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1 Introduction

The so-called swampland program [1–3] is addressing the important question about what
kind of effective field theories, albeit being apparently fully consistent from the quantum
field theory point of view, cannot be consistently embedded into quantum gravity. One
aspect of the swampland idea is that directions in field space which are associated to large
field values are rejected in quantum gravity in the sense that they are accompanied by an
infinite tower of almost massless particles.

As it is well-known for many years, string theory as consistent theory of quantum
gravity can only exist in a certain critical space-time dimension Dc, namely Dc = 10 for
the superstring and the heterotic strings, Dc = 26 for the bosonic string and Dc = 11 for
M-theory. There are also certain attempts for non-critical string theories with D 6= Dc,
however their full quantum consistency is still unclear. The idea of this paper is to con-
sider the limit of large number of space-time dimensions, D → ∞, in the context of the
swampland distance conjecture [2]. The large-D limit and a corresponding 1/D expansion
of general relativity was already considered before in a series of interesting papers, starting
with the work of [4] (for a recent review see [5]). Here we want to present a first attempt
to get a (upper) bound on D via swampland considerations, i.e., we like to address the
question: is large-D quantum gravity in the swampland?
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There are no theorems, or even conjectures, classifying quantum gravity theories in
terms of space-time dimensions that would settle this question. We do not try to follow
this route either. Instead, we study the consistency of known swampland conjectures when
they are extended to large space-time dimensions. In particular, we utilize the swampland
distance conjecture [2], which is about large distances ∆ in field space of quantum gravity,
such as string theory, and about related towers of massless states that appear at large
distances. As a generalization of this idea, we propose to determine the distance between
space-times of different space-time dimensions. This amounts to enlarge the parameter
space of space-time geometries to include, besides the geometric distance parameters (like
the compactification radius, the AdS radius or the black hole mass), also the number of
dimensionsD of space-time as an additional swampland distance parameter. This extension
is motivated by the non-trivial behaviour of known towers when they are considered in the
large-D limit, which cannot be captured by usual distances on field spaces. Concretely, we
want to derive or characterize new distance functions ∆(D) as a function of D, as they
might provide some possible constraints on the number of space-time dimensions.

Given that we lack a dynamical theory for the dimension of spacetime, we cannot
build a distance for it in the usual way. Instead, we investigate bounds on D from con-
sistency requirements on the towers of states predicted by the SDC, most notably the KK
states. We propose to build a distance out of the typical mass of the towers and study its
D-dependence, using it as a proxy for ∆(D).

The paper is organized as follows. In the next section, we analyze the D-dependence of
several swampland conjectures. Then we will propose a Large Dimension Conjecture (LDC)
that restricts the number of space-time dimensions to be smaller or equal to some critical
value that depends on the typical space-time size, or more generally on the value of the
moduli. After that, we focus on towers of KK modes that appear in effective field theories
(EFTs) of anti-de Sitter space (AdS), and we will concretely derive the distance functions
∆(D) for AdSd × Sd

′ backgrounds. We furthermore compute the distance function ∆(D)
for black holes. At the end of the paper we will eventually argue a possible new D-duality
symmetry between large and small dimension.

2 Swampland conjectures at large number of dimensions

The swampland program aims at formulating conditions that must hold for any EFT of
a quantum gravity theory. It defines a subset of the seemingly consistent EFTs, strictly
smaller than the full set, but large enough so that the notion of a landscape remains.
Within this subset, one may find certain large-D theories. Our goal in this paper is to
study the intersection between the landscape and the set of large-D gravity EFTs.

Since classifying all possible quantum theories of gravity is not a viable option, even for
backgrounds of fixed dimensions, swampland conjectures have been originally derived by
extrapolating properties of known string vacua, or by relying on semi-classical black hole
physics. As it is well-known, we cannot use the former at large D. Nevertheless, we can
choose to take all swampland conjectures at face values, and see how they behave at large D.
If they become extremely stringent, we would take it as a hint that large-D theories are
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in the swampland. If on the other hand they stop being constraining, as seems to be the
case, the conclusion is less clear. One could conclude that there are simply less theories
in the swampland at large D. One could also extrapolate the known information that
the landscape is much smaller than the set of seemingly consistent EFTs, and state that it
should hold at largeD as well. Then, we would deduce that either we need more conjectures
to restrict the large D landscape within the set of large D EFTs, or that the large-D limit
was not allowed in the first place and that large-D theories are in the swampland.

Below, we discuss swampland conjectures which have a well-defined large-D behaviour.

2.1 The species bound at large D

Let us start with conjectures that can be motivated independently of string theory and
which feature a dimensional dependence. The first one is the species bound, namely the
fact that EFTs must have a cutoff Λ much lower than the Planck scale when a large number
of particles N are present. In four dimensions this bound comes with a precise scaling,
namely that Λsp ∼ N−

1
2MP. One can derive this bound in several ways, here we follow an

argument associated to black hole (BH) physics [6]. The argument uses a theory with N
fields, each of which is charged under its own gauged discrete symmetry. The idea is then
to form a BH with the maximal discrete charge, and to demand that it can consistently
emit Hawking radiation.

