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1 Introduction

The nature of dark matter (DM) is a frontier in the modern cosmology. There have been

plenty of astronomical and cosmological evidences for DM, such as the galaxy rotation

curve, virial velocities of galaxy clusters, gravitational lensing, bullet clusters, supernovae,

cosmic microwave background, existence of galaxies in lifetime of the universe and existence

of galaxies on scale of milky way.

The production mechanism of the dark matter is not known so far. It can be produced

during inflation or subsequent cosmological evolutions. If the dark matter is produced

during inflation, it is hopeful to use inflation as an avenue to probe the nature of the

dark matter. There are multiple possible mechanisms. One of them is that gravitational

production [1] during inflation. Relevant models include Planckian Interacting Dark Matter

(PIDM) [2–6], WIMPZILLA [7, 8], SUPERWIMP [9], FIMP [10] and so on. They can

be scalar [11, 12], vector, fermion or spin-2 particles [13] from different types of beyond

standard model physics. Such dark matter candidates are usually hard to probe using

collider experiments due to the large mass and small coupling (the gravitationally produced

dark matter even do not have electroweak interactions with standard model particles).

It is thus interesting to study the dark matter properties, such as mass, width, spin, par-

ity and couplings from cosmology, using the method of cosmological collider physics [14–17],
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which has attracted much attention recently [18–68]. From the frequency of the oscillation

on the squeezed limit non-Gaussianity, one can directly obtain information about the mass

of extra fields during inflation. We investigated the search for the dark matter mass in the

context of cosmological collider physics in [53], targeting at the class known as superheavy

dark matter (SHDM) [69–74] with mass mσ ≥ H.1 Since the dark matter is produced

gravitationally, the signal is subject to a suppression of power (H/Mpl), which makes it

hardly observable in the near future experiments.

In this paper, we would like to investigate scenarios with signals within the reach of the

near future experiments on primordial non-Gaussianities. These experiments include CMB-

S4 [78], Simons Observatory [79], DESI [80], EUCLID [81], SPHEREx [82] and LSST [83],

which will be sensitive to a local fNL ofO(1). A proposed 21-cm survey can further push the

limit of fNL to O(10−2−10−4) for various shapes including those of interest in cosmological

collider physics [33]. The idea utilizes the curvaton scenario [84–86], where more than one

light field is present during inflation. The curvatons are subdominant in the energy density

during inflation. In the subsequent evolutions, they are the main source of the primordial

curvature perturbations. The dark matter field, on the other hand, is another type of field

which has mass mσ ≥ H. As we will see, this scenario can give larger non-Gaussianities

(NG’s) on the primordial curvature perturbations. Such possibility of large NG from the

curvaton scenario has also been studied in [65, 87]. Another possibility to imprint the dark

matter information through a light field is modulated production of dark matter, where

the dark matter mass, and thus the production rate, is modulated by a light scalar. This

is related to the mechanism of modulated reheating [88, 89].

This paper is organized as follows: in section 2, we setup the model which consists of

an inflaton, a massive scalar field and a light field. In section 3, we discuss the production

of dark matter during inflation. In section 4, we calculate the primordial three-point and

four-point correlation functions of the light field. In section 5 and section 6, we discuss

the post-inflationary evolutions of the light field and their observational constraints. More

specifically, section 5 devotes to the case where the power spectrum is mostly generated

by χ. Section 6 devotes to the case where the power spectrum is mostly generated by the

inflaton field. We give a brief summary in the end in section 7.

2 Model

We consider a cosmology model with an inflaton φ, a heavy field σ with mass mσ & Hinf ,

and a light field χ with mass mχ � mφ with an action

S = −
∫
d4x
√
−g
[

1

2
(∂µφ)2 +

1

2
m2
φφ

2 +
1

2
(∂µσ)2 +

1

2
m2
σσ

2 +
1

2
(∂µχ)2 + V (χ)

]
+ Sint .

Both the inflaton field φ and the curvaton χ are light and have rolling background. The

heavy field σ does not have a VEV. Also, the inflaton does not couple to either the heavy

field σ or the light field χ while all fields couples to gravity minimally for simplicity. We

can decompose the light field χ into a time-dependent background and perturbations as

1Note that the mass of the superheavy particles can also be lighter than Hubble [75–77].
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χ(t,x) = χ̄(t)+δχ(t,x). We further assume that the background of light field varies slowly

during inflation, such that it approximates to a constant during inflation. Aside from these

requirements, the form of χ potential V (χ) is left free as long as ρχ becomes insignificant

compared to other components in the late time universe.

We discuss two possibilities for the interaction term Sint, namely direct coupling and

derivative coupling. In the case of direct coupling,

Sint = −
∫
d4x
√
−g
[

1

4
λσ2χ̄2 +

1

2
λχ̄σ2δχ+

1

4
λσ2δχ2

]
. (2.1)

the first term and the third term contribute to the effective mass of the heavy field σ, the

second term and third term are interaction terms between the heavy field and χ.

m2
σeff = m2

σ +
1

2
λχ̄2 +

1

2
λ〈δχ2〉 , (2.2)

where 〈δχ2〉 is the expectation value of the long (super-Hubble) wavelength fluctuations

which have become classical. The expectation value can be considered as a spatial average

at the end of inflation. This term is smaller than its classical counterpart χ̄2. Thus we will

neglect this fluctuation term in the later discussion.

On the other hand, it is also well motivated to adopt the derivative σ − χ coupling of

the form 1
4λ2σ

2(∂µχ)2. This is a common consequence of an effective theory where χ has

an approximate shift symmetry [87] and the couplings follow the form (∂χ)2σ2/Λ2.2 The

relevant interaction now goes

S′int = −
∫
d4x
√
−g
[

1

4
λ2σ

2 ˙̄χ2 +
1

2
λ2 ˙̄χσ2δχ̇+

1

4
λ2σ

2(δχ̇)2 − 1

4
λ2a
−2σ2(∂iχ)2

]
. (2.3)

the first term and the third term contribute to the effective mass of the heavy field σ, the

second term and third term are interaction terms between the heavy field and χ.

m2
σeff = m2

σ +
1

2
λ2 ˙̄χ2 . (2.4)

We neglect derivative term of the fluctuations because the fluctuation is sub-leading com-

pared with background. For the χ field, the background χ̄ is governed by the following

equation of motion

¨̄χ+ 3H ˙̄χ+m2
χχ̄ = 0 , (2.5)

where m2
χ = V ′′(χ) and no further χ self-interactions are imposed. The relation holds for

the post inflation era as well. Admitting the χ equation of motion eq. (2.5) and imposing

χ̈ ∼ 0, we can get the χ change rate during the primordial era as:

˙̄χ = −
m2
χ

3H
χ̄ . (2.6)

2One may also consider the interaction with the form λ2σ
2χ̇2/Λ2, which is not Lorentz invariant. Such

a term can arise from the interaction with inflationary background, i.e., (∂φ∂χ)2. The numerical results of

this case will be similar, as we will see later.
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The inflaton is the field that drives inflation. In the rest of this paper, we assume that

the change of energy density contributed from χ subdominates during inflation, i.e. χ is a

spectator field during inflation. In other words, the following constraint is satisfied3

ρ̇χinf � ρ̇φinf , (2.7)

where ρχinf and ρφinf denote the energy density of the light field χ and the inflaton φ during

inflation, respectively.

The observable of interest is the primordial three-point correlation or four-point corre-

lation of the primordial curvature perturbation ζ, defined by the following metric written

in the ζ gauge where there is no energy density fluctuation,

ds2 = −dt2 + a2(t)(1 + 2ζ)dxidxj . (2.8)

3 Superheavy DM gravitational production during inflation

From our model (2.1) it is obvious that the heavy field σ is protected by the Z2 symmetry

and only interacts with the χ field. As discussed before, without further interactions σ is

then a massive stable particle and interacting with other fields via the small coupling and

χ as the mediator, making itself a good DM candidate. For its gravitational production

during inflation, we will mostly follow the calculations in [53].

