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ABSTRACT: The Standard Model (SM) vacuum is unstable for the measured values of the
top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when
neutrino masses are generated through spontaneous low-scale lepton number violation. In
the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive C' P-even
scalar plus a massless Nambu-Goldstone boson, called majoron. For TeV scale breaking
of lepton number, Higgs bosons can have a sizeable decay into the invisible majorons.
We examine the interplay and complementarity of vacuum stability and perturbativity
restrictions, with collider constraints on visible and invisible Higgs boson decay channels.
This simple framework may help guiding further studies, for example, at the proposed FCC
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1 Introduction

The main leitmotiv of the LHC has been to elucidate the mechanism of spontaneous sym-
metry breaking in the SM. With the discovery of a scalar particle with properties closely
resembling those of the SM Higgs, the ATLAS [1] and CMS [2] experiments have achieved
this goal, although only partially. The Higgs discovery provides motivation for further
studies, for example, at the upcoming FCC facility [3, 4] and complementary lepton ma-
chines. If this scalar particle is indeed the SM Higgs boson, its mass measurement allows



us to study the stability of the vacuum up to high energies through the renormalization
group equations (RGEs). Given the measured values of the top quark and Higgs boson
masses, the SM Higgs quartic coupling remains perturbative all the way up to the Planck
scale (Mp), but goes negative well below, figure 1. Thus, the Higgs vacuum in the SM is
not stable.

The discovery of neutrino masses [5-7] provides us with another important milestone
in particle physics. It brings to surface one of the most important SM shortcomings, i.e.
the absence of neutrino masses, which stands out as a key problem. Therefore, despite
its outstanding achievements, it is now widely expected that the SM cannot be the final
theory of nature up to the Planck scale. It is therefore important to analyze the problem
of vacuum instability within neutrino mass extensions of the SM.

The purpose of this paper is to re-examine the consistency, i.e. the
stability-perturbativity of the electroweak vacuum within neutrino mass extensions of the
SM and also to confront the resulting restrictions with information available from collider
experiments LEP and LHC. We adopt the seesaw paradigm realized within the minimal
SU(3). ® SU(2)p, ® U(1)y gauge structure. There are two versions, “explicit” [8] and “dy-
namical” [9, 10]. In the former case lepton number is broken explicitly, while in the second,
the breaking occurs via the vacuum expectation value (vev) of a SU(3). ® SU(2)r, ® U(1)y
singlet scalar ¢. This “dynamical” variant harbors a physical Nambu-Goldstone boson,
called majoron J [9, 10]. The most obvious way to account for the small neutrino masses
is to assume very heavy right-handed neutrinos as mediators. As an interesting alterna-
tive to such high-scale type-I seesaw, we have the low-scale extensions such as the inverse
seesaw mechanism [11]. For sizeable Dirac-type Yukawa couplings one finds that the Higgs
vacuum stability problem can become worse than in the SM [12-20].

One of the attractive features of low-scale seesaw models is that we can have large
Dirac-type Yukawa coupling even with light mediators, e.g. at the O(TeV) scale. In this
case, the Yukawa couplings will evolve for a much longer range, compared to the high scale
type-I seesaw [21]. As a result the Higgs quartic coupling can become negative much sooner
than in SM. Thus, it will have larger negative effect upon vacuum stability. However, we
will see how in dynamical low-scale seesaw scenarios [22] electroweak vacuum stability can
be substantially improved [14, 21].

The prototype model is characterized by a very simple set of scalar bosons: in addition
to the SM-like Higgs boson Hio; found at the LHC, there is another C'P-even scalar
H'. The mixing angle sin 6 between the CP-even scalars plays a key role for our study.
Moreover, there is a massless CP-odd boson, the majoron J, the physical Nambu-Goldstone
associated to spontaneous breaking of lepton number symmetry. In such low-scale seesaw
the majoron can couple substantially to the Higgs boson [23], leading to potentially large
invisible decays, e.g. Hyio5 — JJ and H' — JJ. A sizeable mixing between the two CP-
even scalars can have important phenomenological consequences, particularly for collider
experiments like the LHC. As a result of this mixing, the couplings of the SM-like Higgs
scalar Hiss can deviate appreciably from the SM values. These can modify the so-called
signal “strength parameter” u; associated to a given “visible” final-state f, which can be
tested at the LHC [24, 25]. The modified couplings and the existence of invisible decays



are constrained by Higgs measurements at the LEP and LHC experiments [26-28]. Here
we adopt the conservative range,
0.8 <y <1, (1.1)

while for the invisible Higgs boson decays we take bound coming from the CMS experi-
ment [29],!
BR(H125 — IDV) < 19% . (12)

Collider bounds and vacuum stability conditions lead to complementary constraints
on the allowed range of the mixing angle sinf. The goal of this work is to exploit this
complementarity to test the simplest dynamical inverse seesaw scenario. We confront the
collider limits with the consistency restrictions arising from the stability-perturbativity of
the electroweak vacuum.

The work is organized as follows: in section 2 we briefly summarize the issue of vacuum
stability in the SM. In sections 3 and 4, we discuss vacuum stability in the inverse seesaw
mechanism with explicit lepton number breaking as well as in the dynamical inverse seesaw
mechanism. We use the two-loop RGEs given in ref. [21] to evolve all the SM parameters
as well as the new ones. We derive the full two-loop RGEs of the relevant parameters of
the dynamical inverse seesaw, and list them in appendix A. In section 5, we discuss the
production and decays of the two CP-even scalars Hio; and H’, including both visible
as well as invisible decay modes. In section 6 and 7, we study in detail the sensitivities
of Higgs boson searches at LEP and LHC. In section 8, we address the issue of vacuum
stability taking into account the collider constraints. Finally in section 9 we conclude.

2 Vacuum stability in the Standard Model

Before starting in earnest it is useful to briefly sum up the lessons from previous vacuum
stability studies in the SM. If the 125 GeV scalar discovered at LHC is indeed the SM
Higgs boson then we can determine its quartic coupling at the electroweak scale. This
measurement can subsequently be used to study the stability of the fundamental vacuum
at high energies, all the way up to Planck scale. In figure 1, we summarize the status of
the electroweak vacuum within the SM, following the discussion of refs. [20, 21].

Throughout this work we use the experimental values of the SM couplings such as
A, 91, g2, g3 and ¥y, within the “On-Shell” renormalization scheme. This way we express
the renormalized parameters directly in terms of these physical observables. The on-shell
parameters can be related to the MS parameters in a way similar to [20]. The subsequent
RG evolution is performed using the MS values of the resulting parameters.

The top quark mass scale is set as my; = 173 + 0.4. We have used two-loop renormal-
ization group equations (RGEs) for the quartic coupling Agy, the Yukawa coupling Y, as
well as for SU(3). ® SU(2)r, ® U(1)y gauge couplings gi, g2 and g3. Figure 1 clearly shows
that SM Higgs quartic coupling Agym goes negative around pu ~ 10'9GeV. As a result,
the potential is not bounded from below, indicating an unstable vacuum. Note that the
SM vacuum stability is very sensitive to the input value of top-quark mass. A dedicated

!The present bound from ATLAS for invisible Higgs decays is BR(Hi25 — Inv) < 26% [30].
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Figure 1. The renormalization group evolution of the SM gauge couplings ¢1, g2, g3, the top
quark Yukawa coupling y; and the quartic Higgs boson self-coupling Agn.

analysis shows that SM Higgs vacuum is not absolutely stable, but rather metastable with
very long lifetime [31-33]. In what follows we will examine the implications of vacuum
stability requirements within seesaw models of neutrino mass generation.

3 Inverse seesaw and vacuum stability

The seesaw mechanism based on the SU(3). ® SU(2)r, ® U(1)y gauge group can be realized
either in “high-scale” or in “low-scale” regimes. The vacuum stability issue has been exam-
ined in the high-scale type-I seesaw mechanism with large Yukawa couplings in ref. [20]. It
has been found that majoron extensions of these schemes can restore the vacuum stability
all the way up to Planck scale once one takes into account the scalar threshold corrections.
However, such high scale seesaw schemes typically involves mediator masses much larger
than the electroweak scale, unaccessible at collider experiments. Here we revisit the issue,
but in the context of type-1 “low-scale” seesaw mechanism, in which mediators would be
accessible to high energy colliders. The simplest prototype is the inverse seesaw mecha-
nism [11, 22, 34]. In inverse seesaw, lepton number is violated by introducing extra SM
gauge singlet fermions .S; with small Majorana mass terms, associated to the conventional
“right-handed” neutrinos v§. The relevant part of the Lagrangian is given by

L . 1 .
—L=> Y Li®vj + MYVES; + g 8;S; + He. (3.1)
ij

where L; = (v, E)T; i = 1,2,3 are the lepton doublets, ® is the Higgs doublet and v{,.S;
are SM gauge singlet fermions. The vy, S; transform under the lepton number symmetry
U(l)r as v ~ —1 and S; ~ +1, respectively. The smallness of light neutrino masses is
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Figure 2. Comparing the evolution of the quartic Higgs self-coupling A in the SM (dashed, red)
with various inverse-seesaw extensions with explicit lepton number violation: (3,1,1) denoted in
solid (blue), (3,2,2) dot-dashed (magenta) and (3,3,3) dotted (green), see text for details.

controlled by the lepton number violating Majorana mass parameter pg. This allows the
Yukawa couplings Y,, to be sizeable, even when the messenger mass scale M lies in the TeV
scale, without conflicting with the observed smallness of the neutrino masses.

Thanks to the potentially large Dirac neutrino Yukawa coupling Y, required to generate
adequate neutrino masses in such schemes the vacuum stability problem aggravates. To
examine the effect of the new fermions v and .S upon the stability of the electroweak Higgs
vacuum we need to take into account the effect of the threshold corrections. To begin with,
below the threshold scale A &~ M, we need to integrate out the new fermions, so the theory
is just the SM plus an effective dimension-five Weinberg operator. This affects the running
of Higgs quartic coupling A\, below the scale A, though the correction is negligibly small.
As a result, in the effective theory, the running of A, below the scale A is almost same as in
the SM. Above the threshold scale A we have the full Ultra-Violet (UV) complete theory.
Now the Yukawa coupling Y, will affect the running of the Higgs quartic coupling which
we now call A\ so as to distinguish it from the quartic coupling below the threshold scale.
The two-loop system of RGEs governing the evolution of A, Y, and the SM couplings are
listed in ref. [21]. Integrating out the heavy neutrinos also introduces threshold corrections
to the SM Higgs quartic coupling A at the scale A [20, 21, 35]. As a result we also need to
consider the shift due to threshold corrections in A at A when solving RGEs. The threshold
corrections imply that

5n?

A(A) = A(A) — 39,2

Tr (YJY,,)Q : (3.2)

where n is the number of singlet fermions v¢. Having set up our basic scheme, let us now
look at the impact of the new Yukawa coupling Y, on the stability of the Higgs vacuum.
As shown in figure 2, above the threshold scale A, Yukawa coupling Y, can completely
dominate the RGEs behaviour of quartic coupling .



