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Abstract: The formation and evolution of leading jets can be described by jet functions
which satisfy non-linear DGLAP-type evolution equations. Different than for inclusive
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sections where logarithms of the jet radius and threshold logarithms are resummed to
next-to-leading logarithmic (NLL′) accuracy. By calculating the mean of the leading jet
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energy loss. When an additional reference scale is measured, we are able to determine the
energy loss of leading jets at the cross section level which is identical to parton energy
loss at leading-logarithmic accuracy. We identify several suitable cross sections for an
extraction of the jet energy loss and we present numerical results for leading subjets at the
LHC. In addition, we consider hemisphere and event-wide leading jets in electron-positron
annihilation similar to measurements performed at LEP. Besides the average energy loss,
we also consider its variance and other statistical quantities such as the KL divergence
which quantifies the difference between quark and gluon jet energy loss. We expect that
our results will be particularly relevant for quantifying the energy loss of quark and gluon
jets that propagate through hot or cold nuclear matter.
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1 Introduction

Highly energetic jets play a major role at high-energy collider experiments such as the
Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC), as well as the
future Electron-Ion Collider (EIC) [1]. In the past years significant progress has been made
in performing high-precision calculations for exclusive and inclusive jet production as well
as jet substructure observables. Aside from being a means to constrain parton distribution
functions (PDFs) of the proton [2–6], an integral part of searches for new physics [7–
9], and a sensitive probe of the strong coupling constant [10, 11], another fundamental
concern in these studies is how exactly energy is distributed into the states registered in
the detector. These states can be considered at different levels of resolution, from the
irreducible individual hadrons, to large radius jets which may or may not have multi-prong
substructure [12–14]. The ability to resolve the final state of a collision at multiple scales
is critical in being able to test our understanding of the dynamics that lead to these states.

For example, the inclusive jet cross section pp→ jet +X has been calculated to next-
to-next-to leading order (NNLO) [15, 16], and is an important observable to constrain the
gluon PDF. An inclusive jet sample is obtained by measuring the transverse momentum
pT of all the jets in a given rapidity range. The factorization in QCD can be formulated in
terms of hard-scattering functions and (semi-)inclusive jet functions [17–21]. The formation
and evolution of jets described by the inclusive jet function is illustrated in the left panel of
figure 1. Here all jets are taken into account that are produced by the QCD fragmentation
process and which are identified with a given jet algorithm. The jet functions satisfy
DGLAP evolution equations which allow for the resummation of logarithms of the jet
radius R. One can tune R to capture various stages of the shower, and eventually as
R → 0, jet production would merge into the traditional observable of inclusive hadron
production [22].

However, inclusive jet production forms only one part of the set of observables one can
probe in a fragmentation process, where one wishes to know the dynamical means by which
the object of concern (the initial quark or gluon) is randomly broken up. Asking more dif-
ferential questions about the fragmentation process, or probing more exclusive observables,
can reveal the underlying mechanism of fragmentation based on general considerations of
probability theory alone [23]. In QCD scattering, the object we are concerned with is
the total momentum in the underlying hard process, and how the resulting fragments are
possibly labeled according to polarization or flavor composition. While in vacuum QCD,
the underlying dynamical process of fragmentation can be claimed to be qualitatively and
even quantitatively understood, the propagation of partons through a strongly interacting
medium has required a more careful theoretical treatment.

Thus it is critical to move beyond the consideration of inclusive jets, and in this work
we focus on leading jet production. That is, we consider the cross section when only the
leading jet is measured in a given rapidity interval per event (analogous to the largest
fragment considered in ref. [23]). The corresponding leading jet function only takes into
account the formation and evolution of most energetic jet resulting from an active parton
which is illustrated in the right panel of figure 1. The renormalization group (RG) equation
turns out to be a non-linear DGLAP-type evolution equation which was first introduced
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Figure 1. Illustration of inclusive jets (left) and the leading jet (right) which originate from an
initial fragmenting quark at LL accuracy. The zi indicate the longitudinal momentum fractions of
the jets relative to the scale Q of the initial quark.

in ref. [18] at leading-order (LO) and leading-logarithmic (LL) accuracy using a generating
functional approach. The non-linear RG equation resums logarithms of the jet radius R.
In ref. [24], these results were extended by including the full fixed order jet function at
next-to-leading order (NLO). In addition, the jet functions were incorporated using a
complete factorization formula at NLO which was obtained within Soft Collinear Effective
Theory (SCET) [25–29]. Here we further extend the work of ref. [24] by evolving the
entire NLO jet function using a parton shower Monte Carlo approach and we include the
resummation of threshold logarithms [30, 31] which dominate the cross section when the
momentum fraction carried by the leading jet relative to the initial parton approaches
unity. In addition, we focus specifically on cross sections where an additional reference
scale Q is measured such that we can directly measure the momentum fraction of the
leading jet relative to Q. Vital to our approach is that the leading jet functions constitute
normalized probability densities, even outside the Sudakov region. Thus the leading jet
is a (theoretically) well-defined object of the event, whose evolution we can track. The
probability distribution allows us to calculate the mean and variance of this distribution.
The mean corresponds to the average energy contained inside the leading jet relative to
the fragmenting parton i which we denote by 〈z1i〉. Correspondingly, 〈zi,loss〉 = 1− 〈z1i〉 is
the average out-of-jet radiation or the leading jet energy loss.

Given that leading jets form a well-defined object distributed probabilistically by the
fragmentation process, they allow for a well-defined notion of jet energy loss at the jet
function and cross section level. We identify the following three criteria that allow for a
meaningful definition of the energy loss distribution and its average:

• Different than inclusive jets, the leading jet constitutes a well-defined object which
has lost energy relative to the initial parton due to out-of-jet emissions. The cor-
responding jet functions are normalized probability densities which allow for a per-
turbative evaluation of the (average) energy loss. We will also discuss a possible
extension of the present work to leading hadrons which also allows for a well-defined,
but nonperturbative definition of energy loss. We stress that it is not possible to
construct the corresponding probability density for inclusive jets since the number
of inclusive jets is not fixed but generated dynamically event-by-event through the
QCD fragmentation process.
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• To quantify the lost energy, we not only need to know the energy of the leading
jet but also a reference scale Q with respect to which we define the energy loss.
We consider different observables where the reference scale is given for example
by the center-of-mass (CM) Q =

√
s in e+e− collisions. Other examples include

jet substructure measurements, Semi-Inclusive Deep-Inelastic Scattering (SIDIS) or
photon/Z-jet correlations.

• Lastly, we require that the measured jet energy loss at the cross section level agrees
with the (average) parton energy loss at LL accuracy. Higher order effects give
corrections to this direct relation which, however, are calculable order-by-order in
perturbation theory. The analogy between parton and jet energy loss here is similar
to the identification of the variable Bjorken xB in Deep Inelastic Scattering (DIS)
and the parton momentum fraction x at LL accuracy.

The concept of jet or parton energy loss has played an important role in theoretical cal-
culations of jet quenching in heavy-ion collisions [32–49]. Typically, the notion of energy
loss is defined in the soft gluon approximation where flavor-changing processes are sup-
pressed, and calculations are performed in the lowest non-trivial fixed order or resummed
expansions. Ideally, one would like to measure the energy of the parton before and after
the interaction with the quark gluon plasma (QGP). The difference is the energy loss due
to vacuum and medium-induced emissions and allows for the extraction of properties of
the QGP. However, the concept of an energetic parton that exits the hard interaction,
losing radiation only due to soft emissions, that then emerges from the scattering is tenu-
ous even in the pure vacuum evolution case. The work presented here using leading jets
provides the closest connection to this idealized scenario of energy loss measurements. In
the vacuum, the parton/jet energy loss is calculable perturbatively, and nonperturbative
effects may be modeled via shape functions. In the medium the average energy loss can be
determined experimentally and compared to theoretical model calculations, and then tied
to the underlying physics of the QGP.

Beyond simply calculating the average energy loss (which corresponds to the mean of
the leading jet distribution), since we have the full probability distribution at hand, we
also consider for the first time the variance of the jet energy loss that characterizes event-
by-event fluctuations. We analyze in particular the change with the jet radius parameter
R for these moments of the leading jet distributions, and we explore differences between
the quark and gluon energy loss. Moreover, we introduce additional statistical quantities
to help understand the differences between leading quark and gluon jets and their frag-
mentation processes. For example, we compute the Shannon entropy and KL divergence.
The latter quantifies the difference between the quark and gluon leading jet distributions.
In addition, we present receiver operator characteristic (ROC) curves for different values
of the leading jet radius. This represents a first step toward assessing the potential impact
of this observable for quark/gluon jet tagging.

A reliable quantitative understanding of leading jets in the high-energy collider exper-
iments is also necessary for the calibration of the jet energy using Z/γ-tagged jets [50, 51].
See also refs. [52–54]. In addition, it can be advantageous from an experimental point of
view to measure additional quantities such as jet substructure observables on the leading
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and first subleading jet in the event instead of an inclusive jet sample. See for example
refs. [55–57]. A reliable evaluation of the quark/gluon fractions requires corresponding fac-
torization formulas analogous to those developed in this work. We also note that leading
jet functions appear in jet veto calculations, see ref. [58].

One of the main novelties of our work is the development of a Monte Carlo parton
shower framework which solves the non-linear DGLAP-type evolution equations of leading
jets, while including the complete next-to-leading logarithmic (NLL′) threshold resummed
hard-scattering and jet functions. We find full agreement with analytical results for in-
clusive jets, validating that the parton shower framework which allows for a systematic
extension to leading jet cross sections. To be specific, we work to LL′ accuracy in terms
of the jet radius logarithms and we achieve NLL′ accuracy for the threshold logarithms.
Since, the jet radius logarithms are a single logarithmic series αns lnnR and threshold log-
arithms are double logarithmic αns ln2n(1 − z) (for the cumulant), we often refer to the
combined accuracy of the joint resummation as NLL′ throughout this work. In addition,
we present numerical results for leading partons where we run the shower down to the non-
perturbative scale ∼ 1GeV which is a first step toward understanding the fragmentation
spectrum of leading hadrons. We leave more detailed studies of leading hadrons for future
work. While the shower introduced here should be considered as a single or few purpose
Monte Carlo event generator [59–61], we expect that it allows for systematic extensions
to other observables consistent with analytical results obtained within QCD factorization.
See refs. [62–67] for recent developments of parton shower algorithms.

The remainder of this work is organized as follows. In section 2, we introduce the
main theoretical concepts of leading (and subleading) jets and compare them to inclusive
jet production. We discuss the evolution equations of leading jets and factorization formulas
at fixed order and in the threshold limit. In addition, we discuss the connection between
leading and subleading jets and inclusive single-, di- and tri-jet functions. In section 3,
we discuss the setup of the parton shower Monte Carlo framework and we present first
numerical results. We discuss the resummation at LL accuracy and the extension beyond
LL by including (threshold resummed) hard and jet functions in the shower algorithm. In
section 4, we derive the threshold resummed hard and jet functions for e+e− hemisphere
leading jets and leading subjets. We discuss how nonperturbative effects can be included
in the threshold limit which is phenomenologically relevant for leading jets and present
numerical results for both processes at the cross section level. In section 5 we calculate
the average leading jet energy loss and the variance at NLO by taking moments of the
leading jet function. We present numerical results for the mean and variance of the leading
jet/energy loss distribution and focus in particular on quark/gluon differences. In addition,
we present numerical results for the Shannon entropy and the KL divergence. In section 6,
we study the discrimination power of leading (sub)jets for quark/gluon jet tagging. In
section 7, we discuss further applications of our framework such as event-wide leading jets
in e+e− collisions similar to existing data from LEP. In addition, we consider leading jets
in SIDIS and photon-jet correlations in proton-proton collisions. Both processes also allow
us to perform jet energy loss measurements. Lastly, we present results for leading partons
at the nonperturbative scale. We conclude in section 8.
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2 Fixed order, evolution and factorization

We start by reviewing the NLO jet function, its evolution and the factorization formula
for inclusive jets pp → jet + X in section 2.1. Correspondingly, we discuss the leading jet
cross sections pp → jet1 + X in terms of their NLO jet function, and evolution equations
in section 2.2. In addition, we introduce the relevant jet functions for subleading jets.
Subsequently, we discuss the structure of relevant factorization formulas in section 2.3. In
section 2.4, we extend the inclusive jet function for single jets to di- and tri-jet functions
and discuss their relation to leading and subleading jet functions. Here we refer to ref. [23]
where these relations were proposed in the context of statistical properties of randomly
broken objects and spin glasses.

