∼ γ

ωaω1
∼
η2

01gaγV E
2
peak

4πd , (4.3)

where we assumed that the geometric overlap between the generated axion field, the
spectator and signal modes in the receiver is also roughly given by η01. Since ωa = ω1∓ω0,
ωa ∼ ω1 ∼ ω0 ∼ V −1/3. Taking ∆ω1 to be as small as t−1

int , parametrically,

SNR ∼ Q1
8ω1

V g2
aγE2

0

(
ωa
η2

01gV E
2
peak

4πd

)2 1
T
tint

∼ 5
(
Q1

1010

)(
V

(0.2m)3

)3 ( gaγ GeV
5× 10−11

)4 ( Epeak
80MV/m

)6

×
(0.4m

d

)2 ( ωa
GHz

)(
tint

1year

)(1.4K
T

)
(4.4)
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where η01 ∼ 0.5, and the volume of the cavity is approximately (0.2m)3 which yields modes
with frequencies of O(GHz). We further assume that the GHz cavities of Q ∼ 1010 are
cooled down to 1.4K. The benchmark value we take for the production modes in the emitter
and the spectator mode in the receiver are all Epeak = 80MV/m which has been demon-
strated in non-pulsed cavity tests [34, 35] and during the high power run of Dark SRF [23].4

With an integration time of one year and these benchmarks, an axion-photon coupling as
small as gaγ ∼ 5× 10−11GeV−1 can be probed in the limit of vanishing ALP mass.

Requiring SNR = 5 yields a limit in the plane of axion-photon coupling gaγ versus the
axion mass ma as shown in figure 5. Depending on which mode is used as the spectator in
the detector, the limits that can be achieved differ a lot for ALP with a mass close to the
production threshold, but are comparable when the axion mass is small (ma . O(µeV)).

It is interesting to compare the reach of our setup to other recent SRF-based proposals
for (non-dark matter) axion searches [27, 28]. Like ours in both works axions are produced
by exciting two pump modes in an emitter cavity. The former proposal has a conversion
region with a static magnetic field which is connected to an empty receiver cavity. The later
combines the emitter and receiver, looking for transfer of power from the two pump modes
to a third mode which is tuned to be a harmonic. The reach curves shown in these works are
somewhat stronger, but this is due to differences in assumptions. For example, the authors
of both [27] and [28] chose to present limits for receiver Q’s of 1010 and 1012, whereas we only
show a benchmark of 1010, noting that the limit scales as Q1/4. Other differences include
an assumed temperature of 0.1 K in [27], compared to 1.4 K assumed here, an integration
time of two weeks as well as a larger cavity volume assumed in [28]. When making similar
assumptions to phase 2 of [28], we find a reach of gaγ ∼ 2 × 10−12 for low axion masses.
The setup in [27] benefits from a stronger magnetic field that is achievable in a static field,
as compared to an RF mode, but this comes at the cost of a somewhat reduced form factor
(the result of the spatial integrals in the rate calculations). Summarizing this comparison,
we find that the various proposed setups have similar reaches for similar assumptions.
The important differences lie in the complexity of the experimental setup, as well as the
presence of non-thermal sources of backgrounds, which we discuss in section 4.2.

4.1 Excited cavity modes

In this subsection we investigate the use of excited cavity modes for emission and detection
of axions. We allow the signal mode to vary in `, i.e. TE01`, but with the spectating
mode fixed to be TM010. In this case the corresponding production modes become TM010
and TE01`. Figure 6 compares the limits that can be achieved by four different `s. As ` is
increased, not only can we gain access to heavier ALPs, but also achieve a better sensitivity
for light ALPs. The improvement at the large axion mass is due to the higher frequency of
the high ` modes, which allow for a larger kinematic reach. We note however the wiggles
near thershold. These are the result of destructive interference for axion masses in which
an integer number of axion wavelengths fit in the receiver cavity.

