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1 Introduction

While it was initially hoped that the integrals which appear in computations in planar

N = 4 SYM are expressible in terms of generalized polylogarithms, it has by now become

clear that this is not the case.1 Not only are the generalized polylogarithms insufficient

but, by any reasonable measure, most of the integrals in N = 4 SYM seem to require more

complicated classes of functions, which are as of yet very poorly understood.

One class of integrals which is relatively well-understood is the class of pure integrals.

These integrals have leading singularities (see ref. [3]) which are pure numbers such as 0 or

±1. In all known examples they are computable in terms of generalized polylogarithms.

Recall that to obtain leading singularities one takes residues in the propagators of the

integral. Doing so, Jacobian factors are generated in which one can often take further

residues. If we start with an integral with fewer propagators than integration variables,

two things can happen. Either one can generate enough Jacobian factors to take residues

in, so that the integral localizes, or not. If the integral does not localize, then the process

1Work on the Kontsevich conjecture by Belkale and Brosnan [1] had given good reasons to be pes-

simistic. More recently, Brown and Schnetz [2] have given explicit examples in φ4 theory, which contain K3

geometries.
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of taking residues ends with a holomorphic form. This form may however develop poles

for special kinematics.

The leading singularity locus, when it is not a set of points, turns out to be an in-

teresting variety of Calabi-Yau type. The discussion above makes it plausible that one

is more likely to find integrals which do not localize if we consider examples with as few

propagators as possible. Since triangles are not possible in a dual-conformal expansion in

planar N = 4 SYM, the examples we consider are box integrals. As it turns out, ladder

integrals are computable in terms of classical polylogarithms (see ref. [4]). The simplest

integral which can not be localized by taking residues is the elliptic double box integral,

studied in refs. [5, 6]. It is part of a family of integrals, called traintrack integrals (see

figure 1). There are many other examples in the literature, where Calabi-Yau geometries

have been identified in loop integrals, see e.g. [2, 7–14].

The traintrack integrals were studied in ref. [15]. This reference studied three- and four-

loop integrals using Feynman parametrization. The leading singularity loci were defined

as hypersurfaces in various weighted projective spaces, whose coordinates were related to

the Feynman parameters of the original integral. The constructions in ref. [15] were pretty

involved, in that they required complicated changes of variables which did not seem to fit

a pattern that could be generalized to all loops.

In this paper we study the leading singularity locus by using the momentum twistor

description of the traintrack integrals. Momentum twistors were introduced by Hodges [16]

in order to make the dual conformal symmetry [17–19] more manifest. The translation from

momentum space to twistor space proceeds as follows. Given a planar Feynman integral

such as the one in figure 1, we introduce dual coordinates x`i for each loop and xi for each

external region. Under the twistor correspondence, each of these dual points corresponds

to a projective line P1 inside a P3 space. This P3 is called momentum twistor space. Under

this dictionary, the action of the conformal group on the dual space with coordinates x

becomes the familiar PSL(4) action on P3.

Two dual points are light-like separated if their corresponding lines in momentum

twistor space intersect. This simple geometric fact, which is manifestly invariant under

PSL(4) transformations, will be central to our discussions below. Indeed, the leading

singularity locus is obtained by imposing a number of light-like conditions between the dual

points. Using the momentum twistor constructions these constraints yield a configuration

of intersecting lines, which is much easier to describe than the set of quadratic equations

which one has to solve in momentum space or dual space.

Another advantage of the momentum twistor description is that it automatically picks

for us a compactification and complexification of the dual space which is compatible with

the dual conformal symmetry. The complexification is essential as well since all the varieties

we will describe below are complex varieties.

Our analysis is similar in spirit to the analysis done by Hodges [20] for the one-loop box

integral. The one-loop box example is however much simpler, since its leading singularity

locus is a set of two points.

In this paper we obtain the following results. We describe the leading singularity locus

of the elliptic double box as an intersection of two quadrics in P3. We compute the j-
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Figure 1. The traintrack integrals.

invariant of this intersection and compare with the answer obtained in ref. [6]. Next, we

analyze the three-loop case and we identify the leading singularity locus with a K3 surface.

The K3 surface is described as a branched surface over the union of two genus-one curves in

P1×P1. We compute its Euler characteristic and the number of moduli. Then, we analyze

the leading singularity locus in the four-loop case. We obtain a Calabi-Yau three-fold which

can be realized as a complete intersection. We analyze its topology using the methods of

Batyrev and Borisov. Finally we end with short discussions of the higher-loop cases and

of the supersymmetrization.