Note that we are interested in the case where the mediator field χ is a light field, i.e.,

m2
χ = V (χ)′′ � m2

φ. Therefore, during inflation the presence of the background χ(t, x)

field can be well approximated as a fixed χ̄ with the excursion of χ being small compared

to its average. The equation of motion for σ is

σ̈ + 3Hσ̇ − 1

a2
∇2σ +m2

σeffσ = 0 , (3.1)

where mσeff is given by (2.2). During the inflationary era, the field σ can be expressed in

the standard formalism (see also [90]):

σ =

∫
d3k

(2π)3
eik·xa−3/2[fkak + f∗ka

†
−k] , (3.2)

where ak and a†−k are the annihilation and creation operators that satisfy the commutation

relations [ak, ak′ ] = 0 and [ak, a
†
k′ ] = (2π)3δ(3)(k− k′). We then find

f̈k(t) + ω2
kfk(t) = 0, ω2

k =
k2

a2
+H2µ2 − 3

2
Ḣ, µ ≡

√
m2
σeff

H2
− 9

4
. (3.3)

During slow roll inflation, the scale factor is approximately a(t) = eHinf t = −1/(Hinfτ)

and ˙Hinf vanishes. Hence we refer Hinf as H in the following discussions. When inflation

ends, the scale factor starts to evolve in a non-accelerated way. There are two classes of

3Here we compare the time derivatives of ρ’s because the contribution of a scalar field to the curvature

perturbation goes as ζ = −Hδρ/ρ̇, which is directly related to ρ̇ instead of ρ.
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solutions to the massive field equation of motion, corresponding to “in” state and “out”

state [14, 91, 92]. Here the “in” state solution is fixed by choosing the Minkowski vacuum

at the starting point of our universe, whilst the “out” state solution is fixed by properly

choosing the positive frequency mode at late time.

f in
k (t) =

√
π

4H
e−πµ/2H

(1)
iµ (−kτ) , fout

k (t) =

(
2H

k

)iµΓ(1 + iµ)√
2Hµ

Jiµ(−kτ) , (3.4)

where H
(1)
ν (x) is the Hankel function of the first kind, and Jν(x) is the Bessel function.

The mode functions are related via a Bogoliubov transformation as

f in
k (t) = αkf

out
k (t) + βkf

out∗
k (t) . (3.5)

Inserting the explicit expressions for the “in” state mode function and “out” state mode

function, we obtain the following expressions for the Bogoliubov coefficients

βk =

(
2H

k

)iµ eπµ/2
√

2πµ

(1− e2πµ)Γ[1− iµ]
, αk = −eπµβ∗k , (3.6)

with the outgoing amplitude |βk|2 = 1/(e2πµ− 1). The comoving number density of σ DM

produced in the pure slow roll approximation then reads

Nσ =

∫ ∞
0

dk
1

2π2
k2|βk|2 , (3.7)

which gives the total number of particles from the past infinity to future infinity, as shown

below (see also [93]). Since particles are produced when |ω′k/ω2
k| takes its maximum and

thus τ ∼ −µ/k for each mode. The k integral is then rewritten as:∫ ∞
0

dk k2 = µ3

∫ 0

−∞
dτ

(
− 1

τ

)4

= µ3

∫ 0

−∞
dτ (aH)4 . (3.8)

The corresponding physical number density of particles at each moment can be evalu-

ated as:

nσ =
1

2π2a(τ)3
|βk|2µ3

∫ τ

−∞
dτ̃(aH)4 =

H3µ3

6π2(e2πµ − 1)
. (3.9)

which is constant in time. Assuming matter domination before reheating and radiation

domination afterwards, the current DM abundance can be expressed numerically [53, 73]:

Ωσh
2 ' 8π

3
ΩRh

2 mσnσ
M2

plH
2

(
TRH

T0

)
' 9.2× 106µ3e−2πµHmσTRH

M2
pl

(3.10)

in the unit of GeV. Here ΩR and T0 are the radiation energy fraction and temperature

today. To produce non-negligible DM comparable to the observed value ΩCDMh
2 ' 0.12,

from the form of (3.10) it is clear that the model disfavors large µ and low H or TRH.

In the above slow roll approximation the inflation actually never ends, however, the

DM density’s exponential dependence on µ and thus on λχ2 would be crucial for gener-

ating NG in the DM sector. To better estimate the σ relic density, we consider the case
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where inflation is smoothly connected to Minkowski spacetime. The particle production in

this scenario would approximate the particle production in more realistic scenarios where

inflation is connected to a stage of the universe with much lower Hubble scale (and thus

approximately Minkowski), for example, radiation-dominated universe with transition time

of order H−1. By introducing the Stokes line method to compute the particle production

beyond exponential precision, one obtains the relic density of σ today as

Ωσh
2 ' 2.0× 104µe−2πµHmσTRH

M2
pl

, (3.11)

which is also in the unit of GeV. The result is similar to (3.10) but with different numerical

prefactors and different powers of µ. For moderate µ, the dependence of nσ shall be

dominated by the exponent factor. There are other ways to create σ through gravity, such as

a sudden transition from the inflation phase to the radiation domination phase, which may

be the case for models such as brane inflation [94–98] or quintessential inflation [99]. The σ

number density in this case can be much larger than the smooth transition case. However,

the produced DM number density is proportional to H3 and hence shows little correlation

with χ̄. Without the µ and χ̄ dependence, ρσ fluctuation cannot carry information of χ

field. Even though, the sudden transition mechanism might be useful in the curvaton case,

which we will discuss in section 5.

Since the precise Ωσh
2 is dependent on models of reheating and requires numerical

evaluations much more complicated than the semi-analytical approaches we adopt here, it

is convenient to parameterize Ωσh
2 for later use:

Ωσh
2 = Aµαe−2πµHmσTRH

M2
pl

, (3.12)

where A is an constant between O(103−7) characterizing the DM production efficiency of

different models and α describes the remnant power dependence on µ.

In the above discussions we assume that σ particle number is fixed once it is produced

near the end of inflation era, one may concern if σ annihilates or produced during reheating

and radiation domination. This is indeed a good approximation as long as λ is small and

χ only interacts with other fields weakly. Starting from possible σ annihilation. For a

weakly interacting χ, the process 2σ → 2χ dominates the annihilation, with s-wave thermal

averaged 〈σv〉 ∼ λ2/m2
σ. For heavy DM like σ, when the radiation temperature T & mσ,

the physical number density nσ � neq
σ ' T 3, hence annihilation cannot reduce nσ. The

potential constraint on λ and other parameters will be discussed below. When T . mσ

and thus neq
σ ' T 3e−mσ/T � nσ, the annihilation process will simply freeze out. The σ

DM is thus safe against indirect detection bounds, which rely on DM annihilation [100].

On the contrary, during the reheating or early stage of radiation domination, the ther-

mal bath can create more σ via the mediation of χ. As a result, the constraint on thermal

interaction put an upper limit for λ if we want to ensure that most σ are created by gravity

and henceforth δρσ can carry information of χ fluctuation rather than that of radiation. In

the minimal case, radiation are SM like and massless, created by inflaton decays and inter-

act with χ, allowing the later to decay eventually. The χ−radiation interaction coupling

– 6 –
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(assuming massless fermions) is then ∼ O(
√

Γχ/mχ) � 1. The radiation then couples to

σ in the presence of χ̄ via the effective coupling:

λσr ∼ λ
√

16πmχΓχχ̄

T 2 −m2
χ

. (3.13)

As long as λσr � 1, the thermal production of σ would be suppressed, which is usually

satisfied according to our numerical results. Moreover, there are other scenarios where the

thermal production of σ is further suppressed.4 For simplicity, here we assume that the

constraint of λσr � 1 is always satisfied and gravity dominates σ production.