2.1 Review of inclusive jet production

The inclusive jet function was calculated in refs. [19–21] for kT -type algorithms and in
ref. [68] for cone algorithms. See also [69, 70] for the extension to massive quarks. We can
write the inclusive jet function Ji(z,QR, µ) for i = q, g in terms of the momentum fraction
of the inclusive jets z, the jet radius R, the large reference scale Q and the renormalization
scale µ. For inclusive jet production in proton-proton collisions the large reference scale
is given by the transverse momentum of the initial fragmenting parton Q = p̂T = pT /z.
Here pT denotes the transverse momentum of the final observed jet. We note that p̂T is
not an observable quantity in proton-proton collisions which is why we convolve the jet
function with a hard-scattering function in the factorization formula of the cross section.
The range of the convolution integral is determined by the allowed range of p̂T which is
determined by the jet’s transverse momentum and rapidity pT , η and the CM energy

√
s,

see eqs. (2.5) and (2.6) below. In subsequent sections we will focus on cross sections where
we have access to the initial scale Q which is necessary to define the lost energy of a leading
jet as mentioned in the Introduction. Therefore, we keep the general notation here and
denote the hard reference scale by Q. For quarks and gluons we find the following results
at NLO

Jq(z,QR, µ) = δ(1− z) + αs
2π

(
ln
(

µ2

Q2R2

)
− 2 ln z

)
[Pqq(z) + Pgq(z)]

− αs
2π

[
CF

[
2(1 + z2)

(
ln(1− z)

1− z

)
+

+ (1− z)
]

− δ(1− z)CF
(

13
2 −

2π2

3

)
+ 2Pgq(z) ln(1− z) + CF z

]
(2.1)

Jg(z,QR, µ) = δ(1− z) + αs
2π

(
ln
(

µ2

Q2R2

)
− 2 ln z

)
[Pgg(z) + 2NfPqg(z)]

− αs
2π

[
4CA

(
1− z + z2)2

z

(
ln(1− z)

1− z

)
+
− δ(1− z)

(
CA

(
67
9 −

2π2

3

)

− TFNf

(23
9

))
+ 4Nf (Pqg(z) ln(1− z) + TF z(1− z))

]
. (2.2)
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The inclusive jet function measures the momentum fraction z of all jets that are produced
from the initial parton. The evolution equations of the inclusive jet functions are the
standard timelike DGLAP evolution equations [17, 18, 20, 21]

µ
d

dµJi = αs
2π
∑
j

Pji ⊗ Jj , (2.3)

similar to fragmentation functions. Here Pji(z) denote the time-like Altarelli-Parisi split-
ting functions which allow for a perturbative power expansion in terms of the QCD strong
coupling constant

Pji(z) = P
(0)
ji (z) + αs

2πP
(1)
ji (z) + . . . (2.4)

The inclusive jet functions are then evolved from their characteristic scale µ ∼ QR, which
removes logarithms of the jet radius in eq. (2.1), to the hard scale µ ∼ Q. This DGLAP
evolution resums large logarithmic corrections of the jet radius to all orders. The factor-
ization formula for the inclusive jet cross section pp→ jet+X differential in the transverse
momentum pT and rapidity η of the jet is given by

dσpp→jet+X
dpTdη =

∑
ijk

fi(xi, µ) ⊗ fj(xj , µ)⊗ Hijk(xi, xj , pT /z, η, µ)⊗Jk(z, pTR,µ) . (2.5)

Here fi,j denote the parton distribution functions (PDFs) for the two incoming protons and
Hijk are the hard-scattering functions ij → k similar to inclusive hadron production. They
are known analytically at NLO [71, 72]. For hadron production, the same factorization
formula as in eq. (2.5) can be used except that the perturbative jet functions are replaced
by fragmentation functions. The factorization in eq. (2.5) holds up to power corrections
O(R2) which are usually found to be small even for large values of R [24, 73]. The first two
symbols ⊗ in eq. (2.5) denote appropriate integrals over the momentum fractions xi,j . The
third integral denoted by ⊗ is a convolution integral in terms of the momentum fraction
z. To make this structure more explicit, we rewrite eq. (2.5) as

dσpp→jet+X
dpTdη =

∑
i

∫ 1

z0

dz
z
ffHi(z, pT , η, µ) Ji

(
z0
z
, pTR,µ

)
, (2.6)

where we absorbed the PDFs and corresponding integrations over the variables xi,j in the
new hard functions ffHi. Here the lower integration limit is given by z0 = 2pT /

√
s cosh η.

Note that in eqs. (2.5) or (2.6) we do not have access to the partonic transverse momentum
p̂T which appeared in the jet functions in eq. (2.1). Therefore, we write both the hard
and jet function in terms of the observed jet transverse momentum pT instead of the
initial partonic transverse momentum using the relation p̂T = pT /z as in ref. [20]. This is
valid as long as we are not in the regime where z � 1 which would require an additional
resummation of small-z logarithms. See refs. [74, 75] as well as earlier work in refs. [76–80]

We end this section by summarizing some key features of the inclusive jet functions.
Similar to PDFs and fragmentation functions, the inclusive jet functions constitute number
densities in the sense that an integral over the jet function (first Mellin moment) yields the
event averaged number of jets 〈Njet〉 which originate from the fragmenting parton. This
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number is generated dynamically through the QCD fragmentation process and depends
on the jet radius, the jet algorithm and the scale Q. Analogously, the same integral over
fragmentation functions gives the average number of hadrons or the hadron multiplicity.
The first moment (second Mellin moment) is related to momentum conservation in the sense
that the initial scale Q has to be recovered in the inclusive jet sample that is produced
resulting from the initial parton. Of course, in practice not the entire inclusive jet sample
resulting from a highly energetic quark or gluon is reconstructed by the experiment. The
limited range of detectors is taken into account in the factorization formula in eq. (2.5)
which depends on the jet rapidity η. At the level of the jet function, we thus have the
following two sum rules ∫ 1

0
dz Ji(z,QR, µ) = 〈Ni,jets〉 , (2.7)

∫ 1

0
dz z Ji(z,QR, µ) = 1 , (2.8)

which hold for quarks and gluons separately. Note that the quantity 〈Ni,jets〉 introduced
here is related to the entropy of a jet [81, 82]. In order to evaluate the first Mellin mo-
ment analytically, the resummation of small-z logarithms is required as mentioned above.
Related experimental results can be found in ref. [83] where the subjet multiplicity was
measured. The momentum sum rule for an inclusive jet sample in eq. (2.8) is illustrated
on the left side of figure 1 where three jets are reconstructed resulting from an initial frag-
menting quark. In this case, the momentum fractions of the three jets have to add up to
unity z1 + z2 + z3 = 1. An important aspect is that the momentum sum rule in eq. (2.8)
is conserved by the time-like DGLAP evolution of the jet functions which follows from

µ
d

dµ

∫ 1

0
dz z Ji(z,QR, µ) ∼

∑
j

∫ 1

0
dz z Pji(z) = 0 . (2.9)

We note that both sum rules in eqs. (2.7) and (2.8) only hold if the inclusive jet functions
in eq. (2.1) are written in terms of the partonic momentum Q = p̂T .

2.2 Leading and subleading jet functions and their evolution

We are now going to introduce the jet functions for leading and subleading jets analogous
to the inclusive case discussed in the previous section. The LO and LL resummation for
leading jets was first introduced in ref. [18]. The O(αs) correction of the leading and
subleading jet functions was first discussed in ref. [24]. Here we denote the leading jet
function by Ji(z1, QR, µ) which depends on the momentum fraction z1 of the leading jet
relative to the initial scale Q of the fragmenting quark or gluon, see the right panel of
figure 1. Analogously, the jet function that describes the formation of the leading and the
first subleading jet is given by Ji(z1, z2, QR, µ). It depends on the momentum fractions z1
and z2 of the leading and first subleading jet, respectively. It is a more differential version of
the leading jet function. Note that throughout this work we write jet and hard-scattering
functions associated with leading and subleading jets in script font to distinguish them
from the corresponding inclusive jet quantities.
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We start with the fixed order calculation of the leading and subleading jet function.
At LO there is just one parton and we trivially find

J (0)
i (z1, QR, µ) = δ(1− z1) , (2.10)

J (0)
i (z1, z2, QR, µ) = δ(1− z1) δ(z2) . (2.11)

At NLO there are at two partons which can be clustered into a single jet or two separate jets
depending on their distance and the jet algorithm. If both partons are clustered into the
same jet, the contribution is the same as for inclusive jets and it is proportional ∼ δ(1−z1).
If the two partons are clustered into separate jets, we only take into account the jet which
contains the more energetic parton. Instead, for inclusive jets we always take into account
both jets independent of how energetic they are. It turns out that at NLO we can write
the leading jet functions in terms of the inclusive ones by including a theta function which
requires z1 > 1/2. We thus find for the leading and subleading jet functions up to NLO

Ji(z1, QR, µ) = Θ(z1 > 1/2) Ji(z1, QR, µ) , (2.12)

Ji(z1, z2, QR, µ) = δ(1− z1 − z2) Θ(z1 > 1/2) Ji(z1, QR, µ) . (2.13)

Note that the corresponding jet functions Ji(z1, . . . , zn, QR, µ) which take into account the
dynamics down to the n-th leading jet can be constructed in a similar way. We also note
that the leading jet function is obtained from the subleading jet function upon integration∫ 1

0
dz2 Ji(z1, z2, QR, µ) = Ji(z1, QR, µ) . (2.14)

The leading jet function at NLO is only non-zero for z > 1/2 where it agrees with the
inclusive jet function. At next-to-next-to-leading order (NNLO), we need to consider three
particles in the final state which gives a lower bound for the leading jet function of z > 1/3.
In general, at NnLO, the minimal non-zero value of the leading jet function is thus given
by 1/(n+ 1).

Next, we consider the evolution equation of the leading jet functions. Different than
for inclusive jets, the evolution equations for leading and subleading jets are non-linear. At
NLO there are only two partons and it is sufficient to follow the leading parton at the 1→ 2
splitting. If there are subsequent splitting processes as well, one needs to know the value of
the leading jet function at each branching point. This is illustrated in figure 2 which shows
an exemplary branching tree, where the green line leads to the leading jet which carries
a momentum fraction z1. In order to obtain the correct path, we need to known at each
branching point the value of the branching fraction z of the splitting i→ jk as well as the
leading jet functions Jj(zj1) and Jk(zk1) of each branch. This feature of leading jets makes
the evolution equations non-linear. Instead, for inclusive jets we only need to sum over
all possible paths of the branching tree and we obtain the usual linear DGLAP evolution
equations, see section 2.1 above. The measurement of leading jets requires knowledge of
all the other jets when the evolution terminates. Only if we know all other jets we can
determine which jet is the leading jet. Instead, for an inclusive measurement we simply
sum over all possible jets at the end which does not require simultaneous knowledge about
the other jets that are produced.

– 8 –
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Figure 2. Illustration of an exemplary branching tree: Starting from parton i at the scale Q, four
partons/jets are produced which carry a momentum fraction zn relative to the initial scale. In order
to determine the correct path (green) that leads to the leading jet, we need to know the momentum
fractions and leading jet functions of each branch at a given splitting i → jk. This results in a
non-linear evolution equation for observables involving leading jets. Instead, for inclusive jets we
only need to know the final momentum fractions z of each jet irrespective of the they compare to
the rest of the event since we sum over all contributions.

We can write the non-linear evolution equation for the leading jet functions as1

µ
d

dµJi(zi1, QR, µ) = 1
2
∑
jk

∫
dz dzj1dzk1

αs(µ)
π

Pi→jk(z)Jj(zj1, QR, µ)Jk(zk1, QR, µ)

× δ(zi1 −max {zzj1, (1− z)zk1}) , (2.15)

which resums logarithms of the jet radius R. Here we follow ref. [84] and use the notation
Pi→jk(z) = P

(0)
ji (z) for the LO Altarelli-Parisi splitting functions and we regulate both

endpoints 1/(1 − z)+ and 1/z+. We thus have Pq→qg(z) = Pq→gq(1 − z) and Pg→gg(z) =
Pg→gg(1−z). We can then check explicitly that the leading jet functions in eq. (2.12) satisfy
the non-linear evolution equations. Similar non-linear evolution equation were obtained
in the context of fractal jet substructure observables [84], the jet charge [85, 86], track
functions [87, 88] and di-hadron fragmentation functions [89–91].

We also note that the evolution equations here are different than for the central subjets
or the jet shape with the winner-take-all axis (WTA) [92] which was considered in refs. [68,
93, 94]. Even though the fixed order expressions of the jet functions contain a similar term
∼ Θ(z > 1/2)Pji(z), the use of the WTA axis leads to a linear DGLAP-type evolution
equation with modified kernels.

Similar to the evolution equation for the leading jet functions in eq. (2.15), we can
write down an evolution equation for the subleading jet functions. We have

µ
d

dµJi(zi1, zi2, QR, µ) =

1
2
∑
jk

∫
dz dzj1dzk1dzj2dzk2

αs(µ)
π

Pi→jk(z)Jj(zj1, zj2, QR, µ)Jk(zk1, zk2, QR, µ)

×
[
Θ(zzj1 − (1− z)zk1) δ(zi1 − zzj1) δ(zi2 −max{zzj2, (1− z)zk1})

+ Θ((1− z)zk1 − zzj1) δ(zi1 − (1− z)zk1) δ(zi2 −max{(1− z)zk2, zzj1})
]
. (2.16)

1Note that we write zi1 instead of z1 in case the association of the momentum fraction to a particular
jet function may be ambiguous or if the flavor dependence is relevant.
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Different than for inclusive jet functions in eq. (2.7), we find that the leading jet functions
are normalized to unity (first Mellin moment). The first moment (second Mellin moment)
corresponds to the average energy or transverse momentum fraction 〈z1〉 which is contained
in the leading jet. Recall that for inclusive jets, the second Mellin moment is unity due
to momentum conservation, see eq. (2.8). We thus find the following expressions for the
leading jet functions ∫ 1

0
dzi1 Ji(zi1, QR, µ) = 1 , (2.17)

∫ 1

0
dzi1 zi1 Ji(zi1, QR, µ) = 〈zi1〉 . (2.18)

In order to interpret the leading jet functions as probability densities for the leading jet
to carry the longitudinal momentum fraction z1, they need to be i) normalized to unity
and ii) positive for all values of z1. The first requirement is satisfied as can be seen from
eq. (2.17). For example, we can check this result using the NLO expression. In addition,
this normalization is conserved under the non-linear evolution, i.e., we have

µ
d

dµ

∫ 1

0
dz1 Ji(z1, QR, µ) = 0 , (2.19)

which follows from eq. (2.15). The conservation of the first Mellin moment for leading
jets is analogous to the conservation of the second Mellin moment for inclusive jets, see
eq. (2.9) and only holds when the jet function is written in terms of Q = p̂T instead of
the transverse momentum of the observed jet. The second requirement that the leading
jet functions need to be positive for all values of z1 can be violated at finite perturbative
accuracy. For example, at NLO the leading jet function can become negative for large
values of z1 and small values of the jet radius R. However, we observe that this problem
can be solved by jointly resumming logarithms of the jet radius and threshold logarithms
which become important in the limit z1 → 1. We discuss the threshold resummation in
more detail in section 4 below. Therefore, we can indeed treat the leading jet functions
as probability densities which allow us to calculate the expectation value or the average
energy contained in the leading jet 〈zi1〉 as in eq. (2.18) above. We note that probability
densities are rather unusual in this context since we typically obtain number densities as
for inclusive jets or inclusive hadrons. Similar sum rules as in eqs. (2.17) and (2.18) hold
for leading hadrons which we discuss in more detail in section 7.4. In addition, analogous
sum rules as in eqs. (2.17) and (2.18) hold for subleading jets and the corresponding jet
functions can be treated as probability densities.

