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1 Introduction

Duality plays a prominent role in theoretical physics. It relates apparently different the-
ories in nontrivial ways. One of the most famous dualities for gauge theories is Seiberg
duality [1], which says that two 4d supersymmetric (SUSY) QCD’s with different ranks
flow to the same theory in IR. There are also various other dualities in diverse dimensions.
While duality in a narrow sense is a relation between two theories, there is a more exotic
phenomenon called duality cascade for a class of gauge theories. It was first discovered
by Klebanov and Strassler [2] in the 4d N = 1 SU(N)× SU(N +M) SUSY gauge theory

– 1 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
2

with (anti-)bi-fundamental chiral multiplets. It has been discussed in [2] that along the
RG flow, the theory flows to another theory with N → N −M , and repeating this gives
rise to the sequence of the Seiberg dualities (see [3] for a review). The gravity dual of the
Klebanov-Strassler theory has been also useful to construct models of string inflation [4–6].

In this paper we mainly study duality cascades in a class of 3d N = 3 SUSY Yang-Mills
Chern-Simons (YMCS) theories. The simplest case is the N = 3 SUSY YMCS theory with
the gauge group U(N)k × U(N + M)−k coupled to two bi-fundamental hypermultiplets.
This theory with |M | ≤ |k| is known to flow to the famous N = 6 superconformal Chern-
Simons theory called the ABJ theory with the same gauge group1 [7, 8]. It is expected
that the ABJ theory enjoys the Seiberg-like duality [8, 9]. For M ≥ 0, it is the duality
between the theories with the gauge groups2

U(N)k ×U(N +M)−k and U(N + |k| −M)k ×U(N)−k. (1.1)

We can easily see that acting the duality transformation twice, we come back to the original
theory. This duality essentially comes from the Hanany-Witten effect [10] of the brane
configuration and has been tested in various ways [8, 11–16].

It has been expected3 in [17, 18] that the duality (1.1) is extended to the case with
M > |k|. In this case, the big difference from the previous case is that the lower rank of
the two unitary gauge groups changes: it decreases from N to N + |k| −M . For this case,
acting the duality transformation once more does not get back to the original theory and
we go to another dual theory. This implies that the theory enjoys the following sequence
of the dualities, i.e. the duality cascade as in the 4d case:

(N,M)→
(
N (1),M (1)

)
→
(
N (2),M (2)

)
→
(
N (3),M (3)

)
→ · · · , (1.2)

where N (j) and M (j) ≥ 0 denote the lower rank and the difference of ranks of the two
unitary gauge groups in the theory obtained by applying the duality transformation j

times.4 The values of (N (j),M (j)) are explicitly given by

N (j) = N (j−1) + |k| −M (j−1), M (j) = M (j−1) − |k| for M (j−1) > |k|, (1.3)

with the initial condition (
N (0),M (0)

)
= (N,M). (1.4)

This sequence of the dualities last until we encounter

N (n) < M (n) − |k|, or M (n) ≤ |k|. (1.5)
1It has N = 8 SUSY for some special cases: (k,M) = (1, 0), (2, 0) and (1, 1).
2The opposite case M ≤ 0 is simply obtained by k → −k.
3It was argued in [8] that the ABJ theory, which is the superconformal theory, with M > |k| does not

exist as a unitary theory. However, this does not necessarily mean that the YMCS theory with M > |k|
never has a supersymmetric vacua. In [17, 18], the authors predicted that the duality cascade occurs, and
consequently, the SUSY breaking condition is different from M > |k|. We will review this point below and
in section 2.

4We have omitted the label of Chern-Simons level for simplicity of explanation. In the main text, we
will explicitly write it.
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When N (n) < M (n)−|k|, the brane interpretation implies SUSY breaking. This is modified
version of s-rule as we will review. When M (n) ≤ |k|, the nth theory corresponds to
the previous case, thus the theory finally flows to the ABJ theory with the gauge group
U(N (n))k × U(N (n) + M (n))−k. Since it is the IR duality, all of the theories (1.2) should
finally flow to the same ABJ theory.

The above duality cascade can be generalized to more general N = 3 SUSY theories
coming from the Hanany-Witten brane configurations on a circle [10] although it has not
been discussed explicitly in literature. This class includes N = 3 YMCS theories with
circular quivers (see e.g. [19–21]). We discuss this generalization from viewpoints of brane
constructions in section 2.3.1.

In this paper, we perform a non-perturbative test of the duality cascades (and SUSY
breaking) using SUSY localization [22]. We focus on S3 partition functions and prove that
the problem of showing the duality cascades is reduced to show a duality relation coming
from a worldvolume theory of a building block of Hanany-Witten type brane configurations
which we refer to as the local theory. Then we prove the fundamental duality relation for
the local theory and this amounts to prove the predictions from the duality cascades for
the S3 partition functions. This provides the strong evidence that the conjectured duality
cascades are indeed true (although it would be also important to perform further checks
by other observables). We also discuss that our result can be applied to generate new
dualities for more general theories which include less SUSY theories and theories without
brane constructions.

This paper is organized as follows. In section 2 we review the duality cascades and
SUSY breaking from the viewpoint of the brane constructions. We also discuss that the
duality cascade can be easily extended to more general N = 3 SUSY theories coming
from the Hanany-Witten brane configurations on a circle. In section 3 we show that the
problem of showing the duality cascades and SUSY breaking for the S3 partition functions
is reduced to show a duality relation for the local theory. We then prove the duality
relation. In section 4 we discuss that our result can be used to generate new dualities.
Section 5 is devoted to conclusion and discussions.

2 Review of the duality cascades in three dimensions

After the discovery of the Seiberg duality, various dualities which have natural interpreta-
tions from string theory have been found (see e.g. [9, 10, 23]). It was pointed out in [17, 18]
that the duality cascade for the ABJ theory also can be captured from the viewpoint of
the brane constructions, especially using the Hanany-Witten effect. Therefore, we start in
section 2.1 with explaining the brane configurations and their worldvolume theories. We
then review the Hanany-Witten effect in our setup in section 2.2. We also discuss a con-
dition of the SUSY breaking known as the (modified) s-rule by using the Hanany-Witten
effect. Finally, in section 2.3 we first review the duality cascade (and SUSY breaking) for
the ABJ theory from the viewpoint of the brane constructions. We see that this viewpoint
naturally leads to the duality cascade for general 3d SUSY gauge theories.
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0 1 2 3 4 5 6 (S1) 7 8 9
D3-branes ◦ ◦ ◦ ◦
5-branes ◦ ◦ ◦ /37 /48 /59 /37 /48 /59

Table 1. The ingredients of the type IIB brane configuration studied in this paper. The 6th
direction is taken to be a small circle. The symbol “/ij” for 5-branes means that the 5-branes are
oblique in the (xi, xj) plane with appropriate angles dependent on (`, k).

ℓ1, 𝑘1 5

𝑁1 D3

ℓ2, 𝑘2 5

𝑁2 D3

ℓ3, 𝑘3 5

𝑁3 D3

ℓ4, 𝑘4 5

𝑁4 D3

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝑥6 (𝑆1)

ℓ𝑛, 𝑘𝑛 5

𝑁𝑛 D3

Figure 1. A generic Hanany-Witten type brane configuration. The horizontal direction is the S1

and therefore identified on the both ends. When `’s are 1, the worldvolume theory is a circular
quiver gauge theory with the gauge group U(N1)k1−kn ×U(N2)k2−k1 × · · · × U(Nn)kn−kn−1 .

2.1 Brane configuration and gauge theory

Let us consider a class of SUSY theories given by the Hanany-Witten type brane configura-
tions [10, 19, 21] which are brane configurations in the type IIB superstring theory shown
in table 1 and figure 1. It is known that this type of brane configurations preserves N = 3
SUSY at least. Ingredients and their field theory interpretations are as follows:

• D3-brane

It gives vector multiplets with gauge group U(N) when the number of D3-branes
between adjacent two 5-branes is N . Since one of the longitudinal direction is the
small S1, the world volume theory is effectively three dimensional.

• D5-brane

It gives Nf fundamental hypermultiplets when the number of D5-branes is Nf .

• NS5-brane

It gives bi-fundamental hypermultiples under the two gauge groups coming from
neighbor D3-branes.

• (`, k) 5-brane

It is a bound state of ` NS5-branes and k D5-branes with gcd(`, k) = 1. (0, 1) brane
denotes single D5-brane while (1, 0) brane is single NS5-brane. (1, k) 5-brane gives
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𝑁 𝑁 +𝑀

𝑘 −𝑘

𝑁 +𝑀 D3

1, 𝑘 5 NS5

𝑁 D3𝑁 D3

𝑥6 (𝑆1)

Figure 2. [Left] The quiver diagram of the N = 3 U(N)k × U(N + M)−k SUSY YMCS theory
coupled to two bi-fundamental hypermultiplets. This theory flows to the ABJ theory for |k| ≥M .
[Right] The corresponding type IIB brane configuration (N = 3 and M = 1 in the figure). The
horizontal direction is the S1 and therefore identified on the both ends.

bi-fundamental hypermultiples as NS 5-brane and Chern-Simons term with Chern-
Simons level +k to left (−k to right) gauge group. When (`, k) is neither (0, 1), (1, k)
nor (1, 0), it gives non-Lagrangian theory meaning that we do not currently know its
Lagrangian.

As a simple example, figure 2 shows the type IIB brane configuration for the N = 3
U(N)k×U(N+M)−k SUSY YMCS theory with two bi-fundamental hypermultiplets, which
flows to the ABJ theory for |k| ≥ M . Figure 1 shows a generic brane configuration in the
class. As we have mentioned, the Chern-Simons levels in each gauge group are determined
by differences between “k”s of the adjacent (1, k)-type 5-branes.

2.2 Duality and Hanany-Witten effect

It is known that the Seiberg-like dualities in the worldvolume theories of the Hanany-
Witten type brane configurations can be understood from the so-called Hanany-Witten
effect [10, 24]. The Hanany-Witten effect tells us that if two different types of 5-branes
pass through each other, then it creates new D3-branes stretched between them. More
precisely, when (`, k)5 and (`′, k′)5-branes with `k′ − `′k 6= 0 pass through each other,∣∣`k′ − `′k∣∣ D3− branes

are created. In addition, this move reverses the orientation of D3-branes that were initially
stretched and thus change them to anti-D3-branes. If there are more D3-branes than the
anti-D3-branes, then the anti-D3-branes are annihilated with them and completely vanish.
On the other hand, if the anti-D3-branes remain, then supersymmetry is broken. We will
elaborate this point shortly.

