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1 Introduction

Problems in physics where the typical scale of the momenta is much smaller than the masses
of the particles at play can be conveniently described using effective field theories. The
prototype example is heavy-quark effective theory [1–4], where one is interested in studying
the dynamics of heavy quarks exchanging momenta which are typically much smaller than
their mass. The effective description is particularly convenient in that it reveals symmetries
that are not present in the QCD Lagrangian, leading to a velocity superselection rule.
Another example is the dynamics of black holes, which in many situations of practical
relevance can be effectively considered as heavy pointlike particles exchanging momenta
which are much smaller than their mass. In this context, the computation of the classical
part of observable quantities, such as the deflection angle of a massless particle by a heavy
black hole, is of particular interest. The classical limit is then reached by scaling the
momentum of the exchanged massless gravitons as ~q = ~~k and taking the ~→ 0 limit while
keeping the wavevector ~k fixed, together with the masses and momenta of the black holes [5].
An approach to the effective field theory describing heavy scalars and fermions minimally
coupled to gravity in the spirit of the heavy-quark effective theory was pursued in [6], with
applications to Feynman-diagram computations of four-point amplitudes at one loop.
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Recently, considerable effort has been devoted to applying modern amplitude methods
to the computation of observable quantities in general relativity. This approach leads to
significant conceptual as well as practical simplifications, since all steps of the computa-
tion are manifestly gauge invariant. Examples of this include applications of unitarity at
one [7–16], two [17–19] and three loops [20] to the computation of bending angles, and
classical and quantum corrections to the gravitational potential. An important tool in the
amplitude arsenal is the colour-kinematics and double-copy duality [21–23], which makes
explicit an intriguing interplay between colour and kinematics of amplitudes in Yang-Mills
and other theories [24–38]. This also allows one to construct gravity amplitudes from Yang-
Mills ones once the latter are expressed in a so-called BCJ form, in a similar spirit to the
KLT relations [39]. Further applications of this duality include [40–48] and [49–59] for the
construction of BCJ numerators at tree and loop level, respectively.

Intriguingly, there is strong evidence that underlying the colour-kinematics duality
there must be a kinematic algebra obeyed by the BCJ numerators. This algebra was
originally discovered in the self-dual sector in [60, 61], with recent important efforts to
understand it beyond that sector in [62, 63]. We also mention the work of [36, 38, 64–71]
where a Lagrangian or geometric understanding of the duality was sought. With a view
of applying the colour-kinematics duality to the problem of black hole scattering, one is
interested in amplitudes containing two massive particles as well as gravitons, which in
general can also be constructed via the double copy [72–79]. The double copy was also
directly applied to the heavy-quark effective theory in [80] for particles of spin s ≤ 1, in
particular constructing three- and four-point amplitudes with two heavy spinning particles
and one and two gravitons.

In this paper we systematically apply the method of [62] to obtain compact expressions
for amplitudes with two massive scalars and an arbitrary number of gluons or gravitons
via the double copy in a heavy-mass effective theory (HEFT) at leading order in an inverse
mass expansion. These will be used in [81] to compute loop amplitudes of two heavy
scalars with graviton interactions, from which one can extract classical quantities such as
the bending angle and corrections to the Newtonian potential. Our HEFT amplitudes will
enter the relevant unitarity cuts, crucially simplifying the loop integrations because of their
special features [81].

In the approach of [62], one introduces vector and tensor currents representing the
generators of the kinematic algebra, with a fusion rule among them. This fusion rule
was completely determined in [62, 63] in Yang-Mills in the MHV and NMHV sectors for
arbitrary multiplicity, with explicit examples up to eight particles.1 In the present work
we apply these ideas to the HEFT, computing general amplitudes up to six points and in
any number of dimensions. Importantly, these are the necessary ingredients to compute
the two-to-two scattering amplitude of two heavy scalars up to three loops.

This new approach is very powerful in that it leads to BCJ numerators automatically
satisfying the Jacobi relations and crossing symmetry, under the assumption that the fusion

1In general dimensions, by MHV amplitude in pure Yang-Mills we mean one whose numerator has the
schematic form (ε·ε)

∏
(ε·p), whereas NMHV corresponds to (ε·ε)2∏(ε·p), and so on.
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rule is associative. In practice, one starts by building a function called the pre-numerator
(which, despite its name, can have denominators from propagators of the heavy particles),
which is written as a product of many currents multiplied using the fusion rule. The BCJ
numerators are then obtained by taking appropriate anti-symmetrisations of the external
particles in the pre-numerator, thereby forming nested commutator structures associated
to cubic graphs. With the assumption of associativity of the fusion rule, this operation
produces BCJ numerators that automatically satisfy colour-kinematics duality. We also
stress that only a subset of all possible cubic graphs appears in our construction, namely
those where the two massive particles connect via a single cubic vertex to the rest of the
graph. Each cubic graph is in one-to-one correspondence with a nested commutator.

An additional important feature of our work is that the BCJ numerators we obtain for
each cubic graph are uniquely determined, manifestly gauge invariant (i.e. written in terms
of field strengths) and local with respect to the massless gluons or gravitons. This is to be
contrasted with the situation in Yang-Mills amplitudes, where the BCJ numerators are in
general neither gauge invariant nor unique. As a byproduct of our analysis, we also show
how to derive BCJ numerators in pure Yang-Mills by taking appropriate limits of our BCJ
numerators.