2 Two loops: the elliptic double box

2.1 Construction

We consider the two-loop traintrack diagram, i.e. the two-loop version of the class of di-

agrams depicted in figure 1. Its leading singularity is determined as follows. There are

three dual points x1, x2, x3 corresponding to the left loop and three dual points x4, x5, x6
corresponding to the right loop. The left loop internal dual point x`1 has to be light-like

separated from the three dual points x1, x2, x3. The right loop internal dual point x`2 has

to be light-like separated from the three dual points x4, x5, x6. Finally, the points x`1 and

x`2 have to be light-like separated.

In momentum twistor space this can be described as follows. To each dual point xi
we associate a line Ai ∧ Bi in momentum twistor space P3. Two dual points are light-like

separated if their corresponding lines in P3 intersect. At first, we assume that all the lines

corresponding to external dual points are skew (do not meet in P3). When some of these

lines intersect, the geometry simplifies.

Given three skew lines, there is a one-dimensional family of lines which intersect all of

them. This can be seen by using several fundamental results about quadrics in P3. The

first fact is that three skew lines uniquely determine a non-singular quadric Q. The second

fact is that a non-singular quadric Q in P3 contains two families of lines where the lines

in a given family are skew while two lines in different families always intersect. Finally,
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Figure 2. Relationship between the endcap of the traintrack and the quadric.

through a given point passes a unique line from each family of lines. Such families of lines

on a quadric are called rulings.

More concretely, given three skew lines Ai∧Bi for i = 1, 2, 3, the quadric they determine

can be written as

Q(Z) = 〈ZA1B1A3〉〈ZA2B2B3〉 − 〈ZA1B1B3〉〈ZA2B2A3〉. (2.1)

Here Z, Ai and Bi are points in P3 and 〈ABCD〉 = det(A,B,C,D) is the usual four-bracket

of momentum twistors. The three lines appear symmetrically, but this is not manifest in

the formula above. Using Plücker relations one can show that the symmetry holds.

Then, to the dual points x1, x2, x3 neighboring the left loop we can associate a quadric

QL and to the points x4, x5, x6 neighboring the right loop we can associate a quadric QR;

cf. figure 2. Next, consider the intersection C := QL ∩ QR ⊂ P3 of these two quadrics,

which is a curve. To each point on C we can associate a line in QL which intersects all the

three lines determining QL. This line corresponds to the interior dual point x`1 of the left

loop. Similarly, through the same point of C we can construct a line which intersects all

the lines in QR corresponding to the interior dual point x`2 . The line in QL and the one in

QR intersect in a point in C so their corresponding dual points are also light-like separated

as required for the leading singularity.

The intersection of two quadrics in P3 is a genus-one algebraic curve, see figure 3.

We can connect this construction to the more familiar picture of a cubic curve in P2 as

follows: without loss of generality, we can take the point [X0 : X1 : X2 : X3] = [0 : 0 : 0 : 1]

to belong to both quadrics. Then the equations for the two quadrics can be written as

QL = X3LL +ML, QR = X3LR +MR, (2.2)

where LL and LR are of homogeneous of degree one and ML and MR are homogeneous

of degree two in X0, X1 and X2. When eliminating X3, we obtain LLMR − LRML = 0,

which is a cubic in P2.
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Figure 3. Two intersecting quadrics. Their intersection is the genus-one curve C in the elliptic

double box.

2.2 Analysis of the two-loop leading singularity locus

Having constructed a genus-one curve C as the intersection of two quadrics in P3, we now

proceed to analyze its properties.

The holomorphic differential one-form on the curve can be found by taking Poincaré

residues,

ωC = ResQL
ResQR

ωP3

QLQR
. (2.3)

Here ωP3 is the PSL(4)-invariant, weight-four holomorphic three-form on P3. The quadrics

QL and QR both have weight two so that the ratio
ωP3

QLQR
is invariant under rescaling of

the homogeneous coordinates of P3. Then, we take two Poincaré residues which yields a

one-form localized on C. This is in fact the unique holomorphic one-form on C so the curve

C is indeed a genus-one curve. A genus-one curve is characterized by only one modulus,

which can be taken to be its j-invariant.

We can also see that there is only one modulus by counting parameters as follows:

there are six dual points, each with four coordinates. From this, we need to subtract the

dimension of the four-dimensional conformal group, which is 15. In total we obtain 6×4−
15 = 9, assuming the conformal group acts effectively. However, there are configurations of

the three skew lines in the left quadric which generate the same quadric. Indeed, consider

a line inside QL which intersects all the lines which determine QL. We can displace any

of these three lines along the chosen line without changing QL. Hence, there is a three-

dimensional space of three skew lines which parametrize the same quadric QL. The same

holds for QR. Moreover, the same curve C can be obtained by considering any two members
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of the so-called pencil of quadrics generated by QL and QR.2 In other words, instead of

using QL and QR we can use linear combinations of them, λLQL+λRQR and µLQL+µRQR,

where [λL : λR] and [µL : µR] are homogeneous coordinates on a projective line. This

amounts to two extra parameters which do not appear in the moduli of C. In the end, C

has 9− 3− 3− 2 = 1 moduli.