As an important example, let us consider the brane configuration shown in figure 3,
which we denote as

〈N1 •N2 ◦N3〉 , (2.1)

where • and ◦ denote (`, k)5-brane and an NS5-brane respectively while the numbers
represent the ones of D3-branes. In this setup, the Hanany-Witten effect tells us that
|`× 0− 1× k| = |k| D3-branes are created after the move of the 5-branes as illustrated in
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𝑁2 D3

ℓ, 𝑘 5 NS5

𝑁3 D3𝑁1 D3

𝑁2

−𝑘

𝑁1 𝑁3

Figure 3. [Left] The brane configuration of the local theory. Note that the horizontal direction is
not identified on the both ends unlike figure 2. [Right] The quiver diagram for ` = 1. For ` > 1, it
is non-Lagrangian theory.

𝑁2 D3

ℓ, 𝑘 5NS5

𝑁3 D3

𝑁1 + 𝑁3 + |𝑘| D3

𝑁1 D3

ℓ, 𝑘 5NS5

𝑁3 D3𝑁1 +𝑁3 + 𝑘 − 𝑁2 D3𝑁1 D3

𝑁′

𝑘

𝑁1 𝑁3

Figure 4. An illustration of The Hanany-Witten move for the local theory (N1 = 2, N2 = 4,
N3 = 3, k = 1 in this figure). [Left] N2 D3-branes become anti-D3-branes (dotted lines) and |k|
D3-branes are created. [Right] The N2 pairs of D3 and anti-D3-branes are annihilated. [Center]
The quiver diagram of the dual theory for ` = 1 with N ′ = N1 +N3 + |k| −N2.

figure 4. Therefore, taking annihilation of anti-D3-branes into account, the brane configu-
ration changes as

〈N1 •N2 ◦N3〉 → 〈N1 ◦N1 +N3 −N2 + |k| •N3〉 . (2.2)

Similarly, if we start with the configuration 〈N1 ◦N2 •N3〉, then we have

〈N1 ◦N2 •N3〉 → 〈N1 •N1 +N3 −N2 + |k| ◦N3〉 . (2.3)

Note that although we displayed the Hanany-Witten move using the arrow, the move is
reversible. In other words, the combination of (2.2) and (2.3) result in the original brane
configuration.
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2.2.1 Supersymmetry breaking and s-rule

So far we have focused on the brane configurations preserving supersymmetry. However,
as we have briefly mentioned, there are sometimes cases where supersymmetry is broken
since some D3-branes have boundaries. The condition whether or not the supersymmetry
is broken depends on the number of D3-branes stretched between 5-branes. The Hanany-
Witten transition can be used to determine whether the supersymmetry breaking occurs
or not. In particular, N = 3 SUSY in our brane configurations is completely broken when
there remain anti-D3-branes after the Hanany-Witten moves. This leads to the so-called s-
rule [10, 25, 26]: if a brane configuration is related to another one including anti-D3-branes
by the Hanany-Witten moves, neither configurations are supersymmetric.

Note that, when D3-branes do not have any compact directions, sometimes the s-
rule becomes simpler. For example, the Hanany-Witten effect relates 〈0 ◦M • 0〉 and
〈0 • |k| −M ◦ 0〉. Therefore, the s-rule says that the number of D3-branes stretched be-
tween the NS5-brane and (`, k)5-brane should be less than or equal to k to preserve the
supersymmetry. On the other hand, when the D3-branes have compact directions, such a
rephrasing is not easy. For example, the case 〈◦ 3|k| • |k|〉 with the periodic identification,
namely the ABJ case, cannot be related to any configurations including anti-D3-branes
though the number of D3-branes stretched between the NS5-brane and the (`, k)5-brane
is 2|k|. In this paper, therefore, we do not paraphrase it further. The s-rule in the case
when compact directions exist is also called modified s-rule and studied, for example,
in [17, 18, 27].

2.3 The duality cascades

In this section we see how the duality cascade is motivated by the brane dynamics. For
simplicity of explanations, we start with the N = 3 U(N)k × U(N + M)−k SUSY YMCS
theory shown in figure 2. It is known that the theory for |k| ≥ M flows to the N = 6
superconformal theory called ABJ theory. It is expected that the ABJ theory enjoys the
Seiberg-like duality (1.1) between the theories with the gauge groups

U(N)k ×U(N +M)−k and U(N + |k| −M)k ×U(N)−k,

The duality can be understood from the Hanany-Witten effect as illustrated in figure 5. If
we apply the Hanany-Witten move to the brane configuration in figure 2, then we obtain
the brane configuration shown in figure 5, which gives the U(N + |k| −M)k × U(N)−k
theory. If we parameterize the U(N)k × U(N + M)−k gauge theory or the corresponding
brane configuration shown in figure 2 as (N,M, k) (more precisely, N is the lowest rank,
M > 0 is the difference of ranks, and k is the Chern-Simons level corresponding to the
lowest rank), the duality can be expressed as

Duality : (N,M, k)→ (N, |k| −M,−k) for M ≤ |k|. (2.4)

We can easily see that acting the duality transformation (2.4) twice, we come back to the
original theory. This duality has been tested in various ways [8, 11].
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1, 𝑘 5NS5

𝑁 D3𝑁 + 𝑘 −𝑀 D3𝑁 D3

𝑥6 (𝑆1)

Figure 5. The brane configuration after applying the Hanany-Witten move to the brane configura-
tion of figure 2, which corresponds to the N = 3 U(N)k×U(N+M)−k theory with |k| ≥M . (N = 3,
M = 1, k = 3 in this figure). This implies the duality with the N = 3 U(N+|k|−M)k×U(N)−k the-
ory.

What happens if we take M > |k| [17, 18]? Let us again consider the Hanany-Witten
effect.5 In this case, after the Hanany-Witten move, the lowest rank becomes not N but
N + |k| −M . Therefore, the duality in the brane configuration is

Duality : (N,M, k)→
(
N (1),M (1), k

)
for M > |k|, (2.5)

where
N (1) = N + |k| −M, M (1) = M − |k|. (2.6)

The duality (2.5) implies that, as the M < |k| case, the corresponding SUSY YMCS
theories with (N,M, k) and (N (1),M (1), k) is Seiberg-like (IR) dual each other.

Now we have two questions. First, what happens if N (1) < 0? In this case, there remain
anti-D3-branes in the description of brane construction, and this implies that supersymme-
try is broken for the gauge theory with (N,M, k). This is nothing but the modified s-rule
explained in section 2.2.1.

Second, can we apply the duality transformation once more for M (1) > |k| and N (1) ≥
0? As in the first application of the duality transformation (2.5), there are differences on
parameters (N (1),M (1), k) and the duality acts as

Duality :
(
N (1),M (1), k

)
→
(
N (2),M (2), k

)
for M (1) > |k|, (2.7)

where
N (2) = N (1) + |k| −M (1), M (2) = M (1) − |k|. (2.8)

When N (2) < 0, the modified s-rule again suggests SUSY breaking for the worldvolume
theories with (N,M, k) and (N (1),M (1), k). Otherwise, when M (2) > |k|, we can apply
the duality transformation further once more. to relate it to another apparently different
theory. Repeating the above reasoning leads us to the conclusion that the theory has the
duality cascade:

(N,M, k)→
(
N (1),M (1), k

)
→
(
N (2),M (2), k

)
→
(
N (3),M (3), k

)
→ · · · , (2.9)

5The Hanany-Witten move considered in (2.4) and (2.5) is tacitly for the sector where the number of
D3-branes are largest, in other words, the D3-branes stretched between 5-branes exist.
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𝑁 +𝑀 D3

1, 𝑘 5 NS5

𝑁 D3𝑁 D3

(1)

𝑁 + 𝑘 −𝑀 D3

1, 𝑘 5NS5

𝑁 D3𝑁 D3

(2)

𝑁 + 𝑘 −𝑀 D3

1, 𝑘 5 NS5

𝑁 D3

(3)

𝑁 + 𝑘 −𝑀 D3

𝑁 + 𝑘 −𝑀 D3

1, 𝑘 5NS5

(𝑁 + 3 𝑘 − 2𝑀) D3

(4)

𝑁 + 𝑘 −𝑀 D3 𝑁 + 3 𝑘 − 2𝑀 D3

1, 𝑘 5 NS5

(5)

𝑁 + 𝑘 −𝑀 D3 𝑁 + 3 𝑘 − 2𝑀 D3

1, 𝑘 5NS5

(𝑁 + 3 𝑘 − 2𝑀) D3

(6)

𝑁 + 6 𝑘 − 3𝑀 D3 (𝑁 + 3 𝑘 − 2𝑀) D3

Figure 6. Illustration of the sequence of the dualities among apparently different four theories.
(1) The brane configuration corresponding to the N = 3 U(N)k × U(N + M)−k theory with
2|k| < M ≤ 3|k| (N = 4, M = 3, k = 1 in this figure). (2) After the 1st Hanany-Witten move.
(3) The same as the 2nd brane configuration since the both ends are identified. (4) After the 2nd
Hanany-Witten move. (5) The same as the 4th brane configuration. (6) After the 3rd Hanany-
Witten move. Applying the Hanany-Witten move once more gives the 4th brane configuration.

where the parameters (N (j),M (j), k(j)) are given by

N (j) = N (j−1) + |k| −M (j−1), M (j) = M (j−1) − |k| for M (j−1) > |k|, (2.10)

or equivalently,
N (j) = N + j(j + 1)

2 |k| − jM, M (j) = M − j|k|. (2.11)

This sequence of the dualities lasts until we encounter

N (n) < M (n) − |k|, or M (n) ≤ |k|. (2.12)

Note that when the ranks satisfy neither the first nor the second condition, the theory is
still in the process of the duality cascade. Furthermore, if the ranks satisfy the second
condition, then the first condition is not satisfied. Therefore, when the duality cascade
lasts, the ranks always satisfy either of the two cases.

