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1 Introduction

Conformal blocks are essential ingredients for calculations of observables, that is correla-

tion functions, in conformal field theories (CFTs). A CFT is completely specified by its

spectrum of primary operators and its operator product expansion (OPE) coefficients. This

set of numerical data is often referred to as the CFT data. Two- and three-point functions

are given pretty much directly in terms of the CFT data. However, correlation functions

with more than three points depend on the invariant cross-ratios and such dependence is

encoded by the conformal blocks. The higher-point functions are constructed from the

CFT data and appropriate conformal blocks.

Even though conformal blocks are prescribed by the conformal symmetry, computing

blocks is far from straightforward. Various methods for obtaining the blocks have been
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developed over the years. These include solving the Casimir equations [1–3], the shadow

formalism [4–6], weight-shifting [7, 8], integrability [9–13], utilizing the AdS/CFT corre-

spondence [14–19], and using the OPE [20–34]. Various additional results for conformal

blocks can be found in [35–58] and [59–64].

The vast majority of the results on conformal blocks, mentioned above, are devoted

to four-point blocks as these have been used in the conformal bootstrap program [65, 66]

and more recently for example in [67–69]. The four-point blocks are also the simplest. So

far, the only results for more than four points are in [70–74]. In [71] M -point scalar blocks

are derived in d = 1, 2 while for arbitrary d a five-point block is computed. These blocks

are obtained in a specific configuration, termed the comb channel in [71]. We examine the

same channel here. Five-point blocks are also obtained in [72, 73]. Higher-point correlation

functions are interesting because of the AdS/CFT correspondence as blocks correspond to

AdS diagrams. Higher-point blocks may also be useful for the conformal bootstrap program

where it may be possible to explore unitarity in higher-point channels and perhaps to

reformulate bootstrap equations for spinning particles in terms of higher-point functions

with scalars.

In this article, we derive M -point blocks of scalar operators in the comb channel by

using the OPE in the embedding space. We rely on the method developed in [27, 30, 31].

The OPE relates an M -point block to an (M − 1)-point one, so one can recursively build

up higher-point functions starting from the ones with fewer points. The action of the OPE

on the most general expression that can appear in an M -point block has been explicitly

computed in [30, 31]. The OPE used there was formulated using a convenient choice of a

differential operator in the embedding space that made calculations manageable. This for-

malism allows for treatment of operators in non-trivial Lorentz representations, but here we

consider only scalar operators in both external and exchange positions. Examples of four-

point conformal blocks containing operators with spin derived using the OPE formalism

are in [34].

Since the action of the OPE on correlation functions with arbitrary M is known the

explicit application of the OPE is no longer needed. We employ the prescription from [31]

to obtain recursion relations that lead to conformal blocks.

This article is organized as follows. We start in section 2 by reviewing the most

important features of the OPE approach. We then discuss our choice of conformal invariants

for M -point blocks. There are M(M − 3)/2 independent cross-ratios, but their choice is

not unique. We choose the cross-ratios such that when some external coordinates coincide,

usually referred to as the OPE limit, relations between the cross-ratios in such limits are

simple. The recurrence relation that leads to M -point blocks and its solution are presented

in section 3. In section 4, we perform consistency checks on our result in several ways.

Such checks are important as both a validation of the method in [31], that has not been

used beyond four-points previously, and also to simply verify non-trivial algebra. First, we

confirm that when the dimension of an external operator is taken to zero, corresponding to

substituting such an operator with the identity, M -point result reduces to that for (M−1)-

points. Next, we verify that for M = 5 our results match those in [71]. Lastly, we consider

our results in the d = 1 limit, in which case there are only M − 3 independent cross-ratios.
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Again, we find agreement with [71]. We conclude in section 5 while appendices A, B, C,

and D expand on some proofs and technicalities.

2 Higher-point conformal blocks

Starting from any correlation function, it is technically straightforward to use repetitively

the OPE to compute the necessary higher-point conformal blocks appearing in the cor-

relation functions. After a quick review of the OPE, this section introduces the scalar

higher-point conformal blocks in the comb channel up to a function that will be deter-

mined in the next section.

2.1 M-point correlation functions from the OPE

In [31], the general OPE in embedding space was determined to be

Oi(η1)Oj(η2) =
∑
k

Nijk∑
a=1

ac
k

ij aD k
ij (η1, η2)Ok(η2),

aD k
ij (η1, η2) =

1

(η1 · η2)pijk
(T N i

12 Γ)(T Nj

21 Γ) · at12k
ij · D

(d,hijk−na/2,na)
12 (T12Nk

Γ)∗,

pijk =
1

2
(τi + τj − τk), hijk = −1

2
(χi − χj + χk),

τO = ∆O − SO, χO = ∆O − ξO, ξO = SO − bSOc,

(2.1)

where ηi are the embedding space coordinates, ∆O the scaling dimension, and SO the

operator spin defined as half the number of spinor indices. The Lorentz quantum numbers

of operators are encoded in the so-called half-projectors (T N i
12 Γ). The notation is explained

at great length in [31] and used to compute correlation functions up to four points in [32–

34]. This completely general expression simplifies significantly since we are dealing here

with scalar operators thus there are no Lorentz indices to account for and only one scalar

primary operator is kept in the OPE

Oi(η1)Oj(η2) = c k
ij

1

(η1 · η2)pijk
D(d,hijk,0)

12 Ok(η2) + . . . ,

pijk =
1

2
(∆i + ∆j −∆k), hijk = −1

2
(∆i −∆j + ∆k),

(2.2)

where in the first line we omitted non-scalar primary operators and c k
ij is the OPE co-

efficient. Further details of the notation and on the differential operator are relegated to

appendix A.

Obviously, arbitrary M -point correlation functions can be obtained from the OPE by

using (2.1) repetitively. For example, from the OPE M -point correlation functions can be

computed from the (M − 1)-point correlation functions as follows,

〈Oi1(η1) · · ·OiM (ηM )〉= (−1)2ξi1 〈Oi2(η2) · · ·OiM (ηM )Oi1(η1)〉 ,

= (−1)2ξi1
∑
k

∑
a

ac
k

iM i1 aD k
iM i1

(ηM ,η1)
〈
Oi2(η2) · · ·OiM−1

(ηM−1)Ok(η1)
〉
,

(2.3)

where the sums over k and a collapse to just one term for scalar blocks, like in (2.2).

– 3 –
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I
(∆i2

,...,∆iM
,∆i1

)

M(∆k1
,...,∆kM−3

)
= Oi2 Oi1

Oi3 Oi4
· · ·

OiM−1 OiM

Ok1
OkM−3

Figure 1. Conformal blocks in the comb channel.

Clearly, iterating (2.3) M − 1 times leads to M -point correlation functions written in

terms of differential operators at the embedding space coordinate η1 acting on one-point

correlation functions at the same embedding space coordinate η1, which corresponds to the

comb channel (see figure 1) with each contribution to the correlation functions given by

I
(∆i2

,...,∆iM
,∆i1

)

M(∆k1
,...,∆kM−3

) = 〈Oi2(η2) · · · OiM (ηM )Oi1(η1)〉|proper exchanged quasi-primary
operators with ∆k1

to ∆kM−3

. (2.4)

In the following, we will focus on scalar operators only, with scalar exchange only, leading

to the scalar M -point conformal blocks in the comb channel.