The pencil of quadrics λLQL + λRQR also allows us to compute the j-invariant of the

curve C. As mentioned above, C is obtained as the intersection of any two members of the

pencil. We now think of each of the quadrics as a 4×4 symmetric matrix of the coefficients

in the defining equation (2.1) and consider the determinant

det(λLQL + λRQR). (2.4)

This is a polynomial of degree four in the homogeneous coordinates [λL : λR] of P1. Hence,

it vanishes at four points in P1 and we conclude that there are four singular members of the

pencils.3 The cross-ratio of these four points is an invariant of the pencil. More concretely,

let us denote the four points where (2.4) vanishes by λi := [λiL : λiR]. Then, we can form

the cross-ratio z = 〈12〉〈34〉
〈13〉〈24〉 , where 〈ij〉 = det(λi, λj), and the j-invariant

j = 256
(z2 − z + 1)3

z2(z − 1)2
. (2.5)

As pointed out above, the curve C is obtained as the intersection of any two members

of the pencil of quadrics λLQL + λRQR. Thus we can characterize isomorphism classes

of C by completely characterizing the pencil. The cross-ratio z formed above classifies

the isomorphism classes of four ordered points on P1 up to projective equivalence. The

j-invariant formed in (2.5) has the correct symmetries for the corresponding elliptic curve:

in defining the cross-ratio z, we have the freedom of permuting three of the points λi on

P1 while keeping one fixed without changing C. This permutation acts on z by sending

z 7→ z′ ∈
{
z, 1z , 1− z, 1−

1
z ,

1
1−z , 1−

1
1−z

}
. One can check that the j-invariant in (2.5) is

invariant under this map.

In [6], the elliptic double box integral was analyzed using the method of direct inte-

gration. Starting from a dual-conformally invariant expression, Feynman parameters were

introduced and as many integrations as possible were performed in terms of multiple poly-

logarithms. Eventually, the authors found a representation of the double box integral of

the form ∫ ∞
0

dα
H3(α)√
Q(α)

. (2.6)

Here H3 is a combination of weight-three multiple polylogarithms and Q(α) is a polynomial

in α of degree four with coefficients depending on conformal cross-ratios. The equation

y2 = Q(α) thus defines an elliptic curve. We have checked that the j-invariant of this

2A pencil is a set of subvarieties, in this case quadrics, which are parametrized by a line [21].
3Note that we assume that the quadrics QL and QR are in general position such that the four roots

of (2.4) are distinct. If they are not, then the intersection degenerates and the integral can be computed in

terms of generalized polylogarithms.
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Figure 4. Quadrics and lines defining the K3 surface in the three-loop traintrack diagram.

curve matches the j-invariant of the curve constructed directly in momentum twistor space

above. This is an encouraging result as it means that the geometry is not merely an artifact

of the chosen parametrization but an intrinsic property of the leading singularity of the

double box integral.

3 Three and more loops

3.1 K3 surface

3.1.1 Construction

The construction of a geometry for the three-loop traintrack integral is similar to the one

for the two-loop case presented in section 2. This time, however, we have two extra lines

in momentum twistor space corresponding to the two additional external dual points. The

geometry in this case is given by two quadrics QL and QR, constructed in the same way as

at two loops, together with two lines `1 and `2. Given points P1 ∈ `1 and P2 ∈ `2, we can

construct a line P1 ∧ P2 whose corresponding dual point is light-like separated from both

dual points corresponding to `1 and `2. The line P1 ∧P2 corresponds to the middle loop in

the three-loop traintrack integral. The moduli space of these lines is P1×P1 corresponding

to the freedom in choosing P1 and P2. We illustrate the construction in figure 4.

The rest of the light-like constraints for the leading singularity can be imposed as

follows. By Bezout’s theorem, the line P1 ∧P2 intersects the quadric QL in two points and

the quadric QR in two points.4 Choosing one of these intersections in QL and one in QR,

we obtain a leading singularity configuration. In total, there are four choices. The total

4Bezout’s theorem states that n hypersurfaces of degrees d1, . . . , dn in complex projective space Pn

intersect in d1 · · · dn points, if the number of intersection points is finite [21]. In our case, the quadric has

degree two, while a line can be seen as the intersection of two hyperplanes, each of degree one. Hence, the

intersection consists of two points.
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space of leading singularities is therefore a four-fold cover of P1 × P1, branched over the

curves where the line P1 ∧ P2 is tangent to QL or QR.