Having defined the average energy contained in the leading jet 〈zi1〉, we can now
define the average energy loss of a leading jet which is given by all the energy which is not
contained in the leading jet

〈zi,loss〉 = 1− 〈zi1〉 . (2.20)

We discuss 〈zi,loss〉 and other statistical quantities that quantify the probability distribution
of jet energy loss in section 5 for both the jet functions and at the level of cross sections.
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We also would like to stress that the notion of a leading or subleading jet does not
directly correspond to the leading jet in the entire event in proton-proton collisions which is
not possible due to the finite detector coverage and the incoming particle beams. Instead,
we calculate the leading jet in a given rapidity interval. This dependence is taken into ac-
count in factorization formulas which we discuss in the next section similar to inclusive jets.

We can now extend eq. (2.18) to subleading jets. For example, we can use the sublead-
ing jet function to calculate the average energy which is contained in the first subleading
jet as ∫ 1

0
dzi1 Ji(zi1, zi2, QR, µ) = Ji2(zi2, QR, µ) , (2.21)

∫ 1

0
dzi2 zi2 Ji2(zi2, QR, µ) = 〈zi2〉 . (2.22)

Here, Ji2 is the jet function of the second leading jet which is indicated by the additional
subscript 2. It constitutes the probability density for finding the first subleading jet with
momentum fraction zi2 and we can thus calculate the average quantity 〈zi2〉. Note that the
full subleading jet function is needed for the evolution in eq. (2.16). However, the informa-
tion of the leading jet momentum fraction zi1 can be integrated out after the evolution and
we can calculate the probability density for the first subleading jet. Analogous equations
hold for the n-th leading jet∫ 1

0
dzi1 . . . dzi(n−1) Ji(zi1, . . . , zin, QR, µ) = Jin(zin, QR, µ) , (2.23)

∫ 1

0
dzin zin Jin(zin, QR, µ) = 〈zin〉 . (2.24)

The average values of the energy fractions contained in the subleading jets is also relevant
for studies of the jet energy loss. They contain the information of how the lost energy of
the leading jet 〈zi,loss〉, as defined in eq. (2.20), is distributed amongst the subleading jets.
We have

〈zi,loss〉 =
∑
n≥2
〈zin〉 . (2.25)

We note that the non-linear evolution equations for leading and subleading jets in eqs. (2.15)
and (2.16), respectively, are difficult to solve analytically. In refs. [18, 24] an iterative
approach was used starting with the LO jet function as the initial condition of the evolution.
However, this approach is impractical when the whole NLO jet function is evolved and when
additional threshold logarithms are resummed to all orders which is discussed in more detail
in section 4 below. In addition, in order to calculate the (sub)leading jet spectrum at small-
z many iterations would need to be computed analytically. Ref. [18] also explored a strictly
leading order parton shower method. However, we introduce a new Monte Carlo approach
to solve the non-linear evolution equations for leading and subleading jets which we discuss
in detail in section 3, that allows for the incorporation of threshold resummation effects and
jet function contributions, moving beyond the LO process. Different than general purpose
Monte Carlo event generators our approach is a single purpose (or few purpose) parton
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shower which is designed to specifically solve the above evolution equations. It allows for
a well defined perturbative accuracy similar to analytical calculations and it allows for
systematic improvements to yet higher perturbative accuracy.

Before introducing the parton shower algorithm, we first discuss relevant factorization
formulas for leading and subleading jets in the next section.

2.3 Factorization

Different than for inclusive jets, see eq. (2.5), the form of the factorization formula for
leading jets pp → jet1 +X depends on the perturbative accuracy we are working at. The
structure of the hard functions changes and additional jet functions need to be included
as the perturbative accuracy is increased. Here we consider the cross section differential
only in transverse momentum of the leading jet pT1 for η = 0. The extension to η 6= 0
is straightforward since only the hard functions depend on the rapidity and the overall
theta functions which enforce momentum conservation. Following ref. [24], we can write
the leading jet cross section at LO and LL accuracy as

dσ(0)
pp→jet1+X
dpT1

=
∑
ij

∫
dp̂T i dp̂Tj

∫
dzi1 dzj1 ffH(0)

ij (p̂T i, p̂Tj , µ)

× Ji(zi1, p̂T iR,µ)Jj(zj1, p̂TjR,µ)

× δ(pT1 −max{zi1p̂T i, zj1p̂Tj}) Θ(2p̂T i/
√
s < 1) Θ(2p̂Tj/

√
s < 1) , (2.26)

where we sum over all contributing channels ij. Note that we denote the appropriate LO
hard-scattering functions by ffH(0)

ij whereas the inclusive hard functions are written as
ffHi. The hard functions ffH(0)

ij describe the production of two partons with momenta
p̂T i,j in a hard-scattering event which are back-to-back at LO in the transverse plane. In
principle we could also write the LO hard function only as a function of p̂T i = p̂Tj . The
hard functions also include the initial state parton distribution functions and appropriate
integrals over the momentum fractions of the incoming partons. The jet functions Ji,j
take into account the formation and evolution of the two leading jets which originate
from partons i and j, respectively. The delta function in the last line of eq. (2.26) then
picks one of the two leading jets from partons i, j. The one with the larger transverse
momentum is measured and denoted by pT1. The two theta functions in the last line
ensure momentum conservation. We can also rewrite eq. (2.26) in terms of the measured
jet transverse momenta instead of the partonic quantities pT i = zi1p̂T i which is valid as
long as we are sufficiently far away from the region where zi1 � 1. We find

dσ(0)
pp→jet1+X
dpT1

=
∑
ij

∫
dpT i dpTj

∫ dzi1
zi1

dzj1
zj1

ffH(0)
ij (pT i/zi1, pTj/zj1, µ)

× Ji(zi1, pT iR,µ)Jj(zj1, pTjR,µ)

× δ(pT1 −max{pT i, pTj}) Θ(2pT i/
√
s < zi1) Θ(2pTj/

√
s < zj1) , (2.27)
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which is closer to the factorization formula for inclusive jets in eq. (2.5). In either case the
evolution equations only resum logarithms of the jet radius. Next, we consider the leading
jet cross section with NLO hard-scattering functions. At NLO a third hard parton can be
radiated which requires us to introduce an additional jet function. The final jet with the
highest transverse momentum can result from the fragmentation process of either one of
the three hard partons produced in the hard-scattering process. We thus have

dσ(1)
pp→jet1+X
dpT1

=
∑
ijk

∫
dp̂T i dp̂Tj dp̂Tk

∫
dzi1 dzj1 dzk1 ffH

(1)
ijk(p̂T i, p̂Tj , p̂Tk, µ)

× Ji(zi1, p̂T iR,µ)Jj(zj1, p̂TjR,µ)Jk(zk1, p̂TkR,µ)

× δ(pT1 −max{zi1p̂T i, zj1p̂Tj , zk1p̂Tk})

×Θ(2p̂T i/
√
s < 1) Θ(2p̂Tj/

√
s < 1) Θ(2p̂Tk/

√
s < 1) , (2.28)

where ffH(1)
ijk denotes the NLO hard function with three hard partons ijk which subse-

quently fragment into jets. This result can be generalized to higher orders.
Next, we consider the cross section where we not only measure the transverse mo-

mentum of the leading jet but also the first subleading jet. We denote the transverse
momentum of the fist subleading jet by pT2. The result obtained here can also be extended
to the measurement of further subleading jets. At LO and LL, we find the following result

dσ(0)
pp→jet1+jet2+X
dpT1 dpT2

=
∑
ij

∫
dp̂T i dp̂Tj

∫
dzi1 dzi2 dzj1 dzj2 ffH(0)

ij (p̂T i, p̂Tj , µ)

× Ji(zi1, zi2, p̂T iR,µ)Jj(zj1, zj2, p̂TjR,µ)

× δ(pT1 −max{zi1p̂T i, zj1p̂Tj})

× δ(pT2 −max{min{zi1p̂T i, zj1p̂Tj}, zi2p̂T i, zj2p̂Tj})

×Θ(2p̂T i/
√
s < 1) Θ(2p̂Tj/

√
s < 1) . (2.29)

Here the leading jet pT1 is given by the transverse momentum of the leading jet originating
either from parton i or j as above. The transverse momentum of the first subleading jet pT2
is given by the smaller one of the leading jets from partons i and j or one of the subleading
jets. The theta functions in the last line do not change as they are written in terms of the
initial partonic transverse momentum. The factorization for leading and subleading jets in
eq. (2.29) can be generalized to higher perturbative accuracy similar to eq. (2.28). Note
that virtual corrections are included here in both the hard and jet functions.

It is instructive to consider how the factorization for inclusive jets is recovered by
summing over the leading jet and all subleading jets. After carrying out the sum over all
jets, the factorization structure simplifies significantly and it has the same structure to
all orders. To make this connection more explicit, we work with a factorization formula
as in eq. (2.26). The delta function in the last line of that equation, which specifies
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the measurement, needs to be replaced by a sum over delta functions that measure the
transverse momentum of all jets. Schematically, for two initial partons we have

δ(pT − zi1p̂T i) + δ(pT − zj1p̂Tj) + other subleading jets , (2.30)

where the first two terms which are written out explicitly correspond to the two leading jets
originating from partons i and j. As an example, we consider only the first delta function.
We find that we can rewrite the corresponding contribution to the inclusive cross section as∫

dp̂T i dp̂Tj
∫

dzi1 dzj1 ffH(0)
ij (p̂T i, p̂Tj , µ)Ji(zi1, p̂T iR,µ)Jj(zj1, p̂TjR,µ)

× δ(pT − zi1p̂T i) Θ(2p̂T i/
√
s < 1) Θ(2p̂Tj/

√
s < 1)

=
∫ 1

z0
i1

dzi1
zi1
Ji(zi1, pTR,µ)

∫
dp̂Tj

×
∫

dzj1 Jj(zj1, p̂TjR,µ) ffH(0)
ij (pT /zi1, p̂Tj , µ) Θ(2p̂Tj/

√
s < 1)

=
∫ 1

z0
i1

dzi1
zi1
Ji(zi1, pTR,µ) ffH′ (0)

i

(
z0
i1
zi1
, µ

)
, (2.31)

where the lower integration limit here is given by z0
i1 = 2pT /

√
s as expected from eq. (2.5)

for η = 0. The jet function Ji in the second and third line is written in terms of the
observed jet pT instead of the parton transverse momentum similar to eq. (2.27). After
performing the integral over zj and p̂Tj and implicitly defining ffH′i, the last equation has
the typical convolution structure as it is found for inclusive jets. Similar steps hold for the
other jets that are produced and eventually we find∑

all jets

∑
i

Ji ⊗ ffH′i =
∑
i

Ji ⊗ ffHi . (2.32)

The right hand side of the equation is written in terms of the inclusive jet and hard functions
of eq. (2.5). This relation has been checked explicitly at NLO but holds more generally since
the leading and all subleading jets have to add up to the inclusive jet cross section. Note
that if we consider the inclusive cross section where only the two leading jets are measured
for every event, it would approximate the inclusive jet cross section at high pT but differ
at low pT where subleading jets are important. The factorization of the corresponding
cross section would involve the subleading jet functions as in eq. (2.29). These kind of
differences may also be relevant in the context of assessing QCD scale uncertainties of jet
cross sections, see for example [95, 96].

We also note that a factorization formula similar to eq. (2.29) is relevant for the precise
calculation of jet substructure observables in order to compare to recent measurements
from ATLAS [55, 56] and CMS [57]. In this case the jet substructure measurements were
performed only on the leading and the first subleading jet. In addition, a requirement
pT1/pT2 < 1.5 (ATLAS) or (pT1− pT2)/(pT1 + pT2) < 0.3 (CMS) was imposed on the ratio
of the transverse momenta of the two leading jets. These constraints affect the quark/gluon
fractions which are not be properly taken into account when a factorization formula for
inclusive jets is used instead.
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2.4 Leading and subleading jets from inclusive single-, di- and tri-jet functions

The (single-)inclusive jet function Ji(z) was already introduced in section 2.1. Analogously,
we can introduce the inclusive di- and tri-jet functions which we denote by

Ji(z1, z2) , Ji(z1, z2, z3) . (2.33)

The inclusive di-jet function is similar to di-hadron fragmentation functions considered
for example in refs. [89–91]. Analogously, we denote the inclusive n-jet function by
Ji(z1, . . . , zn). Different than for the leading and subleading jet functions no ordering
of the momentum fractions zi is implied. For example, at NLO we can write the di- and
tri-jet functions in terms of the (single-)inclusive jet function

Ji(z1, z2) = δ(1− z1 − z2) Ji(z1, QR, µ) , (2.34)

Ji(z1, z2, z3) = δ(1− z1 − z2) δ(z3) Ji(z1, QR, µ) . (2.35)

Note that the NLO di-jet function in eq. (2.34) is similar to the NLO subleading jet function
in eq. (2.13) but without the theta function Θ(z1 > 1/2). Higher order results for the di-
and tri-jet functions can be obtained with the parton shower which will be introduced
in the next section. In the following, we leave the arguments QR,µ of the jet functions
implicit. Following ref. [23], we should be able to compute the leading and subleading jet
functions from the inclusive n-jet functions. If the observed jet has a momentum fraction
z > 1/2 it is the largest jet. We thus have

Ji(z) = Ji1(z) = Ji(z) , for z > 1/2 . (2.36)

In the range of 1/3 < z < 1/2 the inclusive jet function is given by the sum of the leading
and subleading jet functions.

Ji1(z) + Ji2(z) = Ji(z) , for 1/3 < z < 1/2 . (2.37)

Analogous to the notation introduced in eq. (2.23) we include a subscript n to denote the
jet function which depends only on the momentum fraction of the n-th leading jet. For
example, we have

Ji2(z2) =
∫ 1

0
dz1 Ji(z1, z2) . (2.38)

More generally, we have

Ji1(z) + . . .+ Jin(z) = Ji(z) , for 1/(n+ 1) < z < 1/n . (2.39)

Here we limit ourselves to confirm the observation made in ref. [23] in the range of 1/3 <
z < 1/2. For lower values of z a similar analysis is possible as outlined in ref. [23]. We
have

Ji2(z2) =
∫ 1

z2
dz1 Ji(z1, z2) , for 1/3 < z2 < 1/2 . (2.40)

And the leading jet function is given by

Ji1(z1) = Ji(z1)−
∫ 1

z2
dz1 Ji(z1, z2) , for 1/3 < z1 < 1/2 . (2.41)
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These relations were derived in ref. [23] from general considerations. In a general fragmen-
tation process, one would need to know the whole set of leading, sub-leading, or sub-sub-
leading fragment functions, etc., or the whole suite of inclusive multi-fragment distribution
functions to completely characterize the fragmentation process, unless a more dynami-
cal rule for generating these functions can be found. In the jet case, the parton shower
constitutes such a dynamical rule, at least to leading logarithmic accuracy.