2.2 Scalar M-point correlation functions in the comb channel

To proceed, we first introduce the invariant cross-ratios as

uMa =
(η1+a · η2+a)(η3+a · η4+a)

(η1+a · η3+a)(η2+a · η4+a)
, 1 ≤ a ≤M − 3,

vMab =
(η2−a+b · η4+b)

(η2+b · η4+b)

∏
1≤c≤a

(η3+b−c · η4+b−c)

(η2+b−c · η4+b−c)
, 1 ≤ a ≤ b ≤M − 3,

(2.5)

with ηM+1 ≡ η1. The choice (2.5) is suggested by the OPE limits ηM → η1 and η2 → η3,

which lead to the relations

uMa → uM−1
a , 1 ≤ a ≤M − 4,

uMM−3 → 0,

vMab → vM−1
ab , 1 ≤ a ≤ b ≤M − 4,

vM1,M−3 → 1,

vMa,M−3 → vM−1
a−1,M−4, 2 ≤ a ≤M − 3,

(2.6)

when ηM → η1, and

uM1 → 0,

uMa → uM−1
a−1

∣∣∣
η1→η1,ηb→ηb+1

, 2 ≤ a ≤M − 3,

vM11 → 1,

vMaa → vM−1
a−1,a−1

∣∣∣
η1→η1,ηb→ηb+1

, 1 < a ≤M − 3,

vMab → vM−1
a,b−1

∣∣∣
η1→η1,ηc→ηc+1

, 1 ≤ a < b ≤M − 3,

(2.7)
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when η2 → η3, respectively. Indeed, two pairs of the external operators in the comb

configuration, see figure 1, are special. With our labelling of points these are the pairs

OiM ,Oi1 and Oi2 ,Oi3 at the outer ends of the comb. When the coordinates of either pair

coincide an M -point function naturally reduces to an (M − 1)-point function. The special

choice of the invariant cross-ratios above makes this limit particularly transparent and

leads to the very simple expressions (2.12) and (2.13) below. When M = 4, the cross-

ratios in (2.5) reduce to the standard four-point cross-ratios u and v according to u4
1 = v

and v4
11 = u.

Then, the contribution of fully scalar exchanges in correlation functions (2.4) of all

scalars is of the form

I
(∆i2

,...,∆iM
,∆i1

)

M(∆k1
,...,∆kM−3

) =

(
ηM−1,M

η1,M−1η1M

)∆i1/2
(

η34

η23η24

)∆i2/2 ∏
1≤a≤M−2

(
ηa+1,a+3

ηa+1,a+2ηa+2,a+3

)∆ia+2
/2

×

 ∏
1≤a≤M−3

(uMa )∆ka/2

G(d,h;p)
M (uM ,vM ),

(2.8)

where the conformal blocks are

G
(d,h;p)
M (uM ,vM ) =

∑
{ma,mab}≥0

(p3)m1+tr0m(p2 + h2)m1+tr1m

(p3)m1+tr1m
F

(d,h;p)
M (m)

×

 ∏
1≤a≤M−3

(pa+2 −ma−1)ma+tram(p̄a+2 + h̄a+2)ma+ma+1+m̄a+ ¯̄ma

(p̄a+2 + h̄a+1)2ma+m̄a−1+m̄a+ ¯̄ma

×
(−ha+2)ma(−ha+2 +ma −ma+1)m̄a−1

(p̄a+2 + h̄a+1 + 1− d/2)ma

(uMa )ma

ma!

∏
a,b
b≥a

(1− vMab )mab

mab!
,

(2.9)

with

tram =
∑
b

mb,a+b, m̄a =
∑
b≤a

mba, ¯̄ma =
∑
b>a

(m̄b − trbm). (2.10)

Here, m is the vector of ma with 1 ≤ a ≤M − 3 which are the powers of the vector of uMa
denoted by uM . Meanwhile, m is the matrix of mab with 1 ≤ a ≤ b ≤ M − 3 which are

the powers of the matrix of vMab denoted by vM , where it is understood that any ma or mab

outside these ranges are 0. The function F
(d,h;p)
M (m) in (2.9) is purely numerical in that it

does not depend on the cross-ratios, it is determined below in section 3.

The quantities p and h, which are related to the OPE differential operators in embed-

ding space (2.1), are given explicitly in terms of the conformal dimensions by

p2 = ∆i3 , 2p3 = ∆i2 + ∆k1 −∆i3 , 2pa = ∆ia + ∆ka−2 −∆ka−3 ,

2h2 = ∆k1 −∆i2 −∆i3 , 2ha = ∆ka−1 −∆ka−2 −∆ia+1 ,

(2.11)
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with kM−2 = i1, p̄a =
∑a

b=2 pb and h̄a =
∑a

b=2 hb. Meanwhile, the conformal dimensions

of the exchanged scalar operators are denoted by ∆ka . The general form of the conformal

blocks (2.9) is determined from the OPE limits as we argue below.

2.3 OPE limits

The rationale behind the pre-factor in (2.8), apart from the necessary homogeneity con-

dition, comes from the property that under the OPE limits ηM → η1 and η2 → η3, the

conformal blocks transform as

G
(d,h;p)
M (uM ,vM )→ G

(d,h′;p′)
M−1 (uM−1,vM−1),

p′a = pa, 2 ≤ a ≤M − 1,

h′a = ha, 2 ≤ a ≤M − 2,

(2.12)

when ηM → η1 from (2.6) and

G
(d,h;p)
M (uM ,vM )→ G

(d,h′;p′)
M−1

(
uM−1

∣∣
η1→η1,ηa→ηa+1

, vM−1
∣∣
η1→η1,ηa→ηa+1

)
,

p′2 = p4 − h3, p′3 = p̄3 + h̄3,

p′a = pa+1, 4 ≤ a ≤M − 1,

h′a = ha+1, 2 ≤ a ≤M − 2,

(2.13)

when η2 → η3 from (2.7), respectively.

It is important to note that the OPE limits above, together with the limit of unit oper-

ator discussed below in section 4.1, allow the construction of the scalar M -point conformal

blocks up to yet unspecified functions F
(d,h;p)
M (m). Indeed, by implementing the OPE

limits and demanding that the scalar M -point conformal blocks match the scalar (M − 1)-

point conformal blocks with the proper parameters, the overall form of the blocks with the

specific forms for the Pochhammer symbols is determined up to the function F
(d,h;p)
M (m).

This is straightforward to verify by starting from the special u cross-ratio that vanishes

and the special v cross-ratio that becomes one. Indeed, these two cross-ratios must have

vanishing exponents which lead to the form (2.9) by consistency.

In summary, demanding that the conformal blocks G and the function F behave prop-

erly under the OPE limits and the limits of unit operator, i.e. they reduce to their form

with one less point, the form of the conformal blocks G is settled up to the function F .

3 Function F
(d,h;p)
M (m)

Using the form (2.9) and the OPE (2.1), it is straightforward to obtain a recurrence relation

for the function F
(d,h;p)
M (m). In this section, this recurrence relation is found, proving that

the scalar M -point conformal blocks (2.9) in the comb channel are correct with the function

F
(d,h;p)
M (m) given by

F
(d,h;p)
M (m) =

∏
1≤a≤M−4

3F2

[
−ma,−ma+1,−p̄a+2 − h̄a+1 + d/2−ma

pa+3 −ma, ha+2 + 1−ma
; 1

]
. (3.1)

– 6 –
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Note that there are M − 4 sums in (3.1) and F
(d,h;p)
4 (m) = 1. The boundary condition,

which is directly obtained from the known four-point conformal blocks, will lead to the

result (3.1).

3.1 OPE differential operator

From the OPE, the scalar contributions to the correlation functions are related by

I
(∆i2

,...,∆iM
,∆i1

)

M(∆k1
,...,∆kM−3

) =
1

ηpM1M

(
η2Mη3M

η1Mη23

)hM−1

D̄2hM−1

M1;23;2I
(∆i2

,...,∆iM−1
,∆kM−3

)

M−1(∆k1
,...,∆kM−4

) , (3.2)

or1

G
(d,h;p)
M (uM ,vM ) =

( ∏M−3
a=1 uMa

vMM−5,M−4v
M
M−4,M−4

)−p̄M−1−h̄M−1

× D̄2hM−1

M1;23;2

(xM2 )p̄M−1+h̄M−2

(1− yMM−2)p̄M−2+h̄M−2(1− yMM−1)pM−1
G

(d,h;p)
M−1 (uM−1,vM−1),

(3.3)

where the differential operator D̄ and the meaning of the subscripts D̄M1;23;2 are reviewed

in appendix A.