4 Isocurvature fluctuations during inflation

In this section, we consider the NG of δχ during inflation. We consider bispectrum in

section 4.1 and trispectrum in section 4.2. We mainly focus on the clock signals [27],

namely the oscillatory NG features in the squeezed limit. The name comes from the fact

that these features are determined by the quantum fluctuations of heavy fields and can

thus play the rule of standard clocks. In our case, we can use them probe to the mass of

the superheavy dark matter.

4.1 Bispectrum

The second order action of the primordial curvature perturbation can be written down

following the procedure in [101, 102]

Sζ = M2
p

∫
dt

d3k

(2π)3
ε(a3ζ̇2 − k2aζ2) . (4.1)

Quantizing it in the following way

ζk = ukck + u∗kc
†
−k , (4.2)

where c†k, ck are the creation and annihilation operators satisfying the usual commutation

relations [ck, c
†
p] = (2π)3δ(3)(k− p). The mode function satisfies the following equation of

motion

ζ̈ + (3 + η)Hζ̇ +
k2

a2
ζ = 0 . (4.3)

To the lowest order in slow roll parameter, the solution is

uk(τ) =
H

2
√
εMpl

1

k3/2
(1 + ikτ)e−ikτ . (4.4)

4One example is the case that χ and radiation is not directly coupled. In this scenario, χ firstly decay to

a sector weakly coupled to radiation and the later further decays to radiation. Consequently the radiation

created during reheating is not interacting with χ at leading order.
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Figure 1. The diagrams that contributes to 〈δχδχδχ〉.

Using the Schwinger-Keldysh formalism, the Feynman diagram on the left hand side of

figure 1 is evaluated as

〈δχk1δχk2δχk3〉′(2) =
1

2
(iλ)2χ̄

∑
a,b=±

ab

∫
dτ1

(−Hτ1)4

dτ2

(−Hτ2)4
Ga(k1; τ2)Ga(k2; τ2)Gb(k3; τ1)

×
∫

d3p

(2π)3

∫
d3q

(2π)3
(2π)3δ(3)(p + q− k3)Dab(p, τ1, τ2)Dab(q, τ1, τ2) ,

(4.5)

where G and D are the corresponding propagators of χ and σ (see appendix. A for details).

Additionally, the subscript (2) denotes the number of interaction vertices. This type of

integral in the squeezed limit k1 ' k2 � k3 is well-known [17, 50, 53, 60, 103] and the

details are collected in appendix. A. Eq. (4.5) is then evaluated as

〈δχk1δχk2δχk3〉′(2) = −1

2
λ2χ̄

1

π4

H2

64k3
1k

3
1

[
Cbi(µ)

(
k3

2k1

)−2iµ

+ c.c.

]
, (4.6)

where

Cbi(µ) = µ−2(2− iµ)Γ2(2− 2iµ)Γ2(iµ)Γ2(
3

2
− iµ)Γ(4iµ− 4) sin(2iµπ) sin2(iµπ) . (4.7)

The right hand side of figure 1 is only differed from the Feynman diagram on the left by a

factor of 2λχ̄2/H2. So the total contribution to the bispectrum is

〈δχk1δχk2δχk3〉′ =
(

1 +
2λχ̄2

H2

)
−λ2χ̄H2

128π4k6
1

[
Cbi(µ)

(
k3

2k1

)−2iµ

+ c.c.

]
. (4.8)

We can replace the interaction vertices in figure 1 to derivative couplings, resulting in

a similar integration:

〈δχk1δχk2δχk3〉′(2) =

1

2
(iλ2)2 ˙̄χ

∑
a,b=±

ab

∫
dτ1

(−Hτ1)3

dτ2

(−Hτ2)2

[
G′a(k1; τ2)G′a(k2; τ2)− (ik1 · ik2)Ga(k1; τ2)Ga(k2; τ2)

]
×G′b(k3; τ1)

∫
d3p

(2π)3

∫
d3q

(2π)3
(2π)3δ(3)(p + q− k3)Dab(p, τ1, τ2)Dab(q, τ1, τ2) , (4.9)

– 8 –
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where the subscript (2) denotes the number of interaction vertices. Similar to the calcula-

tions in the direct coupling case, but note that the coupling σ2(∂iδχ)2 with spatial derivative

does not appear in 〈δχk1δχk2δχk3〉′(3) case. In the squeezed limit k1 ' k2 � k3, (4.9) and

combine it with the integration of another diagram as:5

〈δχk1δχk2δχk3〉′ =
−λ2

2
˙̄χH5

256π4k6
1

{[
2(4− 2iµ)

2− 2iµ
+

2λ2 ˙̄χ2

H2

]
Cdbi(µ)

(
k3

2k1

)−2iµ

+ c.c.

}
, (4.10)

where the loop suppression factor for derivative coupling

Cdbi(µ) = Γ(4− 2iµ)Γ(2− 2iµ)Γ2(iµ)Γ2(
3

2
− iµ)Γ(4iµ− 4) sin(2iµπ) sin2(iµπ) . (4.11)

4.2 Trispectrum

To calculate the trispectrum we consider the leading contributions from the 4-point dia-

grams plotted in figure 2. The contribution from the first diagram reads:

〈δχk1δχk2δχk3δχk4〉′(2) =
1

2
(iλ)2

∑
a,b=±

ab

∫
dτ1

(−Hτ1)4

dτ2

(−Hτ2)4
Ga(k1; τ2)Ga(k2; τ2)Gb(k3; τ1)

×Gb(k4; τ1)

∫
d3p

(2π)3

∫
d3q

(2π)3
(2π)3δ(3)(p + q− kI)Dab(p, τ1, τ2)Dab(q, τ1, τ2) , (4.12)

where we have defined kI = k1 + k2. In the collapsed limit k1 ' k2 ' k3 ' k4 � kI , it is

〈δχk1δχk2δχk3δχk4〉′(2) =
−λ2

512π4

H4k3
I

k6
1k

6
3

[
Ctri(µ)

(
k2
I

4k1k3

)−2iµ

+ c.c.

]
, (4.13)

where

Ctri(µ) = µ−2(2− iµ)2Γ2(iµ)Γ2

(
3

2
− iµ

)
Γ2(2− 2iµ)Γ(4iµ− 4) sin(2iµπ) sin2(iµπ) .

(4.14)

Second and third Feynman diagram of figure 2 is differed from the Feynman diagram on

the leftmost by a factor of 2λχ̄2/H2 and 2λ2χ̄4/H4, respectively. So the total contribution

to the bispectrum is

〈δχk1δχk2δχk3δχk4〉′ =
(

1+2× 2λχ̄2

H2
+

2λ2χ̄4

H4

)
−λ2

512π4

H4k3
I

k6
1k

6
3

[
Ctri(µ)

(
k2
I

4k1k3

)−2iµ

+ c.c.

]
.

(4.15)

5For the coupling form that only time derivative of χ is relevant, the corresponding result can be achieved

easily by the numerical factor 2(4−2iµ)
2−2iµ

to 1 in eq. (4.10). For trispectrum results the situation are totally

similar.
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Figure 2. The diagrams that contributes to 〈δχδχδχδχ〉.