The rest of the paper is organised as follows. In the next section and in section 3
we briefly review basic properties of heavy-quark effective theory and of the double copy,
respectively. In section 4 we present the construction of amplitudes from the novel double
copy. We briefly review the approach based on fusion rules, which we then discuss in the
context of our HEFT. In particular we discuss the construction of the pre-numerator from
fusion rules and from an ansatz, in terms of which the BCJ numerators are expressed. In
section 5 we systematically treat cases up to six particles. Importantly, we find unique,
gauge-invariant BCJ numerators. In section 6 we briefly discuss how to obtain pure Yang-
Mills numerators from HEFT numerators in a particular limit. We present our conclusions
and an outlook on future work in section 7.

2 Elements of heavy-mass effective theory

Heavy-quark effective theory [1–4] plays an important role in hadron physics. In this set-up,
the momentum of an incoming heavy quark is written as

pµ = mvµ , (2.1)

where m is the heavy mass of the quark and v2 = 1, which after an interaction with a soft
particle becomes

pµ = mvµ + kµ . (2.2)

In QCD, the momentum kµ would be taken to be of order ΛQCD � m. We are ultimately
interested in applications to classical physics (discussed in the companion paper [81]), in
which case it is convenient to think of the residual soft momentum as being rescaled as
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kµ = ~k̄µ [5], keeping k̄ fixed as ~→ 0. If p is the momentum of an on-shell state, for ex-
ample an outgoing heavy quark, we also get the constraint v·k = −k2/(2m), which implies
that v·k = 0 in the large-mass limit. The leading terms of the effective Lagrangian are

Leff = −1
4(F aµν)2 + iQ̄vv·(∂ − igA)1 + /v

2 Qv +O(1/m) , (2.3)

where for external fermion states one also has /vQv = Qv. If one ignores the O(1/m) terms,
the velocity v and the polarisation of Qv are conserved. The Feynman rules for the fermion
propagator and vertex are easily found to be

v, k
i

v·k + iε

1 + /v

2 ,

p1 p3

µ, p2

v

igT avµ
1 + /v

2 , (2.4)

which are accompanied by the standard Feynman rules for gauge fields. Importantly, the
leading-order contribution in the heavy-mass limit is universal, that is the heavy quark
field can be replaced by a heavy scalar or vector field without changing the amplitudes.

One can now use these Feynman rules to compute directly HEFT amplitudes, at least
for a small number of legs. For higher multiplicities this becomes very involved, and we will
introduce more efficient techniques in the next two sections.2 The three-point amplitude
is given by

AYM−M
3 (123) =

p1 p3

ε2

= mε2·v , (2.5)

while the four-point amplitude is

AYM−M
4 (1234) =

p1 p4

p2 p3

+
p1 p4

p2 p3

= 2m
(
−ε2·p3v·ε3

s23
− ε2·ε3v·p2

s23
+ ε3·p2v·ε2

s23
+ v·ε2v·ε3

2v·p2

)
. (2.6)

The Feynman diagrams contributing to the five-point amplitude are

p1 p5

p2 p3 p4

+
p1 p5

p2 p3 p4

+
p1 p5

p2 p3 p4

+

p1 p5

p4p3p2

+

p1 p5

p2 p4p3

+

p1 p5

p2 p4p3

2In the following we quote colour-ordered amplitudes and drop an ubiquitous factor of i gn−2.
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leading to the — somewhat lengthy — result

AYM−M
5 (12345) =4m

v·ε2v·ε3v·ε4
4v·p2v·p23

+
v·ε4

(
1
2ε2·ε3v·(p3−p2)+ε3·p2v·ε2−ε2·p3v·ε3

)
2s23v·p23

+
v·ε2

(
−ε3·p4v·ε4− 1

2ε3·ε4v·p3+ 1
2ε3·ε4v·p4+ε4·p3v·ε3

)
2s34v·p2

+ 1
2s23s234

(
v·ε4

((
s24−s34

2

)
ε2·ε3−2ε2·p4ε3·p2+2ε2·p3ε3·p4

)
+ s23

2 (ε2·ε4v·ε3−ε3·ε4v·ε2)−ε4·p23 (ε2·p3v·ε3−ε3·p2v·ε2)

+2(v·p23ε3·ε4ε2·p3−v·p23ε2·ε4ε3·p2+v·p3ε2·ε3ε4·p2−v·p2ε2·ε3ε4·p3)
)

+ 1
s34s234

(
ε2·p34(ε3·p4v·ε4−ε4·p3v·ε3)+ε2·ε4v·p2ε3·p4−ε4·p2ε3·p4v·ε2

+ε3·ε4v·p3ε2·p34+ε3·ε4v·p2ε2·p3−ε2·ε3v·p2ε4·p3+ε3·p2ε4·p3v·ε2

− 1
4s23ε3·ε4v·ε2+ 1

4s24ε3·ε4v·ε2−
1
4s34ε2·ε3v·ε4+ 1

4s34ε2·ε4v·ε3

) ,
(2.7)

where

pi1i2···ir := pi1 + pi2 + · · ·+ pir , si1i2···ir := p2
i1i2···ir . (2.8)

Note that the gluon-quark amplitude in HEFT does not depend on the soft momentum
of the heavy particle. One can also check that the leading order term in 1/m of the full
five-point gluon-quark amplitude is identical to (2.7).

3 Traditional double copy construction

In the previous section we reviewed an example of a heavy-particle effective theory and
presented a few tree-level amplitudes derived from the leading-order Feynman rules. We
chose to work with fermions as heavy particles, however it is important to note that the
results thus obtained are in fact independent of the spin of the heavy matter fields [8]. The
corresponding effective theory for gravity, studied using a form of the colour-kinematics
duality and double copy of HEFT in [80], also exhibits universal behaviour at leading
order in the heavy-mass limit, which is related to the universal coupling between matter
and gravitons [82, 83].

