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1 Introduction

Since the discovery of the Higgs boson [1, 2], the Higgs boson mass Mh = (125.10 ±
0.14) GeV [3, 4] has become a high-precision observable [5], which represents another use-

ful tool to search for physics beyond the Standard Model (SM) and constrain the large

zoo of proposed SM extensions, such as supersymmetric (SUSY) models. The latter are

particularly interesting, as they require the existence of scalar fields and predict the quar-

tic Higgs coupling and thus the Higgs boson mass. The precise prediction of the SM-like

Higgs boson mass in the Minimal Supersymmetric Standard Model (MSSM), however, is a

long-standing challenge, because in viable MSSM scenarios large radiative loop corrections

of the order ∆m2
h ∼ (100 GeV)2 are required, resulting in a large truncation error of the

perturbation series.

There are two main mechanisms which can generate such large loop corrections: (i)

Large SUSY masses MS (in particular stop masses) lead to large logarithmic corrections

of the form log (MS/v), where v represents the electroweak scale. (ii) A large mixing in

the stop sector, governed by the parameter Xt, leads to power corrections of the order

(Xt/MS)n. Effective field theory (EFT) techniques are a well-known tool to perform a re-

summation of the large logarithmic corrections, thus effectively avoiding a large truncation

error of the contributions from mechanism (i). Concerning the (Xt/MS)n power correc-

tions, however, no similar resummation technique has been used so far. In the present

work we present a technique to effectively resum leading terms in Xt in the prediction of

the light Higgs boson mass.

There are different approaches to calculate the Higgs boson mass in supersymmet-

ric models, which can be roughly classified into fixed-order [6–38],1 EFT [40–51], and

hybrid [52–61] approaches, which combine the virtues of the former two. Fixed-order

approaches truncate the perturbation series at a certain order in loops and couplings, ne-

glecting in particular large logarithmic corrections arising at higher orders. Thus, when

MS � v, the fixed-order approaches usually suffer from a large uncertainty due to miss-

ing large higher-order corrections. EFT approaches, on the other hand, resum the large

logarithmic corrections to all orders, but usually neglect terms of the order v2/M2
S . As a

consequence, EFT approaches become imprecise when MS ∼ v.

Hybrid approaches combine the virtues of fixed-order and EFT calculations: they

resum large logarithmic corrections to all orders and include terms suppressed by v2/M2
S

at fixed order. A first variant of such a hybrid approach was presented in ref. [52] and

implemented into FeynHiggs. This approach uses a “subtraction method”, where the large

logarithmic corrections are subtracted from a fixed-order calculation and are replaced by

resummed logarithms, avoiding double counting. This method was refined in refs. [53, 57]

and applied in the context of the DR
′

scheme in ref. [60].

An alternative way to realize a hybrid approach was presented in refs. [54, 56]. This

so-called FlexibleEFTHiggs approach is an EFT calculation in which the matching con-

dition is suitably modified such that terms suppressed by powers of v2/M2
S are included

in the quartic Higgs coupling. One advantage of this method is the structural simplicity

1Here we focus on multi-loop calculations. For further references see the review [39] and the references

therein.
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of the matching condition. As a result, the method is well suited for automation and

has thus been implemented into the generic spectrum generators FlexibleSUSY [56, 62]

and SARAH/SPheno [55]. A difficulty of the FlexibleEFTHiggs approach is to make sure

that large logarithms cancel in the matching between the EFT and the UV model, as re-

quired. Indeed, avoiding double counting leads to significant complications in all hybrid

calculations [56, 57, 63].

In this paper we present an extension of the FlexibleEFTHiggs hybrid approach with a

matching of the quartic Higgs coupling λ̂ beyond 1-loop level (next-to-leading order, NLO)

and apply it to perform a state-of-the-art hybrid calculation of the light CP-even Higgs

boson mass in the real MSSM. Thereby our calculation incorporates several conceptual

changes and significant improvements:

• We parametrize the matching calculation at the high-energy scale in terms of pa-

rameters of the UV model (i.e. the MSSM). This is in contrast to the usually chosen

parametrization in terms of EFT parameters. Our “full-model parametrization” has

several significant advantages. An important advantage is that the cancellation of

large logarithmic corrections in the matching is more transparent. Furthermore, our

parametrization allows for a computer algebraic implementation which is to a large

extent independent of the chosen UV model. This fact enables the straightforward

application to a large class of SUSY models. The detailed discussion of the different

possible parametrizations is presented in section 3.

• In our application to the MSSM we include the state-of-the-art radiative corrections in

the matching up to the 3-loop level at O(1`+g2
3(y4

t +y4
b )+(y2

t +y2
b )

3+(y2
t +y2

τ )3+g4
3y

4
t )

and perform renormalization-group running up to 4-loop level in QCD. As a result,

our calculation reaches a precision of N3LO with a resummation of N3LL, comparable

with the calculation presented in ref. [60]. The details of the matching of the MSSM

to the SM are presented in section 4, and numerical results are shown in sections 7–8.

• The most important advantage of our new approach and the chosen full-model para-

metrization is the effective resummation of QCD-enhanced terms leading in the stop

mixing parameter Xt, which is presented in section 5. More specifically, we show that

the highest power contributions at O(y4
t g

2n
3 , y2

t g
2
1,2g

2n
3 ) for all n > 0 are captured by

our procedure. As a result, the perturbation expansion of the Higgs boson mass

in terms of the MSSM parameters stabilizes significantly for large Xt, leading to a

reduced theory uncertainty of the prediction.

We begin with a recap of the SM and the MSSM in section 2, introducing our conventions.

section 3 gives a general overview of the implementation of the EFT approach, discussing

in particular the role of the parametrization. Our new realization of the FlexibleEFTHiggs

approach within a numerical code is discussed in section 4. In section 5 we show how

our chosen parametrization in terms of MSSM parameters results in a resummation of

highest power Xt contributions as described above. After a study of the numerical results

of our new calculation in section 7, we perform a thorough analysis of the remaining theory

uncertainty of our calculation in section 8.
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2 Definition of the Standard Model and the MSSM

In the following we will denote the Standard Model (SM) parameters, defined in the MS

scheme, as

P̂ = {ĝ1, ĝ2, ĝ3, ŷt, ŷb, ŷτ , λ̂, v̂}, (2.1)

where ĝ1 =
√

5/3 ĝY and ĝY , ĝ2 and ĝ3 denote the gauge couplings of the gauge groups

U(1)Y , SU(2)L and SU(3)C , respectively. The Yukawa couplings of the top quark, bottom

quark and tau lepton are denoted as ŷt, ŷb and ŷτ , respectively. The 1st and 2nd generation

Yukawa couplings as well as CP-violation effects are neglected and we will set the CKM

and PMNS matrices to unity. The quartic coupling λ̂ of the SM Higgs field Φ is defined

by the Higgs potential

V (Φ) = µ̂2|Φ|2 +
λ̂

2
|Φ|4. (2.2)

We decompose the Higgs field as

Φ =

(
G+

1√
2
(v̂ + h+ iG0)

)
, (2.3)

where h is the SM Higgs particle, v̂ ≡
√

2〈Φ〉 is the Higgs vacuum expectation value (VEV)

(i.e. the minimum of the SM effective potential) which satisfies v̂ = (−2µ̂2/λ̂)1/2 ≈ 246 GeV

at tree level and G0,± are the SM Goldstone bosons. After spontaneous electroweak sym-

metry breaking, the MS masses for the top, bottom and tau fermion and for the heavy

physical bosons are given by

m̂t =
ŷtv̂√

2
, m̂b =

ŷbv̂√
2
, m̂τ =

ŷτ v̂√
2
, (2.4)

m̂W =
ĝ2v̂

2
, m̂Z =

v̂

2

√
ĝ2
Y + ĝ2

2, m̂2
h = λ̂v̂2. (2.5)

For convenience we define in addition the following symbols:

α̂t =
ŷ2
t

4π
, α̂s =

ĝ2
3

4π
, α̂em =

ê2

4π
, ê =

ĝY ĝ2√
ĝ2
Y + ĝ2

2

. (2.6)

We denote the corresponding relevant parameters of the (R-parity conserving) Minimal

Supersymmetric Standard Model (MSSM), defined in the DR
′

scheme, as

P = {g1, g2, g3, yt, yb, yτ , v}, (2.7)

where g1 =
√

5/3 gY and v = (v2
u + v2

d)
1/2, whereas vu and vd denote the VEVs of the

up- and down-type Higgs fields which represent the minimum of the effective potential in

the MSSM,

〈Hu〉 =
1√
2

(
0

vu

)
, 〈Hd〉 =

1√
2

(
vd
0

)
. (2.8)
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If not stated otherwise, we define tan β = vu/vd. After the spontaneous electroweak sym-

metry breaking in the MSSM, the DR
′

masses for the top, bottom and tau fermion as well

as the SM-like Higgs in the decoupling limit are given by

mt =
ytvu√

2
, mb =

ybvd√
2
, mτ =

yτvd√
2
, (2.9)

m2
h =

1

4

(
g2
Y + g2

2

)
v2 cos2(2β). (2.10)

We neglect inter-generation sfermion mixing, so the DR
′
masses of the stops, sbottoms and

staus are given by the eigenvalues of the mass matrices

Mt =

(
m2
t +m2

q̃3
mtXt

mtXt m2
t +m2

ũ3

)
, (2.11)

Mb =

(
m2
b +m2

q̃3
mbXb

mbXb m2
b +m2

d̃3

)
, (2.12)

Mτ =

(
m2
τ +m2

l̃3
mτXτ

mτXτ m2
τ +m2

ẽ3

)
, (2.13)

where m2
q̃3

, m2
ũ3

, m2
d̃3

, m2
l̃3

and m2
ẽ3

denote the squared soft-breaking mass parameters of the

left- and right-handed 3rd generation squarks and sleptons and electroweak contributions

from D-terms have been omitted.2 The sfermion mixing parameters Xt, Xb and Xτ are

defined as

Xt = At − µ cotβ, Xb = Ab − µ tanβ, Xτ = Aτ − µ tanβ, (2.14)

where Af (f = t, b, τ) are the trilinear Higgs-sfermion-sfermion couplings and µ is a MSSM

superpotential parameter. For convenience we define in addition the following symbols:

αt =
y2
t

4π
, αs =

g2
3

4π
, αem =

e2

4π
, e =

gY g2√
g2
Y + g2

2

, M2
S = mt̃1

mt̃2
, (2.15)

where mt̃i
denotes the ith DR

′
stop mass.

3 Matching procedure in general

We begin by recalling a few basic aspects of the effective field theory approach to compute

weak-scale observables, such as the pole mass of the Higgs boson, Mh, in SUSY models in

scenarios where the SUSY scale Λ is significantly larger than the weak scale. This will help

later in characterizing our approach and in comparing it to other approaches.

2In the calculation of the 2-loop and 3-loop matching corrections presented in the next sections, we

neglect D-term contributions, as we work in the gauge-less limit. In the calculation of the 1-loop threshold

correction ∆λ1`, all D-term contributions are taken into account.

– 5 –
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3.1 Basics of the effective field theory approach

In SUSY models with very heavy new particles of mass Λ � v, an observable O can be

expanded perturbatively in a three-fold way: in terms of loops (counted by a generic loop-

counting parameter α), large logarithms of the large mass ratio L ≡ log(Λ/v) and a mass

suppression factor v/Λ. For the particular case of a dimensionless observable O which has

a tree-level contribution of order α0, the leading n-loop contribution (n ≥ 0) is typically

of the form αnLn. Subleading/higher-order contributions have more powers of α, fewer

powers of L and/or additional factors of v/Λ. Hence, one can write to all orders

O =

∞∑
n=0

n∑
l=0

∞∑
k=0

cnlk α
nLl

( v
Λ

)k
, (3.1)

where the sum of the terms with n = 0 represent the tree-level contribution O0` and the

coefficients cnlk are constants which may contain the parameters of the full model and

logarithms of small mass ratios. An effective field theory calculation allows to include all

terms at the m-th subleading log level,

αnLn, . . . , αn+mLn ∀n ≥ 0. (3.2)

Since terms of all loop orders are contained in the sum of these terms, their inclusion is also

called “resummation of logarithms”. Usually the resummation is achieved by performing

the following three steps (see figure 1):

1. Construct a Lagrangian of the effective theory and derive a relation between the

running parameters of the full and the effective theory by a matching calculation at

the m-loop level at the high scale Qmatch ≈ Λ.3

2. Use (m + 1)-loop renormalization group running to evolve the parameters of the

EFT from the scale Qmatch to the low-energy scale Qlow. In this process the large

logarithms are resummed to the NmLL order.

3. Match the parameters of the EFT at the scale Qlow to observed quantities and com-

pute the observable in question at m-loop level.

It is not only crucial to take into account all m-loop terms, but it is also important to

consistently truncate the perturbation expansion at the m-loop order. In particular, it is

imperative not to include any spurious (> m)-loop terms enhanced by large logarithms as

this would spoil the correct resummation. On the other hand it is allowed to incorporate

m-loop terms suppressed by powers of v/Λ in the m-loop matching, i.e. to take into account

fixed order terms of the form αmLkv/Λ. In this way the computation of low-energy observ-

ables can be improved by power suppressed terms at fixed loop order. Note, however, that

as long as only running of operators of mass dimension ≤ 4 is used, power-suppressed large

logarithms of the form Lkv/Λ are not resummed [54], i.e. terms of order αn+mLn+(k≤m)v/Λ

3Alternatively one may integrate out the heavy states and derive the Lagrangian of the EFT, from which

the relation between the running parameters of the full and the effective theory can be read off.

– 6 –
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Q
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Figure 1. Calculation of an observable in an effective field theory of a full model.

with n ≥ 1 are not correctly predicted. However, in ref. [44] it was shown that this effect

is negligible for the purpose of Higgs pole mass prediction in the relevant parameter space

of the MSSM.

3.2 Parametrization of the matching relations

In the following we discuss different possibilities to perform the high-scale matching. Specif-

ically, for a matching at some given loop order, one needs to consistently expand either in

terms of the running parameter of the fundamental theory α or of the EFT α̂. In principle

both options are correct and equivalent. However, once perturbation theory is truncated

it matters whether truncation is done at the order (α)m or (α̂)m, because these two kinds

of expansions differ by higher-order terms. We give a simple illustration using a 1-loop toy

example which is similar to the case of the Higgs pole mass calculation.

We suppose the exact matching condition is given by the equality

Γeft = Γfull, (3.3)

where Γ is some Green function. In the full theory, the 1-loop expression is

Γfull = α+ α2[∆γL+ ∆c], (3.4)

where ∆γ and ∆c are numerical coefficients. In the EFT, the 1-loop expression reads

Γeft = λ̂+ α̂2[∆γL]. (3.5)

The coefficient ∆γ of the large logarithm L is the same in both cases, because it must

cancel in the matching condition. We assume that α and α̂ are related at 1-loop level by

α̂ = α+ α2∆α. (3.6)

The matching condition can now be solved perturbatively for λ̂ in terms of α or α̂. At

tree-level one obtains

tree-level : λ̂ = α = α̂. (3.7)

– 7 –
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At the 1-loop level one obtains in terms of α:

full-model parametrization 1` : λ̂ = α+ α2∆c (3.8)

and in terms of α̂:

EFT parametrization 1` : λ̂ = α̂+ α̂2 [∆c −∆α] . (3.9)

Both expressions (3.8) and (3.9) are valid possibilities for the 1-loop matching relations, but

the results for λ̂ differ by non-log-enhanced 2-loop terms. In fact, this difference could be

used as an estimate of the theory uncertainty. For the prediction of the Higgs boson pole

mass, the EFT parametrization is used in several calculations such as HSSUSY4 [47, 56],

MhEFT [43] and SusyHD [42], although further parametrizations have been presented in

refs. [23, 40].

We note that in an algorithmic implementation of the full-model parametrization, the

Green function Γfull may be evaluated numerically, while Γeft needs to be analytically

expanded in terms of α and truncated consistently at the 1-loop level. Hence, an analytic

manipulation of Γeft is needed. Conversely, an algorithmic implementation of the EFT

parametrization would require an analytic expansion of Γfull in terms of α̂ and a consistent

truncation of that expansion.

Finally, we note that one might be tempted to plug the respective 1-loop re-

sults (3.4)–(3.5) into the matching condition (3.3) to obtain

λ̂+ α̂2 [∆γL] = α+ α2 [∆γL+ ∆c] (3.10)

and solve for λ̂, e.g. numerically. One would then obtain

incorrect: λ̂ = α+ α2∆c + α32∆α∆γL+O(α4) . (3.11)

Here, a spurious log-enhanced 2-loop term is generated. If such an implementation were

used, the resummation of subleading logarithms would be spoiled. A problem of this kind

appeared in refs. [54, 55] and a solution was first discussed in ref. [56].

3.3 Matching of the quartic Higgs coupling

In the following we will discuss the differences between the two parametrizations in the

context of predicting the quartic Higgs coupling λ̂ from a matching of the Standard Model

to the MSSM.

EFT (SM) parametrization. In this parametrization the quartic Higgs coupling λ̂

is expressed in terms of the MS-renormalized SM parameters {ĝ1, ĝ2, ĝ3, ŷt, ŷb, ŷτ , v̂} at

the matching scale Qmatch. In the scenario with degenerate SUSY mass parameters and

Qmatch = MS , the 1-loop contribution to λ̂ from stops is given by

EFT parametrization: ∆λ1`
∣∣∣
ŷ4t

=
1

(4π)2
ŷ4
t 6

[
x2
t −

x4
t

12

]
, (3.12)

where xt = Xt/MS is the dimensionless stop-mixing parameter in the DR
′

scheme.

