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1 Introduction

The Standard Model (SM) of Particle Physics still represents the best description of high-
energy phenomena at our disposal. Nevertheless, several experimental and theoretical
shortcomings require the presence of some New Physics (NP). The lack of a NP discovery
at the LHC and the SM’s impressive phenomenological success could suggest the existence
of a large separation between the Electroweak (EW) and NP scales. If this is the case, the
SM should really be understood as the leading (renormalizable) approximation of a low
energy Effective Field Theory (EFT), known as SMEFT [1-3].

Considering the SM as an EFT is not only conceptually, but also practically advan-
tageous, for it allows to study a whole class of SM extensions in a model independent
way. In fact, in the SMEFT framework, the effects of heavy NP are fully encoded in the
Wilson Coefficients (WCs) of non-renormalizable operators, in terms of which low-energy
observables can be computed without any reference to the specific ultraviolet (UV) model.
The WCs for a given concrete UV SM extension can then be obtained by matching.



In this work we present the complete one-loop matching conditions, up to dimension-
six SMEFT operators, resulting by integrating out the two scalar leptoquarks (LQ) S;
and S5 [4] with all admissible baryon and lepton number conserving couplings. From the
phenomenological point of view, such an effort is motivated by the recent interest received
by the model in the context of the deviations from the SM observed in B-meson decays,
for which it could provide a combined explanation [5-12]. The complete one-loop matching
allows a thourough study of the model’s phenomenology, which was indeed one of our initial
goals, and will be reported in a separate contribution [13].

Aside from the phenomenological interest, this work represents one of the very few
available examples of complete one-loop matching to the SMEFT. In [14, 15] the one-loop
matching for bosonic SMEFT operators from integrating out sfermions in the MSSM is
derived, refs. [16, 17| perform the complete one-loop matching for a singlet scalar (see
also [18]), and [19] considers the SM with an additional light sterile neutrino and heavy
fermions and a scalar singlet. The model considered here, with two coloured and weakly-
charged states coupled to all SM particles with non-trivial flavour structures, represents
a very rich example of such a matching. While functional [20-28] and automated [29, 30]
methods for the task are currently under development, diagrammatic calculation is still
the state of the art in this subject, and will represent an important cross-check when these
more sophisticated methods will be available.

The matching conditions are obtained by equating EFT and UV theory one-light-
particle irreducible (1LPI) off-shell Green’s functions at the matching scale. This opera-
tion produces a set of operators which are independent under integration by parts (IBP),
but possibly redundant under the SM renormalizable equations of motion (EOMs). A
complete set of such operators has been called Green’s basis in [16], and must then be
suitably reduced to an operator basis for S-matrix elements by applying the SM EOMs (or
field redefinitions). As a byproduct of our work, we identify a complete Green’s basis of
dimension-six SMEFT operators by extending the Warsaw basis [3], and obtain the fully
general reduction equations expressing Warsaw basis WCs in terms of Green’s basis ones.

The paper is organized as follows: in section 2 we introduce the S; + S3 model; in
section 3 we give the complete one-loop matching conditions in the Warsaw basis, which is
the main result of this paper. We conclude in section 4. Several results are contained in the
appendices: in appendix A we discuss in full generality the Green’s basis for the SMEFT;
in appendix B we provide the reduction equations from the Green’s to the Warsaw basis,
and in appendix C we give the complete one-loop matching condition for the leptoquark
theory in the Green’s basis.

In the supplementary material we provide the complete one-loop matching in the
Green’s basis, the general reduction equations from the Green’s to the Warsaw basis, as
well as usage examples.

2 The S; + S3 model

The UV model under consideration is defined by the SM gauge group and field content,
with the addition of two colored scalar leptoquarks

51 ~ (3, 1) and Sg ~ (3,3)

1
3 :

, (2.1)
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where in parenthesis we indicate the representation under (SU(3),SU(2)r)u(1),- The
combination of these two scalars has been considered in the literature as a possible si-
multaneous explanation of charged and neutral current B-anomalies [6-12]. For such a
purpose, both leptoquarks need to have TeV scale masses and, consequently, negligibly
small baryon number violating couplings. Enforcing baryon number conservation, the part

of the Lagrangian involving S 3 is:
Lrq = [DuSi* + |DuSs — M7| 1> — MZ|Ss[*+
+ (M) iadfela + AN iatben) S1+ (V3)indfea 04,53 + hoet
A HI2|S12 — Ams | H|2|SE2 — (Ang(HTafH)sgfsl n h.c.) +
— Aepsie! K (H o' H)STTSE — Vg(S1, S3),

(2.2)

where € = 109, Ag1, Ag3, Aegs € R, (AlL)ia, (AlR)m, ()\3L>ia7)\H13 € C, and the LQ self-

interactions are described by
c
Vs(Sl, 53) = 51(5151)24-

+ e (5151)(5185) + €3 (STT451) (S5T4.85)+

Cz(al) i t 0(33) It TJK aJ\/ oLt LMK oM (2.3)
+ 7(5353)(5353) + 7(53 € 85)(S5e S5 )+

(5) S”S‘] SITSJ SITSJ SJTSJ 1
+C:;[(3 5)(53 3)‘;‘(3 5)(53 3)3(3553)@;53) ‘

We denote SM quark and lepton fields by g¢;, u;, d;, £o, and e,. We adopt latin letters
(i, 7, k, ...) for quark flavor indices and greek letters («, 3, v, ...) for lepton flavor indices.
We work in the down-quark and charged-lepton mass eigenstate basis, where

o] a
4= (VJC;Z“‘L> , la= (”5) , (2.4)
L €L

and V is the CKM matrix. The Higgs field is denoted by H and its hypercharge is normal-
ized to Yy = % The covariant derivative of a generic field ® ~ (pg, ,0<21))y<I> is defined by

D.® = (0, —ig'Yo B, — ig(t) W' —ig,(t3)4G2) @, (2.5)
and the corresponding field strengths read
B,, =0,B, -90,B,,

Wi, =0,W}) —a,W, + g’ * W, Wk, (2.6)
G4, = 0,Gf — 9,G + 9. fPCGEGY.

The SM Yukawa lagrangian is defined by

Lyuk = —(yr)aplacsH — (yu)ijgiu; H — (yp)ij@id;i H + h.c., (2.7)



where H = iooH * and the Higgs potential reads

Vi =-m?H'H + g(HTH)Q. (2.8)

Finally, for future convenience, we define the bi-lateral derivatives:

o', 1 = 5Y(D,H) - (D,H) H, 29)
H'DLH = Hio!(D,H) — (D, H)!o H. '

2.1 Tree-level SMEFT matching conditions

Since the two extra scalar fields are, by assumption, heavier than the electroweak scale,
for the purpose of low energy phenomenology, we can integrate them out and work instead
with a non-renormalizable SMEFT lagrangian. This takes the form:

Lovprr = Lsv + Y o ..., (2.10)

where (’)56) are dimension-six SMEFT operators, while the dots denote higher-dimension
operators, which we neglect in the following. We adopt the Warsaw basis [3] for dimension-
six operators. Separating the contributions arising at tree level from the one-loop generated
ones, we can write

Lo
(470202. . (2.11)

At tree level, only a set of semi-leptonic operators is generated, with WCs:

C; = CZ»(O) +

NERNLL gp3Lep3L

(1)) _
(g gy = AM? AM2
e _ N A Aa A
lg JefBi 407 AM3
)\lR)\lL*
(1) 1(0) _ 7B i
Crequlagis = =gp (2.12)
1R\ 1Lx*
c® 0 _ At
lequlapij 8M12 )
1R*x\1R
[Co0]®) = N Ajs
adi] — o)

For the operator definitions, see tables 1, 2, 3 and 4.

3 Complete one-loop SMEFT matching conditions

We report in this section the complete one-loop SMEFT matching conditions for the S;+ 53
model introduced in the previous section.



The matching is performed diagrammatically, by equating 1LPI Green’s functions in
the UV and effective theory. As explained in the Introduction, this gives rise to a set
of higher-dimensional effective operators in the Green’s basis, which are then reduced to
a minimal set of Warsaw basis operators by applying the SM equations of motion. This
reduction is performed in full generality in appendix B, following the complete classification
of Green’s basis operators in appendix A. The one-loop matching to the Green’s basis WCs
for the S7 + S3 model is given in appendix C. Here we report the matching conditions in
the Warsaw basis, which is the central result of the paper.

We performed our computations in a general R, gauge, adopting the MS subtraction
scheme within Naive Dimensional Regularization (NDR). Whenever relevant, we explicitly
checked the independence of matching conditions on the gauge fixing parameter £. The
matching scale is p57, which in practical applications should be taken of order of the lepto-
quark masses pys ~ My, Ms, but is otherwise arbitrary. For physics to be independent of
s, the resulting dependence of WCs from the matching scale should exactly correspond
to their SMEFT renormalization group (RG) running [31-33], which we explicitly verified
as a cross-check of our procedure. In practice, for all the operators that are not already
generated at the tree-level, the explicit (logarithmic) scale dependence we obtain from the
matching computation corresponds to the one from the SMEFT RG equations. For the op-
erators listed in eq. (2.12), instead, one should also consider the running of the leptoquark
couplings and masses with g7, schematically [C;]© (pp) ~ /\(,uM))\(uM)/MfQ(uM). For
instance, in the one-loop matching of these operators, there is a contribution from the
quartic leptoquark couplings of eq. (2.3): the logarithmic scale dependence of such contri-
bution cancels the one arising from the RG evolution of the L(Q masses in the tree-level
matching.

In contrast to the aforementioned gauge fixing and matching scale independence,
matching conditions may (and do) explicitly depend on the definition of evanescent op-
erators [34], i.e. operators which vanish in d = 4, but may be non-vanishing in d # 4. Two
examples of evanescent Dirac structures relevant to us are:

& = Py PrL, @ Py, vwPr — 4P ® Pr, + Pro" P, ® Prouw Pr, (3.1)
E = PL")/“’YVPL & PR’Y;/YVPR —4Pr, ® Pg. (32)

The NDR defining equations in d = 4 — 2¢ dimensions, viz.