Based on the same method, the first diagram in the derivative coupling case can be

evaluated as

〈δχk1δχk2δχk3δχk4〉′(2) =

1

2
(iλ2)2

∑
a,b=±

ab

∫
dτ1

(−Hτ1)2

dτ2

(−Hτ2)2

[
G′a(k1; τ2)G′a(k2; τ2)− (ik1 · ik2)Ga(k1; τ2)Ga(k2; τ2)

]
×
[
G′b(k3; τ1)G′b(k4; τ1)− (ik3 · ik4)Gb(k3; τ1)Gb(k4; τ1)

] ∫ d3p

(2π)3

∫
d3q

(2π)3
δ(3)(p + q− kI)

×(2π)3Dab(p, τ1, τ2)Dab(q, τ1, τ2) , (4.16)

where we have defined kI = k1 + k2. In the collapsed limit k1 ' k2 ' k3 ' k4 � kI and

summing up all 3 leading diagrams, the result reads:

〈δχk1δχk2δχk3δχk4〉′ =

λ2
2

213π4

H8k3
I

k6
1k

6
3

{[(
2(4−2iµ)

2−2iµ

)2

+ 2× 2λ2 ˙̄χ2

H2

2(4−2iµ)

2−2iµ
+

2λ2
2

˙̄χ4

H4

]
Cdtri(µ)

(
k2
I

4k1k3

)−2iµ

+ c.c.

}
,

(4.17)

where the loop suppression factor for the derivative case

Cdtri(µ) = Γ2(4− 2iµ)Γ2(iµ)Γ2

(
3

2
− iµ

)
Γ(4iµ− 4) sin(2iµπ) sin2(iµπ) . (4.18)

5 Curvaton scenario: NG introduced by light field decay

In this section and the next section, we discuss the post-inflationary evolution of the

isocurvature fluctuations. The discussion here is aligned with the so-called “curvaton sce-

nario” [84–86]. The idea dates back to the earlier works [104, 105]. After inflation, the

subsequent evolution consists of three stages: curvaton field starting oscillation, oscillation

persisting for many Hubble times and curvaton decaying. The curvaton field can either

dominate the energy density just before the decay or do not dominate during the whole

process. Defining the ratio of the curvaton energy density ρχ and the total energy density

to be rdec at the time of curvaton decay, we have

rdec ≡
3ρχ

4ρr + 3ρχ

∣∣∣∣
decay

. (5.1)
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Another parameter helpful in characterizing different scenarios is the ratio of the power

spectrum of the primordial curvature perturbations generated by the χ field to that gen-

erated by the inflaton, which we denoted as

R ≡
P

(χ)
ζ

P
(φ)
ζ

. (5.2)

In this section we focus on the scenario where the power spectrum is mostly generated

by χ (R � 1) and leave the scenario where the power spectrum is mostly generated

by inflaton to the next section. The current measured value of primordial scalar power

spectrum P
(χ)
ζ ' P

(0)
ζ = 2.1 × 10−9 [106] and P

(χ)
ζ = H2/(9π2χ̄2) demands that χ̄ has a

fixed ratio with H:
χ̄

H
' 2.3× 103 . (5.3)

We will simply fix this ratio in the rest of this section. Also, since by definition the curvaton

would decay to radiation, it naturally satisfies the constraint that ρχ is negligible in the

late time universe. We take the minimal form that V (χ) =
mχχ2

2 here.

The post-inflationary evolution starts with a period when the curvaton field starts to

oscillate around the minimum of the potential. During this time, the universe is dominated

by radiation. The oscillation starts when the Hubble scale coincide with the mass of the

light field H ∼ m.

Since in our model, V (χ) is simply qudratic, according to eq. (2.5), when the Hubble

parameter & mχ, χ would be rolling very slowly around its value during inflation. The

situation will continue until the Hubble parameter . mχ and χ will start to behave like an

oscillator around its potential minimum, making ρχ dilutes like matter before it eventually

decays. In both cases, we have

ρχ(x) ' V (χ) +
χ̇2

2
∝ m2

χχ̄
2 , (5.4)

where we have neglected the distribution from spacial derivatives as it is always sub-

dominant.

Based on the inhomogeneity we can define the density contrast and curvature pertur-

bations as:

δ ≡ δρχ
ρχ

= 2
δχ

χ
. (5.5)

ζχ = −Hδρχ
ρ̇χ

=
1

3

δρχ
ρχ

=
2

3

δχ

χ
=

1

3
δ . (5.6)

Observation requires that [107]χ̄∗ � H∗ for curvature perturbations where χ∗ and H∗
denotes the field value of χ and Hubble are evaluated at horizon crossing.

The curvature perturbation in the radiation section is simply given by:

ζr = −Hδρr

ρ̇r
=

1

4

δρr

ρr
, (5.7)
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The curvature perturbation is thus

ζ = −Hδρ

ρ̇
= −Hδρr + δρχ

ρ̇r + ρ̇χ
=

4ρrζr + 3ρχζχ
4ρr + 3ρχ

. (5.8)

The energy density of the χ field can either dominate or sub-dominate the energy density

before the decay. In the following, we discuss these two cases separately. If χ field dominates

the energy density before the decay (rdec ∼ 1), (5.8) becomes

ζ ' rdec

3
δ =

2rdec

3

δχ

χ
. (5.9)

On the other hand, the case that the energy of the curvaton is subdominant compared

with radiation rdec � 1, we will obtain

ζ ' rdec

4
δ . (5.10)

In this work we will focus on the first scenario where rdec ∼ 1, as for the later case the

calculations and results are qualitatively the same and the fact that the later case is strongly

constrained by data.

5.1 NG signals

The χ bispectrum and trispectrum are related to ζ trispectrum and bispectrum in the

following way

〈ζk1ζk2ζk3〉 =

(
2

3

rdec

χ̄

)3

〈δχk1δχk2δχk3〉 , (5.11)

〈ζk1ζk2ζk3ζk4〉 =

(
2

3

rdec

χ̄

)4

〈δχk1δχk2δχk3δχk4〉 . (5.12)

We define the shape function to be

〈ζk1ζk2ζk3〉
′ ≡ (2π)4S (k1, k2, k3)

1

(k1k2k3)2P
(0)2
ζ , (5.13)

〈ζk1ζk2ζk3ζk4〉
′ ≡ (2π)6T (k1, k2, k3, k4)

(k1 + k2 + k3 + k4)3

(k1k2k3k4)3 P
(0)3
ζ . (5.14)

So the shape functions are in the direct coupling case:

S(k1, k2, k3) =
1

(2π)4P
(0)2
ζ

8r3
dec

27χ̄3

(
1 +

2λχ̄2

H2

)
−λ2χ̄H2

32π4

[
Cbi(µ)

(
k3

2k1

)2−2iµ

+ c.c.

]
,

T (k1, k2, k3, k4) =
1

(2π)6P
(0)3
ζ

16r4
dec

81χ̄4

(
1 +

4λχ̄2

H2
+

2λ2χ̄4

H4

)
−λ2H4

512π4

(k1k3)3/2

(k1 + k3)3
×

×
[
Ctri(µ)

(
k2
I

4k1k3

) 3
2
−2iµ

+ c.c.

]
. (5.15)
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Direct Curvaton, H = 1010, TRH = 1014
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Figure 3. Numerical benchmarks of the curvaton scenario, H and TRH in the unit of GeV. The

gray region corresponds to when the bare mσ becomes negative, and the red contours stand for mσ

in the unit of H. The blue (green) contour stands for bispectrum (trispectrum) clock signals. The

red region provides enough DM this way (0.05 > fσ > 0.01 with a proper choice of parameter A

between 103 and 107). Left: direct coupling. Right: derivative coupling.

Where the normalization factor is the primordial scalar power:

R

R+ 1
P

(0)
ζ = P

(χ)
ζ =

4r2

9χ̄2

(
H

2π

)2

' 2.1× 10−9 , (5.16)

Cbi(µ) and Ctri(µ) are dimensionless functions of µ, as defined in (4.7) and (4.14). If we

adopt the derivative coupling, following a similar approach the shape functions becomes:

S(k1, k2, k3) =
1

(2π)4P
(0)2
ζ

8r3
dec

27χ̄3

−λ2
2

˙̄χH5

64π4
(5.17)

×
[(

2(4− 2iµ)

2− 2iµ
+

2λ2 ˙̄χ2

H2

)
Cdbi(µ)

(
k3

2k1

)2−2iµ

+ c.c.