4According to ref. [44], the bottom Yukawa coupling inside the 2-loop threshold correction ∆λ are in

the full-model parametrization for the reason of correct tan β treatment, as will be discussed in section 5.

– 8 –
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Full-model (MSSM) parametrization. In this parametrization the MSSM parame-

ters are treated as fundamental. At the matching scale the quartic Higgs coupling λ̂ is

then fixed in terms of the MSSM DR
′

parameters. As a result, the 1-loop contribution to

∆λ1` reads at O(y4
t )

full-model parametrization: ∆λ1`
∣∣∣
y4t

=
1

(4π)2
y4
t s

4
β6

[
x2
t −

x4
t

12

]
, (3.13)

where yt denotes the MSSM top Yukawa coupling in the DR
′

scheme.

With respect to the top Yukawa and strong gauge coupling, the difference between the

EFT and the full-model parametrization (3.12) and (3.13) is of 2-loop order. This can be

seen by equivalently reparametrizing eq. (3.13) in terms of the SM MS top Yukawa coupling

ŷt, which leads to

∆λ1`
∣∣∣
y4t

=
1

(4π)2
ŷ4
t 6

[
x2
t −

x4
t

12

]
− 1

(4π)4

8

3
ŷ4
t ĝ

2
3

[
x5
t+ ∝ xn≤4

t

]
+O(g4

3y
4
t ). (3.14)

Comparing the two versions of the threshold corrections (3.12) and (3.14) reveals several

important points. We note first that by construction the 2-loop term on the r.h.s. of

eq. (3.14) does not contain large logarithms, in agreement with the effective field theory

paradigm. Clearly, the 2-loop difference between eqs. (3.12) and (3.14) could be used as a

measure of the theory uncertainty of the 1-loop prediction of λ̂ at the matching scale. Fi-

nally note that this reparametrization generates a 2-loop x5
t term on the r.h.s. of eq. (3.14).

This term is correct, i.e. it appears in the explicit 2-loop calculation of ref. [41]. In sec-

tion 5 we will show that this is not an accident; the full-model parametrization includes

important terms correctly, which in the EFT parametrization would require higher-order

calculations. It can thus be used to improve the precision of Higgs pole mass prediction in

the effective field theory approach.

Automatization of the matching beyond 1-loop level. Besides the higher preci-

sion, the full-model parametrization may also be easier to implement in generic spectrum

generators that use the FlexibleEFTHiggs approach [54–56]. In this approach the condition

(MMSSM
h )2 = (MSM

h )2 (3.15)

is numerically solved for λ̂ at the matching scale. As discussed in ref. [56] and in section 3.2,

care has to be taken to avoid the occurrence of spurious large logarithms of higher-order

in the matching. A correct application of FlexibleEFTHiggs approach beyond the 1-loop

level using the EFT parametrization requires an expansion of the full-model BSM Higgs

self-energy ΣBSM
φ (P ) in terms of the full-model parameters P and a following expansion of

P in terms of the parameters of the EFT (here the SM) P̂ , including a truncation at some

fixed order in P̂ . This expansion introduces “implicit” terms beyond 1-loop of the form

EFT parametrization: ∆λ2` ⊃ −
(
∂

∂P
ΣBSM
φ

)
∆P̂ , (3.16)

– 9 –
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where ∆P̂ = P−P̂ is the threshold correction of SM-like parameters expressed through SM

parameters. Thus, the inclusion of derivatives of the BSM Higgs self-energy w.r.t. SM-like

parameters becomes mandatory for the cancellation of large logarithms in the matching

beyond 1-loop. The calculation of these derivatives requires some extra computational

effort, which must be performed for each BSM model. The application of this approach to

arbitrary BSM models thus requires some cost.

Within the full-model parametrization, the Higgs self-energy in the EFT, ΣSM
h (P̂ ),

must be expanded in terms of the parameters of the EFT, P̂ , which then must be expanded

in terms of the parameters of the full model, P . As a result, 2-loop structures of the

following form are generated

full-model parametrization: ∆λ2` ⊃
(
∂

∂P̂
ΣSM
h

)
∆P, (3.17)

where ∆P = P̂ − P is the threshold correction of SM-like BSM parameters expressed

through BSM parameters. Thus, only derivatives of the EFT Higgs self-energy are required.

As long as the employed EFT does not change, these derivatives can be computed once and

reused in the matching to arbitrary BSM models. With respect to computational effort and

model independence, the full-model parametrization is thus advantageous. Due to the re-

usability of the appearing structures and the improved treatment of xt (and tan β) discussed

later, we propose to use the full-model parametrization instead of the EFT parametrization

used in HSSUSY, SusyHD and the original FlexibleEFTHiggs implementation [54, 56].

4 New FlexibleEFTHiggs matching procedure

In the following we apply the conclusions of the previous section to the matching of the

SM to the MSSM and describe a new improved matching procedure of the FlexibleEFT-

Higgs approach, which also allows to extend the approach beyond the 1-loop level without

introducing spurious logarithms of higher order.

4.1 FlexibleEFTHiggs matching conditions

The FlexibleEFTHiggs approach is based on the central matching condition

(MMSSM
h )2 = (MSM

h )2, (4.1)

where MMSSM
h denotes the pole mass of the SM-like Higgs as predicted within the MSSM

and MSM
h the Higgs pole mass in the SM as computed in terms of SM parameters. Within

the SM, the Higgs pole mass is related to SM tree-level parameters and loop corrections as

(MSM
h )2 = s, (4.2)

where

0 = s− m̂2
h + Re

[
ΣSM
h (s)− tSM

h

v̂

]
, (4.3)

m̂2
h = λ̂v̂2. (4.4)
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Here v̂ is the minimum of the loop-corrected SM effective potential and ΣSM
h , tSM

h are the

MS-renormalized self-energy and tadpole, respectively. Within the MSSM, the Higgs pole

mass is related to MSSM tree-level parameters and DR
′

renormalized loop corrections as

(MMSSM
h )2 = s, where 0 = det

[
s δij − (m2

φ)ij + Re

[
Σφ,ij(s)−

tφ,i
vi
δij

]]
. (4.5)

Here, the tree-level mass matrix (m2
φ)ij is parametrized such that the soft-breaking Higgs-

doublet mass parameters m2
Hu,d

are eliminated by employing the EWSB equations at the

loop level. This elimination introduces the tadpoles tφ,i on the r.h.s. of eq. (4.5), which

are of the same loop order as the momentum-dependent self-energy matrix Σφ,ij(s) of the

BSM model. For later convenience we introduce the abbreviations

∆sSM
h (p2) = −Re

[
ΣSM
h (p2)− tSM

h

v

]
, (4.6)

∆sMSSM
h = s−m2

h , (4.7)

where m2
h is the SM-like tree-level mass eigenvalue of the matrix (m2

φ)ij . Combining the

previous expressions gives rise to the following relation for the SM quartic coupling λ̂:

λ̂ =
1

v̂2

[
(MMSSM

h )2 −∆sSM
h ((MMSSM

h )2)
]
. (4.8)

This is the master formula for the determination of λ̂ in the FlexibleEFTHiggs approach;

in principle it could be evaluated exactly and at arbitrarily high orders. In particular, it

could be evaluated either in the limit v/MS → 0 or by keeping power-suppressed terms of

order v/MS . The first option would correspond to the pure EFT approach pursued e.g. in

HSSUSY and SusyHD. The second option corresponds to the FlexibleEFTHiggs approach.

For an extensive discussion of this method we refer to refs. [54, 56]. As exemplified in

appendix A of ref. [54] and in appendix A of the present paper the two options indeed

coincide analytically in the limit MS →∞.

In the following we evaluate the master formula (4.8) according to the following pre-

scription:

• We use the FlexibleEFTHiggs hybrid method introduced in ref. [54], i.e. we evaluate

eq. (4.8) as it stands, including power-suppressed terms of O(v2/M2
S) arising in the

self-energies and tadpoles.

• Eq. (4.8) is evaluated in the full-model (MSSM) parametrization, which is rather

easy to generalize to other SUSY models and allows for a resummation of leading xt
and tanβ contributions in the Yukawa couplings yt and yb as well as in the quartic

coupling λ̂.

• The threshold correction for λ̂ is calculated at N3LO with all 1-loop corrections, 2-

loop corrections in the gaugeless limit at O(g2
3(y4

t + y4
b ) + (y2

t + y2
b )

3 + (y2
t + y2

τ )3),5

5Additional 2-loop corrections of O(v2y4by
2
τ + v2y2by

4
τ ) to the pole mass of the Higgs boson can be found

in ref. [19], but we don’t include these corrections in the present study.
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and 3-loop corrections of O(g4
3y

4
t ).

6 By including the SM β-functions up to the 4-

loop level, this matching allows for a resummation of N3LL at the considered order

in the couplings. The final Higgs mass prediction will include the complete series

of power-suppressed (v2/M2
S)n terms at 1-loop and 2-loop level at the given orders.

However, 3-loop suppressed terms are not included in our calculation, because they

are neither publicly available in the literature [37] nor implemented in the Himalaya

library [33].

In addition to the master formula (4.8), the matching conditions for the other SM

parameters {ĝ1, ĝ2, ĝ3, ŷt, ŷb, ŷτ , v̂} are given by

(MMSSM
V )2 = (MSM

V )2, V = W,Z, (4.9a)

MMSSM
f = MSM

f , f = t, b, τ, (4.9b)

ΓMSSM
f̄fAµ = ΓSM

f̄fAµ , (4.9c)

ΓMSSM
q̄qgµa

= ΓSM
q̄qgµa

, (4.9d)

where M denotes the pole mass of the corresponding particle and Γ is a Green function.

The symbols Aµ and gµa denote the QED and QCD gauge fields, respectively. Quarks are

denoted as q and SM fermions with a non-vanishing electric charge are referred to as f .

4.2 Perturbative expansion of the matching conditions

In this section we perform the explicit perturbative expansion of the master formula (4.8)

and the matching conditions (4.9) in the full-model parametrization. As a result we will ob-

tain all building blocks necessary for the 3-loop Higgs pole mass prediction in the improved

FlexibleEFTHiggs approach.

We start by performing the matching at tree-level. At this order one has

(MMSSM
h )2 = m2

h, ∆sSM
h (p2) = 0, (4.10a)

(MMSSM
V )2 = m2

V , (MSM
V )2 = m̂2

V , V = W,Z (4.10b)

MMSSM
f = mf , MSM

f = m̂f , f = t, b, τ, (4.10c)

ΓMSSM
f̄fAµ = −eγµQf , ΓSM

f̄fAµ = −êγµQf , (4.10d)

ΓMSSM
q̄qgµa

= −g3γ
µTa, ΓSM

q̄qgµa
= −ĝ3γ

µTa. (4.10e)

Inserting eqs. (4.10) into the master formula (4.8) and into the matching conditions (4.9)

one obtains the MS SM parameters expressed in terms of DR
′

MSSM parameters at

tree level:

λ̂0` = m2
h/v

2, (4.11a)

ĝ0`
i = gi, i = 1, 2, 3, (4.11b)

ŷ0`
t = ytsβ , (4.11c)

ŷ0`
f = yfcβ , f = b, τ, (4.11d)

v̂0` = v. (4.11e)

6The threshold corrections included in HSSUSY for λ̂ are of the same order [48], but expressed in the EFT

parametrization.
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For later convenience we denote the tree-level SM MS parameters on the l.h.s. of eqs. (4.11)

as P̂ 0`. At the 1-loop level we obtain accordingly

λ̂1` = λ̂0` + ∆λ1` = m2
h/v

2 + ∆λ1`, (4.12a)

ĝ1`
i = ĝ0`

i + ∆g1`
i = gi + ∆g1`

i , i = 1, 2, 3, (4.12b)

ŷ1`
t = ŷ0`

t + ∆y1`
t = ytsβ + ∆y1`

t , (4.12c)

ŷ1`
f = ŷ0`

f + ∆y1`
f = yfcβ + ∆y1`

f , f = b, τ, (4.12d)

v̂1` = v̂0` + ∆v1` = v + ∆v1`, (4.12e)

where the 1-loop threshold corrections on the r.h.s. of eqs. (4.12) are expressed in terms of

MSSM DR
′

parameters. In the pure EFT limit v → 0 the 1-loop threshold corrections can

be found for example in refs. [23, 40, 41]. The explicit calculation of ∆y1`
t and ∆λ1` beyond

the pure EFT limit will be exemplified below. For brevity we denote in the following

the 1-loop SM MS parameters on the l.h.s. of eqs. (4.12) generically as P̂ 1`. Similarly,

the n-loop SM MS parameters are denoted as P̂n`. Furthermore we denote the general

threshold correction as ∆P = P̂−P̂ 0` and specify the notation of a generic n-loop threshold

correction as

∆Pn` ≡ P̂n` − P̂ (n−1)`, (4.13)

∆Pα
n ≡ ∆P |αn , (4.14)

which are expressed in terms of MSSM DR
′

parameters, where ∆P |αn denotes all contri-

butions to ∆P of order O(αn) .

For the prediction of the SM-like Higgs pole mass in the MSSM with the improved

FlexibleEFTHiggs approach up to the order O(g2
3(y4

t +y4
b )+(y2

t +y2
b )

3 +(y2
t +y2

τ )3 +g4
3y

4
t ),

it is sufficient to determine all SM parameters at the 1-loop level, except for λ̂ and ŷt,

which must be determined at a higher order. For this reason we describe in the following

in more detail the calculation of the threshold corrections ∆yn`t and ∆λn`. In order to

express these threshold corrections consistently in the full-model parametrization, an extra

expansion of the loop corrections in terms of MSSM DR
′

parameters must be performed.

We will refer to this procedure as “double loop expansion”.

Expansion of the top quark pole mass matching condition. The 2-loop threshold

correction for the top Yukawa coupling, ∆y2`
t , can be obtained from the top quark pole

mass matching condition eq. (4.9b) with

MSM
t = m̂t + ∆m̂1`

t (p = m̂t) + ∆m̂2`
t , (4.15a)

MMSSM
t = mt + ∆m1`

t (p = mt) + ∆m2`
t . (4.15b)

The 1-loop corrections on the r.h.s. of eqs. (4.15) are given by

∆m̂1`
t (m̂t) = − Re ΣSM,1`

t,S − m̂t

[
Re ΣSM,1`

t,L + Re ΣSM,1`
t,R + ∆m̂QCD,1`

t

]
, (4.16a)

∆m1`
t (mt) = − Re ΣMSSM,1`

t,S −mt

[
Re ΣMSSM,1`

t,L + Re ΣMSSM,1`
t,R + ∆mQCD,1`

t

]
, (4.16b)

∆m̂2`
t = − m̂t∆m̂

QCD,2`
t , (4.16c)

∆m2`
t = −mt∆m

QCD,2`
t , (4.16d)
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where Σ
{SM,MSSM},1`
t,{S,L,R} denote the renormalized scalar, left- and right-handed components

of the 1-loop top self-energy evaluated at momentum p = m̂t and p = mt in the SM and

MSSM, respectively, without the QCD contributions. The SM self-energies are renormal-

ized in the MS scheme and the MSSM self-energies are renormalized in the DR
′

scheme.

In the degenerate SUSY mass limit the 1- and 2-loop QCD contributions are given by [64]

∆mQCD,1`
t = − g2

3

(4π)2

4

3

[
5− 3 log(t)− xt + log(M2

S)
]
, (4.17a)

∆mQCD,2`
t =

g4
3

54(4π)4

[
1745− 640xt + 4 log(M2

S)
(
677− 16xt + 93 log(M2

S)
)

+ 288 log(t)
(
xt − 4 log(M2

S)
) ] (4.17b)

∆m̂QCD,1`
t = − ĝ2

3

(4π)2

4

3

[
4− 3 log(t̂)

]
, (4.17c)

∆m̂QCD,2`
t = − ĝ4

3

18(4π)4

[
396 log

2
(t̂)− 1452 log(t̂)− 48ζ3 + 2053 + 16π2(1 + log 4)

]
,

(4.17d)

where t̂ = m̂2
t , t = m2

t and log(x) ≡ log(x/Q2). The 2-loop MSSM QCD contribution

∆mQCD,2`
t for non-degenerate SUSY mass parameters can be found in refs. [65–67]. Note

that the SM QCD contributions have already been evaluated at p = MSM
t up to order

O(m̂tĝ
4
3), while the MSSM QCD contributions have been evaluated at p = MMSSM

t up to

order O(mtg
4
3). Thus, the 2-loop contributions ∆m2`

t and ∆m̂2`
t contain terms stemming

from momentum iteration out of ∆m1`
t and ∆m̂1`

t , respectively.

To obtain the 1- and 2-loop threshold corrections for the top Yukawa coupling in

the full-model parametrization, the top quark pole masses (4.15) are inserted into the

matching condition (4.9b), where both sides must be evaluated at p = MMSSM
t . The

subsequent expansion of the matching condition in terms of MSSM DR
′
parameters (double

loop expansion) is equivalent to taking the expressions in eqs. (4.15) and expanding up to

O(ytg
4
3), which yields

∆y1`
t =

√
2

v

[
∆m1`

t (mt)−∆m̂1`
t (mt)−

mt

v
∆v1`

]
, (4.18a)

∆y2`
t =

√
2

v

[
∆m2`

t −∆m̂2`
t +

∑
P

(
∂

∂P
m̂t∆m̂

QCD,1`
t

)
∆P

]
, (4.18b)

with P ∈ {ŷt, ĝ3}.