The action of the OPE differential operator is2

D̄2hM−1

M1;23;2(xM2 )q̄
∏

3≤a≤M−1

(1− yMa )−qa

= (xM2 )q̄+hM−1
∑

{na,n2a,nab}≥0

(−hM−1)n̄2+¯̄n(q2)n̄2(q̄ + hM−1)n̄−¯̄n

(q̄)n̄+n̄2(q̄ + 1− d/2)n̄2+¯̄n

×
∏

3≤a≤M−1

(qa)na

n2a!(na − n2a − n̄a)!
(yMa )na

(
xM2 zM2a
yMa

)n2a ∏
3≤a<b≤M−1

1

nab!

(
xM2 zMab
yMa y

M
b

)nab

,

(3.4)

on the cross-ratios

xM2 =
η1Mη23

η12η3M
,

yMa = 1− η1aη2M

η12ηaM
, 3 ≤ a ≤M − 1,

zMab =
ηabη2Mη3M

η23ηaMηbM
, 2 ≤ a < b ≤M − 1.

(3.5)

In the equation (3.4) above, q̄ =
∑M−1

a=2 qa and

n̄ =
∑

3≤a≤M−1

na, n̄2 =
∑

3≤a≤M−1

n2a,

n̄a =
∑

3≤b≤M−1
b 6=a

nab, ¯̄n =
∑

3≤a<b≤M−1

nab.
(3.6)

1Note that the conformal blocks defined here are equivalent to the ones defined in [31] up to powers

of v’s.
2Note that the OPE conformal differential has been re-scaled compared to the one defined in [31].
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The action of the OPE differential operator (3.4) on the cross-ratios (3.5) was obtained

in [31].

Clearly, it is necessary to determine the cross-ratios (2.5) in terms of the cross-

ratios (3.5) and vice-versa. From their definitions, these relations are given by

uM−1
M−4 =

1− yMM−1

1− yMM−2

zMM−3,M−2

zMM−3,M−1

,

vM−1
a,M−4 =

1− yMM−2−a
1− yMM−2

∏
1≤b≤a

zMM−2−a+b,M−1−a+b

zMM−3−a+b,M−1−a+b

,

(3.7)

and

xM2 =
1

vMM−5,M−4v
M
M−3,M−3

∏
1≤a≤M−3

ua,

yMa = 1−
vMM−1−a,M−3v

M
M−4,M−4

vMM−2−a,M−4v
M
M−3,M−3

, 3 ≤ a ≤M − 2,

yMM−1 = 1−
vMM−4,M−4

vMM−3,M−3

,

zM2a =
vMa−4,a−4v

M
M−5,M−4

vMM−2−a,M−4

∏
1≤b≤a−3

1

ub
, 4 ≤ a ≤M − 1,

zM3a =
vMa−5,a−4v

M
M−4,M−4

vMM−2−a,M−4

∏
1≤b≤a−3

1

ub
, 4 ≤ a ≤M − 1,

zMab =
vMb−a−2,b−4v

M
M−5,M−4v

M
M−4,M−4

vMM−2−a,M−4v
M
M−2−b,M−4

∏
1≤c≤b−3

1

uc
, 4 ≤ a < b ≤M − 1,

(3.8)

respectively. It is now possible to obtain the recurrence relation for F
(d,h;p)
M (m).

3.2 Recurrence relation

There are several steps for finding the recurrence relation for F
(d,h;p)
M (m) from (3.3). First,

the original cross-ratios (2.5) are expressed in terms of the cross-ratios (3.5) using (3.7).

Second, we act with the OPE differential operator as in (3.4), but re-express the cross-

ratios (3.5) in terms of the original cross-ratios (2.5) using (3.8). Finally, we re-sum as

many sums as possible3 which leads to the following recurrence relation for the func-

3Note that all sums are of the Gauss’ hypergeometric type 2F1(−m, b; c; 1) = (c−b)m
(c)m

for m a non-negative

integer. This relation is always satisfied since the re-summations are always finite.
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tion F
(d,h;p)
M (m),

F
(d,h;p)
M (m) =

∑
{ta,M−4}≥0

(−mM−3)tM−4,M−4

 ∏
1≤a≤M−4

(−ta,M−4)ta−1,M−4

ta,M−4!


×

∏
1≤a≤M−4

(−ma)ta,M−4(−p̄a+2 − h̄a+1 + d/2−ma)ta,M−4

(pa+3 −ma)ta,M−4(ha+2 + 1−ma)ta,M−4

F
(d,h;p)
M−1 (m− tM−4),

(3.9)

where tM−4 is the vector of ta,M−4 with 1 ≤ a ≤M−4. The computation is straightforward

yet long, tedious, and not really illuminating. Hence it is only sketched in appendix B.

Since the initial condition is F
(d,h;p)
4 (m) = 1, as obtained from the known four-point

conformal blocks, (3.9) leads to

F
(d,h;p)
M (m) =

∑
{tab}≥0

(−mM−3)tM−4,M−4

 ∏
1≤a≤b≤M−4

(−tab)ta−1,b

tab!


×

∏
1≤a≤M−4

(−ma)ta−1,a−1+t̄a(−p̄a+2 − h̄a+1 + d/2−ma)t̄a
(pa+3 −ma)t̄a(ha+2 + 1−ma)t̄a

.

(3.10)

Here t̄a =
∑

b≥a tab and the summation variables tab exist for 1 ≤ a ≤ b ≤ M − 4, with

the ones outside this range being set to 0. Note that there are (M − 4)(M − 3)/2 sums

in (3.10) and F
(d,h;p)
4 (m) = 1 as expected.

To get to the result (3.1), we keep the t̄a, which will become the summation index

for the 3F2’s appearing in (3.1), and re-sum all the remaining t’s, again using Gauss’

hypergeometric identities. It is also possible to check the result directly from the recurrence

relation (3.9) as shown in appendix C. This thus proves that (2.9) with (3.1) is correct for

the scalar M -point conformal blocks in the comb channel.

4 Sanity checks

Although the, somewhat lengthy, re-summations leading to the recurrence relation (3.9)

are straightforward, they nevertheless lead to a direct proof that the M -point conformal

blocks in the comb channel can be written as in (2.9). However, it is important to check

the result in certain limits. In this section several checks are described showing that our

results are consistent.

4.1 Limit of unit operator

It is straightforward to check that under the limit ∆i1 → 0, i.e. when Oi1(η1) → 1 with

∆kM−3
= ∆iM , and under the limit ∆i2 → 0, i.e. when Oi2(η2) → 1 with ∆k1 = ∆i3 ,

the M -point conformal blocks (2.9) reduce to the proper (M − 1)-point conformal blocks.
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Indeed, one has

G
(d,h;p)
M (uM ,vM )→ G

(d,h′;p′)
M−1

(
uM−1

∣∣
η1→ηM

, vM−1
∣∣
η1→ηM

)
,

p′a = pa, 2 ≤ a ≤M − 2,

2p′M−1 = ∆iM−1 + ∆iM −∆kM−4
,

h′a = ha, 2 ≤ a ≤M − 3,

2h′M−2 = ∆iM −∆kM−4
−∆iM−1 ,

(4.1)

when Oi1(η1)→ 1 and

G
(d,h;p)
M (uM ,vM )→ G

(d,h′;p′)
M−1

(
uM−1

∣∣
η1→η1,ηa→ηa+1

, vM−1
∣∣
η1→η1,ηa→ηa+1

)
,

p′2 = ∆i4 , 2p′3 = ∆i3 + ∆k2 −∆i4 ,

p′a = pa+1, 4 ≤ a ≤M − 1,

2h′2 = ∆k2 −∆i4 −∆i3 ,

h′a = ha+1, 3 ≤ a ≤M − 2,

(4.2)

when Oi2(η2)→ 1, respectively. Thus, the correlation function IM reduces directly to the

proper contributions to the correlation function IM−1. These relations are expected to be

correct directly from the OPE and were indeed used to fix the form of the Pochhammer

symbols in (2.9), up to the function F
(d,h;p)
M (m). For example, by setting the proper

conformal dimension to zero and relating the other conformal dimensions accordingly, one

of the parameters in p or h vanishes and some of the Pochhammer symbols in the original

M -point conformal blocks constrain the powers of the appropriate cross-ratios to vanish,

leading to the (M − 1)-point conformal blocks, as required.