Let us run the argument at any number of dimensions:1 we consider a theory of N
fields of mass m, each of them charged under a gauged Z2 symmetry (so that the symmetry
is at least ZN2 ). We can form a black hole charged under the full ZN2 group; its charge is
measurable via Aharonov-Bohm experiments, so it must be radiated away at some point
of the BH evolution. Thus, the BH must at least emit each of the N quanta once. If m
or N are very large, this has to happen when the BH is heavy, otherwise the emission
is kinematically forbidden. However, when the BH is heavy, its Hawking temperature is
small, so that the emission is unlikely. Thus, we must be able to ensure

TBH & m, MBH > Nm . (2.1)

To be precise, at large d the temperature TBH is not the relevant quantity to compare
to m, because it is parametrically different from the frequency most radiated by the
BH. The emission peaks at the energy EBH ∼ d2

RBH
, while the temperature only scales

as TBH ∼ d
RBH

[4], so we must impose

EBH & m, MBH > Nm . (2.2)

The radius of the BH, in Planck units, is given in terms of the mass as follows

RBH ∼
√
dM

1
d−3

BH . (2.3)

1In the following the number of space-time dimensions in the uncompactified effective theory is de-
noted by d, the number of compact dimensions are given by d′ and the number of total dimensions is
called D = d+ d′.
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Thus,
EBH ∼ d3/2M

− 1
d−3

BH . (2.4)

Using (2.2), at large d, we find m . N−
1
d−2d3/2MP. Given that all fields have mass m,

a bound on the latter gives a higher bound on the cutoff,2 so that we obtain the species
bound at large (but fixed) d,

Λsp
MP
∼ N−

1
d−2 . (2.5)

This argument assumes that the charge must be Hawking-radiated away. It could also be
that it is radiated at a stage of the BH evolution that is not anymore described by Hawking
radiation. However, the species bound can also be derived by studying the perturbative
running of MP. By doing so, we find the same N−

1
d−2 scaling. Thus, at fixed but large d,

the cutoff decreases very slowly when N increases, and the species bound simply disappears
at infinite d.

2.2 The TCC and the distance conjecture at large D

The second conjecture that we consider is the Trans-Planckian conjecture (TCC) [7]. It
states that sub-Planckian quantum fluctuations should never expand beyond the Hubble
horizon. Applied to scalar potentials V in asymptotic field ranges, it yields

∣∣V ′∣∣ ≥ 2√
(d− 1)(d− 2)

V . (2.6)

This condition becomes trivial at large d.
In addition, it has been conjectured in [8] that the factor 1√

(d−1)(d−2)
that appears

in (2.6) is a lower bound for the mass decay rate that appears in the swampland dis-
tance conjecture (SDC). More precisely, the swampland distance conjecture states that
at large distances in field space, one expects towers of states that become light according
to m ∼ e−αφ, with φ the field that undergoes a large displacement and α an unspecified,
order one number. The claim in [8] is that

α ≥ 1√
(d− 1)(d− 2)

. (2.7)

Although this bound has been conjectured based on compactifications of 10D supergrav-
ities, we can consider extending it to arbitrary dimensions. For instance, it holds for the
tower of KK modes in the simple compactifications that we discuss later. At large d, it
becomes unpredictive.

2.3 The WGC at large D

The weak gravity conjecture (WGC) can be expressed in arbitrary dimensions for arbitrary
p-form gauge fields (with gauge coupling e) by reversing the extremality bound of charged

2We could also think of a tower of states of masses lying between m and Nm = Λsp. Then, the conditions
become EBH & Nm, MBH > N2m and the species bound is unchanged.
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black branes [9, 10]. The claim is that there should be a state of tension T and quantized
charge Q such that

p(d− p− 2)
d− 2 T 2 ≤ e2Q2Md−2

P . (2.8)

Whatever p is, this bound never becomes empty at large d. For a 1-form field, it yields
the usual

m . eQM
d−2

2
P . (2.9)

The strongest bound comes when considering a d
2 -form field:

T .
eQ√
d
M

d−2
2

P . (2.10)

When the charged brane is wrapped on the d
2 dimensions, it yields a particle which verifies

m .
eQ√
d
M

d
2−2

2
P , (2.11)

which verifies again the WGC (note that it looks different than (2.9), due to the radion
couplings in the compactified theory [10]). Thus, the WGC is a first example of a conjecture
that does not seem to weaken at large d, and that can even become very stringent. However,
unlike the previous conjectures, there are unfixed parameters in formulae like (2.11), namely
the charge and gauge coupling, so that it is unclear what the dependence with d of the mass
really is. For instance, the original version of the conjecture does not exclude a state whose
charge scales with

√
d. Perturbative unitarity arguments may question the interpretation

of that state as a particle, however it has been argued that the WGC state could be a BH,
which can have a very large charge.

3 A large-D distance conjecture

We just saw that swampland conjectures having an unambiguous d-scaling seem to weaken
at large number of dimensions. The interpretation of this fact is unclear, although we
argued that it could be used to motivate an extension of the current set of swampland
conjectures, or simply to reject the large-D limit altogether in specific contexts. In order
to gather more information in this direction, we focus on the swampland distance conjecture
and then also on the AdS distance conjecture at large number of dimensions.

