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Parton Distribution Functions based on Drell-Yan production data from different experi-

ments, including those at the LHC, and spanning a wide kinematic range. We deal with

experimental uncertainties by properly taking into account correlations. We include re-

summation of logarithms of the transverse momentum of the vector boson up to N3LL

order, and we include non-perturbative contributions. These ingredients allow us to obtain

a remarkable agreement with the data.
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1 Introduction

The analysis of hard scattering processes involving nucleons in the initial state allows us

to obtain information on their internal structure, encoded in parton distribution functions

(PDFs).

After decades of studies, we have obtained a detailed knowledge of unpolarised collinear

PDFs: they provide information about matter at the subnuclear level and are indispensable

in almost any prediction involving high-energy hadrons. Collinear PDFs describe the dis-

tribution of partons inside the nucleon as a function of the longitudinal momentum fraction

x. Collinear factorisation theorems lead to a precise definition of collinear PDFs based on
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perturbative QCD and, within specific approximations, determine also their connection to

experimental observables.

When considering semi-inclusive observables, factorisation theorems require the intro-

duction of more general PDFs. We will focus in particular on the qT distribution of vector

bosons (γ and Z) produced in Drell-Yan processes. At low qT , this observable can be writ-

ten in terms of Transverse-Momentum-Dependent Parton Distribution Functions (TMD

PDFs or, in short, TMDs), which describe the distribution of partons as a function not

only of the longitudinal momentum fraction x, but also of the partonic transverse momen-

tum k⊥ (see, e.g., refs. [1–3] and references therein). TMDs are partially computable by

means of well-established perturbative methods that take into account soft and collinear

radiation to all orders. However, calculations based on perturbative QCD become unreli-

able for values of transverse momentum close to the Landau pole (ΛQCD). In this regime,

non-perturbative components have to be included and have to be determined through fits

to experimental data.

Several works in the past have studied the non-perturbative components in Drell-Yan

qT distributions [4–11] or in semi-inclusive DIS [12, 13], without directly mentioning TMDs.

More recent works directly performed extractions of TMDs from Drell-Yan data [14–16],

semi-inclusive DIS data [17, 18] or both [19–22]. Alternatively, TMDs were determined in

the so-called parton-branching approach by solving evolution equations with an iterative

method similar to parton showers but including transverse momentum dependence [23, 24].

A precise knowledge of TMDs is useful not only to investigate the structure of the nu-

cleon in greater detail, but also to improve the reliability of predictions involving TMDs. At

high energies, the perturbative part of TMDs may be dominant, but when extreme precision

is required, also the non-perturbative components become relevant (see, e.g., ref. [25]).

In this work, we will determine the unpolarised quark TMDs by fitting Drell-Yan data

from experiments at Tevatron, RHIC, LHC, and low-energy experiments at Fermilab, for

a total of around 350 data points. The dataset is similar to the one studied in ref. [16], but

there are some important differences: whenever available, we use cross-section measure-

ments without any normalisation factor; TMD evolution is implemented in a different way;

for the first time, TMD evolution is implemented up to next-to-next-to-next-to-leading

logarithmic (N3LL) accuracy. Compared to ref. [21], we exclude data from semi-inclusive

Deep Inelastic Scattering, but we greatly extend the Drell-Yan data dataset, we improve

the logarithmic accuracy, we study normalisations with much greater care, and we abandon

the narrow-width approximation for Z -boson production data.

The paper is organised as follows. In section 2, we give some details of the theoretical

framework. In section 3, we describe the selection of experimental data. In section 4, we

show our results. Finally, in section 5 we draw our conclusions.

2 Theoretical framework

In this section we describe the theoretical framework of our analysis. In section 2.1, we

review the TMD factorisation formula for the Drell-Yan (DY) process. In section 2.2, we

briefly describe the evolution of TMDs and how they can be matched onto the collinear
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Figure 1. Diagram displaying the relevant momenta involved in a Drell-Yan event. In a reference

frame in which two colliding nucleons move along the z direction with 4-momenta P1 and P2, a quark

with 4-momentum k1 and transverse momentum k⊥1 annihilates with a parton with 4-momentum

k2 and transverse momentum k⊥2. A (virtual) photon (or Z) is produced with 4-momentum q and

transverse momentum qT = k⊥1 + k⊥2.

PDFs. Section 2.3 collects the perturbative ingredients of the factorised formula within

the particular choice of the evolution scales adopted in this analysis. In section 2.4, we

discuss how these perturbative ingredients are to be combined to achieve a given loga-

rithmic accuracy of the resummation provided by TMD factorisation. In this context, we

also review the different logarithmic-counting prescriptions used in the literature, high-

lighting the possible differences. Finally, in section 2.5 we motivate the introduction of a

non-perturbative contribution that needs to be determined from data, and we discuss its

particular functional form.

2.1 Drell-Yan cross section in TMD factorisation

In the inclusive Drell-Yan process

h1(P1) + h2(P2) −→ γ∗/Z(q) +X −→ `+(l) + `−(l′) +X , (2.1)

two hadrons h1 and h2 with 4-momenta P1 and P2, respectively, collide with center-of-mass

energy squared s = (P1 +P2)2 and produce a neutral vector boson γ∗/Z with 4-momentum

q and large invariant mass Q =
√
q2. The vector boson eventually decays into a lepton

and an antilepton with 4-momenta constrained by momentum conservation, q = l + l′.

The absolute value of the transverse momentum and the rapidity of the neutral boson (or,

equivalently, of the lepton pair) are defined as

qT =
√
q2
x + q2

y , y =
1

2
ln

(
q0 + qz
q0 − qz

)
, (2.2)

where the z direction is defined by the hadronic-collision axis (see figure 1).

We are specifically interested in the transverse-momentum distribution of the vector

boson in the small-qT region (qT � Q). In this regime, the (unpolarised) differential cross

section factorises and can be expressed in terms of the (unpolarised) TMDs of the two
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hadrons as

dσ

dQdydqT
=

16π2α2qTP
9Q3

H(Q,µ)
∑
q

cq(Q)

×
∫
d2k⊥1 d

2k⊥2 x1f
q
1

(
x1,k

2
⊥1;µ, ζ1

)
x2f

q̄
1

(
x2,k

2
⊥2;µ, ζ2

)
δ(2)
(
k⊥1 + k⊥2 − qT

)
,

(2.3)

where α is the electromagnetic coupling and P is the phase-space reduction factor due to

possible kinematic cuts on the final-state leptons (see appendix C).1 The hard factor H

represents the perturbative part of the hard scattering and depends on the hard scale Q

and on the renormalisation scale µ. The summation over q in eq. (2.3) runs over the active

quarks and antiquarks at the scale Q, and cq are the respective electroweak charges given by

cq(Q) = e2
q − 2eqVqV` χ1(Q) + (V 2

` +A2
` ) (V 2

q +A2
q)χ2(Q) , (2.4)

with

χ1(Q) =
1

4 sin2 θW cos2 θW

Q2(Q2 −M2
Z)

(Q2 −M2
Z)2 +M2

ZΓ2
Z

, (2.5)

χ2(Q) =
1

16 sin4 θW cos4 θW

Q4

(Q2 −M2
Z)2 +M2

ZΓ2
Z

, (2.6)

where eq, Vq, and Aq are respectively the electric, vector, and axial charges of the flavour

q; V` and A` are the vector and axial charges of the lepton `; sin θW is the weak mixing

angle; MZ and ΓZ are mass and width of the Z boson.

