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1 Introduction

Supersymmetry (SUSY) is the largest symmetry of Quantum Field Theory that unifies

spacetime and internal symmetries in a nontrivial manner [1, 2], circumventing the no-go

theorems of Coleman and Mandula [3]. SUSY generically predicts the necessary presence

of fermions and bosons, improves renormalizability, produce viable dark matter candidate

models and, if promoted to a local symmetry, can include gravity. For historical and

technical reviews, see for example, [4–6].

Historically, the realization that softly broken SUSY can stabilize the mass of the

Higgs boson [7, 8], along with gauge coupling unification [9–11], provided a motivation for

SUSY unified extensions of the Standard Model [12–15]. The minimal phenomenologically

viable model, the Minimal Supersymmetric Standard Model [13, 14], duplicates the particle

content of the Standard Model and predicts the masses of the SUSY partners not far

above the weak scale when considered as a solution to the hierarchy problem of the scalar

sector of the Standard Model [16]. However, ‘natural’ supersymmetric models that predict
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superpartners at the TeV scale are challenged by the lack of conclusive evidence for direct

production in the Large Hadron Collider (LHC) so far [17, 18].

Even simplified models of SUSY have a large number of free parameters, ∼ O(10) −
O(100). It is therefore hard to constrain their parameter space, although by considering

more intricate models or relaxing some assumptions, the appearance of super partners can

be postponed to higher energies [19, 20].

The possibility of not finding superpartners has motivated the proposal of non-

simplified SUSY models that could still be viable solutions to the hierarchy prob-

lem1 [20, 25]. At the root of the problem is the fact that the underlying theory for SUSY

breaking is not known [4, 12, 26, 27]. This has recently led to consider the possibility that

unknown correlations among the parameters in the underlying high energy scale SUSY

theory may be behind the automatic cancellations that would invalidate the assumption

that superpartners should be light [28].

There are certain features that are common to a large class of SUSY models. One

of these features is the mass degeneracy in super Poincaré models, which is implied from

the commutator between the momentum and the supercharge, [Pµ, Q
α] = 0. Another

common feature is that SUSY and internal gauge transformations also commute. This

assumption is justified because matter and interaction fields in the Standard Model are in

different representations of the gauge group and they should therefore belong to different

supermultiplets. As a result, in conventional SUSY models all particle states are duplicated:

for each particle there must be a SUSY partner with the same mass and gauge charges,

but differing by half a unit of spin.

Following [29, 30], here we advocate a way of combining gauge bosons and matter

fermions in a (super) Lie-algebra valued gauge connection that allow us to circumvent

some of the above assumptions. This unconventional form of SUSY (uSUSY) still retains

the spirit of a gauge symmetry principle in the sense that it unites spacetime and internal

symmetries and, as a consequence, allows the construction of low energy models with very

few free parameters.

Having gauge bosons and matter fields transforming in the same multiplet implies that

the SUSY generators must be charged with respect to the gauge symmetry. In [29, 30],

we explored superextensions of AdS in order to allow for different masses in the same

multiplet. In these algebras supercharges do not commute trivially with AdS-transvections,

[Pµ, Q
α] 6= 0, and as a result the anti-commutators generate both spacetime and internal

transformations take the form

{Q,Q} ∼ ( JAdS ) + ( TInternal ) . (1.1)

Supergravity models can be constructed using superalgebra-valued gauge connections,

as in the pioneer work of Macdowell and Mansouri [31] an attempt to construct a gauge

theory for OSp(4|1). Similar superalgebras have also been extensively explored in the

context of odd-dimensional supergravity (SUGRA), where the gravitino enters naturally

1Other alternatives to SUSY in dealing with the hierarchy problem induced by a fundamental scalar are

technicolor [8, 21, 22], extra-dimensions [23] or, more recently, the idea of the relaxion [24].
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as part of the connection for the superalgebra [32–35]. This leads to a completely different

family of locally supersymmetric theories that extend gravitation without SUSY partners

for each field and no matching degrees of freedom between bosons and fermions.

The minimal SUGRA action that includes the Einstein-Hilbert and Rarita-Schwinger

terms, enjoys the local supersymmetry [36],

δχµ = ∇µε , δeaµ = χ̄µγ
aε, (1.2)

where χ is the gravitino field, eaµ is the vielbein and ε is the fermionic parameter of the

transformation. The gravitino belongs to the 1⊗ 1/2 = 3/2⊕ 1/2 reducible representation

of the Lorentz algebra, when no subsidiary conditions are imposed. The spin-1/2 field is

often gauged away by a suitable choice of the parameter ε in (1.2). It follows that the

dynamical content of the spin-1/2 piece of the Rarita-Schwinger field should be trivial. Let

us consider, however, the scenario in which supersymmetry is broken at low energies. This

would prevent us from gauging away the spin-1/2 sector of the gravitino using (1.2) and

therefore it may acquire non-trivial dynamics.

These statements motivated the search of a concrete mechanism by means of which

the spin-1/2 sector of the gravitino may emerge as an observable particle in a broken phase

of supergravity [29, 30, 37–41]. These theories implement the “matter ansatz” for the

gravitino, i.e.

χµ = γµψ, ψ =
1

D
γµχµ, (1.3)

where ψ is a spinor zero-form containing the spin-1/2 projection of the gravitino and

D is the spacetime dimension. This ansatz allows to accommodate matter into a gauge

connection.

As shown in [42], starting with a three dimensional Chern-Simons theory for a su-

perconnection — with zero propagating degrees of freedom, — the ansatz (1.3) yields a

propagating spin-1/2 field. This example shows that it is indeed possible for a dynamical

spin-1/2 field to emerge as a Dirac particle from the part of the gravitino that is usually

projected out.

Here we focus on constructing a four dimensional N=2 uSUSY model equipped with

a mechanism to obtain an SU(2) × U(1) chiral gauge theory, a minimal requirement to

construct phenomenologically viable particle models. The model also contains another

sector with a vector-like gauge theory and gravity.

The paper is organized as follows. In section 2, we describe the fundamentals of using

USUSY to construct a model invariant under SO(3, 1) × SU(2) × U(1) . In section 3, we

show how the system behaves around a dS or AdS vacuum and elaborate on the physical

contents of the theory. In section 4, we summarize our results.

2 The model

We will define a gauge theory that includes gravity and a gauge symmetry that can ac-

commodate the electroweak sector by means of the superextension of a bosonic symmetry

algebra that contains SO(3, 1)× SU(2)×U(1). The smallest superalgebra that fulfills this
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requirement is su(2, 2|2) and we consider the explicit representation given in appendix A.

The model includes matter in the form of a fermionic field in the fundamental representa-

tion of the bosonic gauge group. The novel feature of uSUSY, these matter fields ψi are

directly included in the gauge connection A for the super extended algebra,

Aψ := Q
i
/eψi + ψ

i
/eQi ⊂ A , (2.1)

where the spin 1/2 fermion 0-form ψi is combined with the tetrad 1-form /e := γae
a =

γae
a
µdx

µ (here a is a flat spacetime index of the tangent space), and γa are the Dirac

matrices.2 The SUSY generators Q and Q carry spinors (Greek) indices and belong to

the fundamental representation of the internal symmetry group (Latin indices). This is to

accommodate ψαi as part of the connection.