To find out where this branching arises, consider the points α1P1 + α2P2 on the line

P1 ∧ P2. The intersection with QL is given by the equation

α2
1QL(P1, P1) + 2α1α2QL(P1, P2) + α2

2QL(P2, P2) = 0. (3.1)

The line P1 ∧P2 is tangent to QL if this has a double root, i.e. when the discriminant with

respect to α1 or α2 vanishes,

∆L := QL(P1, P2)
2 −QL(P1, P1)QL(P2, P2) = 0. (3.2)

The polynomial ∆L is homogeneous of bidegree (2, 2) in the coordinates of P1 × P1 that

parametrize the points P1 ∈ `1 and P2 ∈ `2.
A similar analysis can be done for the right quadric and we obtain another polynomial

∆R of bidegree (2, 2). The curves determined by ∆L and ∆R intersect in eight points.5 At

these eight points, all the branches of the surface meet. Over the remaining points of the

curves determined by ∆L and ∆R there are only two branches, while over the remaining

points of P1 × P1 there are four branches.

The curves in P1 × P1 defined by the vanishing locus of ∆L and ∆R are themselves

genus-one curves as can be seen as follows. If we choose coordinates x = [x0 : x1] and

y = [y0 : y1] on P1 × P1, then we can write the equation for a biquadratic as

∆(x, y) =
1∑

a,b,a′,b′=0

Aab,a′b′ xaxb ya′yb′ , (3.3)

where A is symmetric in the first and second pair of indices independently and thus has 9

independent components. We now embed P1×P1 into P3 using the Segre map. Concretely,

we identify the homogeneous coordinates [z0 : z1 : z2 : z3] on P3 with the coordinates on

P1 × P1 as

z0 = x0y0, z1 = x0y1, z2 = x1y0, z3 = x1y1. (3.4)

The image of P1×P1 is then a quadric in P3 given by z0z3−z1z2 = 0. The biquadratic (3.3)

becomes

∆(z) =

3∑
i,j=0

Ãij zizj , (3.5)

where Ã is a 4×4 symmetric matrix that depends on the original coefficients Aab,a′b′ . This

defines another quadric in P3. The intersection of these two quadrics is a genus-one curve

with only one modulus, as we have discussed before.

5To see why, consider first the intersection of such a genus-one curve with a line in P1 × P1 which sits

at a point in the first or the second P1. It is easy to see that this intersection consists of two points. Now,

consider a degeneration of the biquadratic into four lines. Two of the lines sit at a point in the first P1

while the other two sit at a point in the second P1. Each one of them intersects the biquadratic in two

points. In total, there are eight intersection points. As we deform from a singular curve consisting of four

lines to a non-singular one, the number of intersections is conserved. This type of argument is often used

in Schubert problems (see ref. [22] for a detailed discussion).
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3.1.2 Analysis

The holomorphic two-form on the surface is

ωK3 =
ωP1 ωP1√
∆L

√
∆R

. (3.6)

Notice that this ratio has the right homogeneity in P1×P1: the first ωP1 has bidegree (2, 0)

while the second one has bidegree (0, 2). The polynomials ∆L and ∆R both have bidegree

(2, 2) so that (3.6) has homogeneity zero as required.

An analogous construction can be done for the simpler case of a genus-one curve in P2

as a two-fold branched cover over four points in P1. In that case, we can define a polynomial

P whose roots are the four points and the holomorphic form is
ωP2√
P

.

Euler characteristic. It is well-known that the Euler characteristic χ of a K3 surface

is 24, but we can directly compute this from the construction in momentum twistor space.

To do so, we will use the basic fact that χ is additive under surgery.

According to the branching described above, the K3 surface S has only one branch on

the points P1 × P1 where the two curves ∆L and ∆R meet, i.e. for the points in ∆L ∩∆R.

For the points that lie on either of the two curves, i.e. for ∆L ∪∆R \∆L ∩∆R, there are

two branches. In the complement of the two curves, i.e. in P1 × P1 \∆L ∪∆R, there are

four branches. It follows that

χ(S) = 4
[
χ(P1 × P1)− χ(∆L ∪∆R)

]
+ 2 [χ(∆L ∪∆R)− χ(∆L ∩∆R)]

+ χ(∆L ∩∆R)

= 4χ(P1 × P1)− 2χ(∆L ∪∆R)− χ(∆L ∩∆R).

(3.7)

Next, we use the fact that χ(P1 × P1) = χ(P1)2, χ(P1) = 2 and χ(∆L ∪∆R) = χ(∆L) +

χ(∆R) − χ(∆L ∩ ∆R). The Euler characteristic of a point is one and the intersection

∆L ∩∆R consists of eight points, thus we get χ(∆L ∩∆R) = 8. Moreover, ∆L and ∆R are

genus-one curves, thus χ(∆L) = χ(∆R) = 0. Finally, we get

χ(S) = 4× 2× 2− 2× (−8)− 8 = 24. (3.8)

This is the expected number for a K3 surface which has Betti numbers b0 = 1, b2 = 22 and

b4 = 1 with the odd Betti numbers vanishing.