In figure 2 we compare the evolution of the Higgs quartic coupling A within the
SM (dashed, red) with the (3,n,n) inverse seesaw completion. Here n denotes the number
of v and S species. We show the results for n = 1 (solid, blue), n = 2 (dot-dash, magenta)
and n = 3 (dot, green). For this comparison, we have fixed the Yukawa coupling |Y,| =
0.4 for the (3,1,1) case. For (3,n,n) with n > 2, we took the diagonal entries of Y, as
Y = 0.4, while all the off-diagonal ones are neglected. We have fixed the threshold scale,
which also sets the mass scale of the singlet neutrinos, as A = 10 TeV. One sees how, the
larger the value of n, the more strongly the (3,n,n) inverse seesaw scenarios aggravate the
Higgs vacuum stability problem. This destabilizing effect of the neutrino Yukawas can be
potentially cured in the presence of other particles that can revert the trend found above.

4 Majoron completion and vacuum stability

As a well-motivated completion of the above scheme, we now turn to the dynamical version
of the inverse seesaw mechanism [22]. Lepton number is now promoted to a spontaneously
broken symmetry within the SU(3). ® SU(2);, ® U(1)y gauge framework. To do this, in
addition to the SM singlets v{ and S;, we add a complex scalar singlet o carrying two
units of lepton number. This symmetry is then broken by the vev of this complex singlet
0. The relevant Lagrangian is given by

3

—L =Y YIL;®vS + MIES; + Y 05:S; + Hee. (4.1)

i,
The neutral component of the doublet ® and the singlet o acquire vevs % and %, respec-
tively leading to the light neutrino masses given by

g
NG

For m, ~ 0.1eV, we can have Yukawa couplings Y, of order one, for TeV scale v, and M.

Y, M Y, M 1Ty T (4.2)

my o~

4.1 Scalar Potential
The SU(3). ® SU(2)r, ® U(1)y as well as the global lepton number symmetry invariant
scalar potential is given by

V = 301 + p2ofo + Ap (F @)2 + 2o (o 0)2 +Aas (01@) (oto) (4.3)

Consistency conditions: boundedness and perturbativity. The above scalar po-
tential must be bounded from below. This implies that at any given energy scale u, the
quartic couplings should satisfy

Ao(p) >0, Ao(p) >0, Aaoo(p) + 24/ Ao (1) Ao (1) > 0, (4.4)

where \;(u) are the values of the quartic couplings at the running scale p. To have an
absolutely stable vacuum, one needs to satisfy the condition given in eq. (4.4) at each and
every energy scale.



To ensure perturbativity, we take a conservative approach of simply requiring that
Ao (p) < Vi, Ao (1) < Vam and |Ago ()| < V. (4.5)

There will be additional constraints from unitarity or from electroweak precision data
through the S, T and U parameters. However, for our parameter range of interest they
lead to rather loose constraints [26] compared to the LHC bounds which we will shortly
discuss in detail.

Mass spectrum. In order to obtain the mass spectrum for the scalars after
SU(3). ® SU(2), ® U(1)y and lepton-number symmetry breaking, we expand the scalar
fields as

¢0 = ('Uq> + Ry + i[l), (4.6)

HS‘I—‘
[\V]

o= 7(11(7 + Ry + i[g) (47)

V2
Using this expansion, the potential in (4.3) leads to a physical massless Goldstone boson,

namely the majoron J = Im o plus two massive neutral CP-even scalars H;(i = 1,2). The
mass matrix of CP-even Higgs scalars in the basis (R;, R2) reads as

M2 = 20004 A‘I"’”‘Pg" (4.8)
ApoV3Vs  2A5V5
with the mass eigenvalues given by
mi;, = AoV + AUz — \/()\qﬂ% — )\U”ug)z + (Apotavs ) (4.9)
m%{2 = \pv3 + 02 + \/()\q>v<2p - Aav3)2 + (\aovavs)? (4.10)

where the scalars H; and Hy have masses mpy, and mpy, respectively, and by convention
m3;, < mf, throughout this work. One of these scalars must be identified with Hios i.e.
the scalar discovered at LHC. We have two possibilities, either H1 = Hyo5 or Ho = Hyos.
Here we consider both. The two mass eigenstates H; are related with the Ry, Ry fields
through the rotation matrix Op as,

H; Ry cosf sinf| | Ry
=0 = 4.11
[HJ R [RJ [— sin 0 cos 0] [RJ ’ (4.11)
where 6 is the mixing angle. The rotation matrix satisfies
OrMEOL = diag <m12ql,m%{2) (4.12)

We can use eq. (4.11) and (4.12) to solve for the potential parameters A\g, Ao, Apy in terms
of mixing angle 6 and the scalar masses mpy, as

2 2 2 2
miy, cos 9+mH231n 0

A = 4.13
m?2; sin® 6 4+ m?; cos20
N\, = 1 0 (4.14)
205
sin 20(m?%, — m?
Aoy = (M1, = mr,) (4.15)
208Vs
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Figure 3. Left panel: the destabilizing effect of right-handed neutrinos on the evolution of the
Higgs quartic coupling. Right panel: one-loop correction to the ® quartic coupling due to its
interaction with the singlet o that drives spontaneous lepton number violation in dynamical inverse
seesaw models.

To study the high energy behaviour of the quartic couplings one can use the above relations
to set the initial conditions on the scalar couplings through the physical Higgs masses, the
two vevs v » and the mixing angle 6. In reality, one should take into account the matching
conditions when translating the on-shell parameters to the corresponding MS expressions.
These matching conditions have been discussed in [36] and will be similar in our case. We
have not included them in our analysis as including these hardly changes our conclusions.

Vacuum stability and spontaneous lepton number violation. We now look at
the stability of the electroweak vacuum in more detail. To see how the couplings evolve
with energy we use the full two-loop RGEs governing the evolution of the Higgs quartic
coupling [14], which are listed in appendix A. However, to understand the main features,
its enough to look at the one-loop ( functions for the quartic couplings, which are given
as follows

9
167 Br, = +AG, + 2405 — Zgihe — 993 + 12005} + 4AeTx (vy:f)

27 9 9
— 6y — 2Tr(YI/Yl/TYVYl/T) + %g% + 2*09%95 + §g§ (4.16)

1
16728y, = E)\%( + 40Apo + 80Xy + 120\g + 40Tt (YSY§> + 60y2
+20Tr(V, ;) — 993 — 45¢3) (4.17)

16726y, = 2(10A2 + A3, + Ao Tr(VsY3 ) — 8Tr(YeVgVsYs)) (4.18)
where 3y = u%. Notice that the one-loop contributions of the new fermions v and scalars
o to the beta-function of Ag shown in figure 3 and eq. (4.16) have the opposite sign.
Indeed, the one-loop diagram in the right panel of figure 3 leads to a “positive” +\3, , term
in the RGE of the quartic coupling Ag. This should be contrasted with the destabilizing
effect coming from the left panel of figure 3 associated to the fermion Yukawa Y,. We will
show shortly that, for appropriate values of the scalar quartic coupling Ag., this positive
contribution can indeed overcome the destabilizing effect of the fermion Yukawas.
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Figure 4. Comparing the evolution of the quartic Higgs self-coupling Ag in the SM (red dashed)
with the majoron inverse seesaw mechanism: the minimal (3,1,1) is denoted in solid (blue), (3,2,2)
is dot-dashed (magenta) and (3,3,3) is dotted (green). Left panel is for v, = 1 TeV and right panel
is for v, = 3TeV. See text for details. . .

Vacuum stability in this model can be studied in two different regimes namely i)
Ve > vg and ii) v, &= O(vge). Due to its potential testability at LHC, here we focus on the
second possibility? For v, ~ O(vg) the threshold scale A = M will be at the mass scale of
the fermions which we take to be M ~ O(10TeV). At the threshold scale only the heavy
fermions are integrated out, while all the scalars remain in the resulting effective theory
below the threshold.

The RG evolution of the Higgs coupling in the majoron inverse seesaw model is il-
lustrated in figure 4 for two different benchmarks. In this plot, we have fixed the singlet
neutrino scale A = 10TeV. Above the threshold scale the full two-loop RGEs (see ap-
pendix A) are used. Below the threshold scale the RGEs of the effective theory, where the
heavy fermions have been integrated out, is employed. As the mass of the heavy scalar
Hy; = H' close to the electroweak scale, we have neglected the small range between My
and mpy and have run all the quartic couplings from the scale Mz. The left panel is
for the benchmark mpyg: = 500 GeV, 6 = 0.12, v, = 1TeV, whereas the right panel has
mpy = 800GeV, 6 = 0.08, v, = 3TeV. We have taken the Yukawa coupling |Y,| = 0.4
for (3,1,1) case, while for the (3,7,n) with n > 2 we took Y, = 0.4 with zero off-diagonal
entries. To avoid overcrowding the plot, only the evolution of the quartic scalar coupling
Ag has been shown in figure 4.

In figure 4 we compare the SM case (dashed, red) with the (3,1,1) (solid, blue), (3,2,2)
(dot-dash, magenta) and (3,3,3) (dot, green) Majoron inverse seesaw evolution curves. One
sees from figure 4 that, by adequate choices for the quartic couplings \,, Ag., or equivalently
f and my, we can have stable vacuum all the way up to the Planck scale, even for sizeable
Yukawa couplings. Given the stabilizing effect of the quartic couplings, especially Ag,, one

2For the first case, in the limit v, > ve the heavy CP-even scalar Hy = H " almost decouples. The

2
threshold corrections at A = my induce a shift in the Higgs quartic coupling, 6\ = Z%. The net effect

is a positive shift to this self-coupling above the threshold scale A, improving the chances of keeping A
positive [21].



might be tempted to always take them sufficiently large i.e. Ag, = O(1). However, taking
the quartic couplings ~ O(1) can lead to nonperturbative couplings after renormalization
group evolution. One should start with moderately small values of Ag,, to prevent its
effect in the RGEs making the other quartic couplings, e.g. A,, nonperturbative at scales
far below Mp. This can be clearly seen in the approximation Ys ~ 0, where ), is always
positive and hence A\, can only increase. For relatively large input values of A\, and small
Ao, the running of \, can be approximated as 8y, oc A2. Hence, it can encounter a Landau
pole at a scale far below the Planck scale. Similarly, with a very large starting value of
A¢ and small Aps, the running of A will be dominated by the term —|—24)\<21,. As a result
one can hit a Landau pole at a scale far below Mp. In appendix. B we have discussed in
detail each of these scenarios. Thus Ag, can neither be taken too small, nor too large, only
a small optimal parameter range will satisfy both stability and perturbativity constraints.
However, this small optimal range can be probed in an important way by colliders such as
the LHC, as we will discuss in the next section.

5 Collider constraints and invisible Higgs boson decays

In this section we examine how Higgs measurements at LEP and LHC can constrain the
parameter space of the Majoron inverse seesaw model. For this we have considered the
following scenarios:

Case I: mpy, < 125GeV with Hy = Hjgs i.e. mpy, = 125GeV. In this case we
have assumed the lighter Higgs scalar H; = H' in the mass range 15GeV < mp, <
120 GeV.

