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1 Introduction

Recent years have seen a lot of attention in the study of specific types of irrelevant de-

formations of classical and quantum field theories. Particularly, the class of deformations

with Zamolodchikov’s T T̄ operator [1–3] are of interest in the context of AdS/CFT [4–18]

and effective String Theory [19–23]. A deformation by a given operator of a known field

theory induces a flow which in the case of irrelevant deformations is driven by the defor-

mation at high energies. This in general means that they are generically harder to study

as compared to relevant deformations which drive the flow in the opposite regime. One

of the interesting features of T T̄ deformations is that not only do they have a flow which

can be determined in many cases but also the flow seems to preserve integrable structures.

These type of irrelevant deformations are particularly interesting in two dimensional field

theories where many known examples exist of classical and quantum integrability without

the need to resort to supersymmetry.

A particular class of two dimensional field theories where the T T̄ flow can be followed

exactly are scalar field theories with a background independent potential. The closed form

of their Lagrangian was first obtained in [24, 25] and they constitute a rich ground where

integrability under the T T̄ deformation can be studied. In fact the authors of [26] were

able to construct the T T̄ -deformed Lax Pair of the sin(h)-Gordon model thus revealing a

nice geometrical interpretation of the T T̄ deformation [27, 28] (see also [29–32]).
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Classical Liouville Field theory (LFT) has been studied for more than a hundred

years [33, 34]. It is a field theory which describes the conformal factor of a two-dimensional

space of constant curvature and its relation to the classical uniformization problem provides

interesting connections between field-theory and two dimensional geometry [35–38]. In

more recent decades its full quantum version has been bootstrapped [39, 40] and it is

an important piece in the worldsheet formulation of String theories and two dimensional

gravity theories [41–43]. In connection to its integrability [44, 45] classical LFT provides the

simplest integrable equation underlying the problem of minimal surfaces embedded in R3.

In this work we consider classical Liouville Field theory in flat space and we study

its T T̄ deformation. Our motivation to study this deformation of classical LFT is to

initiate the study of the deformation of one of the simplest but non-trivial conformal

field theories whose integrability can be formulated within many of the usual frameworks

such as a) the existence of infinite integrals of motion, b) Lax-pair formulation and c)

Bäcklund transforms. The work is organized as follows. In the next section we begin

by reviewing classical aspects of the T T̄ deformation of a free scalar theory, and after

explaining general results of LFT we move to section 3 where we study novel characteristics

of the T T̄ -deformed version of LFT. After rederiving its exact Lagrangian and discussing

some aspects of its equation of motion we show it is possible to construct an infinite set of

higher conserved currents which generalize LFT undeformed holomorphic currents. We end

the section by presenting the vacuum solutions of the T T̄ deformed theory which generalize

classical LFT vacua. We leave section 4 for discussion and open problems.

2 Free scalar field and Liouville field theory

2.1 Free scalar field and its T T̄ deformation

The simplest 2-dimensional conformal field theory one can study in the context of T T̄

deformations is the theory of a free scalar field and many of the results of this work will

be generalizations of those that had been obtained for that theory. Thus, we find it useful,

both for fixing notations and appreciating the generalization, to make a short review of

some known results for the T T̄ deformation of the free scalar field.

We consider a two dimensional flat space with euclidean metric and we choose the

coordinates z = x + iy and z̄ = x − iy. Derivatives become ∂ = 1
2

(
∂
∂x − i

∂
∂y

)
and ∂̄ =

1
2

(
∂
∂x + i ∂∂y

)
. In this language the undeformed Lagrangian is

L(0) = ∂ϕ∂̄ϕ =
1

4
∂µϕ∂

µϕ (2.1)

and the equations of motion are simply �ϕ = 4 ∂∂̄ϕ = 0. An obvious conserved current of

the theory is Jµ = ∂µϕ, such that ∂µJµ = 0. In complex variables this means τ
(0)
1 = −∂ϕ

is holomorphic and τ̄ (0)
−1 = −∂̄ϕ is anti-holomorphic. One can construct an infinite set of

traceless symmetric products of the currents such as

Jµ1µ2 = Jµ1Jµ2 −
1

2
ηµ1µ2J

ρJρ

Jµ1µ2µ3 = Jµ1Jµ2Jµ3 −
1

4
ηµ1µ2J

ρJρJµ3 −
1

4
ηµ1µ3J

ρJρJµ2 −
1

4
ηµ2µ3J

ρJρJµ1 (2.2)
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and so on, which are also conserved ∂µ1Jµ1...µN = 0. In complex variables this is translated

to the simple statement that the powers τ (0)
n = −(∂ϕ)n are holomorphic (and their counter-

parts anti-holomorphic). The canonical stress tensor components are defined as τ = −2Tzz,

τ̄ = −2Tz̄z̄ and Θ = 2Tz̄z such that ∂̄τ = ∂Θ and ∂τ̄ = ∂̄Θ by Noether’s theorem. In this

particular case Θ = 0 (the canonical stress tensor is traceless) and τ = τ
(0)
2 is holomorphic

∂̄τ = 0 (and so on for its anti-holomorphic counterpart).

T T̄ deforming the theory means introducing a parameter t and finding a t-dependent

Lagrangian such that

∂L(t)

∂t
= det(Tµν), with L(0) = ∂ϕ∂̄ϕ (2.3)

and where Tµν is the stress tensor of the theory derived from L(t). The exact Lagrangian

for T T̄ deformed scalar field theory was first obtained in [3] and it is given by

L(t) =
1

2t

(√
1 + 4t∂ϕ∂̄ϕ− 1

)
=

1

2t

(√
1 + 4tX − 1

)
= X −X2 t+O(t2) (2.4)

where we shall denote X = ∂ϕ∂̄ϕ throughout the rest of this work. Up to an irrelevant

constant this action can be seen as the static gauge Nambu-Goto action of a string in a

three dimensional target. The equation of motion derived from this Lagrangian is

∂

(
∂̄ϕ√

1 + 4tX

)
+ ∂̄

(
∂ϕ√

1 + 4tX

)
= 0 (2.5)

which can also be written as

∂∂̄ϕ = t
∂2ϕ(∂̄ϕ)2 + ∂̄2ϕ(∂ϕ)2

1 + 2tX
(2.6)

It is worth observing that this second way of writing the equation of motion shows us that

we can always exchange mixed ∂ and ∂̄ derivatives of the field with “pure” derivatives

∂, ∂2, ∂̄, ∂̄2. While this seems a trivial observation, it continues to be true even for higher

derivatives. By taking ∂ and ∂̄ of the equation of motion (2.6) we obtain a two dimensional

linear system for ∂2∂̄ϕ and ∂̄2∂ϕ which can be inverted to obtain

∂2∂̄ϕ =
t(1 + 2tX)∂3ϕ(∂̄ϕ)2 + t2∂̄3ϕ(∂ϕ)4

(1 + tX)(1 + 3tX)
(2.7)

+
t ∂ϕ

2X2(1 + tX)

[
(1 + 4tX)

(1 + 2tX)
(∂2ϕ(∂̄ϕ)2 + ∂̄2ϕ(∂ϕ)2)2 − (∂2ϕ(∂̄ϕ)2 − ∂̄2ϕ(∂ϕ)2)2

]
and an analogous expression exchanging ∂ ↔ ∂̄ for ∂̄2∂ϕ. In the right hand side of the

last equation we see only pure derivatives ∂, ∂2, ∂3, ∂̄, ∂̄2, ∂̄3. This pattern continues indef-

initely and the lesson is that thanks to the structural form of the equation of motion (2.6)

mixed derivatives of the field can always be exchanged through the equation of motion and

properties such as (2.7) to pure derivatives of the field. This fact will be useful when we

construct conserved currents for the T T̄ deformation of LFT.