Let us again consider the worldvolume theories corresponding to the sequence. For the
former case N (n) < M (n) − |k|, the modified s-rule implies that SUSY breaking occurs for
the worldvolume theories because of N (n+1) = N (n) + |k| −M (n) < 0. For the latter case
M (n) ≤ |k|, the theories finally flow to the superconformal theory, i.e. the ABJ theory with
the gauge group U(N (n))k×U(N (n)+M (n))−k. Note that in this case, the rule of the duality
transformation we should apply finally changes to (2.4). This means that the sequence of
the dualities actually ends since after acting (2.4) twice, the theory comes back to itself
as explained. The figure 6 illustrates the case for 2|k| < M ≤ 3|k| where we apply the
Hanany-Witten move twice to go to the theory with M ≤ |k|. The third Hanany-Witten
move in the figure shows the famous Seiberg-like duality of ABJ theories (1.1).

The above dualities are IR dualities in the sense that apparently different theories flow
to the same theory in IR. Although in this paper we focus only on the IR limit, there are
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𝑁2 D3

ℓ, 𝑘 5 ℓ′, 𝑘′ 5

𝑁3 D3𝑁1 D3

Figure 7. The brane configuration of the local theory for general 5-branes. Note that the horizontal
direction is not identified on the both ends unlike figure 2.

also arguments on behaviors of RG flows of the above theories from the IIA string/M-theory
viewpoint [17, 18]. We have seen that when the duality cascade seems to occur, the Hanany-
Witten effect decreases the lowest rank N (j) (and also the difference M (j)) of the gauge
group. The string computation of effective Yang-Mills couplings implies that the YMCS
theory with (N (j),M (j), k(j)) flows to another YMCS theory with (N (j+1),M (j+1), k(j+1))
before flowing to the superconformal CS theories. Therefore, one RG flow step corresponds
to one Hanany-Witten move.

2.3.1 Generalization and local theories

So far we focused on the U(N)k × U(N + M)−k gauge theory and the corresponding
brane configuration in figure 2. This brane configuration is merely a specific case of the
generic Hanany-Witten type brane configurations discussed in section 2.1. As explained
above, the duality cascade with the modified s-rule can be clearly explained by using the
brane construction. Notice that we have essentially not used any specific property that
the quiver has only two nodes. Therefore, it is natural to propose that the same story
should holds for the generic Hanany-Witten type brane configurations although it has not
been explicitly discussed in literature.6 We write this proposition more explicitly. The
worldvolume theories of the generic Hanany-Witten type brane configurations are N = 3
SUSY YMCS theories with corresponding quiver diagrams. If the theories are related by
the Hanany-Witten moves, they are Seiberg-like dual, in other words, they flows to a same
IR theory.

Here we emphasize that all the Seiberg-like dualities considered here are related by
the sequence of single Hanany-Witten move. To see this explicitly, it is convenient to note
that the generic Hanany-Witten type brane configuration is a combination of the brane
configurations 〈N1, (`, k) , N2, (`′, k′) , N3〉 given in figure 7, which we refer to as the local
theories. Then the dual theories are obtained by applying the Hanany-Witten move, which
amounts to apply the transformation〈

N1, (`, k) , N2,
(
`′, k′

)
, N3

〉
→
〈
N1,

(
`′, k′

)
, N1 +N3 −N2 + |`k′ − k`′|, (`, k) , N3

〉
,

(2.13)
6For the 4d case, the duality cascade was generalized to affine ADE quiver theories [28].
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𝑁 +𝑀 +𝑀′

1, 𝑘 5 NS5

𝑁𝑁

(1)

𝑁 +𝑀

NS5

𝑁 + 𝑘 −𝑀′

1, 𝑘 5 NS5

𝑁𝑁

(2)

𝑁 +𝑀

NS5

𝑁 + 𝑘 −𝑀′

1, 𝑘 5NS5

𝑁𝑁

(3)

𝑁 + 2 𝑘 −𝑀 −𝑀′

NS5

𝑁 + 𝑘 −𝑀′

1, 𝑘 5 NS5

𝑁 + 4 𝑘
−𝑀 − 2𝑀′

(4)

𝑁 + 2 𝑘 −𝑀 −𝑀′

NS5

𝑁 + 4 𝑘
−𝑀 − 2𝑀′ 𝑁 + 6 𝑘

−2𝑀 − 2𝑀′

1, 𝑘 5NS5

𝑁 + 4 𝑘
−𝑀 − 2𝑀′

(5)

𝑁 + 2 𝑘
−𝑀 −𝑀′

NS5

𝑁 + 4 𝑘
−𝑀 − 2𝑀′

𝑁 + 6 𝑘
−2𝑀 − 2𝑀′

1, 𝑘 5NS5

𝑁 + 4 𝑘
−𝑀 − 2𝑀′

(6)

𝑁 + 9 𝑘
−2𝑀 − 3𝑀′

NS5

𝑁 + 4 𝑘
−𝑀 − 2𝑀′

𝑁 + 6 𝑘
−2𝑀 − 2𝑀′

1, 𝑘 5 NS5

𝑁 + 12 𝑘
−3𝑀 − 3𝑀′

(7)

𝑁 + 9 𝑘
−2𝑀 − 3𝑀′

NS5

𝑁 + 12 𝑘
−3𝑀 − 3𝑀′

Figure 8. Illustration of the duality cascade for the U(N)k × U(N + M + M ′)−k × U(N + M)0
gauge theory with 2|k| < M ≤ 3|k| and |k| < M ′ ≤ 2|k| (N = 5, M = 3, M ′ = 2, k = 1 in this
figure). Applying further Hanany-Witten moves to (7) gives (4), (5), (6) and (7) with the flipped k.

to one of the local theories in a given brane configuration. Therefore the dualities coming
from Hanany-Witten type brane configurations come from the duality of the local theory.
Figure 8 shows an illustration for the 3-quiver case.

If anti-D3-branes remain after one Hanany-Witten move, the modified s-rule again
implies that the SUSY is broken for the worldvolume theory as with the two nodes example.
Since all the dual theories are related by the sequence of the Hanany-Witten moves, this
immediately means that SUSY is broken also for them.

Thus the problem of showing the duality cascade is boiled down to show the result
of the Hanany-Witten effect for the local theory shown in figure 3. This point will play a
crucial role when we perform non-perturbative tests of the dualities in the next section.

3 Non-perturbative tests of the duality cascades

In this section, we perform non-perturbative tests of the duality cascades by analyzing the
supersymmetric partition function on S3.

3.1 The prediction from the duality cascade on sphere partition function

Let us consider a N = 3 supersymmetric theory T coming from a generic Hanany-Witten
type brane configuration described in section 2.1. Applying the Hanany-Witten moves to
the brane configuration associated with the theory T , we can obtain various quantum field
theories that are apparently different from each other. Let us denote a set of such field
theories by ĤW(T ):

ĤW(T ) = {theories obtained by Hanany −Witten moves of T } . (3.1)

– 11 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
2

Then according to the brane argument in the last section, we expect that all the theories
in ĤW(T ) are physically equivalent in IR.

Let us elaborate on the prediction from the duality cascade on S3 partition functions.
It is known that S3 partition functions of any N = 2 SUSY theories are the same as their
IR limits.7 Therefore the duality cascade implies that the S3 partition functions of all the
theories in ĤW(T ) have the common absolute value:8

|ZTi | =
∣∣∣ZTj ∣∣∣ for ∀Ti, Tj ∈ ĤW(T ). (3.2)

Furthermore, we have seen that supersymmetry may be broken due to the modified s-rule.
This implies that the theory has fermionic zero modes and the partition function vanishes:

ZTi = 0 for ∀Ti ∈ ĤW(T ) if ∃Tj ∈ ĤW(T ) whose brane configuration involves D3.
(3.3)

Below we prove that the above identities indeed hold.

3.1.1 Reducing the problem to the local theory

The brane argument in section 2.3.1 suggests that the problem of showing the duality
cascade can be reduced to show the relation (2.13) (we further reduce it to (2.2) using
SL (2,Z) duality later) coming from the Hanany-Witten effect for the local theory. This is
clearly true for the cases with Lagrangians while it is less obvious for the non-Lagrangian
cases. Furthermore, even if this is true, the problem is to show the relation (2.13) for
arbitrary configurations of the background vector multiplets of the flavor symmetries in
the local theory, which are essentially gauge symmetries of the left and right branes in the
whole system. Therefore it sounds still difficult. However, it will turn out that we do not
have to consider generic configurations of the background multiplets if we restrict ourselves
to the supersymmetric partition functions on S3. Below we explicitly see that our problem
is reduced to show the relation (2.13) for the local theory with only real masses of the
flavor symmetries.

Brane configurations giving Lagrangian theories and matrix models. As we have
seen in section 2.1, the Hanany-Witten type brane configurations consist of (`, k)5-branes
and D3-branes. When the 5-branes are only (1, k) or (0, 1) types, the worldvolume theories
of the brane configurations are Lagrangian theories [10, 24]. Although physical observables
of these theories are originally expressed by infinite dimensional path integrals, we can
apply SUSY localization to the S3 partition functions, and then the path integrals are
dominated by saddle points and finally reduced to finite dimensional integrals [29–31]. The
saddle points for this case are so-called Coulomb branch configurations, which are constant

7Technically this can be understood from the fact that the actions of the N = 2 super Yang-Mills and
matters are Q-exact. Therefore N = 2 sphere partition functions are independent of Yang-Mills couplings
and coupling constants appearing in superpotential.

8It was argued in [11, 29] that the phase depending on the Chern-Simons levels or the FI-parameters is
attributed to using a framing which is different from the standard one due to the localization technique.
Therefore, we here do not take care of differences after the duality cascade. It would be interesting if one
can understand the phase from the view point of ‘t Hooft anomaly.
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configurations of adjoint scalar fields in the vector multiplets (up to gauge transformation),
and the partition functions are expressed as integrations over the Coulomb branch whose
dimensions are the rank of the gauge group.9

Let us write down the localization formula for the S3 partition functions. Although
the localization formula exists for general Lagrangian N = 2 theories, here we focus on the
cicular quiver N = 3 YMCS theory with the gauge group

U(N1)k1−kn ×U(N2)k2−k1 × · · · × U(Nn)kn−kn−1 ,

which is generic Lagrangian theory coming from the Hanany-Witten brane configuration
in figure 1 with `1 = · · · = `n = 1. The localization formula of this theory is given by

Ztotal =

 n∏
j=1

∫
dNjx(j)

Nj !