Case II: mpy, > 125 GeV with H; = Hygs i.e. mpy, = 125GeV. In this case we have
taken mpy, = mp > 130 GeV for the heavier Higgs scalar.

We should remind the reader that, by definition, we always take mpg, > mg, .

Rather than discussing collider constraints in terms of quartic couplings, its more
convenient to use the mass basis quantities, e.g. scalar masses and mixing angles, since
experimental results are quoted in terms of these quantities. In our simple model, the
mixing angle 6, the mass m?, and the ratio of the two vevs tan 3 = w2 (with ve = QT”TW)
can be taken as free parameters, in terms of which all others can be fixed.

Before discussing the collider constraints, notice that in the Majoron inverse seesaw
extension, the coupling of the Higgs boson to SM particles gets modified according to the

substitution rule

sinH' + cosOHy95, for Case I
hsm — (5.1)
cosOHi95 —sinfH’, for Case II

The decay widths to SM states can be obtained from those of the SM with the help of
this substitution rule.

~10 -



The scalar sector harbors phenomenologically important interactions involving trilinear
couplings H;JJ and H;H;H; given as

Lr,77 =g sH1J? + gry 70 Ha J?, Loy, i, = 9y, HoHE, (5.2)

where J denotes the Majoron and

t;gfm%{iORﬂ’ for Case I where Hy = Hias

9H,JJ = (5.3)

tQa;lfm%IiORiQ, for Case II where Hi = Hios

tan . .
g%ﬁ?le = 405 (meql + m12q2> sin 26 (cot B sin @ — cos @), where Hy = Hios (5.4)

tan . .
91912%11}{1 = 4@5 (Qm%h + m%lz) sin 20 (— cot S cos @ + sin ) , where Hy = Hyo5  (5.5)

The decay widths for H; — JJ are given by

9i1,00 4m?
[(H; — JJ) == 1-—7 (5.6)
8mmy, miyy,
If mpy, > 2mpy,, Ha can also decay to HyH; with the decay width given by
2 4m2
D(Hy — HyHy) = 20 |y 2 (5.7)
8mmp, mi,
These new decay widths will lead to invisible decays as
'™(H,) =T(Hy, — JJ) (5.8)
'™ (Hy) =T'(Hy — JJ) +T(Hy — HiHy — 4.J) (5.9)

Turning to the lighter scalar boson decays to final state f of SM particles, one finds the
branching fractions

sin? OT'SM (Hy)
; _
sin? OTSM (F,) 4T (H,)? for Case I where Ho = Hias

BR(H;) = (5.10)

cos? OTSM (H,)
i _
cosZ OTSN (i) 1T () for Case II where Hy = Hyo5

If T'"(H;) = 0, the branching fraction would be same as that of SM. The lighter H;
may decay predominantly into pair of majorons depending upon the mass my, and mixing
angle #. The invisible branching ratio for H; is given by

rinv (g
inv sin? OFSM(H(l)-fl—)FinV(Hl)a for Case I where H2 = H125
BR™(H;) = - (5.11)
(H1) for Case II where H1 = Hjas

cos2 I'SM (Hy)+Tinv(Hy)?
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For the heavier state Hs, the branching fraction into SM final state f is

cos? OTSM (Hy)
cos? GFSM(H2)+F(H2f—>JJ)+F(H2—>H1H1)’ for Case T where Hy = Hizs
BR; (Hs) = (5.12)

sin? OTSM (Hy)
! _
sin2 OTSM (Ho) 1 T(Ha—J )+ T (Ha— H1 H1) for Case IT where Hy = Hios

Similarly, the invisible branching ratio for Hy is given by

Finv(H2)
cos? BFSM(H2)+F(H2—>JJ)+F(H2—>H1H1) ’

| for Case I where Hy = Hyos
BR]HV(HZ) —

Finv(H ) o
s OI‘SM(H2)+F(H2H5J)+F(H2HH1H1)’ for Case II where Hy = Hjoj
(5.13)

The coupling of H; and Hs to other SM fermions and gauge bosons are suppressed relative
to the standard values by sin @ (cosf) and cos @ (sin @) for Case I and Case II respectively.
Hence the single H; or Hy production cross-sections are given as,

opp — Hy) = sin? 0cM(pp — Hy), for Case I where Hy = Hias (5.14)
1 — .
cos? HUSM(pp — Hy), for Case II where H; = Hjos
o(pp — Hy) = cos? M (pp — Hy), for Case I where Hy = Hyos (5.15)
2) — .
sin? §oSM(pp — Hy), for Case II where H; = Hios

where oM (pp — Hy) and oM (pp — Hy) are the SM  cross-sections for Higgs production
at my, and my,. Note that they are modified by factors sin? 6 (cos? ) or cos? § (sin? 6)
with respect to the conventional ones.

In the following sections, we discuss the constraints on the relevant parameter space
of Higgs bosons which follow from searches performed at LEP as well as LHC. In what
follows we will discuss both Case I and Case II. In our numerical scans, we restricted the
range of the singlet vev to v, € [0.1 TeV,1TeV] and v, € [1TeV, 3 TeV] for Cases I and II,
respectively.

6 Case I: lightest CP even scalar below 125 GeV i.e. Hy = Hs5

We now examine the experimental limits coming from the LHC and LEP experiments,
starting with the constraints for Case I. Note that in this case Hy = Hqo5 is the SM-like
Higgs boson, with mp, = 125 GeV, and the mass of the lighter scalar boson Hy; = H' lies
in the range 15 GeV < mpys < 120 GeV.

6.1 LEP constraints in the presence of invisible Higgs decays

Soon after the start of the LEP experiment, it was realized that in theories with sponta-
neously broken lepton number the invisible decay of the Higgs boson [23] had clear impact
on ete” scattering experiments [37-40]. Let’s first start with the constraints that follow
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from the LEP collider [41]. For case I these constraints apply to the lighter Higgs boson,
H’. Due to the presence of the invisible decay channel, the visible decay rates get modified.
For the channel ete™ — ZH' — Zbb, the final state is expressed in terms of the SM hZ
cross section through

Trrig iz = Ohy X Rz x BR (H’ — bB) (6.1)
_ 2
= oy x C Z(H'—bb)
where O'SM is the standard cross section, and Rz is the suppression factor related to the

coupling of the Higgs boson to the gauge boson Z. Of course we have RhZ = 1 in the
SM. In our case, BR(H' — bb) is modified with respect to SM due to the presence of
invisible Higgs decay H' — J.J, see eq. (5.8). Thus, in our model Ryz = sin? 6. Ref. [41]

gives upper bounds on C? for the lightest C P-even scalar boson mass in the range

from 15 GeV upto 120 Gg\(fHﬁlg?om this one can determine the regions of mpy — |sin 6|
which are currently allowed by the LEP-II searches. The results are shown in figure 5
for three benchmarks values; v, = 1TeV (upper left panel), v, = 500 GeV (upper right
panel) and v, = 100 GeV (bottom panel). The blue regions are excluded by LEP results.
As the H' coupling to Z boson is reduced with respect to that of the SM, lighter masses
become allowed.

In figure 5, in addition to the LEP constraints, we have also showed in magenta color
the constraints on the invisible decay of Hiss coming from the LHC. As one can see,
these constraints supersede those from LEP, and severely restrict the allowed parameter
space. They come from the current upper bound on the branching ratio to invisible decay
modes BR(Hj25 — Inv) < 19% given by the CMS collaboration [42] and a similar one from
ATLAS [30]. The results are shown in figure 5 with magenta color. Notice that the green
allowed region has a kink. It is associated with the decay Hyo5 — H'H' for my: < ﬂ
Furthermore, as clear from figure 5, smaller v, values lead to larger invisible decay rate and

larger exclusion. Also, with decreasing v,, the ratio % decreases, so the kink gets

less prominent. This in turn implies larger BR(H125 — Inv) and smaller BR(H' — bb). As
a result we get stronger exclusion limit from BR(H125 — Inv) and weaker exclusion limit
from LEP results. This fact is clearly visible when comparing different panels of figure 5.

6.2 LHC constraints in the presence of invisible Higgs decays

We now turn to invisible Higgs decays at hadron colliders [43]. Apart from the above LHC
limit, we also have the LHC measurements of several visible decay modes of the 125 GeV
Higgs boson. These are given in terms of the so-called signal strength parameters,

~ o™ (pp = h) BRY (h = f)

M oM (pp — 1) BR®M(h — f)
o (pp — h) TNP(h — f) TSM(h — all)
oSM(pp — h) TSM(h — £)TNP(h — all)

(6.2)

where o is the cross-section for Higgs production, NP and SM stand for new physics and
SM respectively.
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Figure 5. Exclusion region of mpy: versus |sin 6| for v,=1TeV (top left panel), v, = 0.5TeV (top
right panel) and v, = 0.1 TeV (bottom panel). The blue regions are excluded by LEP results. The
magenta regions correspond to an invisible BR greater than 19% and are therefore excluded by
LHC [42].

Channel ATLAS CMS ATLAS+CMS
. 1157020 | 112402 167518
pvw | 128993 | o1z | Lutols
pzz 1.514039 | 1054032 1317531
furr 1417338 | 0.80753 1121553

Table 1. Combined ATLAS and CMS results for the 8 TeV data, ref. [24].

For the 8 TeV data, we list the results for signal strength parameters from combined
ATLAS and CMS analysis [24] in table. 1.

For the 13 TeV Run-2, there is no combined final data so far, and the available data is
separated by production processes. Table 2 compiles the recent results from ATLAS [25].

We note that in our model, the expected signal strength parameter p ¢ for any SM final
state f can only be less than unity, as shown in the left panel of figure 6. The left panel of
figure 6 is plotted for two benchmark values of the light Higgs mass mp = 100 GeV (blue

— 14 —
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Decay Production Processes

Mode ggF VBF VH ttH

H =~y | 0967311 | 1.3970:4% | 1.09792% | 1.1070:41

H— ZZ | 1.047515 | 268709 | 0.6875:2 | 1501322

H—WW | 1.08+019 | 0597036 - 1.5010:29
H—7r | 0967035 | 1.167035 - 1.38% 000
H — bb - 3.015761 | 1197035 | 0.791559

Table 2. ATLAS results for 13 TeV data, taken from ref. [25].

vg=1 TeV

12 s vg=1TeV
Fm=100 GeV lp———r
1 g‘er=50 GeV = = E E
08 F E
08 E E E
< o6k 0.6 | 3
3 . :.1_ E E
0.4 F 0.4 F 3
0.2 02 F ~ ~ 3
OE L 05....|....|||||I||||I..nn
-1 -0.5 0 0.5 1 0 0.2 0.4 0.6 0.8 1

sin 6 s

Figure 6. Left panel: the signal strength parameter 115 versus sin 6 for light Higgs masses, mp =
100 GeV and 50 GeV. Note that for our model the rate never exceeds the SM prediction which is
1. Right panel: correlation between py and py, where f # f’. The straight line reflects the fact
that, once we fix the two Higgs masses, there is essentially only one free parameter left, the mixing
angle 6.

line) and mpy = 50GeV (red dashed line). Note that, due to the opening up of the
new channel Hy95 — H'H’, the red dashed line is asymmetric in 6, since gp,,. /g is an
asymmetric function of mixing angle 6.