Counting the number of moduli. We would now like to count the number of moduli

of these K3 surfaces. This amounts to a counting of degrees of freedom of two genus-one

curves in P1 × P1, intersecting in eight points. On top of that, there are moduli that

roughly speaking describe the position of the quadrics corresponding to the endcaps of the

traintrack integrals.

Before solving the first problem, recall the more familiar case of two cubic curves in the

projective plane P2. A cubic curve in the projective plane is a non-zero linear combination

of ten monomials. Hence, the set of cubic curves forms a P9. The condition that a point

belongs to a cubic curve imposes a linear condition in P9. Given nine points in general

position, there is a single cubic curve which contains all of them. The condition that the

– 9 –



J
H
E
P
0
7
(
2
0
2
0
)
1
6
0

nine points be generic is essential here. In fact, consider two cubics in the projective plane.

By Bezout’s theorem, they intersect in nine points. In this case, these nine points can not

be generic since they do not uniquely determine a cubic curve. In fact, they determine a

pencil of cubics.

The theorem of Cayley-Bacharach states that if two plane cubics intersect in nine

points, then any other cubic which passes through eight of them automatically passes

through the ninth [21].6

Let us now return to genus-one curves in P1 × P1. A biquadratic curve in P1 × P1 is

a linear combination of nine monomials of bidegree (2, 2). Hence, these curves form a P8.

As before, the condition that a point belongs to such a curve is a linear condition in P8.

Hence, eight points in general position uniquely determine a genus-one curve in P1 × P1.

Next, consider two such biquadratic curves. They intersect in eight points. If the

equations of the two biquadratics in homogeneous coordinates x = [x0 : x1] and y = [y0 : y1]

of P1 × P1 are

∆00(y)x20 + 2∆01(y)x0x1 + ∆11(y)x21 = 0, (3.9)

∆′00(y)x20 + 2∆′01(y)x0x1 + ∆′11(y)x21 = 0, (3.10)

then the intersection points have y coordinates satisfying

(∆′00∆11 −∆00∆
′
11)

2 + 4(∆′00∆01 −∆00∆
′
01)(∆

′
11∆01 −∆′01∆11) = 0. (3.11)

Here ∆ij and ∆′ij are quadratic in y such that this is a degree-eight polynomial and that

generically there are eight such intersection points. For each of these values of y the

corresponding value of x ∈ P1 is given by

2(∆′00∆01 −∆00∆
′
01)x0 + (∆′00∆11 −∆00∆

′
11)x1 = 0. (3.12)

These eight points can not be in general position, otherwise there would be a unique

biquadratic curve containing them. For this case, we have a variant of the Cayley-Bacharach

theorem, stating that if two biquadratic curves meet in seven points then they meet in the

eighth as well.

Returning to the problem of counting the moduli, we see that we have to specify seven

points in P1 × P1 which amounts to 14 parameters. From this we have to subtract 2 × 3

parameters due to PSL(2) transformations on each P1. Moreover, we need to pick two

members of the pencil of quadrics λLQL + λRQR which adds two additional moduli. It

turns out that there is one more modulus corresponding to the relative position of the left

and right quadric along the middle line through the points P1 and P2. In total, the number

of moduli is

14− 2× 3 + 2 + 1 = 11. (3.13)

There is another, more direct way to establish 11 as an upper bound for the number

of moduli: the K3 surface only depends on the left and right quadrics and the two lines `1
6The Cayley-Bacharach theorem is essential in proving the associativity of the group law on a genus-one

curve.
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and `2. In dual space we have 8 × 4− 15 = 17, where we subtracted 15 due to the action

of the conformal group. As discussed in section 2.2, we can move each of the three lines

defining a quadric up and down along a line from the opposite ruling without changing the

quadric. Thus we can subtract 2 × 3 = 6 coordinates. In total we get 8 × 4− 15− 6 = 11

moduli.

For algebraic K3 surfaces, the sum of the dimension of the moduli space and the generic

Picard rank has to equal 20 (see ref. [23]). Since we found a moduli space of dimension 11,

then the generic Picard rank should be 9. Below, we find the same answer by looking at

Nikulin involutions.

In [15], the authors analyzed the three-loop traintrack integral using Feynman param-

eters and identified a K3 surface as a hypersurface in a certain weighted projective space.

For a generic hypersurface in this space they found an upper bound of 18 for the number

of moduli which is compatible with the number that we found above. In the case of the

elliptic curve we were able to compare the momentum twistor construction to the one found

in Feynman-parametric integration using the j-invariant of the curve and found that they

give the same geometry. For the K3 surfaces, a more thorough study of their characteristics

is needed to conclude whether or not they are equal.