2.1 Symmetry algebra

The supercharges must transform in the fundamental representation of SU(2) × U(1) and

therefore we require the following commutators

[TI ,Q
i
α] = − i

2
Q
j
α(σI)

i
j , [TI ,Q

α
i ] =

i

2
(σI)

j
i Q

α
j , (2.2)

[Z,Q
i
α] = −iQi

α , [Z,Qα
i ] = iQα

i , (2.3)

where σI are Pauli matrices, Z is the U(1) generator and TI are the generators of SU(2).

The supercharges also carry a representation of SO(3, 1).

The generators of SO(3, 1), SU(2), U(1) and SUSY transformations — Jab, TI , Z,

Q and Q, respectively, — do not form a closed algebra by themselves. In fact, the anti-

commutator of supercharges requires enlarging the spacetime symmetry from the Lorentz

group SO(3, 1) to the conformal group SO(4, 2),

{Qα
i ,Q

j
β} =

(
1

2
(γa)αβJa −

1

2
(Σab)αβJab −

1

2
(γ̃a)αβKa +

1

2
(γ5)αβD

)
δji

+ δαβ

(
−i(σI) j

i TI −
i

4
δjiZ

)
. (2.4)

where γ̃a = −γ5γa and γ5 = iγ0γ1γ2γ3. The resulting algebra includes AdS translations

(Ja), special conformal transformations (Ka) and a dilation D. These additional generators,

together with the previous ones form the superalgebra su(2, 2|2) (see appendix A).

Comparing with conformal supergravity it can be observed that the superalgebra above

does not possess matching numbers of bosonic and fermionic generators and this mismatch

translates to the number of bosonic and fermionic fields in our model, as we deviate from

conformal SUGRA models by not demanding the so called “conventional constraints”. For

a review, see [48]. This is in line with the fact that the sought gauge symmetry is just

SO(3, 1)×SU(2)×U(1) that does not require any additional constraint at the classical level.

Additionally, there is no obstruction to making contact with conventional gauge theories

2Here {γa, γb} = 2ηab, where the flat spacetime metric is η = diag(−,+,+,+). The spinor indices will

be often omitted. The Dirac adjoint is defined by ψi = iψ†
i γ

0.
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because, apart from the Higgs potential and bare masses, those theories are invariant

under the bigger group of transformations that includes dilations and special conformal

transformations.

2.2 Connection and curvature

Using the generators of the su(2, 2|2) superalgebra we define the gauge connection as

A = Ω + Aψ , (2.5)

where Aψ is given in (2.1) and Ω contains all the bosonic fields,

Ω =
1

2
ωabJab + faJa + gaKa + hD +AITI +AZ . (2.6)

The field strength, F = dA + A ∧A, is then given by

F =
1

2
FabJab + FaJa + GaKa +HD

+ FITI + FZ + Q
i
αΨα

i + Ψ
i
αQ

α
i ,

where the generalized curvatures are

Fab = Rab − ψi/eΣab/eψi (2.7)

Fa = Dfa + gah+
1

2
ψ
i
/eγa/eψi , (2.8)

Ga = Dga + fah− 1

2
ψ
i
/eγ̃a/eψi , (2.9)

H = H + faga +
1

2
ψ
i
/eγ5/eψi , (2.10)

FI = F I − iψi/e(σI) j
i /eψj , (2.11)

F = F − i

4
ψ
i
/e/eψi , (2.12)

Ψα
i = DΩ(/eψi)

α , (2.13)

Ψ
i
α = −(ψ

i
/e)α
←−
DΩ , (2.14)

and

H = dh , (2.15)

Rab = Rab + faf b − gagb , (2.16)

Rab = dωab + ωacω
cb , (2.17)

F I = dAI +
1

2
εIJKA

JAK , (2.18)

F = dA . (2.19)

In (2.8) and (2.9) D is the Lorentz covariant derivative (e.g., DV a = dV a + ωabV
b), while

in (2.13), (2.14) DΩ denotes the conformal covariant derivative acting on the fermion,

DΩχi = D̂χi +
1

2
faγaχi +

1

2
gaγ̃aχi +

1

2
hγ5χi . (2.20)
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where χ = /eψ and we defined the covariant derivative D̂ for the SO(1, 3) × SU(2) × U(1)

connection, that is

(D̂)αjiβ = δji δ
α
βd+

1

2
ωabδji (Σab)

α
β −

i

2
AI(σI)

j
i δ

α
β − iAδ

j
i δ
α
β , (2.21)

(
←−
D̂)αjiβ =

←−
d δji δ

α
β −

1

2
ωabδji (Σab)

α
β +

i

2
AI(σI)

j
i δ

α
β + iAδji δ

α
β . (2.22)

The left-acting exterior derivative of an m-form αm is αm
←−
d = (−1)mdαm.

2.3 Action principle

An action principle in 4 dimensions for the fields in the connection (2.5) is

S[ωab, f
a, ga, h, AI , A, ψ] = −

∫
〈F~ F〉 , (2.23)

where the duality operator ~ is an involution generalizing the Hodge-∗ operator and 〈· · · 〉
denotes an invariant symmetrized supertrace.3 The definition of ~ is an important ingre-

dient in our construction. Besides the property ~2 = −1, it breaks the SU(2, 2|2) gauge

symmetry down to SO(1, 3)× SU(2)×U(1). This involution generalizes the analogous op-

erator used by MacDowell and Mansouri in [31] to construct the action principle of simple

SUGRA (Einstein-Hilbert plus Rarita-Schwinger terms) where the Osp(1|4) SUSY breaks

down to the Lorentz group. The explicit symmetry breaking can be traced to the fact that

there exist no SO(3, 2)-invariant tensors in four dimensions, and also, in our particular

case, there are no SO(4, 2)-invariant tensors either.

In (2.23) a central involution operator is introduced. Could you say more about its

involutive properties. Besides squaring to the identity what part of the superalgebra struc-

ture is it compatible with? A related point is to emphasize that the SUSY breaking is

explicit in your model (by this operator).

One would like define ~ in such a way that 〈F ~ F〉 contains the Dirac — or Weyl

— kinetic term and that any possible second order terms be confined to a boundary term,

∂ψ̄∂ψ ∼ ∂Ω. In the gravity and the internal symmetry sectors, on the other hand, one

would expect to reproduce the Einstein-Hilbert and the Yang-Mills terms, respectively.

Naturally, when acting on the curvature components along the internal symmetries, we

take ~ = ∗ and, in order to restrict the possible choices for ~, one should require that

~2 = −1 so that it defines an automorphism of the su(2, 2|2)-valued forms.

As shown in [30], the operator that does the job for the fermion and gravitational

sectors, reduces to multiplication of the generators by iΓ5, where Γ5 is naturally embedded

in the superalgebra.4 Multiplying the generators Ja and Ka by iΓ5 interchanges them,

and is therefore an automorphism of the algebra. However, the action of ~ along dilations

cannot be implemented in the same way because iΓ5D is not traceless and therefore it does

not produce an element of the same algebra. Hence we take ~H = ∗H. In appendix B we

also discuss the dynamical implications of choosing ~ = iΓ5.