In the right panel of figure 6, we show the correlation between 11 f and 14 where f # f/.
The straight line reflects the fact that once we fix two Higgs masses, there is essentially
only one free parameter, the mixing angle 6. Current LHC results indicate that p; ~ 1.
Taking into account the limits in table 1 and table 2, we assume that the LHC allows for
deviations in the range given in eq. (1.1).

Figure 7 gives the allowed parameters in the mpys — | sin @] plane obtained by taking
the signal strength range of the visible decay channels, u; from LHC and also the above
LEP limits. In figure 7 we take v, = 1TeV (top left panel), 500 GeV (top right panel)

~15 —



vg=1TeV V=500 GeV

120 120
100 100
S 80 =
3 3
2 o
T— 60 T 60
€ 1S
40 40
20 20
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
|sin O] |sin 6]
vy=100 GeV
120
100
S 80
3]
)
T 60
1S
40
20
0 0.2 0.4 0.6 0.8 1
|sin 6]

Figure 7. Constraints on mp versus sinf for v, = 1TeV (top left panel), v, = 0.5TeV (top
right) and v, = 0.1 TeV (bottom panel). The blue regions are excluded by LEP results and the
magenta regions are excluded by the LHC constarint 0.8 < py < 1. The green regions pass all
the constraints.

and 100 GeV (bottom panel). As before, the blue region is excluded from LEP, while the
magenta region is excluded from the LHC constraint in eq. (1.1). The green region is
allowed by the LHC limit. As before, the kink is associated with the opening of the decay
channel Hio5 — H'H' for mpg < mH%

The simplicity of our model implies strong correlations among visible and invisible
scalar boson decays. In figures 8 and 9 we plot the correlations between pr, BR(Hi25 —
Inv) and BR(H' — Inv) for v, = 1TeV. The color code is the same as in figure 7.
The left panel of figure 8 shows that in our model, due to the LHC limit eq. (1.1), the
maximum invisible branching ratio of Hyo5 is about 20%. Whereas for the lighter H’, the
LHC limit eq. (1.1) imples that it should decay mainly via the invisible mode, as shown
in the right panel of figure 8. In fact, the invisible branching ratio of H' — Inv cannot be
less than ~ 70%.

The invisible branching ratio of the two scalar bosons Hio5 and H' are shown in the
left panel of figure 9 with same color code as in figure 7. This plot again confirms that,
while for Hiss the invisible branching ratio cannot exceed 20%, the lighter H’ primarily
decays in the invisible mode with BR(H" — Inv) > 70%. Finally, in the right panel of
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Figure 8. Left panel: puyy versus BR(Hya5 — Inv).  Right panel: pyy versus BR(H' — Inv).
Same color code as used in figure 7.
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Figure 9. Left panel: BR(Hj25 — Inv) as afunction of BR(H' — Inv). Right panel: mpy: as a
function of BR(H' — Inv). The color codes are as in figure 7.

figure 9, we plot mpy versus BR(H' — Inv), with the same conventions. One sees that, for
mpy 2 40 GeV the H' decays almost exclusively in the invisible mode.

7 Case II: lightest CP-even scalar H; = H,35 is the 125 GeV Higgs

In this section we describe the constraints for Case II, in which the lightest CP even scalar
is the Standard-Model-like Higgs boson with mpg, = 125GeV, while the heavier one is
Hy = H' with mpg > 130GeV. As in Case I, we can use the LHC upper limit on the Higgs
boson invisible decay eq. (1.2) and the constraints on Higgs signal strength parameters in
eq. (1.1). These bounds can then be translated in terms of restrictions on |sin@| for
mgr > 130 GeV.

In table 3 and figure 10, we have give the maximum allowed values of |sin | from the
LHC constraints in egs. (1.2) and eq. (1.1). As can be seen from figure 10, for low values
of v, up to around 1TeV, both eq. (1.2) and eq. (1.1) lead to similar limits on |sin ).
However, for v, > 1TeV the limit from eq. (1.2) gets relaxed since, the larger the v,, the
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Upper limit on | sin 6| Upper limit on |sin 6

Vg from /iy from BRE}IV25 < 19%
700 GeV 0.150 0.154
1TeV 0.201 0.218
2TeV 0.317 0.417
3TeV 0.375 0.586

Table 3. Maximum allowed values of |sin 0| from eqgs. (1.1) and (1.2).

1:...!....!....!....!....!....!....!....!.........:
osb i

0.6 z_ ....... ....... ...... ....... ..... ,,,,, ?

|sin ]

0s B

02 ;. ....... ...... ..... . . ...... L

oo b b b i

o : ‘BR(le?-> Inv)>0.19
0'|||I||||I||||I||||I ........ [ IS AT FNE TN R
05 1 15 2 25 3 35 4 45 5

vglTeV]

Figure 10. The shaded areas on | sin 6| versus v,, are ruled out by the present limit on the invisible
Higgs decay in eq. (1.2) (magenta) and the constraints on the signal strength parameter g in

eq. (1.1) (gray).

smaller the invisible decay mode Hio5 — JJ. As a result, for larger v, values the Higgs
invisible decay gives a weaker exclusion limit on |sin | than that coming from .

Notice that the Higgs invisible branching ratio changes with the scale of dynamical
breaking of lepton number, i.e. value of v, that triggers neutrino mass generation. Figure 11
shows how one can get information on this fundamental scale by Higgs boson measurements.
These plots show indeed that the Higgs invisible branching ratio can be used to probe the
scale of spontaneous lepton number breaking v,. As can be seen from figure 11 for a fixed
value of the mixing angle sin # the Higgs invisible branching ratio varies in a monotonic
fashion with v,. Thus, one can use other LHC results i.e. signal strength measurements
to obtain limits on sin @ and then use figure 11 to constrain the scale of dynamical lepton
number breaking. For example, for |sinf| = 0.1 we find that v, cannot be less than
500 GeV while for |sinf| = 0.2 v, cannot be less than 900 GeV. Future improvement on
the Higgs invisible branching ratio measurement can be used to further constrain the scale
of dynamical lepton number breaking, as depicted in figure 11.

Finally, as in Case I, one can use egs. (1.1) and (1.2) to obtain correlations between
different observables, analogous to the figure 8 and figure 9. However, we will not show
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Figure 11. Left panel: BR(H125 — Inv) vs | sin 0| for different choices of |sin 6] = 0.1 (red dashed),
0.2 (blue dotted), 0.3 (brown double dot-dashed) and 0.4 (green dot-dashed). The black shaded
region is excluded by the LHC limit in eq. (1.2). Right panel: exclusion contours in the plane | sin 6]
vs v, corresponding to an invisible Higgs branching ratio BR(Hi25 — Inv) excluded at 20% (red
dashed), 10% (blue dotted) and 1% (green dot-dashed), respectively. The regions above each line
are excluded.

these plots explicitly. Instead, we will make use of such constraints and correlations in
conjunction with the vacuum stability constraints in order to obtain complementary limits
in section. 8.

Notice that for Case II there can be additional constraints coming from the direct
search of the heavy Higgs boson H'. Two types of LHC searches are relevant, namely,
for direct Higgs production pp — H’ with successive decay to SM particles e.g., WW,
ZZ and subsequent decays WW — 202v and ZZ — 4¢0) [44, 45] or to a pair of SM-like
Higgs bosons Hjgs if kinematically allowed. One can recast these experimental constraints
on the parameter sinf and mygs for fixed value of v,. For v, &~ wvg, current searches
for additional Higgs bosons can provide the stronger constraints compared to the signal
strength parameter in the low mass range (130 GeV-300 GeV), see ref. [46]. However we find
that with relatively larger v, the constraint from the signal strength parameter is stronger
for mpy > 130 GeV, hence not discussed here.

8 Perturbativity and vacuum stability

We now examine the combined implications of collider constraints in conjunction with
the restrictions that follow from vacuum stability and perturbativity of the theory. As
we will see, these two sets of constraints give complementary information on the Majoron
inverse seesaw model. In most cases, vacuum stability is threatened by the violation of the
condition Ap > 0 and A, > 0. In order to have a stable vacuum one also needs relatively
large values of Ag,, which means non-negligible mixing parameter |sin | between the two
CP even scalars. On the other hand the LEP and LHC provide stringent bounds on the
mixing between the two CP even scalars i.e. they require small values of |sin#|. We now
dicuss this interplay in more detail for both Case I and Case II. In subsequent sections we
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show stable, unstable and non-perturbative m g —sin 0 regions, associated to green, red and
brown colors, respectively. We have categorized these regions using the following criteria:

e Green Region: this is the region where we can have stable vacuum all the way up
to the Planck scale, and all the couplings are within their perturbative regime. In our
numerical scans these conditions are implemented by requiring: 0 < Ag(p) < V4,
0 < Ao(p) < VAT, Xao(pt) + 20/ e (1) Ao (1) > 0 and |Aao (1) < VAT where p is
the running scale. All other couplings e.g. the gauge and Yukawa couplings are also
required to be perturbative till the Planck scale.

e Red Region: in this region the vacuum is unstable, as the potential becomes un-
bounded from below at some high energy scale before Planck scale. This means that
any one or more than one of these conditions are realised: Ag(u) < 0, Ay(1) < 0,
oo (1) + 2v/Aa (1) Ao (1) < 0. Note that inside the red region there can be parame-
ters for which the potential is unbounded, and also some of the quartic couplings are
non-perturbative as well, although we are excluding Landau poles.

e« Brown Region: this region implies the existence of non-perturbative couplings at
some energy scale before the Planck scale. This happens if any one of the following
conditions holds: |Ag ()| > 47, |Ao(1)] > 47, Ao (p)| > 4w, |V, (p)| > 47. Note that
the gauge coupling running here is similar to the SM running and hence they always
remain perturbative. We are also including Landau poles inside the non-perturbative
regions, since as one approaches the Landau pole the perturbative approach is no
longer reliable. In appendix. B, we discuss how Landau poles can arise in our the
RGEs. There we have also discussed other scenarios leading to non-perturbative
couplings, such as the continuous growth of a coupling or the saturation of some
coupling with respect to the energy scale p.

Let us now look at the combined results of the collider constraints and stability-
perturbativity constraints of our model. We start with Case I first.