The swampland distance conjecture (SDC) [2] states that at large distances ∆ in the
field space of a d-dimensional (effective) quantum gravity theory there must be an infinite
tower of states with mass scale m such that

SDC : m = MPe
−∆ . (3.1)

We assume that the spectrum of the tower is equidistant, which means that the number of
states N in the tower below the Planck mass is given as

N = MP
m

= e∆ . (3.2)
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As shown before in eq. (2.5) for large number of dimensions, N agrees with the number of
states below the species scale.

The SDC predicts that EFTs which describe the bulk of moduli space break down at
its boundaries. This manifests itself by the appearance of towers of states whose masses
are connected to large field displacements. In quantum gravity or in string theory, the
underlying reason why this happens is that objects revealing the higher-dimensional nature
of the theory, or its stringy nature, become part of the low-energy modes, as happens for
instance in a decompactification limit or a tensionless limit [11].

Decompactification in string theory must be understood in a broader sense than the
usual field theory one. Indeed, while a large volume limit is well described in the field
theory limit of string theory (which already captures the presence of KK modes necessary
to “build” the compact geometry), a small volume limit often displays the stringy nature
of the theory. Indeed, winding modes become light and take over the KK modes, which
become heavy, to reconstruct a (T-)dual geometry.

Therefore, concerning the emergence of winding modes we would like to insist on the
following: we could have either noticed that the small volume limit corresponds to a large
distance in field space in the EFT and used the SDC, or we could have simply remarked that
the KK modes become heavy, which weakens our geometric picture. Then, we would have
anticipated that there is a dual formulation where a geometrical picture emerges again,
or that the small volume limit is not consistent in the first place. Indeed, an immediate
consequence of the SDC is that, if there happens to be an infinite distance limit in field
space without a corresponding tower of light states satisfying (3.1), then it cannot be
possible to approach this infinite distance point.

Therefore, let us reverse the logic of the SDC and define, for a given tower of states
|i〉, the quantity ∆i (the “distance”) as the negative logarithm of its typical mass scale mi,
i.e. ∆i ∼ − logmi. Following (3.1) we normalize ∆i such that mi = MP for ∆i = 0.
At some infinite distance point in field space, ∆i agrees with the distance computed
from the σ-model metric. Analogously, if there is a dual tower of states |̃ı〉 we define
the dual distance ∆̃i ∼ − log m̃i. Following our definition, ∆i and ∆̃i are not the same
(even though typically closely related). This is consistent with the SDC as the two tow-
ers become light at different points in moduli space. For example, for string theory on a
circle with |i〉 and |̃ı〉 given by Kaluza-Klein and winding modes we have ∆i ∼ logR and
∆̃i ∼ − logR. Similarly for compactification on a 2-torus, |i〉 and |̃ı〉 given by two different
Kaluza-Klein modes, and ∆i ∼ log(Im τ) and ∆̃i ∼ − log(Im τ), where τ is the complex
structure modulus of T 2.

On the basis of the SDC and following these observations, we now demand that, for a
particular tower |i〉, an “infinite distance” limit ∆i → −∞ is obstructed, i.e. not allowed,
unless there is a dual tower |̃ı〉, which becomes light in this limit. It would be tempting to
dub this requirement the Negative Distance Conjecture (NDC). Note that in general there
is not necessarily a simple relation between ∆i and the geometric distance in scalar field
space, so we might not directly be able to use the SDC to infer anything about the limit
∆i → −∞.
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In the case of KK modes, the limit ∆KK(φ) → −∞ implies φ → −∞ and the SDC
says that there must be a second tower of states or φ → −∞ cannot be possible. With
the NDC we extrapolate from the KK modes behaviour a general pattern assumed to be
true for any tower of states. A further example of the NDC in string theory arises when
considering string states, which provide the expected tower of states in the limit of weak
string coupling, gs → 0. Indeed, the string scale reads

M2
s = (gs)1/2M2

p −−−→
gs→0

0 . (3.3)

The NDC is then a statement about the opposite, gs → ∞ limit. Naively, this strong
coupling limit is not controllable, however string dualities allow to probe this limit, where
a new tower of light states arises, provided e.g. by D0-branes for the type IIA string, by
D1-strings for the type IIB string or by heterotic NS5-branes, when they are wrapped
around a five-torus in a T 6 compactification to four space-time dimensions. Actually, it
has been argued [11] that those two cases of KK modes and string states may be everything
there is at infinite distance limits, as long as a suitable duality frame is chosen to analyse
the limit. This behaviour has been observed in Kähler moduli spaces of Calabi-Yau com-
pactifications of M-theory and type IIA strings, and conjectured to be generic. If the latter
holds, the NDC in string theory would be connected to the statement that we control the
physics of the decoupling of KK modes or of string states using dualities. The decoupling
could also simply be forbidden for consistency (for instance, due to flux quantization, as
discussed below), in which case the limit is obstructed and there is no need to look for a
light tower of states in the theory. These two possibilities motivate the NDC.

Let us now go back to our discussion of large-D EFTs. In general, the quantity ∆ that
determines the mass scale of the tower in (3.1) is a field dependent quantity, ∆ = ∆(φ),
where φ denotes the scalar fields in the EFT. Typically they correspond to geometric
length parameters like the size of a compact space. However, the mass scale of the tower
can also depend on the number of space-time dimensions in a non-trivial way. As we will
extensively discuss later, this is the case for the KK spectrum. Therefore, we introduce in
addition to φ the space-time dimension D as a new swampland variable that determines
the spectrum and the validity regime of the EFT.