Although it is not as simple, it is also possible to verify that the limit ∆iM−1 → 0 which

corresponds to OiM−1(ηM−1)→ 1 reduces to the proper (M−1)-point conformal blocks. As

before, such a proof necessitates standard Gauss’ hypergeometric type re-summations, but

this time it intertwines the sums from F
(d,h;p)
M (m) with the sums from G

(d,h;p)
M (uM ,vM ).

Again, this proof is straightforward yet long and tedious, and as such it is not shown in

its entirety here (it is sketched in appendix D). Although we did not verify it explicitly,

it is reasonable to argue that all the extra M − 4 sums in the function F
(d,h;p)
M (m) are

required, and that they allow the proper reduction of the M -point conformal blocks to

the (M − 1)-point conformal blocks when any of the external operator is set to the unit

operator. Indeed, from the limit of unit operator, there are four operators for which the

limit is trivial, originating from the two associated OPEs.4 Hence, one is left with M − 4

operators where the limit of unit operator is not straightforward. From the computation

above (sketched in appendix D) where the sums from F
(d,h;p)
M (m) and G

(d,h;p)
M (uM ,vM )

intertwine when OiM−1(ηM−1) → 1, it seems logical to argue that the remaining limits

of unit operator Oij (ηj) → 1 for 4 ≤ j ≤ M − 1 necessitate one extra summation each.

Moreover, since there is no real difference in G
(d,h;p)
M (uM ,vM ) when Oij (ηj) → 1 for any

4The four operators are Oi2(η2) and Oi3(η3) from the left endpoint of the comb and OiM (ηM ) and

Oi1(η1) from the right endpoint of the comb, as shown in figure 1.
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j such that 4 ≤ j ≤ M − 1, the proof should be analog to the one for OiM−1(ηM−1) → 1.

Hence, there would be a minimum of M − 4 extra sums necessary for M -point conformal

blocks, irrespective of the choice of cross-ratios, as found in F
(d,h;p)
M (m).

4.2 Scalar five-point conformal blocks in comb channel

From (2.9), the scalar five-point conformal blocks in the comb channel are explicitly given by

G
(d,h2,h3,h4;p2,p3,p4)
5 (u5

1, u
5
2, v

5
11, v

5
12, v

5
22) =

∑
{ma,mab}≥0

(p3)m1+m11+m22(p4 −m1)m2

× (p2 + h2)m1+m12(p̄3 + h̄3)m1+m2+m11+m12+m22(p̄4 + h̄4)m2+m12+m22

(p̄3 + h2)2m1+m11+m12+m22(p̄4 + h̄3)2m2+m11+m12+m22

× (−h3)m1(−h4)m2(−h4 +m2)m11

(p̄3 + h2 + 1− d/2)m1(p̄4 + h̄3 + 1− d/2)m2

3F2

[
−m1,−m2,−p̄3 − h2 + d/2−m1

p4 −m1, h3 + 1−m1
; 1

]

× (u5
1)m1

m1!

(u5
2)m2

m2!

(1− v5
11)m11

m11!

(1− v5
12)m12

m12!

(1− v5
22)m22

m22!
.

(4.3)

The result (4.3) is highly reminiscent of the result found in [71], but it is not the same. It is

possible to prove analytically that both results are equivalent using simple hypergeometric

identities.

By expanding the 3F2 as a sum

3F2

[
−m1,−m2,−p̄3 − h2 + d/2−m1

p4 −m1, h3 + 1−m1
; 1

]
=
∑
n≥0

(−m1)n(−m2)n(−p̄3 − h2 + d/2−m1)n
(p4 −m1)n(h3 + 1−m1)nn!

,

(4.4)

and using the simple identities

(−h3)m1−n
(p̄3 + h2 + 1− d/2)m1−n

=
(−h3)m1(−p̄3 − h2 + d/2−m1)n

(p̄3 + h2 + 1− d/2)m1(h3 + 1−m1)n
,

(p4 −m1 + n)m2−n =
(p4 −m1)m2

(p4 −m1)n
,

1

(m1 − n)!(m2 − n)!
=

(−m1)n(−m2)n
m1!m2!

,

(4.5)

the conformal block (4.3) can be re-expressed as

G
(d,h2,h3,h4;p2,p3,p4)
5 (u5

1, u
5
2, v

5
11, v

5
12, v

5
22) =

∑
{ma,mab,n}≥0

(p3)m1+m11+m22(p4 −m1 + n)m2−n

× (p2 + h2)m1+m12(p̄3 + h̄3)m1+m2+m11+m12+m22(p̄4 + h̄4)m2+m12+m22

(p̄3 + h2)2m1+m11+m12+m22(p̄4 + h̄3)2m2+m11+m12+m22

× (−h3)m1−n(−h4)m2+m11

(p̄3 + h2 + 1− d/2)m1−n(p̄4 + h̄3 + 1− d/2)m2

× (u5
1)m1

(m1 − n)!

(u5
2)m2

(m2 − n)!

(1− v5
11)m11

m11!

(1− v5
12)m12

m12!

(1− v5
22)m22

(m22!)2
.

(4.6)

– 11 –



J
H
E
P
0
7
(
2
0
2
0
)
2
1
3

Now we use the following identity,

(p4 −m1 + n)m2−n =
∑
j≥0

(m2 − n)!

j!(m2 − n− j)!
(p4)j(−m1 + n)m2−n−j , (4.7)

with the change of summation variable j → m2 − j, to get

(p4 −m1 + n)m2−n =
∑
j≥0

(m2 − n)!(−j)n
(m2 − j)!j!

(p4)m2

(1− p4 −m2)j

(m1 − n)!

(m1 − j)!
. (4.8)

Since the only other terms in the conformal blocks including an explicit n are

(−h3)m1−n
(p̄3 + h2 + 1− d/2)m1−n

=
(−h3)m1(−p̄3 − h2 + d/2)n

(p̄3 + h2 + 1− d/2)m1(h3 + 1)n
, (4.9)

the sum over n simplifies to ∑
n

=
(p̄3 + h̄3 + 1− d/2)j

(h3 + 1−m1)j
. (4.10)

Re-expressing the sum over j as a 3F2 leads to

G
(d,h2,h3,h4;p2,p3,p4)
5 (u5

1, u
5
2, v

5
11, v

5
12, v

5
22) =

∑
{ma,mab}≥0

(p3)m1+m11+m22(p4)m2

× (p2 + h2)m1+m12(p̄3 + h̄3)m1+m2+m11+m12+m22(p̄4 + h̄4)m2+m12+m22

(p̄3 + h2)2m1+m11+m12+m22(p̄4 + h̄3)2m2+m11+m12+m22

× (−h3)m1(−h4)m2+m11

(p̄3 + h2 + 1− d/2)m1(p̄4 + h̄3 + 1− d/2)m2

3F2

[
−m1,−m2, p̄3 + h̄3 + 1− d/2

1− p4 −m2, h3 + 1−m1
; 1

]

× (u5
1)m1

m1!

(u5
2)m2

m2!

(1− v5
11)m11

m11!

(1− v5
12)m12

m12!

(1− v5
22)m22

m22!
.

(4.11)

which matches exactly with [71] after the proper re-definitions η1 → η5, ηa → ηa−1, ∆1 →
∆5, and ∆a → ∆a−1 to match the operator positions, which imply

u5
1 = uR1 , u5

2 = uR2 , v5
11 = vR1 , v5

12 = vR2 , v5
22 = wR, (4.12)

where the cross-ratios with superscript R are the ones defined in [71].

4.3 Limit d → 1

It is also possible to verify the conformal blocks (2.9) by comparing with the d = 1 conformal

blocks obtained in [71].