Next, we discuss quark-graviton amplitudes for the full theory as computed using the
traditional form of the colour-kinematics duality. The leading-order parts of these ampli-
tudes in the heavy-mass limit can then be obtained by an expansion in the (inverse) heavy
mass.3 In this form of the double copy one sums over all cubic graphs, and the numerators

3The quark-graviton amplitudes can also be obtained from Feynman rules [84, 85].
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are in general not gauge invariant. The double copy of QCD with massive fermions was
studied in [77, 80], while the double copy of massive scalar QCD was investigated in [79].

The BCJ numerators for the three-, four- and five-point amplitudes can be cast in the
form [27, 62, 77]

N3(123) = Q̄/ε2Q,

N4(1234) = Q̄/ε2(/p12 +m)/ε3Q,

N5(12345) = Q̄/ε2(/p12 +m)/ε3(/p123 +m)/ε4Q+ 2
3(p2

123 −m2)
(
Q̄/ε2/ε3/ε4Q− ε3 · ε4Q̄/ε2Q

)
.

(3.1)

The three-point graviton amplitude is obtained by just squaring the BCJ numerator

AGR−Q
3 =

[
N3(123)

]2
. (3.2)

The four-point amplitude is obtained by summing over the following three cubic graphs
with two gravitons and two fermions:

p1 p4

p2 p3

+
p1 p4

p3p2

+
p1 p4

p2 p3

. (3.3)

The numerator of each graph is the square of the corresponding BCJ numerator. The
four-point amplitude is then

AGR−Q
4 = N4(1234)2

2p1·p2
+ N4(1324)2

2p1·p3
+ N4(1[2, 3]4)2

s23
, (3.4)

where N4(1324) is obtained from N4(1234) by swapping the indices 2, 3 and the bracket on
the external labels denotes the commutator of the indices, e.g.

N4(1[2, 3]4) := N4(1234)−N4(1324) . (3.5)

The four-point amplitude is manifestly invariant under the exchange of particles 2 and 3.
Similarly the five-point amplitude is obtained by summing over all cubic graphs with two
scalars and three external gravitons:

p1 p5

p2 p3 p4

+
p1 p5

p2 p3 p4

+
p1 p5

p2 p3 p4

+

p1 p5

p4p3p2

+

p1 p5

p2 p4p3

+ permutations of 2,3,4. (3.6)
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Computing the above diagrams, one gets

AGR−Q
5 = N5(12345)2

2p1·p2(2p1·p23 + s23) + N5(1[2, 3]45)2

2s23(2p1·p23 + s23) + N5(12[3, 4]5)2

4s34p1·p2

+ N5(1[2, [3, 4]]5)2

2s34s234
+ permutations of 2, 3, 4 . (3.7)

The leading-order term in the heavy-mass expansion is obtained by simply retaining the
O(m2) terms in (3.7), and we have checked that it agrees with the same quantity as
computed with the KLT duality.

A few comments are in order here. First, we note that in this traditional form of the
double copy one has to sum over all possible cubic graphs; furthermore, gauge invariance of
the amplitudes is not manifest due to the explicit appearance of polarisation vectors in the
numerators Ni. Inspired by recent work on the kinematic algebra of BCJ numerators [62],
in the next section we will introduce an improved version of the double copy, which will
lead to much more compact expressions for the amplitudes. These will be used in [81] for
the computation of classical quantities in gravity at loop level.

4 A novel double copy from gauge-invariant BCJ numerators

We now present our alternative form of the colour-kinematics duality for the gluon-matter
amplitudes directly at leading order in the HEFT, avoiding the need to perform a heavy-
mass expansion. This double copy is motivated by the work of one of the present au-
thors [62] on the algebraic structure of numerators that are consistent with the colour-
kinematics duality, and allows us to generate the BCJ numerators directly. As we will see,
this construction has several advantages:

1. The new BCJ numerators are automatically gauge invariant and unique.

2. Only a subset of the usual cubic diagrams contributes.

3. As a consequence, we obtain much more compact expressions for the amplitudes than
those derived from the traditional BCJ construction discussed in the previous section.

We have tested this new method by explicitly constructing numerators up to six particles
at tree level, although in principle the method applies to n-particle numerators.

4.1 Background for the colour-kinematics algebra from fusion rules

We now describe the new construction of BCJ numerators, which is based on the fusion
product between two heavy-mass currents. Following the notation of [62] these currents
are denoted by Ja1⊗a2⊗···⊗ar ,4 and their labels aµi can either be momenta or polarisation
vectors. Since Q̄/aiQ ∼ mv·ai in the HEFT, we define

Ja = mv·a . (4.1)

4The notation for these currents is inspired by the form of tensor currents in QCD, Q̄/a1/a2 · · · /ar
Q.
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We also require that the tensor currents Ja1⊗a2···ai⊗aj ···⊗ar satisfy the Clifford algebra

Ja1⊗a2···ai⊗aj ···⊗ar = −Ja1⊗a2···aj⊗ai···⊗ar + 2 ai·ajJa1⊗a2···âi⊗âj ···⊗ar , (4.2)

for each component. This property is inherited from the QCD currents.
The on-shell condition for the external quarks also gives the relations

Ja1⊗a2⊗···an⊗p12...n−1 = mJa1⊗a2⊗···⊗an ,

Jp1⊗a1⊗a2⊗···⊗an = mJa1⊗a2⊗···⊗an ,
(4.3)

and the currents satisfy a bilinear fusion rule of the form

JX ? JY =
∑
Z

F Z
XY JZ . (4.4)