3If B and F stand for bosonic and fermionic operators, then 〈B1B2〉 = 〈B2B1〉 and 〈F1F2〉 = −〈F2F1〉.
4In the notation of appendix A, (Γ5)AB = 2(D)AB .

– 6 –



J
H
E
P
0
7
(
2
0
2
0
)
2
0
5

In [30], it is shown that the above choice of ~ turns fa into an auxiliary field and now

the same happens for both fields fa and ga.5 This is a welcome feature of the model because

fa and ga seem to play no dynamical roles in conventional theories such as General Relativ-

ity or the Standard Model. As will be seen below, the elimination of the auxiliary fields fa

and ga allow us to obtain General Relativity (GR) plus Dirac or a chiral model for matter.

The above considerations lead to the following definition of ~ acting on the curvature:

~F = iΓ5

(
1

2
FabJab + FaJa + GaKa

)
+ ∗

(
HD + FITI + FZ

)
− iQγ5Ψ− iΨγ5Q , (2.24)

where (Γ5)AB is in the upper left block of the 6× 6 matrix representation of su(2, 2|2) (see

appendix A). In (2.24) there is a freedom in the choice of sign for the dual operator acting

on the fermion as it can be (±iγ5) since the Dirac kinetic term is not positive definite [39].

We will see below that choosing the negative sign produces a cancellation of Pauli-like

couplings between the fermions and internal gauge fields.

2.4 Effective Lagrangian

The resulting Lagrangian is given by

L =
1

4
εabcdFabFcd −

1

2
FI ∗ FI − 4F ∗ F −H ∗ H − 2iΨγ5Ψ . (2.25)

Let us note that γ5 introduces a grading among the bosonic generators and therefore

it is convenient to split the connection Ω as

Ω = Ω+ + Ω− , (2.26)

where (Ω−) Ω+ contains generators that (anti-)commute with γ5. In the spinorial repre-

sentation these connection components are

Ω+ =
1

2
Σabω

ab − i

2
σIA

I − iA+
1

2
γ5h , (2.27)

Ω− =
1

2
γaf

a +
1

2
γ̃ag

a . (2.28)

A key point is that the kinetic term for the fermion comes from Ψγ5Ψ =

−(ψ/e)
←−
DΩγ5DΩ/eψ. In fact, the term Ψγ5Ψ contains a term with one derivative of ψ,

plus an algebraic bilinear in ψ and a boundary term,

Ψγ5Ψ =
i

2
K(χ, χ) + χΩ−γ5Ω−χ+ χγ5(D+)2χ+ d[χγ5D

+χ] , (2.29)

where χ := /eψ, χ := ψ/e,

K(χ, χ) = 2iχ[
←−
Dγ5Ω− + γ5Ω−D]χ , (2.30)

5The fact that these fields have no kinetic terms can be seen from the super traces 〈Ja(iγ5)Jb〉 = 0,

〈Ka(iγ5)Kb〉 = 0 and 〈Ja(iγ5)Kb〉 = −〈Ka(iγ5)Jb〉 ∝ ηab, which implies that the corresponding curva-

tures (2.8) and (2.9) will not appear in the action.
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and

(D+)2 =
1

2
ΣabR

ab − i

2
σIF

I − iF +
1

2
γ5H , (2.31)

D = d+W , W =
1

2
Σabω

ab − i

2
σIA

I − iA . (2.32)

The term K(χ, χ) contains what will be later identified as the Dirac kinetic term in

curved space (see section 3.3), plus a piece that contains a coupling of the torsion with the

vector and axial-vector current as well. That is to say,

K(χ, χ) = KDirac +Ktorsion , (2.33)

where

KDirac = 2iψ(
←−
Dγ5/eΩ

−/e + γ5/eΩ
−/eD)ψ , (2.34)

Ktorsion = 2iψγ5(/TΩ−/e − /eΩ− /T )ψ , (2.35)

and /T = T aγa, T
a = Dea.

As seen from (2.32) and (2.34), the field h drops out from the covariant derivative D.

The result is an SO(3, 1)×SU(2)×U(1) gauge invariant kinetic term for the fermion, which

is not invariant under dilations,6 see discussion below.

The third and fourth terms of the r.h.s. of (2.29) are effective mass-like and Pauli-

like coupling terms between the fermionic currents and the curvatures associated to Ω−

and Ω+. The choice of ~ with the signs in (2.24) makes those Pauli-like couplings cancel

with similar terms coming from the expansion of −〈F ~ F〉 along FI , F and H. The full

quadratic action for the matter field becomes

Lmat(ψ
2) = K(χ, χ) + 2if · gψ/e/eψ + ψRψ − 2id[χγ5D

+χ] , (2.36)

Note that the nonminimal gravitational coupling ψRψ = −4iψ/eγ5 /R/eψ becomes and effec-

tive mass term ∼ |e|d4x meffψψ for constant Lorentz curvature, e.g., in (anti-)de Sitter.

The Lagrangian (2.25) also contains the standard kinetic terms for SO(3, 1), SU(2)

and two U(1) gauge fields,

Lgauge =
1

4
εabcdRabRcd −

1

2
F I ∗ F I − 4F ∗ F −H ∗H . (2.37)

Here ∗ in the Maxwell and Yang-Mills terms is the standard Hodge operator defined on a

spacetime endowed with a metric gµν = ηabe
a
µe
b
ν . There are no kinetic terms for the fields fa

and ga, which matches the fact that the action is not gauge invariant under transformations

generated by Ja or Ka.

The Lagrangian also contains a Nambu-Jona-Lasinio (NJL) term,

Lmat(ψ
4) = 12|e|d4x

[
(ψψ)2 + (ψγ5ψ)2

]
, (2.38)

and the complete Lagrangian in (2.25) reads

L = Lgauge + Lmat(ψ
2) + Lmat(ψ

4) . (2.39)
6The kinetic term (2.34) is not even globally invariant under rigid dilations, ψ → eaγ5ψ.
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2.5 Dilation symmetry

As a result the SU(2)×U(1) sector is described by standard Yang-Mills and Maxwell terms

minimally coupled to the spin-1/2 field. The invariance under local dilations, however, has

some subtleties. The first four terms in (2.25) are indeed invariant under transformations

generated by G = λ(x)D,

δh = dλ , (2.40)

δfa = λga , (2.41)

δga = λfa , (2.42)

δχ = −λ
2
γ5χ , (2.43)

δχ =
λ

2
χγ5 , (2.44)

The last two terms explicitly break dilation symmetry of the action. This may be

counter intuitive since D ∼ γ5 in the spinorial representation, but explicit calculation

shows

δΨ = −λ
2
γ5Ψ + 2λγ5Ω−χ , (2.45)

δΨ =
λ

2
Ψγ5 + 2λχγ5Ω− , (2.46)

and therefore the Lagrangian changes by

δL = 4iλχ(
←−
DΩ− + Ω−D)χ , (2.47)

which, in general, is not a total derivative. This is in fact proportional to a linear combina-

tion of the field equations for the spinor and is therefore an on-shell invariance that is likely

to be anomalous. On the other hand, since h drops out from the covariant derivative D in

the Lagrangian — it only occurs in a boundary term in (2.39), — the fermionic Lagrangian

is not expected to reflect the symmetry generated by D. From the fact that the kinetic

term for h is just a Maxwell term, one can conclude that h becomes a sterile abelian boson

field that can be interpreted as a hidden photon that contributes to the energy content of

a hidden sector. If a kinetic mixing term between the U(1) gauge field and h were present

in the action, the propagating states would mix producing interesting phenomenology as

discussed in [43].