Ay =2, {44 =0,  Tr(n) =4- 2 (3.3)

imply & = —2ePr, ® Pr, but do not univocally fix £. Following the notation of ref. [35],
we write:
£y = dapyePp ® Py + B} (aey), (3.4)
where the coefficient ae, can be regarded as the definition of the evanescent operator
E(LQIZ2 (e.g. for aey = —1/2 one gets E(Lz]% = Pro" Pr, ® Pro,,Pr, which vanishes in four
dimensions, cf. ref. [35]).
In order to facilitate result comparisons, we report the matching conditions for general
aey (the other scheme defining coefficients, bey, Cev, etc., of ref. [35] do not enter in our one-



loop computations). For practical calculations, ref. [36] recommends ae¢y = bey = -+ = 1,
as in such scheme evanescent operators only affect two-loop anomalous dimensions.

We treat the Higgs mass term m?HTH as an interaction (both in the SMEFT and
UV theory) and work with a massless Higgs field propagator. By dimensional analy-
sis, a diagram with internal Higgs lines and n insertions of m? is suppressed by a factor
(m?/M?)™ (where M? = M123) relative to the same diagram with no insertions. There-
fore, at dimension-six level, mass insertions can be relevant to the matching conditions for
renormalizable operators (see below). However, in the present theory, one-loop diagrams
with internal Higgs lines only give rise to dimension-six operators, so that m? does not
contribute to the Green’s basis matching conditions. It does, instead, contribute to the
Warsaw basis matching conditions, where it makes its appearence through the Higgs EOM,
see eq. (B.1).

As a further check, we have also recomputed the one-loop Green’s basis WCs of pure-
Higgs operators belonging to classes H*D? and HS (see table 1) within the universal
one-loop effective action (UOLEA) approach [21, 22, 26], and we find agreement with our
diagrammatic results.

Integrating out the leptoquarks at one loop also generates contributions to SM renor-
malizable operators and, in particular, fermion kinetic terms. Such modifications can be
undone by suitable field and SM coupling redefinitions, which however also introduce ad-
ditional contributions to tree-level generated WCs.! In our case only fermion kinetic terms
(i.e. wave-functions renormalizations) are relevant, as the tree-level WCs in eq. (2.12) do
not depend on any SM coupling. The one-loop formulas below include the contributions
due to fermion field renormalization.

3.1 Example

In this section we discuss in some details the matching of a specific Green’s function, in
order to illustrate some of the most relevant aspects of our computation.

Let us consider the off-shell Green’s function G = (eg(pl)éa(pg)Hb(ql)Hl(qg)), where
all momenta are incoming and a,b are SU(2), indices. The matching conditions for this
correlator are depicted diagrammatically in figure 1, where the left and right hand-side
show the EFT and UV contributions, respectively. We briefly comment on the various
steps of this computation.

We begin by listing the various contributions to G, both in the SMEFT and the lep-
toquark model. The SMEFT operators which contribute at tree level to G are (cf. table 2
for the notation):

<=
[OHe]aB = (éa"}/ueﬂ)(HTl D M‘H) ,

[Oelas = (éaz’?eﬂ)(ﬂf H), (3.5)
[ /I/{e]aﬁ = (éa7ue,3)au(HTH)-

1Since field redefinitions arise at one loop in our model, only tree-level WCs are affected. In general,
any tree-level shift in SM couplings and wave-function renormalizations that could influence loop-generated
coefficients should be taken into account, see e.g. [16].



Moreover, we must take into account a one-loop contribution from Oe,,, which is gener-
ated at the tree-level in our model according to eq. (2.12). Since this tree-level WC is fixed,
the matching of G allows us to fix the coefficients of the operators in (3.5), see the left-hand
side of figure 1. In the leptoquark model there are two diagrams contributing to G, both
mediated by S7, shown in the right-hand side of figure 1: a box diagram proportional to
(schematically) yUy(TJ)\lR)\lRT, and a triangle diagram proportional to A AFTALE,

By total momentum conservation, only three out of the four momenta pi, p2, q1, g2
are independent. Writing (p1,p2,q1,92) = (p —r, —p — 1, ¢ + 7, —q + 1), the tree-level
contributions from the operators in eq. (3.5) read:

[GERT (1a0)]as = 24[G re(pnr)lap + 2P[Grre(an)]as — 20 [Ghe(1ar)]ass (3.6)

where we drop here and below a global §,; factor, and we denote Green’s basis WCs by
G;. The UV and EFT one-loop contributions are more easily computed when only one of
the independent momenta p, ¢, r is non-vanishing, and yield respectively:

gl loop( )- q=r=0 _ Nc(AlRTygy[*])‘lR)aﬁ + Nc)\Hl(AlRT)\lR)a,B (3 7)
R I P amenz '
oo 1p=r=0 N (AlRTyTy* )\1R)a 2
g1 P (1unr) — = uIuz Jed jog 9 (3.8)
Jag (47)2 M3 SV
1p=q=0
gl loop( ) p=q =0, (39)
lap
and
loo 19=r=0
géFTp( ) o8 0, (3.10)
P t,, T, % Y1R
1-loop 1p=r=0 Nc()‘lR yUyUA )aﬁ 1 ,UM
= 3.11
gEFT V%) Lo q (4m)2M2 1+log—5 ) (3.11)
loo 1p=49=0
géFTp( M) lag = 0, (3.12)

where we employed the tree-level value of [Ceu]( g given in eq. (2.12). Notice that the
EFT computation presents an ultraviolet divergence, which we regulate in the MS scheme
at renormalization scale pps. On the other hand, on the basis of renormalizability, the
UV contribution must be (and is) finite. Finally, both EFT and UV diagrams present
an infrared divergence, corresponding to the log(—¢?) terms in egs. (3.8) and (3.11). The
agreement of these two terms, which is guaranteed by the EFT construction, provides a
further check of validity of the computation.
Requiring Gepr(par) = Guv(par), we finally obtain the matching conditions:

N\ Myfyi XN ) ag 13
e aff — — < = 1 1 M )
Crrelpar)los a2 (14108 524 )
G (a)lg = Ny by A ) o N Nedg (ALEIALR g (3.13)
He\EM Tlog 64m2 M2 64m2 M2 ’

[Gre(par)lap = 0.



Figure 1. Diagrams for the matching of the (éeH'H) Green function.

As a cross-check, we observe that the pps dependence of [Gye(finr)]ap corresponds to the
SMEFT RG running of Cy, due to Ce, [32],

d CHe o *
O . (3.14)

once eq. (2.12) is taken into account.

3.2 One-loop matching conditions in the Warsaw basis

In the following we report the complete one-loop matching conditions of the S + S35 model
to dimension-six SMEFT operators in the Warsaw basis. Definitions of the operators can
be found in tables 1, 2, 3 and 4, while the C’i(l) coefficients are defined as in eq. (2.11). For

convenience, we make the following definitions:

57
L1z =ln ’ (3.15)
Mg,
h(M;, M) = M — Mg _2M12M§10g%
1, 3) = ,
(M7 — M3)?
~ 1 7 2 3 o
~ 37Mf 1—3dm+ Eém + O(0om?) (6m = M3/M; — 1) , (3.16)
M2
(M M)—M%_M§+Mglogﬂ4ié~ L (1= Zm + 0@6m?) (3.17)
n 1 3) = (M32—M12)2 ~ 2M12 3 m m , .
A((Jn) = )\nL*)\nLT’ A((131) = /\3L*)\1LT7 A, = /\IR*)\lRT’
(3.18)
Aén) — )\nLT)\nL’ Aéi&l) — >\3LT)\1L’ A, = )\lRT)\lR’



)\lLT * AIR XIL _ ()\lRyTE)\lLT)T’

1U = 1F —
X:13L — >\3LT * )\1R X?}% = ()\11’%y’]r5)\3LT)T7
Xk = \nLye Tnl, X35 = AEBTy L NI (3.19)
X35 = Wyt DT Xaf = W yhyeat T
XlL _ /\1LT * T * )\1R XlL _ (AlRyTEyEyTE)\lLT)T7

where n = 1,3 and F' = U, D, and the superscript T stands for transpose. The fermion
wave function renormalizations, are given by (Zy)i; = ;5 + @z ) 5(6Zy)ij, where

N, 1
(6Ze)ap = = [(2 + L1> (A)as +3 < - Lg) (Af’))aﬁ] , (3.20)
N, (1
(5Ze)a,3 = ? (2 + Ll> (Ae)aﬂa (3.21)
Lt (1) 1 ®)
(5Zq)ij = 5 5 + L1 (Aq )ij + 3 5 + L3 (Aq )’L'j 5 (322)
1/1
(5Zu)zj = 5 5 + L1 (Au)ija (323)
(0Z4)i5 = 0. (3.24)
3.2.1 Renormalizable terms
1
(477)2(53/E)a5 = 5 [(5Z€)a7555+5a7(526)65] (yE)75+
1/1 m?
—Ne [1+L1+2 <2+L1> Mg] (X1 as (3.25)
i
1
(Am)(Syv)ij = —= [(0Zg)ikbj1+0ir (6 Zu)i5] (yu )+
2
[HL +1<1+L) 2}(){ i (3.26)
- 1T3 1 17 » .
(4m)*(6yp)i; =0, (3.27)
M2Ls—M?2L
(4m)%01 = =N [A%1L1+(3A%3+2>\§H3)L3+2MH13!2 (H?’gélﬂ +
Mz —Mj
N, 1
—1759477112@ s (328)

)\2
(47)%6m? = N, [)\Hl(1+L1)M12+3>\H3(1+L3)M§—2m4 <3;&“§+\)\H13\ 2h(My, M3)>] )
3

(3.29)