For instance [62]

Jε2 ? Jε3 := 2
(
s23
4
v·ε3
v·p2

Jε2 −
1
2Jε2⊗ε3⊗p2 + ε3·p2Jε2

)
. (4.5)

The fusion rule always generates a rational function which we call the pre-numerator :

Nn(23 · · ·n− 1, v) :=
2 3 n− 1· · ·

= Jε2 ? Jε3 ? · · · ? Jεn−1 , (4.6)

where we always assume associativity of the ?-product. In this diagram, the red box denotes
the two massive particles, while the lines correspond to the massless particles (gluons or
gravitons). The general form of the fusion rule with these properties is known in pure
Yang-Mills from [62] for n-point MHV amplitudes and for NMHV amplitudes up to eight
points. The claim is that BCJ numerators in HEFT can be written efficiently in terms of
the pre-numerator, in a way we describe below.

To begin with, it is useful to introduce the notion of ordered and un-ordered nested
commutators. In the case of ordered nested commutators, which is relevant for colour-
ordered amplitudes, the order of a set of indices is fixed while commutators are applied
in all possible ways. For example, for n = 5, the ordered set {2, 3, 4} gives rise to two
ordered, nested commutators: [[2, 3], 4] and [2, [3, 4]]. In the case of graviton amplitudes,
we need to include also un-ordered nested commutators (omitting numerators that differ by
minus signs): [[2, 3], 4], [[2, 4], 3] and [[3, 4], 2]. Then the gluon-matter and graviton-matter
amplitudes are given by the following expressions:

AYM−M
n (12 · · ·n) =

∑
Γ∈ordered commutators {2,3,··· ,n−1}

Nn(Γ, v)
dΓ

,

AGR−M
n (12 · · ·n) =

∑
Γ∈non-ordered commutators{2,3,··· ,n−1}

[
Nn(Γ, v)

]2
dΓ

,

(4.7)

where particles 1 and n are heavy and all others are massless. Each nested commutator
(and hence BCJ numerator) is in one-to-one correspondence with a specific cubic graph,

– 8 –



J
H
E
P
0
7
(
2
0
2
1
)
0
4
7

from which one can also read off the relevant massless scalar propagators, denoted as dΓ
in (4.7). For instance, the nested commutator [[2, 3], 4] and the associated BCJ numerator
corresponds to the cubic graph

N5([[2, 3], 4], v) ←→
2 3 4

, (4.8)

where in this case d[[2,3],4] = s23s234. We also note an important feature of this BCJ
representation, namely that we only sum over cubic graphs corresponding to nested com-
mutators. In particular, only massless propagators appear within the cubic graph — the
two massive particles always connect to the graph via a single cubic vertex.

Each BCJ numerator Nn(Γ, v) can be conveniently obtained by acting with specific
operators on the pre-numerator. For instance, a left-nested commutator is written as

Nn([. . . [[2, 3], 4], . . . , n− 1], v) := L(2, 3, 4, . . . , n− 1) ◦ Nn(234 . . . n− 1, v), (4.9)

where L(2, 3, 4, . . . , n−1) is the L-operator introduced in [63] as a group algebra element [86,
87] and in [88] as a free Lie algebra element,

L(i1, i2, . . . , ir) :=
[
I− P(i2i1)

][
I− P(i3i2i1)

]
· · ·
[
I− P(ir...i2i1)

]
. (4.10)

Here P(j1j2j3...jm) denotes the cyclic permutation j1 → j2 → j3 → · · · → jm → j1. For
instance

I ◦ N6(2345, v) = N6(2345, v) ,
P(432) ◦ N6(2345, v) = N6(4235, v) .

(4.11)

Importantly, as we will discuss in more detail later, for each choice of Γ the numerator
Nn(Γ, v) is consistent with colour-kinematics duality.

We have successfully checked this conjecture up to six points. An important obser-
vation is that the numerators we obtain in this approach are all gauge invariant, as will
become clear in concrete examples presented later. The general method to determine the
fusion rules will be described elsewhere, while in this paper we will focus on describing a
method to construct the pre-numerator from an ansatz, and from this, the BCJ numerators
Nn(Γ, v).

4.2 General method to construct the pre-numerator

Since the fusion rule introduced in (4.4) is not yet known in general, our strategy consists in
writing down a general ansatz for the pre-numerator, in terms of which the BCJ numerators
Nn(Γ, v) are written. We then require that these BCJ numerators Nn(Γ, v) generate the
correct amplitudes when inserted in (4.7). In all cases we have considered, this procedure
leads to a unique, gauge-invariant answer for the BCJ numerators (while in general the
pre-numerator has undetermined coefficients).

– 9 –
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The building blocks of the ansatz are products of the following Lorentz-invariant
quantities:5

1
v·pi1...ir

, εi·εj , εi·pj v·εi , v·pi , sij , Jεi , Jpi . (4.12)

In fact, in constructing the ansatz we can restrict the vector currents J to only those involv-
ing Jp2 and Jε2 , since the others can be generated with the L(2, 3, 4, . . . , n− 1) operator.

There are several constraints to impose on our ansatz. First, for an n-point Yang-
Mills amplitude, there are at most n− 3 propagators of the heavy particles and no double
poles. Second, it follows from the Feynman rules (2.4) that the overall scaling degree in v
should be one. Third, we have observed that it is sufficient to restrict the power of sij in a
particular term in the ansatz to be the same as the total number of massive propagators in
that term. Hence a general term in the ansatz for the pre-numerator N (ans)(234 · · ·n−1, v)
has the form d∏

h=1

1
v·p

i
(h)
1 ...i

(h)
rh

( d∏
h=1

si(h)j(h)

)(
d∏

h=1
v·ai(h)

) d′∏
h=1

εi(h) ·aj(h)

 Ja2 , (4.13)

where d ∈ [1, n− 3], and a denotes either ε or p. Finally, the ansatz is further constrained
by power counting and multi-linearity with respect to external polarisation vectors (which
fixes d′).