– 3 –
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It is possible to construct an infinite set [3] of conserved currents τn and τ̄−n for n ≥ 1

which generalize τ (0)
n and τ̄ (0)

−n that satisfy

∂̄τn − ∂Θn−2 = 0, ∂τ̄−n − ∂̄Θ̄2−n = 0 (2.8)

from which an infinite set of local integrals of motion can be written down

Qn−1 =

∮
(τn dz + Θn−2 dz̄), Q̄1−n =

∮
(τ̄−n dz̄ + Θ̄2−n dz) (2.9)

The higher conserved currents are

τn =− (∂ϕ)n√
1 + 4tX

(
2

1 +
√

1 + 4tX

)n−2

= −(∂ϕ)n
(
1− nXt+O(t2)

)
Θn−2 =− t(∂ϕ)n(∂̄ϕ)2

√
1 + 4tX

(
2

1 +
√

1 + 4tX

)n
= −tX2(∂ϕ)n−2 +O(t2) (2.10)

and the property (2.8) can be verified with the use of the equations of motion (2.7). Similar

expressions with ∂ ↔ ∂̄ hold for τ̄−n and Θ̄2−n. These set of higher conserved currents

include the components of the stress tensor

τ2 = − (∂ϕ)2

√
1 + 4tX

= −L(t)
X (∂ϕ)2 = τ

Θ0 = −
(√

1 + 4tX − 1
)2

4t
√

1 + 4tX
= XL(t)

X − L
(t) = Θ (2.11)

where L(t)
X = ∂XL(t).

An interesting property of Lagrangian (2.4) is its scaling as a function of t and X:

L(λt)(λ−1X) = λ−1L(t)(X) (2.12)

This implies

t
∂L(t)

∂t
= XL(t)

X − L
(t) (2.13)

Notice the r.h.s. of the previous equation is the definition of Θ in (2.11). On the l.h.s. on

the other hand we have, by the definition of T T̄ deformation (2.3), t ∂L
(t)

∂t = tTr(Tµν) =

t(Θ2 − τ τ̄ ). Thus the operator T T̄ (z, z̄) = τ τ̄ −Θ2 satisfies

t T T̄ (z, z̄) = −Θ(z, z̄) (2.14)

This noteworthy property was found in [3], it is a consequence of the scaling properties

of the Lagrangian (2.4); see [26] for other important properties of these type of theories

related to their scaling. The last equation implies

T T̄ (z, z̄) =
1

2t2

(√
1 + 4t2τ τ̄

)
(2.15)
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2.2 Classical Liouville field theory

Local properties of classical Liouville field theory can be derived from the Lagrangian

L(0) = ∂ϕ∂̄ϕ− µeϕ = X + V (2.16)

where we shall use V = −µeϕ for the rest of this work. The equation of motion

2∂∂̄ϕ+ µeϕ = 0 (2.17)

describes the conformal factor of a two-dimensional constant (2µ) curvature space with µ

having dimensions of (Length)−2. The theory in the Riemann sphere is globally defined

with the boundary condition

ϕ(z, z̄) = −2 log(zz̄) +O(1), for |z| → ∞ (2.18)

This boundary condition is consistent with the transformation rule for the field under

holomorphic mappings z = z(w)

ϕ(w, w̄) = ϕ(z, z̄) + log(z′(w)z̄′(w̄)) (2.19)

which leave the equation of motion (2.17) invariant.

The canonical stress tensor derived from (2.16) is

T cµν =
1

2
∂µϕ∂νϕ−

1

4
ηµν∂ρϕ∂

ρϕ+ ηµνµe
ϕ (2.20)

or in complex components

τ = −(∂ϕ)2, τ̄ = −(∂̄ϕ)2, Θ = µeϕ (2.21)

with the conservation reading ∂̄τ = ∂Θ and ∂τ̄ = ∂̄Θ. We therefore see that the canonical

stress tensor is not traceless and does not automatically provide an (anti)-holomorphic (τ̄ )τ .

One can always modify the stress tensor with a total derivative Tµν = T cµν + ∂ρBρµν ,

with B being antisymmetric in its first two indexes Bρµν = −Bµρν to guarantee conserva-

tion. We may choose

Bρµν = ηµν ∂ρϕ− ηρν ∂µϕ (2.22)

With this choice the complex components of the modified stress tensor become

τ2 = −(∂ϕ)2 + 2∂2ϕ, τ̄−2 = −(∂̄ϕ)2 + 2∂̄2ϕ, Θ0 = µeϕ + 2∂∂̄ϕ = 0 (2.23)

Notice that due to the equation of motion (2.17) we have Θ0 = 0, this is, the new stress

tensor is traceless which means

∂̄τ2 = 0, ∂τ̄−2 = 0 (2.24)

i.e. the stress tensor (τ̄−2) τ2 is (anti)-holomorphic. This new stress tensor has the property

of transforming almost homogeneously under holomorphic mappings

τ2(w) = (z′(w))2 τ2(z) + 2{z, w} (2.25)

– 5 –
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with {z, w} the Schwarzian derivative. When the mapping is a global conformal transfor-

mation, the transformation is homogeneous. Having (anti)-holomorphic currents it is easy

to define higher conserved currents simply by taking powers

τ2n = − 1

4n−1

(
(∂ϕ)2 − 2∂2ϕ

)n
=

(
−1

4

)n−1

(τ2)n,

τ̄−2n = − 1

4n−1

(
(∂̄ϕ)2 − 2∂̄2ϕ

)n
=

(
−1

4

)n−1

(τ̄−2)n (2.26)

such that ∂̄τ2n = 0 and ∂τ̄−2n = 0. Those are the currents we will generalize when we

T T̄ deform LFT. Throughout this work the subindex of different currents will refer to the

Lorentz spin of the current, where ∂ϕ has spin +1 and ∂̄ϕ has spin −1.1 To count spin

one just sums the number of ∂ and ∂̄ in each term such that s = #(∂)−#(∂̄). We will say

that the current τ2n has spin s(τ2n) = 2n because each term of the current has that spin.

Fields such as X = ∂ϕ∂̄ϕ or ∂2ϕ(∂̄ϕ)2 have zero spin and we call them spinless. Keeping

track of spin level will be instrumental to the fact that we will work out different operator

identities valid through equations of motion. Since we will see the equation of motion and

the equations derived from it preserve spin, every field identity we aim for will have to have

homogeneous spin.

To find vacuum solutions of classical LFT notice the following two identities(
∂2 +

1

4
τ2

)
ψ(z, z̄) = 0,

(
∂̄2 +

1

4
τ̄ 2

)
ψ(z, z̄) = 0 with ψ(z, z̄) = e−ϕ(z,z̄)/2 (2.27)

For a vacuum solution that has τ2|sol = τ̄ 2|sol = 0 the ψ field satisfies ∂2ψ = 0 and

∂̄2ψ = 0; this means ψ is both linear in z and in z̄. Demanding reality of ϕ and with

eϕ = ψ−2 one finds

eϕ(z,z̄) =
4

µ (|az + b|2 + |cz + d|2)2 (2.28)

with arbitrary complex parameters a, b, c, d. We have assumed µ > 0. Plugging this ansatz

into the equation of motion (2.17) the parameters are constrained to satisfy ad − bc = 1.