First, it is important to bring up that in general spacetime dimension, the number of

cross-ratios for M -point correlation functions is usually stated as being M(M−3)/2. How-

ever, due to the restrictions encountered for any fixed spacetime dimension, the number

of independent cross-ratios is smaller than the usual value M(M − 3)/2 when M is large

enough. Indeed, for fixed spacetime dimension with large M , there are not enough space-

time dimensions to make all cross-ratios independent. For example, in d = 3, there are two
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independent cross-ratios for four-point conformal blocks, five independent cross-ratios for

five-point conformal blocks, but only eight independent cross-ratios for six-point conformal

blocks instead of the usual nine. Generically, one has [25]

Ncr =
M(M − 3)

2
, M − 3 < d,

Ncr = d(M − 3)− (d− 1)(d− 2)

2
, M − 3 ≥ d,

(4.13)

for the number of independent cross-ratios Ncr. The rationale behind (4.13) for M − 3 ≥ d
is simple. As usual, using conformal invariance three points are set at 0, 1 and ∞, fixing

a line in the d-dimensional space. There are thus (M − 3) remaining coordinates that can

be placed anywhere in the d-dimensional space, up to the rotations about the fixed line,

which corresponds to the term (d− 1)(d− 2)/2.

In one spacetime dimension, there are only M−3 independent cross-ratios for M -point

conformal blocks. In [71], those were defined as χa with 1 ≤ a ≤ M − 3. By comparing

their explicit definitions with our definitions (2.5), it is easy to check that the cross-ratios

used here are related to the cross-ratios χa as follows

uMa → χ2
a, 1 ≤ a ≤M−3

vMab →

−1−
ba+1

2 c∑
n=1

(−1)n
a−2(n−1)∑
c1=1

a−2(n−2)∑
c2=c1+2

· · ·
a∑

cn=cn−1+2

n∏
i=1

χci+b−a


2

, 1 ≤ a ≤ b ≤M−3.

(4.14)

Although it is not straightforward to check analytically, we did verify to some finite order

in the cross-ratio expansions that the (M ≤ 8)-point conformal blocks (2.9) with the

substitutions (4.14) reproduced the d = 1 conformal blocks obtained in [71].

Since the conformal blocks in d = 1 obtained in [71] are much simpler, it would be

interesting to find an analytic proof of the equivalence with (2.9). Such a proof could be

useful in looking for simplifications to the higher-point conformal blocks in fixed spacetime

dimensions when some cross-ratios are not independent.

5 Discussion and conclusion

Our main results are given in (2.9) and (3.1). These formulas encode the M -point scalar

conformal blocks in the comb channel for any dimension d. This result was obtained using

the embedding space OPE approach for computing conformal blocks set out in [30, 31]. This

result passes several consistency checks. In appropriate limits, it agrees with the results

of [71]. Furthermore, when one of the external operators is exchanged for the identity

operator our expressions for an M -point block reduces to that for an (M − 1)-point block.

There are several directions in which it might be interesting to extended these results.

Starting with M = 6, there are other configurations beyond the comb, in which some of the

OPE vertices are not directly connected to any external operators. The OPE formalism

is not limited to the comb channel, but can be applied to other cases as well. It would
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be interesting to see relations between different topologies of the blocks if progress can

be made in computing blocks of different topologies efficiently. Likewise, it is feasible to

compute higher-point functions containing exchange operators with spin. At least some of

such cases do not appear to be prohibitively complicated, and in any case seem simpler

than higher-point functions with spinning external operators.

The M -point blocks described in (2.9) and (3.1) are described by a complicated func-

tion of the invariant cross-ratios. This function must have many remarkable properties

that would be worth studying. It is not clear if there are other choices of the invariant

cross-ratios that may make some of the properties of the blocks more apparent. For exam-

ple, in the limit where one of the exchange operators has dimension set to 0, neighboring

operators must be forced to have identical dimensions.

While for the four-point blocks the AdS/CFT correspondence has been used fruitfully,

there could be interesting applications of higher-point blocks. The connection between

conformal blocks on the boundary and the “geodesic Witten diagrams” has been established

in [14].

Finally, knowledge of higher-point functions could be used in the bootstrap program.

The unitarity constraints that have led to many powerful results delineating the space of

consistent CFTs, thus far, have been based on the positivity of the two-point functions.

Obviously, there are additional unitarity constraints that could be imposed and leveraged

to further constrain CFTs. It has also been suggested that studying M -point blocks with

external scalar fields could be an alternative for studying crossing equations containing

external operators with spin [71].

Note added. During completion of this work a result for M -point blocks in the comb

channel appeared on the preprint archive [75]. That result was obtained using holographic

methods generalizing lower-point results by conjecture and subsequently verified (up to

M = 7) using the Casimir equation.
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A Notation and the differential operator

We denote the dimensionality of spacetime by d, but work in the embedding space which

is a (d + 2)-dimensional projective space. The embedding space coordinates, denoted η,

are restricted to the light-cone η · η ≡ ηAηA = 0 and equivalent under ηA ∼ ληA for λ > 0.

The conformal symmetry acts linearly on the embedding space coordinates ηA. Since we

are dealing with scalar primary operators all expressions depend on the dot products alone

that is on ηi · ηj = −1
2(xi − xj)2, where xi is the ordinary d-dimensional position space

coordinate corresponding to ηi.
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The primary operators O(η) in the embedding space are homogenous under coordinate

re-scalings ηA ∂
∂ηA
O(η) = −∆OO(η), where ∆O is the operator dimension. Operators in

non-trivial Lorentz representations satisfy additional transversality conditions and scale

according to their twists instead of their dimensions [31], but these intricacies are of no

consequence here.

We now turn to the differential operator in the OPE for scalar operators (2.2)

Oi(η1)Oj(η2) = c k
ij

1

(η1 · η2)pijk
D(d,hijk,0)

12 Ok(η2) + . . . ,

pijk =
1

2
(∆i + ∆j −∆k), hijk = −1

2
(∆i −∆j + ∆k).

(A.1)

The differential operator D(d,hijk,0)
12 is rather simple when its third superscript, correspond-

ing to the number of Lorentz indices, is zero. This differential operator can be defined for

any pairs of coordinates

D(d,h,0)
ij =

[
(ηi · ηj)∂2

j − (d+ 2 ηj · ∂j)ηi · ∂j
]h
, (A.2)

where ∂j = ∂
∂ηAj

. Note that D(d,h,0)
ij contains derivatives with respect to ηj only, but

depends on both coordinates ηi and ηj . The power h is, in general, not necessarily integer.

However, the action of D(d,h,0)
ij on the coordinates can be defined for any real h using

fractional calculus [28, 29].

D(d,h,0)
ij satisfies a number of useful properties, for example D(d,h,0)

ij (ηi · ηj) = (ηi ·
ηj)D(d,h,0)

ij . D(d,h,0)
ij is homogeneous of degree h with respect to ηi, that is [ηi ·∂i,D(d,h,0)

ij ] =

hD(d,h,0)
ij , and of degree −h with respect to ηj , that is [ηj · ∂j ,D(d,h,0)

ij ] = −hD(d,h,0)
ij . What

is crucial for us is that the action of the differential operator can be calculated explicitly

in all generality. The function I
(d,h,0,p)
ij defined as

I
(d,h,0;p)
ij = D(d,h,0)

ij

∏
a 6=i,j

1

(ηj · ηa)pa
, (A.3)

where p denotes collectively all powers pa, is the most general expression one encounters

when computing the OPE of scalar operators, that is when an M -point function is expressed

in terms of an (M − 1)-point function.

With four, or more, coordinates it is possible to introduce a differential operator that

is homogenous of degree 0 with respect to every coordinate

D̄(d,h,0)
ij;k` =

(ηi · ηj)h(ηk · η`)h

(ηi · ηk)h(ηi · η`)h
D(d,h,0)
ij , (A.4)

where k, ` 6= i, j. All the dot products in the pre-factor in the definition of D̄(d,h,0)
ij;k` commute

with the differential operator. Similarly, it is possible to introduce a re-scaled homogeneous

analogue of (A.3)

Ī
(d,h,0;p)
ij;k` =

(ηi · ηj)p̄+h(ηk · η`)p̄+h

(ηi · ηk)p̄+h(ηi · η`)p̄+h

∏
a 6=i,j

(ηi · ηa)pa
 I(d,h,0;p)

ij = D̄(d,h,0)
ij;k`

∏
a 6=i,j

xpaa , (A.5)
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with p̄ =
∑

a 6=i,j pa. Because Ī
(d,h,0;p)
ij;k` is homogeneous of degree 0 in all coordinates it can

be described as a function of conformal cross-ratios xa =
(ηi·ηj)(ηk·η`)(ηi·ηa)
(ηi·ηk)(ηi·η`)(ηj ·ηa) for all a 6= i, j,

as indicated in the second equality in (A.5). For computational convenience, it is useful to

express the differential operators not in terms of the cross-ratios xa, but instead to pick

one specific xm and trade the remaining xa’s for ya = 1 − xm/xa for a 6= i, j,m. When

the operator D̄(d,h,0)
ij;k` is expressed in terms of xm and ya, by a tedious yet straightforward

change of variables, it is referred to as D̄2h
ij;k`;m. Further details are in section 4.3 of [31].