An important comment is in order here. The terms without any denominator are fixed
by the MHV sector in the pure Yang-Mills theory6 with ε1 replaced by mv. In fact, we
have determined the MHV fusion rules, and hence the Yang-Mills pre-numerator for this
sector, which has the following form:

N (0)
n (234 · · ·n−1,v) = 2n−3

n−1∏
j=3

εj ·p2...j

Jε2

− 1
2

n−1∑
h>`=2

(−1)`
 n−1∏
j=`+1,j 6=h

εj ·p2...j

ε2·H3·H4 · · ·H`−1·p1...`Jε`⊗εh⊗p2

 ,

(4.14)

where Hµν
i = pµ2...iε

ν
i − ηµνεi·p2...i. Furthermore, when ` = 3 in the sum in the second

line of (4.14), the product of H factors should be replaced by ηµν , while when ` = 2,
ε2·H3·H4 · · ·H`−1·p1...` is replaced by 1.

We will find it convenient to write the ansatz for the n-particle pre-numerator as the
sum of the purely polynomial MHV part and a yet to be determined remainder containing
massive propagators:

Nn(234 · · ·n− 1, v) := N (0)
n (234 · · ·n− 1, v) + N (ans)

n (234 · · ·n− 1, v) . (4.15)
5Although Ja is proportional to v·a, we prefer to treat these two quantities as separate as their origin in

the QCD amplitude is different, specifically the Ja terms arise from fermion bilinears while the v·a terms
from expanding propagators. Note that in constructing the ansatz, we always fix Ja to be either Jp2 or Jε2

from the requirement of full crossing symmetry with respect to the gravitons.
6This is further discussed in section 6.
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In the next section we will apply this general procedure to construct BCJ numerators in
explicit examples.

5 Applications of the new double copy

We now give examples of the construction of gauge-invariant BCJ numerators up to six-
point amplitudes. We remind the reader that in what follows p1 = mv ' −pn always
denote the momenta of the hard particles.

5.1 Three-point numerator

At three points, the pre-numerator is simply

N3(2, v) :=
2

= Jε2 = mv·ε2 , (5.1)

and the amplitudes with a gluon or a graviton are

AYM−M
3 (123) = N3(2, v) , AGR−M

3 (123) =
[
N3(2, v)

]2
. (5.2)

5.2 Four-point numerator

At four points, we know from (4.5) that the pre-numerator is

N4(23, v) :=
2 3

= 2
(
s23v·ε3
4v·p2

Jε2 −
1
2Jε2⊗ε3⊗p2 + ε3·p2Jε2

)
. (5.3)

Then the amplitudes with two gluons or two gravitons are

AYM−M
4 = N4([2, 3], v)

s23
, AGR−M

4 =
[
N4([2, 3], v)

]2
s23

, (5.4)

where

N4([2, 3], v) :=
2 3

:= L(2, 3) ◦ N4(23, v) = 2m
(
v·F2·F3·v
v·p3

)
. (5.5)

Here Fµνi = pµi ε
ν
i − εµi p

ν
i , and we have used the fact that Ja = mv·a for a vector cur-

rent. Note that terms containing tensor currents always cancel out among themselves after
using the Clifford algebra. For instance, the current Jε2⊗ε3⊗p2 appears in the form of a
commutator, which we can recast as

Jε2⊗ε3⊗p2 − Jε3⊗ε2⊗p3 = 2ε2·ε3Jp2 − Jε3⊗ε2⊗p23 = 2ε2·ε3Jp2 − Jε3⊗ε2⊗p123 + Jε3⊗ε2⊗p1

= 2ε2·ε3Jp2 + 2ε2·p1Jε3 − 2p1·ε3Jε2 − Jε3⊗ε2⊗p123 + Jp1⊗ε3⊗ε2

= 2ε2·ε3Jp2 + 2ε2·p1Jε3 − 2p1·ε3Jε2 +mJε3⊗ε2 −mJε3⊗ε2

= 2ε2·ε3Jp2 + 2ε2·p1Jε3 − 2p1·ε3Jε2 , (5.6)

where we have repeatedly used (4.2) and the on-shell conditions (4.3). Note the absence
of tensor currents in the last line of (5.6). We also observe that (5.5) is expressed in terms
of gauge-invariant quantities only.
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5.3 Five-point numerator

From five points on, we need to use the method described in section 4.2 to determine
the BCJ numerators. According to (4.14), the part of the pre-numerator without linear
propagators, that is N (0)

5 (234, v), is given by

N (0)
5 (234, v) = 4

(
p2·ε3p23·ε4Jε2 (5.7)

− 1
2p23·ε4Jε2⊗ε3⊗p2 −

1
2p23·ε3Jε2⊗ε4⊗p2 + 1

2p23·ε2Jε3⊗ε4⊗p2

)
.