3 Monte Carlo setup

In this section, we introduce the new Monte Carlo setup which solves the non-linear evo-
lution equations of leading and subleading jets including the threshold resummed hard
and jet functions. We start by presenting the Monte Carlo setup at LO/LL accuracy in
section 3.1 following ref. [18]. For inclusive jets we compare the Monte Carlo result to an
analytical solution of the DGLAP evolution equations in Mellin space where the contour
integral of the inverse transformation is performed numerically. In section 3.2, we then dis-
cuss in detail how the Monte Carlo code can be extended beyond LL accuracy by including
the (threshold resummed) hard and jet functions which brings the perturbative accuracy
of the shower to the same level as analytical calculations of inclusive jets.

3.1 The parton shower at leading log

At LO/LL order we follow the parton shower setup of ref. [18]. See also ref. [97]. We have
at any time a set of partons S that represents the state of the shower:

S = {{z1, f1}, {z2, f2}, . . . , {zn, fn}} . (3.1)

Here, zi is the energy fraction carried by the i-th parton, and fi = q, q̄, or g is its flavor.
We choose a uniformly distributed random number rnd ∈ [0, 1] and solve for a time step
∆t according to

rnd = exp
[
−∆t

∑
i∈S

1−ε∫
ε

dz Pfi(z)
]
. (3.2)

The Pfi denote the final state summed splitting functions for a quark to split to a quark
and gluon (fi = q or q̄) or a gluon to split to anything (fi = g). Here ε is a small parameter
which cuts off the integral at both endpoints. The sum in the exponent in eq. (3.2) runs over
all the generated partons in the event. We then advance the Monte Carlo time t→ t+ ∆t
and solve for R in

t(Q,R) =
QR∫
Q

dt′
t′
αs(t′e−K/β0)

π
, (3.3)

K =
(

67
9 −

π2

3

)
CA −

20
9 TFNf . (3.4)

That way the MC time and R = tan(R/2) are ordered variables and the shower terminates
when t > tmax = t(Q,R). For strict LO/LL comparisons, we take K = 0, otherwise, K is
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Figure 3. LO/LL inclusive jet functions for quarks (left panel) and gluons (right panel). We
show the results obtained analytically in Mellin space where the contour integral of the inverse
transformation is performed numerically and the result from the parton shower. As an example,
we choose Q = 100GeV and five exemplary values of the jet radius.

a factor which makes the threshold contribution consistent with the two-loop cusp, using
the so-called CMW trick [98]. The minimum angle R is set by the jet radius R, which is
where the shower algorithm terminates. We then pick a parton to split with a probability
given by its relative contribution to the decay rate of eq. (3.2). The momentum fraction
z of the splitting of the chosen parton is sampled according to the appropriate DGLAP
splitting functions, and in the case of a splitting gluon, the flavor is assigned based on the
relative contribution of the final state particles to the gluon’s phase space.

We now histogram the inclusive momentum fraction z of the partons produced by the
shower relative to the initial quark or gluon. The result is the LO evolved jet function.
To establish the consistency of the parton shower result and the analytical Mellin space
evolution of ref. [20], we compare the two results in figure 3. As an example, we show the
results for Q = 91.2GeV and five exemplary jet radii R = 0.05− 0.8. Here we use the LO
expression for the running coupling constant and αs(MZ) = 0.1187. We observe that the
two results agree exactly for the five jet radii and over the entire range of z.

3.2 Extension beyond leading-logarithmic accuracy

In order to improve the accuracy of the shower, it is helpful to examine the factorization
theorem for inclusive jet production. We write

dσ
dz =

∑
i,j

∫ 1

z

dz′
z′

∫ 1

z′

dz′′
z′′

Jj
( z
z′
, QR

)
Uji
( z′
z′′

;QR,Q
)
Ci(z′′, Q) . (3.5)

Here Ci represents a hard-scattering/coefficient function of a particular process. We can
then describe how the parton shower generates U . First, we introduce:

Notation. Let
〈〈
f(S)

〉〉i
R
denote the shower average on partonic states S of some function

f on those states at the angular scale R, when the shower was initiated by the parton of
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flavor i. S = {{z1, f1}, {z2, f2}, . . . , {zn, fn}} is the final state of the shower given above,
which is the stochastic variable being averaged over.

Then the DGLAP evolution kernel U(x;R;Q) to leading logarithmic accuracy, evolved
from a hard scale Q down to QR, is given by

Uij(x;R) =
〈〈
δfkjδ

(
x− zk

)
k∈S

〉〉i
R
. (3.6)

Where we have introduced the energy fraction zk of a parton in the event. In practical
algorithmic terms, what eq. (3.6) actually means is that we start with a histogram H ij

x ,
indexed by the momentum fraction x ∈ [0, 1], and labeled by the initial and final partons
i, j. Each x falls into some bin of size ∆(x) � 1 (which can also depend on where we are
in the distribution). Initialize Hx = 0. Then:

1. Run shower to get the set of momenta S at angular scale R.

2. For each k ∈ S, add ∆−1(x) to the bin in H ifk
x at position x where x − ∆(x)/2 <

zk < x+ ∆(x)/2.

After a sufficient number of events, divide all bins in Hx by the number of events. Then
Hx = U(x;R) in the limit ∆(x) → 0. Note that this effectively approximates the delta
function in eq. (3.6) by the step function:

δ(x− z) ∼ 1
∆(x)Θ

(
(x+ ∆(x)/2)− z

)
Θ
(
z − (x−∆(x)/2)

)
. (3.7)

Going back to the resummed factorization formula of eq. (3.5), after a change of variables,
we can combine the jet and coefficient function into a single function:

CJji(z,QR,Q) =
∫ 1

z

dz′
z′
Jj
( z
z′
, QR

)
Ci(z′, Q) , (3.8)

dσ
dz =

∑
i,j

∫ 1

z

dz′
z′
CJji

(
z′, QR,Q

)
Uji
( z
z′
, QR,Q

)
. (3.9)

Substituting in eq. (3.6), we then get

dσ
dz =

∑
i,j

∫ 1

z
dz′CJji

(
z′, QR,Q

)〈〈
δfkjδ

(
z − z′ × zk

)
k∈S

〉〉i
R
. (3.10)

We wish to implement this last integral completely stochastically in the shower. We proceed
as follows. First we introduce the cumulant function and its functional inverse

CJ ij(x) =
∫ 1

x
dz CJji

(
z,QR,Q

)
, (3.11)

CJ −1
ij

(
CJ ij(x)

)
= x . (3.12)
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Then we change variables

z = CJ −1
ij (σ) , (3.13)

dz = dσ
CJij(CJ −1(σ))

, (3.14)

dσ
dz =

∑
i,j

∫ σmax

σmin
dσ
〈〈
δfkjδ

(
z − zk × CJ −1

ij (σ)
)
k∈S

〉〉i
R
. (3.15)

If we can normalize CJ(x) on some interval, so 0 < CJ (x) < 1, then we can take σ to be
a random number between 0 and 1, and thus perform this final integral via a Monte Carlo
sampling2

dσ
dz ∝

∑
i,j

[〈〈
δfkjδ

(
z − zk × CJ −1

ij (rnd)
)
k∈S

〉〉i
R

]
. (3.16)

Here [·] is the final averaging process over the random variable rnd ∈ [0, 1] uniformly
distributed on the unit interval. The ∝ arises from normalization issues. Given a coefficient
and jet function, we can compute the stochastic averaging as follows: we start with a
histogram H ij

x , indexed by the momentum fraction x ∈ [0, 1], and labeled by the initial
and final parton flavors i, j. Each x falls into some bin of size ∆(x)� 1. Initialize H ij

x = 0.
Then:

1. Run shower starting with initial parton i to get the set of momenta S at angular
scale R.

2. For each k ∈ S, draw a random number uniformly between 0 and 1, rnd, and calculate
CJ −1

ifk
(rnd) (recall that fk is the flavor of the k-th parton in the shower), then add

∆−1(x) to the bin in H ifk
x at position x where x − ∆(x)/2 < zk × CJ −1

ifk
(rnd) <

x+ ∆(x)/2.

After a sufficient number of events, divide all bins in H ij
x by the number of events.

We can then improve the accuracy of the shower by using instead of the leading order
coefficient and jet functions their threshold resummed expressions, as described in the
next section. The algorithm for leading jet production with threshold corrections is then
as follows:

1. Run shower starting with initial parton i to get the set of momenta S at angular
scale R.

2. For each k ∈ S, draw a random number uniformly between 0 and 1, rnd, and set
xk = zk×CJ thr−1

ifk
(rnd) (recall that fk is the flavor of the k-th parton in the shower).

This gives a set of jet momenta {x1, . . . , xn}. Then add 1 to the bin in H ifk
x at

position x where x−∆(x)/2 < max{x1, . . . , xn} < x+ ∆(x)/2.
2We note that for the NLO coefficient and jet functions in the inclusive case, the function CJ (x) is not

normalizable, due to soft singularities as x → 0. However, we avoid this issue by only using the threshold
resummed expressions for these functions, which is appropriate for leading jet production.
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Figure 4. Illustration of e+e− hemisphere leading jets (left) and leading subjets (right).

After a sufficient number of events, divide all bins in H ij
x by the number of events. We note

that the inverse function CJ thr is calculated from the threshold resummation expressions
for C and J .

Finally, we note that in principle the NLO DGLAP evolution kernels can be included in
a parton shower following ref. [99]. We leave a combination of the NLO DGLAP evolution
and the NLO/threshold resummed hard and jet functions for future work.

4 Threshold resummation for leading jet observables

For leading jets the threshold region z → 1 [30, 31] is phenomenologically important. There-
fore, we need to include the corresponding double logarithmic corrections to all orders at
NLL′ accuracy. We note that the jet at threshold is the leading jet — up to power correc-
tions, and so we do not need to consider the difference between the inclusive and leading jets
when performing the resummation. We consider first the threshold resummation for e+e−

hemisphere jets which will be the standard reference process for the subsequent section.
Second, we consider the threshold resummation for subjets in proton-proton collisions. The
two processes are illustrated in figure 4 and the corresponding threshold resummation is
discussed in sections 4.1 and 4.2. Different than event-wide leading jets in proton-proton
or e+e− collisions, for both processes considered here we only have one initial parton at
LO/LL accuracy. Different than for fixed order calculations of leading jets, as discussed in
the previous section, the structure of the factorization does not change order-by-order in
the threshold region. By including the threshold resummed hard and jet functions in the
Monte Carlo approach discussed above, we can obtain numerical results for leading jets.
We discuss nonperturbative effects in section 4.3 which can be included in the threshold
region by convolving the perturbative spectrum with a shape function. We then present
numerical results for both processes in section 4.4. Parton showers should naturally, at least
to leading logarithmic accuracy, resum final state threshold logarithms, such as treated in
this paper. We also note that in refs. [100, 101] initial state threshold resummation was
also included in the Deductor parton shower.
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4.1 e+e− hemisphere jets

For e+e− hemisphere jets3 there is only one initial parton at LO which is different than for
e+e− event-wide leading jets which will be discussed in section 7.1 below. Note that for
inclusive jets this distinction is not relevant at the level of the factorization theorem since
we sum over all possible jets in the final state. Per-event and per-hemisphere inclusive
jets only differ in terms of their normalization. We consider the cross section dσ/dz where
additional angular dependencies are integrated out and z = 2E/Q is the hemisphere jet
energy relative to half of the CM energy Q =

√
s. The collinear factorization using lnR

resummed jet functions is analogous to the results discussed above and it’s form depends
on the perturbative accuracy. At LO/LL accuracy we have

dσe+e−→jet1+X
dz1

=
∑
i

Hi(Q, z1, µ)⊗ Ji(z1, QR, µ) . (4.1)

Therefore, this process is ideally suited to study jet energy loss since all three criteria listed
in the Introduction are satisfied. At LL accuracy, we find a direct connection between the
leading jet cross section and the average parton energy loss∫ 1

0
dz1 z1

1
σtot

dσe+e−→jet1+X
dz1

= 〈z1〉 , (4.2)

see eq. (2.18). Here the average energy loss is a function of the energy scale Q and the jet
radius R. At higher perturbative accuracy, additional jet functions need to be introduced
in eq. (4.1). However, in the threshold limit z → 1, where additional emissions are soft, we
can obtain a closed form of the factorization formula. We derive the threshold resumma-
tion in Mellin transform space and then perform the inverse transformation analytically.
Throughout this work we adopt the following convention for the Mellin transform and
it’s inverse

f(N) =
∫ 1

0
dz zN−1f(z) , (4.3)

f(z) =
∫
CN

dN
2πiz

−Nf(N) . (4.4)

In this section we derive the threshold resummed cross section for inclusive e+e− hemisphere
jets. The leading jet cross section is then obtained by including the threshold resummed
hard and jet functions in the parton shower as discussed in the previous section. In the
threshold region, the cross section can be refactorized as

dσe+e−→jet+X
dz =

∑
i

Hi(Q,µ)×Ji(z,Q, µ) ⊗ Si(z,QR, µ) ⊗ SNGL
i (z)×Ji(QR,µ) . (4.5)

Here Hi is the hard function [104], Ji accounts for the recoiling soft radiation [105, 106],
Si is a soft-collinear function [107, 108] taking into account soft radiation in the direction

3The hemispheres in e+e− collisions can be obtained with the exclusive kT algorithm [102] or the thrust
axis [103].
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Figure 5. Comparison of collinear factorization (left) and when threshold resummation is included
(right). The evolution indicated by the blue arrows is carried out analytically and in both cases
the parton shower resums large logarithms between the scales QR → Q. Functions with the same
colored box have the same characteristic scales.