The action of D̄2h
ij;k`;m used in this article differs, for brevity of expressions, by a purely

numerical factor from that in [31]. In (3.4) a factor of (−2)hM−1(q̄)hM−1
(q̄ + 1− d/2)hM−1

is omitted compared to the analogous expression in [31]. Since the difference is purely

numerical it does not affect coordinate dependence.

B Sketch of the recurrence relation (3.9)

As mentioned in the main text, the recurrence relation for F
(d,h;p)
M (m) given by (3.9) can

be obtained directly from the definition (3.3), itself obtained from the OPE (2.1). Since

the action of the OPE differential operator on the cross-ratios (3.5) is known, using (3.7)

one first expresses the cross-ratios (2.5) in terms of the cross-ratios (3.5). Then, the action

of the OPE differential operator is computed from (3.4), and the result is re-expressed in

terms of the cross-ratios (2.5) using (3.8). This leads to

G
(d,h;p)
M (uM ,vM )

=
∑M−4∏

i=1

1

(ni,M−4)!

(
ni,M−4

qM−i−2

)(
−p̄M−1 − h̄M−1 −mM−3 −

∑M−2
a=3 la

mM−3,M−3

)(
q2 − r̄2

mM−4,M−4

)

×
M−2∏
a=3

(
la

mM−a−1,M−3

)M−3∏
a=3

(
qa − la − sa
mM−a−2,M−4

)M−5∏
a=1

a∏
b=1

(
ra−b+2,a+4

kab

)M−1∏
a=3

(−1)la
(
σa
la

)
× (−1)

∑M−3
a=2 qa+

∑M−3
a=1 ma,M−3+

∑M−4
a=1 ma,M−4+

∑M−5
a=1

∑a
b=1 kab

×
(−hM−1)mM−3(−q2)r̄2(p̄M−1 + h̄M−1)mM−3+

∑M−1
a=3 σa

(p̄M−1 + h̄M−2)2mM−3+
∑M−1

a=3 σa
(p̄M−1 + h̄M−2 + 1− d/2)mM−3

×
(pM−1 − nM−4)σM−1+sM−1

(σM−1)!

(p̄M−2 + h̄M−2 + nM−4 +
∑M−3

a=2 qa)σM−2+sM−2

(σM−2)!

×
M−3∏
a=3

(−qa)σa+sa

(σa)!

∏
b>a

a,b 6=1,M

1

(rab)!
(uMM−3)mM−2

M−4∏
i=1

(uMi )ni+r23+
∑i+2

b=4

∑b−1
a=2 rab

(ni)!

× (1− vMM−4,M−4)mM−4,M−4

M−4∏
a=1

(1− vMa,M−3)ma,M−3

M−5∏
a=1

(1− vMa,M−4)ma,M−4

×
M−5∏
b=1

b∏
a=1

(1− vMab )nab+kab

(nab)!

(
vMM−3,M−3

vMM−4,M−4

)mM−3,M−3

C
(d,h;p)
M−1 (m,m)F

(d,h;p)
M−1 (m),

(B.1)
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where

r̄2 =
∑

3≤a≤M−1

r2a, (B.2)

and C
(d,h;p)
M (m,m) is defined through (2.9) as

G
(d,h;p)
M (uM ,vM ) =

∑
{ma,mab}≥0

C
(d,h;p)
M (m,m)F

(d,h;p)
M (m)

∏
1≤a≤M−3

(uMa )ma

ma!

∏
a,b
b≥a

(1−vMab )mab

mab!
.

(B.3)

We are thus left with sums over the usual ma and mab as well as extra sums over nab,

qa, la, rab, sa, kab, and σa that we want to re-sum. By proceeding appropriately, all these

sums are of the Gauss’ hypergeometric type 2F1(−m, b; c; 1) = (c−b)m
(c)m

for m a non-negative

integer. For example, for the sum over lM−1, the relevant terms are

(−1)lM−1

(
σM−1

lM−1

)
=

(−σM−1)lM−1

lM−1!
, (B.4)

and

(−1)mM−3,M−3

(
p̄M−1+h̄M−1+mM−3+

∑M−1
a=3 la

mM−3,M−3

)

=
(p̄M−1+h̄M−1+mM−3+

∑M−2
a=3 la+mM−3,M−3)lM−1

(p̄M−1+h̄M−1+mM−3+
∑M−2
a=3 la)mM−3,M−3

(p̄M−1+h̄M−1+mM−3+
∑M−2
a=3 la)lM−1

mM−3,M−3!
.

(B.5)

Therefore, the sum over lM−1 is simply

(−mM−3,M−3)σM−1(p̄M−1 + h̄M−1 +mM−3 +
∑M−2

a=3 la)mM−3,M−3

(p̄M−1 + h̄M−1 +mM−2 +
∑M−2

a=3 la)σM−1mM−3,M−3!
. (B.6)

To get to (3.9), we repeat the steps above for all remaining indices of summation, which is

long yet straightforward.

C Proof of (3.1) from the recurrence relation (3.9)

The recurrence relation (3.9) directly leads to a proof of (3.1). Indeed, one has

F
(d,h;p)
M (m)

=
∑
{ta}≥0

(−mM−3)tM−4

∏
1≤a≤M−4

(−ma)ta(−p̄a+2−h̄a+1+d/2−ma)ta(−ta)ta−1

(pa+3−ma)ta(ha+2+1−ma)tata!
F

(d,h;p)
M−1 (m−t)

=
∑
{ta}≥0

(−mM−3)tM−4

∏
1≤a≤M−4

(−ma)ta(−p̄a+2−h̄a+1+d/2−ma)ta(−ta)ta−1

(pa+3−ma)ta(ha+2+1−ma)tata!

×
∏

1≤a≤M−5

3F2

[
−ma+ta,−ma+1+ta+1,−p̄a+2−h̄a+1+d/2−ma+ta

pa+3−ma+ta, ha+2+1−ma+ta
; 1

]

=
∑
{ta}≥0

(−mM−3)tM−4

∏
1≤a≤M−4

(−ma)ta(−p̄a+2−h̄a+1+d/2−ma)ta(−ta)ta−1

(pa+3−ma)ta(ha+2+1−ma)tata!

×
∑
{ja}≥0

M−5∏
a=1

(−ma+ta)ja(−ma+1+ta+1)ja(−p̄a+2−h̄a+1+d/2−ma+ta)ja
(pa+3−ma+ta)ja(ha+2+1−ma+ta)jaja!
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=
∑
{ta}≥0

(−mM−3)tM−4

(−mM−4)tM−4
(−p̄M−2−h̄M−3+d/2−mM−4)tM−4

(pM−1−mM−4)tM−4
(hM−2+1−mM−4)tM−4

tM−4!

×
∑
{ja}≥0

M−5∏
a=1

(−ma)ja+ta(−ma+1+ta+1)ja(−p̄a+2−h̄a+1+d/2−ma)ja+ta(−ta+1)ta
(pa+3−ma)ja+ta(ha+2+1−ma)ja+taja!ta!

=
∑
{ja}≥0

(−mM−3)jM−4

(−mM−4)jM−4
(−p̄M−2−h̄M−3+d/2−mM−4)jM−4

(pM−1−mM−4)jM−4
(hM−2+1−mM−4)jM−4

jM−4!

×
∑
{ta}≥0

M−5∏
a=1

(−ma)ja(−ma+1+ta+1)ja−ta(−p̄a+2−h̄a+1+d/2−ma)ja(−ta+1)ta
(pa+3−ma)ja(ha+2+1−ma)ja(ja−ta)!ta!