We now write the ansatz for the remaining terms in the pre-numerator, as per (4.15). We
divide these terms into three sectors of the form

v·ε v·ε , ε·ε v·ε , v·ε v·ε p·ε . (5.8)

The most general ansatz made of terms of this form contains 42 parameters, denoted by
xi,j below:

N (ans1)
5 (234, v) =

(
x1,1s

2
23v·ε3v·ε4

v·p2v·p23
+ x1,2s24s23v·ε3v·ε4

v·p2v·p23
+ x1,3s

2
24v·ε3v·ε4

v·p2v·p23

+ x1,4s34s23v·ε3v·ε4
v·p2v·p23

+ x1,5s24s34v·ε3v·ε4
v·p2v·p23

+ x1,6s
2
34v·ε3v·ε4

v·p2v·p23

)
Jε2 ,

N (ans2)
5 (234, v) =

(
x2,1s23ε3·ε4v·p3

v·p2
+ 11 terms

)
Jε2

N (ans3)
5 (234, v) =

(
x3,1s23ε4·p3v·ε3

v·p2
+ 23 terms

)
Jε2 . (5.9)

We solve for the parameters according to (4.7), and arrive at a pre-numerator with 11
undetermined parameters:

N5(234, v) :=
2 3 4

(5.10)

= 4
(
s23ε4·p3v·ε3

2v·p2
+ s34ε3·p2v·ε4

2v·p23
+ s23ε3·ε4v·p4

2v·p2
+ s23s34v·ε3v·ε4

8v·p2v·p23

)
Jε2

+N (0)
5 (234, v) + x1,1

(
s2

23v·ε3v·ε4
v·p2v·p23

− s2
34v·ε3v·ε4
v·p2v·p23

)
Jε2 + · · · ,

where we have indicated for brevity only one of the terms with a free parameter. Re-
markably, we find that the terms with undetermined parameters vanish under the action
of L(2, 3, 4):

L(2, 3, 4) ◦
[
x1,1

(
s2

23v·ε3v·ε4
v·p2v·p23

− s2
34v·ε3v·ε4
v·p2v·p23

)
Jε2 + · · ·

]
= 0 . (5.11)
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As a consequence, and in contradistinction with the expectation from pure Yang-Mills
amplitudes, we arrive at a unique solution for the BCJ numerator.

Summarising, the BCJ numerator for the left-nested commutator is

N5([[2, 3], 4], v) :=
2 3 4

:= L(2, 3, 4) ◦ N5(234, v) . (5.12)

Importantly, we find that this BCJ numerator can be rewritten in a manifestly gauge-
invariant form as

N5([[2, 3], 4], v) = L(2, 3, 4) ◦
[
4mv·F2·F3·V3·F4·v

v·p3v·p4

]
, (5.13)

where V µν
i = vµpνi . Then the colour-ordered amplitude in the novel colour-kinematics

duality form is

AYM−M
5 (12345) = N5([[2, 3], 4], v)

s234s23
+ N5([2, [3, 4]], v)

s234s34
. (5.14)

Note that these two terms are related by exchanging 2 ↔ 4. By the double copy, the
gravity amplitude is obtained immediately as

AGR−M
5 (12345) =

[
N5([[2, 3], 4], v)

]2
s234s23

+
[
N5([[2, 4], 3], v)

]2
s234s24

+
[
N5([[3, 4], 2], v)

]2
s234s34

. (5.15)

We have checked that (5.15) agrees with the O(m2) term of (3.7). It is useful to pause and
contrast these two expressions to appreciate the simplicity of our approach. First, (5.15) is
much more compact than (3.7); furthermore, expanding (3.7) to O(m2) gives rise to a very
large number of terms lacking any particular structure. The compactness, and manifest
gauge invariance and locality of our HEFT amplitudes are of considerable advantage when
these expressions are fed into unitarity cuts.

We also comment that the numerators we have constructed automatically satisfy the
Jacobi relations. For instance, by definition we have

N5([[2, 3], 4], v) = N5(234, v)−N5(324, v)−N5(423, v) +N5(432, v)
N5([[2, 4], 3], v) = N5(243, v)−N5(423, v)−N5(324, v) +N5(342, v)
N5([2, [3, 4]], v) = N5(234, v)−N5(243, v)−N5(342, v) +N5(432, v) , (5.16)

which makes the Jacobi relation manifest,

N5([2, [3, 4]], v) = N5([[2, 3], 4], v)−N5([[2, 4], 3], v) . (5.17)

Finally, note that one can construct N5([[2, 4], 3], v) from N5([[2, 3], 4], v) by simply swap-
ping labels 3 and 4.
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5.4 Six-point numerator

Similarly to what was done at five points, using again (4.14) we find that, at six points,
the polynomial part of the pre-numerator, N (0)

6 (2345, v), has the form

N (0)
6 (2345,v) = 8

(
Jε2p2·ε3p23·ε4p234·ε5 (5.18)

− 1
2p23·ε4p234·ε5Jε2⊗ε3⊗p2−

1
2p2·ε3p234·ε5Jε2⊗ε4⊗p2−

1
2p2·ε3p23·ε4Jε2⊗ε5⊗p2

+ 1
2p3·ε2p234·ε5Jε3⊗ε4⊗p2 + 1

2p3·ε2p23·ε4Jε3⊗ε5⊗p2 + 1
2 (ε2·p4ε3·p2−ε2·p3ε3·p4)Jε4⊗ε5⊗p2

)
.