]
,

T (k1, k2, k3, k4) =
1

(2π)6P
(0)3
ζ

16r4
dec

81χ̄4

λ2
2H

8

213π4

(k1k3)3/2

(k1 + k3)3

{[(
2(4− 2iµ)

2− 2iµ

)2

(5.18)

+ 2× 2λ2 ˙̄χ2

H2

2(4− 2iµ)

2− 2iµ
+

2λ2
2

˙̄χ4

H4

]
Cdtri(µ)

(
k2
I

4k1k3

) 3
2
−2iµ

+ c.c.

}
.

In figure 3 we show two typical numerical parameter space for this scenario. The

parameter choice are labeled on each plot. We simply take rdec = 1 to fulfill our expectation

that rdec ∼ O(1). In fact, the size of rdec doesn’t affect the curvature NG clock signal

significantly as it only depends on r3
dec rather than exponentially. In both cases R is

sufficiently larger than 1, consistent with our assumption for curvaton case. In most cases,

both the size of bispectrum S and scaled DM relic density fσ are sensitive to µ. The

model thus prefers smaller µ that produces enough σ DM and large S. We also notice that

in the direct coupling scenario, the size of clock signals is small. This is not surprising

since the NG’s are generated by the heavy mediator (m & H) at one-loop. In fact, such
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suppressed fNL can also be found in related studies [53, 60, 87] and is sizeable only if

the heavy mediator’s mass becomes near the threshold and thus µ ∼ 0. Thus, in the

direct coupling case, the fNL clock signals will be too small to be found by experiments.

Introducing extra heavy fields that couples to χ may again induce large fNL clock signals

available to future experiments. However, these new complexities will be beyond the scope

of this paper. Considering derivative coupling can boost the NG to a parameter regime

that may be observable in the future experiments.

5.2 Observational constraints

For the curvaton-like case, the power spectrum is dominated by curvaton decays. For

formally one can define the ratio [108]

R ≡
Pχζ
Pφζ
' 8ε

9

(
Mpl

χ̄

)2

r2
dec m (5.19)

where ε ≡ − Ḣ
H2 is the slow-roll parameter. According to previous studies [108], the curvaton

itself can introduce a non-trivial local fNL:

f local
NL =

5

6(1 +R)2

[
1

2ε

(
1−

ηφ
2ε

)
+R2

(
3− 4rdec − 2r2

dec

2rdec

)]
. (5.20)

As long as R� 1 as preferred by data, the observational constraint that fNL < O(10) then

requires rdec to be of O(1).

Another important constraint comes from matter-photon isocurvature, which depends

on the perturbation differences between the rest of CDM (c, other than σ), radiation (γ)

and baryon (b). We define the gauge invariant entropy fluctuations Sxγ ≡ 3(ζx − ζγ),

where x denotes b or c. If σ is the dominant component of CDM, since it is created before

curvaton decays, its perturbation imprints the information Pφ instead of Pχ. In this model,

the production of DM may even correlate to δχ negatively as χ̄ raises DM effective mass,

which may make things even worse. However, as ∂ ln ρσ
∂χ̄ � 1 we can take only the leading

contribution to isocurvature, which is not related to λ.

The current measurement strongly disfavor cases that all CDM are created before

curvaton χ decay [106, 109] as this creates a large Smγ/ζ & O(1). Therefore in the curvaton

scenario we only consider if σ is a subdominant part of CDM, while the rest of CDM is

created after or by χ decay:

fσ ≡
Ωσ

ΩCDM
< 1 . (5.21)

Aside from when CDM generation, baryon number B creation can also important, assuming

they are created in the radiation, if it is created before/by/after χ decay makes difference.

On the other hand, the lepton number L, as long as it is not created by curvaton χ decay,

makes little difference in our calculation (Rν = 0). For more details, see [109].

Following previous discussion, definition of the CDM fraction fσ, and calculation

in [109], one can calculate Smγ different cases. For example, if both the rest of CDM

and B are created after χ decay (bafter, cafter):

Scγ
ζ

= −3fσ,
Sbγ
ζ

= 0,
Smγ
ζ

= −3fσ
ΩCDM

Ωm
. (5.22)
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Figure 4. Possible range of rdec and fσ for 4 different scenarios, with the isocurvature constraint.

Blue, green, orange and red regions stand for bafter, cafter /bby, cafter/ bafter, cby and bby, cby respec-

tively. The gray shade is vetoed as rdec becomes too low and introduces too large a f localNL > 10.

Similarly, we have the case bby, cafter:

− Scγ
ζ

= 3fσ,
Sbγ
ζ

= 3(r−1
dec − 1),

Smγ
ζ

=
3Ωb[1 + rdec(fσ − 1)]

rdecΩm
− 3fσ , (5.23)

bafter, cby

Scγ
ζ

= 3(r−1
dec − 1)(1− fσ)− 3fσ,

Sbγ
ζ

= 0,
Smγ
ζ

= −3ΩCDM(rdec − 1 + fσ)

rdecΩm
, (5.24)

and bby, cby

Scγ
ζ

= 3(r−1
dec − 1)(1− fσ)− 3fσ,

Sbγ
ζ

= 3(r−1
dec − 1),

Smγ
ζ

= 3
Ωm(1− rdec)− ΩCDMfσ

rdecΩm
.

(5.25)

Notice that this immediately rules out the case that fσ is close to 1 for all different scenarios.

Together with current data constraints |Smγ/ζ| . O(0.1), we can work out the possible

range of rdec and fσ based on the arguments is shown in figure 4. From the constraints of

f clock
NL and isocurvatures, we notice that fσ can even be ∼ 1 if the rest of CDM is produced

by χ decay, when rdec ∼ 0.2. However, in figure 3, as we demand that rdec = 1, fσ is

bounded to be < 0.05. Therefore we only show the allowed range of 0.05 > fσ > 0.01 in

figure 3, although it can be much larger with slightly smaller rdec.
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We also need to take the tri-spectrum τNL constraint into consideration. According

to [108]:

τNL =

(
1

1 +R

)3[ 1

4ε2

(
1−

ηφ
2ε

)2

+R3

(
3− 4rdec − 2r2

dec

2rdec

)]
' R

1 +R

(
6

5
fNL

)2

, (5.26)

gNL =

(
1

1 +R

)3[
2ε

(
− ξ − φ2

ε
+ 2

η2
φ

ε

)
+R3

(
6r3

dec + 20rdec + rdec − 18

2rdec

)]
(5.27)

'
(

R

1 +R

)3 6r3
dec + 20rdec + rdec − 18

2rdec
.

The current constraint on gNL is ofO(104) [110] and τNL < 2800 [111]. With the assumption

that R� 1, the constraints from the trispectrum measurements cannot provide meaningful

information about this scenario as long as rdec is of O(1).

Finally, one may notice that our results are based on perturbative calculations. It

is then clear that for the direct coupling case, our choice of parameter range ensures the

validity of results. On the other hand, when the coupling is derivative, the actual coupling

depends on the cutoff scale of the effective coupling, which we only assume to be & H but

never specify. Therefore we will not explicitly show the perturbativity/unitarity bound in

correspond plots.

6 DM modulation scenario: NG introduced by DM production

In this section, we will turn to another limit that χ barely leaves any curvature perturbation

observable, in contrast to the curvaton case. Or equivalently we are discussing the R→ 0,

rdec → 0 limit using the notation we use in the curvaton case. As inflaton dominates both

the curvature perturbation power spectrum and the energy density when χ decays, the NG

imprints left by χ will be suppressed by rn and would not introduce visible fNL constraints

according to (5.20). Nevertheless, in our model where χ directly couples to the dark matter

σ, the information of χ primordial perturbation will also introduce isocurvature fluctuations

in DM, which may become significant. The fluctuation in χ during inflation creates NG

in terms matter-radiation isocurvature. Certainly, such a model must also be constrained

by current observation of isocurvature power spectrum. In the follow section we will show

that in order to get a large NG effect in terms of isocurvature, fσ need to be larger and

eventually taken to be 1.