If we make an arbitrary holomorphic mapping z = z(w) and transform this solution using

the rule (2.19), we will obtain another solution which shall not be a vacuum one due the

inhomogeneous term in the stress tensor transformation (2.25). The exception to this is if

the transformation we choose is a global conformal transformation such that the Schwarzian

derivative vanishes: for such transformations a vanishing stress tensor transforms to another

vanishing stress tensor y we move through the different vacuum solutions (which only means

changing the values of the parameters a, b, c, d).

Using the constraint ad− bc = 1 it is possible to rewrite solution (2.28) as

eϕ(z,z̄) =
4

µ
(
|z−z0|2
R0

+R0

)2 with z0 = − bā+ dc̄

|a|2 + |c|2
, R0 =

1

|a|2 + |c|2
(2.29)

In this form it is possible to appreciate that the solution is actually characterized by only

three real parameters: the complex point z0 and the length scale R0. The field ϕ is centered

at z = z0 where it reaches a maximum of ϕ = log
(

4
µR2

0

)
.

1Other authors consider the Lorentz spin in absolute value. We choose to keep track of the sign.
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3 T T̄ deformation of Liouville field theory

3.1 Exact action and properties

The action for the T T̄ deformation of a single scalar theory with an arbitrary potential was

originally written down as an undetermined series in [3] (see also [46]). Later, the authors

of [24, 25] were able to find it in a closed form. Their key observation was noticing that

an instance of Burgers’ differential equation was satisfied by the action. Here we find it

instructive to rederive it by reordering and summing the undetermined series of [3]. While

the Burgers’ equation is more elegant as a way of arriving to this action, we believe the

derivation we will present could be of future reference for other T T̄ deformations.

We define the T T̄ deformation by

∂L(t)

∂t
= Tr(Tµν) = Θ2 − τ τ̄ , with L(0) = X + V, (3.1)

where recall X = ∂ϕ∂̄ϕ and V = −µeϕ (though this derivation is valid for any potential).

Assuming L(t) = L(t)(X,V ) we have

Θ =
1

2

(
∂L(t)

∂(∂ϕ)
∂ϕ+

∂L(t)

∂(∂̄ϕ)
∂̄ϕ− 2L(t)

)
= L(t)

X X − L
(t)

τ = − ∂L(t)

∂(∂̄ϕ)
∂ϕ = −L(t)

X (∂ϕ)2, τ̄ = − ∂L(t)

∂(∂ϕ)
∂̄ϕ = −L(t)

X (∂̄ϕ)2 (3.2)

Defining a power expansion L(t) =
∑∞

n=0 t
nLn and using the defining property (3.1) after

some elementary manipulations we obtain the recurrence

Ln+1 =
1

n+ 1

n∑
k=0

(Lk Ln−k − 2XLn−k Lk,X) (3.3)

where Lk,X = ∂XLk. Using this recurrence starting with L0 = X + V the first few terms

(see appendix A) allow us to recognize the following pattern

Ln = V n+1 + (−1)n
[n
2

]∑
k=0

(2n− 2k)!Xn−k+1 V k

k! (n− k + 1)! (n− 2k)!
and (3.4)

Ln,X = (−1)n
[n
2

]∑
k=0

(2n− 2k)!Xn−k V k

k! (n− k)! (n− 2k)!
(3.5)

Observe from (3.4) that Ln(X = 0, V ) = V n+1 such that L(t)(X = 0, V ) = V
1−t V . It will

be easier to work out the series resulting for ∂XL(t) =
∑∞

t=0 t
nLn,X , therefore we focus

on (3.5). After some manipulations detailed in appendix A we can write

L(t)
X =

1√
π

∞∑
k=0

∞∑
n=0

Γ
(

1
2 + n+ k

)
k!n!

(−4tX)n(4t2XV )k (3.6)

– 7 –
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But now this double series became an iterated double binomial series which can be easily

summed with the usual formulae

L(t)
X =

1√
1 + 4tX(1− tV )

(3.7)

Integrating this in X and using the previous result L(t)(X = 0, V ) = V
1−t V we finally get

L(t)(X,V ) =
1

2t(1− tV )

(√
1 + 4tX(1− tV ) + 2tV − 1

)
(3.8)

or, more explicitly for our potential of interest

L(t) =
1

2t(1 + tµeϕ)

(√
1 + 4t∂ϕ∂̄ϕ(1 + tµeϕ)− 2tµeϕ − 1

)
(3.9)

This is the T T̄ deformed action of classical LFT which is the main interest of our work. It

is an irrelevant deformation of LFT with a deforming flow defined through the determinant

of its canonical stress tensor. In section 4 we shall discuss possible alternatives of this type

of deformation.

The analogous scaling property we saw in the V = 0 case is now (cf. (2.12))

L(λt)(λ−1X,λ−1V ) = λ−1L(t)(X,V ) (3.10)

which implies

t
∂L(t)

∂t
= XL(t)

X − L
(t) + V L(t)

V (3.11)

In our case V L(t)
V = ∂L(t)

∂ϕ . With Θ from (3.2) we find the analogous to (2.14)

t T T̄ (z, z̄) = −Θ(z, z̄)− ∂L(t)

∂ϕ
(3.12)

which also implies

T T̄ (z, z̄) =
1

2t2

√1 + 4t2τ τ̄ + 4t
∂L(t)

∂ϕ
− 1− 2t

∂L(t)

∂ϕ

 (3.13)

The equation of motion derived from (3.9) is

∂

(
∂̄ϕ

Ω

)
+ ∂̄

(
∂ϕ

Ω

)
=

V (1 + Ω)2

4Ω(1− tV )2
(3.14)

where for the rest of this work we will use

Ω ≡ Ω(X,V ) =
√

1 + 4tX(1− tV ) =
√

1 + 4t∂ϕ∂̄ϕ(1 + tµeϕ) (3.15)

Expanding the derivatives we arrive to the following form of the equation of motion

∂∂̄ϕ =
V (1 + Ω)2(2Ω− 1)

4(1− tV )2 (1 + Ω2)
+

2t(1− tV )

1 + Ω2

(
∂2ϕ(∂̄ϕ)2 + ∂̄2ϕ(∂ϕ)2

)
=
V

2
+ t
(
V 2 + 2V X + ∂2ϕ(∂̄ϕ)2 + ∂̄2ϕ(∂ϕ)2

)
+O(t2) (3.16)

– 8 –
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Here we once again see that the equation of motion allows us to replace mixed derivatives

∂∂̄ϕ with pure derivatives ∂ϕ, ∂̄ϕ, ∂2ϕ, ∂̄2ϕ. Moreover, continuing this pattern, by taking

∂ and ∂̄ derivatives of the equation of motion (3.16) we get a 2 dimensional linear system

on ∂2∂̄ϕ and ∂̄2∂ϕ which can easily be inverted. The solution will allow us to express triple

mixed derivatives ∂2∂̄ϕ and ∂̄2∂ϕ in terms of pure derivatives ∂ϕ, ∂̄ϕ, ∂2ϕ, ∂̄2ϕ, ∂3ϕ, ∂̄3ϕ.

This pattern continues ad inf. and it is a useful property to decide how to construct the

higher conserved currents of the theory. It should be observed that both the equation of

motion (3.16) and the expressions for ∂2∂̄ϕ and ∂̄2∂̄ϕ preserve the spin as defined in the

previous section.

While by deforming LFT we have broken conformal symmetry, the equation of mo-

tion (3.16) is still covariant under the complex transformation z = az′ + b, z̄ = āz̄′ + b̄ if

the field and the t parameter transform as

ϕ(z′, z̄′) = ϕ(z, z̄) + log |a|2, t′ = |a|−2t (3.17)

as can be easily checked explicitly in (3.16). This symmetry, akin of scaling (3.10), will be

useful when we study vacuum solutions of the theory.