3.2.2 Purely bosonic

X3.
1 3 1
cl) = g3 ( + > : (3.30)
8¢ 73607 \ M2 T M}
N, o 1
o) = egs — 3.31
1) (1)
Clg =0 =0, (3.32)
X2H2.
2
() _ 95 (3Ams  Am
1) _ Ne 9Ams
Chw = 39 M2 (3.34)
2 2
1) _ Ne po [, AE3Ys,  AmYg
Cyp = 5 g (3 M§ + M12 , (3.35)
1 99'Ys; Aerr3
Clivp = —Nci?)]\‘}2 : (3.36)
cM—c_—ch —c g (3.37)
HG HW HB HWB ’ ’
H*D?
(1) Ly /4 21,2 3)‘%{3_”‘3113 1 L iy )‘Hl 1
= —N, YAYZ4CHS SO ) N —gYEYE 4 S )
Cut (409 207 12 M2 607 * Mz
N
+5 |Aeris| 2h(My, M3), (3.38)
N, 32 Y2 22
Chp = =gV | S50 | —oN, (2B 4\ 5| 2h( My, Ms) ) 3.39
HD 59 Ti M3 +M2 3M§H 13| “h(M7, M3) (3.39)
HS.
1 1 1 A Aus 9
CH =—N, 30 )\—l- )‘H3+/\H3)‘6H3 @—N 6M2+2N>\ 3M§+’)\H13’ h(M;y, M3)
Ml
N, AH13 2 In M

~10 -



3.2.3 Two-fermion operators

P2XH.
(3) (1) 1L
w_ 1 (Ag'yo)ii | (Ag'yo)ii Y 1 (yoha)iy 1 (Xig)ij
[CuGL‘j - 24.93( M32 M12 2498 M12 495 M12 ) (341)
(3) (1) 1L
m_ 1 (Ad"yu)iy  (Aglyo)i ) 1 (1 I (X1%)ij 19
(@ }(1) _ _i ,(Y +3Y,) 3(A¢(13)yU)ij + (At(ll)yU)ij . i ,(Y . 3y)(yUAu)ij+
uB ij 249 q V4 M32 M12 249 u € M12
1, 1 3 (Xllf_Lf?)lJ
+9 {(Yl +Y.) L1 + 2Yl + 2Ye Yu] M2 (3.43)
(3) 1)
w_ 1 (Ag"yp)ij | (Ag yp)ij
3) (1)
1 _ _i (Aq yD)ij B (Aq yD)ij
[Cawli;” = Y (3 M2 M2 ) (3.45)
1 ADyp)y . (A yp)y
[Caplly) = —o-g (Vg +3Yy) | 3217 4 220 2200 ) (3.46)
I 247 21 M2 M?
(3) (1) 1L
y_ Ne (A yp)ag (A 'yplap )  Ne (1 (Xig)as
[Cew}aﬁ - 249 (3 M32 M12 R g 2 + Ll M12 ) (347)
eBlag 249 4 q M?? M12 249 e u M12
‘e s 1 § (Xlllg)aﬁ
+—yg [(Yq +Y,)L1 + 2Yq + 2Yu Y, M2 (3.48)
W2H2D.
[0(1)](1) _ N y ys 3Y323 n Y521 1 (yUAuy(T])ijJr
Helig = Tggd THROO\ e Tz ) T o4 w2
L 1 (A 1 (A5
—-qg Y] =Y, +Y,L — Y,L
+3g H{3(6 et e3) M2 + 6q—|- oL M +
1 (X3L)-- (XlL)..
— 2 3(1 4 Lo)122E/Y 14 L) 2B 49
(30 L S+ 0 202 ) (3.49)

11 -



N, 1 1 (yo Aoyl )ii
e = _De g (uhuyy)ij

9= 607 %a T ar
1 o((1 (A5 1 (A);5
— S 4L —(-=+1L
+ 199 ((2 + 3) M2 6 + L1 M2 +
1 (XBL)i' (XIL)i-
- <(1 + Lg)% -1 +L1)7]\2’4E12 2, (3.50)
N 3Yg, V¢ U (A )y | A )i
Crad® = — ety y s [ 28 4 250 4 2 gWula Y0)i v Yu)ij
Crdiy” = =399 Y | 3 T | 1 MZ T M T
1 8Y, — Y, Ay)ij 1 X8y
+ 39V (651+Y6L1) (M)QJ +2(1+L1)( ]\24%)9, (3.51)
1 1
N, Y3 Y2 1 (AP yn) (A yn):;
C 1 _ Ve MY Y s Ss S1 ~ [ 3¥D2 ij Di\q ij
Crdliy’ = =599 YYad 3 T3 | 33 M2 P !
(3.52)
3 1
Crrual® = 1 S(yTUAé lyp)ii | WA yp)is (353)
Hud 17 12 M?? M12 b .

W _ _Ne uy y
[CHZ]aﬁ 9 YuYilap 7M32 + M12 21 M12

30

3) (1)

Ne 1 (A)as | (1 (AL)as
Yul3(zY+Y,L ZY, 4+ Y, Ly | St leb

+ 3 g Ym ( <6 ¢+ q 3> M32 + 6 ¢+ qi1 +

3Y¢, Y) Ne (yeAeth)as

Nc _XgLa XSLa _XlLa XlLa
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(3.54)
T
@) _ _Ne s 1 Ne(ypheyplas

Ne o[ (1 A)as (1 (A
¢ . Y O
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3.2.4 Four-fermion operators

Four-quark.?

1 1 3 1 C
[C(l)]gil = 7% ( Y 5ij5kz) ( +7> /4Y 0ij 0kt

SYS3 Ys1
240 M2 M}

Mz
A(3)) A(l mn
M2 +
3
1 (1)
G

1
+72 ( 6k]61m(sln+ 6zl6km6]n 6kl51m6]n 6175km(sln>

(A(3)

M)an + Yq +}/€L1

Jr

1
+gg/2Yq (0k10im0jn~+0:50kmdin) {3 <6Y +Yst)

M2
L ()00 (), 108 578 LA AT i+ AT (A5
2 2

—1 |9 Ve M *+3 e :
(3.60)
[0(3)}221 = ﬁggéilék]‘ (Mig—’_MLf) 1]\276 46”5kl M2
+14495 (0kjOimOtn+0510kmbjn) (3 (Ai;mn—k([x‘(i;%m”) +
+592 (Ok16imjn+06ijOkmOin) <( +L3) (AZZ)an<é+L1) m%;%’”) +
1 (AP (A (A )i log i A3 (A3 s+ (A3 (A ]
16 M?2 M? MZ—M? )
(3.61)
[Cuuh(']l'l)cl = —% <(5il6kj_%(5ij(5kl> <Mi§+Mi12) 2]5 '4Y26136kl (3]\};523 +§\fj§) +
+%g’2Yu (8k16im G jn+6:0kmOin) (%weh) (Aj’\%;”" +
+712 ( = 6118imOjm— 51-]-5k.m5ln+5kj5imaln+5m;km 5jn) (AAMJ)%WJF
‘é% (3.62)
[Caal G = —;fo (5il5kj_%5ij5kl> (]\32 +#) 16\[06 Y7550k (3]\2} +}A/51;) : (3.63)
[Cz(l.ld)}'gjl'l)cl = _%QMYde(S”(Skz (3]\12523 +}]\/;§> +
+%g,2Yd (%—FY@LO %ﬁg)”, (3.64)

2Box diagram contributions to four-quark operators from S; and Ss, taken separately, have also been
computed in [37]. We find agreement except for C(l) and C’(q , where we found an inconsistency in [37].
We thank the authors for clarifications about this point.
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4 Conclusions

In this work we have presented the complete one-loop matching conditions, up to dimension-
six SMEFT operators, for the S; + S35 leptoquark model. This is one of the few available
examples of a complete one-loop matching onto the SMEFT, and is substantially richer than
previous ones due to the presence of two heavy fields charged under the SM gauge groups,
coupled to SM fermions with a non-trivial flavour structure, and with potential couplings
with the Higgs boson as well as themselves. The matching was performed diagrammatically,
by direct comparison of full theory and EFT 1LPI off-shell Green’s functions, and can serve
as a cross-check for functional or computer methods devoted to the same task.

As a by-product of this work, we have extended the Warsaw basis of dimension-six
SMEFT operators, to a full Green’s basis, where only integration by parts (without SM
EOMs) are used to reduce the number of independent operators. This set provides an
operator basis for off-shell 1PI Green’s functions. We have provided the complete reduction
equations from Green’s to Warsaw basis, which we believe to be of general interest for
any kind of SMEFT matching or computation beyond the leading order. All relevant
information related to the Green’s basis is contained in the appendices.

The model studied in the present paper has been known for a while to provide a good
candidate combined explanation of neutral- and charged-current B-physics anomalies. The
tools developed in the present paper allows a thorough and complete study of the model’s
phenomenology, which we will explore in a separate contribution.
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A A Green’s basis for the SMEFT

In this appendix we present a basis of dimension-six IBP independent SMEFT operators,
i.e. the Green’s basis, extending the Warsaw basis of IBP and EOM independent operators.
The operator basis is given in tables 1 (bosonic operators), 2 (single fermionic current oper-
ators), and 3, 4 (four fermion operators), in which Warsaw basis operators are highlighted
in blue; we count 132 independent operators for a single generation of SM fermions, in-
cluding baryon number violating ones. The following discussion is mainly a re-adaptation
of the line of reasoning of ref. [3] (to which we refer the reader for further clarification),
with the important exception that we are not allowed to use of EOMs. The strategy is
to simply examine all possible Lorentz-invariant combinations of gauge field strengths, co-
variant derivatives, standard model fermions and the Higgs field, denoted X, D, ¢ and H
respectively.

In tables 1, 2, 3 and 4, we list all Green’s basis operators (Warsaw basis [3] operators
in blue color).

Bosonic operators.
X3. All independent operators are contained in Warsaw basis.

X2D?2. If we allow X to be possibly dual, there is no need to consider contractions
involving the e tensor. Thus, the indices of the two derivatives must either be contracted
(a) between themselves, (b) with the indices of a single tensor or (c¢) with the indices of the
two different tensors. In the case (b), antisymmetry of X and [D,,, D,] ~ X, brings us to
X3 class. In the case (a), we first note that taking both tensors to be dual is equivalent to
considering no dual tensor. For the other two possibilities, we can take all derivatives to
act on a single tensor and use Bianchi identities for the Yang-Mills tensors to obtain (here
Y is possibly dual, but X is not):

Y*DPD,X, = =YY" DP(DyXyp + DX ),

which is equivalent to case (c). We are thus left with case (c) where, due to Bianchi
identities D*F),, = 0, there exist only the following three possibilities:

1 1 1
Op = —i(aMB;w)Qv Oow = _§(DMWHV)2 ) Oz = _§(DMGHV)2 : (Al)

X2H?. All independent operators are contained in Warsaw basis.