of the observed jet [109, 110] and Ji takes into account unmeasured collinear radiation
inside the observed jet [111, 112]. In addition, SNGL

i accounts for non-global logarithms
(NGLs) due to correlations between the in- and out-of-jet region [113]. For our numerical
results presented below we include the fit to the Monte Carlo algorithm of ref. [113]. To
the accuracy we are working at, the NGL factor can be included multiplicatively. For
completeness, we summarize the NLO order expressions of the relevant functions in the
appendix A. For phenomenological applications at LEP, the sum in eq. (4.5) runs over quark
and anti-quark channels. For our numerical results presented below we also consider leading
jets initiated by gluons. In e+e− collisions they can be obtained from a hard-scattering
process with an intermediate scalar φ→ gg, where φ could be an intermediate Higgs boson.
The natural scales which eliminate the large logarithms of the different functions at fixed
order and set the initial scale of their RG evolution are given by

µH ∼ Q , µJ ∼ (1− z)1/2Q , µS ∼ (1− z)QR , µJ ∼ QR . (4.6)

We note that both within collinear factorization, eq. (4.1), and when threshold resummation
is included as in eq. (4.5), the parton shower resums logarithms between the scales QR→ Q

which is illustrated in figure 5. The additional resummation of the threshold logarithms
is carried out analytically as described in this section and included in the parton shower
algorithm. As an example, we consider the RG equation of the soft-collinear function Si.
In Mellin space the evolution equation is multiplicative and can be written as

µ
d

dµSi (QR/N, µ) = γSi (QR/N, µ)Si (QR/N, µ) . (4.7)

The anomalous dimension is given by

γSi (QR/N, µ) = −αs
π
Ci ln

(
µ2N̄2

Q2R2

)
, (4.8)

with N̄ = NeγE . In general, γSi has the structure

γSi (QR/N, µ) = −Γi (αs) ln
(
µ2N̄2

Q2R2

)
+ γSi (αs) . (4.9)
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The cusp Γi and non-cusp γi anomalous dimensions allow for the following perturbative
expansion

Γi (αs) =
∞∑
n=0

Γni
(
αs
4π

)n+1
, γi(αs) =

∞∑
n=0

γni

(
αs
4π

)n+1
. (4.10)

For the soft-collinear function Si the non-cusp term vanishes to NLL, γS,0i = 0. The relevant
terms of the cusp anomalous dimension at NLL are given by

Γ0
i = 4Ci , Γ1

i = 4Ci
[(

67
9 −

π2

3

)
CA −

20
9 TFNf

]
. (4.11)

Solving the evolution equation in eq. (4.7), we find

Si (QR/N, µ) = Si (QR/N, µS) exp
[∫ µ

µS

d lnµ′ γSi
(
QR/N, µ′

)]
. (4.12)

Instead of performing the inverse transformation numerically using for example the minimal
prescription of ref. [114], we follow here the method introduced in refs. [115, 116] and
perform the inverse transformation analytically. Following the notation of ref. [117], we
introduce the functions Ki, ηi and ηi,γ as

Ki (µ, µ0) =
∫ αs(µ)

αs(µ0)

dα
β(α)Γi(α)

∫ α

αs(µ0)

dα′
β (α′) , (4.13)

ηi (µ, µ0) =
∫ αs(µ)

αs(µ0)

dα
β(α)Γi(α) , (4.14)

ηi,γ (µ, µ0) =
∫ αs(µ)

αs(µ0)

dα
β(α)γi(α) . (4.15)

Evaluating these expressions at NLL, we find

Ki (µ0, µ) = − Γ0
i

4β2
0

[
4π

αs (µ0)

(
1− 1

r
− ln r

)
+
(

Γ1
i

Γ0
i

− β1
β0

)
(1− r + ln r) + β1

2β0
ln2 r

]
,

(4.16)

ηi (µ0, µ) = − Γ0
i

2β0

[
ln r + αs (µ0)

4π

(
Γ1
i

Γ0
i

− β1
β0

)
(r − 1)

]
, (4.17)

with r = αs(µ)/αs(µ0) and similarly for ηi,γ . The function ηi,γ vanishes for the soft function
Si at NLL. We can then write the evolved soft function Si in eq. (4.12) in Mellin space as

Si (QR/N, µ) = Si (QR/N, µS) e−2Ki(µ,µS)
(
µSN̄

QR

)−2ηi(µ,µS)
(4.18)

Next, we consider the Mellin inverse transformation back to z-space. Note that here we did
not make a scale choice for µS . Therefore, the N -dependence appears both in the factor
N−2ηi and also the initial condition of the evolution Si (QR/N, µS) which we need to take
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into account at NLL′ accuracy. The initial condition of the evolved soft function Si is a
polynomial of L = ln(µ2

SN̄
2/(Q2R2)). With

Lm
(
µSN̄

QR

)−2η(µ,µS)
= (−1)m∂mη

(
µSN̄

QR

)−2η(µ,µS)
, (4.19)

we can then write the initial condition of the soft function in eq. (4.18) as

Si(L, µS) → Si(−∂η, µS) . (4.20)

With this replacement, the only remaining dependence on the Mellin variable N is the
factor N−2η. We calculate the following Mellin transformation∫ 1

0
dz zN−1(1− z)−1+2η 1

Γ[2η] = Γ[N ]
Γ[N + 2η] = N−2η +O

( 1
N

)
. (4.21)

In the threshold limit we can drop terms which are power suppressed as O(1/N). With
this result we can now write the NLL resummed soft function in z-space as

Si(z,QR, µ) = e−2Ki(µ,µS) (1− z)−1+2ηi(µ,µS)

Γ[2ηi(µ, µS)]

(
µSe

γE

QR

)−2ηi(µ,µS)
. (4.22)

In order to implement the threshold resummed jet function in the Monte Carlo code dis-
cussed in section 3 above, we need the cumulant instead of the differential result. We take
the cumulant to be the integral of eq. (4.22) from z to 1. We find

Sci (z,QR, µ) = e−2Ki(µ,µS) (1− z)2ηi(µ,µS)

Γ[1 + 2ηi(µ, µS)]

(
µSe

γE

QR

)−2ηi(µ,µS)
. (4.23)

Here the superscript c indicates that Sci is the cumulative result of the soft function. Next,
we extend our result to NLL′ accuracy where we need to include the initial condition
Si(−∂η, µS) of the evolved soft function at O(αs). Taking the first and second order
derivatives of eq. (4.23) with respect to η, we find

−∂η → O1 = 2 ln
((1− z)QR

µSeγE

)
− 2ψ0(1 + 2η(µ, µS)) ,

(−)2∂2
η → O2 = O2

1 − 4ψ1(1 + 2η(µ, µS)) . (4.24)

Substituting the derivatives (−1)m∂mη for the operators Om in Si(−∂η, µS), we find the
following expression for the resummed cumulant of the soft function at NLL′ accuracy

Sci (z,QR, µ) =
[
1− αs(µS)

4π Ci

[(
2 ln

((1− z)QR
µSeγE

)
− 2ψ0(1 + 2ηi(µ, µS))

)2

− 4ψ1(1 + 2ηi(µ, µS)) + π2

2

]]

× e−2Ki(µ,µS) (1− z)2ηi(µ,µS)

Γ[1 + 2ηi(µ, µS)]

(
µSe

γE

QR

)−2ηi(µ,µS)
. (4.25)
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Lastly, we need to calculate the convolution of the resummed soft function and the jet
function Ji. At NLL, we find

J c
i ⊗ Sci (z,Q,R, µJ , µS , µ) = e2Ki(µ,µJ )+ηJ

i,γ(µ,µJ )−2Ki(µ,µS)

× (1− z)2ηi(µ,µS)−2ηi(µ,µJ )

Γ[1− 2ηi(µ, µJ ) + 2ηi(µ, µS)]

×
(
µJ eγE

Q

)2ηi(µ,µJ )(µSeγE
QR

)−2ηi(µ,µS)
. (4.26)

The relevant anomalous dimensions can be found in the appendix A. The extension to NLL′
can be obtained in analogy to eq. (4.25) above. Besides the NGLs, the remaining functions
in the refactorized expression in eq. (4.5) are independent of z and satisfy multiplicative
evolution equations. Their anomalous dimensions are also listed in the appendix A.

4.2 Subjets

In proton-proton and heavy-ion collisions we do not have access to anx event-wide reference
scale like in e+e− collisions to define the energy loss of the leading jet. However, we can
construct a reference scale by first identifying an inclusive jet sample with jet radius R.
The transverse momentum of the identified jets can be used a reference scale. We then
recluster the particles inside a given jet with a jet radius r < R and measure the momentum
of the identified leading subjet prT relative to the initial jet zr = prT /pT . A calculation of the
inclusive subjet distribution within collinear factorization was discussed in refs. [21, 68]. See
also refs. [118, 119]. We briefly review the factorization for inclusive subjets within collinear
factorization and we then extend it to include the resummation of threshold logarithms
which can also be implemented in the parton shower framework introduced above. We
consider the cross section

dσpp→jR(jr)+X
dpT dη dzr

=
∑
ijk

fi(xi, µ)⊗ fj(xj , µ)⊗Hijk(xi, xj , pT /z, η, µ)⊗Gk(z, zr, pTR, r, µ) ,

(4.27)
where pT and η is the transverse momentum rapidity of the inclusive jet with radius R. See
also eq. (2.6). Up to power corrections O(R2), the cross section can be factorized in terms
of parton distribution functions fi,j , hard-scattering functions Hijk and a jet function Gk
(typically denoted by Gk e.g. in ref. [68]) which depends on the jet substructure observable
zr. The symbols ⊗ denote appropriate integrals over the involved longitudinal momentum
fractions xi,j and the fraction z contained in the observed jet with radius R. We change
the index of the jet function to Gi from here on. At NLO, the jet function for a quark is
given by

Gq (z, zr, pTR, r, µ) = δ(1− z)δ (1− zr) + αs
2π

{
δ (1− zr) ln

(
µ2

p2
TR

2

)
[Pqq(z) + Pgq(z)]

+ δ(1− z) ln
(
R2

r2

)
[Pqq (zr) + Pgq (zr)] + CF δ (1− zr)

[
δ(1− z)

(
13
2 −

2π2

3

)

−2
(
1 + z2

)( ln(1− z)
1− z

)
+
− 2 ln(1− z)1 + (1− z)2

z
− 1

]}
, (4.28)
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and similarly for a gluon, see ref. [68]. Note that here z denotes the momentum fraction
contained in the inclusive jet with radius R relative to the initial parton and zr the fraction
of the observed jet contained in the subjet with radius r. The logarithm ln(µ2/p2

TR
2) in

the first line is resummed through DGLAP evolution which is satisfied by the entire jet
function Gi. In order to resum the logarithm ln(R2/r2) in the second line of eq. (4.28),
the jet function Gi can be further factorized in terms of a hard matching coefficient and
a jet function for the subjet ∼ H̃ij ⊗ Jj which was carried out in ref. [68]. Here we
extend this calculation and include also the resummation of threshold logarithms which
is phenomenologically important similar to the e+e− hemisphere jets discussed above. At
threshold zr → 1, the jet function Gi section can be refactorized as

Gi(z, zr, pTR, r, µ) =
∑
j

Hij(z, pTR,µ)× Sj(zr, pTR,µ)⊗ Sj(zr, pT r, µ)

⊗ SNGL,R
j (zr)⊗ SNGL,r

j (zr)× Jj(pT r, µ) , (4.29)

which allows for the joint resummation of threshold logarithms and ln(R2/r2) similar to
eq. (4.5) above. The hard functions Hij can be combined with the remaining functions in
eq. (4.27) which altogether can be considered effective quark/gluon fractions. Here Sj is a
collinear-soft function — the same as for hadon-in-jet production at threshold which was
discussed at NLL′ accuracy in ref. [120]. See also ref. [121]. The soft-collinear function
Sj and the jet function Jj are the same as for e+e− hemisphere jets in eq. (4.5) except
that they are evaluated at the subjet radius r. We note that the NLO expressions of
the soft-collinear and collinear-soft funtion are the same up to an overall minus sign (and
the different jet radii). For the subjet refactorization at threshold, we find two types of
NGLs. They arise independently at the boundary of the initial jet due to a correlation
of the functions Hij , Sj and at the boundary of the subjet due to the correlation of the
functions Sj , Jj . The fixed order expressions of all relevant functions and their anomalous
dimensions can be found in the appendix A. The natural scales of the different functions
in the factorization at threshold in eq. (4.29) are given by

µH ∼ pTR , µS ∼ (1− zr)pTR , µS ∼ (1− zr)pT r , µJ ∼ pT r . (4.30)

The solution of the evolution equations can be obtained in analogy to the calculation
outlined for e+e− hemisphere jets above. Similar to leading e+e− hemisphere jets, eq. (4.2),
we can relate the first moment (second Mellin moment) of the leading subjet cross section
to the average partonic energy loss

∫ 1

0
dz1 z1

1
σtot

dσ(0)
pp→jR(jr)+X

dpT dη dz1
= fq〈z1q〉+ fg〈z1g〉 . (4.31)

Here the result is weighted by appropriate quark/gluon fractions fq,g and σtot is the inclusive
jet cross section (without the substructure measurement).
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Figure 6. Inclusive and leading jet spectra for quark/gluon e+e− hemisphere jets and
√
s = Q =

91.2GeV.

4.3 Nonperturbative effects

Finally, we must deal with possible nonperturbative effects in the shower. To regulate the
Landau pole, we shift the argument of the running coupling as:

αs(µ)→ αs
(√

µ2 +m2
reg

)
. (4.32)

We take mreg ∼ 500MeV. To model the nonperturbative contribution to the cross section,
we focus on the case of leading jets in e+e−. Then we replace the soft function in eq. (4.5) as

Sci (z,QR, µ)→
∫ 1

z

dz′
z′
Sci (z′, QR, µ)

∣∣∣
pert
S
( z
z′
, d
)
, (4.33)

S(z, d) =
(1− z)exp

(
− 1

d(1− z)
)

d(d− (1 + d)e− 1
d )

, d ∼ Λ
QR

. (4.34)

The function Sci (z,QR, µ)
∣∣∣
pert

explicitly refers to the perturbative resummed result of
eq. (4.25). Here S is a shape function that will shift the spectrum near z = 1, similar
to what happens in the case of event-shapes [122–124]. The 1/R scaling of the nonpertur-
bative correction was first identified in ref. [125].