The second line of eq. (2.3) displays the convolution of the TMDs f q1 and f q̄1 of the

hadrons h1 and h2, respectively. It describes the annihilation of a quark q, with longitudinal

momentum fraction x1 = Qey/
√
s and transverse momentum k⊥1, with the corresponding

antiquark q̄, with longitudinal momentum fraction x2 = Qe−y/
√
s and transverse momen-

tum k⊥2. In the annihilation, the momentum conservation is guaranteed by the presence

of δ(2)
(
k⊥1 + k⊥2 − qT

)
(see figure 1).

As a consequence of renormalisation and of the removal of the rapidity divergences [27],

TMDs acquire a dependence on the renormalisation scale µ and on the so-called rapidity

scale ζ. We will discuss our choice for these scales in section 2.3. Here, we just remark that

the rapidity scales ζ1 and ζ2 in eq. (2.3) must obey the kinematic constraint ζ1ζ2 = Q4.

It is convenient to rewrite the convolution in the conjugate position space by using the

Fourier transform of each TMD, defined as2

f̂ q1
(
x, bT ;µ, ζ

)
=

∫
d2k⊥ e

ik⊥·bT f q1
(
x,k2

⊥;µ, ζ
)
, (2.7)

1In the presence of cuts on single lepton variables, an additional parity-violating term contributes to the

cross section [26]. However, in appendix C we argue that this contribution is negligible in the experimental

conditions considered in this paper.
2For simplicity, in the rest of the paper we will refer to the bT -dependent function f̂1 as to TMD but

understanding that this is in fact the Fourier transform of the actual TMD f1. Note that in ref. [21] the

variable ξT was used in place of bT . The reason was to avoid confusion with the impact parameter used in

the GPD literature for which the symbol bT is typically used. In this paper, we decided to use bT as it is

more common in the TMD, qT -resummation, and SCET literature but keeping in mind that this is not the

impact parameter but the Fourier conjugate variable of qT . Finally, we notice that in ref. [21] the Fourier

transform was defined with an extra 1/(2π) factor.
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where bT is the absolute value of the vector bT (bT = |bT |). By using eq. (2.7), we can

rewrite the convolution of TMDs as∫
d2k⊥1 d

2k⊥2 x1f
q
1

(
x1,k

2
⊥1;µ, ζ1

)
x2f

q̄
1

(
x2,k

2
⊥2;µ, ζ2

)
δ(2)
(
k⊥1 + k⊥2 − qT

)
=

∫
d2bT
(2π)2

eibT ·qT x1f̂
q
1

(
x1, bT ;µ, ζ1

)
x2f̂

q̄
1

(
x2, bT ;µ, ζ2

)
=

1

2π

∫ ∞
0

dbT bT J0

(
bT qT

)
x1f̂

q
1

(
x1, bT ;µ, ζ1

)
x2f̂

q̄
1

(
x2, bT ;µ, ζ2

)
,

(2.8)

where J0 is the 0-th order Bessel function of the first kind that has the following integral

representation

J0(x) =
1

2π

∫ 2π

0
dθ eix cos θ . (2.9)

By inserting eq. (2.8) into the cross section in eq. (2.3), we finally get

dσ

dQdydqT
=

8πα2qTP
9Q3

H(Q,µ)

×
∑
q

cq(Q)

∫ ∞
0

dbT bT J0

(
bT qT

)
x1f̂

q
1

(
x1, bT ;µ, ζ1

)
x2f̂

q̄
1

(
x2, bT ;µ, ζ2

)
,

(2.10)

which is the formula actually implemented in our analysis of Drell-Yan data.

2.2 TMD evolution and matching

In eq. (2.10), the dependence of the TMDs f̂
q(q̄)
1 on the scales µ and ζ arises from the removal

of the ultraviolet and rapidity divergences in their operator definition. Each dependence is

controlled by an evolution equation:

∂ ln f̂1

∂ lnµ
= γ(µ, ζ) ,

∂ ln f̂1

∂ ln
√
ζ

= K(µ) , (2.11)

where γ is the anomalous dimension of the Renormalisation Group (RG) evolution in µ,

and K is the anomalous dimension of the Collins-Soper evolution in
√
ζ [28]. Notice that,

for brevity, we have dropped the flavour index q and q̄. Moreover, since in this section

we will only be concerned with the dependence of f̂1 on the scales µ and ζ, we will also

temporarily drop the dependence on x and bT . In addition to the evolution equations in

eq. (2.11), the rapidity anomalous dimension K obeys its own RG equation:

∂K

∂ lnµ
= −γK

(
αs(µ)

)
, (2.12)

where γK is known as cusp anomalous dimension. Since the crossed double derivatives of

f̂1 must be equal, using eqs. (2.11) and (2.12) we also get

∂γ

∂ ln
√
ζ

= −γK
(
αs(µ)

)
. (2.13)
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Using the point ζ = µ2 as a boundary condition, the solution of this differential equation is

γ(µ, ζ) = γF
(
αs(µ)

)
− γK

(
αs(µ)

)
ln

√
ζ

µ
, (2.14)

where γF (αs(µ)) ≡ γ(µ, µ2). If the TMD f̂1 is known at some starting scales µ0 and ζ0,

the solution of the evolution equations in eq. (2.11) reads

f̂1(µ, ζ) = R
[
(µ, ζ)← (µ0, ζ0)

]
f̂1(µ0, ζ0) , (2.15)

where the so-called Sudakov form factor R accounts for the perturbative evolution of f̂1

and it is defined as

R
[
(µ, ζ)← (µ0, ζ0)

]
= exp

{
K(µ0) ln

√
ζ√
ζ0

+

∫ µ

µ0

dµ′

µ′

[
γF (αs(µ

′))− γK(αs(µ
′)) ln

√
ζ

µ′

]}
.

(2.16)

We note that eq. (2.16) can be implemented in various ways [29–32]. In this work, we follow

the standard approach described in [27]. Moreover, we calculate all ingredients involved in

eq. (2.16) by adopting a fully numerical approach.

An important property of the TMD f̂1 is that at small values of bT it can be matched

onto the collinear PDF f1. Reinstating for clarity the x and bT dependence and introducing

the matching coefficient function C, we can write3

f̂1(x, bT ;µ0, ζ0) =

∫ 1

x

dy

y
C(y, bT ;µ0, ζ0)f1

(
x

y
;µ0

)
≡
[
C ⊗ f1

]
(x, bT ;µ0, ζ0) . (2.17)

Then, the actual evolved TMD becomes

f̂1(x, bT ;µ, ζ) = R
[
bT ; (µ, ζ)← (µ0, ζ0)

][
C ⊗ f1

]
(x, bT ;µ0, ζ0) . (2.18)

2.3 Perturbative content

In order to use eq. (2.18) in phenomenological applications, we need to define the values

of both the initial and final pairs of scales, (µ0, ζ0) and (µ, ζ). It turns out that in the MS

renormalisation scheme there exists a particular scale,

µb(bT ) =
2e−γE

bT
, (2.19)

with γE the Euler constant, such that the rapidity anomalous dimension K and the match-

ing coefficient C computed at µ0 =
√
ζ0 = µb admit a pure perturbative expansion free of

explicit logarithms of the scales. Therefore, µb provides a natural choice for µ0 and
√
ζ0.