In particular, we focus our discussion on the dependence of the masses of known towers
of states on the dimension of space-time. Said differently, we study the distance ∆ as a
function of the number D of space-time dimensions, i.e. ∆ = ∆(φ,D). As a consequence,
infinite distances have to be extended to incorporate the D-direction. In particular, even
for single field models, there are now different ways to go to infinite distance, since D can
be taken to be fixed or to vary. The usual towers of states, such as KK modes, may not
have the expected behavior once D varies, even when the distance restricted to the field
space of φ becomes infinite.

What does this extension of the parameter space lead to? We do not have a dynamical
theory of D, i.e. there is no kinetic term for D in an EFT, and we cannot use the SDC in
the standard way. But on the basis of the previous discussion, namely utilizing the NDC,
we are now ready to propose the following Large Dimension Conjecture (LDC):
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If there is a tower of states |i〉, the corresponding “distance” ∆i(φ,D) must be
a positive function of the EFT fields φ and the dimension D,

LDC : ∆i(φ,D) ≥ 0 , (3.4)

unless there is a dual tower of states |̃ı〉 such that the dual distance ∆̃i(φ,D)
becomes positive when ∆i(φ,D) changes its sign and takes negative values.

In general, the LDC is providing a slicing of the higher-dimensional moduli space into
co-dimension one sheets. In simple cases one is dealing with a two-parameter space of
backgrounds, the number D of space-time dimensions and one geometric size parameter of
the background, denoted by φ ∼ logR. In this case we can give a simple interpretation of
the LDC: the geometric interpretation of space-time breaks down when ∆KK(R,D)→ −∞.
Therefore, we conclude that something must happen in this limit. Either we expect a dual
geometry with a dual tower of winding modes to emerge or the limit is not consistent.

In the two parameter case we can look for one-dimensional directions of constant ∆.
These lines will separate the parameter space into a region in which the tower mass scale
is smaller than one, i.e. positive ∆, and another region in which the tower mass scale is
larger than one and ∆ is negative. Forbidding this region then provides a possible bound
on a combination of D and R.

More precisely, for fixed D, the LDC provides a D-dependent bound on R, which in
general is stronger than just requiring R > 1. But in the context of large-D gravity, we
also like to treat D as a free variable and then the LDC provides, for fixed R, a bound on
the number of space-time dimensions, namely a critical dimension D0. In fact, treating D
as a distance variable and keeping R fixed, ∆(D) should measure (a part of) the distance
between backgrounds of different dimension.3 As we will see for the KK tower or for black
holes the LDC means that D0 is determined by the special dimension in which the space-
time volume becomes basically smaller than one in Planck units, which should not happen
in quantum gravity, unless there is a dual description of the theory.

Let us see what the LDC means for the canonical volume modulus of compactification
spaces with a large number of dimensions. We consider a D-dimensional space-time, which
splits into a non-compact space Md and a compact space Kd′ of dimensions d and d′

respectively, like for AdSd × Sd
′ , so that D = d + d′. The ansatz for the D-dimensional

metric reads
ds2

D = e2βϕds2
Md

+ e2φds2
Kd′

, (3.5)

where we split the volume modulus φ(xµ) = φ0 + ϕ(xµ) into a constant piece φ0 and its
dynamical part ϕ which depends only on the coordinates xµ of the “external” space, but

3One could try to derive ∆(D) as the distance between space-time backgrounds using the geometric

distance formula ∆ ∼
∫ ( 1

VM

∫
M

√
g tr
[(
g−1 ∂g

∂τ

)2
]) 1

2
dτ , where VM denotes the volume of space-time. The

parameter τ is given by the number of space-time dimensions D, i.e. one should compute the distance for
metric variations with respect to D. Alternatively, as in [12], one can also try to set up geometric flow
equations, like the Ricci flow, where one considers the flow of the background with respect to D. This will
be discussed elsewhere [13].
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not on the coordinates ym of the “internal” Kd′ . In addition, we normalize its background
value φ0 and the volume of Kd′ according to

Vd′ ≡
(
M

(D)
P

)d′ ∫
Kd′

dd
′
y

√
det
(
e2φ0gKd′

)
= ed

′φ0 . (3.6)

Consequently, Vd′ is dimensionless and measured in units of the D-dimensional Planck
mass.