8.1 Case I where the heaviest scalar Ho = H;25 is the Higgs boson

In the left panel of figure 12, for the (3,1,1) Majoron inverse seesaw case, we have shown
the values of mpy and 0 for v, = 100 GeV which lead to either bounded or unbounded
potential, non-perturbative dynamics or Landau Poles. We neglect the Yukawa coupling
Y, and take the heavy neutrino mass scale at M = A = 10TeV. We find that even
in this extreme case where we have removed the destabilizing contribution of the neutrino
Yukawa coupling, there is no parameter space to have a viable vacuum. Note that the whole
parameter space is ruled out just from vacuum stability and perturbativity considerations.
The region allowed by collider constraints is the one in between the black contours in the
left panel of figure 12. One sees that in this case the collider constraints are very stringent
and rule out almost all the parameter space, except for a very thin small region very close
to |sinf| ~ 0. However, even this small allowed region is ruled out by the combination of
vacuum stability and perturbativity constraints.
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Figure 12. Left panel: values of mpy and mixing angle 6 leading to an unstable vacuum (in
red), to a Landau pole or non-perturbative quartic couplings (in brown), at some energy scale
below the Planck scale. We have fixed Y, = 0, v, = 100 GeV and the heavy neutrino mass scale
A = 10TeV. The region between the black lines is allowed by LEP-LHC constraints. Right panel:
initial electroweak values of Ag, A, and Aa, as a function of sin #. The band is due to the variation
of the lighter scalar boson mass mpy: € [15,120] GeV range.

It is easy to understand the different regions in the left panel of figure 12 with the help
of the right panel of figure 12. There we have shown the corresponding initial values of
quartic couplings at the electroweak scale. The band for the quartic couplings \,(Mz) (gray
band), Ags(Mz) (purple) and Ags(Mz) (cyan) is due to the lighter Higgs mass variation in
the range 15GeV < mpy < 120 GeV. We find that for |sin#| < 0.5 in the low mass regime
mpy < 60GeV, the value of quartic coupling Ag(Mz) is O(0.1) and 0 < |Ag,(Mz)| <
0.1. Hence the positive contribution from Ag, is not enough to overcome the negative
contribution from the top Yukawa coupling. As a result, Ag goes negative well below the
Planck scale, and the vacuum is unstable. For |sin @] ~ 0 and mpy > 70 GeV, we see from
the right panel of figure 12 that [Ags(Mz)| ~ 0 so, from eq. (4.14), we get A\,(Mz) > 0.3.
With this small A\g, and large \,, the RGEs for A, at leading order (eq. (4.18)) can be
approximated as eq. (B.1). We find that with this large \,(Mz) > 0.3 the running of
Ao will become nonperturbative well before the Planck scale. Similarly, for |siné| > 0.5
the A\;(Mz) is even larger and, again, it quickly becomes non-perturbative below the Mp,
irrespective of the mass range of H' scalar.

Finally, we stress that figure 12 corresponds to the (3,1,1) Majoron inverse seesaw,
taking Y, = 0. A non-zero Yukawa coupling will have an effect on the evolution of the
quartic coupling \g, aggravating the vacuum instability problem. Moreover, higher (3,n,n)
realizations with n > 2 also will only aggravate the stability problem. Thus, we can safely
say that at least for v, = 100 GeV, there is no viable parameter space within the Majoron
inverse seesaw approach to have a stable and perturbative vacuum up to the Planck scale.

Since higher dynamical lepton number breaking scales v, relax the collider limits,
will that help us find a viable parameter space? Although the collider restrictions clearly
disappear in a genuine high-scale seesaw, as long as we remain within the low-scale seesaw
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Figure 13. Left panels: the nature of vacuum for the case of v, = 500 GeV and 1 TeV, respectively,
with Yukawa coupling Y;, = 0. The color codes are same as in figure 12.

Right panels: show the values of A\p, A, and A\g, at the electroweak scale as a function of sin . The
bands are due to variation of lighter Higgs mass mpy/ varation 15 GeV to 120 GeV. Note that the
scale on the Y-axis of right panels is different compared to figure 12.

picture, the answer is no! This can be seen from the upper left and lower left panel of
figure 13. One sees that, for higher values of v, up to 1TeV, there is no viable region to
have a stable vacuum with mpgs < mp,,;. This figure shows that with v, = 500 GeV and
vy = 1TeV there is no consistent region left, the vacuum is even more unstable. In fact,
as can be seen from figure 13, the vacuum is now unstable for the entire parameter space!
This can again be seen in terms of the values of the quartic couplings at the electroweak
scale, shown in the right panels of figure 13. One sees that the quartic coupling Ag, is small
for all values of the mixing angle #. Such small values of Ag, are not enough to counter
the negative contribution from the top-Yukawa coupling in the evolution of Ag. On the
other hand, now all the quartic couplings are small over the entire range of mpy, hence
RG running will not hit any Landau pole or non-perturbative quartic couplings. Hence we
get only unstable vacuum for the entire mpy — 0 plane. As before, taking non-zero values
of Y, in the (3,n,n) schemes, will only make the problem of vacuum stability worse, due
to the new Yukawas and/or extra fermions. One can try lowering the scale of dynamical
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Figure 14. Same as in figure 12 but now we have considered RGEs evolution only up to pimax =
10'° GeV (upper left panel), 108 GeV (upper right panel) or 100 TeV (lower panel).

lepton number breaking by taking v, < 100 GeV. This also doesn’t help as in this case,
while the parameter space ruled by vacuum instability decreases, the region excluded by
non-perturbativity increases. In the end, no viable region remains.

In short, for Case I with Hys = Hjos, 15GeV < mpg < 120GeV and
Vs € [100 GeV, 1 TeV] we have no regions with consistent vacuum allowed by the LHC data.

One should note that in the discussion of figures 12 and 13 we have assumed the
maximum energy scale to be the Planck scale. If one demands to have a consistent vacuum
only up to some energy scale below Mp the situation changes, as summarised in figure 14.

In figure 14, we have fixed the maximum energy scale up to which one should have
a stable vacuum with perturbative couplings, as jimax = 10'°GeV (upper left panel),
10% GeV (upper right panel) and pmax = 100 TeV (bottom panel).? Unlike the case of
Umax = Planck scale, with ppax = 1019 GeV we can indeed have a stable vacuum with
perturbative couplings (green region). Moreover, this stability region increases with de-
creasing cut-off scale pumax as seen in figure 14. However, most of the consistent regions

3Note that Ae,(Mz) is an asymmetric function of sin 6, see eq. (4.15). The evolution of g, depends

on the sign of Aes(Mz), see appendix A. Hence the stability condition Aeo (1) + 24/ A (1) Ao (1) > 0 also
depends on the sign of sin @, so the green regions are not symmetric in sin 6.
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are excluded by the LEP and LHC constraints (these are the regions outside the narrow
region delimited by the black contours). Thus, even with lower pmax, only a thin region
between the two black lines around |sin | ~ 0 remains, due to the collider constraints.

Before closing this section, we comment on the possibility that the lepton number
symmetry is spontaneously broken at a very low scale, i.e. v, ~ O(KeV) [47]. This case
unfortunately requires extreme fine tuning to be viable. From (4.15) one sees that it is
only allowed if the masses of the CP even scalars is fine-tuned to be nearly degenerate i.e.
m%,l — m%b ~ v, ~ O(KeV). This case would require a separate analysis, properly taking
into account the threshold corrections coming from integrating out the SM particles as
well as the QCD corrections.

8.2 Case II where the lightest scalar is the H; = Hy25 Higgs

Let us now discuss the stability-perturbativity implications for Case II when the lighter
CP even scalar H; = Hj95 while the heavier scalar mpg, > 130 GeV. We will confront the
electroweak vacuum consistency requirements in the majoron low-scale seesaw with the
LEP-LHC constraints. For this case we choose three benchmarks for the dynamical lepton
number breaking scale v,, namely v, = 700 GeV, 1 TeV and 3 TeV. The results for these
are shown in figure 15, 16 and 17, respectively.

We start with the results for v, = 700 GeV. The color codes in figures 15 are same as
in figure 14 and the neutrino scale fixed at A = 10 TeV. Unlike the previous section 8.1, in
the Y, = 0 case (upper left panel) we do have a region (green) where the vacuum is stable
and all couplings are perturbative up to the Planck scale. However, LEP-LHC constraints
(black shaded region) coming from egs. (1.1) and (1.2) rule out large part of the green
space. Even then some green region remains which satisfies all the constraints.

The different regions of the upper left panel of figure 15 can be understood from the
corresponding upper right panel. From figure 15 (see also eq. (4.13) and (4.14)) one can
see that for |sin | ~ 1 and small mpy < 200 GeV, one finds that Ae(Mz), Ao (Mz) are not
too large (top-right panel), in contrast to the case of large H' masses (bottom-left). On the
other hand A, (M) is large enough to counter the negative contribution of top-Yukawa
coupling in the evolution of Ag (see eq. (4.16)). Hence, we obtain the green region.

On the other hand for |sinf| ~ O(1) and large my > 180 GeV, using eq. (4.13) one
finds that Ag(My) is too large. From eq. (4.16) we see that for large A\ (Mz) the one-
loop running of Ag can be approximated as 8, ~ 24)3%. Following eq. (B.1) we find
that this actually becomes non-perturbative well below the Planck scale. For |sinf| ~ 0
and mp < 550 GeV, Ap(Mz) ~ O(0.1) and Ag,(Mz) is not large enough to counter the
negative top-Yukawa coupling contribution. As a result, it leads to an unstable vacuum,
as indicated in red. For large mpgs and |sin@| ~ 0, Ay (Mz) is large but Ap,(Mz) is small.
Hence, the one-loop ), evolution can be approximated as 3y, &~ 20\2 (see eq. (4.18)) and
following eq. (B.1) the coupling becomes non-perturbative before reaching the Planck scale.

Keeping all other parameters the same, we now switch on the neutrino Yukawa coupling
Y, = 0.6 to analyze its effect,? see the lower panel in figure 15. As expected, upon switching

4Note that we restrict the Yukawa coupling Y, < 0.6, as with Y, > 0.7 and A = 10TeV, we get either
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Figure 15. Upper left panel: values of mpy, and mixing angle 6 leading to a stable vacuum with
all couplings perturbative (green), non-perturbative couplings at some energy scale (brown), or an
unstable potential (red). The region between the black lines is allowed by LEP-LHC constraints.
We have fixed the heavy neutrino mass scale A = 10TeV and v, = 700 GeV and imposed the
stability-perturbativity constraints up to Mp. Upper right panel: values of Ag, A, and Ag, at the
electroweak scale as a function of sinf. The bands correspond to variation of lighter Higgs mass
my, in the range of 130 GeV to 700 GeV. Bottom panel: same as upper left panel but with Y, = 0.6.

on the neutrino Yukawa coupling, the vacuum will be unstable over a larger parameter
space. One sees from the lower panel in figure 15, that the region with unstable vacuum
increases appreciably. Correspondingly, the green region where the vacuum is stable and
all couplings are perturbative decreases in size. After imposing the LEP-LHC constraints
(region between the black lines), we find that no viable allowed region remains, as all the
green region falls within the collider-forbidden region. Thus, stability-perturbativity in
conjunction with LEP-LHC constraints, completely rule out this benchmark.

The main conclusions drawn for the case of v, = 700 GeV hold for larger v, values. In
figures 16 and 17, we have shown the results for v, = 1 TeV and 3TeV, respectively.