Zcl(x)Z1loop(x), (3.4)

where Zcl(x) is the classical contribution:

Zcl(x) =
n∏
j=1

eiπ(kj−kj−1)
∑Nj

n=1(x(j)
n )2−2πi(ζj−ζj−1)

∑Nj
n=1 x

(j)
a , (3.5)

with k0 ≡ kn and ζ0 ≡ ζn. (ζj − ζj−1) is the FI-parameter associated with the U(1) part of
U(Nj)kj−kj−1 . Z1loop(x) is the one-loop contribution given by

Z1loop(x) =
n∏
j=1

∏Nj
m<n 4 sinh2

(
π(x(j)

m − x(j)
n )
)

∏Nj
m
∏Nj+1
n 2 cosh

(
π(x(j)

m − x(j+1)
n )

) , (3.6)

where NN+1 ≡ N1, x(N+1)
n ≡ x(1)

n and

N∏
n

. . . =
N∏
n=1

. . . ,
N∏

n<n′

. . . =
N−1∏
n=1

N∏
n′=n+1

. . . . (3.7)

Note that the localization formula is independent of Yang-Mills coupling because of Q-
exactness of the SYM terms. This implies that the localization formula captures the IR
limit: gYM →∞ of theories under consideration even if we start with the action including
the SYM term.

We can recast the localization formula in a way that the connection to the brane
interpretation is transparent. An idea is that there is a natural one-to-one correspondence
between the branes and objects in the localization formula. Noting that the theory is given
by (1, kj)5-branes between Nj D3-branes on left and Nj+1 D3-branes on right, we can
rewrite the localization formula as

Ztotal =

 n∏
j=1

∫
dNjx(j)

Nj !

 n∏
j=1

Z(1,kj),ζj

(
Nj , Nj+1;x(j), x(j+1)

)
, (3.8)

9More details will be explained in section 4.1.
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where Z(1,k),ζ is the factor corresponding to the (1, k)5-brane:10

Z(1,k),ζ (N1, N2;α, β) =eiπk
(∑N1

m
α2
m−
∑N2

n
β2
n

)
e−2πiζ

(∑N1
m

αm−
∑N2

n
βn
)

×
∏N1
m<m′ 2 sinh π (αm − αm′)

∏N2
n<n′ 2 sinh π (βn − βn′)∏N1

m

∏N2
n 2 cosh π (αm − βn)

. (3.9)

Generic brane configurations. In general, the Hanany-Witten type brane configura-
tions give non-Lagrangian theories11 and it seems harder to compute their partition func-
tions. Nevertheless, there is a reasonable proposal on generalization of the (1, k)5-brane
factor (3.9) to (`, k)5-brane [32] (see also [33–35]). It has been obtained by considering
SL (2,Z) dualities and has passed various nontrivial consistency checks.

The proposal on the factor corresponding to 〈N1, (`, k) , N2〉 with gcd(`, k) = 1 is

Z(`,k),ζ (N1, N2;α, β) = 1

|`|
N1+N2

2
e
iπk
`

(∑N1
m

α2
m−
∑N2

n
β2
n

)
e−

2πiζ
`

(∑N1
m

αm−
∑N2

n
βn
)

×
∏N1
m<m′ 2 sinh π(αm−αm′ )

`

∏N2
n<n′ 2 sinh π(βn−βn′ )

`∏N1
m

∏N2
n 2 cosh π(αm−βn)

`

. (3.10)

Thus, using the (`, k)5-brane factor, the S3 partition function of the worldvoluome theory
of the brane configuration in figure 1 is given by

Ztotal =

 n∏
j=1

∫
dNjx(j)

Nj !

 n∏
j=1

Z(`j ,kj),ζj

(
Nj , Nj+1;x(j), x(j+1)

)
. (3.11)

In this paper we assume that the proposal (3.10) is true.

Extracting the local theory. In section 2.3, we have seen that it is sufficient to focus
on the local brane structure upon applying the Hanany-Witten move once and the problem
of showing the duality is reduced to show the relation (2.13) for the local theory. Now we
show that this is indeed true for the S3 partition function. Let us decompose the partition
function (3.11) into the part involving x(j′) and the others:

Ztotal =

 n∏
j 6=j′

∫
dNjx(j)

Nj !

 n∏
j 6=j′−1,j′

Z(`j ,kj),ζj

(
Nj ,Nj+1;x(j),x(j+1)

)Zlocal
(
x(j′−1),x(j′+1)

)
,

(3.12)
where

Zlocal(x(j′−1), x(j′+1)) ≡
∫
dNj′x(j′)

Nj′ !
Z(`j′−1,kj′−1),ζj′−1

(
Nj′−1, Nj′ ;x(j′−1), x(j′)

)
· Z(`j′ ,kj′),ζj′

(
Nj′ , Nj′+1;x(j′), x(j′+1)

)
. (3.13)

10We specify the parameters for the factor of single 5-brane because these parameters are important to
show the Hanany-Witten effect.

11Lagurangian is defined even in this case for abelian theories. The Chern-Simons level on each interval
between a (`, k)5-brane on the left side and a (`′, k′)5-brane on the right side is −

(
k
`
− k′

`′

)
[24, 26].
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The local matrix model Zlocal has a natural brane interpretation. This can be regarded as
the partition function of the worldvolume theory associated to the local theory〈

Nj′−1,
(
`j′−1, kj′−1

)
, Nj′ ,

(
`j′ , kj′

)
, Nj′+1

〉
,

explained in section 2.3.1. Therefore applying the Hanany-Witten move to this theory
generates the duality of the original theory.

While the above argument has already simplified the original problem drastically, we
can further simplify the problem by applying the SL (2,Z) dualities to Zlocal shown in [32].
Using this duality, one can fix either

(
`j′−1, kj′−1

)
or
(
`j′ , kj′

)
to a specific value that we

want without loss of generality. Here we change
(
`j′ , kj′

)
into (1, 0). If `j = 0, we also use

the remaining duality to set `j 6= 0. Thus the original problem to show (3.2) and (3.3)
has been reduced to show that the local matrix model satisfies relations coming from (2.2)
with the modified s-rule.

3.1.2 The prediction for the local matrix model

Here we explicitly write down the predictions on the local matrix models coming from
the Hanany-Witten effect (2.2) and the modified s-rule, which are sufficient to prove the
relation (3.2) and (3.3) as explained in the previous section.

The local matrix model (3.13) corresponding to 〈NL •N ◦NR〉 is

Z(x, y) =
∫
dNµ

N ! Z(`,k),ζ (NL, N ;x, µ)Z(1,0),η (N,NR;µ, y) , (3.14)

and corresponding to
〈
NL ◦ Ñ •NR

〉
where Ñ = NL +NR −N + |k| is

ZHW(x, y) =
∫
dÑν

Ñ !
Z(1,0),η

(
NL, Ñ ;x, ν

)
Z(`,k),ζ

(
Ñ ,NR; ν, y

)
. (3.15)

We omitted the word of “local” since hereafter we focus only on these local matrix models.
The required relation is

Z(x, y) =

e
iΘZHW(x, y)

(
Ñ ≥ 0

)
0

(
Ñ < 0

) . (3.16)

The explicit form of the phase eiΘ when ` > 0 and k > 0 is in (3.58). In the next section,
we prove this identity.12 Before that, we prepare for the proof and make a few comments.

First, we focus on the case when ` > 0 and k > 0 because the results in the other
cases can be easily derived from this case. In fact, ` → −` corresponds to take complex
conjugate and multiply a constant phase factor while k → −k corresponds to take complex
conjugate with ζ → −ζ.

Second, we introduce symbols M and L satisfying

N −NR = M = k + L, Ñ = NL − L. (3.17)
12This has been partially done in [32] for Ñ > 0.
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Using these symbols, the Hanany-Witten move (2.2) can be written as

〈NL •N ◦NR〉 = 〈NL •NR +M ◦NR〉 = 〈NL •NR + k + L ◦NR〉

→ 〈NL ◦NL − L •NR〉 =
〈
NL ◦ Ñ •NR

〉
. (3.18)

This notation helps us to prove smoothly.
Third, we are interested in the case when N > NL + k and N > NR + k because in

this case Ñ < NR and Ñ < NL, so that at least locally the lowest rank indeed decreases.
However, we loosen the former restriction because there is no reason to restrict from the
technical point of view. Therefore, we prove in the case when M > k, or equivalently,
L > 0.

3.2 Proof of the prediction

In this section we prove (3.16) when ` > 0, k > 0 and L > 0.
We start with rewriting the partition function as

Z(x, y) = 1
N !`

NL+N
2

∫
dNµ e

iπk
`

(∑NL
m

x2
m−
∑N

n
µ2
n

)
ZFIL
`,ζ (NL, N ;x, µ)ZFIL

1,η (N,NR;µ, y) ,

(3.19)
where ZFIL

`,ζ is the combination of the FI factors and the one-loop factors

ZFIL
`,ζ (N1,N2;α,β) = e−

2πiζ
`

(∑N1
m

αm−
∑N2

n
βn
)∏N1

m<m′ 2sinh π(αm−αm′ )
`

∏N2
n<n′ 2sinh π(βn−βn′ )

`∏N1
m

∏N2
n 2cosh π(αm−βn)

`

.