Expansion of the master formula. The n-loop threshold correction ∆λn` is obtained

from the master formula eq. (4.8). To derive the necessary building blocks to express ∆λn`

in the full-model parametrization, the following three expansions must be performed:
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• The prefactor 1/v̂2 on the r.h.s. of eq. (4.8) must be expressed in terms of MSSM

parameters, which yields7

1

v̂2
=

1

v2

[
1− 2

∆v1`

v

]
. (4.19)

• The squared Higgs pole mass in the MSSM, (MMSSM
h )2, on the r.h.s. of eq. (4.8) is

naturally expanded in terms of MSSM parameters as

(MMSSM
h )2 = m2

h + ∆sMSSM,1`
h + ∆sMSSM,2`

h + ∆sMSSM,3`
h , (4.20)

∆sMSSM,n`
h ≡ sMSSM,n` − sMSSM,(n−1)`, (4.21)

where sMSSM,n`
h is obtained from eq. (4.7) with all corrections included up to n-loop

level.8 The 1-loop self-energy and tadpoles can be obtained from SARAH and we

expand the self-energy as

Σ1`
φ,ij((M

2
h)MSSM) = Σ1`

φ,ij(m
2
h) +

(
∂

∂p2
Σ1`
φ,ij(0)

)
∆sMSSM,1`

h . (4.22)

Note, that the last term on the r.h.s. of eq. (4.22) contributes pure 2-loop Yukawa

terms and thus must be taken into account for a consistent Higgs pole mass prediction

at the 2-loop order O(v2((y2
t + y2

b )
3 + (y2

t + y2
τ )3)), together with the corresponding

explicit 2-loop self-energy and tadpole contributions. The explicit 2-loop corrections

to ∆sMSSM,2`
h read

Σ2`
φ,ij(0)−

t2`φ,i
vi
δij , (4.23)

which we take in the gaugeless limit at the order O(v2(g2
3(y4

t + y4
b ) + (y2

t + y2
b )

3 +

y6
τ )) [10, 11, 15–17]. At 3-loop level we include the known MSSM contributions of

O(v2y4
t g

4
3) [25, 26] to the Higgs pole mass,

Σ3`
φ,ij(0)−

t3`φ,i
vi
δij , (4.24)

which we take from the Himalaya library [33].

• The pure SM contributions ∆sSM
h (p2) from eq. (4.6) must also be expressed in terms

of MSSM parameters, which we achieve by a double loop expansion:

∆sSM
h ((MMSSM

h )2) = ∆sSM,1`
h (m2

h) + ∆sSM,2`
h + ∆sSM,3`

h , (4.25)

7Threshold contributions to v at 2-loop would induce 2-loop contributions in eq. (4.8) beyond the gauge-

less limit.
8Note that due to the non-linearity of the determinant (4.5), the contribution ∆sMSSM,n`

h contains

products of self-energies of lower loop order, which are, however, suppressed by factors of v2/M2
S as discussed

in refs. [57, 68].
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where

∆sSM,1`
h (p2) = −Re

[
ΣSM,1`
h (p2)− tSM,1`

h

v

]
, (4.26a)

∆sSM,2`
h = −Re

[
ΣSM,2`
h (0)− tSM,2`

h

v

]
+
∑
P

(
∂

∂P
∆sSM,1`

h (0)

)
∆P 1`, (4.26b)

∆sSM,3`
h = −Re

[
ΣSM,3`
h (0)− tSM,3`

h

v

]
+

∑
n·q+m=3

(
∂n

∂Pn
∆sSM,m`

h (0)

)
(∆P q`)n.

(4.26c)

The sum on the r.h.s. of eq. (4.26b) runs over P ∈ {p2, ŷt, ŷb, ŷτ , ĝ3, v̂}, where the

∆p2 contribution accounts for the fact that the momentum inserted in the 1-loop SM

Higgs mass correction of eq. (4.8) is evaluated at p2 = (MMSSM
h )2. Hence the relation

∆p2 = ∆sMSSM,1`
h (4.27)

includes corrections at 1-loop in the gaugeless limit. The sum on the r.h.s. of

eq. (4.26c) runs over P ∈ {ŷt, ĝ3} with (∆P q`)n ∈ {∆y1`
t , 1/2(∆y1`

t )2,∆y2`
t ,∆g

1`
3 }.9

Mixed derivatives and products of threshold corrections do not appear in eq. (4.26c),

since they would contribute beyond the considered O(y4
t g

4
3) in ∆λ. The explicit

2-loop corrections in the effective potential approach at O(v̂2ŷ4
t ĝ

2
3) are taken from

refs. [56, 69]. The 2-loop corrections at O(v̂2((ŷ2
t + ŷ2

b )
3 + ŷ6

τ )) are presented in

section 4.3. At 3-loop level, we include contributions of O(v̂2ŷ4
t ĝ

4
3) from ref. [70].

With these ingredients, the expansion of the master formula (4.8) is given by

λ̂ = λ+ ∆λ1` + ∆λ2` + ∆λ3` , (4.28a)

∆λ1` =
1

v2

[
−2m2

h

∆v1`

v
+ ∆sMSSM,1`

h −∆sSM,1`
h (m2

h)

]
, (4.28b)

∆λ2` =
1

v2

[
2

∆v1`

v

(
∆sSM,1`

h (0)−∆sMSSM,1`
h

)
+ ∆sMSSM,2`

h −∆sSM,2`
h

]
, (4.28c)

∆λ3` =
1

v2

[
∆sMSSM,3`

h −∆sSM,3`
h

]
. (4.28d)

Note that for consistency the parameter shifts ∆P , which contribute to ∆λ2` and ∆λ3`,

must be evaluated in the gaugeless limit. Note also that the double loop expansion for

the 3-loop threshold correction ∆λ3` is relatively simple, because only a small sub-set of

implicit corrections contribute at order O(y4
t g

4
3).

4.3 Explicit results and comparison to the literature

In this subsection we present several explicit results and analytic expressions for the thresh-

old corrections at the 1-loop, 2-loop and 3-loop level. The first purpose is to demonstrate

9Note that the threshold correction (∆P q`)n includes QCD corrections only.
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the internal consistency of the new way of setting up the threshold corrections by checking

that all explicit large logarithms cancel in eqs. (4.18) and (4.28). A second purpose is to

verify the correctness of the results by comparing to results presented in the literature,

appropriately reparametrized. Finally, we also present several new analytic results at the

2-loop level.

All results in this subsection are provided in the EFT limit v2 � M2
S and for the

degenerate mass case and non-trivial stop mixing.

∆yt at O(ytg
4
3). We start with the derivation of the 1- and 2-loop threshold corrections

for the top Yukawa coupling, ∆y1`
t and ∆y2`

t , at O(ytg
2n
3 ) from eqs. (4.18). The exact 2-

loop pole mass contribution in the MSSM (self-energy + momentum iteration) is obtained

from refs. [66, 67]. The 2-loop pole mass contribution in the SM is taken from ref. [64].

Using the notation as introduced in eq. (4.14) and for the case of degenerate SUSY mass

parameters the corrections on the r.h.s. of eqs. (4.18a) and (4.18b) evaluate to

ŷt|ytα≤2
s

= ytsβ + ∆yαst + ∆y
α2
s

t , (4.29a)

∆yαst = ytsβ
g2

3

(4π)2

4

3

[
1− xt + log(M2

S)
]
, (4.29b)

∆y
α2
s

t = ytsβ
g4

3

(4π)4

1

54

[
2099− 832xt + (1748− 64xt) log(M2

S) + 372 log
2
(M2

S)
]
. (4.29c)

By squaring eq. (4.29a) we obtain perfect analytic agreement with the 2-loop threshold

correction presented in ref. [48]. Note that the presented threshold corrections ∆yαst and

∆y
α2
s

t are linear in xt, which will be relevant for the determination of λ̂ in the full-model

parametrization below.

For future use we record here the corresponding result in EFT parametrization in an

analogous notation as in eq. (4.29):

yt|ŷtα̂≤2
s

=
ŷt
sβ

+ ∆ŷα̂st + ∆ŷ
α̂2
s

t , (4.30a)

∆ŷα̂st =
ŷt
sβ

ĝ2
3

(4π)2

4

3

[
−1 + xt − log(M2

S)
]
, (4.30b)

∆ŷ
α̂2
s

t =
ŷt
sβ

ĝ4
3

(4π)4

1

54

[
−2075 + 712xt + 96x2

t − (1340 + 416xt) log(M2
S) + 12 log

2
(M2

S)
]
.

(4.30c)

A noteworthy difference is the term ∝ g4
3x

2
t , which appears in the EFT parametrized

expression in eq. (4.30c), but not in the full-model parametrization in eq. (4.29c). This

term originates from an implicit (conversion) correction. Its origin can be traced back to

eq. (4.18b), which contains a derivative term of the form(
d

dmt
ΣMSSM,αs
t (mt,mt)

)
v√
2

∆yαst , (4.31)

when evaluated in the EFT parametrization. The 1-loop correction ∆yαst and the 1-loop

MSSM top quark self-energy ΣMSSM,αs
t each contain terms ∝ xt, which results in a contri-

bution ∝ x2
t in eq. (4.31). As will be discussed below, this 2-loop x2

t term is also present
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in the MSSM-parametrized threshold correction, where it is implicitly taken into account

by the 1-loop threshold of eq. (4.29b).

∆λ at O(g23y
4
t ). We continue and show that eq. (4.28c) in that form leads to the known

expression of ∆λ2` at O(g2
3y

4
t ), presented in ref. [41]. The calculation of this correction

from eq. (4.28c) at 2-loop level requires the explicit 2-loop corrections of O(v2g2
3y

4
t ) for

both the SM [69] and MSSM [10] Higgs pole mass. Since the threshold correction to the

VEV ∆v does not contribute at this order, eq. (4.28c) simplifies for Q = MS to

∆λ2`
∣∣∣
g23y

4
t

=
1

v2

[
∆sMSSM,2`

h −∆sSM,2`
h

]
(4.32a)

=
1

v2

[
∆s

MSSM,y4t g
2
3

h + Re

[
Σ

SM,y4t g
2
3

h (0)− t
SM,y4t g

2
3

h

v

]
−
(
∂

∂ŷt
∆sSM,ŷ4t (0)

)
∆yαst

]
(4.32b)

=
g2

3y
4
t s

4
β

(4π)4

4

3
xt
[
−24 + 12xt + 4x2

t − x3
t

]
, (4.32c)

where we have used ∆y1`
t from eq. (4.29b). In contrast to the result presented in ref. [41],

eq. (4.32c) is expressed in the full-model parametrization. To compare our result with

eq. (36) of ref. [41], which is presented in the EFT parametrization, one has to express the

SM top Yukawa coupling ŷt in ∆λ1` from eq. (3.12) in terms of the MSSM top Yukawa

coupling yt. After truncation at the 2-loop order O(g2
3y

4
t ), the combined expression is

identical to eq. (4.32c).

∆λ at O(y6t ). At 2-loop O(y6
t ) we can perform an even stricter consistency test of

eq. (4.28c), because the implicit corrections at this order have all non-trivial contribu-

tions from eqs. (4.22), (4.26b) and (4.28c). Since the explicit 2-loop contributions in the

MSSM [68] and SM [42] are known, the only missing contributions in eq. (4.28c) are the im-

plicit corrections. The 1-loop threshold corrections of O(αt) to P ∈ {p2, yt, v} are obtained

from ref. [40]. In appendix A we present all contributions and the explicit derivation in an

expansion of ctβ ≡ 1/ tanβ up to the second order for Q = MS . Besides this expansion we

have also proven the equivalence between our threshold correction and the one presented

in ref. [42] for the general tan β dependence. Since the expression from ref. [42] does (by

construction) not contain large logarithmic contributions, we have shown that all large

logarithmic contributions vanish in eq. (4.28c) at O(y6
t ). Our explicit result for the 2-loop

threshold correction in the full-model parametrization reads:

∆λ2`
∣∣∣
y6t

=
y6
t

4(4π)4

[
− 4x6

t + 53.751x4
t − 192.254x2

t − 109.503

+ ctβ
(
−0.497x5

t + 9.99x3
t − 9.015xt

)
+ ct2β

(
11.751x6

t − 145.508x4
t + 592.02x2

t − 317.702
)

+O(ct3β)
]
,

(4.33)

where the analytical result is shown in eq. (A.8).
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∆λ at O(y4t y
2
τ ). AtO(y4

t y
2
τ ) an interesting comparison of threshold contributions in both

parametrizations can be made. In a fixed-order calculation there are no 2-loop diagrams

which explicitly contribute to the squared Higgs pole mass M2
h at O(v2y4

t y
2
τ ). However, in

a fixed-order calculation contributions of this order are induced by momentum iteration. In

an EFT calculation based on EFT parametrization, the contributions of O(ŷ4
t ŷ

2
τ ) to ∆λ2`

vanish, see the remarks in section 2 of ref. [44]. However, in our matching procedure, which

is based on the full-model parametrization, terms of this order are explicitly generated. This

can be seen as follows. Evaluating the implicit correction on the r.h.s. of eq. (4.26b) of

O(y4
t y

2
τ ) yields

∆s
SM,y4t y

2
τ

h =
∑
P

(
∂

∂P
∆sSM,1`

h (0)

)
∆P 1`

∣∣∣∣∣
v2y4t y

2
τ

(4.34a)

=

(
∂

∂ŷt
∆s

SM,ŷ4t
h

)
∆yατt +

(
∂

∂v̂
∆s

SM,ŷ4t
h

)
∆vατ +

(
∂

∂p2
∆sSM,ŷ4τ

)
∆(p2)αt .

(4.34b)

Since the tau lepton and stau slepton do not explicitly contribute to the top quark self-

energy at 1-loop level, the threshold corrections ∆yατt and ∆vατ are related as

∆yατt = −
√

2
mt

v2
∆vατ = −ytsβ

y2
τ

(4π)2

c2
βx

2
τ

12
, (4.35)

where the threshold correction ∆vατ can be obtained from the wave function renormaliza-

tion of the Higgs, analogously to ∆vαt out of ref. [40]. Eventually, in the degenerate mass

case and Q = MS the threshold correction evaluates to

∆λ2`
∣∣∣
y4t y

2
τ

=
1

v2

[
2

∆vατ

v

(
∆s

SM,y4t
h (0)−∆s

MSSM,y4t
h

)
+ ∆s

MSSM,y4t y
2
τ

h −∆s
SM,y4t y

2
τ

h

]
(4.36a)

= 2
y4
t y

2
τ

(4π)4
s4
βc

2
βx

2
tx

2
τ

[
−1 +

x2
t

12

]
, (4.36b)

where ∆sMSSM,y4t y
2
τ has been computed similarly to eq. (A.2). We note that large logarith-

mic contributions within the terms of eq. (4.36a) cancel against each other. In order to

validate our result from eq. (4.36b), we have computed the analogous expressions in EFT

parametrization by performing a reparametrization of the 1-loop correction in eq. (3.12).

We find that the EFT-parametrized threshold correction vanishes, which is in line with the

remarks in ref. [44]. The discussion of the correction of O(y2
t y

4
τ ) is analogous to O(y4

t y
2
τ ).

Higgs mass loop corrections at O(v̂2((ŷ2t + ŷ2b)
3 + ŷ6τ )) in the SM. In the MSSM

the 2-loop corrections of O(v2(y2
t + y2

b )
3) to the CP-even Higgs pole mass are known by

ref. [17] and are included in several public codes to calculate the CP-even Higgs pole masses

in a fixed-order calculation. In the SM, however, the corresponding 2-loop corrections are

not available in a simple and explicit form in the literature to our knowledge.10 In order

10The 2-loop corrections of that order can in principle be calculated from the generic 2-loop effective

potential for general renormalizable theories [12].
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t bG±

Figure 2. Vacuum bubble diagram in the SM, containing a top quark, a bottom quark and a

charged Goldstone boson, which gives rise to 2-loop radiative corrections to the Higgs mass at

O(v̂2ŷ4t ŷ
2
b log2(v̂2/Q2)).

to include the 2-loop threshold corrections of O((y2
t +y2

b )
3) into the quartic Higgs coupling

λ̂, our approach requires the corresponding fixed-order corrections to be available for both

the MSSM and the SM separately. If the contributions in the SM would be omitted,

wrong logarithmic enhanced terms of O(v̂2ŷ4
t ŷ

2
b log2(M2

S/m̂
2
t )) would propagate into the

expression for the Higgs pole mass. Thus, we calculate here the contributions to the 2-loop

effective potential of the SM in the gaugeless limit for a non-vanishing bottom Yukawa

coupling. The relevant diagram contributing to the mixed contributions of O(v̂4ŷ4
t ŷ

2
b ) is

shown in figure 2.