3 Physical contents

Let us now examine the physical content of the theory as defined by (2.39). Since the gauge

sector is given by standard SU(2)×U(1) Yang-Mills-Maxwell terms (plus the corresponding

minimal couplings), we will focus on the derivation of the gravitational and matter sectors.

The absence of kinetic terms for fa and ga in (2.25) and the fact that they appear

only algebraically in the Lagrangian indicates that these are auxiliary fields. Therefore,

– 9 –
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they can be substituted from their own field equations back into the action, without losing

dynamical information. The fields fa and ga appear in the gravitational Lagrangian,

1

4
εabcdRabRcd =

1

4
εabcd(R

ab + faf b − gagb)(Rcd + f cfd − gcgd) , (3.1)

and in the kinetic term of the matter Lagrangian

Lmat|fa,ga = 2i(ψ/e)[
←−
Dγ5Ω− + γ5Ω−D](/eψ) + 2if · gψ/e/eψ , (3.2)

where Ω− = 1
2γaf

a + 1
2 γ̃ag

a. From these expressions it is apparent that although the

field equations for fa and ga are algebraic and can in principle be solved for them, those

solutions would depend on the configurations of ωab and ψ, which in turn depend on the

SU(2) and U(1) gauge fields. Therefore, solving for the auxiliary fields fa and ga can be

best understood on a region around a certain vacuum. A sensible vacuum consists of a

state devoid of matter and gauge fields with the largest possible symmetry, which in the

present case would be SO(3, 1)× SU(2)×U(1) .

3.1 (A)dS vacuum sector

Consider the purely bosonic sector (ψ = 0) where the field equations for fa and ga are

δL
δfa

∣∣∣∣
ψ=0

= εabcdf
b(Rcd + f cfd − gcgd) , (3.3)

δL
δga

∣∣∣∣
ψ=0

= −εabcdgb(Rcd + f cfd − gcgd) . (3.4)

These equations admit a maximally symmetric, constant Lorentz curvature solution,

like the AdS or dS vacua,

Rab ± `−2eaeb = 0, (3.5)

where the cosmological constant is Λ ∝ ∓`−2. The AdS vacuum is also an interesting solu-

tion because it is invariant under SO(3, 2)×SU(2)×U(1) and it admits a maximal number

of Killing spinors, i.e., it is a BPS state with the maximal number of supersymmetries [44].

Compatibility between (3.3), (3.4) and (3.5) requires

faf b − gagb = ±`−2eaeb, (3.6)

and therefore this solution can be parametrized, in the AdS (+) case, as

fa =
ea

`
coshλ , ga =

ea

`
sinhλ , (3.7)

where λ is some real parameter.7 From now on we will refer to the sector (3.5) with (3.7)

as the GR sector. Substituting back in the action the solutions for the auxiliary fields

produces an equivalent dynamical system — a consequence of the implicit function theorem

for functional equations [45].

The effective action is now a functional of the standard fields of first order gravity

(ea, ωab), the internal SU(2) and U(1) gauge connections (AI , A), and the spin-1/2 matter

multiplet (ψ).

7For dS, the roles of fa and ga must be exchanged.
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3.1.1 Gravitional effective action

In the vacuum sector (3.7), the effective gravitational Lagrangian contains the Einstein-

Hilbert and cosmological constant terms plus the Euler density (surface term),

1

4
εabcdRabRcd =

1

4
εabcd(R

ab ± `−2eaeb)(Rcd ± `−2eced) , (3.8)

where (+) corresponds to AdS and (−) to dS. Hence, dropping the Euler term, the effective

gravitational action is given by

1

4

∫
εabcdRabRcd = ± 1

2`2

∫
εabcd(R

abeced ± 1

2`2
eaebeced)

= ± 1

`2

∫
d4x|e|

(
R± 6

`2

)
. (3.9)

This matches the standard form of the Einstein-Hilbert action,

IEH =
1

16πGN

∫
d4x|e|(R− 2Λ) , (3.10)

provided one identifies8

± 1

`2
=

1

16πGN
=
M2
P

2
, Λ = ∓ 3

`2
= ∓3

2
M2
P . (3.11)

Note that in (3.11) both signs are allowed (see footnote 7), provided that in the dS case

the would-be wrong sign in front of the action (3.9) is compensated by the replacement

Γ5 → −Γ5 in (2.24). The fact that both signs of the cosmological constant are admissible in

the model can be traced to the possibility of choosing the underlying spacetime symmetry

as AdS (A.10) or dS (A.11) as subalgebras of the conformal algebra. If instead of the

superconformal algebra we had started from superAdS, in order to change the sign of the

cosmological constant we would have been forced to introduce an i-factor in Ω−, which

would be inconsistent with unitarity of the fermion sector and would not allow for chiral

models without the introduction of mirror fermions [46].

Varying the Lagrangian (2.39), for the choice (3.7), with respect to the vierbein repro-

duces the Einstein equations with the right stress-energy tensor source generated by the

gauge and matter fields.

3.1.2 Matter Lagrangian

In the sector (3.7), the fermionic Lagrangian in (2.39) takes the form

Lmat = 2iψ(
←−
Dγ5/eΩ

−/e + γ5/eΩ
−/eD)ψ +Ktorsion + Lmat(ψ

4) , (3.12)

with

Ω− = (2`)−1(coshλ+ γ5 sinhλ)/e = (2`)−1eλγ5/e ,

= /e(αΠ+ + βΠ−) , (3.13)

8Here we used εabcdR
abeced = 2|e|d4xR , εabcde

aebeced = 4!|e|d4x and we follow the sign conventions

of [47].
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where Π± = (1± γ5)/2 are the chiral projectors, and

α =
coshλ− sinhλ

2`
, β =

coshλ+ sinhλ

2`
. (3.14)

The kinetic term in (3.12) is the Dirac Lagrangian for a linear combination of right- and

left-handed fermions (ψ+, ψ−). The Lagrangian for chiral or anti-chiral fermions is obtained

for Ω− = 1/2(1 ± γ5)/e, which corresponds to fa = ±ga. These cases can only be reached

in the vanishing cosmological constant limit `→∞ and λ→ ±∞ with e|λ|/`2 = constant.