The final renormalisation scale µ must match the one used in the hard factor H in

eq. (2.10). Therefore, µ has to be of order Q for avoiding large logarithms in H: we choose

µ = Q. Any variation of µ with respect to this choice can be accounted for by expanding

the solution of the RG equation for the strong coupling αs. The rapidity scales ζ1 and

3A sum over flavours is understood. The matching function C has to be regarded as a matrix in flavour

space multiplying a column vector of collinear PDFs.
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ζ2 in eq. (2.10) are bound to comply with ζ1ζ2 = Q4. Therefore, the natural choice is

ζ1 = ζ2 = Q2. However, we stress that any choice that fulfils this constraint leads to the

same cross section. In fact, from eq. (2.16) it should be evident that the evolution factors

R entering the two TMDs in eq. (2.10) combine in such a way that the result only depends

on the product ζ1ζ2.

After choosing the scales, we discuss the perturbative ingredients that result from this

particular choice. We first consider the hard function H. Up to two-loop accuracy, its

perturbative expansion is

H(Q,Q) = 1 +
2∑

n=1

(
αs(Q)

4π

)n
H(n) . (2.20)

The coefficients H(n) can be read off from, e.g., ref. [33]. When going beyond O(α2
s), the

hard function acquires a non-trivial flavour structure (see, e.g., ref. [34]). As a consequence,

H should in principle be moved inside the flavour sum in eq. (2.10). However, in the present

analysis we do not consider corrections beyond O(α2
s) and eq. (2.10) is appropriate.

Next, we consider the matching function C introduced in eq. (2.17). By making the

flavour and x dependences explicit, the C have the following perturbative expansion

Cij(x, bT ;µb, µ
2
b) = δijδ(1− x) +

∞∑
n=1

(
αs(µb)

4π

)n
C

(n)
ij (x) . (2.21)

The coefficient functions C
(n)
ij up to n = 2 have been computed in refs. [35, 36]. They

have been reported also in ref. [34], where the authors have verified the consistency of the

results. The calculation of the O(α3
s) corrections to the quark matching functions appeared

very recently in ref. [37].

As for the anomalous dimensions K, γF , and γK in the Sudakov form factor in

eq. (2.16), their perturbative expansions read, respectively,

K(µb) =

∞∑
n=0

(
αs(µb)

4π

)n+1

K(n) ,

γF (αs(µ)) =
∞∑
n=0

(
αs(µ)

4π

)n+1

γ
(n)
F ,

γK(αs(µ)) =
∞∑
n=0

(
αs(µ)

4π

)n+1

γ
(n)
K .

(2.22)

The coefficients K(n) are listed up to n = 3 in ref. [36] and up to n = 2 in ref. [34]. They

differ by a factor −2 due to a different definition of K. Also the coefficients γ
(n)
F are given

in refs. [34, 36] up to n = 2, and they differ by a minus sign due to a different definition

of the anomalous dimension. Finally, the coefficients γ
(n)
K were originally computed in

ref. [38] and are also given in refs. [34, 36] up to n = 2, where they differ by a factor 2.

The coefficient γ
(3)
K has been recently computed in refs. [39–41].
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2.4 Logarithmic ordering

In this section, we discuss how to combine in a consistent way the perturbative ingredi-

ents of eqs. (2.20)–(2.22) for the computation of the cross section in eq. (2.10) (see also

refs. [42, 43]).

As is well known, TMD factorisation provides resummation of large logarithms of Q/qT
or, equivalently, of Q/µb. The resummation is implemented in the Sudakov form factor R

in eq. (2.16) whose perturbative expansion reads

R = 1 +
∞∑
n=1

(
αs(Q)

4π

)n 2n∑
k=1

LkR(n,k) , (2.23)

with

L = ln
Q2

µ2
b

. (2.24)

Because of the inner sum running up to 2n, eq. (2.23) exposes the double-logarithmic

nature of the resummation. This structure can be traced back to the evolution equations

in eq. (2.11) that resum two different categories of logarithms. However, our particular

choice of the scales (µ0 =
√
ζ0 = µb and µ =

√
ζ = Q) makes the two categories to coincide,

producing up to two logarithms for each power of αs. Consequently, eq. (2.23) must include

all powers of αs if the scales are such that αsL
2 & 1.

The expansion (2.23) can be rearranged to define a logarithmic ordering as

R = 1 +

∞∑
k=0

RNkLL , (2.25)

with

RNkLL =

∞∑
n=1+[k/2]

(
αs(Q)

4π

)n
L2n−kR(n,2n−k) , (2.26)

where [k/2] is the integer part of k/2. According to this definition, the term k = 0 in

eq. (2.25) gives the leading-logarithmic (LL) approximation, the term k = 1 gives the

next-to-leading-logarithmic (NLL) approximation, and so on. Multiplication of RNkLL by

a power p of αs gives(
αs(Q)

4π

)p
RNkLL =

∞∑
m=1+[(k+2p)/2]

(
αs(Q)

4π

)m
L2m−(k+2p)R(m−p,2m−(k+2p)) ∼ RNk+2pLL ,

(2.27)

where the symbol ∼ means that the left- and right-hand sides have the same logarithmic

accuracy. This step is relevant because in the cross section the Sudakov form factor,

eq. (2.25), can be multiplied by some power of αs originating from the hard factor H

and/or the matching functions C. Equation (2.27) states that, at the cross section level,

the inclusion of an additional power of αs in the perturbative expansion of H and/or C

implies a contribution two orders higher with respect to the leading term in the logarithmic

expansion. For example, at LL and NLL accuracy the functions H and C can be computed
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1 L L2 L3 L4 L5 L6 L7 L8 …

1 1

αs ℋ(1) R(1,1) R(1,2)

α2
s ℋ(2) R(2,1) R(2,2) R(2,3) R(2,4)

α3
s ℋ(3) R(3,1) R(3,2) R(3,3) R(3,4) R(3,5) R(3,6)

α4
s ℋ(4) R(4,1) R(4,2) R(4,3) R(4,4) R(4,5) R(4,6) R(4,7) R(4,8)

⋮ N6LL N5LL N4LL N3LL N2LL NLL  LL

1 L L2 L3 L4 L5 …

αs ℋ(1) g(1,1)2 g(1,2)1

α2
s ℋ(2) g(2,1)3 g(2,2)2 g(2,3)1

α3
s ℋ(3) g(3,1)4 g(3,2)3 g(3,3)2 g(3,4)1

α4
s ℋ(4) g(4,1)5 g(4,2)4 g(4,3)3 g(4,4)2 g(4,5)1

⋮ N4LL N3LL N2LL NLL LL

Figure 2. Graphical representation of logarithmic countings: in the left panel the counting is done

at the level of the cross section, in the right panel at the level of the logarithm of the cross section.

at O(1), at NNLL and N3LL they need to include the O(αs) corrections, and so on. This

logarithmic counting is illustrated in the left panel of figure 2: the diagonal bands represent

the terms included in each RNkLL, with H(n) the perturbative coefficients of either H or C

or a combination of the two.

The counting discussed above generally applies to any process whose amplitude fac-

torises in the appropriate limit, such as DY in the qT � Q limit (TMD factorisation).

However, in the specific case of DY (i.e., inclusive with respect to soft-collinear QCD radi-

ation) also the phase space for the emission of n real particles in bT space factorises (see,

e.g., ref. [44]). This feature, along with the factorisation of the amplitude in the qT � Q

limit, allows one to exponentiate soft-collinear emissions such that the Sudakov form factor

can be written in the following general form (see, e.g., ref. [45])4

R = exp

[
1

2
Lg(1)(αsL) +

1

2
g(2)(αsL) +

1

2
αsg

(3)(αsL) + . . .