(3.20)

3.2.1 Quantum mechanics representation

It is known that for this type of integrals, we can apply the technique developed in [36],
which regards the partition function as the one of an ideal Fermi gas system.13 In this
technique, we regard the factor (3.20) as a combination of objects appearing in one particle
quantum mechanics with the canonical commutation relation

[q̂, p̂] = i~, with ~ = `

2πk , (3.21)

where q̂ and p̂ are Hermitian operators corresponding to position and momentum operators
respectively. We take normalizations of their eigenstates as

〈q1 | q2〉 = δ (q1 − q2) , 〈〈p1 | p2〉〉 = δ (p1 − p2) ,

〈q | p〉〉 = 1√
2π~

e
i
~pq, 〈〈p | q 〉 = 1√

2π~
e−

i
~pq, (3.22)

where |·〉 denotes position eigenstate while | ·〉〉 denotes momentum one.
13After the original work,the computation technique was gradually improved in [37–39]. This approach

for local matrix model with general ranks was studied in [40, 41].
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In terms of the quantum mechanics notation, we prove in appendix A that the fac-
tor (3.20) can be written as

ZFIL
`,ζ (N1, N2;α, β) = Z̃FIL

`,ζ (N1, N2;α, β) , (3.23)

where

Z̃FIL
`,ζ (N1,N2;α,β)

≡


det

 [Am,n]N1×N2
m,n[√

2π~
〈〈

2π~
` (itN2−N1,j−ζ)

∣∣∣βn〉](N2−N1)×N2

j,n

 (N1≤N2)

det
(

[Am,n]N1×N2
m,n

[√
2π~

〈
αm

∣∣∣−2π~
` (itN1−N2,j+ζ)

〉〉]N1×(N1−N2)

m,j

)
(N1>N2)

,

Am,n = `

〈
αm

∣∣∣∣∣∣ 1
2cosh

(
`

2~ p̂+ iπ(N1−N2)
2 +πζ

)
∣∣∣∣∣∣βn

〉
,

tM,j = M+1
2 −j, (3.24)

and [fa,b]A×Ba,b denotes an A×B matrix whose (a, b) element is fa,b. We apply this formula
to both ZFIL in the integral (3.19).

Next, we rewrite the Gaussian factors in (3.19) in terms of operators in the quantum
mechanics:

Z(x,y)

= 1
N !`

NL+NR
2 k

M
2

∫
dNLαdNµdNRβ

NL∏
n

〈xn|e
i

2~ q̂
2 |αn〉 Z̃FIL

`,ζ (NL,N ;α,µ)

×det
( [〈

µm

∣∣∣∣e− i
2~ q̂

2 1
2cosh( 1

2~ p̂+
iπM

2 +πη)

∣∣∣∣βn〉]N×NR

m,n

[〈
µm

∣∣∣e− i
2~ q̂

2
∣∣∣− `

k (itM,j+η)
〉〉]N×M

m,j

)

×
NR∏
n

〈βn |yn〉 , (3.25)

where we have inserted

1 =
∫
dNLα

NL∏
n

〈xn |αn〉 , 1 =
∫
dNRβ

NR∏
n

〈βn | yn〉 . (3.26)

3.2.2 Applying similarity transformations

Now, all the integrals have the form of the identity∫
dγ |γ〉 〈γ| = 1, (3.27)

and therefore the integral is invariant under the similarity transformations:

|αn〉 〈αn| → e
i

2~ p̂
2 |αn〉 〈αn| e−

i
2~ p̂

2
, |µn〉 〈µn| → e

i
2~ p̂

2 |µn〉 〈µn| e−
i

2~ p̂
2
,

|βn〉 〈βn| → e
i

2~ q̂
2
e
i

2~ p̂
2 |βn〉 〈βn| e−

i
2~ p̂

2
e−

i
2~ q̂

2
. (3.28)
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The similarity transformations (3.28) slightly affect the first FI and 1-loop factor Z̃FIL
`,ζ since

it does not contain the position operator. It produces only the phase factor e
iπ
k`
θζ,N−NL ,

where
θζ,M = − 1

12
(
M3 −M

)
+Mζ2. (3.29)

On the other hand, they drastically change the components of the second determinant.
Using

e−
i

2~ p̂
2
e−

i
2~ q̂

2
f (p̂) e

i
2~ q̂

2
e
i

2~ p̂
2 = f (q̂) , e−

i
2~ p̂

2
e−

i
2~ q̂

2 |p〉〉 = 1√
i
e
i

2~p
2 |p〉 , (3.30)

all the momentum operators and the momentum eigenvectors become the position operators
and the position eigenvectors, respectively. Note that this operation also provides the phase
i−

1
2Me

iπ`
k
θη,M .

Using the identity
1
N !

∫
dNα det

(
[fm (αn)](N+M)×N

m,n

[
f ′mj

](N+M)×M

m,j

)
det

(
[gn (αm)]N×Nm,n

)
=
∫
dNα det

(
[fm (αn)](N+M)×N

m,n

[
f ′mj

](N+M)×M

m,j

) N∏
n

gn (αn) , (3.31)

we can diagonalize the second determinant, and then we apply the determinant for-
mula (3.23) to Z̃FIL

`,ζ backwards. As a result, we find

Z(x,y) = i−
1
2Me

iπ
k`
θζ,N−NLe

iπ`
k
θη,M

`
NL+NR

2 k
M
2

×
∫
dNLαdNRβ

NL∏
n

〈
xn
∣∣∣e i

2~ q̂
2
e
i

2~ p̂
2
∣∣∣αn〉

Z(α,β)

NR∏
n

〈
βn
∣∣∣e− i

2~ p̂
2
e−

i
2~ q̂

2
∣∣∣yn〉

 ,
(3.32)

where

Z(α, β) =
∫
dNµ ZFIL

`,ζ (NL, N ;α, µ)

×

NR∏
n

〈
µn

∣∣∣∣∣∣ 1
2 cosh

(
1
2~ q̂ + iπM

2 + πη
)
∣∣∣∣∣∣βn

〉M∏
j

〈
µNR+j

∣∣∣∣− `k (itM,j + η)
〉 .
(3.33)

3.2.3 Computation of Z(α, β)

Here we rewrite Z(α, β) in a way that a connection to the duality is transparent. The
final results will be (3.40) and (3.54). In order to compute Z(α, β), we should perform the
integration over µn. At first sight, one might think that we could perform the integration
simply using the delta functions appeared in the second line. This is indeed true for µn
(1 ≤ n ≤ NR). After the integration, all the µn are replaced with βn. On the other hand,
it is no longer true for µNR+j (1 ≤ j ≤M) because the arguments of the delta functions
are now complex numbers and need to shift the integral contour appropriately. We see this
point carefully.
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The subtlety on integrating over µNR+j. The last factor in (3.33) is

M∏
j

〈
µNR+j

∣∣∣∣− `k (itM,j + η)
〉
,

which gives M delta functions with complex variables. To make it the standard delta
functions, we should shift the integral contour from R to R − `

k tM,ji. If there are poles
inside the region surrounded by the integral contour, then we have to take account of
their residues.

Let us elaborate on this point for a moment. We are interested in the following type
of integral14 ∫

R
dxf (x) 〈x | a+ ib〉 , (3.34)

where a and b are real numbers.15 We consider the case when f (x) has poles in 0 <

Im (x) < b or b < Im (x) < 0 when b > 0 or b < 0 respectively. zi denotes the position of
poles, and Ri denotes its residue. Exceptionally, if Im (zj) = b, Ri denotes the half of its
residue. We can perform the integration by inserting the identity operator

∫
R dp |p〉〉 〈〈p |

and shifting the integration contour from R to R + ib so that we can use the property of
the delta function:∫

R
dxf (x)〈x |a+ib〉= 1

2π

∫
R
dpdxf (x)eip(x−a−ib)

= 1
2π

∫
R
dpdxf (x+ib)eip(x−a)+2πisgn(b)

∑
j

Rj

∫
R
dpeip(zj−a−ib)


= f (a+ib)+2πisgn(b)

∑
j

Rj 〈zj |a+ib〉 . (3.35)

Coming back to the integral (3.33), we should study the structure of the distribution of
the poles. The part of the function of µNR+j having poles is

NL∏
n

1

2 cosh π(αn−µNR+j)
`

,

which has poles at µNR+j = αn +
(
m− 1

2

)
i` with residues (−1)m i`

2π with an integer m.
Thus the residue terms actually appear since we are considering M > k.

Integrating over µNR+j for even L. First, we integrate over µn where tM,j satisfies
|tM,j | < k

2 . This is straightforward because the integral contour does not pass any poles.
Therefore, all µn are replaced with − `

k (itM,j + η). Second, we perform the integration over
µn with k

2 ≤ |tM,j | < 3k
2 . However, when there exist tM,j such that |tM,j | = k

2 , additional
subtleties appear although it is not essential. To avoid this, we assume that L is even for

14A similar integral was studied in [32].
15Strictly speaking, we should assume that f (x) = o

(
e−|x|

)
, otherwise we can not control the behavior

at the infinity. To avoid this, we implicitly give k a small negative imaginary part and take it to zero in
the end.
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a while, and we study the odd L case soon later. For t satisfying k
2 < |t| <

3k
2 , using (3.35)

and 〈x | y〉 = 〈x+ z | y + z〉, we obtain∫
dµ

f (µ)∏NL
n 2cosh π(αn−µ)

`

〈
µ

∣∣∣∣− `k (it+η)
〉

=
f
(
− `
k (it+η)

)
∏NL
n 2cosh

(
π
`αn+ π

k (it+η)
)+` NL∑

n

f
(
αn∓ i

2`
)

∏NL
n′ 6=n 2cosh π(αn′−αn± i

2 `)
`

〈
αn

∣∣∣∣− `k
((

t∓ k2

)
i+η

)〉
,

(3.36)

where sgn (t) = ±1. This identity tells us that integrating over µn under consideration
is the same as summing over all the cases where µn is replaced with − `

k (itM,j + η) and
αn′ ∓ i

2` with multiplying the appropriate factors. However, not all the terms in the
summation survive. We therefore focus on which terms survive for a while and postpone
the concrete calculation until (3.42).

We first realize that even if one µn is replaced with − `
k (itM,j + η), the term vanishes

thanks to the factor ∏N
n<n′ 2 sinh π(µn−µn′ )

` at the numerator of ZFIL
`,ζ (NL, N ;α, µ) in (3.33).

This is because there must exist µn′ that is replaced by− `
k (itM,j±k + η) with± = sgn (tM,j)

since |tM,j±k| < k
2 , and |tM,j − tM,j±k| = k. Therefore, it is sufficient to consider the cases

where all µn’s are replaced by αn′ ∓ i
2`. Among these cases, there are further cases that

give vanishing contributions. As a conclusion, nonzero contributions come from only the
cases where all the chosen αn′ ’s are different. This is because when µn is replaced with
αn′ ∓ i

2`, all the trigonometric functions including αn′ cancel with the denominator and
the numerator of ZFIL

`,ζ (NL, N ;α, µ) in (3.33), thus there are no longer poles at αn′ ∓ i
2`.