Following the approach in ref. [15], we compute the 2-loop bubble diagrams V SM
2` and

expand the 1-loop effective potential around the MS-renormalized masses of the top and

bottom quark,

V̂ SM
2`

∣∣
(ŷ2t+ŷ2b )3φ4

= V SM
2`

∣∣
(ŷ2t+ŷ2b )3φ4

+
∂(V SM

1` )ε

∂m̂2
b

δm̂2
b +

∂(V SM
1` )ε

∂m̂2
t

δm̂2
t , (4.37)

where (V SM
1` )ε represents the part of the 1-loop effective potential which is proportional

to (4 − D)/2 = ε and φ is a background field. We have checked that V̂ SM
2` |(ŷ2t+ŷ2b )3φ4 is

reproduced by using V SM
2` |(ŷ2t+ŷ2b )3φ4 with the subtracted integrals Î and Ĵ instead of I and

J , which have been introduced in ref. [71]. After expanding the 2-loop integrals around

the renormalized Goldstone mass parameter and taking only Yukawa coupling enhanced

contributions into account, the finite result expressed in SM MS parameters reads

V̂ SM
2` |(ŷ2t+ŷ2b )3φ4 =

1

(4π)4

3

2

[
φ2ŷ4

b (Î0TB + 2ÎBB0) + φ2ŷ4
t (Î0TB + 2ÎTT0)

+ 2ŷ2
t

(
−φ2Î0TB ŷ

2
b + ĴTB + ĴTT

)
+ 2ŷ2

b (ĴBB + ĴTB)
]
.

(4.38)

The squared top and bottom quark mass parameters T = ŷ2
t φ

2/2 and B = ŷ2
bφ

2/2 are

expressed in terms of the background field φ. In the MSSM, the corresponding SM-like

contributions are included in eqs. (3.39) and (3.40) of ref. [13] and we have checked that

the effective potential in eq. (4.38) reproduces these results when omitting the corrections

from BSM Higgs bosons. The loop corrections to the Higgs pole mass are derived from the
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effective potential by differentiating w.r.t. to the background field φ as

∆m2,SM
h,EP = Re

[
tSM,2`
h

v
− ΣSM,2`

h (0)

]
(4.39a)

=

(
− 1

φ

∂

∂φ
+

∂2

∂φ2

)
V̂ SM

2`

∣∣∣∣
φ=v̂

. (4.39b)

Because the implicit corrections of eq. (4.26b) are analogous to eq. (4.34b), the shift ∆sSM,2`
h

at O(v̂2(ŷ2
b + ŷ2

t )
2) is completed by derivatives of eq. (4.38). Neglecting terms of order

O(ŷ4
b b̂

2/t̂), the loop corrections read

∆m2,SM
h,EP

∣∣∣
(ŷ2t+ŷ2b )3v̂2

=
1

(4π)4

[
− 2ŷ4

t t̂
(

6 + π2 − 21 log(t̂) + 9 log
2
(t̂)
)

+ 6ŷ2
t ŷ

2
b t̂
(
π2 + log(t̂) + 3 log

2
(t̂)
)

+ 3ŷ4
b t̂

(
− 15− 2π2 + 2 log(t̂) + 6 log

2
(t̂)

+ 4 log xbt(2 + 3 log(t̂))

)
+
ŷ4
b b̂

3

(
49 + 6π2 + 12 log xbt(5− 9 log(t̂))

+ 18(7− 3 log(t̂)) log(t̂)

)]
,

(4.40)

with t̂ ≡ m̂2
t , b̂ ≡ m̂2

b , xbt ≡ b̂/t̂ and log(t̂) ≡ log(t̂/Q2). We note that the first line in

eq. (4.40) corresponds to the loop corrections of O(ŷ6
t v̂

2), which can be found in ref. [42],

and which we reproduce here. In the same way as prescribed in eq. (2.49) of ref. [70], we

checked the renormalization scale invariance of the Higgs pole mass at O(v̂2(ŷ2
t + ŷ2

b )
3) with

the contributions of eq. (4.40), which is a non-trivial confirmation of our result.

At O(ŷ6
τ v̂

2) we repeated the calculation in eqs. (4.37) and (4.39b) for the tau and tau

neutrino contributions. For massless neutrinos the result is analogous to the first line of

eq. (4.40),

∆m2,SM
h,EP

∣∣∣
ŷ6τ v̂

2
= − 2ŷ4

τ τ̂

(4π)4

(
2 +

π2

3
− 7 log(τ̂) + 3 log

2
(τ̂)

)
, (4.41)

with τ̂ ≡ m̂2
τ and log(τ̂) ≡ log(τ̂ /Q2).

∆sSM,3`
h at O(g43y

4
t ). In order to check the consistency of the 3-loop expression of

eq. (4.28d), we derive the second term on the r.h.s., ∆sSM,3`
h , at O(v2g4

3y
4
t ) in the full-model

parametrization and compare it to the result presented in ref. [48]. At 3-loop O(v2g4
3y

4
t ),

the SM Higgs mass correction of eq. (4.26c) receives an explicit self-energy and tadpole

contribution, which we take from ref. [70]. We determine the implicit (derivative) contribu-

tions of eq. (4.26c) using the 1-loop threshold correction ∆gαs3 from ref. [72] and the 2-loop
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threshold correction ∆y
α2
s

t form eq. (4.29c).11 In the EFT limit and for degenerate SUSY

mass parameters our 3-loop Higgs pole mass contribution, expressed in terms of MSSM

parameters, reads

∆s
SM,y4t g

4
3

h =
4

405

g4
3y

2
t

(4π)4
ts2
β

[
− 540 log(M2

S)2
(
86 log(t) + 59

)
+ 180 log(M2

S)
(
2 log(t)

(
252 log(t) + 88xt − 281

)
+ 184xt − 557

)
− 32

(
360 Li2

(
1

2

)2

+ 120π2 Li2

(
1

2

)
− 29π4

)

− 45

(
1536 Li4

(
1

2

)
− 720ζ3 + 3187

)
+ 59040xt

− 360

(
log(t) [4xt (9xt − 22)− 36ζ3 + 185]

+ 18 log(t)2 (8xt − 9) + 207 log(t)3 + 42x2
t

)]
,

(4.42)

with t ≡ m2
t and log(x) ≡ log(x/Q2). Our result agrees with eq. (27) of ref. [48]. Further-

more, as a validation of eq. (4.28d), we checked numerically, that inserting eq. (4.42) and

the 3-loop MSSM Higgs pole mass contribution from the Himalaya library into eq. (4.28d)

reproduces eq. (43) from [48].

5 Resummation of leading squark mixing contributions

In the introductory example of section 3.2, differences between the full-model and EFT

parametrization were discussed. It was shown that both approaches are equivalent up

to higher-order terms, which contribute numerically to the difference of both approaches.

From a technical point of view, implementing the full-model parametrized matching is

easier to achieve; in this section we present a second, more important argument in favor

of this approach: the resummation of higher-order contributions of the full-model squark

mixing parameter xf ≡ Xf/MS in the context of Higgs mass predictions.

The resummation is analogous to the resummation of large n-loop (tan β)n-corrections

to mb of refs. [73–76], suitably generalized.12 We begin here by recalling main features of

the tan β-resummation in mb, rephrase it in the appropriate language and then present the

generalization. More details and further generalizations will be presented elsewhere [77].

mb-matching and tanβ-resummation. First we review the resummation of all-order

tanβ-enhanced contributions in the DR
′
-renormalized MSSM parameter mb. The resum-

mation relies on the following theorem proven in ref. [75]:

11Note that in this section we ignore contributions of O(v2/M2
S) for brevity and for cross-checking against

expressions from the literature. In our actual implementation of the corrections, presented later, we take

all available terms of O(v2/M2
S) into account.

12At this point we want to note that the value of xt is bounded by the necessity of avoiding charge

and color breaking minima [41]. For large mq̃3 ≈ mũ3 the absolute value of the dimensionless stop-mixing

parameter |xt| is restricted to be less than 3, whereas tan β can be as large as 50–60.
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There are no contributions to ∆mb of the order O((αs tanβ µ/M3)n) for n ≥ 2.

Here ∆mb is the loop correction between the b-quark pole mass and DR
′

running mass,

Mb = mb(1 + ∆mb). The quantity ∆mb contains a 1-loop term of the order αs tanβ, terms

with lower orders in tan β and terms governed by other couplings, but no higher-loop terms

of the orders given in the theorem. The theorem only holds for “unsuppressed” terms, i.e.

terms not suppressed by powers of v/MS .

The theorem can be equivalently formulated in the language of full-model versus EFT

parametrization of the b-quark mass matching between the MSSM and the SM. Full-model

parametrization means to express the SM MS bottom quark mass m̂b as a perturbative

series in the full-model MSSM parameters mb, αs, . . . , and truncating the series at some

desired order. The full-model parametrized relation between m̂b and mb, truncated at

order αs then reads13

m̂b|mbα≤1
s

= mb

(
1 + ∆mαs

b

)
+ · · · . (5.1)

Here the notation of eqs. (4.14) and (4.29a) has been used, and the subscript mbα
≤1
s refers

to the full-model parametrization and the chosen truncation order. The dots denote terms

irrelevant for the present discussion (containing less powers of tan β and/or power suppres-

sions). In a numerical code, this equation is often numerically solved for mb, effectively

giving

mb|mbα≤1
s

=
m̂b

1 + ∆mαs
b

+ · · · . (5.2)

The point of the theorem is that eq. (5.1) is 1-loop exact with respect to (αs tanβ)n-terms

and eq. (5.2) correctly takes into account (“resums”) all terms of these orders.14

On the other hand, in a calculation using the EFT parametrization, mb would be

expressed as a perturbative series in terms of m̂b, α̂s, . . . ,15 truncated at some desired

order. E.g. at order α̂s,

mb|m̂bα̂≤1
s

= m̂b(1−∆mα̂s
b ) + · · · , (5.3)

which contains the correct (αs tanβ)n term only for n = 1 but misses all higher-order

terms. Accordingly, we can evaluate the difference

mb|mbα≤1
s

= mb|m̂bα̂≤1
s

+
∑
n≥2

(
−∆mαs

b

)n
+ · · · . (5.4)

13As implicitly indicated by ref. [75], a stronger restriction can be formulated which forbids unsuppressed

terms of O(αns tan>1 β) in the threshold corrections to the bottom mass matching between the THDM

and MSSM.
14We note that all codes mentioned in the present paper resum the mb(αs tanβ)n corrections in this way,

even if they otherwise do not use full-model parametrization.
15For the purpose of the present section the distinction between the SM parameter α̂s and the MSSM

parameter αs is not relevant, since the two parameters differ by terms which do not depend on tan β or xf .
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yf -matching and xf -resummation. An analogous resummation is possible for the

αsxf -enhanced contributions to the Yukawa matching for all colored fermions. We note

that the factor µ tanβ in the previous theorem arises via Xb = (Ab − µ∗ tanβ). Hence the

above theorem generalizes to

There are no unsuppressed contributions to the threshold correction ∆yf at

O(αnsx
>1
f ) for n ≥ 1 in full-model parametrization.

In the following we specialize to the case of the top quark. If we express the SM coupling ŷt
as a perturbative series in yt, αs, . . . and truncate at the order αs, we obtain the full-model

parametrized expression

ŷt|ytα≤1
s

= ytsβ + ∆yαst . (5.5)

The theorem then implies that this relation is 1-loop exact, i.e. there are no unsuppressed

higher-order corrections to ∆yαst of O(αnsx
>1
t ) for n ≥ 2. In a numerical code such as

FlexibleEFTHiggs, eq. (5.5) is solved numerically for yt, giving

ytsβ |ytα≤1
s

=
ŷt

1 +
∆yαst
ytsβ

, (5.6)

where the chiral symmetry ensures that for QCD corrections ∆yαst ∝ yt, such that the

denominator has the structure 1 + O(αsxt) + · · · . This expression correctly “resums” in

particular all terms of the orders O((αsxt)
n). In the EFT parametrization, however, yt is

expressed as a perturbative series in ŷt, α̂s, . . . , truncated at some desired order.16 The

resulting expression is then correct up to that order but misses all higher-order terms of

the form (αsxt)
n. Similar to eq. (5.4), we can express the difference between the two

parametrizations as

yt|ytα≤1
s

= yt|ŷtα̂≤ns +
∑
k>n

akŷt(α̂sxt)
k + · · · . (5.7)

Here the subscript on the r.h.s. denotes the truncation of the EFT parametrization at

n-loop level, and the dots denote terms irrelevant for the present discussion. The main

point is that the difference contains terms of the orders (αsxt)
k with k > n, and all these

terms are correctly contained in the full-model parametrization but missing in the EFT

parametrization, and the coefficients ak can be analytically computed at all orders. As an

example of this discussion, we refer to the analysis on the yt matching given in section 4.3:

in (4.30c) the explicit 2-loop threshold correction expressed in SM parameters contains

the term ∝ ŷt(α̂sxt)
2. According to eq. (5.7), the MSSM Yukawa coupling in eq. (4.30a)

misses terms ∝ ŷt(α̂sxt)≥3 which, however, are implicitly taken into account in the 1-loop

correction of eq. (4.29a).

16The previous version FlexibleEFTHiggs 1` from ref. [56], implemented in FlexibleSUSY 2.0, truncates

at 1-loop, while HSSUSY truncates at 2-loop order.
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λ̂-matching and xf -resummation. Now we turn to the resummation of O(g2
3xt)-

contributions in the matching of λ̂ in the full-model parametrization. In section 3.3 we

already presented an example where the 1-loop matching of λ̂ and yt in full-model para-

metrization leads to a correct 2-loop term leading in xt. This example illustrates a more

general property; however the resummation within λ̂ is slightly more complicated than the

two cases discussed above. We first recall that the threshold correction for λ̂ in full-model

parametrization, truncated at 1-loop order, contains the terms

∆λ1` = c0ty
4
t x

4
t + c01y

2
t g

2
1x

2
t + c02y

2
t g

2
2x

2
t + · · · , (5.8)

where the c0x are coefficients and the dots denote terms irrelevant for the present discussion.

The terms leading in xt are thus of the general form y2
t g

2
xx

m
t with gx ∈ {yt, g1, g2} and

m ∈ {4, 2, 2}. The resummation of higher-order terms governed by (g2
3xt)

n relies on the

resummation within the Yukawa coupling discussed before and on the following theorem

for the explicit contributions to the threshold corrections:

There are no unsuppressed contributions to ∆λ at O(y2
t g

2
xg

2n
3 x>mt ) for n > 0 in

full-model parametrization.

Again the theorem means that the full-model expression (5.8) is 1-loop exact with respect

to the leading O(g2
3xt) terms. The proof of the theorem is analogous to the proof in

ref. [75] and relies on the large mass expansion and inspection of individual contributions.

For details and generalizations we refer to ref. [77]. If the Yukawa coupling in eq. (5.8) is

replaced by ŷt via eq. (5.6), we obtain equations of the form

∆λ|y2t g2x = ĉ0xŷ
2
t ĝ

2
xx

m
t +

∑
n≥1

ĉnxŷ
2
t ĝ

2
xĝ

2n
3 xm+n

t + · · · , (5.9)

with appropriately modified coefficients ĉ0x from tree-level matching and higher-order coef-

ficients ĉnx. In a numerical code based on the full-model parametrization these higher-order

terms are fully taken into account; the coefficients are also fully calculable analytically. All

the explicit higher-order terms in eq. (5.9) are correct. In this sense the full-model para-

metrization resums these terms of O(ŷ2
t ĝ

2
xĝ

2n
3 xm+n

t ).

On the other hand, if the λ̂-matching is done in EFT parametrization, ∆λ is expanded

in terms of SM parameters and truncated at some desired order. In that case, leading

O(ĝ2
3xt) terms are only taken into account up to that order. The difference between the

two versions of the threshold corrections can be written as

∆λ|y2t g2x = ∆λ|
ŷ2t ĝ

2
xĝ
≤2n
3

+
∑
k>n

ĉkxŷ
2
t ĝ

2
xĝ

2k
3 xm+k

t + · · · . (5.10)

All the explicitly given terms ∝ ĉkx on the r.h.s. of eq. (5.10) are taken into account

correctly in the full-model parametrization but are missing in the EFT parametrization.

In other words all these higher-order terms in eq. (5.10) do not arise from explicit multi-

loop diagrams; instead they only arise via the reparametrization, and the values of the

coefficients ĉkx can be deduced from the 1-loop terms leading in xt. As an example, we

reconsider the concrete calculation in eq. (3.14): the 1-loop matching of yt at O(g2
3) in
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combination with ∆λ at O(y4
t ) captures the leading O(ŷ4

t ĝ
2
3x

5
t ) contribution of ∆λ2` in

EFT parametrization. Likewise, the 3-loop term of O(ŷ4
t ĝ

4
3x

6
t ) is captured, too.

As mentioned before, the theorem from above can be formulated in a more general

way, including for example the known structure of ∆λ2` at O(y6
t ) and ∆y2`

t at O(y3
t g

2
3),

which allows for a resummation of further higher-order corrections [77]. However, we want

to emphasize that not all terms with a high power in xt can be resummed. For example,

the pure Yukawa (n + 1)-loop contributions of O(ŷ4+2n
t x4+2n

t ) cannot be captured by the

application of neither full-model nor EFT parametrization. The reason is that there exist

genuine (n+1)-loop diagrams which provide unsuppressed contributions of this order. The

numerical impact of missing O(ŷ4+2n
t x4+2n

t ) terms for n = 2 is discussed in section 7.3 and

section 8.3.1.