The different regions in these figures can be explained in a way similar to the case
of v, = 700 GeV. The most important change now is that the collider constraints from

unstable vacuum or non-perturbative dynamics for the entire range of my/ and sin 6.
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Figure 16. Values of mpys and mixing angle 0 leading to a bounded-from-below and perturbative
vacuum (green), non-perturbative couplings at some energy scale (brown), or unstable vacuum (red).
We have fixed the neutrino scale A = 10 TeV and v, = 1 TeV, taking Y,, = 0 and 0.6 for the left and
right panels, respectively. Stability-perturbativity constraints are imposed up to the Planck scale.
The region between the black lines is allowed by LEP-LHC constraints.

Yy=0, vg=3 TeV Yy=0.6, vg=3 TeV
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Figure 17. Same as in figure 16 but for v, = 3 TeV.

egs. (1.1) and (1.2) get relaxed with increasing value of v,. Indeed, from table. 3 and
figure 10, one sees that, the larger the v,, the more relaxed are the LHC constraints. The
fact that these constraints are weaker for v, = 3TeV than for v, = 1TeV explains why
the green region in figure 17 allowed by these constraints is much larger than shown in
figure 17. Notice that, for such relatively large v,, we obtain a stable vacuum consistent
with LHC constraints even for non-zero Yukawa couplings.

We remark that the above analysis has been performed for the missing partner (3,1,1)
inverse seesaw mechamism, where there is only one Yukawa coupling. For higher (3,n,n)
inverse seesaw schemes with n > 2, the results will be similar, but more Yukawa couplings
means that larger regions will be ruled out by the stability-perturbativity requirement. We
have also considered these cases in detail. In figure 18 and 19 we compare the stability

properties of the (3,1,1) and (3,2,2) missing partner seesaw with the standard sequential
(3,3,3) inverse seesaw.
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Figure 18. The left figure of upper panel is for the reference (3,1,1) majoron inverse seesaw with
Y, = 0.4. The right upper panel is for (3,2,2) case with Y, = Diag(0.4,0.4). The lower panel is
for (3,3,3) case with Y, = Diag(0.4,0.4,0.4). We have fixed v, = 1TeV, the neutrino mass scale
A = 10TeV and have imposed the stability-perturbativity constraints up to Planck scale. The color
code is same as in figure 16.

We have taken the Yukawa coupling |Y,| = 0.4 for the (3,1,1) case, while for the
(3,n,n) with n > 2 and we assumed Y, = 0.4 and the off-diagonal entries as Y,/ = 0.
One sees from these figures that when the dynamical lepton number breaking scale v, is
high i.e. v, 2 1 TeV, thanks to the relaxed LHC constraints (figure 10), the Higgs vacuum
can be still kept stable up to the Planck scale, even for appreciable Yukawa couplings. Of
course, the presence of additional fermions means that the maximum values of Y%, for
which Higgs vacuum stability can be achieved up to Mp, is somewhat reduced compared
to the Yukawa coupling Y;, = 0.6 considered in figures 15, 16 and 17. However, we can still
have regions consistent with LHC measurements and vacuum stability-perturbativity for
the case n > 2 even for moderate Yukawa coupling values.

To sum up, in contrast to Case I, for Case II we can have regions consistent with
LHC constraints and vacuum stability-perturbativity all the way up to the Planck scale
even for relatively large Yukawas. This is possible provided the scale of dynamical lepton
number breaking v,, is sufficiently high, i.e. v, 2 1TeV. Finally, if one demands the

consistency of the vacuum only up to an energy scale far below the Planck scale, then the
green stability-perturbativity regions will enlarge considerably.
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Figure 19. Same as figure 18, but for v, = 3TeV. The region between the black lines is allowed
by LEP-LHC constraints.

9 Summary and outlook

We have examined the dynamical inverse seesaw mechanism as a simple benchmark for
electroweak breaking and Higgs boson physics. We first briefly summarized the issue of
vacuum stability in the context of inverse seesaw mechanism with explicit lepton number
violation and compared with the SM, figure 1. The addition of fermion singlets (v and
S) has a destabilizing effect on the running of the Higgs quartic coupling A and we found
that with sizeable Yukawa coupling Y, the quartic coupling A becomes negative before
the SM instability scale u ~ 10'° GeV, figure 2. Further we have examined the issue
of vacuum stability in the simplest dynamical realization of this scenario within context
of the SU(3). ® SU(2)L, ® U(1)y gauge theory. The Higgs sector is the simplest general-
ization of that of the SM, adding a singlet ¢ whose vacuum expectation value v, drives
the spontaneous violation of lepton number and neutrino mass generation. It has two
characteristic features: i) the existence of a massless Nambu-Goldstone boson, J, dubbed
majoron, and ii) two C'P-even neutral Higgs H; and Hs given as a simple admixture of the
doublet and singlet scalar given by sin #. This leads to potentially large Higgs decays into
the invisible majorons, in eq. (1.2), modifying also the rates for SM decay channels in a
simple manner, figure 6. In figure 10 we presented the regions of |sin 6| versus v, allowed
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by the current LHC limits on the invisible Higgs decay in eq. (1.2) (magenta) and the
signal strength parameter ;y in eq. (1.1) (gray), see also figure 11. We have examined the
implications of existing Higgs measurements at LEP-II and LHC, considering two cases:
case 1) where the heaviest scalar Hy = Hjgs is the Higgs boson with mp, = 125 GeV,
with 15 GeV < mpy, < 115GeV, and Case II) where the lightest scalar is the H; = Hjas
Higgs with mpy, = 125GeV, and mpy, > 130 GeV. For case I), both the LHC and LEP-II
measurements are applicable, while for case II) only LHC measurements are relevant. The
resulting regions excluded by these experiments are shown in figures 5, 7, 8 and 9.

Moreover, the stability properties of the electroweak vacuum can be substatially im-
proved, see figures 3 and 4. We further study how the vacuum stability can further restrict
the parameter space, as illustrated in figures 12, 13, 14, 15, 16, 17, 18 and 19. The take-
home message implied by our findings is that, with appreciable mixing angle between
C'P-even neutral Higgs H; and Hs, we can have stable vacuum even for relatively large
Yukawa coupling. Therefore further experimental improvements, either at the LHC or at
the future FCC [3, 4], will further restrict the allowed regions. Needless to say, an open
conflict between stability-perturbativity and experiment could mean the breakdown of the
theory, and the presence of new physics below the Planck scale. We are still far from this
long term goal and, in the meatime, our dynamical inverse seesaw picture offers a very
simple benchmark for electroweak breaking and precision Higgs boson studies at upcoming
collider facilities.

Before concluding let us briefly comment on the possible impact of the majoron com-
pletion of the dynamical inverse seesaw mechanism in cosmology and astrophysics. Gener-
ically, Majorons can be produced in stellar environments through Compton-like processes
such as v+ e — e + J and will easily escape the star by free streaming. Supressing the
resulting stellar energy loss to lie within acceptable levels requires a small coupling of the
Majoron to the electron gs.. < 2 x 10713 [48, 49]. However, in the inverse seesaw model
the Majoron is an electroweak singlet, and does not couple to the charged fermions at tree
level. Note also that the majoron can get mass from gravitational effects that explicitly
violate the global lepton number [50]. If the majoron is massive, it may play the role of
warm [51-56] or cold Dark Matter [57, 58]. Finally, we also mention that, in addition
to dark matter, the majoron picture may also provide new insights to other cosmological
challenges of the Standard Model, such as inflation [59], leptogenesis [60], and cosmological
domain walls [61].
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A RGEs: inverse seesaw with majoron

In our work we have used the package SARAH [62] to perform the renormalization group
analysis of the dynamical inverse seesaw model. The S function of a given parameter c is
given by,

de
,U'@ = ﬂc

B ¢ B

1672 (1 671'2)2

where p is the running scale and /B,(;l), 6&2) are the one-loop and two-loop renormalization
group terms.

In the presence of the majoron the one- and two-loop renormalization group corrections
for the quartic scalar couplings are modified to

A.1 Quartic scalar couplings

One Loop
9
Bl =+ —1—24)\?{)——g%)@—Qgg)@—i—lQ)\@yf-l-@@’H(Y,,YJ)
27 9 9
_ ty v 1) o 20
6y —2Tr (Y, Y} YY)+200g1+209192+8g2 (A1)
Two Loop
Bre = = 750009~ 200 ——gig5— 30 9192+ =~ 169 dot on 200 g1 <I>+ 20 9195 Ao — g 927
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108 171 63
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3 3
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One Loop
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(A.4)
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Two Loop
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One Loop
B = 2(10A2 423, +40, Tr(YsV3 ) —8Tr (Ve Vg Vs Y3 ) ) (A.6)

Two Loop

B = +591A o+ 126303, — 80, — 2003, A0 — 24003 — 80N Tr (Vs Y3 ) —1203,47

— 403, Tr (Y, Y,)) + 160 Tr (Yo Yg Vs Y3 ) +256 Tr (Vs VYoV VeV3 ) (A7)

A.2 Yukawa couplings

Likewise, in the presence of the majoron the one- and two-loop renormalization group
corrections for the Yukawa couplings in the inverse seesaw model are modified to

One Loop

3 9 , 9
0 = SYYIY, Y, (3y§ +Tr (V) - 5091~ 493) (A.8)

Two Loop

B = - (2799 Y, Y]V, +675¢2Y, Y]V, —960\eY, Y, +120Y, Y]V, Y]V, - 540Y, Y] Y, 12
—180Y, Y] Y, T (YVYJ ) +2Y, (2 1g% — 549262 — 23093 + 2012, + 24012 + 85922
+22563y7+800g3y7 +15g3Tr (V.. Y, ) + 563 Tr (Y, ¥, ) — 270y - 90T (Y, V1Y, v, )))

(A.9)
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Two Loop
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B Some comments on the RGEs

B.1 Landau pole
« For any coupling c, if 8. = Ac? one has

de(y)
dp

= A () =

(B.1)

so one has an analytical solution. Depending on the values of A and ¢(Mz) eq. (B.1)
1

has a singularity, i.e. the Landau pole singularity, at a scale: pu; = Mze4<Mz) . The
presence of this Landau pole indicates that the coupling c(u) grows strong at large
renormalisation scale . We see that larger the ¢(Myz) smaller the Landau scale pp,.

We see from eq. (4.18) that if Yg ~ 0, one-loop evolution of A\, can be approximated
as

B ~ 2(1002 + A3, (B.2)
Hence we see that when Ag, can be neglected, A, (u) follows eq. (B.1).

o Eq. (B.1) can be generalized in the following way:

de(p)
dp

= A (1) = ofu) = o(Mz) 1 (B.3)

(1 —(n— 1)AC(MZ)("*1)10gMLZ> ot

n—1

From this we see that for n > 1 we can have a Landau pole.
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B.2 Continuous growth

If B. = Ac"™ with n < 1, we see from eq. (B.3) that in this case we will not have pole but
c(p) can grows continuosly. For example with n = %,

2
c(p) = c(Mz) < log“> 7 (B.4)

2./¢
and with n =0,

= A= c(u) = o(Myz) + Alog—— (B.5)

de(p
" (1) -

dp

Although running of ¢(u) will not encounter any Landau pole but it can go to non-
perturbative region with relatively large values of ¢(My) and A.