According to [53] and discussions in section 3, the heavy DM density produced by

gravity is proportional to µαe−2πµ. For superhorizon modes, the DM relic density before χ

decays will pick up an non-zero fluctuation term due to the contribution from χ fluctuation:

ρσ = ρ̄σe
3(ζσ−ζ) , (6.1)

since during this era we have ρσ � ρχ � ρr and ζr ' ζφ. Then, up to the leading order,

we can expand the expression and get the following expression.

ζσ − ζφ =
1

3

δρσ
ρ̄σ

=
1

3

∂ρσ
∂χ̇ δχ̇

ρ̄σ
=

1

3
δχ̇
∂ ln ρσ
∂χ̇

=
1

3
δχ̇
∂ ln ρσ
∂ ˙̄χ

. (6.2)
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Note that inflaton also contributes to the curvature perturbation, however, it gives sub-

dominant contributions. For more details, see [112].

Since ζφ and ζχ/σ is uncorrelated, the main contributor to the NG of σ density mostly

stems from the isocurvature mode. This means the three-point function〈
δρσk1

ρσ

δρσk2

ρσ

δρσk3

ρσ

〉
= 〈δχk1δχk2δχk3〉

(
∂ ln ρσ
∂χ̄

)3

(6.3)

= 〈ζχk1ζχk2ζχk3〉
(

3χ̄

2rdec

∂ ln ρσ
∂χ̄

)3

' 〈ζχk1ζχk2ζχk3〉
(
−3πλχ̄2

2rdecH2µ

)3

,

and for derivative coupling the above relation changes to:〈
δρσk1

ρσ

δρσk2

ρσ

δρσk3

ρσ

〉
= 〈δχ̇k1δχ̇k2δχ̇k3〉

(
∂ ln ρσ
∂ ˙̄χ

)3

' 〈δχk1δχk2δχk3〉
(−m2

χ

3H

)3(∂ ln ρσ
∂ ˙̄χ

)3

(6.4)

= 〈ζχk1ζχk2ζχk3〉
(

3χ̄

2rdec

)3(−m2
χ

3H

)3(∂ ln ρσ
∂ ˙̄χ

)3

' 〈ζχk1ζχk2ζχk3〉
(−m2

χχ̄

2Hrdec

−πλ2 ˙̄χ

H2µ

)3

,

where in the last relation we assume α ' 0 in (3.12) for simplicity. The term grabs a

negative sign compared to the χ induced clock signal. The calculation of the clock signal

is then similar to the case in section 5. However, to correctly compare the NG in isocurva-

ture with the Gaussian part, the normalization factor changed to primordial isocurvature

perturbation at large scale P
(0)
I deduced from the same mechanism instead. The current

experiment only gives an upper limit of the size. In this mechanism, the primordial isocur-

vature perturbation can be introduced by modulated σ dark matter production similar to

in, which will be discussed below.

Now we turn to estimate the primordial isocurvature perturbation power spectrum

introduced by χ-σ interaction at large scales, assuming no other source of isocurvature.

Similar to the curvaton case but with much smaller R and rdec, the ζγ mainly follows

inflaton fluctuation:

ζγ ' ζφ , (6.5)

while ζc and ζb is assumed to be created by radiation since χ vanishes. This is corresponding

to the cafter, bafter scenario, leaving ζb ' ζγ and ζDM = fσζσ + (1− fσ)ζγ . Resulting in the

total matter non-adiabatic perturbation

Smγ = 3
ΩCDMfσ

Ωm
(ζσ − ζγ) ' ΩCDMfσ

Ωm

∂ ln ρσ
∂χ̄

δχ ≈ fσλχ̄

2Hµ
. (6.6)

In the last relation we use the approximation that δχ ≈ H/2π and the fact that Ωb is only

a small fraction of Ωm. According to the current isocurvature constraints [113], the value

of λχ/Hµ must be small enough (. O(10−5)). Similarly, we can write down the Smγ for

the derivative coupling case:

Smγ = 3
ΩCDMfσ

Ωm
(ζσ − ζγ) ' ΩCDMfσ

Ωm

∂ ln ρσ
∂ ˙̄χ

δχ̇ ≈ fσλ2 ˙̄χ2

2Hχ̄µ
, (6.7)
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Figure 5. The parameter scan for the modulator case, H and TRH in the unit of GeV. Blue(green)

contours still stand for the size of isocurvature bispectrum(trispectrum) clock signals. The light

gray shaded region is prohibited by the isocurvature perturbation observation bound. The dark gray

shaded region is where mσ turns negative with given parameter. In both cases all allowed (blank)

region provides enough σ DM (fσ=1) with a proper choice of parameterA between 103 and 107.

which is solvable once we impose the relation between ˙̄χ and χ̄ such as in eq. (2.5). The

constraint from primordial isocurvature is shown in figure 5 as the gray shades. It is obvious

from the form of eq. (6.7) that the dependence on ˙̄χ2/χ̄H ∝ m4
χ is small since χ is a light

field. With a reasonable choice of mχ, such as 0.01H we chose here, the constraint from

primordial isocurvature are much weaker, allowing larger NG signals.

Since in the modulator scenario the light field χ no longer generates the primordial

curvature spectrum, the ratio χ̄/H is no longer fixed and hence becomes a free parameter.

In this work we are particularly interested in the region where χ̄/H is larger than 1 to use

eq. (2.5) directly. Therefore the parameter space we shall have an additional dimension

compared to the curvaton case. If we fix µ to be . 1 which is required to have enough

NG, we can scan through the parameter space. We show the result of scans in both direct

coupling and derivative coupling in figure 5. In both panels, the whole allowed regions can

provide enough σ DM (fσ = 1) with a proper choice of parameter A between 104 and 109.

For direct coupling case it would be very hard to give a large NG signal without extreme

fine tunings. The reason is due to the fact that only 2 parameters: the coupling λ and the

ratio χ̄/H controls the strength of NG signals. Instead, for the derivative coupling case, a

much larger NG signal can be achieved without much fine tuning (µ & 0.1).

7 Conclusion and outlook

We propose a mechanism that a light spectator field can leave nontrivial observation signals

via its interaction between gravitationally produced heavy DM. The minimal model consists

of an inflaton φ, a massive field σ and a light field χ. The conclusion is largely inflation

model independent as all non-trivial interactions happens inside the σ-χ sector and the

inflaton φ only acts as a background field. Specifically we consider two types of well-
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motivated couplings, direct coupling and derivative one. For both type of couplings the

primordial three-point and four-point correlation functions of the light field χ mediated by

the heavy DM field σ are calculated. The Z2 symmetry that protects σ demands that such

interactions can only present at loop level, indicating suppressed NG signals. However,

large enough signal can still appear with proper mσ and derivative couplings.

The first case we propose is the well-known curvaton scenario, where the curvature

perturbation we observe today are dominated by χ. The current matter isocurvature

observations strongly constraints the σ heavy DM relic density. Therefore in this scenario

we consider the curvature NG introduced by χ after it decays to radiation. The curvaton-

heavy DM derivative interaction still leads to measurable clock signals while the direct

coupling cannot provide enough NG.

In another scenario in which χ energy density and power spectrum is always sub-

dominant, it is difficult to measure χ properties via curvature perturbations. However, the

σ heavy DM production is sensitive to χ field values during the inflationary era. Conse-

quently, the matter isocurvature mode keeps the imprints of the primordial χ field config-

uration. The result of both types of couplings are shown. We will leave other intermediate

cases to future studies.