Third, let us perform the integration over µn with 3k
2 < |tM,j | < 5k

2 . The only difference
from the previous case is that µn can be also replaced with αn′∓ 3i

2 ` because the integration
contour passes new poles. However, these cases do not contribute because of the following
reason. When µn is replaced with αn′ ∓ 3i

2 `, µn±k should have been replaced with αn′′ ∓ i
2`

since corresponding tM,j±k satisfies k
2 < |tM,j±k| < 3k

2 . There is also the case in which µn is
replaced with αn′′∓ 3i

2 `, µn±k is replaced with αn′∓ i
2` and another part is the same. These

two cases actually cancel out. In fact, the remaining αn′ dependence and the remaining
αn′′ dependence are〈

αn′

∣∣∣∣− `k
((

tM,j ∓
3
2k
)
i+ η

)〉〈
αn′′

∣∣∣∣− `k
((

tM,j±k ∓
1
2k
)
i+ η

)〉
=
〈
αn′

∣∣∣∣− `k
((

tM,j±k ∓
1
2k
)
i+ η

)〉〈
αn′′

∣∣∣∣− `k
((

tM,j±k ∓
1
2k
)
i+ η

)〉
, (3.37)

so that this part is symmetric under the exchange of αn′ and αn′′ . On the other hand, the
factor (−1) appears from the trigonometric functions under the exchange.

Continuing the above arguments, we conclude that µn with k
2 < |tM,j | should be

replaced with αn′ ∓ i
2`, and all the chosen αn′ should be different. In other words, cases

not satisfying this condition vanish. It is worth noting that the number of µn where
corresponding tM,j satisfies k

2 < |tM,j | is L. Therefore, if Ñ < 0, the above condition is
never satisfied, which means that Z(α, β) = 0. This is, in fact, also true for the odd L

case, as we will see just below. We assume that Ñ ≥ 0 for a while and return to this point
soon later.
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Integrating over µNR+j for odd L. When L is odd, there exist tM,j = ±k
2 and

we should be careful on these cases. We denote the corresponding µNR+j by µ±. First,
the cases where µ± = − `

k

(
± i

2k + η
)

vanish by virtue of ∏N
n<n′ 2 sinh π(µn−µn′ )

` at the
numerator of ZFIL

`,ζ (NL, N ;α, µ). The terms where µ± is replaced with αn± ∓ i
2` also

vanish even if all the chosen αn are different. This is because there is cancellation between
this type of term, and the one where µ± is replaced with αn∓ ∓ i

2`. The only remaining
terms are the terms where µ+ = αn′ − i

2` and µ− = + i
2` and the terms where µ+ = − i

2`

and µ− = αn′+ i
2`. We should also notice that the 1

2 factor appears in this case as explained
above (3.35). However, the contributions from these two cases are equal, thus the weight
of the contribution of the odd L case is the same as the even L case.

We show that the two types of contributions are indeed equal. The first case

µ+ = αn′ −
i

2`, µ− = + i

2`, (3.38)

accords with the second case

µ+ = − i2`, µ− = αn′ + i

2`, (3.39)

by two operations, namely µ± → µ∓ and ± i
2` → ∓

i
2`. The first operation provides (−1)

since Z(α, β) is anti-symmetric under the exchange of two µn. The second operation also
provides many (−1) factors from the cosh and sinh factors in ZFIL

`,ζ . Although the number
of the cosh and sinh factors related to µ− = αn′ − i

2` → αn′ + i
2` and µ− = + i

2` → −
i
2`

is almost the same, the former is smaller than the latter by 1 due to the absence of the
n = n′ in the denominator in (3.36). Therefore, the two types of contributions are equal.
Hereafter we focus on the second case (3.39) without the half factor.

The Ñ < 0 case. Again, we should choose L different αn′ ’s and replace µn with αn′± i
2`

as is the case with even L. Therefore, regardless of whether L is even or odd, if Ñ < 0,
we find

Z(α, β) = 0
(
Ñ < 0

)
. (3.40)

This immediately leads to
Z(x, y) = 0

(
Ñ < 0

)
. (3.41)

This is nothing but the case when Ñ < 0 in (3.16), which embodies the modified s-rule.
Hereafter we again assume that Ñ ≥ 0.

Substitution for µn. So far we have learned that there are contributions only from the
terms where µn is replaced with βn for 1 ≤ n ≤ NR, − `

k (itM,j + η) for |tM,j | < k
2 (and

one |tM,j | = k
2 for odd L) and αn ∓ i

2` for |tM,j | > k
2 (and the other |tM,j | = k

2 for odd L).
Therefore, we obtain

Z(α, β) = `L

Ñ !
∑

σ∈SNL

e−
2πiζ
`

(∑NL
m

αm−
∑N

n
µn
)∏NL

m<m′ 2 sinh π(αm−αm′ )
`

∏N
n<n′ 2 sinh π(µn−µn′ )

`(∏NL
m

∏N
n

)′
2 cosh π(αm−µn)

`

×
NR∏
n

1
2 cosh

(
1
2~βn + iπM

2 + πη
) L∏

j

〈
ασ(Ñ+j)

∣∣∣∣− `k (itL,j + η)
〉
, (3.42)
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where

µn =



βn (1 ≤ n ≤ NR)
ασ(n−NR+Ñ) −

i
2`

(
NR + 1 ≤ n ≤ NR + L

2 − cL
)

− `
k

((
tk,n−NR−L2 +cL + cL

)
i+ η

) (
NR + L

2 − cL + 1 ≤ n ≤ NR + L
2 − cL + k

)
ασ(n−NR−k+Ñ) + i

2`
(
NR + L

2 − cL + k + 1 ≤ n ≤ N
) ,

(3.43)
and

cL =

0 (even L)
1
2 (odd L)

. (3.44)

The symbol
(∏NL

m

∏N
n

)′
means that m and n do not run where the factor

2 cosh π(αn−(αn∓ i
2 `))

` appears. SNL is the permutation group and we have divided by Ñ !
because of the over-counting.

It is convenient to express all the subscripts of α in terms of σ:

Z(α,β)

= `L

Ñ !

∑
σ∈SNL

sgn(σ)e−
2πiζ
`

(∑NL
m

ασ(m)−
∑N

n
µn
)∏NL

m<m′ 2sinh
π
(
ασ(m)−ασ(m′)

)
`

∏N

n<n′ 2sinh π(µn−µn′)
`(∏NL

m

∏N

n

)′
2cosh π(ασ(m)−µn)

`

×
NR∏
n

1
2cosh

(
1

2~βn+ iπM
2 +πη

) L∏
j

〈
ασ(Ñ+j)

∣∣∣− `

k
(itL,j+η)

〉
. (3.45)

Surprisingly, after substituting (3.43) into (3.45) and calculation, all the trigonometric
functions including αNL−L+j at the denominator and the numerator completely cancel out,
and all the FI factors including αNL−L+j also completely cancel out. Therefore, αn′ appears
only at the argument of the delta functions coming from (3.36).

Although we have not treated the phases in detail, from now on we also study the
phases carefully. First, the factor i−kL appears in the ∏N

n<n′ 2 sinh π(µn−µn′ )
` with one

− `
k (it+ η) and one α ± i

2`. Second, (−1)−
1
4L

2
appears for even L in the same factor

with one α− i
2` and one α + i

2`. (−1)
L−1

2
L+1

2 also appears for odd L though this is equal
to 1. Third, (−1)

1
2L(L−1) appears when all the trigonometric functions including only

αNL−L+j at the denominator and the numerator cancel out. Fourth, for odd L, iNL−1

and i−NR appear in the denominator and the numerator respectively since in this case the
number of the trigonometric functions including only α − i

2` is one smaller than that of
the trigonometric functions including only α + i

2`. Using (−1)−
1
4L

2+ 1
2L(L−1) = 1 for even

L and (−1)
1
2 (L−1)+ 1

2L(L−1) = 1 for odd L, all the phases are

Ω = i−kL (−1)cL(Ñ−NR) . (3.46)

Finally, we obtain the phase from the FI factor. Note that the summation of the imaginary
part of µn completely cancels out.
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We then obtain

Z(α, β) = Ωe−2πiζη`L

Ñ !
∑

σ∈SNL

sgn (σ) e
− 2πiζ

`

(∑Ñ

m
ασ(m)−

∑NR
n

βn

)

×
∏Ñ
m<m′ 2 sinh

π

(
ασ(m)−ασ(m′)

)
`

∏NR
n<n′ 2 sinh π(βn−βn′ )

`∏Ñ
m

∏NR
n 2 cosh π(ασ(m)−βn)

`

×
∏NR
n

∏k
j 2 sinh

[
π
` βn −

π
k ((tk,j − cL) i+ η)

]∏k
j<j′ 2 sinh πi

k

(
tk,j′ − tk,j

)
∏Ñ
n

∏k
j 2 cosh

[
π
`ασ(n) − π

k ((tk,j − cL) i+ η)
]

×
NR∏
n

1
2 cosh

(
1
2~βn + iπM

2 + πη
) L∏

j

〈
ασ(Ñ+j)

∣∣∣∣− `k (itL,j + η)
〉
. (3.47)

We can rewrite this expression using the following identities shown in appendix B,
k∏

j<j′

2 sinh 2πi
(
tk,j′ − tk,j

)
2k = i−

1
2k(k−1)k

k
2 , (3.48)

and
k∏
j

2 sinh
[
π

`
β − π

k
((tk,j − cL) i+ η)

]
= i−k (−1)

1
2L−cL 2 cosh

( 1
2~β + iπM

2 + πη

)
,

k∏
j

2 cosh
[
π

`
α− π

k
((tk,j − cL) i+ η)

]
= (−1)

1
2L−cL 2 cosh

( 1
2~α+ iπL

2 + πη

)
, (3.49)

coming from

2 cosh x2 =
k∏
j

2 cosh x− 2πitk,j
2k , i−k2 cosh x+ iπk

2 =
k∏
j

2 sinh x− 2πitk,j
2k . (3.50)

Then we find

Z(α,β) = Ω′e−2πiζη`Lk
1
2k

Ñ !