4We again note that Epeak is not the same as Eacc, which is commonly used in the cavity literature.
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Figure 6. Sensitivity curves (SNR = 5) in the plane of gaγ vs ma assuming different signal
modes with a fixed spectating mode TM010. We use Epeak = 80MV/m, Q1 = 1010, T = 1.4K,
∆ω1 = t−1

int , tint = 1year. The left (right) panel assumes SRF cavities that are cylindrical with
R = L = 0.1766m (0.287m), and are aligned in z with (0.1m + L) between their centers. We see
that using higher modes improve sensitivity both at high ALP mass (due to higher kinematic reach)
and at low masses (due to improved phase matching between a relativistic axion and excited modes).

The improvement at the low axion mass is due to an improvement in the phase match-
ing between the axion and the cavity mode. For example, in the massless limit, the axion
exhibits a relativistic dispersion relation ωa ∼ |~ka|. The overlap integral of the signal
mode and the axion will be largest when the signal mode also exhibits the same relation
of frequency and wavelength. Recalling that excited modes have shorter wavelengths, thus
less overlaps with the boundaries of the cavity, it is clear that they will have a dispersion
relation that is closer to that of a free massless photon and an enhanced coupling.

We thus conclude that using excited cavity modes can improve the reach of axion
searches. We expect that this improvement will be present in other setups, such as the
Dark SRF dark photon search [22, 23]. We note, however, that experimentally establishing
a high ` mode with a high quality could be challenging. Since at high frequencies there exist
numerous cavity modes neighboring the desired mode, it may be difficult both to generate
and look for the particular mode we want. This presents another interesting experimental
challenge.

4.2 Leakage backgrounds

In the discussion so far we have assumed that the only important background is from ther-
mal fluctuations. In order to reach this level of sensitivity one must mitigate other sources
of background. Several sources of background, including mechanical noise, oscillator phase
noise, fields emission have been considered in [25], in which the frequency difference of the
spectator and signal modes is of order 1-100 kHz. In the region of interest here, splittings
of order a GHz, these sources of background can be extrapolated to be subdominant to
the thermal noise. In this section we will consider the sources of non-thermal noise which
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are most likely to be a concern in our setup: leakage directly from the driving source, and
leakage due to nonlinear material effect. We point out that both of these noise sources
can be mitigated by using a very narrow pump source. In addition they can be further
suppressed by optimizing the cavity geometry, and further material science techniques to
reduce nonlinearities. Particularly with regard to nonlinear material effect, the goal of the
discussion here is not to speculate on the size of this noise source, but rather to motivate
an experimental exploration. We note that, as opposed to dark matter searches, the signal
in a LSW experiment may be turned off by deactivating or detuning the emitter in order
to characterize the noise in the receiver cavity.

A particular worry of our multi-mode setup is that the signal mode lives in the same
cavity as a spectator mode which is being driven to high occupancy. A small leakage
of power either from the driving source or from the spectator mode to the signal mode
can easily dominate over the thermal background. To put this in perspective, an excited
mode with Epeak ∼ 80 MV/m at GHz frequencies has roughly 1026 photons. The thermal
background at these frequencies is of order a few thousand photons. These challenges were
already identified in [24] and in this subsection we will discuss ways to overcome them.
Since the signal mode at temperatures of a few Kelvin is still in the classical regime of
many photons, we can address this problem classically and ask what the strength of the
field is at a small window around the signal frequency ω1. As alluded to above, there are
two distinct potential sources of leakage, (a) the source which is used to drive the spectator
mode at a frequency ω0, and (b) imperfections and nonlinearities in the cavity which can
cause transfer of power from the spectator to the signal mode. At a more microphysics level
this effect may be understood by the spectator mode driving some currents in a surface
of the cavity which would overlap with the signal. Therefore, both of these effects can be
studied by understanding the effect of a localized current within the cavity .

(∂2
t − ~∇2) ~B = ~∇× ~J

(∂2
t − ~∇2) ~E = ∂t ~J (4.5)

In what follows we take a factorized form for the current ~J = ~j(~x)g(t). We now consider
the two potential sources of leakage in turn.