X D?. Because of its antisymmetry, the indices of X must be contracted with two deriva-
tives. This brings us to class X2D? (see above).
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X H?D?. By hypercharge conservation, these operators must involve one field H and
one conjugate H'. Using the IBP freedom, we can assume the two derivatives to act either
on H or X. Moreover, since the indices of X must be contracted with the two derivatives,
the latters get antisymmetrized. Thus, if the two derivatives both act on X or H, we are
moved to X2H? class (see above). The remaining possibilities are two operators which,
modulo a total divergence and X2H? class operators, can be taken as:
— AV Ts Hu

Opn = 0" B, (H"iD HZ}, (A.9)

Owpr = (D*W,,)'(H'iDM H) .
Another possibility sometimes used in the literature is to use instead the operators Ogpp =
i(D,H) (D, H)B" and Oppw = i(D,H) o' (D, H)YWT* related via

Oppr =20uup + ¢'YuOup + %OHWB ;

(A.3)
Owpn =20unaw + ¢YuOuws + gOHW .

H?D*. The covariant derivatives must be contracted between themselves, either through
the metric 7, or the volume form e. Contracting them through the € tensor moves us to
H?X? class. Hence, modulo total divergencies, the only operator in this class is:

Opg = (D,D"H)'(D,D"H) . (A.4)

H*D?. Because of hypercharge conservation, these operators involve exactly two fields H
and two conjugate fields H*. Moreover, the two derivatives must be contracted together.
We must thus form Lorentz and SU(2); singlets by choosing four fields out of the four

independent scalars:
H, H*, D,D"H, D,,D"H",
and the two independent vectors
D,H,D'H",
and, of course, by taking exactly two derivatives. We explore all possible field contents:

a) D,H,D'H, H*, H*. The two H*’s must necessarily form a triplet, so that we have
a single SU(2); contraction. Given the field content, such operator is clearly non-

hermitian.

b) D,H*,D*H*, H,H. The two H’s must necessarily form a triplet, so that we have a
single SU(2); contraction. This is the hermitian conjugate of the previous case (a).

c) D,H,H,D'*H*,H*. If H and H* are contracted in a singlet (triplet), so must be
D, H and D*H*, so that we have two independent SU(2), contractions, which are
readily verified to be hermitian.

d) D,DV'H,H,H*,H*. By integration by parts, we can reduce this to cases (a, b, c)
above.

e) H H,H*,D,D*H*. By integration by parts, we can reduce this to cases (a, b, c)
above.
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Thus we have, modulo divergencies, four independent hermitian singlets. We can
complement the two Warsaw basis ones as follows:

Opo = (H'H)O(H'H) ,

= (H'D,H)'(H'D"H),
OHD - <H H)(D,H) (D" H), (49)
O, = (HUH)D (HTZ‘D“H) .
Other operators sometimes encountered in the literature are:
O = L(HYD, ) (HI BrH) = ~20up — J0us, "

1 — 1
o) = 5(HT(F,/’H)(HT D H) = =20} — 500
HS. This operator is contained in Warsaw basis.

Two-fermion operators. Before considering the various cases, let us make a prelim-
inary observation: these operators are obtained by contracting a scalar, vector or ten-
sor current built out of two fermionic fields, with a corresponding current obtained from
bosonic fields; it is easy to see that the only scalar (tensor) two-fermion currents allowed
are G0, )u, G(o,)d, €(ou)e and their conjugates, while the only vector currents allowed
are Yy, with ¢ = q, u, d, ¢, e, and wy"d with its conjugate. This is so because these
operators conserve both lepton and baryon numbers. In fact, since B changes by integer
units only, clearly AB = 0. Moreover, since A(B — L) = 0 at dimension-six level [38], this
also implies AL = 0.

¥2D3. By hypercharge invariance, from the list of allowed two-fermion currents above,
we can only pick J* = iy*e), with ¢ = ¢, u, d, £, e. If we contract J* with the three
covariant derivatives through an e tensor, we move to ¥?DX class (see below). Thus, at
least two derivatives must be contracted with each other. Taking all derivatives to act on
1, the only remaining possibility is:

—. I— .
YilDD*p = G {i), D*} ¢ + (¥*DX).
We are thus left with the five hermitian operators:
i
Otziw{DuDuv-D}Qp? ¢:qa u, d7 676‘ (A7)

P¥2XD. By hypercharge invariance, the two fermions must pair in a vector current J* =
Yy*p, with ¥ = ¢, u, d, £, e. If we allow X to be dual, we do not need to consider
contractions through the e tensor, and the Lorentz structure is completely specified by
JHX,,D". Using the IBP freedom, we can arrange that D never acts on 1. We are left
with the possibilities summarized by:

OX’l/J = (@tgw’Yuw)DVsz "¢ € {q7 ua d7 67 6}7 X S {G7 W7 B}7
Owa = (Etaxd;’Y”Zquﬁ) nal w € {Q7 u, d’ Za 6}7 X € {Ga é, VVa Wa B7 E} .

(A.8)
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Here tgy = 1, while ty, and tgy are the SU(2) and SU(3) generators in the representation
of ¢ (possibly zero). These three combinations are independent, since:

e The Feynman rules of the pure derivative parts of (’)g’()w vanish at some special kine-

matical configuration. These configurations are distinct for Ox,, and lew'
. Ole is CP-odd for dual X, and CP-even otherwise.
Notice that Ox,, vanishes for dual X, by Bianchi identities.

U2D2H. By gauge invariance, the allowed field contents are those appearing in the
Yukawa lagrangian (i.e. Quf[ , GdH and leH, plus hermitian conjugates). Let us take, for
the sake of clarity, feH. Integrating by parts, we can make the two derivatives act either
on e or H. If they both act on e or H, combining ¢ and e into a tensor current moves us
to class 2 X H (see below). We must then combine ¢ and e into a scalar current, and we
are left with:

Octp1 = (ZC)DyD“Ha

- (A.9)
Oerrps = (€D, D"e)H.

If, instead, one derivative acts on e and the other on H, we get other two possibilities:

Ocrip2 = (lioy D'e)DV H,

- (A.10)
Octrps = (ID,e) D" H.

W2X H. All independent operators are contained in Warsaw basis.

W2DH?. By Lorentz invariance, the two fermions must combine into a vector current,
that is J* = ¢y, with ¢ = ¢, u, d, £, e, or J* = Ty*d together with its conjugate.
Moreover, currents involving the two SU(2) doublets ¢ or ¢, can either form an SU(2)
singlet or triplet, to be coupled to the corresponding Higgs singlet or triplet current (cf.
egs. (2.9)). Finally, since the external fields have three independent momenta, for a given
current J* = 1b;v*)2, we can form at most three independent Lorentz singlets, which we

conveniently choose as:

O = [Byy"4s] - [H1i D, H]
O = [§4i' D y4n) - [H1H] (A1)
0" = [@17”1/12] ) [DN(HTH)]

(the objects in square brackets are either SU(2) singlets or triplets, when possible). This
results in the operators listed in the 12D H? box of table 2 (notice that for the non-hermitian
ud current, the operators O%, ; and O, ; vanish identically, as (HTH) = 0).

W2H3, All independent operators are contained in Warsaw basis.

Four-fermion operators. All independent operators are contained in Warsaw basis.
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B Reduction of Green’s basis to Warsaw basis

We give in this appendix the reduction equations from the Green’s basis to the Warsaw
basis, which can be obtained by applying the SM EOMs to the operator basis derived in
the previous appendix. The SM EOM are:

(D,D"H)* = m*H® — \(H'H)H® — &y!,0* + i(09) P yoru — dyl,q®
(DVG;W)A = gs((ji%uTAQi + ﬂi'YuTAUi + Ji’y,uTAdi) ,
y g = - _
(D WW)I = i(HTz D, H+ Ka’yualﬁa + qz"malqi) ,

<~ _
(0"Buw) =g | YaH'i Dy H+Y Yifyuf | ,
f

ipl = ypeH ,

ilDe = y%HTﬂ,

iPq = yyuH + ypdH
iu =yl H'q,

lpd — T HT

1 ypH'q.

Schematically, the change of basis formulae are given in the form C; = Zj a;; G, where
C; and G, are the Warsaw and Green’s basis WCs, respectively, and a;; is a function of
SM couplings. All quantities are understood to be evaluated at the same scale.

B.1 Renormalizable operators
Zoe=2S ®=H qud l e G W,B
SA = 0AC — Pm2Gow + AAm*Gpu + 4gm>*Gwpa, (B.2)
om? = (6m*)C + miGpy — m*Gyp, (B.3)

1 1
—m?(Gerpalas + §m2[GeHD4]o<,B7

(0yR)ap = (0YF)ap + M Gpr(YE)as — M2[Gerpilap — 5
(B.4)

1 1
(Syr)ij = Byg)ij + m*Gpu(yv)ij — m*[Gurpilij — §m2[GuHD2]ij + imQ[GuHDdij,
(B.5)

1 1
(6yp)ij = (0yD)is + m*Gpu(yp)ij — m*[Garpilij — §m2[GdHD2]ij + 57712 (Garpalij-
(B.6)
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B.2 Purely bosonic operators

(B.7)

X3,
Csa = Gsa,
Ciwe = G
Csw = Gaw,
Csf/T/ - GsW'
X2H2,
Cua = Gua,
CH@ = GHé’
Cuw = Guw,
CH'VV = GHW’
Cup =Gus,
Cys = Gup
Cuwp = Gaws,
Cuwp = Guwp:
H4D?2,
Oyt = — 302G — ~42V2G 3.6 "YuG G e B.9
HO = 89 oW 29 H 23+2g wpH +9 YuGppy + HD+2 HD> (B.9)

Cup = —29"*Y;Gap +49'YuGppu + Gup.

HS.
1
Cy = —§g2/\G2W 4+ 29 \GwpH + )\QGDH + )‘G/HD + Gy

B.3 Two-fermion operators

Y2XH.