After reduction of the D-dimensional Einstein-Hilbert term, we reach the lower-dimen-
sional Einstein frame by fixing

β = − d′

d− 2 . (3.7)

The relevant terms in the d-dimensional effective action look like

L =
(
M

(d)
P
)d−2

2

∫
ddx

√
−gMd

[
Rd −

d′(D − 2)
d− 2 |∂φ|2

]
. (3.8)

The lower dimensional Planck mass is related to the higher dimensional Planck as

M
(d)
P = M

(D)
P V

1
d−2
d′ . (3.9)

Let us finally introduce the canonically normalized field

Φ =

√
d′(D − 2)
d− 2 φ =

√
D − 2
d′(d− 2) logVd′ . (3.10)

According to the infinite distance conjecture, the normalized field Φ is related to a
tower of states with masses m given by

m ∼M (d)
P e−α(d,d′)|Φ| , (3.11)

Here α(d, d′) is a dimension dependent constant, which we will determine in the following.
For the infinite distance point Φ → ∞ the relevant mass scale m is just given in terms of
the KK mass scale,

mKK ≈ V
− 1
d′

d′ M
(D)
P ≈M (d)

P V
− D−2
d′(d−2)

d′ = M
(d)
P exp

[
−
√

D − 2
d′(d− 2)Φ

]
. (3.12)

It follows that the constant α(d, d′) is given by

α(d, d′) =
√

D − 2
d′(d− 2) . (3.13)

Consistently with the infinite distance conjecture, the KK tower becomes light in the limit
of large Φ. Given our definition of Φ, this limit can be reached in the usual way, namely as
a large-Φ limit. On the other hand we point out that, for fixed Φ, the KK masses approach
M

(d)
P at d, d′ →∞.
In any case, using our definition (3.1), the distance ∆ and Φ are related as ∆ = αΦ,

and the LDC requires that ∆(d, d′) > 0, i.e. mKK < M
(d)
P , which means

Φ > 0 , (3.14)

unless one identifies a dual tower of states that becomes light in the limit under
consideration.
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4 The LDC for AdS at large D

4.1 The AdS distance conjecture and KK spectrum in arbitrary number of
dimensions

Now let us briefly recall the anti-De Sitter distance conjecture (ADC) [14], which is obtained
by comparing AdS spaces with different cosmological constants Λ, i.e. varying the metric
with respect to Λ. The ADC is a bit different from the SDC in the sense that it deals
with the distance between not continuously connected backgrounds, which implies that the
scalar fields are not anymore massless scalars but possess a potential. Different discrete
vacua are labeled by different values of the cosmological constant or the AdS radius, which
are related to different, discrete flux quantum numbers.

Then ADC states that the limit of a small AdS cosmological constant, Λ → 0, is at
infinite distance in the space of AdS metrics, and that it is related to an infinite tower of
states with typical masses that behave as

ADC: mAdS ∼ |Λ|a , (4.1)

with a = O(1). The strong version of the ADC proposes that for supersymmetric back-
grounds a = 1/2. The corresponding distance is given in terms of the logarithm of Λ,

∆AdS = −a log |Λ| . (4.2)

Via (3.1), the distance ∆AdS immediately leads to the tower behaviour (4.1); as long as a
is positive, the distance ∆AdS is positive in the limit of small Λ and the mass scale mAdS is
decreasing in this limit. So in the limit of vanishing cosmological constant, i.e. large AdS
radius, AdS quantum gravity as an effective field theory can only co-exist together with an
infinite tower of additional massless states. This implies that pure AdS quantum gravity is
in the swampland. The tower of states is typically provided by the KK modes of an extra
compact d′-dimensional space, e.g. with backgrounds of the form AdSd× Sd

′ . For the case
of the strong ADC with a = 1/2 it follows that there is no scale separation between the
mass scales of AdSd and Sd′ .

In the following we will consider AdS spaces in arbitrary dimensions d:

ds2 = R2
A

(
− (cosh ρ)2 dt2 + dρ2 + (sinh ρ)2 dΩ2

d−2

)
. (4.3)

Here RA is the AdS radius which is related to the cosmological constant ΛAdSd as

ΛAdSd = −(d− 1)(d− 2)
2R2

A

. (4.4)

Since, according to the ADC, AdSd alone is not a viable background, we consider a
background space of the form

MD = AdSd × Sd
′ with d+ d′ = D. (4.5)

Recall that the Ricci scalars of AdSd and of the compact d′-dimensional sphere Sd′ of radius
RS are given by

RA = −d(d− 1)
R2
A

, RS = d′(d′ − 1)
R2
S

. (4.6)
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This background is obtained from the so-called Freund-Rubin compactifications from D di-
mensions, which is a solution of the D-dimensional Einstein equations without a cosmolog-
ical constant by turning on a non-vanishing d-form gauge field strength in the AdS-space:4

Fµ1...µd = εµ1...µd
√
−gA

f , (4.7)

such that the Ricci scalars are given by

RA = −d(d′ − 1)
D − 2 f2 , RS = d′(d− 1)

D − 2 f2 , (4.8)

in units of M (D)
P , the D-dimensional Planck mass. These expressions correlate the radii of

the two factors:
(d− 1)RS = (d′ − 1)RA . (4.9)

In the next step we can compute the spectrum of KK states in the effective AdSd
theory which originate from the compactification on Sd′ . This spectrum obeys the following
equation (note that from now on, we measure the radii in units of D-dimensional Planck
mass M (D)

P )

m2
l,KK =

(
M

(D)
P

)2 l(l + d′ − 1)
R2
S

, (4.10)

where the integer l labels the KK momentum. Comparing this with the AdS cosmological
constant Λ, the associated KK mass scale (l = 1) is then given by

m2
KK = −2 (d− 1)d′

(d− 2)(d′ − 1)2 ΛAdSd , (4.11)

so we see that α = 1/2 and the strong ADC still holds in arbitrary number of dimensions.