4.4 Numerical results

In this section we present numerical results for e+e− hemisphere leading jets and leading
subjets in proton-proton collisions. We implement the threshold resummed hard and jet
functions in the Monte Carlo parton shower discussed above which allows us to calculate
both the inclusive and leading jet cross section at NLL′ accuracy. In figure 6, we show
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Figure 7. The e+e− hemisphere leading jet cross section for different values of the jet radius R.
We choose the same kinematics as in figure 6.

the results for e+e− hemisphere jets for quarks and gluons separately.4 As an example, we
choose the jet radius of R = 0.5 and the hard scale Q =

√
s = 91.2GeV. The inclusive

and leading jet spectra agree for z > 1/2. For e+e− hemisphere jets, a jet with momentum
fraction z > 1/2 is automatically the leading jet. Note that this does apply to event-wide
leading jets in e+e− collisions as discussed in section 7.1 below. We observe that both
spectra peak at large values of z which indicates that it is very likely to find a jet that
carries a large momentum fraction of the initial quark or gluon. See also ref. [126]. The
peak is less pronounced for an initial gluon than for quarks which is expected due to the
different color factors. The peak structure at large values of z confirms that the identified
leading jet is a good proxy of the underlying parton level degrees of freedom. We note that
the peak arises due to the threshold resummation. At LO/LL accuracy the numerical result
diverges near the endpoint, see figure 3. Therefore, it is phenomenologically important to
include threshold resummation for leading jet measurements. Note that the suppression of
the cross section for z → 1 is unusual since threshold resummation is typically associated
with an enhancement of the cross section [30, 31]. For z < 1/2 the inclusive and leading
jet spectrum differ due to the subleading jets which contribute only to the inclusive jet
spectrum. The leading jet cross section drops significantly below z = 1/2 indicating that
it is very unlikely to find a leading jet that carries only a small momentum fraction z.

Another intriguing feature of the results in figure 6 is the shape of the leading jet
spectrum around z = 1/2. At LO/LL accuracy there is a sharp kink or cusp which is
now smeared out. In addition, we observe that the leading jet spectrum now extends to
relatively small values of z which is numerically quite different compared to the result at
LO/LL accuracy. We would like to emphasize that the resummation here is critical to

4When showing our results, we vary a given scale µi → ζiµi. The range in which we vary ζi is given
in each figure, where relevant. The scales varied are the observed jet, soft-collinear, and inclusive jet
(eq. (4.6)), and also the Landau-pole regularization, and the non-perturbative model parameter, and we
take the envelope as a measure of uncertainty.
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obtain the full leading jet spectrum. For all values of R, the tail of the distribution extends
to small values of z. Instead, any fixed order computation at NnLO would not give finite
values below z = 1/(n+ 1).

Next, we study the dependence of the e+e− hemisphere leading jet cross section on the
jet radius R. The results for R values in the range of 0.05− 0.8 are shown in figure 7. For
small values of R, the leading jet can only capture a small fraction of the initial energy.
Indeed, we observe that the curves shift toward smaller values of z as we decrease the jet
radius R. This shift differs significantly for quark and gluon jets. In the next section we
consider the average z value of these distributions which is related to the jet energy loss.

In figure 8, we show numerical results for inclusive and leading subjets in proton-proton
collisions at

√
s = 13TeV. We choose exemplary jet kinematics as indicated in the figure

and include appropriate quark/gluon fractions. The leading subjet cross section is the
most straightforward possibility to directly quantify jet energy loss in proton-proton and
heavy-ion collisions. We note that the size of the scale uncertainty band could be reduced
by including higher order corrections.

5 Quantifying jet energy loss

As discussed in section 2, the leading jet functions constitute probability densities that allow
us to quantify the energy loss of leading jets. In this section we discuss different statistical
quantities both at the level of the (threshold resummed) jet functions and cross sections. In
particular, we focus on e+e− hemisphere leading jets. However, due to universality of the
leading jet functions, the same arguments apply to subjets or other suitable observables
discussed in section 7 below. In section 5.1 we start with the mean 〈zi1〉 and variance
σi of the leading jet energy distribution. The mean is directly related to the average
energy loss which we define as all the energy that is not contained in the leading jet
〈zi,loss〉 = 1−〈zi1〉. In section 5.2 we focus on differences between quark and gluon leading
jets and in section 5.3, we study the Shannon entropy and the KL divergence to further
quantify differences between quarks and gluons.

5.1 Mean and variance

We start by studying the mean and variance which are two fundamental quantities that
quantify parton/jet energy loss. The mean or average energy of the initial parton which is
contained inside the leading-jet 〈zi1〉 is given by the first moment (second Mellin moment)
of the leading jet function Ji as introduced in section 2.2. We repeat the relevant equation
here for convenience. For quarks and gluons, we find∫ 1

0
dz z Ji(z,QR, µ) = 〈zi1〉 . (5.1)

The average energy fraction of the leading jet depends on the scale Q and the jet radius R
which we omit on the right hand side. In ref. [18], an expansion of the average out-of-jet
radiation in αs lnR was performed. Here we perform the complete expansion in powers of
the strong coupling constant αs which requires knowledge of the entire jet function. The
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Figure 8. Cross section for inclusive and leading subjets using a linear (left) and logarithmic scale
(right). We show the result for

√
s = 13TeV proton-proton collisions and exemplary values of the

jet kinematics.

mean or average energy loss of the leading jet is given by 〈zi,loss〉 = 1− 〈zi1〉. This relation
holds to all orders. At NLO, 〈zi,loss〉 coincides with the average energy fraction contained in
the first subleading jet. At higher orders, the average lost energy 〈zi,loss〉 is shared amongst
the different subleading jets. We consider both cone [127, 128] and kT -type [129–132] jets.
We start with an NLO computation of the average momentum fraction which is contained
in the leading jet at the jet function level. From eq. (5.1), we find for quarks and gluons

〈zkTq1 〉 = 1 + αs
2πCF ln(1/R2)

(3
8 − 2 ln 2

)
+ αs

2πCF
(

19
8 −

3
2 ln 2− 4 ln2 2− π2

3

)
, (5.2)

〈zkTg1 〉 = 1 + αs
2π ln(1/R2)

[
CA

(43
96 − 2 ln 2

)
−NfTF

7
48

]

+ αs
2π

[
CA

(
793
288 − 4 ln2 2− 15

8 ln 2− π2

3

)
+NfTF

(
−65

72 + 3
4 ln 2

)]
, (5.3)

〈zcone
q1 〉 = 1 + αs

2πCF ln(1/R2)
(3

8 − 2 ln 2
)

+ αs
2πCF

(
1
2 − 2 ln2 2 + 3

4 ln 2− π2

3

)
, (5.4)

〈zcone
g1 〉 = 1 + αs

2π ln(1/R2)
[
CA

(43
96 − 2 ln 2

)
−NfTF

7
48

]

+ αs
2π

[
CA

(
265
576 − 2 ln2 2 + 43

48 ln 2− π2

3

)
−NfTF

( 19
288 + 7

24 ln 2
)]

. (5.5)

We note that the terms ∼ ln(1/R2) are the same for both kT and cone-type jets and they
agree with the result in ref. [18]. The remaining finite O(αs) corrections are reported here
for the first time. As expected those terms depend on the jet algorithm. An important
aspect of the fullO(αs) result is that it leads to a finite energy loss even for R→ 1, where the
logarithms of the jet radius vanish. At small jet radii the logarithmically enhanced terms in
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Figure 9. Average energy loss of e+e− hemisphere leading jets 〈zkT

i,loss〉 for kT -type jets. We
separately show the quark and gluon results for an initial energy of Q = 91.2GeV and 500GeV as
a function of the jet radius.

eq. (5.2) dominate and need to be resummed to all orders. In principle analytical results at
higher orders in αs could be obtained from the non-linear evolution equations in eq. (2.15).
Instead, here we are going present numerical results using the parton shower framework
which was introduced in the previous sections which also includes the resummation of
threshold logarithms.

We present numerical results not at the jet function level but for a cross section which
can be measured in experiments, i.e. including also the (threshold resummed) hard function.
We consider e+e− hemisphere leading jets as an example. The average energy loss for
quark and gluon jets is shown in figure 9 using the parton shower algorithm described
above including threshold resummation at NLL′. We plot the numerical result for 〈zi,loss〉
as a function of the jet radius on a logarithmic scale. We choose two exemplary hard scales
of Q = 91.2GeV and 500GeV which set the initial parton energy. The rightmost R values
correspond to QR = 1GeV, where the average energy loss for both Q values turns out to
be very similar. We observe that the energy loss of gluons is larger than for quarks which
is generally expected due to the different color factors and DGLAP splitting functions. In
addition, the average energy loss of leading jets is larger at smaller scales Q. For large jet
radii, the average energy loss of a quark is around 10% and 15–20% for an initial gluon.
This observation quantifies why jets are generally considered to be excellent proxies of
parton level dynamics compared to hadrons. For the small jet radii, the average energy
loss increases up to around 70% for quarks and 80% for gluons. As expected, a relatively
small jet radius can only capture a small fraction of the initial momentum of the quark or
gluon and the energy loss grows significantly. We note that hadrons correspond to jets with
vanishing radius where an additional nonperturbative parton-to-hadron transition needs to
be taken into account which makes the average energy loss of hadrons even larger than what
is shown in figure 9. We would like to stress again that such a statement is not possible
for inclusive jets since any emission outside the leading jet constitutes another jet which is

– 31 –



J
H
E
P
0
7
(
2
0
2
1
)
0
4
1

also taken into account when an inclusive jet sample is measured as discussed in section 2
above. The result for the parton/jet energy loss presented here depends significantly on the
perturbative higher order corrections which we include in the parton shower in section 3.
In this sense, the results presented here constitute the first quantitative calculation of
vacuum parton/jet energy loss which allows for a meaningful connection to experimental
measurements.

Besides the mean of the leading jet probability distribution, we can also calculate
the variance or the fluctuations of jet energy loss. The variance for quarks and gluons is
defined as

σi = 〈(zi − 〈zi〉)2〉 = 〈z2
i 〉 − 〈zi〉2 . (5.6)

Similar to the mean, the variance σi depends on the jet algorithm, the jet radius R and
initial scale Q. We omit the explicit dependence of σi on those quantities here for notational
convenience. However, we study the dependence of σi on those variables numerically below.
Here 〈z2

i 〉 is the second moment (third Mellin moment) of the leading jet function. At the
jet function level it is given by

〈
z2
i

〉
=
∫ 1

0
dz z2 Ji (z,QR, µ) . (5.7)

We start again with an NLO calculation of the variance at the jet function level. For quarks
and gluons, we find

σkTq = αs
2πCF ln(1/R2)

(
−9

8 +2 ln2
)

+ αs
2πCF

(
−131

24 +2 ln2 2+ 3
2 ln2+ π2

3

)
, (5.8)

σkTg = αs
2π ln(1/R2)

[
CA

(
−551

480 +2 ln2
)

+NfTF
11
240

]

+ αs
2π

[
CA

(
−41377

7200 +4 ln2 2+ 15
8 ln2+ π2

3

)
+NfTF

(1121
1800−

3
4 ln2

)]
, (5.9)

σcone
q = αs

2πCF ln(1/R2)
(
−9

8 +2 ln2
)

+ αs
2πCF

(
−17

8 +2 ln2 2− 9
4 ln2+ π2

3

)
, (5.10)

σcone
g = αs

2π ln(1/R2)
[
CA

(
−551

480 +2 ln2
)

+NfTF
11
240

]

+ αs
2π

[
CA

(
−30247

14400 +2 ln2 2− 551
240 + π2

3

)
−NfTF

(
− 23

7200 + 11
120 ln2

)]
. (5.11)

Similar to the mean in eq. (5.2), the ∼ ln(1/R2) term is independent of the jet algorithm.
Next, we study the variance using the full parton shower for e+e− hemisphere leading jets.
The results for quarks and gluons are shown in figure 10 as a function of the jet radius.
We observe that the variance for both quark and gluon jets is in the range of ∼ 0.1 − 0.2
for Q = 91.2GeV and 500GeV. For large R, the variance is almost independent of the
scale Q but the scale dependence becomes more visible toward smaller R. For gluons the
variance peaks at intermediate values of the jet radius R. The leading jet distribution for
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Figure 10. Variance σkT
i of the energy loss of e+e− hemisphere leading jets for quark and gluons.

As in figure 9, we choose a kT -type jet algorithm, two initial reference scale of Q = 91.2GeV and
500GeV and we plot the result as a function of the jet radius.

gluons peaks either at large-z (large R) or large-z (small R) which leads to relatively small
values of σkTg . Only in the intermediate R region, the gluon z-distribution is broad which
leads to the maximum of σkTg that we observe in figure 10. For quarks the z-distribution
is even more peaked at large R than for gluons which leads to a smaller variance. It
evolves more slowly toward small-z than the gluon distribution which is why the variance
continues to increase toward small R and eventually becomes even larger than for gluons.
At small R the variance for quarks has a maximum and (close to the nonperturbative
region) becomes smaller again. It will be interesting to study how the mean and variance
of leading jets/the energy loss is modified in heavy-ion or electron-nucleus collisions where
the notion of (medium induced) parton/jet energy loss plays an important role.

We end this section by noting that there is no unique definition of energy loss. For
example, we could adopt the definition that all the energy which is not contained in the
first two leading jets is “lost energy”. We can also calculate the average energy loss 〈z̃i,loss〉
for this alternative definition from the subleading jet function as

〈z̃i,loss〉 =
∫ 1

0
dzi1dzi2dz̃i,loss z̃i,loss Ji(zi1, zi2, p̂TR,µ) δ(z̃i,loss + zi1 + zi2 − 1)

= 1− 〈zi1〉 − 〈zi2〉 , (5.12)

and therefore

〈z̃i,loss〉 =
∑
n≥3
〈zin〉 . (5.13)

Also other definitions are possible as long as we consider a fixed number of jets. For
inclusive jets it is not possible to construct a probability density since the number of jets
is not fixed but it is generated dynamically event-by-event.
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Figure 11. Ratio of the average quark and gluon jet energy loss as a function of the jet radius R
for two different values of the energy scale Q = 91.2GeV and 500GeV. For comparison, we also
show the result at LO in the soft approximation.