,

(C.1)

where in the last line we changed the summation variables from ja → ja − ta for 1 ≤
a ≤ M − 5 and renamed tM−4 by jM−4. Combining the products, the result can be

re-expressed as

F
(d,h;p)
M (m) =

∑
{ja}≥0

(−mM−3)jM−4

jM−4!

M−4∏
a=1

(−ma)ja(−p̄a+2 − h̄a+1 + d/2−ma)ja
(pa+3 −ma)ja(ha+2 + 1−ma)ja

×
∑
{ta}≥0

M−5∏
a=1

(−ma+1 + ta+1)ja−ta(−ta+1)ta
(ja − ta)!ta!

,

(C.2)

where it is understood that tM−4 = jM−4.

Concentrating on the t1 sum and using simple hypergeometric identities of the Gauss’

type, we get ∑
t1≥0

(−m2 + t2)j1−t1(−t2)t1
(j1 − t1)!t1!

=
(−m2)j1
j1!

, (C.3)

which is independent of t2, leading to

F
(d,h;p)
M (m) =

∑
{ja}≥0

(−m2)j1
j1!

(−mM−3)jM−4

jM−4!

M−4∏
a=1

(−ma)ja(−p̄a+2 − h̄a+1 + d/2−ma)ja
(pa+3 −ma)ja(ha+2 + 1−ma)ja

×
∑
{ta}≥0

M−5∏
a=2

(−ma+1 + ta+1)ja−ta(−ta+1)ta
(ja − ta)!ta!

,

(C.4)

Clearly, because of its independence on ta+1 the same identity can be used recursively on

the ta sums, starting from a = 1 all the way to a = M − 5, giving

F
(d,h;p)
M (m) =

∑
{ja}≥0

M−4∏
a=1

(−ma)ja(−ma+1)ja(−p̄a+2 − h̄a+1 + d/2−ma)ja
(pa+3 −ma)ja(ha+2 + 1−ma)jaja!

, (C.5)

which is nothing else than (3.1), completing the proof.
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D Sketch of the proof of the limit of unit operator

The limit of unit operator OiM−1(ηM−1)→ 1 implies that pM−1 = hM−2 = 0. Through the

Pochhammer symbols, these constraints force some of the summation variables to vanish.

Moreover, the cross-ratios transform such that

uM−1
M−5

∣∣∣
ηM−1→ηM

=
uMM−5

vM1,M−4

,

uM−1
M−4

∣∣∣
ηM−1→ηM

=
uMM−4u

M
M−3

vM1,M−4v
M
1,M−3

,

vM−1
a,M−5

∣∣∣
ηM−1→ηM

=
vMa+1,M−4

vM1,M−4

, 1 ≤ a ≤M − 5,

vM−1
a,M−4

∣∣∣
ηM−1→ηM

=
vMa+1,M−3

vM1,M−4v
M
1,M−3

, 1 ≤ a ≤M − 4.

(D.1)

Re-writing the conformal blocks in terms of the cross-ratios for M−1 points and re-summing

with the help of several changes of variables lead to

G
(d,h;p)
M (uM ,vM )→ (vM1,M−4)−p̄M−3−h̄M−3(vM1,M−3)−p̄M−1−h̄M−1

×G(d,h;p)
M−1

(
uM−1

∣∣
ηM−1→ηM

, vM−1
∣∣
ηM−1→ηM

)
,

(D.2)

when OiM−1(ηM−1)→ 1.

Hence the contributions to the correlation function (2.8) transform as

I
(∆i2

,...,∆iM
,∆i1

)

M(∆k1
,...,∆kM−3

) → (vM1,M−4)−∆iM−2
/2(vM1,M−3)(∆i1

−∆iM
)/2

× (vM1,M−4)(∆kM−5
+∆kM−4

)/2(vM1,M−3)∆kM−4
/2

× (vM1,M−4)−p̄M−3−h̄M−3(vM1,M−3)−p̄M−1−h̄M−1I
(∆i2

,...,∆iM−2
,∆iM

,∆i1
)

M−1(∆k1
,...,∆kM−4

)

= I
(∆i2

,...,∆iM−2
,∆iM

,∆i1
)

M−1(∆k1
,...,∆kM−4

) ,

(D.3)

when OiM−1(ηM−1)→ 1 since

p̄a + h̄a−1 = ∆ka−2 , 2 ≤ a ≤M − 1. (D.4)

Here, the pre-factor (vM1,M−4)−∆iM−2
/2(vM1,M−3)(∆i1

−∆iM
)/2 comes from the η’s in (2.8) while

the pre-factor (vM1,M−4)(∆kM−5
+∆kM−4

)/2(vM1,M−3)∆kM−4
/2 comes from the u’s in (2.8) when

OiM−1(ηM−1) → 1. Therefore the contribution to the correlation functions behaves prop-

erly under the limit of unit operator.

D.1 Proof of the limit of unit operator for five-point functions

To see how the mathematics work, we show here the complete proof of the limit of unit

operator for five-point functions.
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As argued above, in the limit Oi4(η4)→ 1, we should have

I
(∆i2

,...,∆i5
,∆i1

)

5(∆k1
,∆k2

) → I
(∆i2

,∆i3
,∆i5

,∆i1
)

4(∆k1
) . (D.5)

To confirm this behavior, we first note that when ∆4 = 0 and ∆k1 = ∆k2 , we have5

p′2 = p2, p′3 = p3 p′4 = p5,

h′2 = h2 , h′3 = h4.
(D.6)

Thus it is easy to check that under this limit, we have

L5(u5
1)∆k1

/2(u5
2)∆k2

/2 → (v5
11)p3(v5

12)p̄4+h̄4L′4(u′41 )∆k1
/2, (D.7)

where LM is the pre-factor with explicit η’s in (2.8), i.e. the first line of (2.8). To find the

limiting behavior of G5, we note that our definition gives

G5 =
∑ (p3)m1+m11+m22(−h3)m1(p2 + h2)m1+m12(p̄3 + h̄3)m1+m2+m11+m12+m22

(p̄3 + h2)2m1+m11+m12+m22(p̄3 + h2 + 1− d/2)m1

× (p4 −m1)m2(−h4 +m2)m11(−h4)m2(p̄4 + h̄4)m2+m12+m22

(p̄4 + h̄3)2m2+m11+m12+m22(p̄4 + h̄3 + 1− d/2)m2

× (u5
1)m1

m1!

(u5
2)m2

m2!

(1− v5
11)m11

m11!

(1− v5
12)m12

m12!

(1− v5
22)m22

m22!

× (−m1)t(−m2)t(−p̄3 − h2 + d/2−m1)t
t!(p4 −m1)t(1 + h3 −m1)t

,

(D.8)

where we expanded F5 as a summation over t, with all indices of summation left implicit

in the sum. Since in the limit above we have p4 = h3 = 0, which implies m1 = m2 = t, G5

simplifies to

G5 =
∑ (p3)m1+m11+m22(p2 + h2)m1+m12(−h4 +m1)m11(−h4)m1(p̄4 + h̄4)m1+m12+m22

(p̄4 + h̄3)2m1+m11+m12+m22(p̄4 + h̄3 + 1− d/2)m1

× (u5
1u

5
2)m1

m1!

(1− v5
11)m11

m11!

(1− v5
12)m12

m12!

(1− v5
22)m22

m22!
.

(D.9)

Using the fact that

u′41 =
u5

1u
5
2

v5
11v

5
12

, v′411 =
v5

22

v5
11v

5
12

, (D.10)

we can rewrite G5 in terms of u4
1 and v4

11. This leads to

G5 =
∑ (p3)m1+m11+m22

(p2+h2)m1+m12
(−h4+m1)m11

(−h4)m1
(p̄4+h̄4)m1+m12+m22

(p̄4+h̄3)2m1+m11+m12+m22
(p̄4+h̄3+1−d/2)m1

×
(
m22

k22

)(
k22

m′11

)
(−1)k22+m′11

(u′41 v
5
11v

5
12)m1

m1!

(1−v5
11)m11

m11!

(1−v5
12)m12

m12!