B.3 Saturation

If 5. has a zero at the finite value ¢(us) then the growth of ¢ will be saturated at ¢(pu.) for
p — 00. To illustrate this let us consider the following form of ., 8. = (A — Be(p)). This
can have a zero at c(u,) = %.

de(r) _ 4 Be H dp
W = (A= Be) = [ (A e /MM
= c(p) = B;B( — Apl + Buf@(u*) + ApP) (B.6)

Now using ¢(p*) = % in the above equation, we find ¢(u) = % for any p. Note that this
will happen for any (3. which has a zero at the finite value ¢(puy).

One loop and two-loop RGEs for the quartic couplings are in general very complex.
However we find numerically that, depending on the starting values of the quartic couplings,
we can have zeros in the § function at some scale u, so that the subsequent evolution of
the corresponding coupling saturates.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1
[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS
Ezperiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] INSPIRE].

[3] FCC collaboration, HE-LHC: The High-Energy Large Hadron Collider: Future Circular
Collider Conceptual Design Report Volume 4, Fur. Phys. J. ST 228 (2019) 1109 [InSPIRE].

— 33 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB716%2C1%22
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB716%2C30%22
https://doi.org/10.1140/epjst/e2019-900088-6
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.ST%2C228%2C1109%22

[4]

[5]

(6]

[7]

8]

[9]

[10]

[11]

[12]

[20]

[21]

22]

FCC collaboration, FCC' Physics Opportunities: Future Circular Collider Conceptual Design
Report Volume 1, Eur. Phys. J. C 79 (2019) 474 [nSPIRE].

Takaaki Kajita. Nobel Lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod.
Phys. 88 (2016) 030501..

ArthurB. McDonald. Nobel Lecture: The Sudbury Neutrino Observatory: Observation of
flavor change for solar neutrinos, Rev. Mod. Phys. 88 (2016) 030502..

R. Torre, L. Ricci and A. Wulzer, On the W&Y interpretation of high-energy Drell-Yan
measurements, JHEP 02 (2021) 144 [arXiv:2008.12978] [INSPIRE].

J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) z U(1) Theories, Phys. Rev. D 22
(1980) 2227 [iNSPIRE].

Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons
Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265 [NSPIRE].

J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton
Number, Phys. Rev. D 25 (1982) 774 [InSPIRE].

R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon-number nonconservation in
superstring models, Phys. Rev. D 34 (1986) 1642.

S. Khan, S. Goswami and S. Roy, Vacuum Stability constraints on the minimal singlet TeV
Seesaw Model, Phys. Rev. D 89 (2014) 073021 [arXiv:1212.3694] [INSPIRE].

W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and
electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [InSPIRE].

C. Bonilla, R.M. Fonseca and J.W.F. Valle, Vacuum stability with spontaneous violation of
lepton number, Phys. Lett. B 756 (2016) 345 [arXiv:1506.04031] [INSPIRE].

L. Delle Rose, C. Marzo and A. Urbano, On the stability of the electroweak vacuum in the
presence of low-scale seesaw models, JHEP 12 (2015) 050 [arXiv:1506.03360] [INSPIRE].

M. Lindner, H.H. Patel and B. Radov¢i¢, Electroweak Absolute, Meta-, and Thermal Stability
in Neutrino Mass Models, Phys. Rev. D 93 (2016) 073005 [arXiv:1511.06215] [INSPIRE].

J.N. Ng and A. de la Puente, Electroweak Vacuum Stability and the Seesaw Mechanism
Revisited, Eur. Phys. J. C' 76 (2016) 122 [arXiv:1510.00742] nSPIRE].

G. Bambhaniya, P.S. Bhupal Dev, S. Goswami, S. Khan and W. Rodejohann, Naturalness,
Vacuum Stability and Leptogenesis in the Minimal Seesaw Model, Phys. Rev. D 95 (2017)
095016 [arXiv:1611.03827] [INSPIRE].

I. Garg, S. Goswami, K.N. Vishnudath and N. Khan, FElectroweak vacuum stability in
presence of singlet scalar dark matter in TeV scale seesaw models, Phys. Rev. D 96 (2017)
055020 [arXiv:1706.08851] [INSPIRE].

S. Mandal, R. Srivastava and J.W.F. Valle, Consistency of the dynamical high-scale type-I
seesaw mechanism, Phys. Rev. D 101 (2020) 115030 [arXiv:1903.03631] [INSPIRE].

Sanjoy Mandal, Rahul Srivastava, José and W.F. Valle, FElectroweak symmetry breaking in
the inverse seesaw mechanism, JHEP 03 (2021) 212.

M.C. Gonzalez-Garcia and J.W.F. Valle, Fast Decaying Neutrinos and Observable Flavor
Violation in a New Class of Majoron Models, Phys. Lett. B 216 (1989) 360 [INSPIRE].

— 34 —


https://doi.org/10.1140/epjc/s10052-019-6904-3
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC79%2C474%22
https://doi.org/10.1103/RevModPhys.88.030501
https://doi.org/10.1103/RevModPhys.88.030501
https://doi.org/10.1103/RevModPhys.88.030502
https://doi.org/10.1007/JHEP02(2021)144
https://arxiv.org/abs/2008.12978
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2102%2C144%22%20and%20year%3D2021
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevD.22.2227
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD22%2C2227%22
https://doi.org/10.1016/0370-2693(81)90011-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB98%2C265%22
https://doi.org/10.1103/PhysRevD.25.774
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD25%2C774%22
https://doi.org/10.1103/PhysRevD.34.1642
https://doi.org/10.1103/PhysRevD.89.073021
https://arxiv.org/abs/1212.3694
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD89%2C073021%22
https://doi.org/10.1007/JHEP06(2012)022
https://arxiv.org/abs/1203.3825
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1206%2C022%22%20and%20year%3D2012
https://doi.org/10.1016/j.physletb.2016.03.037
https://arxiv.org/abs/1506.04031
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB756%2C345%22
https://doi.org/10.1007/JHEP12(2015)050
https://arxiv.org/abs/1506.03360
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1512%2C050%22%20and%20year%3D2015
https://doi.org/10.1103/PhysRevD.93.073005
https://arxiv.org/abs/1511.06215
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD93%2C073005%22
https://doi.org/10.1140/epjc/s10052-016-3981-4
https://arxiv.org/abs/1510.00742
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC76%2C122%22
https://doi.org/10.1103/PhysRevD.95.095016
https://doi.org/10.1103/PhysRevD.95.095016
https://arxiv.org/abs/1611.03827
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD95%2C095016%22
https://doi.org/10.1103/PhysRevD.96.055020
https://doi.org/10.1103/PhysRevD.96.055020
https://arxiv.org/abs/1706.08851
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD96%2C055020%22
https://doi.org/10.1103/PhysRevD.101.115030
https://arxiv.org/abs/1903.03631
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD101%2C115030%22
https://doi.org/10.1007/JHEP03(2021)212
https://doi.org/10.1016/0370-2693(89)91131-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB216%2C360%22

[23]

[24]

[25]

A.S. Joshipura and J.W.F. Valle, Invisible Higgs decays and neutrino physics, Nucl. Phys. B
397 (1993) 105 [InSPIRE].

ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay
rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC
pp collision data at \/s =7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

ATLAS collaboration, Combined measurements of Higgs boson production and decay using
up to 80 fb=1 of proton-proton collision data at \/s = 13 TeV collected with the ATLAS
experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].

C. Bonilla, J.W.F. Valle and J.C. Romao, Neutrino mass and invisible Higgs decays at the
LHC, Phys. Rev. D 91 (2015) 113015 [arXiv:1502.01649] [INSPIRE].

C. Bonilla, J.C. Romao and J.W.F. Valle, Electroweak breaking and neutrino mass:
‘invisible’ Higgs decays at the LHC' (type-II seesaw), New J. Phys. 18 (2016) 033033
[arXiv:1511.07351] [INSPIRE].

D. Fontes, J.C. Romao and J.W.F. Valle, Electroweak Breaking and Higgs Boson Profile in
the Simplest Linear Seesaw Model, JHEP 10 (2019) 245 [arXiv:1908.09587] [INSPIRE].

CMS collaboration, Search for invisible decays of a higgs boson produced through vector
boson fusion in proton-proton collisions at /s = 13TeV, Phys. Lett. B 793 (2019) 520.

Morad Aaboud et al. Combination of searches for invisible Higgs boson decays with the
ATLAS experiment, Phys. Rev. Lett 122 (2019) 231801..

D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089
[arXiv:1307.3536] [INSPIRE].

G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP
08 (2012) 098 [arXiv:1205.6497] INSPIRE].

S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability
of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

Salvador Centelles Chulid, Rahul Srivastava and Avelino Vicente. The Inverse Seesaw
Family: Dirac And Majorana, JHEP 03 (2021) 248.

J.A. Casas, V. Di Clemente, A. Ibarra and M. Quirds, Massive neutrinos and the Higgs mass
window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [iNSPIRE].

C. Coriano, L. Delle Rose and C. Marzo, Constraints on abelian extensions of the Standard
Model from two-loop vacuum stability and U(1)p_r, JHEP 02 (2016) 135
[arXiv:1510.02379] [INSPIRE].

J.C. Romao, F. de Campos and J.W.F. Valle, New Higgs signatures in supersymmetry with
spontaneous broken R parity, Phys. Lett. B 292 (1992) 329 [hep-ph/9207269] [INSPIRE].

A. Lopez-Fernandez, J.C. Romao, F. de Campos and J.W.F. Valle, Model independent Higgs
boson mass limits at LEP, Phys. Lett. B 312 (1993) 240 [hep-ph/9304255] [INSPIRE].

F. De Campos, M.A. Garcia-Jareno, A.S. Joshipura, J. Rosiek, J.W.F. Valle and D.P. Roy,
Limits on associated production of visibly and invisibly decaying Higgs bosons from Z decays,
Phys. Lett. B 336 (1994) 446 [hep-ph/9407328] [INSPIRE].

F. de Campos, O.J.P. Eboli, J. Rosiek and J.W.F. Valle, Searching for invisibly decaying
Higgs bosons at LEP-2, Phys. Rev. D 55 (1997) 1316 [hep-ph/9601269] [INSPIRE].