1 1
[Cuclij = ng(yU)lj [Gypli + ng(yU)z‘l Guplij+
7

4 4 4 4

1
+ 593 [GuHDS]i]' +
+ [Guclijs

1
[Cuwlij = gg(?/U)lj[GqD]iH‘

1 1
= 100 (Gl — 7 (w0 )y |G Jat
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(B.11)

(B.12)



1 1
— 391Gunp2ly; + S9(Gunpali; +
+ [Guwli (B.13)
1, 1,
[Cuslis = 79'Yq(yu)i[Gopla + 79 Yulyv)alGunliy+
1 o 1 o 1 o 1 o
= 100y Grela — 7 ()G Ja + 7 (wo)alGruly — 5 (yo)alG, Ju+
L 'Yy |G L 'Y, [G L Yy [G
+ 19V (Gunp2lyy + 59Yu [Gunpsly; — 19V [Gurpaly; +
+ [GuBlij: (B.14)
1 1
[Caclij = +ng(yD)lj [Gypla + Egs(yD)il [Gaplij+
Z’ / 1 / Z ! 1 !
= 1) [Gagla — 3 (yp)ylGg lu + 3 (wp)alGadliy — 7 (yp)alGa i+
1
+59s [Garrpsli; +
+ [Gaclij, (B.15)
1
[Cawlis = +39(yp)ii[Gaplat
i , 1 ,
= 2 Wp)y[Gwela — 7 (wp)ylG Jat
1 1
= g91Ganp2lij + g9 [Gampaly; +
+ [Gawij (B.16)
1, 1,
[Caslij = +9Ya(yp)i|Gopla + 39" Ya(yp)alGanlij+
i ! ]' / Z / ]‘ /
= 100)y[Gpla — 7(p)yGg Ju + 7 (yp)alGraly — 7 (yp)alG i+
1, 1, 1,
= 49 Yu Ganpali; + 59Ya[Garpsly; + 19V [Ganpaly; +
+ [Gaslij (B.17)
1
[CeW]oz,B = +§g(yE)6ﬁ [GKD]MH'
)
= 10B)ss(Gwelas — 7(ym)ss[G Jas+
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1 1
— gQ[GeHm]aﬁ + gg[GeHm]aﬁJr

+ [GeW]aﬁa (B.18)

1 1
[CeBlag = ZQIYZ(?JE%B (Geplas + Zg/}/e(yE)aé (Geplsp+

7 1 7 1
= 1 Wr)sslGadas — 3 (WE)sslGlas + 7 (YB)as|Gpelss — 3 (ym)as[GT Jss+

1 / 1 / 1 /
— 19 Yu|Gerp2las + 29 Ye|Gerpslag + 17 Yu|Gerpalagt+
+ [GeBlap- (B.19)

W2H?D.
[Cg;]zj = —g*YuY6i;Gan + 9'Y0i;Gppr+
1 1
+ Z(yU)ik(y(T])lj [Guplri — Z(ZJD)ik(yTD)lj [Gaplri+

1
+ 9'Yu|Grylij — §QIYH G Jist

1 1

+ g(yTU)lj (Gurp2li + g(yU)il[GuHm];ﬁ
1y 1 )

- Z(yU)lj (GurD3lit — Z(Z/U)il (Gurps]j+
1 1

+ 5 W [Gurpali + 5 (wo)alGurpaljy+
1 T 1 T *

— gWplj[Ganp2ly — G(yp)a [Ganpe]j +
1 1 *

+ Z(QE)U (Garrpsly + ; (yp)a [Garrpsly +

— sWp)ij (Garrpaly — G (wp)it [Garrpalj +

+ (G5, (B.20)

1 1
[ng]ij = _1925ijG2W + §g5z‘jGWDH+

1 1

- Z(yU)ik(y[T])lj (Guplki — Z(yD)ik(yjj)lj [Gap)ri+

}g[G;

4 Wq]ij—i_

1
+ ig[qu]ij -

1

1 *
— ~WilGurpala — < ()l Gurpa) i+

8

— 0o

1 *
+ = (yl)i[Curpsli + Z(yU)il[GuHDB]jl—F

—

1 *
~ (o) alGurpalj+

- *(yTU)lj (Gurpalii — 5

oo

—97 —



(CHulij =

[CHalij

[CHud]ij

(C1 )

1 1 *

- g(yL)Zj (Garrpaly — g(yg)iz (Gampal} +
1 1 .

+ Z(yTD)lj (Garrpsly + 7 (yp)u [Garrps]j +
1

1 .
- g(yTD)lj (Ganpal; — g(yD)u (Garpalj +

3
+[G8s,
—g*YuYyu0ijGap + ¢'YudijGppr+

- %(yTU)ik(yU)lj [GyD]ri+

1
+ 9'YulGpulij — ig/YH[ngu]ij+
1

1 .
- Z(y[T])il (Gurp2];; — Z(l/U)lj (Gurp2lj; +

1 1 )
+ Z(yTU)il [GuHD4hj + Z(Z/U)lj (Gur D4l +

+ [GHulijs
—g*Y1Y36,iGop + g'Yadi;Grpu+

) aup)y [Ganlit

2
/ 1 / /
+ 9 Yu[GBadlij — 29 Yu |G lii+
1

1 .
+ Z(yTD)il (Gamp2];; + Z(yD)lj ([Ganpal;; +

1 1 .
- Z(QE)il [Garpalyy = 3 (yp)ij [Gampaly +
+ [Gralij,
Lo+
_i(yU)ik(yD)lj [GqD]kl+
1 1 .
- §(yD)lj [Gurp2]y; + E(yD)lj (Gurpalj; +

—_

1
+ §(yzr])il (Ganpaly; — 5(3/;])7;1 (Garpal;; +

+ (G Hudlijs

—g*Y1uYi60pGap + 9'YidopGppu+

1

- Z(yE)ay(yE)aﬁ[GeD]er

1
+9'YulGpias — Eg/YH[G/Eg]OéB—{_

1

- *(y};)aﬁ (Gerrp2)as —

1 *
3 *(yE)aé[GeHDﬂg(;—F

8
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1 1
+ Z(ng)aﬂ (Geripslas + 7 (YE)asGerrpslss +

Lo+

1 *
— 3WrlsplGerpalas — S(YE)as|Gerpal s+
+ [Gras (B.25)

1 1

1

- Z(yE)a’Y(y}LE)&B[GeD]»yé"F
g g

+5Gwilas — 71G Jas+

1
(Yh)58(Gerrpalas — g(yE)aa[GeHDz]Z;5+

1 *
*(yjrg)aﬁ (Genpslas + 5 (YE)as|Gernps| s+

4

2
1
8
1
"1
1

1 *
- g(y;r;)éﬁ (Gerrpalas — g(yE)a6[GeHD4],35+
+ (G ag, (B.26)

[Chiclap = =9 Y1 YebopGap + ' YedapgGrpu+

1

- i(yg)av(yE)éﬁ[GéD]yé‘f‘

1
+9'Vu(Grelas — 59YulGg Jas+

1 1 .
+ Z(ng)as ([Gerp2lsp + Z(yE)Jﬁ (Gerrp2lsa+
- Z(yE)aé (Gerrpalss — 1(913)55 [Gerrpaljot
+ [GHe]aB' (B.27)
W2 H3.
1 1 ’ . "
[Curlij = —79%(y0)ijGaw+9(yv)i;Gw o+ Y0 )ijGou+5 (Y0 )i G p—i(yr )i G p+

4 2

*l(yu)zj (yUer])ik [GqD]kl*E(yU)ik(yz/yU)lj [Guplki+

2 2
—AGurp1l)ij+

1/1 1 1 "
+§ <2(yEyU)lj(sik+2(yUyTU)ik(Slj—)\(;ik(slj) [GuHDQ}kl—g(yU)il(yU)kj [Gurpall,

1

1 .
—g(szJyU)lj&k [GuHDs}u—i(yU)u(yU)kj (Gur D3l +

1/1 1
3 <2(yz[]yU)lj(sik_Z(yUyTU)ik(slj‘f')\(sik(slj) (GurDalki+

+(yu )iz [Glf(llq)}iz-Fi(yU)lj [G}/};)]iz—(yU)lj [G;([?;)]il_i(yU)lj [G’,’}j”]m
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+(W0 )ik Gl ki —i (Y0 )in[Gralki+

+Gurlij, (B.28)
1 1 .
(Canlij = —192(yD)z'jGzW+g(yD)z‘jGWDH+>\(yD)ijGDH+§(yD)ijG}w+l(yD)ijG3§D+

1 1
3 (yp)ij (yDyj:;)ik [GqD]kl—g(yD)ik(yjij)lj [Gap)ki+

—A|Ganpil;; +

1

5 =(p)a(yp)kj [Garpaliy +

1/1 1
—1—5 (26ik(yTDyD)lj+2(yDyTD)ik(slj_)\éik(slj) [Gamp2),—

1

1 *
3 (yEyD)lj [GdHDS]il_i(yD)il (yp)kj (Garpsly +

1/1 1
—1—5 (26ik(yTDyD)lj_ 3 (yDyE)ik(Slj-l-)\(Sik(Slj) (Gampaly; +

)il a+i () (G Ta+ (yup) i [G e Na+i(yp )i (G Ju+
+(yp)ikGrralki—i(yp )ik [GFralki+
+[GdH]ija (B29)
1 1 .
[Cerrlap = *192(yE)aﬁG2w+g(yE)aﬁGWDH+)\(yE)aﬁGDH+§(yE)aﬁG/HD+Z(yE)a5G}§D+

_l(yE)éﬁ WEYE) ary [GfD]WS_}(yE)a"/(y}LEyE)(w [Geplys+

2 2
—AGerpi)as+

1

1/1 1
+5 <25a'y(yTEyE)6/3+2(yEyTE)awaéﬂ_)“sawaéﬁ) [Genpalyo—s5

5 WE)as(YE)1slGenp2]yst

1

1 *
3 (WkyE)ss|Gerpslas— 3 (YE)as(YE)18[Gerpalyst

1/1 1
-|-§ (25a'y(3/j5’yE)6[3_2(yEl/jE)a’vaw"')“Saw(séﬁ) (Gerpalys+

H(YE)os (Gt las+ilye)sslGre as+WE)ss Gt las+i(yr)ss Gy las+
+(yE)Cv’Y [G/He]’YB_Z.(yE)Oé’Y [G/I{Ie]’Yﬂ_F

+[Gertlap- (B.30)

B.4 Four-fermion operators

Four-quark.