Automorphisms and Nikulin involutions. To further characterize the K3 surface S,

we study its automorphisms, in particular those automorphisms that leave the holomorphic

two-form on S invariant. Such automorphisms are called symplectic. If f is a symplectic

automorphism of finite order n and f 6= id, then one can show that the set of fixed

points Fix(f) ⊂ S is non-empty and finite. Moreover, the number of fixed points satisfies

1 ≤ |Fix(f)| ≤ 8 and depends only on the order n of f , see for example ref. [24]. Nikulin [25]

also showed that the order n can at most be eight, i.e. n ≤ 8, which means that only the

combinations of n and |Fix(f)| in table 1 are possible.

Symplectic automorphisms of order two are called Nikulin involutions and the corre-

sponding number of fixed points is eight. Such involutions are realized in our K3 surface

as follows.

Consider the left quadric QL and the line P1 ∧ P2 transversal to `1 and `2, see also

figure 4. P1 ∧ P2 intersects QL in two points and exchanging these two points constitutes

an involution of the left quadric. Recall that the points of intersection are given by the two

roots of (3.1). Since this in a quadratic equation, the difference between the two roots is√
∆L. Thus, exchanging the two points of intersection, sends

√
∆L to −

√
∆L. The fixed

points of this involution of the left quadric are the points of QL at which P1 ∧ P2 becomes

tangent, i.e. the points described by the genus-one curve ∆L = 0 in P1×P1. Since the map

we described so far changes the sign of
√

∆L, the holomorphic two-form (3.6) also changes

sign and we only obtain a Nikulin involution of the K3 surface if we perform the same

involution on the right quadric. The fixed points are then the eight intersection points of

the curves ∆L and ∆R in P1 × P1.

An involution which is not symplectic is the exchange of the two P1 corresponding to

the lines `1 and `2. Indeed, under this transformation the holomorphic two-form in eq. (3.6)

picks up a sign.
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The existence of automorphisms implies a lower bound for the Picard number ρ(S) of

the K3 surface [24]. For a Nikulin involution, i.e. a symplectic automorphism of order two,

the bound is ρ(S) ≥ 9 (see appendix A). Since the Picard number plus the dimension of

the moduli space are equal to 20, this bound is consistent with the counting of the moduli

above. In fact in our case the bound is satisfied, i.e. ρ(S) = 9; for this case a complete

description of the Picard lattice of S can be found in ref. [26].

3.2 Three-fold and beyond

In this section, we demonstrate how we can build a Calabi-Yau manifold embedded in a

toric variety for the four- and higher-loop traintrack integrals. It was shown by Batyrev

that mirror families of Calabi-Yau manifolds can be constructed as anticanonical hyper-

surfaces in toric varieties and that their Hodge numbers can be computed combinatorially

by counting points in an associated pair of reflexive polytopes [27]. This construction was

generalized to complete intersection Calabi-Yau (CICY) manifolds by Batyrev and Borisov

using the nef-partitions of a reflexive polytope pair [28, 29]. The Hodge numbers in this

case can be computed by means of a recursive generating function; an implementation of

this function is available in PALP [30].7

3.2.1 Three-fold

The leading singularity configuration for the four-loop traintrack integral is depicted in

figure 5. Compared to the three-loop case discussed in section 3.1, we have two new lines,

`3 and `4, corresponding to the two extra external dual points.

Let us introduce coordinates ([α1 : α2], [β1 : β2]) for the P1 × P1 corresponding to the

lines `1 and `2 and similarly ([γ1 : γ2], [δ1 : δ2]) for the lines `3 and `4. Then the embedding

space is a toric variety defined by the relations

(α1, α2, β1, β2, yL) ∼ (t1 α1, t1 α2, β1, β2, t1 yL),

(α1, α2, β1, β2, yL) ∼ (α1, α2, t2 β1, t2 β2, t2 yL)
(3.14)

for the left part of figure 5 and

(γ1, γ2, δ1, δ2, yR) ∼ (t3 γ1, t3 γ2, δ1, δ2, t3 yR),

(γ1, γ2, δ1, δ2, yR) ∼ (γ1, γ2, t4 δ1, t4 δ2, t4 yR)
(3.15)

from the right part. Here t1, t2, t3, t4 ∈ C \ {0} and the role of yL and yR will be clarified

momentarily. Since we have ten coordinates and four relations, we are left with a six-

dimensional space.

Following the same construction as for the three-loop (K3) case, we obtain two poly-

nomials ∆L and ∆R of bidegree (2, 2) in P1 × P1 from the left and right outermost loop

of the traintrack. In the six-dimensional toric variety constructed above, the Calabi-Yau

manifold is defined as a codimension-three subvariety by means of the constraints

y2L = ∆L, y2R = ∆R, 〈P1P2P3P4〉 = 0. (3.16)

7Note that technically the generating function computes the stringy Hodge numbers introduced in [31].
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Figure 5. Quadrics and lines defining the CY three-fold in the four-loop traintrack diagram.