4.2.1 Driving source leakage

We now consider (a), the driving source of the spectator mode. To this end ~j will
parametrize the location of the antenna and g(t) ∼ eiω0t chosen to resonantly excite the
mode E0

E0ẽ0(ω) = iω0
ω2 − ω2

0 − iωω0/Q0

1
V

∫
~E∗0 ·~j√

1
V

∫
| ~E0|2

g̃(ω) , (4.6)

where

E0 ≡
√

1
V

∫
V
| ~E0(~x)|2 ≡ η0Epeak . (4.7)

We assume that the source is a perfect sine wave of a quality that is higher than the
cavity mode (with the understanding that this presents an experimental challenge). It is
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important to notice that in this case the frequency width of the field in equation (4.6) is
set by the source, and not by the mode that is being populated. This is a consequence
of a well known result, that a resonantly forced harmonic oscillator, at late times, will be
excited at the frequency of the driving force, since oscillations at its eigenfrequency will
damp away at late times.

The off-shell contribution to the signal from the spectator mode can be a source to the
noise in the detector, which can be written as

E1ẽ1(ω) = iω0
ω2 − ω2

1 − iωω1/Q1

1
V

∫
~E∗1 ·~j√

1
V

∫
| ~E1|2

g̃(ω), (4.8)

where again, the spectrum of the driving source g̃(ω) ∼ δ(ω − ω0) sets the field at late
times. There are two ways to suppress this leakage contributions to the signal. If we take
a narrow signal bandwidth, effectively defining

S =
∫ ω1+∆ω1

ω1−∆ω1
E1ẽ1(ω)dω , (4.9)

in the limit of a pure delta function source, the contribution to S from equation (4.8)
vanishes. The source will only contribute to the signal to the extent that the source width
extends from ω0 to ω1. As stated above this can be parametrically much smaller than the
cavity’s Q−1. The true signal, which is very narrow, will not be suppressed by this.

In addition to the suppression in the time domain, equation (4.8) can also be suppressed
by the spatial integral by choosing the source location wisely. For example, if TM010 is
the spectator mode we wish to establish in the detection cavity, we can insert a probe of
length L along the z−axis:

~j = ẑδ(r) I

2πr , (4.10)

such that E0 = I L
V η0

Q0
ω0

, where η0 is defined in equation (4.7). Since ~j is chosen along
z, generating a longitudinal E field, the spatial overlap of the current with TE0m` in
equation (4.8) will vanish. Here again, the source will leak into the signal only due to the
degree of inaccuracy in the source’s placement.

4.2.2 Leakage of spectator to signal mode due to nonlinearities

We now consider the second source of leakage which may be present due to impurities
and nonlinear effects. For example, the spectator mode can have a spatial overlap with an
impurity presumably on the cavity wall, and cause a localized current ~Jim(~x, t). If the cou-
pling to the current is purely linear, the induced current will oscillate with the frequency of
the spectator mode ω0, which is set by the spectrum of the source, equation (4.6). The dis-
cussion of the previous subsection will apply in this case, and the signal (4.9) is unaffected.

It is likely, however, that the nonlinear effects will be present at some level. Mecha-
nisms for generating nonlinearities may arise from impurities, material effects, such as brief
transitions from super to normal conduction [36], nonlinear Meissner currents [37, 38], or
from nonlinear response of impurities on the cavity wall. These effects depend highly on
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the material properties of the superconductor, such as the level of material disorder [37]
and its purity. In the presence of nonlinearities, at the classical level, modes that are inte-
ger multiples of ω0 will be induced as well. If there were more than one spectator mode,
any sum and difference linear combination would be generated as well. If the signal mode
were degenerate with a spectator mode or a multiple of it, e.g. as in [28], such an effect
can resonantly populate the signal.

In our setup, however, we assume ω1 is removed from ω0 or multiples of it. In this case,
the leakage again will be suppressed by the spectral overlap between the spectator mode
(which is set by the source) and the signal mode. Employing an ultra narrow source may
also help mitigating nonlinear leakage in our setup. Note, however, that if the source of
nonlinearity are impurities, these may also be dissipative to some degree, leading to a broad-
ening of the spectrum of the generated currents. On general grounds we can limit the loss
rate from the spectator mode to any source to ω0/Q0. The signal mode, also by assumption,
has a highQ1 and thus its coupling to dissipative impurities is also suppressed. In this case a
naive guess is that the leakage power would be suppressed by the product of the two quality
factors. In addition, nonlinear transfer of power to the signal mode may also be suppressed
by minimizing the spatial integral in equation (4.8) [25]. Interestingly, a suppression factor
of the coupling between two nearly degenerate modes has been achieved in some cases [39].