Non chiral fermions: α 6= 0 6= β (|λ| < ∞). For finite λ, the first term in (3.12)

describes a Dirac field minimally coupled to the SO(3, 1)×SU(2)×U(1) gauge connection,

KDirac = −1

2
|e|d4x

[
ψ
′
( /D −

←−
/D)ψ′

]
, ψ′ = (ψ′−, ψ

′
+) , (3.15)

where we have defined the physical Weyl spinors by

ψ′− =
√

24αψ− , ψ′+ =
√

24βψ+ . (3.16)

The covariant slashed derivatives are, in agreement with (2.32), given by

/D = γµ(∂µ +Wµ) ,
←−
/D = (

←−
∂ µ −Wµ)γµ . (3.17)

As a consequence of (3.7) and the fact that the spinor enters in the action through the

combination /eψ, torsion couples to the axial current of the physical spinor, in addition to

the usual minimal couplings of fermions in curved space,

Ktorsion =
2i

3
T · e ea(ψ′γ5γaψ

′) . (3.18)

In the sector defined by (3.7) the term 2if.gψ/e/eψ vanishes and the non minimal cou-

pling to the curvature in (2.36) reduces, in the AdS vacuum, to an “effective mass” for the

fermion

ψRψ = − 4i

4!`2
√
αβ

ψ
′
γ5 /R/e/eψ

′ =
8

`
|e|d4xψ

′
ψ′ = meffψ

′
ψ′ . (3.19)

So far, the fermionic Lagragian if expressed in terms of the Dirac fermion ψ′ has no

trace of λ, which means that this is an irrelevant parameter that can be safely set to zero.9

Comparing (3.19) with (3.11), the scale of the effective mass is of the order of the

Planck mass. This is a consequence of the tight relation between all the parameters which

is typical of supersymmetric theories and in particular of conformal SUGRA [48]. However,

by changing the Lagrangian by an overall constant,

L → ξL , (3.20)

modifies Newton’s constant and therefore the value of the cosmological constant in terms

of the Planck mass gets redefined

Λ = − 3

2ξ
M2
P . (3.21)

For instance, in a ΛCDM cosmological scenario one would expect ξ ∼ 10120.

9As can be easily seen, this is also true of the NJL terms.
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Chiral fermions: α 6= 0 and β = 0 (λ → −∞). Let us now consider the “chiral

sector” of the theory. From (2.34) and (3.13) we see that Ω− (∼ /eΠ+) projects out the

right handed fermion from the kinetic term of the matter action (for α = 0 and β 6= 0

the left handed fermion gets projected out), resulting in a Weyl kinetic term for the leftt

handed chiral spinor only,

KWeyl = −1

2
|e|d4x

[
ψ
′
−( /D −

←−
/D)ψ′−

]
. (3.22)

Therefore the right handed chiral spinor does not propagate, becoming an auxiliary field

in this limit. As expected, the mass term, given by (3.19), vanishes in the chiral sector.

The NJL term is the only part of the action containing ψ+, see (3.26), and on shell ψ+ is

forced to vanish.

As pointed out above, the chiral limit is obtained for λ → 0 and simultaneously

`→∞, which is rather singular because not only the cosmological constant vanishes, but

the entire gravitational action goes away. This may be interpreted in the sense that the

resulting theory describes a chiral left handed fermion coupled to a SU(2) × U(1) plus

an extra abelian sterile boson in a non dynamical spacetime background, a completely

renormalizable model.

NJL coupling. The quartic fermionic terms from the first four contributions on the r.h.s.

of (2.25) give the NJL coupling. The contributions coming from the Abelian subgroups are

TF∗F (ψ4) + TH∗H(ψ4) =
1

4
(ψ/e/eψ)(ψ ∗ (/e/e)ψ) +

1

4
(ψ/eγ5/eψ)(ψ ∗ (/eγ5/e)ψ). (3.23)

In four spacetime dimensions, the Hodge-∗ operation and multiplication by iγ5 have the

same effect on /e/e: ∗/e/e = iγ5/e/e. Using this, and the Fierz identity φab5φab5 = φabφab, it is

easy to show that (3.23) vanishes identically.

The Lorentz and SU(2) contributions are

TF
abFcd(ψ4) =

1

4
εabcd(ψ/eΣ

ab/eψ)(ψ/eΣcd/eψ), (3.24)

TF
I∗FI (ψ4) =

1

2
(ψ/eσI/eψ)(ψ ∗ (/e/e)σIψ). (3.25)

By direct computation of (3.24) and using the Fierz identity φabIφabI = 6(φ2 +φ2
5) in (3.25)

we arrive at10

T (ψ4) = 12|e|d4x(φ2 + φ2
5) . (3.26)

In terms of the rescaled physical spinor we get

T (ψ4) =
`2

12
|e|d4x(φ′2 + φ′5

2) , (3.27)

where we can see that the quartic fermion term is suppressed by a M−2
P coupling,

gNJL =
1

6M2
P

. (3.28)

10Eq. (3.26) vanishes for the de Sitter case.
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3.2 Effective bare coupling constants

The model also predicts values for the bare gauge coupling constants gU(1) and gSU(2).

Since the SU(2) field has the canonical normalization in (2.25) we can identify gSU(2) = 1

directly from the covariant derivative (2.21). However, gU(1) has to be read from the

covariant derivative (2.21) only after canonically normalizing the U(1) field such that the

term in (2.25) plus the kinetic term of the fermionic action read,

Lcan = −1

2
F ′ ∗ F ′ + |e|d4xψ

′
/Dψ′ . (3.29)

in terms of the physical rescaled gauge field and physical spinor. As a result we can

identify gU(1) = 1
2
√

2
∼ 0.36. Both values are higher than the SM values (gSM

U(1) ≈ 0.34

and gSM
SU(2) ≈ 0.66), however the hierarchy gSU(2) > gU(1) is respected. Leaving aside the

cosmological constant problem, we can introduce an overall constant in the action to get

the right values for two of the three coupling constants (GN , gSU(2), gU(1)). The predicted

Weinberg angle, however, remains unchanged, sin2 θW = g2
U(1)/(g

2
U(1) + g2

SU(2)) = 1/9, and

falls short of the SM value.

The introduction of an overall constant in the action to get the ΛCDM value for the

cosmological constant, see (3.20) and (3.21), implies the relations ξg2
SU(2) = 1 = 8ξg2

U(1)

that correspond to a huge suppression of the gauge coupling constants. The mass squared

parameter also gets highly suppressed by the ξ-parameter,

m2
eff =

2

3
|Λ| =

M2
P

ξ
, (3.30)

while the NJL coupling (3.26) remains unchanged.

The introduction of an overall factor in the action allows, in the chiral case, fitting one

of the gauge couplings to the SM value. For instance we can take ξ such that ξgSMSU(2) = 1,

and therefore gSU(2) = gSMSU(2) and gU(1) = gSU(2)/(2
√

2) ∼ 0.36gSU(2) ∼ 0.23. The prediction

of a hierarchy of gauge couplings gSU(2)/gU(1) ∼ 2.8 is also valid in the chiral case.

3.3 Comments on the field equations

In the AdS sector, defined by the choice (3.7) and in the generic non-chiral case, the effective

action reads

I =

∫
|e|d4x

[
1

16πGN
(R− 2Λ)− 1

4
F I µν F Iµν −

1

4
FµνFµν −

1

4
HµνHµν

−1

2
ψ
′
( /D +

←−
/D)ψ′ +

2

3
T̃µ(ψiγ5γµψ) +

`2

12

[
(ψψ)2 + (ψγ5ψ)2

]]
, (3.31)

where D is the covariant derivative for the SO(3, 1) × SU(2) × U(1) gauge connection,

T̃µ = εµνλρTνλρ, and we have dropped the prime from the fermionic field. Apart from the

torsional coupling and the NJL term, this action is a standard Einstein-Dirac-Maxwell-

SU(2) system.