The last condition forces the two transversals P1 ∧ P2 and P3 ∧ P4 to intersect, see also

figure 5.

The toric variety defined by the relations (3.14) and (3.15) can be described by a

polytope with ten vertices in a six-dimensional integer lattice. Explicitly, the vertices are

given by the columns of the matrix

1 0 0 1 −1 0 0 0 0 0

0 1 0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 −1

0 0 0 0 0 0 1 0 1 −1

0 0 0 0 0 0 0 1 −1 0


. (3.17)

The Hodge numbers of a generic codimension-three subvariety in this space can be

obtained by computing the nef-partitions of the polytope defined by (3.17). Using PALP [30],

in particular the component nef.x,8 we find that there are 22 nef partitions. Out of

these, we identify three that have defining equations with degrees compatible with the

constraints (3.16). The Hodge numbers are h11 = 12 and h12 = 28 which gives a Euler

characteristic of χ = −32.

3.2.2 General case

The construction used for the three-fold, i.e. the four-loop case of the traintracks, gen-

eralizes to higher loops. For L ≥ 4, we build a toric embedding space as follows: there

are 2 + 4(L − 2) coordinates, 2 from yL and yR and 2 × 2(L − 2) from the two external

8Note that we had to set VERT Nmax to 96 in Global.h for the computation to succeed.
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dual points added with each loop. The number of relations between these coordinates is

2(L− 2); thus the dimension of the embedding space is 2 + 4(L− 2)− 2(L− 2) = 2(L− 1).

In this space, we impose 2 quadratic constraints, namely y2L = ∆L and y2R = ∆R, as well as

L − 3 multilinear constraints. Thus, the Calabi-Yau manifold is obtained as a subvariety

of codimension L− 1 in a toric variety of dimension 2(L− 1). Note that the dimension of

the manifold is also L− 1.

As above, we can describe the embedding space by a polytope with vertices in an

integer lattice. The dimension of this lattice equals the dimension of the embedding space,

i.e. 2(L−1), while the number of vertices is equal to the number of coordinates, 2+4(L−2).

The vertices are given in the general case by the columns of a block-diagonal matrix
A 0 0 · · · 0

0 A 0

0 0 B
...

. . .
...

0 · · · B

 , A =

1 0 0 1 −1

0 1 0 1 −1

0 0 1 −1 0

 , B =
(

1 −1
)
. (3.18)

Note that in the case of the threefold (i.e. L = 4) that was discussed above, B does not

appear and the matrix reduces to (3.17).

We note that the codimension grows with the loop order and this makes the analysis

of these varieties in terms of complete intersections more challenging. One may hope for a

more “efficient” description of these varieties, but it remains to be seen if this is possible

in way which is compatible with supersymmetry, as described in section 4.

4 Supersymmetrization

The constructions presented so far are manifestly dual-conformal invariant. Indeed, this

is one reason why it makes sense to use momentum twistors to describe their geometry.

However, we know that the scattering amplitudes in N = 4 are in fact dual super -conformal

invariant. It is then natural to ask what becomes of the supersymmetry.

In order to describe the supersymmetrization, we will redo the previous analysis in

such a way that the various incidence relations are described in terms of PSL(4)-invariant

delta functions. The basic ingredient will be the delta function of two points on P3, which

we denote by δ3P3(P1;P2), where P1, P2 ∈ P3.

This quantity can be used to define δ2P3(L;P ), which has support when the point P

lies on the line L. If the line P contains two points P0 and P1, then we have

δ2P3(L;P ) =

∫
ωP1(α)δP3(α0P0 + α1P1;P ). (4.1)

Similarly, we can define δP3(L1;L2), which has support when the two lines L1 and L2

intersect.

To define a delta function with support on a quadric, we use the fact that the quadric

is determined by three skew lines L1, L2 and L3. The quadric is ruled by a family of lines

which intersect L1, L2 and L3. Moreover, through any point on the quadric passes one line

– 14 –
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in this ruling. We can then describe the conditions that a point P belongs to the quadric

Q determined by the skew lines L1, L2 and L3 by the following integral

δP3(Q;P ) =

∫
µP3(L)δP3(L;L1)δP3(L;L2)δP3(L;L3)δ

2
P3(L;P ), (4.2)

where µP3(L) is the integral over the space of lines in P3. This integral is four-dimensional

so, after performing the integrals, we are left with a single constraint. This is expected

since a quadric is of codimension one in P3.