The most general ansatz for the remainder of the pre-numerator can be decomposed into
six sectors. The number of free parameters and physical constraints arising from (4.7) are
shown in the table below:

sector v·ε v·ε v·ε v·ε v·ε v·ε v·ε p·ε v·ε v·ε ε·ε v·ε v·ε p·ε p·ε v·ε ε·ε p·ε ε·ε ε·ε
# of parameters 280 1134 945 1128 1134 378
# of constraints 176 601 438 570 810 108

(5.19)

Thus we arrive at a pre-numerator with 2296 free parameters:

N6(2345, v) :=
2 3 4 5

= 8
(
s34v·ε3v·ε4v·ε5

8v·p2v·p23

(
s23s45
2v·p234

+ s24s45
3v·p234

− s23s35
3v·p4

)
Jε2

+
(
s23s34ε5·p4v·ε3v·ε4

4v·p2v·p23
+ s45s34ε3·p2v·ε4v·ε5

4v·p23v·p234
− s23s34ε5·p3v·ε3v·ε4

8v·p2v·p4

− s35s34ε3·p2v·ε4v·ε5
4v·p4v·p234

− s23s45ε3·p4v·ε4v·ε5
4v·p2v·p234

− s24s45ε3·p4v·ε4v·ε5
8v·p2v·p234

)
Jε2

+
(
s23s34ε4·ε5v·p5v·ε3

4v·p2v·p23
− s23s34ε3·ε5v·p5v·ε4

8v·p2v·p4
+ s23s35ε3·ε4v·p4v·ε5

8v·p23v·p234

+ s23s45ε3·ε4v·ε5
8v·p234

(
v·p4
v·p2

+ v·p45
v·p23

)
+ s24s45ε3·ε4v·p4v·ε5

8v·p234

( 1
v·p2

− 1
v·p23

))
Jε2

+
((s23 − s45)ε3·p4ε5·p2v·ε4

2v·p34
+ s23ε4·p3v·ε3

(
ε5·p34
2v·p2

− ε5·p2
2v·p34

)
+ s25ε3·p2ε5·p4v·ε4

2v·p23

+ (s35 + s45)ε3·p2ε4·p23v·ε5
2v·p234

− s34ε3·p2ε5·p23v·ε4
2v·p4

− (s25 + s34)ε3·p2ε4·p5v·ε5
4v·p23

)
Jε2

+
(
s23ε3·ε5v·p5ε4·p2

2v·p24
+ s23ε3·ε5v·p5ε4·p3

2v·p2
+ s23ε3·ε4v·p4ε5·p3

2v·p2
+ s23ε3·ε4v·p45ε5·p4

2v·p2

− s23ε4·ε5v·p5ε3·p4
2v·p2

− s23ε3·ε4v·p4ε5·p2
2v·p34

+ (s24 + s34)ε4·ε5v·p5ε3·p2
2v·p23

)
Jε2

+
(
s25ε2·ε3ε4·ε5v·p4

4v·p23
+ s35ε2·ε3ε4·ε5v·p5

4v·p234
+ s45ε2·ε4ε3·ε5v·p5

4v·p234

− s45ε2·ε5ε3·ε4

(
v·p4

2v·p34
+ v·p5

4v·p234

))
Jp2

)
+N (0)

6 (2345, v) + · · · , (5.20)
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where we omit all the terms with free parameters. Then the BCJ numerator from the
left-nested commutator is obtained by acting with the operator L(2, 3, 4, 5):

N6([[[2, 3], 4], 5], v) :=
2 3 4 5

:= L(2, 3, 4, 5) ◦ N6(2345, v) . (5.21)

The BCJ numerator thus obtained does not contain any free parameter and is unique:

N6([[[2,3],4],5],v) (5.22)

= 8mL(2,3,4,5)◦
[
v·F2·F3·V3·F4·F5·v

2v·p3v·p45
+ v·F2·F3·V3·F4·V4·F5·v

2v·p3v·p5v·p45
+ v·F4·F5·V3·F2·V4·F3·v

2v·p3v·p4v·p345

− v·F3·F5·V3·F2·V3·F4·v
2v·p3v·p4v·p345

− v·F3·F4·V3·F2·V3·F5·v
2v·p3v·p5v·p345

− v·p45v·F3·F4·V3·F2·V4·F5·v
2v·p3v·p4v·p5v·p345

]
.

The colour-ordered amplitude in the novel colour-kinematics duality form is then

AYM−M
6 (123456) = N6([[[2, 3], 4], 5], v)

s2345s234s23
+ N6([2, [3, [4, 5]]], v)

s2345s345s45
+ N6([[2, 3], [4, 5]], v)

s2345s23s45

+ N6([[2, [3, 4]], 5], v)
s2345s234s34

+ N6([2, [[3, 4], 5]], v)
s2345s34s345

.

(5.23)

The gravity amplitude is constructed similarly from the double copy:

AGR−M
6 (123456) = [N6([[2,3], [4,5]],v)]2

s23s45s2345
+ [N6([2, [3, [4,5]]],v)]2

s345s45s2345
+ [N6([[2,4], [3,5]],v)]2

s24s35s2345

+ [N6([2, [4, [3,5]]],v)]2

s345s35s2345
+ [N6([[2,5], [3,4]],v)]2

s25s34s2345
+ [N6([2, [5, [3,4]]],v)]2

s345s34s2345

+ [N6([3, [2, [4,5]]],v)]2

s245s45s2345
+ [N6([3, [4, [2,5]]],v)]2

s245s25s2345
+ [N6([3, [5, [2,4]]],v)]2

s24s245s2345

+ [N6([4, [2, [3,5]]],v)]2

s235s35s2345
+ [N6([4, [3, [2,5]]],v)]2

s235s25s2345
+ [N6([4, [5, [2,3]]],v)]2

s23s235s2345

+ [N6([5, [2, [3,4]]],v)]2

s234s34s2345
+ [N6([5, [3, [2,4]]],v)]2

s24s234s2345
+ [N6([5, [4, [2,3]]],v)]2

s23s234s2345

= [N6([[2,3], [4,5]],v)]2

8s23s45s2345
+ [N6([2, [3, [4,5]]],v)]2

2s345s45s2345
+permutations of 2,3,4,5.