Given the dependence of these effects on the material science, an experimental and
material theory effort is warranted. Nonlinear response may be studied for various material
samples that with different fabrication techniques and with different surface treatments.5

The leakage effects in the receiver can also be studied in the experiment itself, in the
absence of a powered emitter.

5 Conclusion

In this paper, we considered a LSW experiment searching for axion-like particles using two
identical SRF cavities. SRF cavity enables a great enhancement in the initial photon flux
and final signal photon build-up, but comes with the downside that a large static magnetic
field can no longer be used. To circumvent the problem, ALPs are produced via two cavity
modes, with ωa equal to the sum or difference of the frequencies of the two modes. In the
receiver, ALPs can convert back to photons with frequency |ωa ± ω0| in the background
of a cavity mode-0. If the photons’ frequency matches that of another cavity mode, they
can be produced resonantly. The frequency matching is guaranteed if the spectator in the
receiver is chosen to be the same as one of the production modes in the emitter.

SRF cavities are already being used in a LSW setup to search for dark photons at Dark
SRF [23], in which several of the needed components of our proposal were demonstrated.
These include high emitter powers, Hz level frequency control, and measurement protocols
to avoid cross-talk. In our setup, apart from the thermal background, a potential impor-
tant source of noise may be the leakage to signal from the presence of a large amount of
spectating photons in the receiver. As discussed in section 4, the leakage can be attributed
to an imperfect driving source of the spectator mode or impurities on the cavity wall, and

5Such studies have been initiated within the SQMS NQI center at Fermilab.
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can be effectively mitigated thanks to the O(GHz) separation between the spectator and
signal frequencies. An experimental study of such backgrounds is well motivated. Assum-
ing only thermal background, the sensitivity that can be potentially achieved by this setup
is comparable to that projected by ALPSII, and can be further enhanced if high-level cavity
modes can be used.
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A Vacuum modes of cylindrical cavity

The wave equation for ~E (and ~B) in the vacuum is given by

~∇2 ~E − 1
c2∂

2
t
~E = 0

We want to work out the standing wave solutions in a cylindrical cavity of length L and
radius R.

A.1 TM modes

Bz = 0. We assume that the form of Ez is given by

Ez = Ez(r)einθeikzze−iωt

where kzL = `π, and n, ` = 0, 1, 2, · · · . Hence,

1
r
∂r(r∂rEz) +

(
ω2 −

(
`π

L

)2
−
(
n

r

)2
)
Ez = 0

Requiring Ez to be finite at r = 0:

Ez(r) = E0Jn

r
√
ω2 −

(
`π

L

)2


where E0 is the field strength on the axis. Requiring Ez to vanish at the cavity wall r = R

picks out a discrete set of ω such that

ωTMnm` =

√(
Znm
R

)2
+
(
`π

L

)2
(A.1)

where Znm is the mth zero for the nth Bessel J .

– 15 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
3

One can obtain the rest of ~E and ~B via ∂t ~B = −~∇× ~E and ~∇· ~E = 0. The mode that
is of particular interest in this work is when n = 0:

~ETM0m`(~x, t) = E0


−i `πL

R
Z0m

J1
(
rZ0m

R

)
0

J0
(
rZ0m

R

)
 ei`πz/L−iωT M

0m`t (A.2)

~BTM
0m`(~x, t) = B0


0

−iωTM0m`
R
Z0m

J1
(
rZ0m

R

)
0

 ei`πz/L−iωT M
0m`t (A.3)

A.2 TE modes

Ez=0. We assume that the form of Bz is given by

Bz = B0Jn(
√
ω2 − (`π/L)2r)einθei`πz/Le−iωt

where B0 is the field strength on the axis. Requiring that Bz vanishes at the end caps:

` = 1, 2, · · ·

Imposing the boundary condition ∂rBz|R = 0:

ωTEnm` =

√(
Snm
R

)2
+
(
`π

L

)2
(A.4)

where Snm is the mth extremum of the nth Bessel J . Again, it is the n = 0 modes that
we are interested in:

~BTE
0m`(~x, t) = B0


−i `πL

R
S0m

J1
(
rS0m

R

)
0

J0
(
rS0m

R

)
 ei`πz/L−iωT E

0m`t (A.5)

~ETE0m`(~x, t) = B0


0

iωTE0m`
R
S0m

J1
(
rS0m

R

)
0

 ei`πz/L−iωT E
0m`t (A.6)

A.3 E · B

As shown above, n > 0 introduces an einθ factor in the mode, which destroys the rotational
symmetry of the system, thus not desirable. With TE0m′`′ and TM0m`,

( ~E · ~B)ω± = EpeakBpeak
2

(
J0(Z0mr/R)J0(S0m′r/R) (A.7)

± ω0m`
TM ω0m′`′

TE − k`zk`
′
z

(Z0m/R)(S0m′/R) J1(Z0mr/R)J1(S0m′r/R)
)
eiπ(k`

z±k`′
z )z
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where k`z = `π
L ,

ωnm`TM =

√(
Znm
R

)2
+
(
`π

L

)2
, ` = 0, 1, 2, · · · , (A.8)

and

ωnm`TE =

√(
Snm
R

)2
+
(
`π

L

)2
, ` = 1, 2, · · · . (A.9)

Znm and Snm are the mth zero and the mth extremum of the nth Bessel function, respec-
tively.

B Derivation of Psig

We closely follow the frequency conversion method introduced in [25].
Let the signal mode be ~Esig(t, ~x) = ~E1(~x)e1(t), where e1(t) ∼ eiω1t, and define the

characteristic amplitude for the signal mode as

E1 ≡
√

1
V

∫
V
| ~E1(~x)|2 (B.1)

Assume that the bandwidth of ω1 is given by ω1/Q1, where Q1 is the quality factor of the
cavity. The steady state average power output can be expressed as

Psig = ω1
Q1

∫
Vdc

| ~E1(~x)|2〈|e1(t)|2〉

= ω1
Q1

VdcE2
1

1
(2π)2

∫
dωdω′〈ẽ1(ω)ẽ∗1(ω′)〉ei(ω−ω′)t,

(B.2)

where we have used equation (B.1) and the Fourier transform of en(t):

en(t) = 1
2π

∫
dωeiωtẽn(ω), ẽn(ω) =

∫
dte−iωten(t). (B.3)

The quantity 〈ẽ1(ω)ẽ∗1(ω′)〉 can be interpreted as the power spectral density (PSD), and is
expected to follow the relation

〈ẽ(ω)ẽ∗(ω′)〉 = Se(ω)δ(ω − ω′). (B.4)

Therefore,

Psig = ω1
Q1

Vdc
E2

1
(2π)2

∫
dω 〈ẽ1(ω)ẽ∗1(ω)〉. (B.5)

To calculate Psig, we need work out the amplitude of the signal mode, given a spec-
tating cavity mode and an axion field. Let the spectating mode be ~Bspe(t, ~x) = ~B0(~x)b0(t)
and ~Espe(t, ~x) = ~E0(~x)e0(t), where b0(t) ∼ eiω0t and e0(t) ∼ −ieiω0t. Similarly, the charac-
teristic amplitudes E0(= B0) can be defined as

E0 ≡
√

1
V

∫
V
| ~E0(~x)|2 ≡ η0Epeak (B.6)
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where η0 ∼ O(1). Recall that the laboratory produced axion field has spatial dependence
as well as time dependence, hence a(~x, t) ≡ a(~x)f(t), where f(t) ∼ e−iωat. Starting with
equation (2.3), we first write ~E on the l.h.s. as a linear combination of the vacuum cavity
modes, ~E =

∑
n
~En(~x)en(t). Therefore,

−
∑
n

(
ω2
n
~En + ωn

Qn
∂t ~En + ∂2

t
~En

)
en(t)