Finally, the explicit form of the components of the canonical stress tensor are

τ = − 1

Ω
(∂ϕ)2, τ̄ = − 1

Ω
(∂̄ϕ)2 Θ = − (1− Ω)2

4tΩ(1− tV )
− V

1− tV
(3.18)

such that they satisfy ∂̄τ − ∂Θ = 0 and ∂τ̄ − ∂̄Θ = 0 by construction and can be used to

compute the local integrals of motion

Q =

∮
(τ dz + Θ dz̄), Q̄ =

∮
(τ̄ dz̄ + Θ dz) (3.19)

3.2 Higher conserved currents

We would like to show it is possible to generalize the undeformed currents of LFT we

presented in section 2.2

τ (0)
2n = − 1

4n−1

(
(∂ϕ)2 − 2∂2ϕ

)n
, τ̄ (0)

−2n = − 1

4n−1

(
(∂̄ϕ)2 − 2∂̄2ϕ

)n
(3.20)

to our T T̄ deformed theory. Specifically we would like two sets {τ2n,Θ2n−2} and

{τ̄−2n, Θ̄−2n+2} with n ≥ 1 such that

∂̄τ2n − ∂Θ2n−2 = 0, ∂τ̄−2n − ∂̄Θ̄−2n+2 = 0 (3.21)

From these one could construct the set of charges

Q2n−1 =

∮
(τ2n dz + Θ2n−2 dz̄), Q̄1−2n =

∮
(τ̄−2n dz̄ + Θ̄2−2n dz) (3.22)

We expect τ2n → τ
(0)
2n and Θ2n−2 → 0 when t→ 0. Let us explain the strategy we followed.

We begin by noticing we can write

τ (0)
2n = − 1

4n−1
(∂ϕ)2n

(
1− 2

∂2ϕ(∂̄ϕ)2

X2

)n
(3.23)
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and the simple observation that the parenthesis in the last equation is spinless. With this

last fact in mind we point out that the 2n- and (2n−2)-spin of τ2n and Θ2n−2 can be set by

an overall power of the first derivative of the field without loosing generality. In the function

multiplying that overall power we should expect second derivatives of the field from the

limit form (3.20). Moreover, as explained before, we should only use “pure” derivatives

since mixed ones can always be replaced by the equation of motion and its derivatives.

Without losing generality we considered the following two combinations containing second

derivatives which come from metric contractions which avoid mixed derivatives and are

spinless

Ys = ∂2ϕ(∂̄ϕ)2 + ∂̄2ϕ(∂ϕ)2, Ya = ∂2ϕ(∂̄ϕ)2 − ∂̄2ϕ(∂ϕ)2 (3.24)

Notice that the combination of second derivatives of both types can be written as ∂2ϕ∂̄2ϕ =
Y 2
s −Y 2

a
4X2 . With all these considerations our general ansatz was

τ2n = −fn(X,V, Ys, Ya)(∂ϕ)2n Θ2n−2 = −gn(X,V, Ys, Ya)(∂ϕ)2n−2

τ̄−2n = −fn(X,V, Ys,−Ya)(∂̄ϕ)2n Θ̄−2n+2 = −gn(X,V, Ys,−Ya)(∂̄ϕ)2n−2 (3.25)

this is, we admit a dependence on the field through V = −µeϕ, on its first derivatives

through the spin power (∂ϕ)2n and the spinless combination X = ∂ϕ∂̄ϕ, and on its second

derivatives through the spinless variables Ys and Ya. Plugging these in the conservation

equation (3.21) we use the equation of motion and its derivatives and we obtain a linear

combination of powers of the higher derivatives up to ∂3ϕ and ∂̄3ϕ whose coefficients we set

to zero. Doing so we obtain a complicated system of linear first order differential equations

for the functions f and g on its four variables. We shall not present these equations here

(they are not very illuminating) but just comment that the first progress one makes in

the process of solving them is to notice the variables Ys and Ya are constrained by the

equations to appear in the combinations

Y± =
1

2
Ya ±

Ω

1 + Ω2
Ys (3.26)

or

Y± =
(1± Ω)2

2(1 + Ω2)
∂2ϕ(∂̄ϕ)2 − (1∓ Ω)2

2(1 + Ω2)
∂̄2ϕ(∂ϕ)2 =

{
∂2ϕ(∂̄ϕ)2 +O(t2)

∂̄2ϕ(∂ϕ)2 +O(t2)
(3.27)

with the upper sign for τ2n and Θ2n−2 and the lower sign for τ̄−2n and Θ̄−2n+2. This reveals

that while one could construct the currents for the undeformed theory using exclusively

∂2ϕ or ∂̄2ϕ as in (3.20), in the deformed case a combination of both derivatives forcefully

appear in the currents and they do at different order in t. Moreover, the currents are

polynomial in the variables Y±.

Besides the property of the differential equations that constrain f and g we have just

mentioned, we will not go deeper on this path. Instead, we will present the result, establish

some properties and show by induction that the conservation equation (3.21) holds. The
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currents that satisfy (3.21) are

τ2n =− (Ω + 1)2

Ω(1− t V )

[
(1− tV )

(1 + Ω)2

(
1 + 2t

V Ω(Ω + 2)

1 + Ω2

)
(∂ϕ)2

− (1− t V )2

1 + Ω2
∂2ϕ+ 16t2

(1− t V )4

(1 + Ω2)(1 + Ω)4
∂̄2ϕ(∂ϕ)4

]n
(3.28)

Θ2n−2 =− 4t

Ω
(∂̄ϕ)2

[
(1− tV )

(1 + Ω)2

(
1 + 2t

V Ω(Ω + 2)

1 + Ω2

)
(∂ϕ)2

− (1− t V )2

1 + Ω2
∂2ϕ+ 16t2

(1− t V )4

(1 + Ω2)(1 + Ω)4
∂̄2ϕ(∂ϕ)4

]n
(3.29)

and similar expressions exchanging ∂ ↔ ∂̄ for τ̄−2n and Θ̄−2n+2. The following properties

hold

• It is possible to show that the conservation of the currents τ2n and Θ2n−2 is non-

trivial. By this we mean it is not possible to find a (2n−1)-spin current ρ2n−1 that

satisfies

τ2n
?
= ∂ρ2n−1 and Θ2n−2

?
= ∂̄ρ2n−1 (3.30)

such that conservation rule (3.21) becomes a trivial statement. Here ρ2n−1 is some

function of the field and its derivatives. What we mean by this claim is that, while

for a particular solution, (3.30) is possible locally, it is not possible to find such a

ρ2n−1 generically as a field identity. In the language of [32], the closed forms

T2n−1 = τ2ndz + Θ2n−2dz̄ (3.31)

T̄1−2n = τ̄−2ndz̄ + Θ̄2−2ndz (3.32)

are not exact forms as generic field identities (while, by Poincaré lemma, they are

locally exact for a particular solution).

• Expanding in t the expressions (3.28)–(3.29)

τ2n= τ (0)
2n + 4τ (0)

2n−2

(
((2n+1)V −2nX)(∂ϕ)2 + 2((2n−1)V +2nX)∂2ϕ

)
t+O(t2)

Θ2n−2 = (∂̄ϕ)2 τ (0)
2n t+O(t2) (3.33)

this is, τ2n → τ
(0)
2n and Θ2n−2 → 0 for t → 0 as expected. Notice that ∂̄2ϕ still does

not appear until O(t2).