Varying with respect to the metric (or the vielbein) yields Einstein’s equations with

a stress-energy tensor produced by the gauge fields and the Dirac field (see appendix C).
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Varying with respect to the Lorentz connection gives an equation that expresses the torsion

as a bilinear of the fermionic field. Since this equation is algebraic in the connection, it

can be substituted back in the action, giving an additional contribution to the NJL term.

The field equation for the Dirac field contains, together with the Dirac operator min-

imally coupled to the internal gauge connection and to the spacetime geometry, a cubic

term coming from the NJL piece. This term is the one that produces chiral symmetry

breaking and the generation of a mass gap in the NJL model of superconductivity [49–52].

Finally, the internal gauge connections A and AI satisfy the standard Maxwell and

Yang-Mills equations in curved spacetime sourced by the standard matter currents.

4 Summary and outlook

We have presented a bottom-up construction of a model with broken SUSY obtained by

gauging a conformal superalgebra that includes local Lorentz, U(1) and SU(2) internal

symmetries. The coupling of matter fields is achieved by including matter fermions and

gauge bosons in the same super connection for the superalgebra, using the “matter ansatz”

(see eq. (1.3)). As a consequence, fermions are in the fundamental representation of the

gauge group, there is no matching between bosonic and fermionic degrees of freedom and

no pairing of particle states.

The vacuum of the theory, defined by vanishing gauge curvature configurations, F =

0, is invariant under the full superconformal symmetry with supersymmetry parameter

satisfying /∇ε = 0. The field contents of the effective theory constructed around this

vacuum consists of an SU(2)⊗U(1) Yang-Mills theory plus gravity and matter, described

by a Dirac field minimally coupled to the gauge fields with NJL self-interactions.

The propagating degrees of freedom of the resulting theory are the same as in a non

supersymmetric system of spin-1/2 matter minimally coupled to gravity and charged with

respect to the internal gauge fields described by a Yang-Mills theory. The analysis leading

to this conclusion is similar to that in the 2+1 dimensional Chern-Simons uSUSY model,

where the breaking of local SUSY and scale invariance — as in the present case — gives

rise to propagating degrees of freedom in an otherwise topological theory [42].

The type of spinors in the effective theory depends on the sector of the theory that

emerges from the fixing of the auxiliary fields fa and ga. In one sector the spinors are non

chiral. In another sector, the matter fields become chiral and gravity decouples [48]. Thus,

the model incorporates a novel mechanism to generate chiral matter that is interesting to

explore further from the point of view of unified models of gravity and leptons together

with their electroweak interactions. Possible mechanisms to incorporate a Higgs doublet

and other SUSY representations that could give realistic values for the gauge couplings

deserve further exploration.

Some features of this model are similar to those found in conformal SUGRA, such

as the prediction of the tree level coupling constants. This can serve to illustrate how

to implement a model with the gauge structure of an electroweak sector, although in the

present setup the predicted values for the tree level coupling constants do not come up

– 15 –



J
H
E
P
0
7
(
2
0
2
0
)
2
0
5

right, and the bare cosmological constant is of the order of the Planck mass, a defect that

the model shares with conformal SUGRAs [48].

As pointed out in [53], it may be interesting to look for mechanisms of spontaneous

conformal symmetry breaking, although the introduction of a Higgs potential in this frame-

work, i. e., as part of the gauge connection, seems somewhat unnatural. Attempts that

exploit the spontaneous breaking of local scale invariance can be found for instance in [54]

and more recently in [55–57]. Spontaneous breaking of local scaling symmetry has been

also explored in the context of inflation, where it was pointed out that it can reproduce

Starobinski inflation without fine tunning of parameters [58]. Embedding the present

model in conformal supergravity [59] might eventually provide a viable mechanism for

spontaneous breaking of local scale invariance. It would also be interesting to explore the

relation between the chiral system and a five dimensional Chern Simons SUGRA [33, 61],

whose SU(2, 2|N) is broken by the Minkowski vacuum at the boundary.
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A Representation of the su(2, 2|2) superalgebra

We use the following finite representation of su(2, 2|2)

(Jab)
A
B = (Σab)

α
βδ
A
α δ

β
B , Lorentz (A.1)

(Ja)
A
B =

1

2
(γa)

α
βδ
A
α δ

β
B , (A)dS boosts (A.2)

(Ka)
A
B =

1

2
(γ̃a)

α
βδ
A
α δ

β
B , Special conf. transf. (A.3)

(D)AB =
1

2
(γ5)αβδ

A
α δ

β
B , Dilations (A.4)

(TI)
A
B = − i

2
εAi(σI)

j
i εjB , SU(2) (A.5)

(Z)AB = iδAβ δ
β
B + 2iδ̂Aj δ̂

j
B , U(1) (A.6)

(Qα
i )AB = δ̂Ai δ

α
B , SUSY (A.7)

(Q
i
α)AB = δAα δ̂

i
B , SUSY (A.8)

The indices above take values A,B = 1, · · · , 6, so we have a 6 × 6 representation by

blocks. The γ-matrices are in a 4× 4 Weyl representation (α, β, · · · run from 1 to 4). The

indices of the tangent space are a, b = 0, 1, 2, 3. The labels of the adjoint representation
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SU(2) take values I, J = 1, 2, 3. The σ-matrices are the usual Pauli matrices whose entries

span the fundamental representation i, j = 1, 2. εij = iσ2, εijε
jk = δki . We find convenient

to split A = (α, i+4) and therefore it is understood that any γa-matrix with entries valued

in the “i” range gives a vanishing result and any σI -matrix with entries valued in the “α”

is vanishing as well. We use the notation δ for a Kronecker delta function in the spinor

space and a δ̂ for a Kronecker delta function that lives in the space of the fundamental

representation.

The Lorentz generators and AdS boosts form the AdS algebra,

[Jab,Jcd] = −ηacJbd + ηadJbc + ηbcJad − ηbdJac (A.9)

[Ja,Jb] = +Jab , [Ja,Jbc] = ηabJc − ηacJb , (A.10)

The remaining generators of spacetime transformations satisfy

[Ka,Kb] = −Jab , [Ka,Jbc] = ηabKc − ηacKb , (A.11)

[D,Ja] = −Ka , [D,Ka] = −Ja , (A.12)

which, together with the AdS generators complete the conformal algebra. The commutators

between SUSY generators and those of the conformal group are

[Ja,Q
i
α] =

1

2
Q
i
β(γa)

β
α , [Ja,Q

α
i ] = −1

2
(γa)

α
βQ

β
i , (A.13)

[Jab,Q
i
α] = Q

i
β(Σab)

β
α , [Jab,Q

α
i ] = −(Σab)

α
βQ

β
i , (A.14)

[Ka,Q
i
α] =

1

2
Q
i
β(γ̃a)

β
α , [Ka,Q

α
i ] = −1

2
(γ̃a)

α
βQ

β
i , (A.15)

[D,Q
i
α] =

1

2
Q
i
β(γ5)βα , [D,Qα

i ] = −1

2
(γ5)αβQ

β
i . (A.16)

Hence, the supercharges carry a representation of the full conformal algebra. The SU(2)

generators commute to

[TI ,TJ ] = ε K
IJ TK . (A.17)

Finally, under the Lorentz group, Q and Q transform in the standard form,

[Jab,Q
α
i ] =

1

2
(Σab)

α
βQ

β
i , [Jab,Q

i
α] = −1

2
Q
i
β (Σab)

β
α , (A.18)

where Σab = 1
4 [γa, γb].