1 1 1 1
[CS i = —193 (25iz5kj - 35ij5kl> Gag — 59/2Yq25ij5leQB+

1 1 1 1 1
+ ng (26kj5im5ln + iéilékméjn - gékléiméjn - 351‘j5km5ln> [GGq]mn+

1 1 1
— 50s (2(5kj5z'm5zn + §5il6km5jn —

1
5 0k10im0jn — 35w5km5ln) G ]m"+

3
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1
+ ig,Y;] (0k10im0jn + 0ij0kmOin) |G Bglmn+

1
= 59'Ya (GsiBimdin + 0i0kmin) (G5 Jmn+
qq ligkl>

1 1
[COijm = —ggz@'z&qGQG - §926ij5le2W+

1
+ 39 (0kj0imOin + 0i10kmOjn) [Gaglmn+
1

~ 1695 OkjimOin + 0itdkmdjn) (G Jmnt

1
+ 9 (0k10imOjn + 0ij0kmOin) [(Gwqlmn+

1
s (5kl5zm5jn + 5ij5km5ln) [G,Wq]mn+

8

+ (G ligw (B.32)
1 1 12y 2

(Cuulijrl = Zg 0itdrj — 5ij5kl Gag — 59 Y, 0ij01GaB+

1 1 1
1 ( 3 0k10imOjn — §5ij5km5ln + 0k 0imOmn + 5il5km5g‘n> [Gaulmnt+
1 1 1 )
— 39|53 Ok10imOjn — §5ij5km5ln + 0kj0imOin + 6it0kmOjn | [Gz, Jmn+
1

+ §glyu (6k152m5]n + 52] 5km5ln) [GBu]mn+
1

- Zg,Yu (5kl52m5]n + 5135km51n) [G ]mn+

+ uw z]kla (B33>
1 1 12x2

(Cadlijr = 19 0i10kj — 5ij5kl Gag — 59 Y;0ij0Gan+

1 1 1
1 ( 3 0k10imOjn — §5ij5km5ln + 0k 0imOin + 5il5km5jn> [Gadlmnt+
(] 1 )
—g% | 3 Ok10imOjn — §5ij5km5ln + 0kj0imOin + 6it0kmOjn | [Gz lmn+
1

+ §Q/Yd (0k10imdjn + 0i0kmOim) [G Balmn+

1
— Zled ((5kl51m(5]n + 52]5k:m5ln) [Gléd]m”+

+ (Gadlijwts (B.34)
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[C(z)]mkl = _g/2YUYd5ij5leZB+

+ ¢'Yabi|GBulij — %Q/Ydékl[Glgu]ij+

+ ¢'Yudij |G palm — %g/Yuéij[Glgd]kl“"

+ G i, (B.35)
(C&) )it = —92010Gac+

+ 950kt [Gaulij — %gsfskz [G%, Jij + 950i|Gaalr — %gséij (Gl +

+ G, (B.36)

1
[CSNijk = =Yy Yubij00Gan — E(yU)il(y[T])ijDH+

1
+ ¢'Yulri[GBylij — §Q'Yu5kl G5 st

1
+9'Y4055(Grulin — 59'Ye0i5G5

1
(i) ki [Gurrpr it + ~(yu)alGurp13+

* 6

| =

r

+12

1 *
(y[T])kj (Gurp2li + E(@/U)il (Gurpaljp+

1 -
13 Wo)alGurrpaljy
+ (GO, (B.37)

- *(y(T])kj [Gurpalit —

[CO it = —920i;0mGac — (yu)a (vl )y Gom+
1 1
+ 9s01[Gaqlij — 595% [G/@q]ij + 950ij[Gaulkl — 5955@‘ (Gt

_|_

—~

Yi ki [Gurrpilin + (o) (Gurp1]jpt

1 1 .
+ 5(245)@’ (Gurrp2li + 5 (yo)alGur p2jie+

1 1 )
- §(yU)kj (GurD4)il — i(yU)u[GuHm]jkﬂL
+ (G Tin, (B.38)

1
[Cq(il)]z‘jkl = —¢"Y,Y46i011Gap — g(yD)il(yE)ijDH+

1
+ 9'Yabr[GBglij — §QIYd5kl [Glgq]ij+
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1
+9'Y405j (G pali — 59'Ya0i (G I+

1 1 "
+ g(yg)kj [Ganpily + ¢ (up)a [Garrpa]j, +
L b [Ganpaly + - o) [Canpa);
T 12 Wp)kj \Ganp2ly + 75D |Gar 2l +
()i (Ganrpaly — 5 ()i [Garpall +
12 Yp)kj |G dHDA4];; 12 YD )il (G dH D4l j
+ [G((;l)]ijkla (B.39)

[Céz)]i]’kl = —920i00Gac — (yp)a(yh)k;Gpr+

1 1
+ 9501 [Gaqlij — 5935“ [G/éq]ij + 95045 [Gaalk — §gs5ij (G Jit

+ yTD)kj (Garrpily + (yp)i [Gampilj, +

—~

1 *
+ (yg)kj (Garpaly + 5(yp)a [GdHDQ]jk +

2

N~ N~

1 *
(yg)kj (Garpaly — i(yD)il [Garpaljy, +
+ [G((]Z)]ijkla (B.40)
(G dlikt = (W0)i; (yp) G pa+

1 1
— (Yp)w|Gurpilij — = (YD) |Gurp2lij + = (YD) ki [Gurpalij+

2 2
1 1
— (Yu)ij|Gar bk — i(yU>ij[GdHD2]kl + i(yU)ij (Ganpalu+
G i B.41
+ [ quqd]z]kl’ ( . )
8 8
(€ Jijw = (G Jijua- (B.42)

Four-lepton.

[Ceelapys = *592(2%557,3 — 0ap0y5)Gaw — %glzyf(saﬁ%sGer
+ ig (=01500p080 + 20y80ap0ss — 0apdrypdse + 20a504p0ps) [Gwelpot
- ég (=0+800p080 + 205800p050 — Oapdpdss + 20as04p080) (G ) po+
- %g/Yg (64660p080 + 60504p050) [GBe) pot
_ ig'yg (8,60apS0 + Sapp0s0) (G5l po+
+ [Gelapys (B.43)
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12
[Cee]aﬁ'yzg - —%Y62(5a5(575G23+

1
+ 59/Ye (6460ap080 + Sapdyplse) [GBelpot

1
— Zgl}/e (57550@5,30' + 506557p550—) [Glée]pg—i_

+ [Gee]aﬂ’y&
1

[Cﬁe]aﬁ'yzS - _glzwyveéaﬁ(s'yzSGQB - 7(yE>a5(yTE')75GDH+

Semileptonic.

2

1
+9'Yebys <[GB€]aB - Q[G'gg]cw) +
/ 1 /
+9 }/Z(Sa,B <[GBe]76 - 2[G§e]w6> +

1 *
(Wh)8lGerpilas + = (YB)as|Gerrpn [y +

* 2

1 *
(ng)vﬁ [GeHDZ]a5 + — (yE)a5 [GeHDQ]IB,Y‘f'

* 4

—oR = N =

1 *
— ~(yh)18lGerrpalas — Z(yE)a6[GeHD4],8A,+

W

+ (G apyé:

(Cialagis = =92 YiYya30,;Gon+

Ci

Jl

1

+ ¢'YibaplGBylij — iglyﬂsaﬁ [Glgq]ij+
1

+ gIY:](Sij [GBf]a,B - 59,}/:15@ [G,Eg]a,3+

1
+ (G lagiss

1
aBij = — 192%55@']021/1/4-

1 1
+ 590as[Gwalij — 79%s1G Ji+

1
+599(Gwilap —

3
+ (G asis:

1
199G Jas+

[Ceu]ozﬁij = _9/21/'€YU5055UG23+

1

+ 9'Vedap|Gpulij — ig/Ye%ﬂ (G’ Jis+
1

+ leu(Sij [GBe]a,B - §g/Yu6ij [Glge]aﬁ+

+ [Geu]aﬁija
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(B.45)

(B.46)

(B.47)

(B.48)



[Cedlapij = —9"*YeYabapdijGap+
1
+ 9'Yedap|Grdlij — 59,1@%,8 (G i+
1
+ ¢'Y40i;(Gpelas — iledeij G Jas+
+ [Ged]a,ﬁija (B49)
[Coelijap = — 9" Y Yedi;003G2B+
1
+ 9'Yedap|Gralij — 59'YeboslGg Jist
1
+ 9,5/2151'3‘ [GBe]aﬁ - 59,}/;151'3' [Glge]aﬂ+
+ [Gaelijos, (B.50)
[Crulapis = =9 YeYubapdijGap+
1
+ 9'Ye0asGBulij — 59/5/65@8 (G, )i+
1
+ §'Yudii[GBilas — §g/Yu5ij [G'5,lap+
+ [Grulapijs (B.51)
[Cudlai; = —9"°YeYa0apdijGap+
1
+ ¢'YibaplGralij — iglye%ﬁ[G/‘gd]ijJr
1
+ 9'Yabij[GBelap — 59/Yd5ij (G5 Jap+
+ [Grdlapij (B.52)

[Ctgelc)lq]aﬁij = (yE)a/i' (yTD)ijGDH+

—_
—_

= (YE)aplGanpilji — 5 (YE)aplGanp2lji + 5 (YE)aslGarpalji+

\V)
\V)

—_
—_

— (y5)ij[Gerrpi)as — 5(3/}3%7 [Gerrpalag + = (yh)ij[Gerrpalag+

+ [Géliq]amj, (B.53)

[\

[Clgc};u]aﬂij = _(yE)aB (yU)ijGDH—i—

1 1
+ (YE)apGurpilij + = (YE)ap|GurD2lij — = (YE)a|GurDalij+

2 2
1 1
+ (yu)ij|Gerpi)ap + §(yU)ij [Gerp2las — Q(yU)ij |Gerrpalas+
1
+ [G§e;u]o¢/5ij: (B.54)
3 3
[Clge;u]aﬂij = [Gget)]u]aﬁij' (B.55)
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B-violating.