4.2 The large D behaviour

With the LDC, one can now ask what happens when the dimension d of AdS or/and d′ of
S is varied and gets large. As we will see, certain limits for d, d′ lead to violations of the
LDC if we assume that the tower predicted by the ADC is again the tower of KK modes
of a Freund-Rubin compactification. From that, we conjecture either a bound relating the
dimension of spacetime and geometrical quantities such as radii, or we predict the presence
of a dual tower that should become light in the same limit.

A relevant quantity for the following discussion is the volume of the d′-dimensional
unit sphere, given by

Ωd′ = 2π(d′+1)/2

Γ
(
d′+1

2
) . (4.12)

4By Hodge duality, it can equally lie on the Sd
′
factor, and read

Fµ1...µd′ = εµ1...µd′

√
gS

f .
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For large d′ this behaves as

Ωd′ ∼
√

2e
(√

2πe
d′

)d′
→ 0 , (4.13)

and it therefore becomes increasingly small for large d′, i.e. Ω1/d′
d′ → 1√

d′
for d′ → ∞. In

fact, the area of the unit sphere becomes of order one for

d′ ∼ 2πe ∼ 17 . (4.14)

Including also the radial dependence, the volume of the d′-dimensional sphere of radius RS
for large d′ is given by Vd′ = Rd

′
S Ωd′ . As we will see, non-trivial constraints from the LDC

arise due to the decreasing volume of the sphere in the limit d′ →∞.

4.2.1 Small number of internal dimensions

Let us first consider the case where the number of dimensions d′ of the sphere is fixed5 and
where we take only d ∼ D →∞. The d-dimensional Planck mass reads

M
(d)
P = M

(D)
P Vd′

1
d−2 ∼M (D)

P . (4.15)

Consequently, the KK masses are given by their expression in units of M (D)
P , given in

eq. (4.11),
m2

KK ∼ −
2

(d′ − 1)ΛAdSd ∼ −ΛAdSd . (4.16)

The corresponding AdS distance is therefore

∆AdS = −1
2 log Λ . (4.17)

In terms of RS these relations look like

m2
KK ∼

(
M

(D)
P

)2 1
R2
S

, ∆AdS = logRS . (4.18)

We see that mKK and ∆AdS do not depend on the number of space-time dimensions.
Actually this is the same situation as for the KK spectrum arising from the compactification
on a single circle.

5As a side remark, it is also interesting to consider the case where the AdS background is fully fixed,
namely the case of fixed d, fixed cosmological constant ΛAdSd (or AdS radius RA) and fixed d-dimensional
Planck mass. We then take the large D, i.e. large d′, limit (that implies that the D-dimensional Planck
mass vanishes asymptotically). In this limit, it is easy to see that the KK mass scales as

m2
KK ∼

ΛAdSd

D
.

Thus, a tower of states enters the AdS EFT simply because we considered the large D limit. This is due
to the fact that the canonical Φ in (3.10) has to vary for the AdS background to remain fixed, and this
behaviour is captured by the SDC. In this limit, the KK modes are light and the LDC does not bring
new information.
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On the other hand, in terms of RA, the analogous relations look like

m2
KK ∼

(
M

(D)
P

)2 D2

R2
A

, ∆AdS = log
(
RA
D

)
. (4.19)

Therefore the KK mass scale becomes heavier than the Planck mass for D > RA. Us-
ing (4.9), the latter condition is equivalent to RS < 1, consistently with (4.18).

4.2.2 Large number of internal dimensions

Next let us assume that the radii of the two subspaces are of the same order, i.e.
RS = RA = R. It then follows that also the respective numbers of dimensions must be
the same: d = d′ = D/2. It also follows that in terms of the flux number f we have that
R ' Df2. In the limit of large dimensions, using eq. (4.11), the KK mass scale behaves as

m2
KK ∼

|ΛAdSd |
D

. (4.20)

Instead of expressing the KK scale in terms of ΛAdSd , we can also express it in terms of
the radius R:

m2
KK ∼

(
M

(D)
P

)2 ( 1
Vd′

)2/d′

∼
(
M

(D)
P

)2 D

R2 , (4.21)

In this relation mKK is measured in units of the higher dimensional Planck mass M (D)
P . In

our case, the Planck mass in the effective AdS-theory behaves as

M
(d)
P ∼M (D)

P

(
R√
D

)
. (4.22)

Therefore in terms of M (d)
P , the KK masses become

m2
KK ∼

(
M

(d)
P

)2 ( D
R2

)2
, (4.23)

where R is measured in units of M (D)
P . Comparing with the D/2-dimensional effective

action, the normalized field Φ depends on R and D as

Φ(R,D) '
√
D log

(
R√
D

)
, (4.24)

and becomes therefore negative for D > R2.
So we see that, at fixed radius, all KK masses become super Planckian above a certain

critical dimension. The corresponding AdS distance is given as

∆AdS = 2 log
(
R√
D

)
, (4.25)

and it is positive for D only smaller than a certain critical dimension D0, namely

D ≤ D0 = R2 , (4.26)
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where all KK tower starts below the Planck scale. This condition is nothing but the
application of (3.14) to the case of AdSD/2 × SD/2. It gives us a non-trivial constraint on
R and D because the volume of the sphere has a non-trivial dimension dependence.