5.2 Quark/gluon energy loss

The dependence of the energy loss mechanism on the parton flavor has been discussed
extensively in the literature — in particular in the context of jet quenching studies in
heavy-ion collisions [32–49]. While we only focus on vacuum energy loss in this work, our
results set the baseline for studies of energy loss in the nuclear medium. In this section we
compare the LO estimate of the quark/gluon energy loss to the full result from the parton
shower. First, we consider the LO emission spectrum in the soft gluon approximation. For
an initial quark/gluon, we find

dIq,g
dz ∼

CF,A
1− z . (5.14)

This relation implies that in this limit the ratio of the average jet energy loss of a quark
and gluon is

〈zq,loss〉
〈zg,loss〉

= CF
CA
≈ 0.44 , (5.15)

which is sometimes referred to as Casimir scaling in the literature.
The ratio of the quark/gluon energy loss 〈zq,loss〉/〈zg,loss〉 is shown in figure 11 as a

function of the jet radius R for Q = 91.2GeV and 500GeV. Here we choose again e+e−

leading jet production as a representative example. We observe that the ratio of the average
energy loss of quarks and gluons is almost identical for the two different Q values at large
R but differs at intermediate and smaller R. Interestingly, the ratio of the average energy
loss of quarks and gluons is significantly closer to 1 compared to the LO estimate in the
soft gluon approximation. Thus, quark/gluon differences of the (vacuum) energy loss are in
fact significantly less pronounced than one would naively expect from the so-called Casimir
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scaling in eq. (5.15). We also observe that the ratio is relatively flat for large to intermediate
values of R and the curves have a minimum at intermediate values of R for both values
of Q. We explore this feature in more detail in the context of quark/gluon tagging below.
It turns out that the value of the ratio of the quark/gluon average energy loss agrees for
QR = 1GeV, which corresponds to the rightmost points in figure 11 and is given by ≈ 0.9.

5.3 Shannon entropy, KL divergence

Since the leading jet cross section constitutes a probability distribution, we can compute
various other statistical quantities besides the mean and variance. In this section we
consider the Shannon entropy and the KL divergence. In order to quantify the average
uncertainty of the leading jet/energy loss probability distribution, we consider the Shan-
non/information entropy. We can write the continuous version of the Shannon entropy hi
at the jet function level as

Hi = −
∫ 1

0
dz Ji(z) ln(Ji(z)) . (5.16)

In addition, we consider the KL divergence DKL to quantify the difference between quarks
and gluons

DKL(Quark||Gluon) = −
∫ 1

0
dz Jq(z) ln

(Jq(z)
Jg(z)

)
. (5.17)

The KL divergence is not symmetric under Jq ↔ Jg. Nevertheless, it is a very useful
measure to quantify the similarity of two probability distributions. An alternative measure
would be the Jensen-Shannon divergence which is symmetric. Note that here we introduced
both quantities in eqs. (5.16) and (5.17) for a continues variable z. However, experimental
measurements are binned which is why we replace the integral versions of these metrics in
eqs. (5.16) and (5.17) by their corresponding discrete versions. For our numerical results
presented below we choose a binning of N = 1000 steps in z. The measurement of both
of these quantities will also shed new light on the energy loss mechanism in the hot or
cold nuclear matter environment. Here we only consider the Shannon entropy and the
KL divergence for the probability densities of the leading jet but they can be extended to
subleading jets as well.

The Shannon entropy at the cross section level for e+e− hemisphere leading jets is
shown in figure 12. It peaks at intermediate values of the leading jet radius. At large values
of R, the uncertainty of gluon jets is larger compared to quark jets and a larger value of Q
leads to a lower value. At intermediate to small values of R the ordering changes. The KL
divergence is shown in figure 13. We observe that the KL divergences peaks at intermediate
values of R which indicates that there is an optimal value of R to distinguish quark and
gluon leading jets. The maximum value depends on the scale Q and is shifted toward
smaller R for larger values of Q. Interestingly, this maximum is in the perturbative regime
indicating that leading (sub)jets may be a good observable for quark/gluon discrimination
which is under perturbative control. We further explore the potential of leading (sub)jets
as a quark/gluon discriminant in the next section. We also notice that the rightmost points
of the two curves in figure 13 agree, which correspond to QR = 1GeV in both cases. This
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Figure 12. Shannon entropy for quark and gluon jets and Q = 91.2GeV and 500GeV as a function
of the jet radius R.
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Figure 13. KL divergence of the leading jet distributions as defined in eq. (5.17) which quantifies
the difference between the quark and gluon leading jet energy loss.

is likely due to the relative simplicity of the non-perturbative model that we are using,
without tuning the it to account for differences between quark or gluon initiated jets.

6 Quark/gluon discrimination with leading (sub)jets

A typical task of jet substructure observables is the discrimination between quark and
gluon jets. In this section we study the tagging performance of leading (sub)jets. It is
instructive to compare leading (sub)jets to established quark/gluon jet tagging techniques
in the literature [133]. Using the largest momentum fragment in a jet as a classifier is in
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Figure 14. ROC curves for quark/gluon jet discrimination with leading (sub)jets for different
values of the jet radius R and two different values of the energy scale Q.

the same class of observables known as “fractal jet observables” [84], see also refs. [85, 134].
These observables are tuned to the energy flow patterns generated in DGLAP evolution
of the final state. Another set of useful classifiers is given by the so-called generalized
angularities [135] (see also [111, 136–138])

λκβ =
∑
i∈jet

zκi θ
β
i . (6.1)

Here the sum runs over all particles inside the jet with radius parameter R, and zi, θi
are their momentum fractions and angles with respect to the jet axis, respectively. For
example, the average momentum fraction of the leading jet can be obtained from eq. (6.1)
as follows. First, instead of summing over individual particles in the jet, we sum over all
subjets which are obtained by reclustering the initial jet with a jet radius r < R, see also
section 4.2 above. Second, we choose β = 0 which is similar to jet multiplicities and the
jet pDT observable [139, 140]. Third, take the expression to the power of 1/κ and we take
the limit κ→∞ which singles out the leading jet momentum fraction.

Typically, the performance of a classifier is quantified by studying the ROC curve. The
ROC curve shows the quark/gluon true positives (cumulative distribution function (CDF))
vs. the false positives rates for a given decision threshold. The result for (sub)leading jets
and two values of the energy scale Q and various values of the jet radius R are shown in
figure 14. We observe that the discrimination power changes significantly as a function of
the jet radius.

In order to obtain a single value to quantify the performance of leading (sub)jets as a
quark/gluon discriminant, the area under the ROC curve (AUC) is commonly used which
is shown in the right panel of figure 15. We note that the location of the peak differs slightly
between the AUC and the KL divergence in figure 13 above. As mentioned above, in both
cases, the peak of the distributions is in the perturbative region. Instead, other observables
that perform very well are often nonperturbative such as the particle multiplicity. Since
leading (sub)jets correspond to the most energetic part of a jet, it may capture relevant
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Figure 15. Quark/gluon discrimination power of leading (sub)jets (AUC) as a function of the jet
radius R and two different values of the energy scale Q.

information with little overlap with e.g. the particle multiplicity. We plan to explore the
information content of leading (sub)jets relative to other observables in future work. See
for example ref. [141].

7 Further applications

In this section we discuss several cross sections involving leading jets and hadrons. We
start by considering event-wide leading jets in e+e− collisions in section 7.1 in contrast
to hemisphere leading jets. We present numerical results and compare to Pythia 8 [59]
simulations. Similar measurements were performed at LEP. We then discuss leading jets
in SIDIS (section 7.2), photon-jet correlations (section 7.3) and eventually extend our
parton shower framework toward leading hadrons instead of jets (section 7.4).

7.1 e+e− event-wide leading jets

Instead of the e+e− hemisphere leading jets, which we discussed in the previous sections,
we are now going to consider the leading jet in the entire event. The necessary factorization
structure here is similar to leading jets in proton-proton collisions which was discussed in
section 2.3, except that here we have direct access to the initial reference scale Q =

√
s. We

consider the cross section differential in the energy fraction of the leading jet z1 = 2E1/Q.
At LL accuracy, we have

1
σtot

dσ(0)
e+e−→jet1+X

dz1
= H(0)

qq̄ (Q,µ)
∫

dzq dzq̄ Jq(zq, QR/2, µ)Jq̄(zq̄, QR/2, µ)

× δ(z1 −max{zq, zq̄}) . (7.1)
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Figure 16. Illustration of event-wide leading jets in e+e− collisions (left) and the leading jet
recoiling against a direct photon in proton-proton collisions (right).

The quark and anti-quark each fragment into a leading jet with energy fraction which
we denote by zq,q̄. The event-wide leading jet momentum fraction is then obtained by
picking the larger value of zq,q̄ which is taken into account by the delta function eq. (7.1).
The topology of event-wide leading jets in e+e− collisions is illustrated in the left panel
of figure 16. As discussed in section 2.3, at higher perturbative accuracy we need to take
into account additional jet functions as well as integrals over the hard function. We stress
again that the factorization structure here is very different compared to inclusive jets.
In the inclusive case, any jet is taken into account independent of their energy fraction
which allows for a factorization structure in terms of a convolution integral and which
is independent of the perturbative order. We include again the threshold resummation
for e+e− event-wide leading jets. Working at NLL′ accuracy, the threshold resummed jet
and hard functions can be obtained analogous to the results in section 4. We calculate
the cross sections in two different ways. First, we evolve the threshold resummed hard
and jet functions with the parton shower, i.e. for one initial parton, and we then compute
the integral in eq. (7.1). Second, we initialize the parton shower with two (back-to-back)
partons and determine the event-wide leading jet directly from the output of the parton
shower. We find that both methods give the same result as expected. We note that we
cannot directly connect event-wide leading jets in e+e− collisions to parton energy loss due
to the structure of the factorization in eq. (7.1). The main difference compared to e+e−

hemisphere leading jets is that now we have two instead of one parton at LO, see criterion
3 in the Introduction.

We show our numerical results for e+e− event-wide leading jets in figure 17 for two
exemplary values of the jet radius. We observe that the spectrum peaks close to z ≈ 1 and
falls off steeply toward smaller values of z. We note that the spectrum looks significantly
different compared to e+e− hemisphere jets and is more peaked at large values of z since
there are now at least two jets produced in each hemisphere and we pick the more energetic
one. For comparison, we also show the inclusive jet spectrum in figure 17. The inclusive
spectrum starts to deviate from the leading jet result around z ≈ 0.94 which differs from
the hemisphere jet case where the two spectra only start to differ for z < 0.5. In addition,
we show Pythia 8 [59] results for the anti-kT [132] and C/A [130, 131] algorithm. Pythia
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Figure 17. Event-wide leading jet energy spectrum in e+e− collisions for two values of the jet
radius R. We compare to the event-wide inclusive jet spectrum and simulations from Pythia 8 [59].

is tuned very well to LEP data and can serve as a benchmark for e+e− jet observables.
We find good agreement with our numerical results where the nonperturbative parameter
is chosen as ΛQCD = 0.2GeV. The two jet algorithms used for the Pythia simulations give
identical analytical results in the threshold region at NLL′. Indeed, we observe that the
Pythia results for the two algorithms are very similar.

Interestingly, the OPAL Collaboration at LEP provided data for the leading and the
first two subleading jet cross sections in ref. [142]. OPAL used an algorithm that finds, by
construction, three jets in every recorded event. This procedure does not correspond to our
definition of jets making a one-to-one comparison impossible. We show the OPAL data in
figure 18. The OPAL measurement imposed an intra-jet angle which roughly corresponds
to the jet radius chosen in the right panel of figure 17. While the shape of the spectrum
is quantitatively different compared to our results in figure 17, we do find qualitative
agreement. We note that for event-wide jets, the second leading jet is not required to carry
an energy fraction of z2 < 0.5 (as for e+e− hemisphere jets) since we have at least two jets
in the event. In fact, from figure 18 we find that the first subleading jet energy extends up
to z2 ∼ 0.94. The OPAL results demonstrate that it is possible to experimentally measure
leading and subleading jet spectra at LEP. We expect that experiments like the LHC and
EIC can measure leading jet observables equally well.

7.2 Semi-Inclusive Deep-Inelastic Scattering

SIDIS measurement allow for a clean measurement of jet/parton energy loss since we only
have one quark which fragments into the observed leading jet at LL accuracy. We consider
the process e(k)+p(P )→ e′(k′)+jet1(Pjet1)+X where both the final state electron and the
leading jet are observed. The reference scale with respect to which the leading jet energy
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Figure 18. OPAL results for the energy spectrum of the leading jet (Jet 1) and the first two
subleading jets (Jet 2,3) using 3-jet events. Data taken from [142].

is measured is set by the virtuality Q2 = −q2 = −(k − k′)2 of the exchanged photon. We
consider the cross section

dσep→e′+jet1+X
dxB dy dz1

, (7.2)

where we introduced the usual variables for SIDIS with hadrons in the final state: Bjorken
xB and the inelasticity y which are given by

xB = Q2

2P · q , y = P · q
P · k

. (7.3)

We have Q2 = xBys, where
√
s is the electron-proton CM energy. The momentum fraction

of the leading jet z1 is defined as

z1 = P · Pjet1

P · q
=
P+

jet1

Q
. (7.4)

Here the last equality holds in the Breit frame and P+
jet1

denotes the large lightcone momen-
tum component of the leading jet. In the target rest frame we have z1 = Ejet1/Q which
makes this asymmetric process very similar to e+e− hemisphere leading jets. Suitable
jet clustering algorithms for this type of observable in the Breit frame were discussed in
ref. [126]. Within collinear factorization, the cross section for inclusive jets can be written
in terms of FT,L, the transverse and longitudinal structure functions [104, 143]

dσep→e′+jet+X
dx dy dz = 4πα2

Q2

[
1 + (1− y)2

2y FT (x, z,Q) + 1− y
y
FL (x, z,Q)

]
, (7.5)

– 41 –



J
H
E
P
0
7
(
2
0
2
1
)
0
4
1

where α is the fine structure constant and we dropped the subscript B of Bjorken xB for
simplicity. In the current fragmentation region, the structure functions a = T, L can be
written as

Fa(x, y,Q) =
∑
ij

Ha
ij(x, z,Q, µ)⊗ fi(x, µ)⊗ Jj(z,QR, µ) . (7.6)

Here, ⊗ denote convolution integrals in x and z, fi are the PDFs and Jj are the inclusive
jet functions. Therefore, also for SIDIS at LL accuracy we can consider the first moment
as a direct measure of the average quark energy loss∫ 1

0
dz1 z1

1
σtot

dσ(0)
ep→e′+jet1+X
dx dy dz1

= 〈zq〉 . (7.7)

Here σtot is the inclusive DIS cross section dσ/dx/dy.
The threshold resummation for jets in SIDIS follows from refs. [126, 144–147] which

can also be implemented in the parton shower algorithm discussed in section 4. We leave
more detailed numerical studies especially for kinematics at the EIC for future work.