The supertrace of a 6 × 6 matrix O is defined as 〈O〉 = Tr(kO) where kAB = δAα δ
α
B −

δ̂Ai δ̂
i
B, where Tr is the usual matrix trace. The quadratic combinations that give nontrivial

traces are

〈JaJb〉 = ηab , 〈JabJcd〉 = −(ηacηbd − ηbcηad) , (A.19)

〈KaKb〉 = −ηab , 〈D2〉 = +1 , (A.20)

〈TITJ〉 =
1

2
δIJ , 〈Z2〉 = 4 , (A.21)

〈Qα
i Q

j
β〉 = −δαβ δ

j
i = −〈Qj

βQ
α
i 〉 . (A.22)
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The operator iΓ5 that is fundamental in getting the right kinetic terms has nontrivial

traces given by

〈iΓ5D〉 = 2i , (A.23)

〈iΓ5JabJcd〉 = −εabcd = 〈JabiΓ5Jcd〉 , (A.24)

〈JaiΓ5Kb〉 = −iηab = −〈KaiΓ5Jb〉 , (A.25)

〈ZiΓ5D〉 = −2 = 〈DiΓ5Z〉 . (A.26)

B Alternative choices for the dual operator

A possible alternative definition of ~ would be obtained multiplying all the generators of

the conformal subgroup by iγ5. As we mentioned, this choice is not an automorphism of

the algebra (in particular, the supertrace of γ5D does not vanish). If one were to insist on

this choice, ~F would be given by

~F = S

(
1

2
FabJab + FaJa + GaKa +HD

)
+ ∗

(
FITI + FZ

)
− iQi

γ5Fi − iF̂ iγ5Qi . (B.1)

The operator S squares to minus the identity in the bosonic sector ocupied by the

generators {Jab,Ja,Ka,D}. By using (B.1), we obtain the Lagrangian

L =
εs
4
εabcdFabFcd −

1

2
FI ∗ FI − 4F ∗ F

+ 2εsHF − 2iF̂ iγ5Fi , (B.2)

where εs = +1 or −1 for AdS or dS, respectively. The Lagrangian can be decomposed as

L = Lgauge + Lmatter where

Lgauge =
εs
4
εabcdRabRcd −

1

2
F I ∗ F I − 4F ∗ F + 2εsHF , (B.3)

Lmatter = L(ψ2) + L(ψ4) . (B.4)

The first term in the r.h.s. of (B.3) contains the Einstein-Hilbert term, the cosmological

constant term and the Gauss-Bonnet term. The second term in the r.h.s. of (B.3) is the

Yang-Mills action for SU(2) and the third term is the Maxwell action for the U(1) field A.

In (B.2), the h field becomes a Lagrange multiplier that appears in the term HF only,

and which imposes restriction on ψ of the form,

d(ψ/e/eψ) = 0 . (B.5)

This equation is automatically satisfied by chiral spinors that have vanishing tensor bilin-

ears.

A signature feature of theories constructed using (2.23) is that Pauli-like couplings that

may appear a priori in the action are in fact canceled as a result of the underlying SUSY

principle and an appropriate choice of ~. Let us note that Pauli-like couplings are fully
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consistent with gauge invariance, implying a modification to the current at the classical

level. However, such terms produce modifications to the dipole moments of leptons and

are strongly constrained, see [60] and references therein.

Yet another possible choice for the dual operator is given by

~F = S

(
1

2
FabJab +HD

)
+ FaJa + GaKa

+ ∗
(
FITI + FZ

)
− iQi

γ5Fi − iF̂ iγ5Qi . (B.6)

This choice implies that the Lagrangian is given by (2.25) plus terms that are a priori

topological,

FaFa , GaGa . (B.7)

The topological origin of (B.7) means that the appearance of such terms in the action

will not assign independent dynamics to the fields fa and ga and therefore they are not

forbidden. These terms, however, have to be analysed along the term −2iF̂ iγ5Fi that has

the SO(3, 1)×SU(2)×U(1) gauge invariance only. This means that the equations of motion

coming from the variation of fa and ga in (B.7) will impose certain restrictions on some

currents of the spinor bilinears.

So far we have introduced three independent choices, (2.24), (B.1) and (B.6), for the

dual operator that provide chiral invariant theories with SO(3, 1) × SU(2) × U(1) gauge

invariance. Although this is not necessarily an exhaustive survey of all possible dualities

compatible with the spacetime and internal symmetries, those discussed above seem to be

the only ones that give rise to reasonable dynamics.

C Field equations

The fields of the effective theory (3.31) are eaµ, ωabµ, ψ, ψ̄, AIµ and Aµ. The Einstein

equations obtained varying with respect to eaµ read,

1

κ
(Gµa + ΛEa

µ) = τa
µ − 12ψ(

←−
Daγ

µ − γµDa)Π(β, α)ψ

− 8iεa
bcµψ

(←−
D bγc + γcDb

)
Π(−β, α)ψ

+ 4i
[
(Tabc + 2Tbac)ε

bcdµ − T dbcεabcµ
]
ψγdΠ(−β, α)ψ

− 2iRbcadε
bcdµφ5 + (REa

µ + 2Gµa)φ

− 12Ea
µ(φ2 + φ2

5) , (C.1)

where Π(β, α) = βΠ+ + αΠ−, /R = 1
2R

abΣab, and τa
µ is the energy momentum produced

by the gauge fields A and AI , defined by δLgauge = δeaµτa
µ.

These field equations can also be obtained combining the variations of the original

action with respect to ea, fa, ga, ψ and ψ, before choosing the gravity sector (3.7), as(
δL
δea

+ ρ
δL
δfa

+ σ
δL
δga

)
− 1

2
iEa

(
ψ
δL
δψ

+
δL
δψ
ψ

)
= 0 , (C.2)

– 19 –
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where iX(ω) is the contraction inner product of forms. Explicitly, this reads

0 = ∗τa + εabcd(ρf
b − σgb)(Rcd + f cfd − gcgd)

+ 2i(ψ/e)[
←−
Dγ5(ργa + σγ̃a)/e + γ5(ργa + σγ̃a)D](/eψ)

+ 2i(ρga + σfa)ψ/e/eψ

+ 2iψ(
←−
Dγ5[γaΩ−/e + /eΩ−γa] + [γaΩ−/e + /eΩ−γa]D)ψ

+ 2if · gψ[γa/e + /eγa]ψ +−4iψ[γaγ5 /R/e + /eγ5 /Rγ
a]ψ

+ 4iψγ5(/TΩ−γa − γaΩ− /T )ψ +
`2

3
εabcde

beced(φ′2 + φ′5
2) , (C.3)

where ∗τa is the three-form dual of τaµ . It can be readily seen that the dual of the above

equation reduces to (C.1) in the gravity sector (3.7), with the choice α = (ρ + σ)/2, β =

(ρ−σ)/2. Note that equation (C.3) transforms homogeneously under ea → κea, ψ → κ−1ψ,

a consequence of the Weyl invariance introduced by the definition (2.1), which is broken

in the gravity sector (3.7). Then, by taking the dual of this three form one obtains (C.1).