]
, (2.28)

where the functions g(i) are such that g(i)(0) = 0. As compared to the general counting

in eq. (2.23), exponentiation relates all the terms in eq. (2.23) of the type αnsL
m with

n + 1 < m ≤ 2n to the lower-order terms. In eq. (2.28), the logarithmic counting is

performed at the level of the argument of the exponential. In this context, the terms Lg(1),

g(2), αsg
(3), etc., resum, respectively, the LL contributions αnsL

n+1, the NLL contributions

αnsL
n, the NNLL contributions αnsL

n−1, etc.. Contrary to eq. (2.23), this counting is driven

by the condition αsL & 1. This extends the validity of the resummed result (truncated at

a given level: NLL, NNLL, etc.) to larger values of L (smaller values of qT /Q).

The logarithmic counting applied to the argument of the exponential is equivalent

to consider the logarithm of the cross section [33]. In fact, neglecting for simplicity the

matching functions, we schematically have

ln

(
dσ

dQdydqT

)
∝ lnH + Lg(1) + g(2) + αsg

(3) + . . . (2.29)

4The factors 1/2 in the argument of the exponential are justified by the fact that each of the two TMDs

involved in the DY cross section contains an evolution factor R. In this way, eq. (2.28) matches the literature

on qT -resummation where the Sudakov form factor is usually defined as the combination of both R’s.
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The logarithm of H can be expanded as

ln(1 + αsH
(1) + α2

sH
(2)) = αsH

(1) + α2
s

(
H(2) − H(1)2

2

)
+O(α3

s) . (2.30)

The first term αsH
(1) contributes to the tower αnsL

n−1, that is the NNLL contribution.

The second term α2
s

(
H(2) −H(1)2/2

)
contributes to the αnsL

n−2 tower, thus to the N3LL

contribution. The same counting applies to the matching functions C. The conclusion

is that including O(αs) contributions in H and C implies introducing NNLL corrections,

O(α2
s) contributions in H and C contribute to N3LL accuracy, and so on. A graphical

representation of this counting is sketched in the right panel of figure 2. Again, the bands

represent the logarithmic towers, while H(n)
are the appropriate coefficients of the expan-

sion of either lnH or lnC or a combination. This logarithmic counting has been used in

several papers (see, e.g., refs. [10, 33, 46, 47]). In this work, we will simply denote this

counting with the acronyms NLL, NNLL, and so on, and for convenience we will refer to

it as to “standard counting”.

A slightly different counting has also been widely used in the literature (see, e.g.,

refs. [42, 48–51]). Expanding the Sudakov form factor (2.28) and multiplying it by the

expansion of the hard function in eq. (2.20), we obtain for the cross section

dσ

dQdydqT
∝ 1 + Lg(1) + g(2) +H(1)αsLg

(1) + . . . , (2.31)

where the rightmost term stems from the combination of the first-order terms αsH
(1) and

Lg(1) in both expansions. As it is clear from the previous discussion, this term has the same

form αnsL
n as g(2). Then one can argue that NLL accuracy requires the inclusion not only

of g(2) but also of H(1) [48]. This argument works to all orders: at any given logarithmic

accuracy, it prescribes to include one more order in the perturbative expansion of H (and/or

C) with respect to the standard counting. We will refer to this counting as the to “primed

counting”, denoting it as NLL′, NNLL′, and so on. The apparent contradiction between

the standard and primed countings is resolved by observing that the first term of the

perturbative expansion of αsLg
(1) is proportional to α2

sL
2. When considering the general

expansion of the cross section given in eqs. (2.25)–(2.27), a term proportional to α2
sL

2 is of

the form αnsL
2n−2 and thus belongs to the NNLL tower. This is formally subleading with

respect to the NLL accuracy determined by the g(2) term in the exponent.

Accurate predictions over a wide range in qT require matching resummed calculations

(valid at qT � Q) to the corresponding fixed-order calculation (valid at qT . Q). In this

context, the primed ordering turns out to be more advantageous. Indeed, the accuracy of

a fixed-order calculation is measured in terms of powers of αs relative to the leading term.

In order to produce a Z boson with large qT , it is necessary to produce (at least) a second

object with large transverse momentum against which the Z boson recoils, i.e., a jet. As a

consequence, the leading-order (LO) contribution to the qT distribution of the Z at fixed

order is O(αs). The NLL′ prescription correctly reproduces the small-qT limit of the LO

fixed-order calculation. It is then possible to realise the matching in an additive way by
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Accuracy H and C K and γF γK PDF and αs evolution

LL 0 – 1 –

NLL 0 1 2 LO

NLL′ 1 1 2 NLO

NNLL 1 2 3 NLO

NNLL′ 2 2 3 NNLO

N3LL 2 3 4 NNLO

Table 1. Truncation order in the expansions of eqs. (2.20)–(2.22) for the two logarithmic countings

considered in this paper (see text). The last column reports the order used for the evolution of the

collinear PDFs and αs.

combining the NLL′ resummed calculation with the LO fixed-order one (NLL′ + LO). The

procedure can be extended to higher orders: NNLL′ + NLO, N3LL′ + NNLO, and so

on. Conversely, in the standard counting the matching to the LO fixed-order calculation

requires to go further to NNLL accuracy (NNLL + LO), combining in this way a rather

accurate calculation at small qT with a poorly accurate calculation at large qT . At higher

orders one has N3LL + NLO, N4LL + NNLO, and so on. We remark that other forms of

matching can be used to overcome the limitation of the standard counting [33, 52, 53].

Finally, table 1 summarises the perturbative ingredients to be used for a consistent

computation of the cross section in eq. (2.10) for both the standard and the primed count-

ings. The numbers in table 1 give the maximum power of αs at which the corresponding

quantity is to be computed, while the last column reports the corresponding accuracy in

computing the evolution of the collinear PDFs and of the coupling αs.
5 In this analysis,

we have used the PDF sets of the MMHT2014 family [54] at the appropriate perturbative

order accessed through the LHAPDF interface [55].

2.5 Non-perturbative content and its parameterisation

In the previous section, we noticed that in the MS scheme the rapidity evolution kernel K

and the matching functions C can be made free of logarithms of the scales by introducing

the natural scale µb defined in eq. (2.19). Consistently, in the perturbative expansion

of K (see first line of eq. (2.22)) and C (see eq. (2.21)) the strong coupling αs must be

computed at µb. For large values of bT , µb becomes small such that αs(µb) may potentially

become very large and eventually diverge when µb reaches the Landau pole at ΛQCD. As a

matter of fact, the integral in eq. (2.10) does require accessing large values of bT . It is then

necessary to regularise this divergence by introducing a prescription that avoids integrating

over the Landau pole. Different possibilities are available (see, e.g., refs. [53, 56]). In this

paper, we adopt the prescription originally proposed in ref. [57]: we introduce the arbitrary

5In the “unprimed” counting, αs is evolved at one loop less than the cusp anomalous dimensions for

two reasons: first, the running coupling renormalization group equation resums single logs, therefore the β

function can be taken at the same order as the non-cusp anomalous dimension. Secondly, in our analysis

for consistency we take αs from the LHAPDF grid of the PDF set we use.
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parameter bmax that denotes the maximum value of bT at which perturbation theory is

considered reliable. Hence, bmax must be such that

αs

(
2e−γE

bmax

)
� 1 . (2.32)