7.3 Photon-jet correlations

In this section we consider the production of a direct photon and measure the momen-
tum of the leading jet in the opposite hemisphere. See refs. [53, 54, 148, 149] for related
recent experimental results. We consider the cross section differential in the photon’s trans-
verse momentum and rapidity pγT , ηγ . In addition, we measure the recoiling leading jet’s
transverse momentum pT relative to the photon xJ1γ = pT /p

γ
T . At LO/LL accuracy the

factorization of the cross section can be written as [150]

dσ(0)
pp→γ+jet1+X

dηγ dpγT dxJ1γ
=
∑
ijk

fi(xi, µ)⊗ fj(xj , µ)⊗H(0)
ijk(xi, xj , ηγ , pγT , µ)⊗Ji(xJγ , pγTR,µ) . (7.8)

Here we consider the transverse momentum of the direct photon pγT as the reference scale
with respect to which we measure the energy loss of the recoiling leading jet. This observ-
able can also give direct access to the weighted average quark/gluon energy loss

〈xJ1γ〉 =
∫ 1

0
dxJ1γ xJ1γ

1
σtot

dσ(0)
pp→γ+jet1+X

dηγ dpγT dxJ1γ
= fq 〈xJ1γ,q〉+ fg 〈zJ1γ,g〉 . (7.9)

However, different than the processes considered above, xJγ can generally be > 1 making
a clear interpretation in terms of energy loss more difficult. We may nevertheless get a
handle on the energy loss of the leading jet recoiling against the photon by considering the
difference between inclusive and leading jets. At the jet function level, we find that we can
rewrite the average momentum fraction of the leading jet as

〈z〉 =
∫ 1

0
dz z Ji(z, pγTR,µ)

=
∫ 1/2

0
dz z Ji(z, pγTR,µ) +

∫ 1

1/2
dz z Ji(z, pγTR,µ)

= 1 +
∫ 1/2

0
dz z [Ji(z, pγTR,µ)− Ji(z, pγTR,µ)] . (7.10)
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Figure 19. The xJγ distribution for inclusive and leading jets recoiling against a direct photon
with large transverse momentum in proton-proton collisions at

√
s = 5.02TeV. The result shown

here is obtained from Pythia 8 [59].

We can therefore also get access to the average jet energy loss by measuring the difference
between the inclusive and leading jet spectra recoiling the direct photon. The inclusive
and leading spectra from Pythia 8 [59] are shown in figure 19. In practice, jets can only be
reconstructed down to a certain transverse momentum. Therefore, we need to introduce a
small cutoff zcut in eq. (7.10), which gives

〈z〉(zcut) = 1 +
∫ 1/2

zcut
dz z [Ji(z, pγTR,µ)− Ji(z, pγTR,µ)] . (7.11)

We leave more detailed numerical studies using our parton shower framework for fu-
ture work.

7.4 Toward leading hadrons

In order to extend our calculation from leading jets to leading hadrons, we need to evolve
the shower down to the nonperturbative scale µNP = O(1GeV) and include hard-scattering
functions and fragmentation functions in the shower algorithm. The leading and subleading
hadron fragmentation functions are currently not known and we are not aware of existing
data sets that could constrain them. Similar to jet functions, the leading and inclusive
parton-to-hadron fragmentation functions agree for z > 1/2 but differ for smaller values of
z. We expect that the necessary experimental measurements are feasible which can provide
important new insights into the QCD fragmentation mechanism. We leave more detailed
phenomenological studies for future work. Here we only focus on the parton shower evolved
to the nonperturbative scale without including fragmentation functions and hard-scattering
functions.

Analogous to leading jets discussed above, we can use the Monte Carlo setup introduced
in section 3 to calculate the spectrum of leading partons since the corresponding leading
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hadron fragmentation functions satisfy the same non-linear evolution equations. Now we
evolve the shower down to a scale of order µNP = O(1 GeV) which we consider as the onset
of nonperturbative physics. To be specific, the Monte Carlo algorithms terminates when
t > tmax = t(Q, 1/Q) or equivalently QR = O(1 GeV) in eq. (3.3).

In the upper two panels of figure 20, we show the result for the z-spectrum for leading
Di and inclusive Di partons evolved down to µNP starting from Q = 91.2GeV. For the
numerical results shown here we choose R = 0.01. Even without sampling from the non-
perturbative fragmentation function, the gluon distribution (left) already has the typical
shape of a hadron fragmentation spectrum which falls off steeply toward z → 1. Instead,
the quark spectrum (right) still has a peak at very large values of z similar to the evolved
LL jet functions discussed above. See figure 3. The leading and inclusive parton spectra
start to deviate around z ≈ 0.4. We note that all the leading jet cross sections discussed
in previous sections can also be calculated for hadrons. In particular, we can also define
a nonperturbative version of energy loss in terms of leading hadrons instead of jets. We
leave more detailed studies of the leading hadron energy loss for future work.

8 Conclusions

In this work we discussed leading and subleading jet cross sections which probe fundamental
aspects of the QCD fragmentation process. Different than inclusive jets, the formation and
evolution of leading jets is described by jet functions with non-linear DGLAP-type evolution
equations. These leading and subleading jet functions constitute normalized probability
densities to find a (sub)leading jet with a given longitudinal momentum fraction from
an initial quark or gluon. Instead, the jet functions relevant for inclusive jet production
are number densities where the total number of jets per event is not fixed and produced
dynamically event-by-event. Motivated by results in probability theory [23], we established
relations between leading/subleading jets and inclusive single-, di- and tri-jet functions
which we plan to explore in more detail in future work.
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We focused in particular on cross sections where we have access to an additional ref-
erence scale Q with respect to which we can define the longitudinal momentum fraction z1
which is contained in the leading jet. We are then able to define the (average) out-of-jet
radiation or the energy loss of leading jets as zloss = 1− z1 which can be computed order-
by-order in perturbation theory and which can be accessed directly through experimental
measurements. For observables where we only have one parton at leading order, the ex-
perimentally accessible leading jet energy loss can be identified with parton energy loss at
leading-logarithmic accuracy. We identified criteria of suitable observables which allow for
a direct measurement of the leading jet energy loss which include e+e− hemisphere jets,
subjets in proton-proton collisions, jets in Semi-Inclusive Deep Inelastic Scattering and
photon-jet correlations. From these cross sections we can obtain the average energy loss of
leading jets 〈zloss〉 which can be compared to our theoretical results.

One of the main new developments of our work is a parton shower framework that
allows us to compute threshold resummed leading jet cross sections at next-to-leading log-
arithmic accuracy (NLL′). Hard-scattering functions, jet functions and also fragmentation
functions can be included directly in the parton shower framework. The results of the par-
ton shower agree exactly with analytical results for inclusive jets and allow for a well-defined
extension to leading jet cross sections. The threshold resummation which we include for
both the hard and jet functions is phenomenologically important for leading jet observables.
We derived the threshold resummation for leading jets in e+e− collisions and leading sub-
jets in proton-proton collisions. While the developed framework is a “few purpose” parton
shower, we expect that it can be extended systematically to other observables.

We presented numerical results for e+e− hemisphere and event-wide leading jets as well
as leading subjets in proton-proton collisions at NLL′ accuracy using the parton shower
framework. For e+e− event-wide leading jets we compared to Pythia 8 results and found
good agreement. Interestingly, the OPAL Collaboration at LEP measured similar leading
jet cross sections in ref. [142]. While a one-to-one comparison to the existing data is
not possible since their definition of leading jets differs from ours, these measurements
demonstrate that leading jet and hadron measurements are generally feasible.

We investigated the differences of the average energy loss between leading quark and
gluons jets. We observed that the differences are surprisingly small compared to a leading-
order estimate and that they are rather independent of the jet radius R. Besides the average
energy loss, the mean of the energy loss probability distribution, we also considered for
the first time the variance which quantifies event-by-event fluctuations of energy loss. In
addition, we computed the Shannon entropy and the KL divergence. The latter quantifies
the difference between quark and gluon jet energy loss. We further explored the potential of
leading (sub)jets to discriminate between quark and gluon jets. We presented ROC curves
and the AUC for different values of the jet radius R. Interestingly, the best discrimination
power is achieved for a perturbative value of R. In the future, we plan to explore the
tagging performance of leading (sub)jets and study their complementarity to other typical
observables such as particle multiplicity.

In addition, we outlined how our work can be extended to leading hadrons. Similar to
leading jets, leading hadron fragmentation functions are normalized probability densities
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which allow us to establish a well-defined but nonperturbative notion of energy loss. Our
results constitute the first quantitative calculation of leading jet energy loss which can be
compared directly to experimental data. We expect that our results will be particularly
useful to study leading jets which traverse hot or cold nuclear matter in heavy-ion collisions
or electron-nucleus collisions at the future EIC. Medium induced emissions can generally
increase the energy loss of leading jets and the corresponding energy loss spectrum intro-
duced here can provide important information about the Quark-Gluon Plasma/cold nuclear
matter and its interaction with hard probes.

Acknowledgments

We thank Miguel Arratia, Yi Chen, Peter Jacobs, Yue-Shi Lai, Yen-Jie Lee, Yiannis Makris,
James Mulligan, Dennis Perepelitsa, Mateusz Ploskon, Darren Scott andWouter Waalewijn
for helpful discussions. D.N. was supported by the U.S. DOE under Contract DE-AC52-
06NA25396 at LANL and through the LANL/LDRD Program. F.R. was supported by
LDRD funding from Berkeley Lab provided by the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231. N.S was supported through DOE Contract No. DE-AC05-
06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility.

A Fixed order expressions and anomalous dimensions

Here we summarize the NLO results of the relevant functions that appear in the refactor-
ization of e+e− hemisphere jets and subjets at threshold in eqs. (4.5) and (4.29). In Mellin
space for anti-kT jets, we find5

Hq (Q,µ) = 1+ αs
4πCF

(
−2ln2

(
µ2

Q2

)
−6ln

(
µ2

Q2

)
−16+ 7π2

3

)
,

Hg (Q,µ) = 1+ αs
4πCA

(
−2ln2

(
µ2

Q2

)
+ 7π2

3

)
,

Jq (Q/N,µ) = 1+ αs
4πCF

(
2ln2

(
µ2N̄

Q2

)
+3ln

(
µ2N̄

Q2

)
+7− 2π2

3

)
,

Jg (Q/N,µ) = 1+ αs
4πCA

(
2ln2

(
µ2N̄

Q2

)
+ β0

CA
ln
(
µ2N̄

Q2

)
+ 67

9 −
2π2

3 −
20
9
TFNf
CA

)

Si (QR/N,µ) = 1+ αs
4πCi

(
− ln2

(
µ2N̄2

Q2R2

)
− π2

2

)
,

Jq (QR,µ) = 1+ αs
4πCF

(
ln2
(

µ2

Q2R2

)
+3ln

(
µ2

Q2R2

)
+13+ 3π2

2

)
,

Jg (QR,µ) = 1+ αs
4πCA

(
ln2
(

µ2

Q2R2

)
+ β0

CA
ln
(

µ2

Q2R2

)
+2
(

67
9 −

3π2

4

)
−223

9
TFNf
CA

)
,

Si (QR/N,µ) = 1+ αs
4πCi

(
ln2
(
µ2N̄2

Q2R2

)
+ π2

2

)
. (A.1)

5At one loop, the matching coefficient Hg has no single log contribution, since the squared field strength
operator F 2 itself has an anomalous dimension. This anomalous dimension is reproduced in the effective
theory matching procedure through the jet functions of the factorization theorem for the gluon form factor.
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The hard functionsHij of the refactorized subjet cross section can be found in refs. [68, 151].
The corresponding anomalous dimensions (defined via d/d lnµ) are given by

γHq (Q,µ) = αs
π
CF

(
−2 ln

(
µ2

Q2

)
− 3

)
,

γHg (Q,µ) = αs
π
CA

(
−2 ln

(
µ2

Q2

))
,

γ
J
q (Q/N, µ) = αs

π
CF

(
2 ln

(
µ2N̄

Q2

)
+ 3

2

)
,

γ
J
g (Q/N, µ) = αs

π
CA

(
2 ln

(
µ2N̄

Q2

)
+ β0

2CA

)

γSi (QR/N, µ) = −αs
π
Ci ln

(
µ2N̄2

Q2R2

)
,

γJq (QR,µ) = αs
π
CF

(
ln
(

µ2

Q2R2

)
+ 3

2

)
,

γJg (QR,µ) = αs
π
CA

(
ln
(

µ2

Q2R2

)
+ β0

2CA

)
,

γHqq (QR,N, µ) = αs
π
CF

(
− ln

(
µ2

Q2R2

)
− 3

2

)
+ Pqq (N) ,

γHgg (QR,N, µ) = αs
π
CA

(
− ln

(
µ2

Q2R2

)
− β0

2CA

)
+ Pgg (N) ,

γSi (QR/N, µ) = αs
π
Ci ln

(
µ2N̄2

Q2R2

)
, (A.2)

where Pji(N) denote the Altarelli-Parisi splitting functions in Mellin space. In addition,
we have γHji = αs/πPji(N) for i 6= j.
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