= −g∂t( ~Espe × ~∇a) + g∂t( ~Bspe∂ta)− g~∇( ~Bspe · ~∇a),
(B.7)

where a damping factor for each mode is inserted by hand. Apply
∫
dt e−iωt to both sides

and integrate by parts when necessary:

∑
n

(
ω2 − ω2

n − i
ωωn
Qn

)
~En(~x)ẽn(ω)

=
∫
dt e−iωt

(
− g∂t( ~Espe × ~∇a) + g∂t( ~Bspe∂ta)− g~∇( ~Bspe · ~∇a)

)
.

(B.8)

Substituting a, ~Bspe, ~Espe in terms of their spatial and temporal components, the r.h.s.
of equation (B.8) becomes

− iωg ~E0 × ~∇a
∫
dω′

2π ẽ0(ω − ω′)f̃(ω′) + iωg ~B0a
∫
dω′

iω′

2π b̃0(ω − ω′)f̃(ω′)

− g~∇( ~B0 · ~∇a)
∫
dω′

2π b̃0(ω − ω′)f̃(ω′).
(B.9)

Since e0(t) and b0(t) are the same vacuum mode, they are related in a way that −ib0(t) =
e0(t), and so are their Fourier transforms. Applying

∫
V
~E∗1 to both sides of equation (B.8),

followed by using the orthogonality relation between the vacuum modes on the l.h.s., equa-
tion (B.8) becomes

E1ẽ1(ω) = −iωgE0
ω2 − ω2

1 − iωω1/Q1
×
∫
dω′

2π ẽ0(ω − ω′)f̃(ω′)
(
α+ βω′ + 1

ω
γ

)
,

where α ≡
∫
V
~E∗1 · ( ~E0 × ~∇a)√∫

V | ~E1|2
√∫

V | ~E0|2
, β ≡

∫
V
~E∗1 · ( ~B0a)√∫

V | ~E1|2
√∫

V | ~B0|2
,

γ ≡
∫
V
~E∗1 · (~∇( ~B0 · ~∇a))√∫
V | ~E1|2

√∫
V | ~B0|2

.

(B.10)

Now we are ready to compute E2
1〈ẽ1(ω)ẽ∗1(ω)〉, which is needed in computing Psig.

E2
1〈ẽ1(ω)ẽ∗1(ω)〉 = ω2g2E2

0
(ω2 − ω2

1)2 + ω2ω2
1/Q

2
1

∫
dω′

(2π)2Se0(ω − ω′)Sf (ω′)
∣∣∣∣α+ βω′ + γ

ω

∣∣∣∣2 ,
(B.11)

where equation (B.4) is used in computing terms such as 〈f̃(ω)f̃∗(ω′)〉. Since a has a
negligible width, the PSD for f is given by Sf (ω) = π2(δ(ω + ωa) + δ(ω − ωa)). Finally,
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from equation (B.5), we obtain an expression of the signal power:

Psig = 1
16π2

ω1Vdcg
2E2

0
Q1

∫
dω

ω2

(ω2 − ω2
1)2 + ω2ω2

1/Q
2
1

×
{
Se0(ω + ωa)|α− βωa + γ/ω|2 + Se0(ω − ωa)|α+ βωa + γ/ω|2

}
= 1

16π2
ω1Vdcg

2E2
0

Q1

∫ ω+

ω−
dω

ω2

(ω2 − ω2
1)2 + ω2ω2

1/Q
2
1
Se0(ω − ωa)

×
{
|α− βωa − γ/ω|2 + |α+ βωa + γ/ω|2

}
(B.12)

Assuming that the spectating mode is perfectly peaked at one frequency with no width,
i.e. Se0(ω) = π2(δ(ω + ω0) + δ(ω − ω0)),

P ideal
sig = 1

8VdcE
2
0g

2Q1
ω1

(
|α|2 + |β(ω1 ∓ ω0) + γ

ω1
|2
)
, (B.13)

where in the last line, to get the signal on resonance, we used frequency matching condition:

ω1 ∓ ω0 = ωa. (B.14)
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