Moreover, we also want to prevent µb from becoming much larger than the hard scale Q

(µb � Q). Despite not strictly mandatory (especially when considering only small values

of qT ), this feature makes it possible to expand the cross section integrated in qT , with the

lowest-order term reproducing the lowest-order collinear result [58]. To this end, we define

bmin =
2e−γE

Q
, (2.33)

and introduce a monotonic function b∗(bT ) with the following asymptotic behaviours

b∗(bT )→ bmin for bT → 0 ,

b∗(bT )→ bmax for bT →∞ .
(2.34)

In this analysis, we adopt for b∗(bT ) the same functional form chosen in ref. [21] that

guarantees a smooth and rapid convergence towards the asymptotic limits:

b∗(bT ) = bmax

1− exp
(
− b4T
b4max

)
1− exp

(
− b4T
b4min

)


1
4

. (2.35)

Now, we simply write the TMD f̂1 as

f̂1(x, bT ;µ, ζ) =

[
f̂1(x, bT ;µ, ζ)

f̂1(x, b∗(bT );µ, ζ)

]
f̂1(x, b∗(bT );µ, ζ)

≡ fNP(x, bT , ζ)f̂1(x, b∗(bT );µ, ζ) .

(2.36)

This separation effectively defines fNP. The advantage is that, due to the behaviour of

b∗(bT ) for large values of bT , f̂1(x, b∗(bT ), µ, ζ) remains in the perturbative region. The

non-perturbative contributions are instead confined into fNP, that has to be determined

through a fit to experimental data. However, using eq. (2.36), we can work out some

general properties of fNP. First, fNP does not depend on the renormalisation scale µ. To

see this, using eqs. (2.15) and (2.16) with µ0 =
√
ζ0 = µb, we find

fNP(x, bT , ζ) =
f̂1(x, bT ;µ, ζ)

f̂1(x, b∗(bT );µ, ζ)
= exp

{
K(µb) ln

√
ζ

µb
−K(µb∗) ln

√
ζ

µb∗

+

∫ µb∗

µb

dµ′

µ′

[
γF (αs(µ

′))− γK(αs(µ
′)) ln

√
ζ

µ′

]}
f̂1(x, bT ;µb, µ

2
b)

f̂1(x, b∗(bT );µb∗ , µ
2
b∗

)
,

(2.37)

with µb∗ ≡ µb(b∗(bT )). The dependence on µ evidently cancels in the ratio. In addition,

for large values of bT µb∗ saturates to some minimal value while µb becomes increasingly
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small. As a consequence of this departure between µb∗ and µb, as well as between
√
ζ and

µb, the exponential in eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as

bT becomes small b∗ approaches bmin. Using the definition in eq. (2.33), it follows that µb∗
saturates to Q while µb becomes larger and larger. In this limit, we have [58]

fNP −→
bT→0

1 +O
(

1

Qp

)
, (2.38)

where p is some positive number. Since TMD factorisation applies to leading-power in

qT /Q, we can neglect the power suppressed contribution such that fNP → 1 for bT → 0.

It is important to stress that the separation between perturbative and non-perturbative

components of a TMD is arbitrary and depends on the particular choice of b∗ (or in general

on the prescription used to regularise the Landau pole). For any given choice, only the

combination in eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the

non-perturbative part of TMDs in a universal sense.

Following the requirements discussed above, we parameterise fNP as

fNP(x, bT , ζ) =

[
1− λ

1 + g1(x)
b2T
4

+ λ exp

(
−g1B(x)

b2T
4

)]

× exp

[
−
(
g2 + g2Bb

2
T

)
ln

(
ζ

Q2
0

)
b2T
4

]
,

(2.39)

with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by

g1(x) =
N1

xσ
exp

[
− 1

2σ2
ln2
(x
α

)]
,

g1B(x) =
N1B

xσB
exp

[
− 1

2σ2
B

ln2

(
x

αB

)]
.

(2.40)

There are a total of 9 free parameters (λ, g2, g2B, N1, σ, α,N1B, σB, αB) to be determined

from data.

Apart from the logarithmic dependence on ζ, the functional form (2.39) is moti-

vated by empirical considerations. The first line parameterises the “intrinsic” TMD non-

perturbative contribution and it only depends on x and bT . The second line accounts for

the non-perturbative correction to the perturbative evolution. Therefore, it only depends

on bT (on top of the known dependence on ζ).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution

(first term) and a standard Gaussian distribution (second term). The q-Gaussian has a

larger tail than the standard Gaussian, meaning that it gives a bigger contribution to the

TMD at small transverse momentum. We found that this combination is able to reproduce

the behaviour at very small qT of the experimental distributions from the lowest to the

highest energies considered in our analysis.

The functions g1 and g1B in eq. (2.40) are related to the width of the TMD distribu-

tion. They are expected to depend on x on the basis of model calculations (see ref. [59] and

references therein) and more generally from Lorentz invariance constraints on the proton
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light-front wave functions (see, e.g., the discussion in ref. [60]). To best describe experi-

mental data, we found it necessary to have wider TMDs at intermediate x. A log-normal

dependence of g1 and g1B allowed us to properly describe the datasets differential in the

boson rapidity y. In fact, as we will show below, the x dependence of fNP is almost entirely

determined by the ATLAS datasets, the only ones differential in y. Our present results

are quite different from the ones obtained through fits to semi-inclusive DIS data [21]. We

expect that the addition of further datasets from DIS experiments [61, 62] will provide

more sensitivity to the x dependence and possibly lead to different results.

The non-perturbative components of the TMDs could depend also on flavour [17, 25,

63]. However, in this work we refrain from including such dependence since DY data are not

very sensitive to it. We stress that the fact that we can achieve a good description of data

does not exclude the presence of a flavour dependence, which is actually expected on the

basis of model calculations [64–69], lattice QCD studies [70], and also if QED corrections

are taken into account [71, 72]. Higher sensitivity to flavour dependence may be provided

again by semi-inclusive DIS data with different targets and final-state hadrons and possibly

by W -boson production data [73].

Concerning the bT dependence of the non-perturbative evolution in the second line

of eq. (2.39), we have used a customary quadratic term [4, 8, 12, 74] with an additional

quartic term. The latter contribution appears to be useful to reproduce the energy evolution

displayed by the data. Other choices of the functional form have been discussed in, e.g.,

refs. [20, 75–77]. This contribution could be also determined using lattice QCD [78].

3 Experimental data

In this section we describe the experimental data included in this analysis. We considered

qT distributions in DY production from a variety of datasets. Some of these were already

included in the analysis of ref. [21], i.e. data from: E605 [79], E288 [80], CDF Run I [81]

and Run II [82], and D0 Run I [83] and Run II [84]. We refer the reader to ref. [21] for

more details. The new datasets included in the present analysis are:

• Z → µ+µ− distribution from D0 Run II [85],

• forward Z-production data from the LHCb experiment at 7 [85], 8 [86], and 13 [87]

TeV,

• Z-production data from the CMS experiment at 7 [88] and 8 [89] TeV,

• Z-production data differential in rapidity from the ATLAS experiment at 7 [88] and

8 [90] TeV,

• off-peak (low- and high-mass) DY data from the ATLAS experiment at 8 TeV [90],

• preliminary Z-production data from the STAR experiment at 510 GeV.6

6We thank the STAR Collaboration for providing us with the data.
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Figure 3. Kinematic coverage on the x1 vs. x2 plane of the dataset included in the present analysis.