(1−v′411)m
′
11(v5

11v
5
12)k22

m22!
.

(D.11)

5In the following, we use primes to label quantities with respect to I
(∆i2

,∆i3
,∆i5

,∆i1
)

4(∆k1
) . We thus leave

implicit most subscripts and superscripts to simplify the notation.
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Now, we change the variable to k22 → k22 +m′11 such that

(−1)k22+m′11

m22!

(
m22

k22

)(
k22

m′11

)
→ (−1)k22

m22!

(
m22

k22+m′11

)(
k22+m′11

m′11

)
=

(−1)k22

(m22−m′11)!m′11!

(
m22−m′11

k22

)
.

(D.12)

Therefore, G5 becomes

G5 =
∑ (p3)m1+m11+m22

(p2+h2)m1+m12
(−h4+m1)m11

(−h4)m1
(p̄4+h̄4)m1+m12+m22

(p̄4+h̄3)2m1+m11+m12+m22
(p̄4+h̄3+1−d/2)m1

×
(
m22−m′11

k22

)
(−1)k22

(u′41 v
5
11v

5
12)m1

m1!

(1−v5
11)m11

m11!

(1−v5
12)m12

m12!

(1−v′411)m
′
11(v5

11v
5
12)k22+m′11

m′11!(m22−m′11)!

=
∑ (p3)m1+m11+m22

(p2+h2)m1+m12
(−h4+m1)m11

(−h4)m1
(p̄4+h̄4)m1+m12+m22

(p̄4+h̄3)2m1+m11+m12+m22
(p̄4+h̄3+1−d/2)m1

×
(
m22−m′11

k22

)(
k22

r11

)(
k22

r12

)
(−1)k22+r11+r12(v5

11v
5
12)m

′
11

(m22−m′11)!

× (u′41 v
5
11v

5
12)m1

m1!

(1−v5
11)m11+r11

m11!

(1−v5
12)m12+r12

m12!

(1−v′411)m
′
11

m′11!
.

(D.13)

We change k22 again by k22 → k22 + r11 such that G5 becomes

G5 =
∑ (p3)m1+m11+m22(p2 + h2)m1+m12(−h4 +m1)m11(−h4)m1(p̄4 + h̄4)m1+m12+m22

(p̄4 + h̄3)2m1+m11+m12+m22(p̄4 + h̄3 + 1− d/2)m1

×
(
m22 −m′11 − r11

k22

)(
k22 + r11

r12

)
(−1)k22+r12(v5

11v
5
12)m

′
11

(m22 −m′11 − r11)!r11!

× (u′41 v
5
11v

5
12)m1

m1!

(1− v5
11)m11+r11

m11!

(1− v5
12)m12+r12

m12!

(1− v′411)m
′
11

m′11!
.

(D.14)

With the help of the following identity,

(1− v)a =
∑
i

(
a

i

)
(−1)ivi, (D.15)

we can evaluate the summation over r12 and we find

G5 =
∑ (p3)m1+m11+m22(p2 + h2)m1+m12(−h4 +m1)m11(−h4)m1(p̄4 + h̄4)m1+m12+m22

(p̄4 + h̄3)2m1+m11+m12+m22(p̄4 + h̄3 + 1− d/2)m1

×
(
m22 −m′11 − r11

k22

)
(−1)k22(v5

12)k22+r11(v5
11v

5
12)m

′
11

(m22 −m′11 − r11)!r11!

× (u′41 v
5
11v

5
12)m1

m1!

(1− v5
11)m11+r11

m11!

(1− v5
12)m12

m12!

(1− v′411)m
′
11

m′11!
.

(D.16)

In a similar way, we evaluate the sum over k22 and the result is

G5 =
∑ (p3)m1+m11+m22(p2+h2)m1+m12(−h4+m1)m11(−h4)m1(p̄4+h̄4)m1+m12+m22

(p̄4+h̄3)2m1+m11+m12+m22
(p̄4+h̄3+1−d/2)m1

× (v5
12)r11(v5

11v
5
12)m

′
11

(m22−m′11−r11)!r11!

(u′41 v
5
11v

5
12)m1

m1!

(1−v5
11)m11+r11

m11!

(1−v5
12)m12+m22−m′11−r11

m12!

(1−v′411)m
′
11

m′11!
.

(D.17)
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Now, we change m22 by m22 → m22 +m′11 + r11 and define new variables

n11 = m11 + r11, n12 = m12 +m22, (D.18)

leading to

G5 =
∑ (p3)m1+m′11+n11+n12−m12

(p2+h2)m1+m12(−h4+m1)m11(−h4)m1(p̄4+h̄4)m1+m′11+n11+n12−m11

(p̄4+h̄3)2m1+m′11+n11+n12
(p̄4+h̄3+1−d/2)m1

× (v5
12)n11−m11(v5

11v
5
12)m

′
11

(n12−m12)!(n11−m11)!

(u′41 v
5
11v

5
12)m1

m1!

(1−v5
11)n11

m11!

(1−v5
12)n12

m12!

(1−v′411)m
′
11

m′11!
.

(D.19)

We then proceed to sum over m12. The relevant terms are

(p3)m1+m′11+n11+n12−m12
=

(−1)m12(p3)m1+m′11+n11+n12

(1− p3 −m1 −m′11 − n11 − n12)m12

,

(p2 + h2)m1+m12 = (p2 + h2)m1(p2 + h2 +m1)m12 ,

1

(n12 −m12)!
=

(−1)m12(−n12)m12

n12!
,

(D.20)

hence the sum over m12 leads to the hypergeometric function

2F1

[
−n12, p2 + h2 +m1

1− p3 −m1 −m′11 − n11 − n12
; 1

]
. (D.21)

With the help of the identity 2F1(−m, b; c; 1) = (c−b)m
(c)m

, we find

G5 =
∑ (p3)m1+m′11+n11

(p2 + h2)m1(−h4 +m1)m11(−h4)m1(p̄4 + h̄4)m1+m′11+n11+n12−m11

(p̄4 + h̄3)2m1+m′11+n11
(p̄4 + h̄3 + 1− d/2)m1

× (v5
12)n11−m11(v5

11v
5
12)m

′
11

(n11 −m11)!

(u′41 v
5
11v

5
12)m1

m1!

(1− v5
11)n11

m11!

(1− v5
12)n12

n12!

(1− v′411)m
′
11

m′11!
.

(D.22)

Using (D.15), we can now evaluate the sum over n12 to write

G5 =
∑ (p3)m1+m′11+n11

(p2 + h2)m1(−h4 +m1)m11(−h4)m1(p̄4 + h̄4)m1+m′11+n11−m11

(p̄4 + h̄3)2m1+m′11+n11
(p̄4 + h̄3 + 1− d/2)m1

× (v5
12)−p̄4−h̄4(v5

11)m
′
11

(n11 −m11)!

(u′41 v
5
11)m1

m1!

(1− v5
11)n11

m11!

(1− v′411)m
′
11

m′11!
.

(D.23)

Finally, we perform the sums over m11 and n11, which are similar to the sums over

m12 and n12, respectively. We then find

G5 = (v5
11)−p3(v5

12)−p̄4−h̄4

∑ (p3)m1+m′11
(p2+h2)m1(−h4)m1(p̄4+h̄4)m1+m′11

(p̄4+h̄3)2m1+m′11
(p̄4+h̄3+1−d/2)m1

(u′41 )m1

m1!

(1−v′411)m
′
11

m′11!
,

(D.24)

and thus, under the limit Oi4(η4)→ 1, we prove that

G
(d,h;p)
5 (u5,v5)→ (v5

11)−p3(v5
12)−p̄4−h̄4G

(d,h′;p′)
4 (u′4,v′4). (D.25)
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Combining (D.7) and (D.25), we conclude that

I
(∆i2

,...,∆i5
,∆i1

)

5(∆k1
,∆k2

) = L5(u5
1)∆k1

/2(u5
2)∆k2

/2G5 → I
(∆i2

,∆i3
,∆i5

,∆i1
)

4(∆k1
) = L′4(u′41 )∆k1

/2G′4, (D.26)

in the limit of unit operator Oi4(η4)→ 1, as claimed.
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