As an important application and check we consider mixed QCD-electroweak contribu-

tions. In codes such as FlexibleEFTHiggs, HSSUSY or SusyHD, the 2-loop and 3-loop Higgs

self-energy is only computed in the limit of vanishing electroweak gauge couplings. But

the resummation now allows to compute the analytic form of the leading xt-terms of the 2-

loop and 3-loop mixed QCD-electroweak contributions of the orders O(ŷ2
t ĝ

2
1,2ĝ

2
3 + ŷ2

t ĝ
2
1,2ĝ

4
3).

The 1-loop threshold correction ∆λ1` at O(y2
t g

2
1,2) originates from D-term contributions

and involves a maximum xt-dependence of order x2
t . Thus, our prediction for the leading

x3
t contribution at 2-loop mixed electroweak order is

∆λ|ŷ2t ĝ21,2ĝ23 =
ĝ2

3 ŷ
2
t

(4π)4

X3
t

M3mq̃3mũ3

2c2β

3
F̃9

(
mq̃3

M3
,
mũ3

M3

)
×
[
3
(
F̃4(xQU )ĝ2

2 + F̃3(xQU )ĝ2
Y

)
− c2βF̃5(xQU )

(
ĝ2

2 + ĝ2
Y

)]
,

(5.11)

with the functions F̃3,4,5,9 defined in ref. [41] with F̃3,4,5(1) = F̃9(1, 1) = 1 and xQU =

mq̃3/mũ3 . Eq. (5.11) is equal to the result obtained in eq. (27) of ref. [49] by an explicit

computation of this order in EFT parametrization. The analogous prediction for the leading

x4
t -term of the 3-loop mixed QCD-electroweak contributions is

∆λ|ŷ2t ĝ21,2ĝ43 =
ĝ4

3 ŷ
2
t

(4π)6

X4
t

M2
3mq̃3mũ3

4c2β

9
F̃ 2

9

(
mq̃3

M3
,
mũ3

M3

)
×
[
3
(
F̃4(xQU )ĝ2

2 + F̃3(xQU )ĝ2
Y

)
− c2βF̃5(xQU )

(
ĝ2

2 + ĝ2
Y

)]
.

(5.12)

All these terms and the corresponding terms of ≥ 4-loop order are automatically taken into

account by the new FlexibleEFTHiggs calculation based on full-model parametrization.

6 Running and matching procedure at the electroweak scale

In this section we describe the computations which are performed after the SM parameters

are obtained at the high scale by the matching characterized in section 4. As illustrated

in figure 1, the subsequent calculation involves two further steps. First the SM parameters

are run down to the low-energy electroweak scale by solving the RGEs (subsection 6.1).

Second, the low-scale parameters are related to input values of observables, and the final

prediction for the Higgs boson mass is computed. The corresponding low-scale matching

procedure is described in subsection 6.2.
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Quantity Description

Mt top quark pole mass

m̂
SM(5)
b (m̂

SM(5)
b ) MS bottom quark mass at the scale Q = m̂b in the SM with

five active quark flavors

Mτ τ lepton pole mass

MZ Z boson pole mass

GF Fermi constant

α̂
SM(5)
s (MZ) MS strong coupling in the SM with five active quark flavors

at the scale Q = MZ

α̂
SM(5)
em (MZ) MS electromagnetic coupling in the SM with five active quark

flavors at the scale Q = MZ

Table 1. Low-energy quantities for the determination of SM MS parameters.

6.1 Running to the electroweak scale

In order to relate the high-scale SM parameters with low-scale SM parameters, the renor-

malization group equations of the SM are solved numerically. Our new FlexibleEFTHiggs

calculation uses the SM β functions of refs. [78–85], which include up to 4-loop corrections.

The RGEs within the MSSM are not needed for the actual Higgs mass computation. They

are only needed if the input scale of MSSM DR
′

parameters does not coincide with the

matching scale. In this case our new FlexibleEFTHiggs calculation uses the MSSM 3-loop

β functions of refs. [86, 87], see also ref. [56].

6.2 Matching of SM couplings to observables

In order to express the prediction for the Higgs pole mass in terms of physical quantities,

the running SM MS parameters have to be related to observables. There are eight SM MS

parameters relevant for the Higgs mass prediction (cf. eq. (2.1)):

P̂ = {ĝ1, ĝ2, ĝ3, ŷt, ŷb, ŷτ , λ̂, v̂}. (6.1)

Among these eight parameters, λ̂ is fixed by the matching to the MSSM at the SUSY

scale, while the other seven parameters are fixed by low-energy observables. Following the

approach described in ref. [56], we fix these seven parameters at the scale Q = MZ by

relating them to the seven low-energy quantities shown in table 1.

Matching procedure. Before continuing the discussion about the included loop correc-

tions at the electroweak scale, we want to emphasize a qualitative difference of our low-scale

matching procedure w.r.t. the procedure described in ref. [56]. In our new FlexibleEFT-

Higgs matching approach we consider the full-model (MSSM) DR
′
parameters at the SUSY

scale to be fundamental. This includes the SUSY parameters and the SM-like full-model

parameters P from eq. (2.7). As a consequence, we eventually express all observables,

including the low-energy observables from table 1 as well as the predicted Higgs pole mass

in terms of the full-model DR
′

parameters. Technically, this is achieved by (i) convert-

ing the (fundamental) full-model DR
′

parameters P (MS) to MS EFT parameters P̂ (MS)
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using the matching conditions (4.8) and (4.9), (ii) renormalization group running of the

EFT parameters from the scale MS to the low-energy (electroweak) scale Qlow and (iii)

predicting the low-energy quantities Opred
i from table 1. In the most direct approach the

relation between the renormalized SM MS parameters and the observables at the n-loop

level is constructed as

Opred
i = fi(P̂ (Qlow)) +O(~n+1). (6.2)

In eq. (6.2) fi(P̂ ) denotes the function that calculates the observable Opred
i as a function

of the EFT parameters P̂ . For a given set of SUSY parameters the SM-like full-model

parameters P are adapted such that the predicted observables Opred
i agree with the observed

values Oinput
i up to a sufficiently high precision ε� 1,∣∣∣Opred

i −Oinput
i

∣∣∣ < ε ∀i. (6.3)

In contrast, in spectrum generators working in the EFT parametrization (e.g. HSSUSY,

SusyHD or MhEFT), the low energy EFT MS parameters P̂ (Qlow) (except for λ̂) are not

determined from the full-model parameters, but rather they are directly extracted from

the observables as

P̂i(Qlow) = hi(O
input) +O(~n+1) (6.4)

with some function hi denoting the calculation. The difference between the EFT parameters

P̂ from both approaches (6.2) and (6.4) is of higher order. The different higher-order terms

depend dominantly on the values of P̂ (Qlow). However, eqs. (6.2) and (6.4) can be modified

by higher orders in such a way that the differences expressed in terms of P̂ (Qlow) vanishes,

e.g. see the discussion below eq. (6.5). Even if the conditions (6.2) and (6.4) coincide in

their inclusion of loop corrections, a remaining difference in the numerical value of P̂ (Qlow)

may occur depending on the parametrization of the high-scale matching condition for λ̂.

Though the difference, which originates from reparametrization effects at the high scale,

depends only subdominantly on the SUSY parameters, e.g. tan β.17

Matching conditions. As described in section 4, we aim for a prediction of the Higgs

pole mass at N3LO with N3LL resummation in QCD. This precision requires to relate the

SM MS top quark mass m̂t to the pole mass Mt up to O(α̂3
s) [88, 89]. We follow the

prescription presented in ref. [56] and express Mt as

Mt = m̂t − Re ΣSM,1`
t,S ((M input

t )2, Q)

−M input
t

[
Re ΣSM,1`

t,L ((M input
t )2, Q) + Re ΣSM,1`

t,R ((M input
t )2, Q)

+ ∆m̂QCD,1`
t (Q) + ∆m̂QCD,2`

t (Q) + ∆m̂QCD,3`
t (Q) + ∆m̂QCD,4`

t (Q)
]
.

(6.5)

17Considering the difference of the threshold correction ∆λ between the EFT and the full-model para-

metrization, the reparametrization effects do explicitly depend on SUSY parameters. Inserted into the β

functions of the SM, the reparametrization terms receive further loop suppressions. Therefore, the higher-

order reparametrization effects which contain MSSM-specific parameters propagate into all EFT parameters

at the electroweak scale with additional loop factors.
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Note, that we have included the 4-loop QCD contribution from ref. [90] for later use

in section 8. In eq. (6.5) M input
t denotes the observed top quark pole mass, Q is the

renormalization scale and ΣSM,1`
t,{L,R,S}(p

2, Q) are the left-handed, right-handed and scalar

parts of the 1-loop SM top quark self-energy without QCD contributions. The separate

SM QCD contributions read [88–90]

∆m̂QCD,1`
t (Q) ≈ ĝ2

3

(4π)2

[
4 log(t̂)− 5.333

]
, (6.6a)

∆m̂QCD,2`
t (Q) ≈ ĝ4

3

(4π)4

[
−6 log

2
(t̂) + 38 log(t̂)− 103.341

]
, (6.6b)

∆m̂QCD,3`
t (Q) ≈ ĝ6

3

(4π)6

[
20 log

3
(t̂)− 86 log

2
(t̂) + 457.747 log(t̂)− 3458.737

]
, (6.6c)

∆m̂QCD,4`
t (Q) ≈ ĝ8

3

(4π)8

[
− 85 log

4
(t̂) + 323.333 log

3
(t̂)− 1832.501 log

2
(t̂)

+ 45369.45 log(t̂)− 154481.798
]
,

(6.6d)

with t̂ = m̂2
t and log(x) ≡ log(x/Q2). As referred to before, the construction of eq. (6.5)

contains the observed value of the pole mass M input
t , which introduces higher-order terms

in eq. (6.2) such that the higher-order difference to the low-scale constraint used in HSSUSY

is minimized, see eq. (7) from ref. [56]. The Fermi constant GF is calculated similarly to

ref. [72] as

GF =
πα̂em√

2M2
Z ĉ

2ŝ2(1−∆r̂)
, (6.7)

where ∆r̂ contains only SM contributions, including 2-loop contributions of O(α̂emα̂s) [91].

Because the 2-loop contributions themselves depend on GF , an iteration is performed in

eq. (6.7). The remaining low-energy quantities from table 1 are calculated at the scale

Q = MZ as

α̂SM(5)
em (Q) =

α̂em(Q)

1 + ∆α̂1`
em(Q)

, (6.8a)

α̂SM(5)
s (Q) = α̂s(Q)

[
1−∆α̂1`

s (Q)−∆α̂2`
s (Q)−∆α̂3`

s (Q)
]
, (6.8b)

Mτ = m̂τ (Q)− Re Σ1`
τ (m̂τ , Q), (6.8c)

M2
Z = m̂2

Z(Q)− Re Σ1`
Z (m̂Z , Q), (6.8d)

m̂
SM(5)
b (Q) = m̂b(Q)

[
1− Re Σ1`,heavy

b (m̂
SM(5)
b (Q), Q)

]
, (6.8e)

where the 1-loop correction ∆α̂1`
em(Q) is parametrized in terms of the 6 flavor α̂em(Q) as

∆α̂1`
em(Q) = − 8

9π
α̂em(Q) log

m̂t(Q)

MZ
. (6.9)

The loop corrections of ∆α̂n`s (Q) are defined in eqs. (13)–(15) of ref. [56]. The 1-loop

MS-renormalized self-energies Σ1`
τ (p,Q) and Σ1`

Z (p,Q) of the τ lepton and Z boson, respec-

tively, are evaluated at full 1-loop precision. In eq. (6.8e) Σ1`,heavy
b (p,Q) denotes the 1-loop
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top quark and electroweak gauge boson contributions to the bottom quark self-energy as

described in ref. [62]. The predicted m̂
SM(5)
b (Q) is evolved to the scale Q = m̂

SM(5)
b to be

compared to the input value m̂
SM(5)
b (m̂

SM(5)
b ).

In principle, one might treat the Higgs mass similar to all other low-scale observables

and use it as a constraint in the sense of eq. (6.3) to fix one parameter of the MSSM.

However, in our application we choose the Higgs mass at the low scale to be the output of

our calculation. Analogous to eq. (1) of ref. [56] we compute the Higgs pole mass in the

SM as in eq. (4.3) but instead of using MSSM parameters we express it in terms of SM

parameters at Q = M input
t . The included corrections are described in section 4 and are of

O(1`+ v̂2(ĝ2
3(ŷ4

t + ŷ4
b ) + (ŷ2

t + ŷ2
b )

3 + (ŷ2
t + ŷ2

τ )3) + v̂2ĝ4
3 ŷ

4
t ).

7 Numerical results

In this section we present the numerical results for the light CP-even Higgs pole mass calcu-

lation in the real MSSM, based on the improved FlexibleEFTHiggs approach. We highlight

the numerical impact of the new included threshold corrections and the parametrization

scheme and describe in particular the xt-resummation.

If not stated otherwise, the dimensionful DR
′
-renormalized parameters of the MSSM

Lagrangian are set to a common SUSY scale MS ,

m2
f̃3

(MS) = M2
S , (f = q, u, d, l, e) (7.1a)

Mi(MS) = MS , (i = 1, 2, 3) (7.1b)

Af (MS) = 0, (f = b, τ) (7.1c)

µ(MS) = MS , (7.1d)

m2
A(MS) =

Bµ(MS)

sinβ(MS) cosβ(MS)
= M2

S . (7.1e)

For scenarios with non-trivial squark mixing we parametrize our results in terms of the

dimensionless DR
′

parameter xt ≡ Xt/MS . In our numerical discussion we choose the

input values given in table 2. Effects from 1st and 2nd generation (s)fermions are omitted

in our analysis.

7.1 Impact of higher orders, the new parametrization and the xt-resummation

We begin with the discussion of the impact of higher-order corrections in the matching

and the impact of the new full-model parametrization and the resulting xt-resummation.

Figure 3 shows the light CP-even Higgs pole mass calculated by different versions of Flex-

ibleEFTHiggs:

• FEFT 1`/2`/3`: the new FlexibleEFTHiggs hybrid calculation developed in the

present paper with full-model (MSSM) parametrization of the matching calculation

and xt-resummation. The only difference among these calculations stems from the

orders taken into account in the calculation of λ̂, see eq. (4.28). The 1` version (blue

dotted line) contains all 1-loop corrections. The 2` version (black dashed line) con-

tains in addition the 2-loop contributions of O(g2
3(y4

t +y4
b )+(y2

t +y2
b )

3+(y2
t +y2

τ )3). The
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Quantity Value

Mt 173.34 GeV

m̂
SM(5)
b (m̂

SM(5)
b ) 4.18 GeV

Mτ 1.777 GeV

MZ 91.1876 GeV

GF 1.1663787 · 10−5 GeV−2

α̂
SM(5)
s (MZ) 0.1184

α̂
SM(5)
em (MZ) 1/127.944

Table 2. Low-energy input parameters from refs. [4, 92–95].

3` version (red solid line) contains in addition the 3-loop contributions of O(g4
3y

4
t ). All

three versions match the top Yukawa coupling at full 1-loop level and 2-loop O(ytg
4
3)

at the SUSY scale, whereas the remaining couplings are determined at 1-loop level as

described in section 4. The included corrections to the low-energy input quantities

(including the Higgs boson pole mass) are the ones described in section 6.

• FEFT 1` (SM para.): the previous FlexibleEFTHiggs calculation (green dashed-

dotted line), presented in ref. [56] and included in FlexibleSUSY since version 2.0.0.

This calculation is based on the same matching conditions, but employs the EFT

(SM) parametrization and includes only 1-loop threshold corrections.

We first discuss the two 1-loop versions (blue dotted and green dashed-dotted lines). They

differ essentially by the full-model versus EFT parametrization of the high-scale matching.

As discussed in section 5, in the full-model parametrization certain leading xt terms are cor-

rectly taken into account. Eq. (5.9) provides the general form of those terms. To exemplify

the correctly included terms, consider the 1-loop threshold correction ∆λ1` in the MSSM

parametrization. It contains terms of the order O(y4
t x

4
t ) and mixed electroweak terms

of the form O(y2
t g

2
1,2x

2
t ). Upon reparametrization of these contributions in terms of SM

parameters, using in particular the 1-loop top Yukawa threshold correction of O(ytg
2
3xt),

the terms shown in table 3 are generated. As discussed in section 5, these terms are not

modified by genuine n-loop contributions. Hence, already the new FEFT 1` calculation

correctly takes into account the leading QCD (n+1)-loop contributions of the order x
(4+n)
t ,

and the leading mixed QCD-electroweak (n+ 1)-loop contributions of the order x
(2+n)
t . In

contrast, none of the terms in table 3 is correctly taken into account in the previous FEFT

1` (SM para.) calculation. As a result of the xt-resummation, we see a dramatic shift

between the two 1` versions in figure 3.

• Without xt-resummation, the FEFT 1` (SM para.) result (green dashed-dotted line)

and the EFT 3` calculation (green solid line) deviate up to ∼ 1.1 GeV for |xt| < 3.

• With xt-resummation, this deviation between the FEFT 1` and FEFT 3` calculation

decreases to less than 0.3 GeV, compare the blue dotted and the red solid lines.

For all values of xt and MS , the new FEFT 1` calculation is far closer to the FEFT 3`

calculation; hence the convergence of perturbation theory is significantly improved.
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loop order ∆λQCD ∆λQCD-EW

2` ŷ4
t ĝ

2
3x

5
t ŷ2

t ĝ
2
3 ĝ

2
1,2x

3
t

3` ŷ4
t ĝ

4
3x

6
t ŷ2

t ĝ
4
3 ĝ

2
1,2x

4
t

4` ŷ4
t ĝ

6
3x

7
t ŷ2

t ĝ
6
3 ĝ

2
1,2x

5
t

...
...