In this work, we have focused on relatively simple cases. There can be many pos-

sibilities to further enhance the signal, including symmetry breaking, chemical potential,

multiple dark matter particles with different masses, and so on. It would be interesting to

explore these possibilities.
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A Details of the computation of the loop diagram

In this section, we present the details of the derivation of the cosmological collider sig-

nal of (4.15), (4.17), (5.15) and (5.18). We used the Schwinger-Keldysh formalism [114].

Alternatively, one can use the in-in formalism [101, 102, 115].

Throughout the paper, we have used G to denote the propagator of the χ field and D

to denote the propagator of the σ field. Below we use the χ field as an illustration of the

propagator G, similar procedure can be done for the σ field.

The generating functional is

Z0[J+, J−] ≡
∫
Dχ+Dχ− exp

[
i

∫ τf

τ0

dτd3x

(
L0[χ+]− L0[χ−] + J+χ+ − J−χ−

)]
. (A.1)

Starting from the above generating functional, we start taking the derivative of J

−i∆ab(τ1,x1; τ2,x1) =
δ

iaδJa(τ1,x1)

δ

ibδJb(τ2,x2)
Z0[J+, J−]

∣∣∣∣
J±=0

. (A.2)
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Doing a Fourier transform gives the following definition of G

Gab = −i
∫
d3xe−ik·x∆ab(τ1,x; τ2,0) . (A.3)

Every diagram we needed to calculate has the same structure for loop integral

I(kI , τ1, τ2) =

∫
d3p

(2π)3
Dba(p, τ1, τ2)Dba(|kI − p|, τ1, τ2) , (A.4)

this can also be written as ∫
d3Xe−ikI ·X

1

2
〈σ2(x1)σ2(x2)〉ba , (A.5)

in position space, where x1 = (τ1,x1), x2 = (τ2,x2), and X = x2 − x1. As we are only

interested in non-local part, we can drop ab indices here [35].

I(kI ; τ1, τ2) =

∫
d3Xe−ikI ·XD2(x1, x2) . (A.6)

One method to get the propagators in position space is to transform from de Sitter space

dSD to SD sphere, with the help of spherical harmonics. The propagator for real scalar

field is

D(x1, x2) =
HD−2

(4π)D/2
Γ(d/2− iµ)Γ(d/2 + iµ)

Γ(D/2)
2F1

(
d

2
− iµ, d

2
+ iµ;

D

2
,

1 + Zx1,x2
2

)
, (A.7)

where Zx1,x2 is the sphere imbedding distance Z(x1, x2) = 1 − |x1−x2|2−(τ1−τ2)2

2τ1τ2
, µ =√

(mσ/H)2 − (d/2)2, and d ≡ D − 1 = 3 in our case. The propagator can be expanded at

late time limit

D(x1, x2)
τ1,τ2→0−−−−−→ H2

4π5/2

[
Γ(iµ)Γ

(
3

2
− iµ

)(τ1τ2

X2

)3/2−iµ
+ (µ→ −µ)

]
, (A.8)

we can get

I(kI ; τ1, τ2)
τ1,τ2→0−−−−−→H4

4π4

[
Γ(iµ)2Γ

(
3

2
− iµ

)2

Γ(4iµ− 4) sin(2πiµ)(τ1τ2)3−2iµk3−4iµ
I

+ (µ→ −µ)

]

=
H4

4π4

[
I(µ)(τ1τ2)3−2iµk3−4iµ

I + (µ→ −µ)
]
, (A.9)

where I(µ) is defined as

I(µ) = Γ(iµ)2Γ

(
3

2
− iµ

)2

Γ(4iµ− 4) sin(2πiµ) . (A.10)
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Three-point function with λ. The relevant part is the time integral. The three-point

function (4.5) for λ coupling case

〈δχk1δχk2δχk3〉′(2)

=
1

2
(iλ)2χ̄

∑
a,b=±

ab

∫
dτ1

(Hτ1)4

dτ2

(Hτ2)4
Ga(k1; τ2)Ga(k2; τ2)Gb(k3; τ1)I(k3; τ1, τ2)

τ1,τ2→0−−−−−→ ' −λ
2χ̄

2
H−8 H6

8k3
1k

3
2k

3
3

H4

4π4

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2 τ

−4
1 τ−4

2

∑
a,b=±

ab(1− ibk3τ1)× (A.11)

× (1− iak1τ2)(1− iak2τ2)eiak12τ2eibk3τ1I(µ)(τ1τ2)3−2iµk3−4iµ
3 + (µ→ −µ) ,

where k12 = k1 + k2,

〈δχk1δχk2δχk3〉′(2) (A.12)

'−λ
2χ̄

2π4

H2

32k3
1k

3
2k

3
3

I(µ)k3−4iµ
3

∑
b=±

b

∫ 0

−∞
dτ1τ

−1−2iµ
1 (1− ik3τ1b)e

ik3τ1b×

×
∑
a=±

a

∫ 0

−∞
dτ2τ

−1−2iµ
2 (1− ik12τ2a− k1k2τ

2
2 )eik12τ2a + (µ→ −µ) ,

k1'k2�k3−−−−−−−→'− 1

2
λ2χ̄

1

π4

H2

64k3
1k

3
1

[
I(µ)µ−2(2− iµ)Γ2(2− 2iµ) sin2(iµπ)

(
k3

2k1

)−2iµ

+ c.c.

]
.

(A.13)

Three-point function with λ2. The three-point function (4.9) for λ2 derivative cou-

pling case

〈δχk1δχk2δχk3〉′(2) =
1

2
(iλ2)2 ˙̄χ

∑
a,b=±

ab

∫
dτ1

(−Hτ1)3

dτ2

(−Hτ2)2
[G′a(k1; τ2)G′a(k2; τ2)

− (ik1 · ik2)Ga(k1; τ2)Ga(k2; τ2)]×G′b(k3; τ1)I(k3; τ1, τ2)

τ1,τ2→0−−−−−→'λ
2
2

˙̄χ

2
H−5 H6k2

3

8k3
1k

3
2k

3
3

H4

4π4

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2 τ

−3
1 τ−2

2

∑
a,b=±

ab[k2
1k

2
2τ

2
2 +

+(k1 ·k2)(1−iak12τ2−k1k2τ
2
2 )]τ1e

iak12τ2eibk3τ1I(µ)(τ1τ2)3−2iµk3−4iµ
3 +

+ (µ→ −µ) , (A.14)

and

〈δχk1δχk2δχk3〉′(3) =

(
2λ2 ˙̄χ2

H2

)
1

2
(iλ2)2 ˙̄χ

∑
a,b=±

ab

∫
dτ1

(−Hτ1)3

dτ2

(−Hτ2)2
G′a(k1; τ2)G′a(k2; τ2)×

×G′b(k3; τ1)I(k3; τ1, τ2)

τ1,τ2→0−−−−−→'
(

2λ2 ˙̄χ2

H2

)
λ2

2
˙̄χ

2
H−5 H6

8k1k2k3

H4

4π4

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2 τ

−3
1 τ−2

2

∑
a,b=±

ab τ2
2 τ1×

× eiak12τ2eibk3τ1I(µ)(τ1τ2)3−2iµk3−4iµ
3 + (µ→ −µ) , (A.15)
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where k12 = k1 + k2. The results are

〈δχk1δχk2δχk3〉′(2) '
λ2

2
˙̄χ

26π4

H5

k3
1k

3
2k3

I(µ)k3−4iµ
3

∑
b=±

b

∫ 0

−∞
dτ1τ

1−2iµ
1 eik3τ1b

∑
a=±

a

∫ 0

−∞
dτ2×

× [k2
1k

2
2τ

2
2 + (k1 · k2)(1− iak12τ2 − k1k2τ

2
2 )]τ1−2iµ

2 eik12τ2a

+ (µ→ −µ) , (A.16)

k1'k2�k3−−−−−−−→' −λ
2
2

˙̄χH5

28π4k6
1

[
I(µ)× 2(3−2iµ)(4− 2iµ)Γ2(2− 2iµ) sin2(iµπ)

(
k3

2k1

)−2iµ

+ c.c.