• We shall use in the next section the fact that the currents can be written as

τ2n = −(∂ϕ)2n (F0(X,V, Y+))n

Ω(1−tV )(1+Ω)2n−2
, Θ2n−2 = −4t(∂ϕ)2n(∂̄ϕ)2 (F0(X,V, Y+))n

Ω(1+Ω)2n

τ̄−2n = −(∂̄ϕ)2n (F0(X,V,−Y−))n

Ω(1−tV )(1+Ω)2n−2
, Θ̄−2n+2 = −4t(∂̄ϕ)2n(∂ϕ)2 (F0(X,V,−Y−))n

Ω(1+Ω)2n
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where F0(X,V,±Y±) is the spinless expression

F0(X,V,±Y±) = (1− tV )

(
1 + 2t

V Ω(Ω + 2)

1 + Ω2

)
∓ 2

(1− tV )2

X2
Y± (3.34)

with Y± defined in (3.26). This means that if for a given solution, both F0(X,V, Y+)

and F0(X,V,−Y−) vanish, all the higher conserved currents τ2n, Θ2n−2, τ̄−2n and

Θ̄−2n+2 also vanish.

• The currents depend explicitly on V = −µeϕ such that we can take µ→ 0 to recover

results valid for T T̄ deformed scalar field theory. We obtain

T scalar
2n = − (∂ϕ)2n

ω(1 + ω)2n−2

(
1 +

8t2

(1 + 2tX)

(
∂̄2ϕ(∂ϕ)2

(1 + ω)2
− ∂2ϕ(∂̄ϕ)2

(1− ω)2

))n
Θscalar

2n−2 = −4t(∂ϕ)2n(∂̄ϕ)2

ω(1 + ω)2n

(
1 +

8t2

(1 + 2tX)

(
∂̄2ϕ(∂ϕ)2

(1 + ω)2
− ∂2ϕ(∂̄ϕ)2

(1− ω)2

))n
(3.35)

where ω =
√

1 + 4tX. These second order currents closely resemble those of (2.10)

up to the parenthesis in the r.h.s.

• There is a degeneracy of currents only at the lowest spins. Besides τ2, τ̄ 2, Θ0 and Θ̄0

we have the components of the canonical stress tensor τ , τ̄ and Θ explicitly written

in (3.18). Thus for the lowest spin conservation, any combination will provide

∂̄ (α1τ2 + α2τ )− ∂ (α1Θ0 + α2Θ) = 0

∂ (β1τ̄−2 + β2τ̄ )− ∂̄
(
β1Θ̄0 + β2Θ

)
= 0 (3.36)

for any given αi, βi. We shall expand on this point below.

• The higher currents (3.28)–(3.29) satisfy recurrent relations relating them at different

spin. It can be easily checked that

τ2n+2 = −Ω(1− tV )

(1 + Ω)2
τ2τ2n, Θ2n = −Ω(∂ϕ)2

4tX2
Θ0Θ2n−2 (3.37)

Also, currents τ2n and Θ2n−2 are related through

Θ2n−2 =
4t(1− tV )(∂̄ϕ)2

(1 + Ω)2
τ2n, or τ2n =

4t(1− tV )(∂ϕ)2

(1− Ω)2
Θ2n−2 (3.38)

Analogous relations hold for τ̄−2n and Θ̄−2n+2 by exchanging ∂ ↔ ∂̄ in (3.37)–(3.38).

The degeneracy at the lowest spin explained at (3.36) can be understood by the fact

that the components of the stress tensor (τ , τ̄ ,Θ) are related to our lowest-spin currents

(τ2, τ̄−2,Θ0, Θ̄0) by a derivative as follows

τ2 = τ + ∂
(
ρ(X,V ) ∂ϕ

)
, Θ0 = Θ + ∂̄

(
ρ(X,V ) ∂ϕ

)
τ̄−2 = τ̄ + ∂̄

(
ρ(X,V ) ∂̄ϕ

)
, Θ̄0 = Θ + ∂

(
ρ(X,V ) ∂̄ϕ

)
(3.39)
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where ρ(X,V ) = 4(1−tV )
Ω+1 . This means that the conservation equation for τ2 and θ0

∂̄τ2 − ∂Θ0 = ∂̄τ + ∂̄∂
(
ρ(X,V ) ∂ϕ

)
− ∂Θ− ∂∂̄

(
ρ(X,V ) ∂ϕ

)
= ∂̄τ − ∂Θ = 0 (3.40)

holds after using Noether’s theorem for the canonical stress tensor. Notice, incidentally,

that relations (3.39) also imply

Q1 =

∮
(τ2 dz + Θ0 dz̄) =

∮
(τ dz + Θ dz̄) = Q

Q̄−1 =

∮
(τ̄−2 dz̄ + Θ̄0 dz) =

∮
(τ̄ dz̄ + Θ dz) = Q̄ (3.41)

this is, the lowest-spin charges we defined in (3.22) coincide with the charges computed

with the canonical stress tensor (3.19). Once again, in the language of [32], if we define

the forms associated to the stress tensor

T = τ dz + Θ dz̄, T̄ = τ̄ dz̄ + Θ̄ dz (3.42)

we have that relations (3.39) mean that T and T̄ are equal to the forms T1 and T̄−1 we

defined in (3.31) up to an exact form:

T1 = T + d (ρ(X,V )∂ϕ) , T̄−1 = T̄ + d
(
ρ(X,V )∂̄ϕ

)
(3.43)

and therefore if the forms T, T̄ are closed, the forms T1, T̄−1 will also be closed: dT1 =

dT = 0 and dT̄−1 = dT̄ = 0.

Having shown the conservation (3.21) for n = 1 in (3.40) we start the inductive reason-

ing. We assume equation (3.21) holds for n and we should prove it also holds for n→ n+1

as a consequence. Consider the difference ∂̄τ2n+2 − ∂θ2n. We have

∂̄τ2n+2 − ∂θ2n = ∂

(
Ω(∂ϕ)2

4tX2
Θ0Θ2n−2

)
− ∂̄

(
Ω(1− tV )

(1 + Ω)2
τ2τ2n

)
(3.44)

= 4t(1− tV )Θ2n−2τ2

[
(∂̄ϕ)2

(1 + Ω)2
∂

(
Ω(∂ϕ)2

4tX2

)
− (∂ϕ)2

(1− Ω)2
∂̄

(
Ω(1− tV )

(1 + Ω)2

)]
= 0 (3.45)

To go from (3.44) to (3.45) we have extensively used the recursive properties (3.37)–(3.38)

and the inductive hypothesis. We leave the details in the appendix B. Having eliminated

every trace of the currents from inside the bracket in (3.45), the remaining pieces still

inside ∂(..) and ∂̄(..) depend at most on first derivatives of the field. Thus, a tedious but

straightforward computation we leave to the reader shows that the bracket in (3.45) is

identically zero after the equation of motion is used. Of course, a proof for the τ̄−2n, Θ̄−2n+2

conservation in (3.21) holds analogously.

It should be noticed the conserved currents we obtained (3.28)–(3.29) through our

ansantz and differential method can also be constructed using the method proposed in [32]

which is based on a field dependent variable transformation [27, 29]. We have checked both

derivations lead to the exact same results.
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3.3 Exact vacuum solutions

We define a solution to be a vacuum one if all the currents τ2n and τ̄−2n defined in the

previous section vanish when evaluated in the solution. From (3.38) we see that this

implies Θ2n−2 and Θ̄2−2n will vanish and therefore the charges Q2n−1 and Q̄1−2n will also

vanish (cf. (3.22)). Also recall that the vanishing of Q1 and Q̄−1 implies the vanishing of

the charges (3.19) constructed from the canonical stress tensor.