Finally, we originally considered also measurements from the PHENIX experiment at the

center-of-mass energy of 200 GeV [91]. However, due to the cut on qT /Q discussed below,

only two data points from this dataset would be included in the fit. Therefore, we decided

to exclude it.

The breakdown of the entire dataset included in our analysis is reported in table 2. For

visualisation purposes, in figure 3 we show the kinematic coverage of each datasets in the x1

vs. x2 plane, with x1,2 = Qe±y/
√
s. The shaded areas are determined considering the cor-

responding ranges in Q and y, and the center-of-mass energy
√
s.7 As expected, the lower-

energy experiments (E605, E288, and STAR) are placed in the large-x region (x & 0.1).

Particularly important are the new (preliminary) STAR measurements that cover a kine-

matic region that is scarcely populated. The Tevatron experiments, CDF and D0, cover a

particularly wide kinematic region at intermediate values of x. These experiments (except

D0 Run II with muons) provide data extrapolated over the full range in rapidity y, thus ex-

tending across the full available phase space. Finally, the LHC experiments (LHCb, CMS,

and ATLAS) are placed at lower values of x. The LHCb datasets are in a region in which

x1 is particularly small and x2 particularly large: this is due to the fact that the data is

taken in the forward region, 2 < y < 4.5. The ATLAS datasets are binned in rapidity and

thus are expected to be particularly sensitive to the x dependence of the TMDs. Indeed, we

will show below that the x dependence of TMDs is mostly constrained by these datasets.

Since our analysis is based on the TMD factorisation formula in eq. (2.10), only data

at small qT can possibly be described. Hence, we impose a cut to exclude measurements

7It should be kept in mind that figure 3 only provides an approximated view of the real coverage, strictly

true only at tree level. The reason is that x1 and x2 are just the lower bounds of convolution integrals (see,

e.g., eq. (2.17)). Therefore, the effective region of sensitivity actually extends between x1,2 and 1.
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Experiment Ndat Observable
√
s [GeV] Q [GeV] y or xF Lepton cuts Ref.

E605 50 Ed3σ/d3q 38.8 7–18 xF = 0.1 - [79]

E288 200 GeV 30 Ed3σ/d3q 19.4 4–9 y = 0.40 - [80]

E288 300 GeV 39 Ed3σ/d3q 23.8 4–12 y = 0.21 - [80]

E288 400 GeV 61 Ed3σ/d3q 27.4 5–14 y = 0.03 - [80]

STAR 510 7 dσ/dqT 510 73–114 |y| < 1
pT` > 25 GeV

|η`| < 1
-

CDF Run I 25 dσ/dqT 1800 66–116 Inclusive - [81]

CDF Run II 26 dσ/dqT 1960 66–116 Inclusive - [82]

D0 Run I 12 dσ/dqT 1800 75–105 Inclusive - [83]

D0 Run II 5 (1/σ)dσ/dqT 1960 70–110 Inclusive - [84]

D0 Run II (µ) 3 (1/σ)dσ/dqT 1960 65–115 |y| < 1.7
pT` > 15 GeV

|η`| < 1.7
[85]

LHCb 7 TeV 7 dσ/dqT 7000 60–120 2 < y < 4.5
pT` > 20 GeV

2 < η` < 4.5
[86]

LHCb 8 TeV 7 dσ/dqT 8000 60–120 2 < y < 4.5
pT` > 20 GeV

2 < η` < 4.5
[87]

LHCb 13 TeV 7 dσ/dqT 13000 60–120 2 < y < 4.5
pT` > 20 GeV

2 < η` < 4.5
[92]

CMS 7 TeV 4 (1/σ)dσ/dqT 7000 60–120 |y| < 2.1
pT` > 20 GeV

|η`| < 2.1
[88]

CMS 8 TeV 4 (1/σ)dσ/dqT 8000 60–120 |y| < 2.1
pT` > 15 GeV

|η`| < 2.1
[89]

ATLAS 7 TeV

6

6

6

(1/σ)dσ/dqT 7000 66–116

|y| < 1

1 < |y| < 2

2 < |y| < 2.4

pT` > 20 GeV

|η`| < 2.4
[93]

ATLAS 8 TeV

on-peak

6

6

6

6

6

6

(1/σ)dσ/dqT 8000 66–116

|y| < 0.4

0.4 < |y| < 0.8

0.8 < |y| < 1.2

1.2 < |y| < 1.6

1.6 < |y| < 2

2 < |y| < 2.4

pT` > 20 GeV

|η`| < 2.4
[90]

ATLAS 8 TeV

off-peak

4

8
(1/σ)dσ/dqT 8000

46–66

116–150
|y| < 2.4

pT` > 20 GeV

|η`| < 2.4
[90]

Total 353 - - - - - -

Table 2. Breakdown of the datasets included in this analysis. For each dataset, the table includes

information on: the number of data points (Ndat) passing the nominal cut on qT /Q, the observable

delivered, the center of mass energy
√
s, the range(s) in invariant mass Q, the angular variable

(either y or xF ), possible cuts on the single final-state leptons, and the public reference (when

available). The total number of data points amounts to 353. Note that for E605 and E288 400 GeV

we have excluded the bin in Q containing the Υ resonance (Q ' 9.5 GeV).
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with large qT by requiring qT /Q < 0.2. Since the measurements are delivered in transverse-

momentum bins [qT,min: qT,max] integrated over some range in invariant mass [Qmin: Qmax],

the cut is conservatively imposed on the ratio qT,max/Qmin. The second column in table 2

reports the number of data points (Ndat) for each dataset that pass this cut: the total

number of points included in our analysis is 353.

An important feature of all the new datasets listed above is that the cross sections

are given within a certain fiducial region. In particular, kinematic cuts on transverse

momentum pT` and pseudo-rapidity η` of the final-state leptons are enforced. The values

of the cuts are reported in the next-to-last column of table 2. Our predictions are corrected

by means of the phase-space reduction factor P introduced in eq. (2.10), which takes into

account these cuts. Details concerning the calculation of P are given in appendix C.

As evident from the “Observable” column of table 2, experimental cross sections are

released in different forms. In addition, some of them are normalised to the total (fiducial)

cross section while others are not. In our analysis, we expressed all the absolute cross sec-

tions in terms of the observable given in eq. (2.10) (details on the transformations between

different observables can be found in ref. [21]). When necessary, the total cross section

σ required to normalise the differential cross sections is computed using DYNNLO [94, 95]

with the MMHT2014 collinear PDF sets [54], taking into account the selection cuts and con-

sistently with the perturbative order of the differential cross section. More precisely, the

total cross section is computed at LO for NLL accuracy, at NLO for NLL’ and NNLL,

and at NNLO for NNLL’ and N3LL. The values of the total cross sections at different

orders are reported in table 3. We stress that in this analysis no additional normalisations

have been applied, with the consequence that both the shape and the normalisation of the

experimental distributions have an impact on the fit.