]
. (A.17)

and

〈δχk1δχk2δχk3〉′(3) '
(

2λ2 ˙̄χ2

H2

)
λ2

2
˙̄χ

26π4

H5

k1k2k3
I(µ)k3−4iµ

3

∑
b=±

b

∫ 0

−∞
dτ1τ

1−2iµ
1 eik3τ1b×

×
∑
a=±

a

∫ 0

−∞
dτ2τ

3−2iµ
2 eik12τ2a + (µ→ −µ) , (A.18)

k1'k2�k3−−−−−−−→'
(

2λ2 ˙̄χ2

H2

)
−λ2

2
˙̄χH5

28π4k6
1

[
I(µ)Γ(2−2iµ)Γ(4−2iµ) sin2(iµπ)

(
k3

2k1

)−2iµ

+ c.c.

]
. (A.19)

Four-point function with λ. The four-point function (4.12) for λ coupling case

〈δχk1δχk2δχk3δχk4〉′(2)

=
1

2
(iλ)2

∑
a,b=±

ab

∫
dτ1

(−Hτ1)4

dτ2

(−Hτ2)4
Ga(k1; τ2)Ga(k2; τ2)×

×Gb(k3; τ1)Gb(k4; τ1)I(kI ; τ1, τ2) ,

τ1,τ2→0−−−−−→' −λ
2

2
H−8 H8

16k3
1k

3
2k

3
3k

3
4

H4

4π4

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2 τ

−4
1 τ−4

2

∑
a,b=±

ab(1−ibk3τ1)(1−ibk4τ1)×

× (1− iak1τ2)(1− iak2τ2)eiak12τ2eibk34τ1I(µ)(τ1τ2)3−2iµk3−4iµ
I + (µ→ −µ) ,

(A.20)

where k12 = k1 + k2, k34 = k3 + k4, and kI = k1 + k2 = k3 + k4

〈δχk1δχk2δχk3δχk4〉′(2) (A.21)

'−λ
2

2π4

H4

64k3
1k

3
2k

3
3k

3
4

I(µ)k3−4iµ
I

∑
b=±

b

∫ 0

−∞
dτ1τ

−1−2iµ
1 (1− ik34τ1b− k3k4τ

2
1 )×

× eik34τ1b
∑
a=±

a

∫ 0

−∞
dτ2τ

−1−2iµ
2 (1− ik12τ2a− k1k2τ

2
2 )eik12τ2a + (µ→ −µ) ,

k1'k2�kI−−−−−−−→
k3'k4�kI

' −λ
2

29π4

H4k3
I

k6
1k

6
3

[
I(µ)µ−2(2− iµ)2Γ2(2− 2iµ) sin2(iµπ)

(
k2
I

4k1k3

)−2iµ

+ c.c.

]
.

(A.22)
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Four-point function with λ2. The four-point function (4.16) for λ2 derivative coupling

case

〈δχk1δχk2δχk3δχk4〉′(2)

=
1

2
(iλ2)2

∑
a,b=±

ab

∫
dτ1

(−Hτ1)2

dτ2

(−Hτ2)2
[G′a(k1; τ2)G′a(k2; τ2)

− (ik1 · ik2)Ga(k1; τ2)Ga(k2; τ2)]×
× [G′b(k3; τ1)G′b(k4; τ1)− (ik3 · ik4)Gb(k3; τ1)Gb(k4; τ1)]I(kI ; τ1, τ2) , (A.23)

and

〈δχk1δχk2δχk3δχk4〉′(3) (A.24)

=
2λ2 ˙̄χ2

H2

(iλ2)2

2

∑
a,b=±

ab

∫
dτ1

(−Hτ1)2

dτ2

(−Hτ2)2
[G′a(k1; τ2)G′a(k2; τ2)]×

× [G′b(k3; τ1)G′b(k4; τ1)−(ik3 · ik4)Gb(k3; τ1)Gb(k4; τ1)]I(kI ; τ1, τ2)+{k1,k2}↔{k3,k4},

also

〈δχk1δχk2δχk3δχk4〉′(4) =
2λ2

2
˙̄χ4

H4

(iλ2)2

2

∑
a,b=±

ab

∫
dτ1

(−Hτ1)2

dτ2

(−Hτ2)2
[G′a(k1; τ2)G′a(k2; τ2)]×

× [G′b(k3; τ1)G′b(k4; τ1)]I(kI ; τ1, τ2) , (A.25)

where k12 = k1 + k2, k34 = k3 + k4, and kI = k1 + k2 = k3 + k4. The results are

〈δχk1δχk2δχk3δχk4〉′(2)

' −λ
2
2

2π4

H8

64k3
1k

3
2k

3
3k

3
4

I(µ)k3−4iµ
I

∑
b=±

b

∫ 0

−∞
dτ1τ

1−2iµ
1 [k2

3k
2
4τ

2
1 + (k3 · k4)(1−iak34τ1−k3k4τ

2
1 )]×

×eik34τ1b
∑
a=±

a

∫ 0

−∞
dτ2τ

1−2iµ
2 [k2

1k
2
2τ

2
2 + (k1 · k2)(1−iak12τ2−k1k2τ

2
2 )]eik12τ2a+(µ→ −µ) ,

(A.26)

k1'k2�kI−−−−−−−→
k3'k4�kI

' λ2
2

213π4

H8k3
I

k6
1k

6
3

[
I(µ)4(3−2iµ)2(4−2iµ)2Γ2(2−2iµ) sin2(iµπ)

(
k2
I

4k1k3

)−2iµ

+c.c.

]
,

(A.27)

and

〈δχk1δχk2δχk3δχk4〉′(3)

' 2× 2λ2 ˙̄χ2

H2

−λ2
2

2π4

H8

64k3
1k

3
2k

3
3k

3
4

I(µ)k3−4iµ
I

∑
a=±

a

∫ 0

−∞
dτ2τ

3−2iµ
2 k2

1k
2
2e
ik12τ2a

∑
b=±

b

∫ 0

−∞
dτ1×

× τ1−2iµ
1 [k2

3k
2
4τ

2
1 + (k3 · k4)(1− iak34τ1 − k3k4τ

2
1 )]eik34τ1b + (µ→ −µ) , (A.28)

k1'k2�kI−−−−−−−→
k3'k4�kI

' 2× 2λ2 ˙̄χ2

H2

λ2
2

213π4

H8k3
I

k6
1k

6
3

[
I(µ)

2(4−2iµ)

(2−2iµ)
Γ2(4−2iµ) sin2(iµπ)

(
k2
I

4k1k3

)−2iµ

+c.c.

]
,

(A.29)
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also

〈δχk1δχk2δχk3δχk4〉′(4)

' 2λ2
2

˙̄χ4

H4

−λ2
2

2π4

H8

64k3
1k

3
2k

3
3k

3
4

I(µ)k3−4iµ
I

∑
a=±

a

∫ 0

−∞
dτ2τ

3−2iµ
2 k2

1k
2
2e
ik12τ2a×

×
∑
b=±

b

∫ 0

−∞
dτ1τ

3−2iµ
1 k2

3k
2
4e
ik34τ1b + (µ→ −µ) , (A.30)

k1'k2�kI−−−−−−−→
k3'k4�kI

' 2λ2
2

˙̄χ4

H4

λ2
2

213π4

H8k3
I

k6
1k

6
3

[
I(µ)Γ2(4− 2iµ) sin2(iµπ)

(
k2
I

4k1k3

)−2iµ

+ c.c.

]
. (A.31)
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