As we saw previously, for a solution to be a vacuum one it suffices that the spinless

functions defined in (3.34) vanish, this is F0(X,V, Y +) = F0(X,V,−Y −) = 0. One can

verify that both functions vanishing at the same time requires

Ya = ∂2ϕ(∂̄ϕ)2 − ∂̄2ϕ(∂ϕ)2
∣∣∣
sol

= 0 (3.46)

and check that, in particular, if ϕ(z, z̄) is a function of |z− z0| with arbitrary z0 it satisfies

the condition (3.46). The key to arrive to vacuum solutions in closed form for the T T̄

deformed theory is to study the inverse of the solution. Consider the inverse of undeformed

LFT solution (2.29)

eϕ(z,z̄) =
4

µ
(
|z−z0|2
R0

+R0

)2 → |z − z0| = R0

√
2ψ

R0
− 1 (3.47)

where we have set the scale µ = 1 in the last equation and used ψ = e−ϕ/2. Notice one

can always reinstate µ with the field redefinition ϕ → ϕ + log µ and therefore we shall

alternatively omit or reinstate µ when convenient. Based on (3.47) our ansatz for the

inverse of the deformed solution is

|z − z0| = r(ψ) = R0

√
2ψ

R0
− 1

(
1 + t r1(ψ) + t2 r2(ψ) + . . .

)
(3.48)

with {ri(ψ)}i∈N functions to be determined. When t → 0 we would recover LFT solu-

tion (3.47) with its characteristic scale R0. Both the equation of motion and the condition

for it to be a vacuum solution are differential equations highly non linear in r(ψ) and its

first derivative r′(ψ), but they are linear in the second derivative r′′(ψ). Therefore we can

combine both equations and establish a non-linear first order differential equation r(ψ)

should satisfy to be the inverse of a vacuum solution of the theory:

0 =
(

16t
(
t+ ψ2

)3 − (2tψ + ψ3
)2
r(ψ)2

)
− 8

(
tψ3

(
t+ ψ2

)
r(ψ)

)
r′(ψ)

+
(

4ψ4
(
t+ ψ2

)2 − ψ6r(ψ)2
)
r′(ψ)2 − 2

(
ψ7r(ψ)

)
r′(ψ)3 (3.49)

It should be noted though, that in order to arrive to such a differential equation, a step

of squaring an intermediate equation was taken in order to get rid of a square root. This

means that any solution of (3.49) must be checked in the original second order equation

of motion to verify no sign ambiguity or constrain remains. We plug the ansatz (3.48)

in (3.49) and we obtain, order by order, a linear first order differential equation for each
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function ri(ψ) which can be easily solved producing one integration constant ci at each

order. Just to illustrate, the first function is

r1(ψ) =
2

R0ψ
+
c1(ψ −R0)

2ψ −R0
(3.50)

with the following ones also being rational functions of ψ; cf. appendix C. The series goes

on indefinitely but the surprise is that the ansatz (3.48) can be resummed in the compact

expression

|z − z0| = r(ϕ) = R(t)

√
2 e−

ϕ
2

R(t)
√
µ
− 1

(
1 + 2 t

√
µ

R(t)
e
ϕ
2

)
, −1

4
R(t)2 ≤ t ≤ 2R(t)2 (3.51)

if one chooses R(t) = R0 + R0c1t + O(t2) to absorb the series of constants {ci}i∈N (see

appendix C for more details). We shall explain the condition −1
4R(t)2 ≤ t ≤ 2R(t)2 below.

While we arrived to (3.51) through the ansatz (3.48) it turns out that solution (3.51)

supersedes the ansatz in that it includes solutions with more general R(t) functions which

need not have a regular expansion in t close to t = 0. The role of the function R(t) is that

of a t-dependent length scale which fixes the maximum of ϕ at its center z0

eϕ(z=z0) =
4

µR(t)2
(3.52)

If the function R(t) is such that R(t = 0) = R0 then those solutions include the

undeformed LFT solution (3.47). A particular one is when the function R(t) = R0; this is,

the function R(t) is constant for any value of t. We shall call such case the minimal solution

because it is the simplest one which includes the undeformed solution (3.47) at t = 0.

Let us explain the interval restriction −1
4R(t)2 ≤ t ≤ 2R(t)2 in detail. Notice that for

|z − z0| to be real or |z − z0|2 positive, the argument of the square root has to be positive

which means ϕ ≤ log( 4
µR(t)2 ). Also in order for |z − z0| ≥ 0 the parenthesis on the r.h.s.

of (3.51) has to be positive which means, combined with the previous bound for ϕ, that

the solution makes sense only for t ≥ −1
4R(t)2.

For the other bound recall that while it is true that (3.51) is an exact solution of (3.49),

we warned before that one has to plug this solution back on the second order equation of

motion to verify no sign or constraint was missed when squaring the differential equations.

Actually, when doing that we find the non-perturbative restriction

Sign
[
R(t)− 2eϕ/2t

√
µ+ 2eϕR(t)tµ

]
− Sign

[
R(t) + 2 t

√
µ e

ϕ
2

]
= 0 (3.53)

The second sign function is always positive from the discussion in the previous paragraph.

Therefore, to fulfill (3.53) we need

R(t)− 2eϕ/2t
√
µ+ 2eϕR(t)tµ ≥ 0 (3.54)

A careful analysis of (3.54) shows that it is always true, for arbitrary values of ϕ ≤
log( 4

µR(t)2 ), as long as t ≤ 2R(t)2. It should be noted that the bound (3.54) saturates

when r′(ψ) = 0, this is, when it becomes impossible to invert (3.51). This means that the
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restriction t ≤ 2R(t)2 is not only necessary in order to have a solution of the equation of

motion but it also guarantees that r′(ψ) ≥ 0 and therefore expression (3.51) will have a

unique inverse that will allow us to write ϕ(r) = ϕ(|z − z0|) unequivocally.

Let us momentarily go back to the minimal solution. In that case the restriction

becomes t ∈
[
−1

4R
2
0, 2R

2
0

]
. This means that the minimal generalization of LFT undeformed

vacuum has values of t bounded from below and from above in a window that includes t = 0.

It should be stressed though that while the minimal solution has that restriction for t, this

is not general when we consider arbitrary R(t). In fact, it is possible to choose R(t) such

that t is either unbounded from above or unbounded from below or both. Just to show it

is possible, we construct the following examples.

For positive t consider the choice of R(t)

R(t) =
√

2
√
t−R0 (3.55)

This R(t) was engineered such that R
(
t = 2R2

0

)
= R0, this is, it coincides with the minimal

solution in its upper bound for t. But also notice that the restriction t ≤ 2R(t)2, implies

for R(t) in (3.55) that t ≥ 2R2
0. This means that for the choice (3.55) we have that t is

unbounded from above. For negative t on the other hand, consider choosing

R(t) = 4
√
−t−R0 (3.56)

In this case we engineered it such that R
(
t = −1

4R
2
0

)
= R0, in other words, such that it

coincides with the minimal solution in its lower bound. This time the other restriction

t ≥ −1
4R(t)2, with the choice (3.56) implies t ≤ −1

4R
2
0. Thus for such choice of R(t), we

found a solution in which t is unbounded from below. In fact we can combine the last two

choices with the minimal solution to define a continuous R(t) such as

R(t) =


4
√
−t−R0 t < −1

4R
2
0

R0 −1
4R

2
0 ≤ t ≤ 2R2

0√
2
√
t−R0 t > 2R2

0

(3.57)

With this choice we can see that −1
4R(t)2 ≤ t ≤ 2R(t)2 is satisfied always, independently

of t. Therefore, for this last choice, t is both unbounded from above and from below.