×
∑

σ∈SNL

sgn(σ)

 Ñ∏
n

1
2cosh

(
1
2~ασ(n)+ iπL

2 +πη
)
 L∏

j

〈
ασ(Ñ+j)

∣∣∣∣− `k (itL,j+η)
〉

×ZFIL
`,ζ

(
Ñ ,NR;ασ,β

)
, (3.51)

where
Ω′ = i−kL−kNR− 1

2k(k−1)+L(Ñ−NR) = i
1
2 (N2

L−N
2−Ñ2+N2

R+k). (3.52)

We insert the integration

Ñ∏
n

1
2 cosh

(
ασ(n)

2~ + iπL
2 + πη

) =
∫
dÑν

Ñ∏
n

〈
ασ(n)

∣∣∣∣∣∣ 1
2 cosh

(
q̂
2~ + iπL

2 + πη
)
∣∣∣∣∣∣ νn

〉
. (3.53)
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The summation over the permutation can be expressed by the determinant. Using (3.23)
to the second factor, we obtain

Z(α,β) = Ω′e−2πiζηk
1
2M`

1
2L

Ñ !

∫
dÑν

×det
( [〈

αm

∣∣∣∣ 1
2cosh( q̂

2~+ iπL
2 +πη)

∣∣∣∣νn〉]NL×Ñ

m,n

[√
2π~

〈
αm

∣∣∣− `
k (itL,j+η)

〉]NL×L

m,j

)
×Z̃FIL

`,ζ

(
Ñ ,NR;ν,β

) (
Ñ ≥ 0

)
.

(3.54)

3.2.4 Return to the whole part

Now we return to Z(x, y) in (3.32). By substituting the above result, we obtain

Z(x,y) = Ω′i− 1
2Me

iπ
k`
θζ,N−NLe

iπ`
k
θη,M e−2πiζη

Ñ !`
Ñ+NR

2

∫
dNLαdÑνdNRβ

NL∏
n

〈
xn
∣∣∣e i

2~ q̂
2
e
i

2~ p̂
2
∣∣∣αn〉

×det
( [〈

ασ(n)

∣∣∣∣ 1
2cosh( q̂

2~+ iπL
2 +πη)

∣∣∣∣νn〉]NL×Ñ

m,n

[√
2π~

〈
αm

∣∣∣− `
k (itL,j+η)

〉]NL×L

m,j

)

×Z̃FIL
`,ζ

(
Ñ ,NR;ν,β

)NR∏
n

〈
βn
∣∣∣e− i

2~ p̂
2
e−

i
2~ q̂

2
∣∣∣yn〉 . (3.55)

After the similarity transformations

|αn〉〈αn|→ e−
i

2~ p̂
2
e−

i
2~ q̂

2 |αn〉〈αn|e
i

2~ q̂
2
e
i

2~ p̂
2
, |νn〉〈νn|→ e−

i
2~ p̂

2
e−

i
2~ q̂

2 |νn〉〈νn|e
i

2~ q̂
2
e
i

2~ p̂
2
,

|βn〉〈βn|→ e−
i

2~ p̂
2
e−

i
2~ q̂

2 |βn〉〈βn|e
i

2~ q̂
2
e
i

2~ p̂
2
, (3.56)

and using

e
i

2~ q̂
2
e
i

2~ p̂
2
f (q̂) e−

i
2~ p̂

2
e−

i
2~ q̂

2 = f (p̂) , e
i

2~ q̂
2
e
i

2~ p̂
2 |q〉 =

√
ie−

i
2~ q

2 |q〉〉 , (3.57)

we finally arrive at

Z(x, y) = i
1
2 (N2

L−N
2−Ñ2+N2

R)e
iπ
k`

(
θζ,N−NL−θζ,NR−Ñ

)
e
iπ`
k (θη,M−θη,L)e−2πiζη

×
∫
dÑν

Ñ !
Z(1,0),η

(
NL, Ñ ;x, ν

)
Z(`,k),ζ

(
Ñ ,NR; ν, y

) (
Ñ ≥ 0

)
. (3.58)

This identity and (3.40) are what we expected (3.16).

4 Gluing SUSY theories and new dualities

In this section, we propose new dualities motivated by the structures of supersymmetric
partition functions and brane construction.
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Figure 9. Gluing two theories T1 and T2 by identifying and gauging the common flavor symmetry F .

4.1 Gluing N = 2 SUSY theories

Let us consider a 3d N = 2 supersymmetric theory T with a flavor symmetry F which
may or may not have a Lagrangian. We also turn on the background vector multiplet VF
of the symmetry F . If the theory T has Lagrangian, then the partition function of T is
schematically written as

ZT [VF ] =
∫
DΦ e−ST [Φ,VF ], (4.1)

where Φ is dynamical fields in T and ST [Φ, VF ] is the action of T in the presence of the
background vector multiplet VF . When the theory T is a non-Lagrangian theory, we do
not have a path integral representation of the partition function but we can still denote
the partition function as a functional of VF .

Suppose that we have two theories T1 and T2 with a common flavor symmetry F . Then
we can glue the two theories by identifying and gauging F (see also figure 9):

ZT1◦T2 =
∫
DVF e−SYMCS[VF ]ZT1 [VF ] · ZT2 [VF ], (4.2)

where SYMCS[VF ] is the action of 3d N = 2 SUSY YM CS theory with the gauge group F
promoted from global symmetry.16 The path integral is over all the possible configuration
of the vector multiplet VF and therefore gluing the two theories in general seems to require
information on the two theories for any configuration of VF . This sounds technically
difficult to do since VF may take non-supersymmetric configuration. However, it is known
that for a class of problems including S3 partition functions, we can restrict VF to a class
of supersymmetric configurations.

Localization formula for S3 partition functions of 3d N = 2 theories. Let us
focus on S3 partition functions of 3d N = 2 SUSY theories with Lagrangians. Using SUSY
localization, the path integral is dominated by a saddle point where matter fields are trivial
and vector multiplet takes the configuration

σ = const., D = −σ, (others) = 0, (up to gauge transformation), (4.3)
16If we would like to preserve larger supersymmety, then we replace the YMCS theory with the one with

that supersymmetry. For example, if we would like to preserve N = 3 SUSY, then we should also add the
adjoint chiral multiplet of F with U(1)R charge 1.

– 25 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
2

where σ is the adjoint scalar and D is the auxiliary field in the vector multiplet.17 Therefore
the exact result can be written as integration over constant configurations of σ.

As a result, the localization formula of the theory with the gauge group G is given
by [29–31]

ZS3 = 1
|W|

∫
d|G|x Zcl(x)Z1loop(x), (4.4)

where |G| is the rank of G and |W| is rank18 of the Weyl group of G. If the gauge group
has the structure G = G1 ×G2 × · · · , then the classical contribution Zcl is

Zcl(x) =
∏
j

e
iπkjtrGj (x2)−2πiζjtrGj (x)

, (4.5)

where kj and ζj are the Chern-Simons level and FI-parameter19 of the gauge subgroup Gj ,
and this part is independent of matters. When the theory is coupled to chiral multiplets in
representations {R1,R2, · · · } with U(1)R charges {∆1,∆2, · · · }, the one-loop determinant
Z1loop is given by

Z1loop(x) =
∏
α∈root+ 4 sinh2 (πα · σ)∏

p

∏
ρp∈Rp s1 (ρp · σ − i(1−∆p))

, (4.6)

where α is root vector of G, ρm is weight vector of representation Rm, and

sb(z) ≡
∞∏
p=0

∞∏
q=0

pb+ qb−1 + (b+ b−1)/2− iz
pb+ qb−1 + (b+ b−1)/2 + iz

. (4.7)

Note that the localization formula is independent of Yang-Mills couplings because of Q-
exactness of the SYM terms. This implies that the localization formula captures the IR
limit corresponding to the large YM coupling limit of the theories even if we start with
actions including the SYM term.

When we have a flavor symmetry F , one can also turn on the background vector
multiplet VF of the symmetry F while preserving SUSY by taking the fields in VF to be
the configuration (4.3). For this case, the one-loop determinant becomes

Z1loop(x,m) =
∏
α∈root+ 4 sinh2 (πα · σ)∏

p

∏
ρp∈Rp s1

(
ρp · σ + ρFp ·m− i(1−∆p)

) , (4.8)

where m is the background value of σ in VF (often called real mass) and ρFp is the weight
vector of a representation in F to which the p-th chiral multiplet belongs. Then the
partition function becomes dependent on m.

The above formula is for Lagrangian theories. For non-Lagrangian theories, it is harder
to compute their partition functions but we can still denote them as functions of m. For
instance, this is true for the partition function (3.13) of the local theory even for the cases
without Lagrangians.

17More precisely, here we are applying so-called Coulomb branch localization. There is also another type
of localization called Higgs branch localization [42, 43].

18In particular, |W| = N ! for G = U(N).
19If Gj does not contain a U(1) part, then ζj is zero.
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Figure 10. Illustration of generating new dualities when the local theory has a Lagrangian. The
duality of the local theory implies new dualities by gluing theories with the common flavor symme-
tries. Gluing the two theories with two common flavor symmetries.

Gluing two theories for S3 partition functions. The above localization formula
indicates that for the S3 partition functions of 3d N = 2 SUSY theories, we can glue two
theories by integrating over only the SUSY configurations (4.3):

ZT1◦T2 =
∫
d|F |m ZVF (m)ZT1(m) · ZT2(m), (4.9)

where ZVF (m) is the classical and one-loop contribution of the 3d N = 2 YMCS theory.
Thus the gluing procedure is much simplified for the supersymmetric S3 partition functions.

4.2 New dualities from gluing the local theory to another theory

The above structure motivates us to find new dualities as follows. Let us prepare the two
theories: a theory T with U(NL)×U(NR) global symmetry and the local theory described
in figure 3. Then we glue them and obtain the S3 partition function of the glued theory by
the procedure (4.9). This procedure is illustrated on the left of figure 10. Let us replace the
local theory with its dual theory as illustrated on the right of figure 10. Then the duality
for the local theory proven in the last section and the gluing structure implies that the two
glued theories are dual to each other in IR.

We can generate another type of new dualities in a similar way. For this time, we
glue the three theories: a theory TL with U(NL) global symmetry, a theory TR with U(NR)
global symmetry and the local theory. We can obtain the S3 partition function of the glued
theory as well Then the duality of the local theory implies the new duality for the glued
theory. This is illustrated on the left of figure 11. Although we have shown the above two
types of dualities only for the S3 partition functions, we conjecture that these are true for
more general observables.