On the other hand, if this condition is violated, all KK masses are super Planckian
and then the notion of space-time is in general lost. Actually the KK modes are part
of the space-time geometry — they build geometry — and certain KK towers must start
below the Planck mass, if one wants to have a geometrical interpretation of space-time.
Therefore, a KK tower that starts above the Planck mass appears pathological in quantum
gravity and one can conjecture that this regime of the parameter space is in the swampland
(unless there is a dual tower). This observation is the reasoning for the LDC, which leads
to the upper bound (4.26) on D for AdSd × Sd

′ geometries.
However note that for AdS space-times of radius R (see (4.3) for the metric) many of

the curvature invariants do not vanish, for instance:

RµνσρRµνσρ = 2D(D − 1)
R4 , RµνRµν = D(D − 1)2

R4 ,

R2 = D2(D − 1)2

R4 .

(4.27)

So demanding that the curvature stays less than the Planck mass, i.e. R2 . M4
P, im-

plies R & D.
In summary, for the case with both AdSd and Sd′ having large dimensions there are

three regions,6 when comparing R and D:

A: D < R: small curvature, light KK tower and good notion of space-time geometry.

B: R < D < R2: large curvature but still good notion of space-time geometry, i.e. the
KK tower is still below the Planck mass.

C: R2 < D: large curvature and no notion of space-time geometry, as the KK tower is
above the Planck mass.

Given that the LDC only brings something non-trivial in regimes of large curvature,
we cannot exclude that our bounds are too naive and are affected by strong gravitational
corrections. It would be interesting to investigate the constraints imposed by the LDC in
geometries where the curvature is controllable, to firmly establish the bounds on R and D,
the typical size of the geometry and its dimension [13].

We would like to conclude with a remark about IIB string theory on AdS5 × S5 or
M-theory on AdS4 × S7 or AdS7 × S4 backgrounds. There are no winding modes on
the sphere, however there exists the classical limit of small sphere radius where the KK
modes decouple. There, ∆KK < 0 without any dual tower, which is excluded by the LDC,

6For the case with only AdSd having a large dimension, but the sphere having a finite dimension there
are two regimes:
D < R: small curvature and good notion of space-time geometry.
R < D: large curvature and no good notion of space-time geometry, the KK tower is above the

Planck scale.
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and indeed flux quantization on the sphere forbids that we take the small radius limit or
the large dimension limit, respectively. The flux quantization condition emerges from the
existence of objects with Planck-scale charge, namely D3, M2 orM5 branes. Equivalently,
these backgrounds can also be obtained as the near-horizon geometry of these branes, whose
number cannot be smaller than one. It is thus conceivable that the LDC is connected to the
existence of such objects in large D, as also required by the completeness conjecture [15].

5 The black hole entropy distance at large D

As it was recently shown in [16], the limit of large entropy, S → ∞, is at infinite distance
in the space of black hole metrics. Therefore, similarly to the ADC, it was argued [16] that
there exists a black hole entropy distance conjecture (BHEDC) such that

∆bh = α logS , (5.1)

stating that the large entropy limit of black holes is also followed by a tower of light modes:

mbh ∼
1
Sα

. (5.2)

A possible interpretation of this tower of states is closely related to the black hole
micro states.

One can then study the implications of the LDC when applied to the distance in
eq. (5.1). Imposing that the latter remains positive means that the black hole entropy
should be larger than one, i.e. the black hole has at least a few micro states. The LDC
is therefore now based on the argument that black holes with entropy smaller than one
are not consistent objects in quantum gravity. Its application yields constraints on the
characteristic quantities of the BH, such as the horizon radius for a Schwarzschild BH, as
we now discuss.

For black holes at large space-time dimensions we can use the result for the black hole
entropy at large D, which is given by the following expression [4]:

S ∼
(
Rh√
D

)D−2
. (5.3)

Here Rh (in Planck units) plays the role of the radius of the black hole horizon. For D →∞
the entropy becomes very small. Note that the 1/

√
D in the denominator again originates

from the area of the unit sphere in large dimensions in the same way as for the KK mass
scale in the previous section. Plugging the large-D entropy in the distance ∆bh we obtain

∆bh = α logS = α(D − 2) log
(
Rh√
D

)
. (5.4)

We see that the black hole distance has the property that it is only positive in a finite
interval of D,

∆(D)bh ≥ 0 for 2 ≤ D ≤ R2
h , (5.5)
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with a maximum of the distance somewhere between D = 2 and D = R2
h. Therefore the

LDC again implies the existence of the following critical dimension:

D0 ∼ R2
h , (5.6)

above which the distance becomes negative, the tower mass in eq. (5.2) becomes super-
Planckian (equivalently, the entropy becomes smaller than one) and the effective description
of the BH breaks down. Equivalently, only EFTs in a dimension smaller than the critical
dimension can consistently accommodate BHs of the associated size. Note that the case
D = 2 is special: the distance is zero and the black hole tower contains only one state
below the Planck mass.