Another particular choice of R(t) is worth mentioning. Consider the scaling symmetry

of the equation of motion described in section 3.1, namely z → az, t→ |a|2t and ϕ(z, z̄)→
ϕ(z, z̄)− log |a|2 (cf. equation (3.17)). This symmetry applied to the general solution (3.51)

centered at z0 = 0 maps the solution on itself with R(t)→ |a|−1R
(
|a|2t

)
. This means that

the choice R(t) = λ
√
|t| with λ dimensionless is a self-similar solution. Particularly if

λ > 2 the solution has no bounds on the allowed values of t though it is ill defined at t = 0

because R(0) = 0.

It is clear from these examples that the general solution (3.51) with the restrictions

−1
4R(t)2 ≤ t ≤ 2R(t)2 might imply some kind of bound on t depending on the function

R(t). Whether there are or there are not bounds on the parameter t depends on that

particular choice and there are infinite choices of R(t) which imply absolutely no bound
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in t. We also stress the fact that it was not necessary to introduce another length scale to

overcome the bounds in t as the examples above show: this was possible since a natural

length scale is t itself, which has units of (Length)2.

For completeness, we should invert (3.51) to express ϕ(z, z̄). We can reexpress (3.51)

as a cubic equation for ψ = e−
ϕ
2

0 = −4t2R(t) + 4t
(
2t−R(t)2

) ψ
√
µ
−R(t)

(
r2 − 8t+R(t)2

)( ψ
√
µ

)2

+ 2R(t)2

(
ψ
√
µ

)3

(3.58)

As explained before, there is a unique way of inverting this equation. As long as −1
4R(t)2 ≤

t ≤ 2R(t)2 there is a unique real solution of the cubic (3.58) which is

e−
ϕ(z,z̄)

2 =
R(t)
√
µ

6

(
r̃2 − 8t̃+ 1 + Q

1/3
+ + sr̃,t̃|Q−|

1/3
)

(3.59)

where

Q± = r̃6 + 3r̃4(1− 8t̃) + 3r̃2(1− 4t̃+ 40t̃2) + (1 + 4t̃)3

± 12r̃
√

3t̃2(r̃2 − r2
+)(r̃2 − r2

−), with r± =

(
2t̃(5 + t̃)− 1± 2

√
t̃(t̃− 2)3

)1/2

(3.60)

and

sr̃,t̃ = Sign
(
r̃4 + r̃2(2− 16t̃) + (1 + 4t̃)2

)
, r̃ =

|z − z0|
R(t)

, t̃ =
t

R(t)2
(3.61)

It is curious that ϕ = −2 log |z|2 +O(1) when |z| → ∞ which is the same behavior as the

undeformed solution.

Notice that in order to write the cubic (3.58) we had to take a square of the implicit

solution (3.51) which makes one wonder what happens with the reversed sign solution

|z − z0| = r(ϕ) = R(t)

√
2 e−

ϕ
2

R(t)
√
µ
− 1

(
−1− 2 t

√
µ

R(t)
e
ϕ
2

)
, t ≤ −1

4
R(t)2 (3.62)

This solution candidate makes sense only for t ≤ −1
4R(t)2 such that |z − z0| > 0. The

problem with this solution is that it is incomplete; let us see how. If one tries to invert (3.62)

in order to have a univalued function ϕ(z, z̄) one finds there are two branches with ψ =

e−ϕ/2 real and positive. The turning point of those two branches is ϕ = ϕ0 with e−ϕ0/2 =
√
µR(t)(t̃+

√
t̃(t̃− 2)) and t̃ as in (3.61). Plugging (3.62) into the equation of motion one

finds the constraint ϕ > ϕ0 which selects the upper branch. But this at the same time

means that (3.62) is only defined for values of 0 ≤ |z − z0| < r0 with r0 given by

r0 = r(ϕ0) = R(t)

(
2t̃2 + 10t̃− 2 + 2

√
t̃(t̃− 2)

)1/2

(3.63)

In other words, with solution (3.62) we do not find a function ϕ(z, z̄) defined for the whole

complex plane but only for the disk 0 ≤ |z − z0| < r0.
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We end up this section by showing that the solution we called minimal, this is (3.59)

with the simplest choice R(t) = R0 corresponds to the vacuum of the deformed theory if one

insists on interpreting the T T̄ deformation geometrically as a field dependent coordinate

transformation [27, 29]. Solving the differential equations for the change of variables2

applied to Liouville undeformed solution (3.47) one finds

z − z0 = w − w0 +
4t(w − w0)

R2
0 + |w − w0|2

, z̄ − z̄0 = w̄ − w̄0 +
4t(w̄ − w̄0)

R2
0 + |w − w0|2

(3.64)

where (w, w̄) and (z, z̄) are the undeformed and the deformed coordinates respectively.

We have checked that inverting (3.64) and plugging (w(z, z̄), w̄(z, z̄)) in the undeformed

solution one obtains the minimal solution, this is (3.59) with R(t) = R0. Recall the minimal

solution had the restriction −1
4R

2
0 < t < 2R2

0, i.e. t is bounded both from below and from

above. One can conclude from this that the T T̄ deformation of LFT, interpreted as a field

dependent coordinate change, can not be extended to arbitrary values of t but only to an

interval around t = 0. Since our whole analysis of this section also started with expansions

of solutions around t = 0 and even if we were able to generalize those expansions by

insisting on an arbitrary R(t), it remains an open question whether the solutions we found

are the only vacuum solutions of the T T̄ deformed theory.

4 Discussion

When we presented classical Liouville field theory at the beginning of this work we said

its local properties can be derived from the Lagrangian L(0) = ∂ϕ∂̄ϕ − µeϕ which has

to be supplemented with the condition ϕ(z, z̄) = −2 log(zz̄) + O(1) for |z| → ∞ to have

the theory globally defined on the Riemann sphere. Some authors instead (see [40] for a

discussion on this issue) conventionally add an extra term in the Lagrangian

L(0) =
1

4
ĝab∂aϕ∂bϕ− µeϕ +

1

2
R̂ϕ (4.1)

where ĝ and R̂ refer to a background metric and corresponding curvature. This is, even if

one studies the theory in flat space and R̂ = 0 in every local expression, the additional term

of (4.1) accounts for the coupling of Liouville field with the curvature at |z| → ∞ to enforce

the boundary condition ϕ(z, z̄) = −2 log(zz̄) + O(1) for |z| → ∞ through this so called

background charge. One of the advantages of such formulation is that if instead of using

the canonical definition of the stress tenor one uses Hilbert definition by the background

metric T
(h)
µν = 2√

ĝ

δ(
√
ĝL(0))
δĝµν an holomorphic stress tensor component τ (h) = −(∂ϕ)2 + 2∂2ϕ

with trace Θ(h) = 0 is immediately obtained without the need to add ad-hoc modifications

to the canonical stress tensor. One may wonder whether another type of a T T̄ deformation

of LFT could be studied if the irrelevant flow is driven by the Hilbert stress tensor, this is

if ∂tL(t) = det(T
(h)
µν ). The authors of [24] have already studied the T T̄ flow of the addition

of linear dilaton coupling such as the one we added in (4.1), at least perturbatively in t.

The conclusion for the first orders in t is that one obtains a theory with infinite higher

2See formula 5.1 in [27].
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derivative terms which seems intractable non-perturbatively in the T T̄ flow. Thus, as far

as our understanding goes, the T T̄ deformation driven by the canonical stress tensor we

studied in this work seems the only tractable non-perturbative problem for T T̄ deformations

of classical LFT.