To obtain the genus-one curve we simply take the product of the two delta functions

corresponding to QL and QR. This is a distribution which has support on the intersection

of the two quadrics QL ∩ QR. We can also obtain the holomorphic top form, but instead

of taking Poincaré residues, we proceed as follows. We look for a one-form ωC such that∫
C
ωC(Z)f(Z) =

∫
ωP3(Z)δP3(QL;Z)δP3(QR;Z)f(Z), (4.3)

for any meromorphic function f on P3 whose poles lie outside QL ∩QR.

This construction is rather unnatural when done in P3, but its advantage lies in the fact

that it can be pretty straightforwardly supersymmetrized to P3|4. Indeed, in P3|4 we have

a delta function δ
3|4
P3|4(Z1;Z2), and so on. These supersymmetrizations were introduced in

ref. [32]. For the superquadric we obtain δ
1|8
P3|4(Q,Z). Pursuing the same strategy as in the

P3 case, we finally define ω
1|12
C using∫

C
ω
1|12
C (Z)f(Z) =

∫
ωP3|4(Z)δP3|4(Ql;Z)δP3|4(Qr;Z)f(Z), (4.4)

where Z = [Z0 : Z1 : Z2 : Z3 |χ1 : χ2 : χ3 : χ4] and ωP3|4(Z) = ωP3(Z)dχ1dχ2dχ3dχ4 is the

PSL(4|4)-invariant form on P3|4.

This construction can be generalized to higher dimensions.

5 Summary and outlook

We have presented a few examples of Calabi-Yau varieties arising as the leading singularity

loci of the class of traintrack integrals.

For the elliptic double box we have a pretty explicit understanding of the moduli space

and how it relates to the external kinematics of the integral. We believe this should be a

useful ingredient in the computation of these integrals.

The moduli space of algebraic K3 surfaces has a global description as a double coset of

an orthogonal group (see ref. [23]). This moduli space should be somehow parametrized by

the external kinematics, but this global description does not seem to arise naturally from

the twistor representation of the kinematics. So, while we have described the topology of

these varieties in some detail, our description of their moduli space has not been as detailed

as we would like. One approach we have sketched is to use a parametrization where 10

moduli arise from an intersection of two genus-one curves in P1×P1 and an extra modulus

arises from the intersections of transversals to these P1 with the two quadrics QL and QR.
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It remains to be seen if this parametrization will be useful for expressing the corresponding

integral.

One slightly mysterious aspect remains in connection with Calabi-Yau varieties encoun-

tered in non-planar integrals. The twistor methods are well-adapted for studying planar

integrals. How should non-planar integrals be described in this language? It is not clear

yet if the momentum twistor approach is a useful description for the leading singularity

locus of these integrals. We hope to report on this issue in future work.

We have also discussed supersymmetrization. The approach to supersymmetrization

we have sketched generalizes to other cases as well. Clearly supersymmetry imposes some

restriction on the geometry of these varieties and it would be interesting to understand this

better.
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A Automorphisms of K3 surfaces

For an account of the automorphisms of K3 surfaces see for example ref. [24, chapter 15].

In the following we summarize some of the most important facts.

When studying the group of automorphisms Aut(S) of a K3 surface S, one distinguishes

between symplectic and non-symplectic automorphisms. An automorphism f : S → S of a

K3 surface S is symplectic if the induced action on H0(S,Ω2
S) is the identity, i.e. if it leaves

the holomorphic two-form on S invariant. One can show that Aut(S) is discrete and that

the subgroup Auts(S) ⊂ Aut(S) of symplectic automorphisms is of finite index, at least

for projective K3 surfaces.

One can moreover show the following result: let f ∈ Auts(S) be of finite order n and

f 6= id. Then the set of fixed points Fix(f) is non-empty and finite and

|Fix(S)| = 24

n

∏
p|n

(
1 +

1

p

)−1
. (A.1)

Moreover the number of fixed point satisfies 1 ≤ |Fix(f)| ≤ 8 and only depends on the

order n of f .

Nikulin also proved that for f ∈ Auts(S), the order n of f satisfies n ≤ 8. This

means that only the combinations of n and |Fix(S)| shown in table 1 can occur. For each

n, one can also derive a lower bound for the Picard number ρ(S) which is also shown in

table 1. One can see that the Picard number of K3 surfaces with automorphisms tends to

be quite high.
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Order n 2 3 4 5 6 7 8

|Fix(S)| 8 6 4 4 2 3 2

ρ(S) ≥ 9 13 15 17 17 19 19

Table 1. Symplectic automorphism orders and number of fixed points for a complex K3 surface S.

Here ρ(S) is the Picard number of S. Table from ref. [24].

Symplectic automorphisms of order two were studied by Nikulin [25] and are called

Nikulin involutions. According to table 1, a Nikulin involution of a complex K3 surface has

eight fixed points and Picard number ρ(S) ≥ 9. A classification of all algebraic K3 surfaces

with Picard number satisfying the lower bound, i.e. ρ(S) = 9 can be found in ref. [26].
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