(5.24)

Note that gauge invariance, crossing symmetry and locality for the massless particles in
the BCJ numerator (5.24) are manifest.

6 Local BCJ numerators for pure Yang-Mills theory

The numerators we have constructed in the HEFT are closely related to the local BCJ
numerators for pure Yang-Mills theory by the following equation

NYM
n−1(234 · · · (n− 1)1) = Nn([· · · [[2, 3], 4], · · · , n− 1], v)|v→ε1,p2

234···n−1=0 . (6.1)
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We have checked this relation at five and six points, and we will now illustrate it in detail
in the five-point case.

At five points, the main observation is to impose the on-shell condition for the leg with
momentum p234. Doing so, we get

NYM
4 (2341) = N5([[2, 3], 4], v)|mv→ε1,p2

234=0. (6.2)

We expand N5([[2, 3], 4], v) in (5.13) and get

NYM
4 (2341) = 4

(
ε1·ε4ε2·p3ε3·p4 − ε1·ε4ε2·p4ε3·p2 + ε2·ε4ε1·p4ε3·p2 + ε1·ε2ε4·p23ε3·p2

− ε3·ε4ε1·p4ε2·p3 − ε1·ε3ε2·p3ε4·p23 + ε2·ε3ε1·p3ε4·p23 + ε2·ε3ε1·p4ε4·p3

+ p2·p34ε1·ε4ε2·ε3 −
1
4s23ε1·ε2ε3·ε4 + 1

2s23I(3, 4)
)
, (6.3)

where

I(3, 4) = −1
2
ε1·ε2ε3·ε4
ε1·p34

(ε1·p4 − ε1·p3) + ε1·ε2ε1·ε3ε1·ε4
ε1·p34

(
s24
ε1·p3

− s23
ε1·p4

)
+ ε1·ε3ε1·ε4

(
ε2·p4
ε1·p3

− ε2·p3
ε1·p4

)
+ ε1·ε2
ε1·p34

(ε1·ε4ε3·p4 − ε1·ε3ε4·p3)

+ ε1·ε4ε2·ε3ε1·p3
ε1·p4

+ ε1·ε2ε1·ε4ε3·p2
ε1·p4

− ε1·ε3ε2·ε4ε1·p4
ε1·p3

− ε1·ε2ε1·ε3ε4·p2
ε1·p3

. (6.4)

As 1
2L(3, 4) ◦ I(3, 4) = I(3, 4), then s23I(3, 4) is a pure gauge term7 which does not con-

tribute to the Yang-Mills amplitude. By removing pure gauge terms we arrive at an
expression which is manifestly local,

NYM
4 (2341) = 4

(
ε1·ε4ε2·p3ε3·p4 − ε1·ε4ε2·p4ε3·p2 + ε2·ε4ε1·p4ε3·p2 + ε1·ε2ε4·p23ε3·p2

− ε3·ε4ε1·p4ε2·p3 − ε1·ε3ε2·p3ε4·p23 + ε2·ε3ε1·p3ε4·p23 + ε2·ε3ε1·p4ε4·p3

+ p2·p34ε1·ε4ε2·ε3 −
1
4s23ε1·ε2ε3·ε4

)
. (6.5)

Finally, we have checked that the numerator (6.5) generates the correct amplitude. This
numerator by itself is no longer gauge invariant.

We have also confirmed that the six-point numerator in HEFT is directly related to
the five-point BCJ numerator in pure Yang-Mills theory,

NYM
5 (23451) = N6([[[2, 3], 4], 5], v)|v→ε1,p2

2345=0 . (6.6)

This result is in agreement with [62].

7We comment that pure gauge terms are classified by the L-invariants I as discussed in [63].
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7 Conclusions

We conclude by summarising a number of interesting properties of the new BCJ numerators
we have constructed in the HEFT:

1. Gauge invariance. We have expressed all the BCJ numerators Nn(Γ, v) in terms of
field strengths, hence they are gauge invariant even if the on-shell and transversality
conditions pi·εi = 0 are not imposed.

2. Locality with respect to the massless particles. Our new BCJ numerators do not
contain spurious poles. This is particularly convenient when constructing loop inte-
grands via generalised unitarity, as we will demonstrate in several examples at loop
level in [81].

3. Crossing symmetry and Jacobi relation are manifest. As all the BCJ numerators
are generated from the pre-numerator, the crossing symmetry with respect to all the
massless particles is manifest. Moreover, based on the assumption of associativity
of the fusion product, the Jacobi relations are automatically satisfied by the BCJ
numerators.

4. Numerators for pure Yang-Mills theory. Our BCJ numerators are directly related to
local BCJ numerators for pure Yang-Mills theory.

Note that usually BCJ numerators are manifestly local but not gauge invariant, while using
KLT relations one arrives at expressions which are gauge invariant but non-local; here we
have both locality and gauge invariance. We have checked the above properties up to six
particles, and we conjecture them to be valid for arbitrary number of particles.

There are a few directions for future work. First, it would be desirable to find a proof
of the gauge invariance of the BCJ numerators for any multiplicity. Is this a property of the
HEFT or only of its leading term considered in this paper? A pressing question is to find
a closed form of the pre-numerator, which would require a full understanding of the fusion
rule for any number of particles. Finally, it would also be important to understand the
subleading terms in the inverse mass expansion as well as higher-spin effects, to ascertain
how much of the structures we have uncovered survive the expansion.
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