Most of the considered experimental datasets are released with a set of uncorrelated

and correlated uncertainties. As already pointed out in ref. [16], a proper treatment of

the experimental uncertainties is crucial to achieve a reliable extraction of TMDs. In

other words, the χ2, which quantifies the agreement between data and predictions and

is minimised during the fit, has to be computed taking into account the nature of the

various uncertainties. Particular care has to be taken with the (correlated) normalisation

uncertainties. As is well known, an inappropriate description of normalisation uncertainties

may lead to underestimate the predictions: that is the so-called D’Agostini bias [96, 97].

Different prescriptions have been devised to avoid this problem [98]: in this analysis we

adopt the so-called iterative t0-prescription [99].

In the presence of correlated uncertainties, the χ2 can be split as [98]

χ2 = χ2
D + χ2

λ , (3.1)

where χ2
D has an uncorrelated structure (diagonal) while χ2

λ is a penalty term related to

the presence of correlations (see, e.g., appendix B of ref. [16]). For the computation of χ2
D,

theoretical predictions are properly shifted to take into account the effect of the correlated

uncertainties. In fact, shifted predictions are a better proxy for visual comparisons to

experimental data. Therefore, in the following it is understood that all plots will display

shifted predictions.
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Experiment LO [pb] NLO [pb] NNLO [pb]

D0 Run II 170.332 242.077 253.573

D0 Run II (µ) 100.765 119.002 124.675

CMS 7 TeV 291.977 384.569 398.853

CMS 8 TeV 340.132 456.337 473.411

ATLAS 7 TeV

|y| < 1

1 < |y| < 2

2 < |y| < 2.4

196.457

135.511

12.568

251.296

181.267

17.091

253.781

181.466

17.104

ATLAS 8 TeV

on-peak

|y| < 0.4

0.4 < |y| < 0.8

0.8 < |y| < 1.2

1.2 < |y| < 1.6

1.6 < |y| < 2

2 < |y| < 2.4

89.531

89.120

85.499

69.018

43.597

14.398

113.650

112.853

109.800

91.884

59.114

19.574

116.766

115.738

112.457

95.187

62.127

20.937

ATLAS 8 TeV

off-peak

46 GeV < Q < 66 GeV

116 GeV < Q < 150 GeV

15.199

3.805

14.449

5.317

14.368

5.521

Table 3. Total (fiducial) cross sections computed with DYNNLO [94, 95] using the central member of

the MMHT2014 collinear PDF sets [54] and required for the computation of the normalised differential

cross sections at the different perturbative orders.

A further important aspect is the use of collinear PDFs. In order to extract fNP defined

in eq. (2.36), it is necessary to assume a given set of collinear PDFs (MMHT2014 in our

case). PDF uncertainties reflect the experimental uncertainty of the dataset used for their

extraction. It is therefore natural to attribute an experimental nature to this uncertainty

and include it in the calculation of the χ2. To do so, we computed the PDF errors as

relative to the central value8 and included them in the experimental covariance matrix as

uncorrelated uncertainties. The propagation of the resulting experimental uncertainty into

the fitted TMDs is achieved through Monte Carlo sampling. Specifically, we generate Nrep

(& 200) replicas of the original dataset taking into account all the uncertainties and then

perform a fit on each single replica. The resulting ensemble of distributions can be used to

compute central values and uncertainties as averages and correlations, respectively.

A final remark concerns the integration over the final-state phase space. The basic

quantity to be compared to data is

dσ

dqT
=

1

qT,max − qT,min

∫ ymax

ymin

dy

∫ Qmax

Qmin

dQ

∫ qT,max

qT,min

dqT

[
dσ

dQdydqT

]
, (3.2)

where the ranges [ymin: ymax], [Qmin: Qmax], and [qT,min: qT,max] define the phase-space

integration region and the integrand is given in eq. (2.10). In order to speed up the

8The advantage of computing relative uncertainties is that of minimising the dependence on the non-

perturbative function fNP assumed for the computation of both the central PDF set and the error members.

We also notice that the calculation of such uncertainties does include the PDF uncertainty on the total

cross sections when normalised distributions are considered.
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numerical computation of the theoretical predictions, the integration over the bins in qT
and Q is often performed approximating the qT -bin integral with its central value and using

the narrow-width approximation for the integral over Q around the Z peak. We stress that

in this analysis the integrals in eq. (3.2) are computed exactly. While the integrals over

y and Q do need to be computed numerically, the integral over qT can be performed

(semi)analytically exploiting a property of the Bessel functions Jn (see appendix B). This

greatly reduces the amount of numerical computations.

4 Results

In this section, we present the results of our extraction of unpolarised TMDs from a com-

prehensive set of DY data (see section 3). In section 4.1, we present the quality of the fit at

N3LL, the best accuracy we can presently reach. In section 4.2 we discuss the TMDs ex-

tracted from the nominal fit. In section 4.3, we discuss the convergence of the perturbative

corrections. In section 4.4, we focus on the x dependence of the TMDs and we argue that

it is mostly constrained by the y-differential ATLAS cross sections. Finally, in section 4.5,

we assess the range of validity of TMD factorisation by considering the fit quality as a

function of the cut on qT /Q.

4.1 Fit quality

In this section, we discuss the quality of the reference fit at N3LL with cut qT /Q < 0.2. In

order to quantify this quality, the χ2s are evaluated using the mean of the TMDs extracted

from the Monte Carlo replicas of the data. Denoting the Monte Carlo ensemble of TMDs

with {f̂ q,[k]
1 }, k = 1, . . . , Nrep (Nrep being the number of replicas), the mean is defined as

f̂ q1 (x, bT ;µ, ζ) =
1

Nrep

Nrep∑
k=1

f̂
q,[k]
1 (x, bT ;µ, ζ) . (4.1)

The mean value provides a democratic representative of the ensemble. Other choices are

possible, such as the median or the mode of the ensemble. In fact, only the full ensemble

of replicas carries the full statistical information. However, the reason for using eq. (4.1) is

that quantifying the goodness of our fit becomes easier, as it will be clear in the following.

Table 4 reports the breakdown of the χ2s normalised to the number of data points,

Ndat, for each dataset. The uncorrelated (χ2
D) and the correlated (χ2

λ) contributions to the

total χ2 (see eq. (3.1)) are also reported. The global χ2 is shown at the bottom of the table.

The value of the global χ2 is very close to one (1.02), indicating that the fit is able to

describe measurements over a wide energy range, from the low-energy fixed-target datasets

to the LHC ones. It is important to stress that a substantial contribution to the global χ2

is given by the correlated penalty term, χ2
λ/Ndat = 0.14. This highlights the importance

of a correct treatment of the correlated uncertainties. More specifically, the systematic

shifts induced by correlations are often large, indicating that the fit does need to adjust

the predictions within the experimentally correlated ranges.