In section 3 of this work we were able to construct an infinite set of non trivial higher

conserved currents of the T T̄ deformation of classical LFT. Besides the current pairs we

obtained {τ2n,Θ2n−2} (and their opposite spin counterparts) other higher derivative cur-

rents such as the pair {τ2n+s,Θ2n−2+s} = {∂sτ2n, ∂
sΘ2n−2} are trivially conserved. The

existence of these infinite towers of conserved currents is an indication that the theory is

classically integrable. In fact, using these higher conserved currents we were able to obtain

a first order differential equation for vacuum solutions. For future research it would be

interesting to construct a Lax-pair formulation of the integrability problem for this T T̄ de-

formed theory such as the one constructed for T T̄ deformed sin(h)-Gordon theory in [26].

The vacua of T T̄ deformed Liouville, which we obtained using some educated guesses and

variable changes, might be derivable from symmetry and integrability properties if those

structures actually exist. The vacua of classical LFT is the trivial solution to the sphere

uniformization through the connection of classical LFT and the Riemann-Hilbert prob-

lem. Non trivial stress tensors in classical LFT correspond to the punctured sphere with

parabollic or hyperbolic singularities. It would be interesting to understand the connection

of the T T̄ -deformed version of classical LFT we studied in this work with uniformization

problems. Additionally, it is well known that classical LFT satisfies an infinite tower of

higher equations of motion [47], a T T̄ version of which would be desirable.
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A Derivation of the Lagrangian

With the use of recurrence (3.3) and starting with L0 = X + V the first few terms are

L1 = −X2 + V 2, L2 = 2X3 + V X2 + V 3, L3 = −5X4 − 4V X3 + V 4,

L4 = 14X5 + 15V X4 + 2V 2X3 + V 5, L5 = −42X6 − 56V X5 − 15V 2X4 + V 6

(A.1)

which lead to the pattern

Ln = V n+1 + (−1)n
[n
2

]∑
k=0

(2n− 2k)!Xn−k+1 V k

k! (n− k + 1)! (n− 2k)!
and (A.2)

Ln,X = (−1)n
[n
2

]∑
k=0

(2n− 2k)!Xn−k V k

k! (n− k)! (n− 2k)!
(A.3)
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From (A.2) we see Ln(X = 0, V ) = V n+1 such that L(t)(X = 0, V ) = V
1−t V . We focus

on (A.3). It is possible to extend the sum in k up to infinity by exchanging the factorials

by appropriate Γ functions (. . .)!→ Γ(. . .+ 1) and observing that the added new terms for

k >
[
n
2

]
are all zero. Thus we can write

L(t)
X =

∞∑
n=0

∞∑
k=0

Γ(2n− 2k + 1)(−tX)n(V/X)k

k!Γ(n− k + 1)Γ(n− 2k + 1)
(A.4)

The idea is now to exchange the order of the series and observe that the first 2k− 1 values

for the sum in n vanish. We get

L(t)
X =

∞∑
k=0

∞∑
n=2k

Γ(2n− 2k + 1)(−tX)n(V/X)k

k! Γ(n− k + 1)Γ(n− 2k + 1)
(A.5)

Shifting the n series to start from zero and using properties of the Γ function we simplify

the expression

L(t)
X =

1√
π

∞∑
k=0

∞∑
n=0

Γ(1
2 + n+ k)

k!n!
(−4tX)n(4t2XV )k (A.6)

And this is the iterated double binomial series we mention in (3.6).

B Conservation of currents

With the case n = 1 proven in (3.40) we can show the conservation (3.21) for n inductively.

Assuming (3.21) holds for n we consider the difference ∂̄τ2n+2 − ∂θ2n

∂̄τ2n+2 − ∂θ2n = ∂

(
Ω(∂ϕ)2

4tX2
Θ0Θ2n−2

)
− ∂̄

(
Ω(1− tV )

(1 + Ω)2
τ2τ2n

)
(B.1)

= ∂

(
Ω(∂ϕ)2

4tX2
Θ0

)
Θ2n−2 − ∂̄

(
Ω(1− tV )

(1 + Ω)2
τ2

)
τ2n (B.2)

= Θ2n−2

[
∂

(
Ω(∂ϕ)2

4tX2
Θ0

)
− 4t(1− tV )(∂ϕ)2

(1− Ω)2
∂̄

(
Ω(1− tV )

(1 + Ω)2
τ2

)]
(B.3)

= Θ2n−2

[
∂

(
Ω(∂ϕ)2

4tX2

)
Θ0 −

4t(1− tV )(∂ϕ)2

(1− Ω)2
∂̄

(
Ω(1− tV )

(1 + Ω)2

)
τ2

]
(B.4)

= 4t(1− tV )Θ2n−2τ2

[
(∂̄ϕ)2

(1 + Ω)2
∂

(
Ω(∂ϕ)2

4tX2

)
− (∂ϕ)2

(1− Ω)2
∂̄

(
Ω(1− tV )

(1 + Ω)2

)]
= 0 (B.5)

In equality (B.1) we used the recursive property (3.37) and to go from (B.1) to (B.2) we

used the inductive hypothesis. From (B.2) to (B.3) we used the second relation in (3.38) for

τ2n and from there to (B.4) we used the conservation of τ2 and Θ0 shown in (3.40). Using

the first relation of (3.38) for n = 1 we arrive to (B.5) which is the expression mentioned

in the main text (3.45).
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C Resummation

With the ansatz

|z − z0| = r(ψ) = R0

√
2ψ

R0
− 1

(
1 + t r1(ψ) + t2 r2(ψ) + . . .

)
(C.1)

and the differential equation for the inverse of vacuum solutions

0 =
(

16t
(
t+ ψ2

)3 − (2tψ + ψ3
)2
r(ψ)2

)
− 8

(
tψ3

(
t+ ψ2

)
r(ψ)

)
r′(ψ)

+
(

4ψ4
(
t+ ψ2

)2 − ψ6r(ψ)2
)
r′(ψ)2 − 2

(
ψ7r(ψ)

)
r′(ψ)3 (C.2)

one obtains the functions

r1(ψ) =
2

R0ψ
+
c1(ψ −R0)

2ψ −R0
(C.3)

r2(ψ) =
8R0c1 +R3

0

(
c2

1 + 4c2

))
−
(
c1

(
16 + 3R2

0c1

)
+ 12R2

0c2

)
ψ + 8R0c2ψ

2

4R0(2ψ −R0)2
(C.4)

r3(ψ) =
1

4R0(2ψ −R0)3

(
16R0c3ψ

3−
(
−16c2

1+R2
0c

3
1+12R2

0c1c2+32
(
c2+R2

0c3

))
ψ2

+2R0

(
−10c2

1+16c2+5R2
0c1c2+10R2

0c3

)
ψ−2R2

0

(
−3c2

1+4c2+R2
0c1c2+2R2

0c3

) )
(C.5)

and so on. This infinite series can be resummed in the solution

|z − z0| = r(ϕ) = R(t)

√
2 e−

ϕ
2

R(t)
√
µ
− 1

(
1 + 2 t

√
µ

R(t)
e
ϕ
2

)
, −1

4
R(t)2 ≤ t ≤ 2R(t)2 (C.6)

with

R(t) = R0 +R0c1t+
1

4
R0

(
c2

1 + 4c2

)
t2 +R0

1

2
(c1c2 + 2c3) t3 +O(t4) (C.7)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.B. Zamolodchikov, Expectation value of composite field T T̄ in two-dimensional quantum

field theory, hep-th/0401146 [INSPIRE].

[2] F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl.

Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
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