[Cauglijka = [Gauglijra (B.56)
[Caqulijka = [Gaqulijkas (B.57)
[Cagqlijra = [Gagqlijhas (B.58)
[Cavulijka = [Gauulijra- (B.59)

C One-loop matching conditions in the Green’s basis

We report in this section the complete one-loop SMEFT matching contributions for the

S1 + S3 model in the Green’s basis. Green’s basis WCs are denoted by G. We absorb the

loop factor defining G; = (471026‘(.1).

()

C.1 Renormalizable operators

628005 =5 | (54 11) A0 +3 (5 + 20 ) (4)as )
62805 ="y (53+11) Aodas ©2)
(624)ij = % K; + L1> (A)ij +3 <; + L3> (Af(zg))z'j] » (C.3)
(674)ij = % (; +L1> (Aw)ij, (C.4)
(5Zg)zj =0, (0'5)
(6y5)ap = —Ne(1 + L1)(X{)ap, (C.6)
(6y5)ij = —(1+ L1)(X{H)ij, (C.7)
(6yB)i; =0, (C.8)

M2Ls — ML

Mz — M}
(0m?)® = N [Ag1(1+ L1) M7 + 3Ags(1 + L3) M3 . (C.10)
C.2 Purely bosonic operators
X3.
cw_ 9 (3 1 (C.11)
3¢7360 \ M2 M}E)’ '
3
m _ 9N C.12
O _~1) _
G =G5 =0. (C.13)
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X2D2.

(3 1
Gig =22 —
207 60 \MZ 7))

2N,
G;/%/ = g 627
15M3
G(l) — g,2NC 3Y§3 Yégl
730 \ M2 M)
X2H?2,
G _ 9: (s A
AG 12\ M2 M2 )
o _ 9*NeAns
G(l) _ g/2Nc 3)\H3Y53 /\HlYg1
HE 6 M? M? ’
/
(1) _ g9 YS )‘5H3
GHWB - _NC37J\34§7
O _ A A0 A
GH@ - GHW - GH§ - GHWB =0.
H2X D2,
o A1
GWDH - GBDH = 0.
H2DA.
6 =0
H4D2.
N, [ (3)\2,, +2)\2 A2 N,
G(f})D:_TQC <( H3M2 CH?’) ]\14{21> _7C’AH13|2}Z(M17M3)7
3 1
2)2
Gl = ~ Nl — 2N, [Apris| *h(My, M),
3
2)2
G = 4N, 3]\7’23 2N, |Agas| 2R (M, Ms),
3
n1) _
Gyp=0
HES.
o\ _ Ne ) 3>‘§{3 + 6)‘EH3)‘H3 _ )‘%14_
6 M3 M?

6| A3 2

———— (A3 — A
M12M32|:H3 H1+

o (1)

2 2
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(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)



C.3 Two-fermion operators

Y2D3.
(3) (1)
o _ L[ (A )i | (Mg )y
[GQD]U 6 (3 M32 + M12 )
M _ 1 (M)
[Gupli; 6 A7
[Gaplij = 0,
(3) 1)
1y Ne (LA )ag (A )ap
[GZD]aﬁ = 6 (3 M32 + M12 ;
1) _% (Ae)aﬁ
[GeD]a@ - 6 M12
Y2 X D.
(3) (1)
y _ 1 (Ag7)ij , (Ag )i
[GGq}ZJ 1898 (3 M32 + M12 )

M2 12

3 1
(G W = Ly, <3 (A ))ij+(Af(1 ))z‘j>
A

1 7Y.—2Yg (Au)ij
G = = ( +Y6L1> :
i3 12 M?

1 (Aw)ij
(G5 ) = 50V 37,
J 2 _7\[12

5\ (AP)ag 7\ (AM)as

3 1
G W Ne, (A )as (AF)as
4 M2 Mz )

=
| &

— 38 —

TY;—2Y. ABY. /7y, 9y.
J 3< 7 S3+}QL3>( q )@]+< 7 SI+Y3L1>

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

2

(C.37)

(C.38)

(C.39)

(C.40)

(C.41)

(C.42)

(C.43)



N Y,—2Y; AP, Y, —2Y: Ay
Gail) = Yeg <3 (P2 ) O () 40

12 M2 12 M?
(C.44)
N, (AP )ag | (Af)ag
G )50 = Sog'yy [ 320 4 , (C.45)
Belef — g 774 M3 M}
N, , [TY,—2Ys (Ae)as
[GBe]al) =9 (1 +YuL1> : (C.46)
F3 12 M?
;) Ne o (Ae)ag
(G5 i ——?gYu MZ (C.47)
1 1 1 1
Gaglyy = 1G5 )5 = Gy =GB =0,
Gally) =[G, ) =GB =0, .
48
G ( ) G (1) G/ (1) =0 ( )
[ G(B)d]i = [ G(B)d] = G(B )] )
(Givel) = [Gdag = (Gl = 0
Yv2HD?.
1 (XIL)
[Gurp1) = + <L1 ) LBJij (C.49)
Y 2) M}
XIL
[GuHD2]§]1'): 2( ]\1;;) ) (C.50)
XIL
[GuHDE’)]S): 2( ]\l/ﬁ) ; (C.51)
XlL
Gunplf) = 3, (©52)
(Garrpall)) =0 (n =1,2,3,4), (C.53)
N, 1\ (Xiff)as
[GeHDl]al) =+— <L1 + ) e, (C.54)
4 2 2) M}
1 _ _%(Xll(?)aﬁ
(Genp2lyp = > M2 (C.55)
N (Xlll]?)aﬁ
[GeHD3]ag = —7712, (C.56)
W Ne(Xif)as
(Genpalop = 2 M2 (C.57)
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Y2XH.

Gucll)) =0,
Gl = 1 1\ (X{H)y

1 _ 1 1 3 X1Ly. .
ol = 3o [0+ Yo+ i+ S B,

1
Gaclly) = [Gawlly) = [Gaslly =0,

(Gew]') = —%9 (Ll Jr1 Kit)as
2) M

Mt

Y2DH?.

a1 (X35)ij (X35)ij
[Hq]w 1 3(1+Ls) M2 +(1+L1)% ’

3L 3
G — L (8B 2 (07 | X3+ 20m (A
8 M3 M} ’

1)4(1

iJ 2

1 (X3L)-- XlL ..
G Z 1 < VL) KB (X58)ij
Hq 4 ( 3) M32 (1+L1) ]\41 )

Hqlij — ) -

@O L (X3E)i+0hems(A)yy (X3R5
M2 )"
1

. AGL
1 [)‘Hl?)AC(I )+)\H13Ar(131)q log J‘J\;flgz
= i 1
1 MZ—M? ’

1 3 x1L
q [(Yq +Yu) L+ 5y + 2yu] (Xit)as

MR —MZ+L(M2+M3) log 25
1

11(3)7(1 17, *
[GED = = [MHBA((ISI) _Z'AmsAg?’”T] T

1 (XaB)i;
e n _ = 2F )ij

[ }IU]E? _ _}(leg)z‘jJr)\QHl(Au)ij
4 M? ’

G =0,

(%]

40 —

(C.58)

(C.59)

(C.60)
(C.61)

(C.62)

(C.63)

(C.64)

(C.65)

(C.66)

(C.67)

(C.68)

(C.69)

(C.70)

(C.71)

(C.72)



Grdlly = (Gl = Gl =0, (C.73)

ij

NC _ X3L o + X3L o o XlL o XlL o
[GSZ]]% _ - {3(1+L3) ( 2U) ]@2( 2D) 6+(1+L1) ( QU) 5;2( 2D) B}, (C.74)
3 1
3
o _ _Ne 3 X3+ (X35)as+22ms(A s |
H¢ lap ;) M32
XY 05 (XEE) ws 201 (AT,
+( 501)apH(Xop) §+ (A )ap 7 (C.75)
WA
1),(1
G150 =0, (C.76)
Nc X3L 4 X3L XlL 4 XlL

1 (—(ngz?)aﬁﬂL(X%)aﬁMeHg(Af’))aﬁ B (X%z?)aﬁ(X%f))aB) +

1(3)7(1) _t
[GHZ ]aﬁ +N 8 M?? M12

2
1 {)‘}113A§31)+)‘H13Ag3m]a5 log 17+

M
4 M2 —M?2 ’ (C.78)
1(3)1(1) _ (31) (31)t M12_M§+%(M12+M32) log %
Ghie'lo NisAy ) —idgisA L C79
(G’ B8 — [ H13 1348y ]aﬁ (M2 1M2)? ( )
W _ _Ne (X5)as
(GHelop = _?(1‘”/1)7127 (C.80)
r o Ne (X3 apt+Am1 (Ae)agp
[ He]aﬁ 4 MQ ) (081)
[G /(3 )](1) 0. (.52
P2 HS3.
* 3LY . 100 Mi
(Gurr]) = (1+ LO)(X35)i — Am(XiE)i Ains(Xig)ij log g 53)
utllgy M12 M12 o M?? )
(Ganly’ =0, (C.84)
* 3L M?2
Gorrl™) = N (1+ L) (X5{)ag — Am1(Xiff)as N Ana(Xit)as log 37 (©.55)
eH]qs — 4Vc M12 . M12 — M?? ) )
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C.4 Four-fermion operators

Four-quark.

(SRS 1 9(A£13))u(1\c(13))kj_i_(AS;l))il(AS;l))kj Slog% [(AZD)a(AG ks + (AT )it (MG )ws]
901kl 6 M3 M? N M3Z—M} ’
(C.86)
com _ 1 [ APy | AF)a(A ) log 575 [(AZ1)ar (A3 1)as+ (A3 (A3 )as]
[ qq ]ijkl - _TG M?? + M12 - M??_MIZ )
(C.87)
1 Aui Au j
(Gl = —g%, (C.88)
[Gaalijay = [GENGh = GGk = 0, (C.89)
1
(Gt = ~ gy A6 D (Ao (C.90)
1
(GG = BBIVE (AS)i (M), (C.91)
(G50 = (GG = (Gl ik = (Gl G = 0. (C.92)
Four-lepton.
3 3 3 3 1 1
Gl = Ve J APasAP)s | ()as8)s | (A )as (s
opro 8 M2 M2 M?
M2
log 57 (31) (31t (31t (31)
— o (A s s + (A DA )+
31 31 31 31
—2(AP)as (A1) 5 — 2(AF s (M) 6] 3 (C.93)
(1 Ne (Ae) B(Ae) 5
[Geelld5 = —;W, (C.94)
o _ N (Aél)>aﬁ<Ae)v5
[Gfe}agws = _I—Mlg . (C.95)
Semileptonic.