...

Table 3. Contributions to ∆λn`, which are correctly (implicitly) included by the xt-resummation

in the new FEFT 1` calculation, i.e. terms contained in ∆λ|y4
t ,y

2
t g

2
1,2

. Note, that the FEFT 1`

calculation is based on the full-model parametrization, but the terms in this table are provided in

terms of SM parameters, to compare with other SM-parametrized calculations. Note further, that

the terms in this table are already contained in the 1-loop calculation; further, higher-order terms

resummed by FEFT 2`/3` are determined by eq. (5.9).

terms contained terms contained

loop order in ∆λ|y4t in ∆λ|ŷ4t correct ∆λ

2` −1
2κ

2ŷ6
t x

6
t 0 −3

2κ
2ŷ6
t x

6
t

3` − 9
16κ

3ŷ8
t x

8
t 0 unknown ·κ3ŷ8

t x
8
t

...
...

...
...

Table 4. Comparison of highest-power xt contributions to ∆λ of O(ŷ2+2n
t x2+2n

t ) at n-loop level,

implicitly induced by the 1-loop calculations in EFT and full-model parametrization (κ = 1/(4π)2).

The second column shows the terms induced in the full-model-parametrized calculation at ∆λ|y4
t
.

The third column shows the analogous terms in the EFT-parametrized calculation at ∆λ|ŷ4
t
. The

last column represents the correct result in EFT parametrization.

As a side remark we want to stress that in contrast to the correctly included con-

tributions, the 1` calculations in both parametrizations fail to capture the pure Yukawa

(n+1)-loop contributions leading in the stop-mixing parameter of O(ŷ4+2n
t x4+2n

t ). In order

to investigate whether those terms counteract the benefits of the resummed QCD-enhanced

contributions we show table 4. The second and third rows contain 2- and 3-loop terms of

highest power in xt, respectively, which are implicitly contained by the 1-loop calculation in

full-model parametrization (second column) and in EFT parametrization (third column).

The terms in these columns have been obtained by inverting the 1-loop relation between

yt and ŷt in full-model parametrization perturbatively up to the 3-loop level. The terms

are compared to the known/unknown correct result in EFT parametrization in the last

column. The contributions in the EFT parametrization are vanishing by construction. At

2-loop we see that the implicitly included term from the 1-loop correction in full-model

parametrization lies in between the correct result and the analogous one in the EFT pa-

rametrization. Without further information from an explicit 3-loop (or higher) calculation

there is no indication that the full-model parametrization worsens the convergence of the

perturbative expansion with respect to these orders. The 3-loop term is studied numerically
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together with the reparametrization terms from the 2-loop correction ∆λ2`
∣∣
y6t

in figure 7

and figure 8.

Second, we discuss the impact of the 2-loop and 3-loop threshold corrections in the

new FlexibleEFTHiggs calculation. As can be seen in figure 3, the impact of the higher-

order corrections is very small and below 0.3 GeV for all values of MS and |xt| < 3 in the

shown scenarios. The main reason is again the xt-resummation: when going from 1` to

2`, the 1` calculation already contains the leading 2-loop QCD x5
t term of table 3, and the

actual 2` calculation only adds subleading x≤4
t terms. Similarly, one can show that the 2`

calculation already correctly contains the leading 3-loop QCD x5
t and x6

t terms, and the

actual 3` calculation only adds subleading x≤4
t terms.18

7.2 Comparison to state-of-the-art calculations

In this subsection we compare our new improved FlexibleEFTHiggs calculation with the

two state-of-the-art 3-loop fixed-order and EFT calculations from refs. [33, 48]. Both of

these calculations are also based on the FlexibleSUSY framework [56, 62], which facilitates

the comparison. In detail, these calculations are:

• FO 3`: this is the fixed-order calculation, which has been presented in ref. [33]

(dashed-double-dotted magenta line in figure 4). It includes loop corrections to the

Higgs pole mass in the full-model (MSSM) parametrization at full 1-loop level and

2- and 3-loop corrections in the gaugeless limit at O(v2(g2
3(y4

t + y4
b ) + (y2

t + y2
b )

3 +

(y2
t + y2

τ )3)) and O(v2(g4
3y

4
t )), respectively.

• EFT 3`: this calculation is the pure EFT calculation from ref. [48], where a match-

ing at the SUSY scale is performed in the EFT (SM) parametrization (dashed-dotted

green line in figure 4). The threshold correction ∆λ includes the known 1-loop con-

tributions from ref. [41], 2-loop contributions at O(ĝ2
3(ŷ4

t + ŷ4
b )+(ŷ2

t + ŷ2
b + ŷ2

τ )3) from

ref. [44] and 3-loop contributions at O(ĝ4
3 ŷ

4
t ) from ref. [48], all expressed in terms SM

parameters. Note, that this calculation neglects all suppressed v2/M2
S terms.

Note, that these two 3-loop calculations take into account loop corrections at the same

orders as the presented new FEFT 3` calculation, except for 2-loop terms suppressed by

powers of ynb y
m
τ , which are only included in the pure EFT calculation.

The left column of figure 4 provides a first overview of the behavior of the three

calculations, for large and small MS and large and small xt. The figure confirms the

expected behavior: for large MS , the pure EFT 3` calculation and the hybrid FEFT 3`

calculation agree well, while the FO 3` calculation deviates by several GeV. For small MS ,

the hybrid FEFT 3` calculation agrees well with the FO 3` calculation, while the pure

EFT 3` calculation deviates by several GeV. The kinks in the 3-loop lines in the middle

left plot around MS ≈ 750 GeV are due to a switch of the mass hierarchy in the 3-loop

calculation of Himalaya. The kink in the 3-loop FO prediction of the bottom right plot at

18The kink in the 3-loop line of the lower left plot around MS ≈ 750 GeV is due to a hierarchy switch in

the 3-loop calculation of Himalaya.
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Figure 3. Prediction of the light CP-even Higgs pole mass in the MSSM as computed by the FEFT

1` (SM para.) calculation as implemented in FlexibleSUSY 2.4 (green dashed-dotted line) and by

the new FEFT calculations at 1-, 2- and 3-loop precision in the λ̂ matching for tan β = 20. In the

left panels we show the absolute value of Mh and in the right panels we show the difference w.r.t.

the FEFT 3` prediction. On the right panels we show additional lines [48], EFT 2` (green solid)

and EFT 3` (turquoise), which represent the EFT calculation in EFT parametrization at 2-loop

and 3-loop respectively (see section 7.2 for the characterization of EFT 3`).

small |xt| originates from the occurrence of tachyonic running DR
′

Higgs boson masses at

the electroweak scale, see the discussion in ref. [60].

The right column of figure 4 shows the differences between the calculations in more

detail. In the following we discuss these differences. We first focus on the differences

between the new FlexibleEFTHiggs and the pure EFT calculation at SUSY scales above a

few TeV. For such values of MS , the power-suppressed v2/M2
S-terms included in the FEFT

hybrid calculation are numerically insignificant. Further investigations revealed that the

numerical impact of the mixed O(y4
t y

2
τ ) threshold corrections included in FEFT are of the

order ∆Mh ≈ 10 MeV for xt = −
√

6, tanβ = 20 and MS = 2 TeV and the additional
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Figure 4. Prediction of the lightest CP-even Higgs pole mass in the MSSM as a function of xt and

MS for tan β = 20. In the left panels we show the absolute value of Mh and in the right panels the

difference to the FEFT 3` prediction.
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corrections in the EFT calculation O(ŷ4
b ŷ

2
τ + ŷ2

b ŷ
4
τ ) have an impact of ∆Mh ≈ 10−3 MeV

and are thus negligible. The essential difference between the FEFT 3` calculation (red line)

and EFT 3` (green dashed-dotted line) is the different parametrization of the matching in

terms of either MSSM or SM parameters, and the resulting leading higher-order xt terms

included in FEFT 3`. The precise origin of this difference in the threshold correction ∆λ

can be inferred from table 3. The FEFT 3` calculation correctly includes all terms of the

table, while the EFT 3` calculation only includes the terms of the left column at most up

to the 3-loop level, but neither includes the 4-loop term nor any term of the right column.

As will be shown in the following subsection, the numerically dominant effect comes from

the mixed QCD-EW 2-loop terms of the form (λFEFT 3`−λEFT 3`) ⊃ ŷ4
t ĝ

2
1,2ĝ

2
3x

3
t . As shown

in the middle row of figure 4, the numerical difference originating mainly from these terms

remains around 200 MeV for MS = 100 TeV (and xt = −
√

6).19 On the other hand, the

lowest row of figure 4 shows that for fixed MS the numerical difference is below 200 MeV

for |xt| ≤ 2 and MS = 3 TeV, but for larger |xt| the difference rises strongly.

Secondly, we focus on the comparison between the fixed-order and the FlexibleEFT-

Higgs calculations for SUSY scales below around 1 TeV, where both calculations should be

valid. By construction, both calculations include the same Higgs pole mass contributions

of the orders O(1`+ v2(g2
3(y4

t + y4
b ) + (y2

t + y2
b )

3 + (y2
t + y2

τ )3) + v2(g4
3y

4
t )), including terms

suppressed by v2/M2
S . However, they differ at other orders. Numerically, the difference is

below 0.5 GeV for small xt and MS . 500 GeV (see top row of figure 4), but the difference

reaches around 1 GeV for large |xt| and small MS (see middle row of figure 4). The origins

of these differences are the following:

• Parametrization: in contrast to our hybrid approach, the determination of the DR
′

MSSM top quark mass mt in the fixed-order calculation consists of the following

expanded version of the exact relation

mt = Mt(1 + ∆m1`
t + ∆m2`

t ), (7.2)

where ∆m1`,2`
t represent the 1- and 2-loop corrections to the DR

′
top quark mass

as described in refs. [47, 56]. Analogously to section 5, eq. (7.2) does not represent

an all order resummation of terms in the top mass parameter of mt ⊃ m̂t × (ĝ2
3xt)

n.

Consequently, eq. (7.2) does not lead to an all order resummation of terms in the

Higgs pole mass of the form(
MFEFT 3`
h

)2
−
(
MFO 3`
h

)2
⊃ m̂2

t

(
ŷ2
t x

4
t + ĝ2

1,2x
2
t

)
(ĝ2

3xt)
n (7.3)

for n > 2. Besides these non-resummed terms, our new FlexibleEFTHiggs hybrid

calculation includes further incomplete higher-order contributions with high powers

in xt, which will be discussed in section 8.

• Momentum iteration: the double loop expansion in our Higgs pole-mass matching

condition (4.1) made it necessary to strictly truncate the momentum iteration in order

19Since the couplings ŷt and ĝ3 are asymptotically free, the difference between the calculations does not

approach a constant but shrinks slowly for higher MS .
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to avoid incomplete contributions, which could potentially spoil the resummation of

the large logarithms. The FO 3` calculation, however, does partially include higher-

order effects by numerically solving eq. (4.5) for M2
h . This includes non-logarithmic

contributions, for example from the 2-loop electroweak sector and 3-loop top-Yukawa

enhanced contributions of the form(
MFO 3`
h

)2
−
(
M2,FEFT 3`
h

)2
⊃ m2

t

(
y2
t g

2
1,2x

4
t + y4

t g
2
3x

6
t + y6

t x
8
t

)
. (7.4)

• log-resummation: for low SUSY scales, the smallness of log(MS/mt) leads to a sup-

pression of the resummed tower of large logarithms. However, additional factors of xt
might counteract this effect, which potentially increase the relevance of the resummed

logarithms, which are correctly included in the EFT-based approaches, such as(
MFEFT 3`
h

)2
−
(
MFO 3`
h

)2
⊃ m̂2

t

(
ŷ2
t ĝ

2
1,2x

2
t + ŷ4

t ĝ
2
3x

5
t + ŷ6

t x
6
t

)
log

MS

m̂t
. (7.5)

7.3 Further details on the comparison of hybrid and pure EFT calculations

In the lower-right panel of figure 4 one can see a deviation between the hybrid FEFT 3`

calculation and EFT 3` for large |xt|. In the following we elaborate on the large-xt behavior

in more detail.

For the discussion it is sufficient to consider the 2-loop calculations. Figure 5 shows

the Higgs pole mass of different 2-loop calculations w.r.t. the FEFT 2` calculation (red

solid line). The black dashed line corresponds to the same 2-loop calculation, where 2-loop

threshold corrections proportional to powers of yb and/or yτ have been omitted. One finds

that the difference between these lines is smaller than 50 MeV for the shown parameter

scenario. The blue dotted line represents a modified calculation of the black dashed line,

where the 2-loop threshold correction to λ̂ has been replaced by the analytic 2-loop ex-

pressions from eqs. (4.32c) and (4.33) of the order O(g2
3y

4
t + y6

t ), where terms of O(v2/M2
S)

have been neglected. Thus, the difference between the blue dotted and the black dashed

lines corresponds to the impact of some 2-loop higher-dimensional operators. The effect of

these higher dimensional operators has been discussed in ref. [44], where it has been shown

that they are of high relevance for large stop mixing. For small |xt| . 3 and the shown

value MS = 3 TeV, however, their effect is negligible. Note, that in figure 5 the hybrid

2-loop result is subtracted from each calculation. Hence, the blue dotted line represents

the negative correction due to power suppressed terms. In contrast, figure 4 of ref. [44]

shows the positive influence of higher dimensional operators. From the figure we draw the

following conclusions:

• The excellent agreement between the black dashed and the blue dotted lines for

|xt| . 3 confirms numerically the correctness of our automatized FlexibleEFTHiggs

pole-mass matching procedure for λ̂ at O(g2
3y

4
t + y6

t ).

• For |xt| & 3 the effect of the higher-dimensional 2-loop operators is in line with the

numerical results of ref. [44].
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Figure 5. Comparison of our 2-loop hybrid approach (red line and black dashed line) to the 1-

loop hybrid approach with 2-loop threshold corrections at O(g23y
4
t + y6t ) in the EFT-limit (blue

dotted line) and to the pure EFT-calculation HSSUSY with ∆λ included at O(ĝ23 ŷ
4
t + ŷ6t ) (green

dashed-dotted line).

For reference we also show in figure 5 the EFT 2` calculation, represented by the green

dashed-dotted line. One finds that EFT 2` deviates numerically from FEFT 2` for |xt| & 1.

This discrepancy can be explained by contributions originating from the different parame-

trization schemes. As motivated above, we categorize the higher-order corrections in two

classes of terms; the ones which are incomplete in both approaches and the ones which

are captured correctly in our full-model parametrization scheme, but not in the other EFT

parametrization.

Concerning the higher-order terms correctly captured by our new FlexibleEFTHiggs

hybrid calculation, we find the most dominant contribution to the numerical difference

between the EFT 2` prediction and FEFT 2` to be the 2-loop mixed QCD-EW term from

table 3. To illustrate this effect we have created a reparametrized version of the FEFT

2` calculation in the EFT parametrization and compare it with EFT 2` in figure 6. The

figure shows different 2-loop calculations w.r.t. FEFT 2`, where at 2-loop level only terms

of O(y4
t g

2
3) in the EFT-limit v2 � M2

S are taken into account (blue dotted line). The

black dashed line represents the reparametrized version of the blue dotted line, where λ̂

is expressed in terms of SM parameters. In this calculation only 2-loop contributions of

O(ŷ4
t ĝ

2
3) are taken into account. One finds that this reparametrized calculation agrees

well with the corresponding EFT 2` calculation (green dashed-dotted line), which uses the

same parametrization. The only difference between the blue dotted and the green dashed-

dotted line are power suppressed contributions in the Higgs mass at 1-loop, which become

significant for |xt| & 3, as discussed above. When adding the 2-loop leading xt mixed

QCD-EW contribution from eq. (5.11) to the black dashed line, one obtains the red solid

line. The so obtained result agrees very well with the MSSM-parametrized calculation
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2
3)

Figure 6. Influence of contributions originating from reparametrization. The plot shows the Higgs

pole mass as predicted by different 1-loop calculations with additional 2-loop threshold contributions

to ∆λ at O(y4t g
2
3). The superscript “EFT” in the legend indicates that all 2-loop contributions

are evaluated in the limit v2/M2
S → 0. The blue dotted line represents the FlexibleEFTHiggs

calculation in full-model parametrization. The black dashed line represents the EFT-reparametrized

calculation, truncated at O(ŷ4t ĝ
2
3). The red solid line corresponds to the black dashed line with the

additional 2-loop electroweak x3t contribution ∆λQCD-EW from table 3. In the green dashed-dotted

line we show the numerical results of the pure EFT calculation including 2-loop corrections to ∆λ

in EFT parametrization at O(ŷ4t ĝ
2
3).

(blue dotted line), which explains the dominant part of the deviation between the MSSM-

parametrized FEFT 2` calculation and the EFT-parametrized EFT 2` calculation. Thus,

the numerical effect coming from the correct inclusion of highest power xt contributions in

our new FlexibleEFTHiggs approach improves the precision for large |xt| in comparison to

the calculation performed in the EFT parametrization.