Brane viewpoint. In the brane configuration shown in table 1, we have taken the 5-
branes to be oblique in the x3 − x7, x4 − x8 and x5 − x9 planes with the same angle. The
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Figure 11. Gluing the three theories. The duality of the local theory implies the duality of the
glued theory as well.

condition on the angles is required to preserve N = 3 supersymmetry. If we relax this
condition, then the preserved supersymmetry is reduced [24, 26]: we have N = 2 SUSY if
two of the three angles are the same, and N = 1 SUSY if all of them are independent.

Let us consider the less supersymmetric type of brane configurations which includes
the one for the local theory drawn in figure 7. Although the total system generically has
only 3d N = 1 SUSY, applying the Hanany-Witten move to the local theory part implies
another duality for the total system. For the N ≥ 2 cases, the duality for the S3 partition
functions of the total system is reduced to the one of the local theory because of the
structure of the S3 partition functions which we have explained. For the N = 1 cases,
it is unclear whether or not the S3 partition functions have similar structures as in the
N ≥ 2 cases, and therefore showing the duality for the local theory may not be sufficient
to show the one for the total system. So we leave it as only a conjecture. Similarly, if there
remain anti-D3-branes after the Hanany-Witten move of the local theory, we expect that
supersymmetry of the total system is broken.

4.3 New duality cascades?

In section 2.3, we have seen that generic Hanany-Witten type brane configuration is a
combination of the brane configuration for the local theory and applying the Hanany-
Witten move for 5-branes along the circle leads us to the duality cascades for a range of
the parameters. In section 3.1, we have seen the similar structures for the S3 partition
functions purely from the viewpoint of the field theories.

In the current case, generic theory cannot be regarded as a combination of the local
theory and therefore only the duality for the local theory is not sufficient to discuss duality
cascades. In other words, we may be able to find examples of new duality cascades if we
have some duality relations beyond the local theory. A natural example of such dualities
is the one coming from the Hanany-Witten move generalized to the less supersymmetric
brane configurations explained above. We expect that theories coming from the generalized
brane configurations can be regarded as a combination of something like the local theory
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extended to the less supersymmetric case. A first step to see this would be to focus on the
N = 2 case and extract a kind of N = 2 version of the local theory.

5 Conclusion and discussions

In this paper we have studied the conjectural duality cascades in the 3d N = 3 super-
symmetric gauge theories coming from the Hanany-Witten brane configurations. We have
made the non-perturbative tests of the duality cascades using supersymmetry localization.
We have focused on the S3 partition functions and show that the duality cascades are
generated by the duality relation coming from the Hanany-Witten effect for the local the-
ory. Then we have proven the fundamental duality relation for the local theory and this
amounts to show the predictions from the duality cascades for the S3 partition functions.
We have also discussed that our result for the local theory can be used to generate the
new dualities for more general theories including less supersymmetric theories. It would
be interesting to extend our results to other observables.

Our non-perturbative tests for the partition functions have been done for the brane
configurations consisting of 5-branes and D3-branes. However, there are more general con-
figurations, such as including orientifold 3-planes [8, 44]. It would be interesting if one can
generalize our analysis to these cases (see e.g. [45] for the 4d case). In addition, the authors
in [46] have recently proposed that a duality cascade occurs in a 4d non-supersymmetric
gauge theory. It would be illuminating to seek a 3d counterpart of this story.

In this paper, we have focused primarily on the IR structure of the dual theories.
On the other hand, the duality cascade for the Klebanov-Strassler theory was originally
studied by directly seeing the behavior of the mass and the coupling constants along the
RG flow [2]. They also found its gravity dual, which indeed describes the smooth RG
flow. The similar analysis was performed for 3d ABJ-type theories from the string and the
supergravity viewpoint [17, 18]. Therefore, it is important to perform the same analysis
for generic cases we studied in this paper to find the structure of RG flow in detail.

It is known that the matrix models associated to a class of brane configurations pos-
sessing N = 4 SUSY are characterized by operators called quantum curves [41, 47] by
using the Fermi gas formalism [36]. The quantum curves with genus one are expected to
have affine Weyl symmetry of exceptional type Lie algebra because this type of quantum
curves is related to q-Painlevé equations [48]. In fact, the Weyl symmetry was explicitly
constructed for these quantum curves [49, 50], and they are related to dualities between
different rank theories related by the Hanany-Witten effect [40, 51]. On the other hand,
the translation symmetry, which plays a crucial role in lifting the Weyl symmetry to affine
version, has not been found yet. Because the duality cascade relates an infinite number of
ranks, there is a possibility that the duality cascade is related to the translation symmetry.
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A Proof of the determinant formula (3.23)

In this appendix we prove the determinant identity (3.23). We write down the both side
for convenience:

e−
2πiζ
`

(∑N1
m

αm−
∑N2

n
βn
)∏N1

m<m′ 2 sinh π(αm−αm′ )
`

∏N2
n<n′ 2 sinh π(βn−βn′ )

`∏N1
m

∏N2
n 2 cosh π(αm−βn)

`

=


det

 [Am,n]N1×N2
m,n[√

2π~
〈〈

2π~
` (itN2−N1,j − ζ)

∣∣∣βn〉](N2−N1)×N2

j,n

 (N1 ≤ N2)

det
(

[Am,n]N1×N2
m,n

[√
2π~

〈
αm

∣∣∣−2π~
` (itN1−N2,j + ζ)

〉〉]N1×(N1−N2)

m,j

)
(N1 > N2)

,

(A.1)

where

tM,j = M + 1
2 − j, Am,n = `

〈
αm

∣∣∣∣∣∣ 1
2 cosh

(
`

2~ p̂+ π(N1−N2)
2 i+ πζ

)
∣∣∣∣∣∣βn

〉
.

Note that although we relate ` and ~ in (3.20), they are independent of each other in this
formula. We only derive the first case N1 ≤ N2 because the second case N1 > N2 can be
easily derived from the first identity.

We start with the formula which can be regarded as the combination of the Cauchy
determinant formula and the Vandermonde determinant formula [14, 32]:

∏N1
m<m′ 2sinh π(αm−αm′)

`

∏N2
n<n′ 2sinh π(βn−βn′)

`∏N1
m

∏N2
n

2cosh π(αm−βn)
`

= (−1)N1(N2−N1) det


[

e
πM
`

(αm−βn)

2cosh π(αm−βn)
`

]N1×N2

m,n[
e

2π
`
tM,jβn

](N2−N1)×N2

j,n

 .
(A.2)

Using the Fourier transform formula

1
2 cosh πx = 1

2π

∫
R
dp

eipx

2 cosh p
2
, (A.3)

the upper part of the matrix in the right-hand side can be written as

e
πM
`

(α−β)

2 cosh π(α−β)
`

= 1
2π

∫
R
dp
e
i
`
(p−iπM)(α−β)

2 cosh p
2

= 1
2π

∫
R
dp

e
i
`
p(α−β)

2 cosh p+iπM
2

+
bM+1

2 c∑
j

(−1)j+1 e
2π
`
tM,j(α−β). (A.4)

At the second line, we shifted the integration contour from R to R+ iπM . In this process,
the residues of

(
2 cosh p

2
)−1, which has poles at p = (2j − 1)πi with residues (−1)j i,
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appeared. However, these terms do not contribute to the determinant in (A.2) because
these terms are just the linear combinations of the lower part of the matrix. Now, all the
elements can be expressed in terms of vectors and operators in the quantum mechanics
using (3.22):

1
2π

∫
R
dp

e
i
`
p(α−β)

2 cosh p+iπM
2

= `

〈
αn

∣∣∣∣∣∣ 1
2 cosh

(
`

2~ p̂+ iπM
2

)
∣∣∣∣∣∣βm

〉
,

e
2π
`
tM,jβm =

√
2π~

〈〈2π~
`
tM,ji

∣∣∣∣βm〉 . (A.5)

Next, we take the FI terms e−
2πiζ
`

(∑N1
m

αm−
∑N2

n
βn
)
into account. We put all the FI

terms between the bras and the kets, which is equal to change all the position eigenvectors
as follows:

〈αm| → 〈αm| e−
2πiζ
`
q̂, |βn〉 → e

2πiζ
`
q̂ |βn〉 . (A.6)

Since these operators can be used to shift the momentum operators and the momentum
eigenvectors using

e−
ia
~ q̂f (p̂) e

ia
~ q̂ = f (p̂+ a) , e

ia
~ q̂ |p〉〉 = |p+ a〉〉 , (A.7)

we finally arrive at (A.1), or equivalently, (3.23).

B Useful formula on trigonometric functions

In this section, we prove the two types of the identities of the trigonometric functions. The
first identities are (3.50):

2 cosh x2 =
k∏
j

2 cosh x− 2πitk,j
2k ,

i−k2 cosh x+ iπk

2 =
k∏
j

2 sinh x− 2πitk,j
2k , (B.1)

and the second identity is (3.48):
k∏

j<j′

2 sinh 2πi
(
tk,j′ − tk,j

)
2k = i−

1
2k(k−1)k

k
2 , (B.2)

where k is a positive integer.
We start with the well-known identity

zk − 1 =
k∏
j

(
z − e

2πj
k
i
)
. (B.3)

By substituting z = e
1
k

(x+πi), we obtain

− e
x
2 2 cosh x2 =

k∏
j

(
i−1e

1
2k (x+πi+2πij)2 cosh x+ 2πitk,j

2k

)
. (B.4)
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This identity immediately leads to the first line of (B.1). The second line of (B.1) can be
obtained by replacing x to x+ iπk.

Next, we focus on (B.2). The second line of (B.1) leads to

1 = ik
∏k
j 2 sinh x−2πitk,j

2k
2 cosh x+iπk

2
. (B.5)

Substituting x = 2πitk,j′ + ε and multiplying j′ = 1, 2, . . . , k, we obtain

1 = ik
2

 k∏
j′

2 sinh ε
2k

2 cosh 2πtk,j′ i+iπk+ε
2

×(−1)
1
2k(k+1)

 k∏
j<j′

2 sinh 2πi
(
tk,j′ − tk,j

)
+ ε

2k

2

. (B.6)

Taking ε→ 0, we arrive at (B.2).
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