6 Discussion

In this paper we have considered some swampland aspects for gravity theory in an arbitrary
number and in particular in a large number of space-time dimensions. The discussion was
mainly focussed on the large distance conjecture with KK modes, whose masses exhibit a
non-trivial dependence on the number of space-time dimensions. In addition we also looked
at the black hole distance at large D. Based on these results we formulated a new large-D
conjecture stating that certain distance functionals of the swampland distance conjecture
must be positive as a function of the number of space-time dimensions. The string theory
examples we studied clearly support the LDC, but due to the existence of the critical
dimension it is hard to fully test the LDC via string theory. The aim of the paper green
is to discuss the LDC in the general context of (quantum) gravity. However, because of
the absence of well understood quantum gravity theories in the large dimension limit, it
is evidently difficult to explicitly test it there. Nevertheless, it would also be important
to compare the behavior of other string theoretic towers of states with the predictions
of the LDC. Interestingly, recent arguments which describe all infinite distance limits as
either a decompactification or a weakly coupled string limit would imply that the LDC in
string theory is connected to the statement that small volumes and strong couplings are
understood using dualities.

Applying the LDC to AdS spaces and to black hole geometries leads to an upper critical
dimensions from the requirement that the volume of the compact space must be larger than
one or, in the context of black holes, that the black hole entropy should be larger than
one at large D. On the other hand, for fixed number of space-time dimensions, the LDC
excludes regions of the geometric moduli space, i.e. the quantum moduli space is ending at
some boundary. For AdSd×Sd

′ backgrounds — assuming that a consistent quantum theory
contains form fields of suitable degree — one expects that such a boundary comes from a
flux quantization condition, which bounds the radius of the sphere and hence excludes a
decoupling KK scale. In the string theory examples we analyzed, flux quantization indeed
forbids to take a limit of small sphere volume and is the reason behind the LDC. Moreover,
since D is a discrete number, the existence of a critical dimension would strictly spoken
also require that the AdS sizes and the black hole entropies that saturate the LDC bound
are also quantized. In fact the possibility of discrete and quantized black hole entropies
was considered in the context of quantum black holes in [17, 18].
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As we have seen from the masses of the KK modes the critical dimension depends on the
size of the compact space, e.g. D0 = R2 in the case of large dimensions for the internal and
AdS spaces. In particular, for large AdS spaces (or black holes), i.e. R� 1 (or Rh � 1), the
critical dimension D0 is very large. Let us emphasize that the critical dimension associated
to a given background scale, D0(R(h)), assumes the existence and consistency of such a
background in the theory. As such, the bound could also be understood as a definition of
a critical background scale given the spacetime dimension, R0(D), provided the latter is
consistent with quantum gravity. Below the critical scale, such a background would not be
consistently described by the quantum gravity EFT. In this paper, motivated by the string
critical dimension, we considered the consequences of assuming the former possibility. In
that respect, one could ask: what about the possible existence of a critical dimension
which is independent of the length scale R? One could obtain such a critical dimension if
one assumes (or motivates independently of the LDC) that backgrounds of a certain size
should exist. More precisely, if backgrounds are expected to exist with a size Rh(λ), itself
linked to the fundamental parameters λ of the gravity theory, they imply the existence of
a critical dimension D0(Rh(λ)). Without a precise gravity theory or a quantum picture of
the backgrounds in arbitrary dimensions, we cannot identify Rh(λ), but, for the sake of
illustration, we can use the Planck length as a proxy. Namely, let us consider imposing
the strong requirement that all possible backgrounds such as all possible AdS spaces or all
possible black holes exist in the theory and satisfy the LDC. Clearly, the strongest bound
arises for Planck size compact spaces R ∼ O(1) or Planck size black holes Rh ∼ O(1). Then
one gets an absolute bound on D0 of the order O(1) (see eqs. (4.14) and (5.6)). Let us
however stress that this example of Planck-size BHs or AdS spaces is illustrative but by no
means necessary; indeed it is perfectly possible that the minimal Rh(λ) is much larger than
lP , for instance it could be associated to a sub-Planckian, possibly D-dependent, quantum
gravity cutoff. Another speculative way to obtain a critical dimension is via the exact
formula of volume of the unit sphere SD/2 in eq. (4.12): ΩD/2 is an increasing function
with D for small D and then decreases for large D with a maximum volume at D/2 = 6.
So the AdS5 × S5 background with D/2 = 5 in superstring theory is tantalizingly close to
the unit sphere of maximal volume.

We also like to recall that for the case of the curved AdSd × Sd
′ backgrounds the KK

masses in AdS space start to become heavier than the Planck mass in the regime where the
space-time curvature is already large. One might therefore wonder if our “naive” estimates
for the KK masses are still valid, or if there are non-negligible gravitational contributions
to the KK masses that keep them always below the Planck mass. On the other hand for the
flat background, there are no curvature corrections and hence the KK spectrum at large
dimensions would be under control. So it would be very interesting to see how the large D
spectrum for other backgrounds depends on the number of space-time dimensions, like for
tori or Ricci flat spaces at high number of dimensions, or also for other high-dimensional
spaces with non-vanishing torsion classes [13].

Finally, how the LDC is precisely related to the critical dimension in string theory
is not obvious at the moment. One possible way to relate the swampland bounds on the
number of space-time dimensions to the critical dimension in string theory might be via
recent arguments about entropy bounds and the unitarity of scattering amplitudes [19].
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