Besides the higher-order terms correctly taken into account by our new FlexibleEFT-

Higgs calculation, the threshold corrections ∆λ differ in both approaches by further terms,

which are incomplete both in the full-model parametrization and in the EFT parametri-

zation. Such incomplete higher-order terms are for example top Yukawa enhanced 3-loop

terms with high xt powers of the form (λ̂FEFT 3` − λ̂EFT 3`) ⊃ ŷ8
t x
≤8
t + ŷ6

t ĝ
2
3x
≤7
t .20 The

reparametrization of the 1-loop correction alone was discussed in table 4. The discussion

here is extended by the gauge-less 2-loop contributions to ∆λ in MSSM parametrization.

In figure 7 we show the numerical influence of such terms. When these (incomplete) higher-

order terms are added coherently (green solid line), both contributions almost cancel up

to a remaining effect of ∼ 150 MeV in the Higgs pole mass for |xt| < 3.5 and MS = 3 TeV.

Thus, the numerical effect from the xt-resummation terms in ∆λQCD-EW from figure 6

20Note that in order to investigate the complete reparametrization contributions of this order, the inclu-

sion of 2-loop threshold corrections to ∆yt at O(y5t + g23y
3
t ) is required.
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Figure 7. Impact of incomplete higher-order contributions to ∆λ from reparametrization in Flex-

ibleEFTHiggs.

remains the dominant reparametrization effect. However, when the numerical effect of

each incomplete higher-order term is drawn individually, the contributions have a higher

impact on the Higgs pole mass, see figure 7. The magenta dashed-triple-dotted line cor-

responds to the effect of the terms of O(ŷ6
t ĝ

2
3x

7
t ) and the blue dashed line corresponds

to O(ŷ8
t x
≤8
t + ŷ6

t ĝ
2
3x

<7
t ). There is a cancellation between these incomplete contributions,

which should be kept in mind when using such terms as an uncertainty estimate of missing

higher-order corrections. Using the maximum effect of all terms provides a more conserva-

tive estimate of the remaining uncertainty than the coherent sum.

8 Uncertainty estimation

In this section we analyze missing higher-order contributions in our new FlexibleEFTHiggs

approach in order to estimate the remaining theory uncertainty of our calculation. In

accordance with refs. [41, 42, 47] we distinguish between missing higher-order contributions

in the matching at the SUSY scale, which we denote as high-scale uncertainty, and missing

loop corrections at the electroweak scale, denoted as low-scale uncertainty. Note, that

since FlexibleEFTHiggs is a hybrid calculation, we do not assign an EFT uncertainty to

our calculation from missing terms of O(v2/M2
S).21

8.1 High-scale uncertainty

We begin our discussion by presenting our methods to estimate the high-scale uncertainty,

i.e. the numerical impact of the missing higher-order corrections in the matching of the

21Our calculation of the Higgs mass does not include suppressed logarithms beyond the 2-loop gaugeless

limit. In fact, in ref. [44] it has been demonstrated that their impact is very small ∆Mh ≤ 20 MeV for the

studied scenarios.
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MSSM DR
′

to the SM MS parameters at the SUSY scale. We discuss three different

approaches: the variation of the matching scale, implicit higher-order corrections from the

double loop expansion and reparametrization terms.

Variation of the matching scale. A commonly applied strategy to estimate higher-

order contributions is to vary the renormalization scale Qmatch at which the threshold

corrections are computed. For reasons of comparability, we use the conventional range

of Qmatch ∈ [MS/2, 2MS ] and take the maximum deviation from the value obtained at

Qmatch = MS as an estimate

∆MQmatch
h = max

Q∈[MS/2,2MS ]
{|Mh(Qmatch = MS)−Mh(Qmatch = Q)|} . (8.1)

The numerical variation of Mh results from the fact that the matching corrections con-

tain explicit dependencies of logQ2 at fixed order, while the RGE running cancels those

logarithms but also generates logQ2 terms at higher orders. The quantity ∆MQmatch
h thus

represents an estimate for these missing logarithmic higher-order terms. In particular, in

the matching of λ̂, the following 2-loop and 3-loop terms are generated:

∆λQmatch
h ⊃ ∝ y2

t

(
g2

3g
2
1,2 + y2

t g
2
1,2 + g4

1,2 + y2
t g

4
3x

4
t + y4

t g
2
3 + y6

t

)
+O(g6

1,2). (8.2)

The matching-scale variation thus provides an estimate of the theory uncertainty related

to these terms, at least to their logQ2-dependent parts. We have omitted the specification

of the powers of xt in most of the terms. The term of O(y4
t g

4
3x

4
t ) deserves special attention:

in the degenerate mass case the Himalaya library up to version 3.0.1 does not provide the

correct term in the Higgs mass correction at this order [33]. Since this is an important

missing term of higher order in xt, but not of higher order in the couplings, we have

verified that this missing term of this order has a non-vanishing logQ2 dependence. Indeed,

employing 2-loop β functions from ref. [96] on the 2-loop Higgs pole mass, derived from

the effective potential of ref. [97], the renormalization scale dependence in the degenerate

mass case is given by

∂

∂ logQ2
∆s

MSSM,y4t g
4
3

h =
g4

3y
4
t v

2

(4π)6

224

9

(
x4
t + ∝ x≤3

t

)
. (8.3)

Thus, the matching scale variation in our calculation provides an estimate of the uncertainty

originating from missing logarithmic terms at O(y4
t g

4
3x

4
t ) in particular.

We’d like to point out a technical difficulty in this matching scale variation. The evo-

lution of RGEs in the MSSM requires the numerical input values of MSSM DR
′
parameters

as a boundary condition. However, in the MSSM two parameters cannot be fixed by the

input; rather they have to be eliminated by imposing the two electroweak symmetry break-

ing conditions. Solving these so-called tadpole equations at the loop level will introduce

logarithms which contain light masses. Hence, it is a legitimate question to ask whether

such contributions spoil the automatized cancellation of large logarithms in the matching

correction. In our calculation, the tadpole equations at the SUSY scale are solved for the

dimensionful soft-breaking Higgs-doublet mass parameters m2
Hu

and m2
Hd

. An explicit cal-

culation up to leading 2-loop QCD order shows that large logarithms enter into λ̂ with a
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suppression of v2/M2
S beyond the considered order. These contributions would be absent

in a pure EFT calculation and they can be regarded as a power-suppressed contribution in

a hybrid calculation.

Implicit corrections at higher order. In section 4 we discussed the expansion of the

master formula (4.8) and explained how “explicit” contributions from genuine multi-loop

diagrams are accompanied by “implicit” corrections in the double loop expansion, i.e. from

the reparametrization of the SM self-energy in terms of MSSM parameters. These implicit

corrections have the form of products of derivatives of the SM Higgs pole mass shift ∆sSM
h

times parameter shifts.

Hence, as another estimate of missing higher-order corrections, we compute further

terms with such a structure at orders beyond the precision of the included threshold cor-

rections and discard terms which contain logarithms of the form log(mt/Q). The resulting

contributions take the form

1

v̂2

[∑
P

(
∂

∂P
∆sSM

h

)
∆P

]
log(mt/Q)=0

= ∆λ2`
g1,g2 + ∆λ3`

g3,yt , (8.4)

where ∆λ2`
g1,g2 denotes terms which would arise in an actual 2-loop calculation beyond the

gaugeless limit, and ∆λ3`
g3,yt contains terms which would arise in an actual 3-loop calculation

in the gaugeless limit. The corresponding orders in couplings are

∆λ2`
g1,g2 ⊃ ∝ g2

1,2

[
g2

3y
2
t x
≤1
t + y4

t x
≤4
t + y2

t g
2
1,2x

≤2
t + g4

1,2

]
, (8.5)

∆λ3`
g3,yt ≡ ∆λ3`

g43y
4
t x
≤2
t

+ ∆λ3`
g23y

6
t x
≤5
t ,y8t x

≤8
t

. (8.6)

The 3-loop gaugeless contributions contained in the generated terms on the r.h.s. of eq. (8.6)

are of the order as indicated in the subscript.

We can thus first define an estimate of the size of the missing 2-loop electroweak SUSY

corrections as

∆M
imp,g1,2,2`
h =

∣∣∣Mh(∆λ3`)−Mh(∆λ3` + ∆λ2`
g1,g2)

∣∣∣ , (8.7)

where Mh(∆λ3`) denotes the FEFT 3` calculation. Next, we can define an estimate of the

size of missing higher-order SUSY-QCD contributions as

∆M imp,g3yt,2`
h =

∣∣∣Mh(∆λ2`)−Mh(∆λ2` + ∆λ3`
g43y

4
t x
≤2
t

+ ∆λ3`
g23y

6
t x
≤5
t ,y8t x

≤8
t

)
∣∣∣ , (8.8a)

∆M imp,g3yt,3`
h =

∣∣∣Mh(∆λ3`)−Mh(∆λ3` + ∆λ3`
g23y

6
t x
≤5
t ,y8t x

≤8
t

)
∣∣∣ , (8.8b)

of the FEFT 2` and 3` calculations, respectively. Note, that for the uncertainty estimate

of the FEFT 3` calculation (8.8b), we do not use the 3-loop terms ∆λ3`
g43y

4
t x
≤2
t

, since they

are already included in the known 3-loop threshold corrections ∆λ3` at O(y4
t g

4
3).

Note, that since the derivatives of the SM self-energy do not depend on the MSSM

parameters, the xt dependence of the terms contained in eq. (8.4) is only introduced by

the shift ∆P . This is the reason for the particular maximum powers of xt which appear
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in eqs. (8.5) and (8.6). In particular, at the order g2
3y

6
t , these uncertainty estimates only

contain terms up to x5
t , while the true threshold correction at this order is allowed to

contain x6
t . Hence the method of implicit corrections cannot reliably estimate the influence

of the highest-power xt contributions.

Reparametrization terms. For the reasons discussed in the previous sections, we chose

to express the threshold corrections in terms of MSSM parameters. When computed at all

orders in perturbation theory, both the full-model and the EFT parametrization do not

differ by definition. Hence, it is possible to estimate the uncertainty of missing higher-order

contributions by the numerical difference of the Higgs mass prediction in both parametriza-

tions. The full-model parametrization is preferred because at some finite order in MSSM

parameters it already resums highest power xt corrections of QCD-enhanced orders in SM

parameters. However, we can use reparametrization to generate terms of orders which are

missing or incomplete in our calculation. Specifically, already in section 7.3, in the context

of figure 7, such reparametrization terms of the orders

∆λrep ⊃ ŷ8
t x
≤8
t + ŷ6

t ĝ
2
3x
≤7
t (8.9)

were discussed. In contrast to the implicit corrections, reparametrization generates

terms of highest order in xt which can appear in the true threshold correction, and the

reparametrization terms in eq. (8.9) can thus more reliably estimate the influence of missing

highest-power xt contributions. Because of the nature of reparametrization, this method

also estimates missing higher-order terms in the threshold corrections ∆yt and ∆g3. For

later discussion of the size of the reparametrization terms of eq. (8.9), we define the fol-

lowing uncertainty estimates,

∆M rep,g3,3`
h =

∣∣∣Mh(∆λ3`)−Mh(∆λ3` −O(ŷ6
t ĝ

2
3x

7
t ))
∣∣∣ , (8.10a)

∆M rep,g3yt,3`
h =

∣∣∣Mh(∆λ3`)−Mh(∆λ3` −O(ŷ6
t ĝ

2
3x

<7
t + ŷ8

t x
≤8
t ))

∣∣∣ , (8.10b)

where we subtract the reparametrization terms from the FEFT 3` calculation in order to

reproduce the truncation of the EFT parametrization of λ̂ at O(1` + ĝ2
3(ŷ4

t + ŷ4
b ) + (ŷ2

t +

ŷ2
b )

3+(ŷ2
t +ŷ2

τ )3+ĝ4
3 ŷ

4
t ). Up to a sign, the dashed-triple-dotted magenta line and the dashed

blue line in figure 7 shows equivalently the numerical influence of the terms estimated by

∆M rep,g3,3`
h and ∆M rep,g3yt,3`

h .

At this point it is worthwhile to discuss the difference in the estimation of the un-

certainty of an EFT-parametrized calculation at similar order, i.e. with a matching of λ̂

at O(1` + ĝ2
3(ŷ4

t + ŷ4
b ) + (ŷ2

t + ŷ2
b + y2

τ )3 + ĝ4
3 ŷ

4
t ). The reparametrization provides a way

to estimate higher-order terms in this calculation, which are sensitive to high powers of

xt. Furthermore, the uncertainty estimation should also cover terms of O(ŷ8
t , ŷ

6
t ĝ

2
3), which

are incomplete in both parametrizations, cf. table 4. Consequently, if the discussed tech-

niques are applied to construct higher-order terms for the uncertainty estimation of the

EFT-parametrized calculation, we expect that they lead to very similar expressions for

∆λ ⊃ ŷ8
t x
≤8
t + ŷ6

t ĝ
2
3x
≤7
t . Note, that in contrast to the full-model-parametrized calculation,

the EFT-parametrized one would in addition have to estimate the size of the terms of
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∆λ ⊃ ŷ2
t ĝ

2
1 ĝ

2
3x

3
t + ŷ2

t ĝ
2
2 ĝ

2
3x

3
t + ŷ4

t ĝ
6
3x

7
t , which are implicitly captured in full-model parame-

trization. Thus, in EFT parametrization more higher order contributions would be needed

to estimate the uncertainty for large |xt|.

8.2 Low-scale uncertainty

In this section we describe our method to estimate the low-scale uncertainty, i.e. the theory

uncertainty from missing higher-order loop corrections in the matching to the SM input

parameters at the electroweak scale. We consider two different approaches: the variation

of the renormalization scale of the Higgs pole mass calculation and the variation of loop

orders in the determination of the top Yukawa coupling.

Variation of the pole mass scale. First we discuss the variation of the renormalization

scale at which the pole mass Mh is computed in the SM. By default the scale Qpole = Mt

is chosen, which we vary by factor of two,

∆M
Qpole

h = max
Q∈[Mt/2,2Mt]

{|Mh(Qpole = Mt)−Mh(Qpole = Q)|} . (8.11)

This procedure estimates the impact of missing logarithmic higher-order corrections to the

Higgs pole mass shift in the SM.

Variation of the loop order of threshold corrections at the low scale. As de-

scribed in section 6, the relation between low-energy observables and MS-renormalized SM

couplings contains corrections that can be switched off in the calculation without reducing

the precision of the result for Mh. As was shown in refs. [41, 42, 47, 61], the dominant

uncertainty obtained from this procedure is driven by the higher-order threshold correction

in the relation between the top quark pole mass and the top Yukawa coupling. We define

our estimation of missing threshold corrections at the electroweak scale in accordance with

that reference as

∆Myt,2`
h =

∣∣∣Myt,2`
h −Myt,3`

h

∣∣∣ , (8.12a)

∆Myt,3`
h =

∣∣∣Myt,3`
h −Myt,4`

h

∣∣∣ , (8.12b)

where the superscript of the symbols Myt,n`
h indicates that eq. (6.5) is evaluated at n-loop

level. Since the consistent resummation of NNLL/N3LL logarithms requires an evaluation

of eq. (6.5) at 2-/3-loop level, we estimate the uncertainty of the FEFT 2`/3` calculation

by ∆Myt,2`
h and ∆Myt,3`

h , respectively.

8.3 Numerical size of individual uncertainties

In figure 8 we show the individual sizes of the uncertainty estimates discussed above for

the parameter scenarios from figure 4. The two black lines correspond to uncertainties for

FEFT 2` and the other lines correspond to FEFT 3`.

8.3.1 High-scale uncertainty

We start with a discussion of the high-scale uncertainty, shown in the left column of figure 8.
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Figure 8. Individual contributions to the high-scale uncertainty (left column) and to the low-scale

uncertainty (right column).
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Estimate of missing 3-loop QCD and yt-enhanced contributions beyond

O(y4t g
4
3x

≤4
t ). In figure 8, the black and red solid lines represent the matching-scale uncer-

tainties ∆MQmatch
h of the 2- and 3-loop FEFT calculation, respectively. The matching-scale

uncertainty provides a global estimate of many kinds of terms, see eq. (8.2). The difference

between the black and red solid lines corresponds to the inclusion of the known leading-

QCD 3-loop contributions of O(y4
t g

4
3x
≤3
t ) to ∆λ. We find that this inclusion reduces the

uncertainty very little, less than 0.2 GeV for all studied scenarios. In particular, since terms

of the order O(y4
t g

4
3x

4
t ) are not known for all parameter scenarios, we expect a remaining

uncertainty of significant size for large |xt| (see lower left panel of figure 8). Note, that

∆MQmatch
h is sensitive to terms of O(y4

t g
4
3x

4
t ) (cf. eq. (8.3)) and thus includes an estimate

of these missing terms.

To provide a direct estimate the size of the missing non-logarithmic 3-loop QCD and

yt-enhanced contributions, we show as black and red dashed-dotted lines the uncertainties

∆M imp,g3yt,2`
h and ∆M imp,g3yt,3`

h for the 2- and 3-loop FEFT calculations, respectively.

We find that these QCD uncertainties are very small already for the 2-loop calculation,

∆M imp,g3yt,2`
h . 0.1 GeV. This is fully in line with the small difference between the 2-loop

and 3-loop matching-scale uncertainty described above. The 3-loop QCD and yt-enhanced

corrections missing in FEFT 3`, ∆M imp,g3yt,3`
h , including terms with fewer powers of g3,

are found to be negligible (red dashed-dotted line).