The field equation for the matter field is given by the Dirac equation,

0 = γaDaψ −
[

1

2
T bbaγ

a +
i

6
εabcdTbcdγ5γa

]
ψ

+
1

6
√

2MP

[
εabcdRabcd iγ5 + 2R

]
ψ − 1

3MP
2

[
ψψ + (ψγ5ψ)γ5

]
ψ . (C.4)

Here, the torsion coupling to the vector current has been restored after integration

by parts. Suppressed by the factor MP
−1, the non minimal coupling to the background

curvature provides an effective mass term to the fermion. The NJL term, also suppressed

by MP
−2, can break chiral symmetry by a nonzero vacuum expectation value of the fermion

condensate [49, 50].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] R. Haag, J.T. Lopuszanski and M. Sohnius, All possible generators of supersymmetries of the

S matrix, Nucl. Phys. B 88 (1975) 257 [INSPIRE].

[2] V.G. Kac, A sketch of Lie superalgebra theory, Commun. Math. Phys. 53 (1977) 31

[INSPIRE].

[3] S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, [INSPIRE].

[4] S. Weinberg, The quantum theory of fields. Volume 3: supersymmetry, Cambridge University

Press, Cambridge, U.K. (2000).

[5] H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1

[INSPIRE].

– 20 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(75)90279-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB88%2C257%22
https://doi.org/10.1007/BF01609166
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C53%2C31%22
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C159%2C1251%22
https://doi.org/10.1016/0370-1573(84)90008-5
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C110%2C1%22


J
H
E
P
0
7
(
2
0
2
0
)
2
0
5

[6] B. de Wit, Supergravity, in Les Houches summer school: session 76. Euro summer school on

unity of fundamental physics: gravity, gauge theory and strings, (2002), pg. 1

[hep-th/0212245] [INSPIRE].

[7] E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].

[8] L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory,

Phys. Rev. D 20 (1979) 2619 [INSPIRE].

[9] U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with

electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447

[INSPIRE].

[10] J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling

unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].

[11] P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for Mt, ρ0,

sin2 θW and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

[12] E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

[13] S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193

(1981) 150 [INSPIRE].

[14] N. Sakai, Naturalness in supersymmetric GUTs, Z. Phys. C 11 (1981) 153 [INSPIRE].

[15] R.K. Kaul, Gauge hierarchy in a supersymmetric model, Phys. Lett. B 109 (1982) 19

[INSPIRE].

[16] R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys.

B 306 (1988) 63 [INSPIRE].

[17] CMS collaboration, Search for supersymmetry in pp collisions at
√
s = 13 TeV with 137 fb−1

in final states with a single lepton using the sum of masses of large-radius jets, Phys. Rev. D

101 (2020) 052010 [arXiv:1911.07558] [INSPIRE].

[18] ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing

transverse momentum at
√
s = 13 TeV using 139 fb−1 data with the ATLAS detector,

PoS(LeptonPhoton2019)186 (2019) [INSPIRE].

[19] M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035

[arXiv:1110.6926] [INSPIRE].

[20] H. Baer, V. Barger and M. Savoy, Upper bounds on sparticle masses from naturalness or how

to disprove weak scale supersymmetry, Phys. Rev. D 93 (2016) 035016 [arXiv:1509.02929]

[INSPIRE].

[21] S. Dimopoulos and L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979) 237

[INSPIRE].

[22] S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974

[Addendum ibid. 19 (1979) 1277] [INSPIRE].

[23] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[24] P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak

scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

– 21 –

https://arxiv.org/abs/hep-th/0212245
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0212245
https://doi.org/10.1103/PhysRevD.14.1667
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD14%2C1667%22
https://doi.org/10.1103/PhysRevD.20.2619
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD20%2C2619%22
https://doi.org/10.1016/0370-2693(91)91641-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB260%2C447%22
https://doi.org/10.1016/0370-2693(91)90980-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB260%2C131%22
https://doi.org/10.1103/PhysRevD.44.817
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD44%2C817%22
https://doi.org/10.1016/0550-3213(81)90006-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB188%2C513%22
https://doi.org/10.1016/0550-3213(81)90522-8
https://doi.org/10.1016/0550-3213(81)90522-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB193%2C150%22
https://doi.org/10.1007/BF01573998
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC11%2C153%22
https://doi.org/10.1016/0370-2693(82)90453-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C109B%2C19%22
https://doi.org/10.1016/0550-3213(88)90171-X
https://doi.org/10.1016/0550-3213(88)90171-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB306%2C63%22
https://doi.org/10.1103/PhysRevD.101.052010
https://doi.org/10.1103/PhysRevD.101.052010
https://arxiv.org/abs/1911.07558
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.07558
https://doi.org/10.22323/1.367.0186
https://inspirehep.net/search?p=find+J%20%22PoS%2CLeptonPhoton2019%2C186%22
https://doi.org/10.1007/JHEP09(2012)035
https://arxiv.org/abs/1110.6926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.6926
https://doi.org/10.1103/PhysRevD.93.035016
https://arxiv.org/abs/1509.02929
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.02929
https://doi.org/10.1016/0550-3213(79)90364-x
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB155%2C237%22
https://doi.org/10.1103/PhysRevD.13.974
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD13%2C974%22
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://arxiv.org/abs/hep-ph/9905221
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9905221
https://doi.org/10.1103/PhysRevLett.115.221801
https://arxiv.org/abs/1504.07551
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.07551


J
H
E
P
0
7
(
2
0
2
0
)
2
0
5

[25] S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1

[Adv. Ser. Direct. High Energy Phys. 21 (2010) 1] [hep-ph/9709356] [INSPIRE].

[26] L. O’Raifeartaigh, Spontaneous symmetry breaking for chiral scalar superfields, Nucl. Phys.

B 96 (1975) 331 [INSPIRE].

[27] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].

[28] X. Tata, Natural supersymmetry: status and prospects, arXiv:2002.04429 [INSPIRE].

[29] P.D. Alvarez, M. Valenzuela and J. Zanelli, Supersymmetry of a different kind, JHEP 04

(2012) 058 [arXiv:1109.3944] [INSPIRE].

[30] P.D. Alvarez, P. Pais and J. Zanelli, Unconventional supersymmetry and its breaking, Phys.

Lett. B 735 (2014) 314 [arXiv:1306.1247] [INSPIRE].

[31] S.W. MacDowell and F. Mansouri, Unified geometric theory of gravity and supergravity,

Phys. Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].

[32] R. Troncoso and J. Zanelli, New gauge supergravity in seven-dimensions and

eleven-dimensions, Phys. Rev. D 58 (1998) 101703 [hep-th/9710180] [INSPIRE].

[33] R. Troncoso and J. Zanelli, Gauge supergravities for all odd dimensions, Int. J. Theor. Phys.

38 (1999) 1181 [hep-th/9807029] [INSPIRE].

[34] M. Hassaine, R. Troncoso and J. Zanelli, Poincaré invariant gravity with local supersymmetry
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