— 35 —


https://doi.org/10.1016/0550-3213(93)90337-O
https://doi.org/10.1016/0550-3213(93)90337-O
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB397%2C105%22
https://doi.org/10.1007/JHEP08(2016)045
https://arxiv.org/abs/1606.02266
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1608%2C045%22%20and%20year%3D2016
https://doi.org/10.1103/PhysRevD.101.012002
https://arxiv.org/abs/1909.02845
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD101%2C012002%22
https://doi.org/10.1103/PhysRevD.91.113015
https://arxiv.org/abs/1502.01649
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD91%2C113015%22
https://doi.org/10.1088/1367-2630/18/3/033033
https://arxiv.org/abs/1511.07351
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2C18%2C033033%22
https://doi.org/10.1007/JHEP10(2019)245
https://arxiv.org/abs/1908.09587
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1910%2C245%22%20and%20year%3D2019
https://doi.org/10.1016/j.physletb.2019.04.025
https://doi.org/10.1103/PhysRevLett.122.231801
https://doi.org/10.1007/JHEP12(2013)089
https://arxiv.org/abs/1307.3536
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1312%2C089%22%20and%20year%3D2013
https://doi.org/10.1007/JHEP08(2012)098
https://doi.org/10.1007/JHEP08(2012)098
https://arxiv.org/abs/1205.6497
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1208%2C098%22%20and%20year%3D2012
https://doi.org/10.1016/j.physletb.2012.08.024
https://arxiv.org/abs/1207.0980
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB716%2C214%22
https://doi.org/10.1007/JHEP03(2021)248
https://doi.org/10.1103/PhysRevD.62.053005
https://arxiv.org/abs/hep-ph/9904295
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD62%2C053005%22
https://doi.org/10.1007/JHEP02(2016)135
https://arxiv.org/abs/1510.02379
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1602%2C135%22%20and%20year%3D2016
https://doi.org/10.1016/0370-2693(92)91183-A
https://arxiv.org/abs/hep-ph/9207269
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB292%2C329%22
https://doi.org/10.1016/0370-2693(93)90518-M
https://arxiv.org/abs/hep-ph/9304255
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB312%2C240%22
https://doi.org/10.1016/0370-2693(94)90557-6
https://arxiv.org/abs/hep-ph/9407328
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB336%2C446%22
https://doi.org/10.1103/PhysRevD.55.1316
https://arxiv.org/abs/hep-ph/9601269
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD55%2C1316%22

[41] DELPHI collaboration, Searches for neutral Higgs bosons in extended models, Eur. Phys. J.
C 38 (2004) 1 [hep-ex/0410017] [INSPIRE].

[42] CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton
collisions at \/s = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].

[43] J.C. Romao, J.L. Diaz-Cruz, F. de Campos and J.W.F. Valle, Detection of intermediate
mass Higgs bosons from spontaneously broken R-parity supersymmetry, Mod. Phys. Lett. A 9
(1994) 817 [hep-ph/9211258] [INSPIRE].

[44] CMS collaboration, Combination of searches for heavy resonances decaying to WW, WZ,
ZZ, WH, and ZH boson pairs in proton-proton collisions at /s = 8 and 13 TeV, Phys. Lett.
B 774 (2017) 533 [arXiv:1705.09171] [INSPIRE].

[45] ATLAS collaboration, Search for heavy resonances decaying into WW in the evuv final
state in pp collisions at \/s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018)
24 [arXiv:1710.01123] [INSPIRE].

[46] Agnieszka Ilnicka, Tania Robens and Tim Stefaniak, Constraining Fxtended Scalar Sectors
at the LHC and beyond, Mod. Phys. Lett. A, 33 (10n11):1830007 (2018).

[47] Z.G. Berezhiani, A.Y. Smirnov and J.W.F. Valle, Observable Majoron emission in
neutrinoless double beta decay, Phys. Lett. B 291 (1992) 99 [hep-ph/9207209] [INSPIRE].

[48] K. Choi and A. Santamaria, Majorons and Supernova Cooling, Phys. Rev. D 42 (1990) 293
[INSPIRE].

[49] J.W.F. Valle, Gauge theories and the physics of neutrino mass, Prog. Part. Nucl. Phys. 26
(1991) 91 [INSPIRE].

[50] S.R. Coleman, Why There Is Nothing Rather Than Something: A Theory of the Cosmological
Constant, Nucl. Phys. B 310 (1988) 643 nSPIRE].

[61] V. Berezinsky and J.W.F. Valle, The KeV magjoron as a dark matter particle, Phys. Lett. B
318 (1993) 360 [hep-ph/9309214] [INSPIRE].

[62] M. Lattanzi and J.W.F. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev.
Lett. 99 (2007) 121301 [arXiv:0705.2406] [INSPIRE].

[63] F. Bazzocchi, M. Lattanzi, S. Riemer-Sgrensen and J.W.F. Valle, X-ray photons from
late-decaying majoron dark matter, JCAP 08 (2008) 013 [arXiv:0805.2372] [INSPIRE].

[64] Massimiliano Lattanzi et al. Updated CMB, X- and gamma-ray constraints on Majoron dark
matter, Phys. Rev D 88 063528.

[65] M. Lattanzi, R.A. Lineros and M. Taoso, Connecting neutrino physics with dark matter, New
J. Phys. 16 (2014) 125012 [arXiv:1406.0004] [NSPIRE].

[56] J.-L. Kuo, M. Lattanzi, K. Cheung and J.W.F. Valle, Decaying warm dark matter and
structure formation, JCAP 12 (2018) 026 [arXiv:1803.05650] [INSPIRE].

[67] J. Heeck, Majorons as cold light dark matter, PoS NOW2018 (2018) 093
[arXiv:1809.09413] [INSPIRE].

[68] M. Reig, J.W. Valle and M. Yamada, Light majoron cold dark matter from topological defects
and the formation of boson stars, JCAP 09 (2019) 029.

[59] S.M. Boucenna, S. Morisi, Q. Shafi and J.W.F. Valle, Inflation and majoron dark matter in
the seesaw mechanism, Phys. Rev. D 90 (2014) 055023 [arXiv:1404.3198] INSPIRE].

— 36 —


https://doi.org/10.1140/epjc/s2004-02011-4
https://doi.org/10.1140/epjc/s2004-02011-4
https://arxiv.org/abs/hep-ex/0410017
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC38%2C1%22
https://doi.org/10.1140/epjc/s10052-019-6909-y
https://arxiv.org/abs/1809.10733
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC79%2C421%22
https://doi.org/10.1142/S0217732394000642
https://doi.org/10.1142/S0217732394000642
https://arxiv.org/abs/hep-ph/9211258
https://inspirehep.net/search?p=find+J%20%22Mod.Phys.Lett.%2CA9%2C817%22
https://doi.org/10.1016/j.physletb.2017.09.083
https://doi.org/10.1016/j.physletb.2017.09.083
https://arxiv.org/abs/1705.09171
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB774%2C533%22
https://doi.org/10.1140/epjc/s10052-017-5491-4
https://doi.org/10.1140/epjc/s10052-017-5491-4
https://arxiv.org/abs/1710.01123
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC78%2C24%22
https://doi.org/10.1142/S0217732318300070
https://doi.org/10.1016/0370-2693(92)90126-O
https://arxiv.org/abs/hep-ph/9207209
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB291%2C99%22
https://doi.org/10.1103/PhysRevD.42.293
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD42%2C293%22
https://doi.org/10.1016/0146-6410(91)90010-L
https://doi.org/10.1016/0146-6410(91)90010-L
https://inspirehep.net/search?p=find+J%20%22Prog.Part.Nucl.Phys.%2C26%2C91%22
https://doi.org/10.1016/0550-3213(88)90097-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB310%2C643%22
https://doi.org/10.1016/0370-2693(93)90140-D
https://doi.org/10.1016/0370-2693(93)90140-D
https://arxiv.org/abs/hep-ph/9309214
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB318%2C360%22
https://doi.org/10.1103/PhysRevLett.99.121301
https://doi.org/10.1103/PhysRevLett.99.121301
https://arxiv.org/abs/0705.2406
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C99%2C121301%22
https://doi.org/10.1088/1475-7516/2008/08/013
https://arxiv.org/abs/0805.2372
https://inspirehep.net/search?p=find+J%20%22JCAP%2C0808%2C013%22%20and%20year%3D2008
https://doi.org/10.1103/PhysRevD.88.063528
https://doi.org/10.1088/1367-2630/16/12/125012
https://doi.org/10.1088/1367-2630/16/12/125012
https://arxiv.org/abs/1406.0004
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2C16%2C125012%22
https://doi.org/10.1088/1475-7516/2018/12/026
https://arxiv.org/abs/1803.05650
https://inspirehep.net/search?p=find+J%20%22JCAP%2C1812%2C026%22%20and%20year%3D2018
https://doi.org/10.22323/1.337.0093
https://arxiv.org/abs/1809.09413
https://inspirehep.net/search?p=find+J%20%22PoS%2CNOW2018%2C093%22
https://doi.org/10.1088/1475-7516/2019/09/029
https://doi.org/10.1103/PhysRevD.90.055023
https://arxiv.org/abs/1404.3198
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD90%2C055023%22

[60] D. Aristizabal Sierra, M. Tortola, J.W.F. Valle and A. Vicente, Leptogenesis with a
dynamical seesaw scale, JCAP 07 (2014) 052 [arXiv:1405.4706] iNSPIRE].

[61] G. Lazarides, M. Reig, Q. Shafi, R. Srivastava and J.W.F. Valle, Spontaneous Breaking of
Lepton Number and the Cosmological Domain Wall Problem, Phys. Rev. Lett. 122 (2019)
151301 [arXiv:1806.11198] [INSPIRE].

62] F. Staub, Ezploring new models in all detail with SARAH, Adv. High Energy Phys. 2015
9 g
(2015) 840780 [arXiv:1503.04200] [INSPIRE].

37—


https://doi.org/10.1088/1475-7516/2014/07/052
https://arxiv.org/abs/1405.4706
https://inspirehep.net/search?p=find+J%20%22JCAP%2C1407%2C052%22%20and%20year%3D2014
https://doi.org/10.1103/PhysRevLett.122.151301
https://doi.org/10.1103/PhysRevLett.122.151301
https://arxiv.org/abs/1806.11198
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C122%2C151301%22
https://doi.org/10.1155/2015/840780
https://doi.org/10.1155/2015/840780
https://arxiv.org/abs/1503.04200
https://inspirehep.net/search?p=find+J%20%22Adv.High%20Energy%20Phys.%2C2015%2C840780%22

	Introduction
	Vacuum stability in the Standard Model
	Inverse seesaw and vacuum stability
	Majoron completion and vacuum stability
	Scalar Potential

	Collider constraints and invisible Higgs boson decays
	Case I: lightest CP even scalar below 125 GeV i.e. H(2) = H(125)
	LEP constraints in the presence of invisible Higgs decays
	LHC constraints in the presence of invisible Higgs decays

	Case II: lightest CP-even scalar H(1) = H(125) is the 125 GeV Higgs
	Perturbativity and vacuum stability
	Case I where the heaviest scalar H(2) = H(125) is the Higgs boson
	Case II where the lightest scalar is the H(1) = H(125) Higgs

	Summary and outlook
	RGEs: inverse seesaw with majoron
	Quartic scalar couplings
	Yukawa couplings

	Some comments on the RGEs
	Landau pole
	Continuous growth
	Saturation