1 N2-1 BNLENSL AL AL
G(l) m _ (2 y 24V¢ 20y _y,)2 ia VjB i \jB
[ Lq }aﬁlj 4 2+ae 9s 2Nc +g ( q Z) M32 + M12 +

1 1 )\3L* )\SL )\lL* AIL
— <2+aev> 9’3 ( to TI0 | T ZI0 )

4 M? M?
3 3 1 1
1 (e (A7) (A)as (86"
4 M? M?
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9 2 1Lt
+<01(1+L1)—|—4(1+L3)C%)]w3> Xai Aji
M? M?

9 M?

S(+Ly)d) 3 1 2_ 3L

4 1)C3 M2 2(1+L3) 5cé )—cg3)+(2_|_Ncl B )‘aiT/\%
2N, ) ? M2

(C.96)
G <1+a ) N2—1 3Ly
ov c 2 ML N3L - \LLx )\ 1L
e 4\ 2 9s —i—g' (Yq—Yg)z] ( 78 _)‘za Ajﬁ) .

afiy —
2N, i Ve
3 1
1 3L*y3L %
+aev> e (_3% X M ) )

M M2

1 [ (A 509, logﬁ ABD (31)
_ (2 g X}fg g, 200 AP a4 (AN (A5,
M3 —M} +

_ 9 o\ \LLTH1L
<01(1+L1)+4(1+L3)C%)MSZ Moi Njf
M M12
+<3(1+L )0(1)%12 1 a 2 3L
g b)es e+ o (L) [503 )—0§3)+(2+NC_1> c<5>]> Nei N
oN, )3 |) Tz
3
C.97
[Geu}sﬁ)w‘ -3 (1+a S\ S Vs \1E (97
9 | g Ttev QSW-I-Q (YU—YG)Q] Zia 758
c M12
_1(Ae)ap(Au)iy
4Ml?ﬂ+<2cl(1+L1)+2(1+L3)C%)J\4§> /\ilfb\}g
M2) M2 (C.98)
) 1 i
[Ge]V _ _1(Ag)ij(Ac)as 3 SLa, k.
aelijap 4 M2 —4(1+L3)(A yE);\L}gX?’LyE)jﬁ n
3
1 )\1L>«< *x «
—*(1+L1)( Y=y AN ) ia N Fys—yi A ) s
M2
1 ’ (C.99)
GultY, = LDy 3 Oy
ij 4 2 — = (1+Ls) Yu az( yU)ﬁj
1 4 M2 +
3
1 ALtyx gy \1R
—4(1+L1)( Yr—YEA T)ai()\lLTyU—y*E)\IRT)ﬂ
M - (C.100)
Gea) = —% < (NP y5)ai (AT
aBi 3(1+L D) ai YD) B 1L+,
o4 g M2 5 4142,y 2 yD)ai(f”w)w)
[Ggedq}((xlﬁ)ij = —1 <_3(1+L )()\SLTyzk))az()\SLyE) 1L 7 Ml |
2 3 VE ]’8+(1+L1)()\ yp)ai( N yE)js
1 1L ! h *
TR ORE A a0 2 P
M? ’
1 (C.101)
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\LLT LR

2% 0 2
1) ;1) _ Tas 7B (1) M3

(Grequlapi; = Tz {201(1+L1)+2(1—|—L3)013 Mf+
3 (3 N2-1

T2 <2+L1> [(%—W)(Yu—n)g’%mgg] } (C.102)
)\lL-T)\l.R 1 9 M2
3) (1) _ “ai Y8 (1) M3
[Géequ}aﬁzj - M12 {_201(1+L1)_8(1+L3)Cl3 ﬁ%
13 N2-1

8 <2+L1> [(Yq_YZ)(Yu—Ye)gQ—I—mg?] } (C.103)
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X3 X2H?2 H2D*
Osc | fABCGA G Go" Ong G4,GY(H'H) | Opy | (DD*H)'(D,D"H)
Oz | fABCGIGPPGS* | 045 | GAGA(HIH) H*D?
Osw | KWiwlrwi | Ogw | WLWHW(HIH) | Opg (HTH)O(H'H)
Oy | EWIwWrwi | 0, | WLWW(HIH) | Oyp | (HID*H)'(H'D,H)
X2D? Oug B,,B*(H'H) Oyp | (H'H)(D,H)'(D*H)
Oy | —3(D.GH)(DPGY,) | Opp B, B* (HTH) O%n (HTH)Du(HuﬁMH)
Oaw | —3(D W) (DPWL) | Ogws | W[,B*™(Hic'H) HS
Oop | —3(0,B"™)Bp) | Opig | WLB™(HIc'H) | Of (HH)?
H2X D?
Owpu | DWW (H'DLH)
Oppr | 8,B*(H'i'D  H)

Table 1. Bosonic operators in the Green’s basis. Shaded ones are also included in Warsaw basis.
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’I,b2D3 'l/JzXD 1,b2DH2
Oup | 43{DD" Pyq | Ocy | @r*yq)D"Gh, | OF) | (@ a)(H 1D, H)
O | sa{DuD" BYu | O, | SarwiDrocs, | o) | @ Boim
Oun | ${D,D",D}d | O L@ D), | ORD | @yq)a,(HH)
Ow | S{D,D" D}t | Owy | (Go'y*q)D"WL, | OF) | (@o'y"q)(H L)
Op | 3 {D.D" DYe | O, | YaowiDrgwl, | OF | @Dl m
Y?HD? + h.c. (9;7[/(1 %(sz’ﬁ”q)ﬁjy (92(3) (Go'v"q)D,(H o' H)
Ouwpt | (qu)D,DFH | Op, (@/"q)0" By Ou | (@y*w)(HYD H)
Outps | (@iow DD H | O, | YaiD B | O, | (@ Buyim
Ourps | (@D D'l | Op | Y@ D 9B | O, | (@ wo.(HIH)
Owips | @Duu)DMH | Oy | @A) DYGA, | Ona | (dy#d)(H'i D, H)
Owpi | (@D, Dr'H | 0, | tarrwiBruch, | oy, | @@
Oanpz | (Gio D*d)DVH | O %@T%Mﬁ”u)éﬁu O (dy*d)o,(HTH)
Oanps | (@D.D*d)H | Op, (@Y u)0” By Opua | (@y"d)(H'iD,H)
Oaups | (@Dud)DPH | O, | Y@y i D u)B,, | 0N | (@yee)(H''D ,H)
Oupy | @eyp,orH | 0. | Y@ DB, | O | @Bown)
Octipz | (iowDPe)DYH | Ogq | (dT*4*d)D"GL, | OF) (Cy"0)0,(HTH)
Octips | (ID,Dr)H | Oy | S@riywi Drayas, | 09) | @olyre)(HDLH)
Ocrips | (IDe)D*H | O L@riymi'DrayGa, | o) (@ BLo)(H ol H)
Y2 X H + h.c. Og4 (dy"d)d” By, oD | (loy10) D, (H o' H)
Ouws | @rAemwHGA, | Oy | L@ D¥d)B. | Oue | (@yie)(HY'D ,H)
Ouww | @™ u)o! HWL, | O LdyiDvd)B,, | O, (éfﬁe) (HTH)
Ous | (@"uwHBu, | Owe| (@Eoly0)D"WL, | Of, | (@y"e)d(H'H)
Oue | @PAe™d)HGA, | O, | Loty Dreywl, »2H? 4 h.c.
Ouw | (@ d)o' BW], | O | LoD OW], | Oun (H'H)gHu
Ow | (@"d)HB,, | Op (04"0)0” B, Ourr (H'H)qHd
Oav | @oe)ol HWL, | Op, | 1@ D"0)B,, | Oun (H'H)THe
O | (o™e)HB,, | O, | (@D 0B,
OpBe (ev*e)0” By
Op. | 3(@iD¥e)Bu
O/Ee %(Efy“iﬁ”e)éw,

Table 2. Two-fermion operators in the Green’s basis. Shaded ones are also included in Warsaw

basis. Fermion family indices are omitted.
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Four-quark Four-lepton Semileptonic
D (@"a)(@vua) Ou | (Er*0)(Pyut) | OF) (e4"0)(@7u9)
0% | @' @no'e) | Oce | @1 e)Ere) | OF | @y o’ t)(@yuo’e)
Oy (@yHu) (@y,w) Ore | (Ev*0)(evue) | Oen (&y*e) (wy )
Oud (dy*d)(d,d) Ocq (eyte)(dyud)
o) | @y u)(dyud) Oge (@7"9) @Yue)
0% | @*TAu)(dy.T4d) Or (Oy0) ()
Gha) (@ q) () O (&y*€)(dypd)
o) | @ Tq) (@, T4u) Otede (Ze)(dg)
o | @*a)(dy.d) oW | T e)erns(@u)
0% | (@ TAq)(dr,TAd) O | (@ o™ e)ers(@ o)
o | @wens(@d)
08 | @T*wers(@TAd)

Table 3. Baryon and lepton number conserving four-fermion operators. All operators are included
in Warsaw basis. Fermion family indices are omitted. Indices r, s, p, t, ... denote the SU(2).
fundamental representations.

B and L violating
Odug | Eabetrs [(d)TCUP] [(¢*)TC*]
Ogu Eancrs [(¢7)TCq%] [(ue)T Ce]
Ogqq | Eatcersept [(4°7)TCq™] [(¢P)T CE]
Oauu | €ate [(d)"Cu’] [(u)"Ce]

Table 4. Baryon and lepton number violating four-fermion operators. All operators are included in
Warsaw basis. Fermion family indices are omitted. Indices 7, s, p, ¢, ... and a, b, ¢, ... denote the
SU(2),, and SU(3). fundamental representations, respectively. C' is the Dirac charge conjugation
matrix.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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