Taken together, all these results provide strong evidence that the contributions of

leading QCD-type are already very well under control and inclusion of higher-order leading-

QCD threshold corrections of O(y4
t g

6
3) will not improve the precision of the calculation

significantly.

Importance of 2-loop electroweak contributions. The size of the missing 2-loop

electroweak SUSY contributions to ∆λ are estimated by the matching-scale variation,

∆MQmatch
h , and more directly by the generated implicit contributions, ∆M

imp,g1,2,2`
h , de-

fined in section 8.1. The implicit contributions, shown as green dotted line in figure 8,

have a sizable numerical effect of ∆M
imp,g1,2,2`
h . 0.4 GeV. Further investigations of the

induced terms from eq. (8.5) indicate that the terms of O(y4
t g

2
1,2) are typically dominant

for the parameter scenarios studied here. For vanishing stop mixing, ∆M
imp,g1,2,2`
h is of

the same order as ∆MQmatch
h . More precisely, the offset of the solid lines, i.e. the smallest

value of ∆MQmatch
h at xt ≈ −3, in the lower left panel of figure 8 is of the same magnitude

as the almost constant green dotted line. For xt = 0 and MS > 1 TeV, both ∆MQmatch
h

and ∆M
imp,g1,2,2`
h predict that the uncertainty decreases at the same rate when going to

higher MS .22

This indicates that missing electroweak 2-loop terms contribute a theory uncertainty

which is typically around 0.2–0.3 GeV, has a weak xt-dependence, and which is the domi-

nant theory uncertainty for small |xt|.
22The middle-left plot in figure 8 shows a numerical instability at MS < 750 GeV in the FEFT 3`

calculation due to a hierarchy switch in Himalaya. The kink in the curves for ∆M
Qmatch
h in the lower left

panel at xt ≈ −3.2 is due to a numerical artifact of our definition of the uncertainty. The irregularities at

xt ≈ 2 in the middle-left plot are due to a numerical instability in our code, which is absent for lower values

of tanβ.
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Relevant higher-order contributions for large |xt|. For large |xt| & 2 the matching-

scale uncertainty ∆MQmatch
h is larger than for small xt. This cannot be attributed exclu-

sively to the missing leading-QCD and 2-loop electroweak terms discussed so far. As

discussed in section 8.1 and ref. [54], this is not unexpected because of the low powers

of xt appearing in ∆M imp,g3yt,3`
h . On the other hand, the increased uncertainty for large

xt is in line with the discussion of the impact of non-resummed large-xt contributions in

section 7.3. In order to estimate missing terms with high xt-dependence, we employ the

uncertainty estimates based on reparametrization terms. Indeed, reparametrization terms

∆M rep,g3,3`
h (magenta dashed-triple-dotted line) and ∆M rep,g3yt,3`

h (blue dashed line) in fig-

ure 8 do contain the maximal powers of xt at their respective loop order. In fact, the

combinations ∆M
imp,g1,2,2`
h + ∆M rep,g3,3`

h and ∆M
imp,g1,2,2`
h + ∆M rep,g3yt,3`

h are of the order

of ∆MQmatch
h , see the middle panel in the left column of figure 8. This suggests that both

electroweak and QCD and yt-enhanced terms with high powers of xt are the dominant

source of uncertainty for large stop mixing, which must be brought under control to reduce

the high-scale uncertainty further.

For |xt| ≈ 3, the uncertainty estimate obtained from reparametrization becomes dom-

inant. However, this is not specific to performing the calculation in full-model parametri-

zation and it cannot be interpreted as an indication that the EFT parametrization would

perform better with regard to missing contributions at O(ŷ8
t + ŷ6

t ĝ
2
3). In fact, as discussed

at the end of section 8.1, the estimation of the uncertainty for a calculation performed in

SM parametrization would lead to a similar result at these orders.

8.3.2 Low-scale uncertainty

Now we discuss the size of the low-scale uncertainty as defined by the measures in sec-

tion 8.2. The individual sources of the low-scale uncertainty are shown in the right column

of figure 8. The variation of the pole mass scale, ∆M
Qpole

h , is shown by the solid lines for

FEFT 2` (black solid line) and FEFT 3` (red solid line). We find excellent agreement of

the pole mass uncertainty of FEFT 2` with the corresponding result shown in figure 3 of

ref. [47]. Concerning the FEFT 3` calculation we find a larger uncertainty of ∆M
Qpole

h

than the corresponding FEFT 2` calculation, which is surprising at first sight. The reason

for this is the inclusion of the 3-loop Higgs pole mass shift in the SM of O(v̂2ŷ4
t ĝ

4
3) from

ref. [70], which has the particular property that it increases the sensitivity of the Higgs pole

mass on renormalization scale, if the scale is varied within Qpole ∈ [Mt/2, 2Mt]. However,

if the scale Qpole is varied within a larger range, the inclusion of this 3-loop correction

leads to a significantly reduced dependence of the Higgs pole mass on Qpole. In order to

keep our results comparable with the literature, we stick to the convention of using the

Qpole ∈ [Mt/2, 2Mt]. As a result, we find ∆M
Qpole

h . 0.3 GeV for FEFT 3` in the shown

parameter scenarios.

Our second measure to estimate part of the low-scale uncertainty is given by the

influence of higher-order correction in the relation between the Yukawa coupling and the

pole mass of the top quark, ∆Myt,n`
h , defined in eqs. (8.12). The uncertainties ∆Myt,2`

h

and ∆Myt,3`
h of the FEFT 2` and 3` calculations are shown as black and red dashed-dotted

lines in the right column of figure 8, respectively. Again, by comparing the uncertainty
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∆Myt,2`
h with the corresponding result from figure 3 of ref. [47], we find excellent agreement.

Compared to the FEFT 2` calculation, the FEFT 3` calculation has a strong reduction of

the uncertainty with ∆Myt,3`
h . 0.2 GeV. This is the main source of the improved precision

of our 3-loop calculation of Mh in the studied scenarios.

8.4 Combined uncertainty

In this subsection we combine the individual uncertainty estimates presented in the previous

subsections to obtain a total uncertainty estimate of our new 2-loop and 3-loop Flexible-

EFTHiggs calculations. Since the individual uncertainty estimates at the high- and low-

energy scales are sensitive to an overlap of higher-order terms, we define the following

combined high-scale uncertainty, ∆MHS
h , and low-scale uncertainty, ∆MLS

h , for the FEFT

n` calculation:

∆MHS
h = max

{
∆MQmatch

h ,∆Mλ,n`
h

}
, (8.13a)

∆MLS
h = max

{
∆M

Qpole

h ,∆Myt,n`
h

}
. (8.13b)

In eq. (8.13a), ∆Mλ,n`
h refers to the following combination of our different approaches of

generating higher-order terms in λ̂ as described in section 8.1,

∆Mλ,n`
h = ∆M

imp,g1,2,2`
h + max

{
∆M imp,g3yt,n`

h ,∆M rep,g3yt,3`
h ,∆M rep,g3,3`

h

}
. (8.14)

Since the uncertainty estimates ∆M imp,g3yt,n`
h , ∆M rep,g3yt,3`

h and ∆M rep,g3,3`
h are sensitive

to an overlap of higher-order contributions to λ̂ that involve terms of O(ynt g
m
3 ), we take their

maximum in eq. (8.14). On the other hand, the electroweak contributions ∆M
imp,g1,2,2`
h are

an independent subset of higher-order terms that involve electroweak gauge couplings, so

we add it linearly to the other terms in eq. (8.14). To obtain the total combined uncertainty,

∆Mh, of our calculations, we add the high-scale and low-scale uncertainties linearly,

∆Mh = ∆MHS
h + ∆MLS

h . (8.15)

For the degenerate SUSY mass scenarios defined in section 7, the results of our combined

uncertainty estimates are shown in figure 9. The red solid line represents the Higgs pole

mass Mh obtained with the FEFT 3` calculation and the red band in the lower sub-plots

denotes the corresponding combined uncertainty ∆Mh. The black dashed lines correspond

to the FEFT 2` calculation accordingly. The difference between the FEFT 3` and 2`

calculations is of the order |M3`
h −M2`

h | . 0.3 GeV. Compared to the 2-loop calculation,

we find a more pronounced decrease of the uncertainty of the 3-loop calculation for large

stop mixing |xt| ∼ 2 and MS & 5 TeV. The dominant reduction of the total uncertainty

of the 3-loop calculation is achieved in the low-scale uncertainty ∆MLS
h , where ∆Myt,2`

h is

the dominant uncertainty of the 2-loop calculation.

In general we find for the studied degenerate DR
′

SUSY mass parameter scenarios a

combined uncertainty of the FEFT 3` calculation of ∆Mh . 1 GeV for MS & 1 TeV and
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Figure 9. Light CP-even Higgs pole mass predictions with FEFT 2`/3` including the combined

uncertainty estimates. The orange band represents the experimentally measured value of the Higgs

mass, Mh = (125.10± 0.14) GeV, including the experimental uncertainty.

|xt| . 3.23 This combined uncertainty becomes smaller for |xt| → 0 and larger MS , where

it can reach ∆Mh ∼ 0.5 GeV. These findings are compatible with the uncertainty estimates

of refs. [60, 61], where hybrid calculations with a comparable precision were studied. For

large SUSY scales of MS & 5 TeV we find that the remaining uncertainty of the FEFT 3`

calculation is dominated by the low-scale uncertainty induced by the determination of the

top Yukawa coupling and the electroweak part of the high-scale uncertainty, which can be

of similar size.

23Note, that ∆Mh is a measure of missing higher-order corrections in the relation between the predicted

light CP-even Higgs pole mass and the DR
′

input parameters. As was stressed in ref. [61], there are

additional uncertainties when the DR
′

input parameters are related to other physical observables.
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9 Conclusions

We have presented an extension of the FlexibleEFTHiggs method to calculate the SM-like

Higgs pole mass in the MSSM. The method combines the virtues of an EFT and fixed-

order calculation, resulting in a prediction that includes power-suppressed corrections and

a resummation of large logarithms. We have applied our method to perform a state-of-the-

art calculation of the light CP-even Higgs pole mass in the MSSM, including corrections

up to the 3-loop level and resummation of large logarithmic corrections up to N3LL.

The key of our extension is the generation of a consistent automatized pole mass

matching procedure beyond the 1-loop level. The consistency of the FlexibleEFTHiggs

method in this regard refers the cancellation of large logarithmic loop corrections and the

inclusion of power-suppressed contributions in the matching to the EFT (assumed to be the

Standard Model), thereby avoiding problems of double counting. Conceptually, this was

achieved by a paradigm shift where the usually applied EFT-parametrized formulation of

the high-scale matching was replaced by a parametrization in terms of full-model (MSSM)

parameters. Technically, it required the inclusion of derivatives of the SM self energies and

tadpoles in the multi-loop matching relations as described in section 4.

A thorough study of the new full-model parametrization shows that the new approach

automatically resums leading contributions in the stop-mixing parameter xt, analogously

to the well known tan β-resummation. This xt-resummation leads to significantly stabilized

convergence of the perturbation series. For instance, in standard parameter scenarios such

as in figure 3 and 4, the numerical impact of the known 2-loop (gaugeless) and 3-loop

(leading QCD) threshold corrections is reduced to less than ∼ 0.3 GeV, compared to an

impact of order 0.5–1.5 GeV in EFT-parametrized calculations.

Next, we have performed a detailed analysis of missing higher-order contributions of

our 3-loop FlexibleEFTHiggs calculation. We have employed several different methods of

uncertainty estimates, which have a complementary sensitivity to different types of missing

higher-order contributions. Our analysis indicates that the remaining theory uncertainty of

our calculation is dominated by (i) missing loop corrections to the top Yukawa coupling at

the electroweak scale and (ii) missing electroweak 2-loop corrections to the quartic Higgs

coupling at the SUSY scale, as shown in figure 8. Numerically, we find that the remaining

theory uncertainty of our 3-loop FlexibleEFTHiggs calculation amounts to ∆Mh . 1 GeV

for SUSY scales above 1 TeV and a stop-mixing of xt . 3. This uncertainty is reduced to

∆Mh ∼ 0.5 GeV for vanishing stop-mixing and/or SUSY scales of MS & 10 TeV.

Finally, we note that the resummation effects might be of high relevance for non-

minimal supersymmetric extensions of the Standard Model, where the loop corrections to

the Higgs mass are not known to the same order as in the MSSM. There, the matching

correction in the full-model parametrization at NLO, for example, would result in a re-

summation of highest stop-mixing contributions of O(ŷ2
t (ŷ

2
t + ĝ2

1,2)ĝ2n
3 ) with n > 1, making

resummation effects more advisable.
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A Higgs pole mass matching for ∆λ at O(y6
t )

In this appendix we show how logarithmic contributions cancel against each other in the

(implemented) master formula (4.8) at O(y6
t ), yielding a threshold correction in eq. (4.33)

which is equivalent to the results presented in the literature. For the sake of brevity we

consider the single scale scenario, where all DR
′

SUSY mass parameters and the matching

scale are set equal to MS , i.e. m2
f̃3

= M2
i = µ2 = m2

A = Q2 = M2
S (f = q, u, d, l, e).

Furthermore, to keep the expressions short, we consider a scenario with a sufficiently large

value of tan β, such that a power expansion in cot β ≡ ctβ up to terms ∝ ct2β is reasonable.

According to eq. (4.28c) the 2-loop threshold correction is obtained as

∆λ2`
∣∣∣
y6t

=
1

v2

(
∆s

MSSM,y6t
h −∆s

SM,y6t
h

)
− 2

∆vαt

v3

(
∆s

MSSM,y4t
h −∆s

SM,y4t
h

)
. (A.1)

At the considered order, the Higgs pole mass correction in the MSSM in the gaugeless limit

is given by

∆s
MSSM,y6t
h = (∆m2,MSSM

h,EP )y
6
t + (∆m2,MSSM

h,p )y
6
t , (A.2)

where the first term on the r.h.s. of eq. (A.2) represents the MSSM effective potential

contribution from ref. [68],

(∆m2,MSSM
h,EP )y

6
t =

y6
t v

2

4(4π)4

{
− 4

[
48K + 9L2

St + 21LSt + π2 − 12
]

+ (59− 96K)x4
t + 8(36K − 17)x2

t − 6x6
t

− ctβ 2xt
[
(96K + 19)x4

t − 16(24K + 5)x2
t + 36(16K + 3)

]
+ ct2β

[
− (96K + 1)x6

t + (576K − 105)x4
t + 4(73− 384K)x2

t

+ 24
(
38K + π2 − 7

)
+ 216LSt + 108L2

St

]}
,

(A.3)

where LSt ≡ log(M2
S/m

2
t ). The second term on the r.h.s. of eq. (A.2) originates from the

momentum-dependence of the 1-loop Higgs self-energy. It can be regarded as the difference

between the pole mass and the mass shift induced by the MSSM effective potential. The
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SM 2-loop contributions at the considered order are given by

∆s
SM,y6t
h = (∆m2,SM

h,EP)y
6
t +

(
∂

∂p2
∆sSM,ŷ4t (0)

)
∆(p2)αt

+

(
∂

∂ŷt
∆sSM,ŷ4t (0)

)
∆yαtt +

(
∂

∂v̂
∆sSM,ŷ4t (0)

)
∆vαt ,

(A.4)

(∆m2,SM
h,EP)y

6
t =

3y6
t v

2(3 ct2β − 1)

(4π)4

[
3L2

St + 7LSt + 2 +
π2

3

]
, (A.5)

where the first term on the r.h.s. of eq. (A.4) represents the contribution from the SM

effective potential [71] and the other terms are the implicit contributions. The combination

of the MSSM and SM momentum contributions reads,

(∆m2,MSSM
h,p )y

6
t −

(
∂

∂p2
∆sSM,ŷ4t (0)

)
∆(p2)αt

=
y6
t v

2(3 ct2β − 1)

4(4π)4
x2
t

[
12LSt + 12x2

t − x4
t

]
. (A.6)

This contribution were for example presented in eq. (A.9) of ref. [42] and have been denoted

as WFR contributions. The combination of the remaining (implicit) terms reads

2∆vαt

v

(
∆s

SM,y4t
h −∆s

MSSM,y4t
h

)
−
(
∂

∂v̂
∆sSM,ŷ4t (0)

)
∆vαt −

(
∂

∂ŷt
∆sSM,ŷ4t (0)

)
∆yαtt

=
y6
t v

2

4(4π)4

[
18 ct2β (2LSt − 1) + (1− 3 ct2β)x2

t (12LSt − 12x2
t + x4

t )
]
. (A.7)

Note, that these (implicit) contributions arise in our calculation due to our choice of the

full-model parametrization of λ̂. Inserting all contributions from above into eq. (A.1), all

large logarithms cancel and one obtains

∆λ2`
∣∣∣
y6t

=
y6
t

4(4π)4

{
− 4x6

t + (35− 96K)x4
t + 8(36K − 17)x2

t − 192K + 72

+ ctβ
[
− 2(96K + 19)x5

t + 32(24K + 5)x3
t − 72(16K + 3)xt

]
+ ct2β

[
− (96K + 7)x6

t + (576K − 33)x4
t + 4(73− 384K)x2

t

+ 6(152K + 2π2 − 43)
]}
.

(A.8)

Inserting the numerical value for the constant K ' −0.1953256 [68], one arrives at the

expression in eq. (4.33).
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