Concerning the single experiments, we observe that the low-energy data (E605, E288,

and STAR) have generally lower χ2s than the Tevatron (CDF and D0) and LHC (LHCb,
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Experiment χ2
D/Ndat χ2

λ/Ndat χ2/Ndat

E605

7 GeV < Q < 8 GeV

8 GeV < Q < 9 GeV

10.5 GeV < Q < 11.5 GeV

11.5 GeV < Q < 13.5 GeV

13.5 GeV < Q < 18 GeV

0.419

0.995

0.191

0.491

0.491

0.068

0.034

0.137

0.284

0.385

0.487

1.029

0.328

0.775

0.877

E288 200 GeV

4 GeV < Q < 5 GeV

5 GeV < Q < 6 GeV

6 GeV < Q < 7 GeV

7 GeV < Q < 8 GeV

8 GeV < Q < 9 GeV

0.213

0.673

0.133

0.254

0.652

0.649

0.292

0.141

0.014

0.024

0.862

0.965

0.275

0.268

0.676

E288 300 GeV

4 GeV < Q < 5 GeV

5 GeV < Q < 6 GeV

6 GeV < Q < 7 GeV

7 GeV < Q < 8 GeV

8 GeV < Q < 9 GeV

11 GeV < Q < 12 GeV

0.231

0.502

0.315

0.056

0.530

1.047

0.555

0.204

0.063

0.030

0.017

0.167

0.785

0.706

0.378

0.086

0.547

1.215

E288 400 GeV

5 GeV < Q < 6 GeV

6 GeV < Q < 7 GeV

7 GeV < Q < 8 GeV

8 GeV < Q < 9 GeV

11 GeV < Q < 12 GeV

12 GeV < Q < 13 GeV

13 GeV < Q < 14 GeV

0.312

0.100

0.018

0.437

0.637

0.788

1.064

0.065

0.005

0.011

0.039

0.036

0.028

0.044

0.377

0.105

0.029

0.477

0.673

0.816

1.107

STAR 0.782 0.054 0.836

CDF Run I 0.480 0.058 0.538

CDF Run II 0.959 0.001 0.959

D0 Run I 0.711 0.043 0.753

D0 Run II 1.325 0.612 1.937

D0 Run II (µ) 3.196 0.023 3.218

LHCb 7 TeV 1.069 0.194 1.263

LHCb 8 TeV 0.460 0.075 0.535

LHCb 13 TeV 0.735 0.020 0.755

CMS 7 TeV 2.131 0.000 2.131

CMS 8 TeV 1.405 0.007 1.412

ATLAS 7 TeV

0 < |y| < 1

1 < |y| < 2

2 < |y| < 2.4

2.581

4.333

3.561

0.028

1.032

0.378

2.609

5.365

3.939

ATLAS 8 TeV

on-peak

0 < |y| < 0.4

0.4 < |y| < 0.8

0.8 < |y| < 1.2

1.2 < |y| < 1.6

1.6 < |y| < 2

2 < |y| < 2.4

1.924

2.342

0.917

0.912

0.721

0.932

0.337

0.247

0.061

0.095

0.092

0.348

2.262

2.590

0.978

1.006

0.814

1.280

ATLAS 8 TeV

off-peak

46 GeV < Q < 66 GeV

116 GeV < Q < 150 GeV

2.138

0.501

0.745

0.003

2.883

0.504

Global 0.88 0.14 1.02

Table 4. The χ2/Ndat using the mean replica in eq. (4.1). Ndat in each case is listed in table 2. The

uncorrelated (χ2
D) and correlated (χ2

λ) contributions and their sum χ2 are shown (see eq. (3.1)).
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CMS, and ATLAS) high-energy data. This is mostly due to the fact that the experimental

uncertainties of the former are typically larger than the latter. In particular, the low-

energy data are affected by large normalisation (correlated) uncertainties. Consequently,

the relative importance of the correlated contribution χ2
λ to the total χ2 is generally larger

for the low-energy datasets than for the high-energy ones.

It is interesting to comment on the quality of the fit to the new datasets from RHIC and

the LHC that were not included in the analysis of ref. [21] (see section 3). The preliminary

measurements from STAR have a χ2 equal to 0.836. This is particularly encouraging

because, as clear from figure 3, this dataset covers a scarcely populated kinematic region and

shows no tension with other data. Also the LHC datasets extend the kinematic coverage

of the DY data considered in ref. [21]. These measurements are particularly precise and

thus very effective in constraining TMDs. We observe that the LHCb datasets are very

nicely described with χ2s that never exceed 1.3. The CMS data, despite having slightly

larger χ2, are also well described. The two CMS datasets provide only eight points in

total and thus their impact on the fit is modest. The ATLAS datasets, amongst the LHC

ones, are by far the most abundant. We observe that the ATLAS 8 TeV datasets are well

described, except for the first two low-rapidity bins. The 7 TeV ones present larger values

of χ2, above 2. Given the extremely high precision of these datasets, even small effects

(e.g., power corrections) could give a significant contribution to χ2 in these conditions.

We consider it already a success to obtain a value of χ2 for these datasets that does not

affect too much the global χ2. We note that a key feature of these datasets (except the

off-peak ones) is that they are differential in the vector-boson rapidity y. As we will see in

section 4.4, the x dependence of fNP plays a crucial role in improving the χ2.

In order to provide a visual assessment of the fit quality, figure 4 displays the

data/theory comparison for a representative selection of datasets. We remind the reader

that in each plot theoretical predictions are appropriately shifted to account for correlated

uncertainties [16], while the experimental error bars are given by the sum in quadrature of

the uncorrelated uncertainties. The upper panel of each plot shows the absolute qT distri-

bution, while the lower panel shows the ratio to data. The plots in the upper row of figure 4

refer to one invariant-mass bin of E605 and CDF Run II already considered in ref. [21]. The

remaining plots refer to some of the new datasets, namely STAR, LHCb 8 TeV, ATLAS

8 TeV on-peak at 1.6 < |y| < 2, and ATLAS 8 TeV off-peak at 116 GeV < Q < 150 GeV.

As expected, there is a very good agreement between data and theory, for both the old and

the new datasets. Finally, it is interesting to observe that the uncertainties of the upper

and middle rows of figure 4 are larger than those in the two lower rows. This is due to the

fact that the ATLAS distributions are normalised to the total cross section leading to a

cancellation of some uncertainties, such as those due to luminosity and collinear PDFs.

4.2 TMD distributions

We discuss now the TMD distributions extracted from our reference N3LL fit. We stress

once again that only the combination in the r.h.s. of eq. (2.36) is meaningful.

In order to assess the sensitivity of the experimental dataset to fNP, it is interesting to

look at the values of the free parameters obtained from the fit. In table 5 the average of each
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Figure 4. Comparison between experimental data and theoretical predictions obtained at N3LL

accuracy for a representative subset of the datasets included in this analysis. The upper panel of

each plot displays the absolute qT distributions, while the lower panel displays the same distributions

normalised to the experimental central values. The blue bands represent the 1-σ uncertainty of the

theoretical predictions.
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Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
α 0.205 ± 0.010
σ 0.370 ± 0.063
λ 0.580 ± 0.092

N1B 0.044 ± 0.012
αB 0.069 ± 0.009
σB 0.356 ± 0.075
g2B 0.012 ± 0.003 g2 N1 α σ λ N1B αB σB g2B

g2

N1

α

σ

λ

N1B

αB

σB

g2B

Correlation matrix

−1

−0.5

0

0.5

1

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters

fitted to the data and graphical representation of the correlation matrix.

parameter over the Monte Carlo replicas, along with the respective standard deviation,

is reported. All parameters are well constrained.9 It is interesting to observe that the

parameter λ, that measures the relative weight of Gaussian and q-Gaussian in eq. (2.39), is

close to 0.5 indicating that these contributions weigh approximately the same. Concerning

the values of the parameters g2 and g2B associated to the non-perturbative contribution to

TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly

different from zero. This seems to suggest that higher-power corrections to the commonly

assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in eqs. (2.39)–

(2.40) can be gathered by looking at the statistical correlations between parameters. In

the right panel of table 5, we show a graphical representation of the correlation matrix of

the fitted parameters. The first observation is that (off-diagonal) correlations are generally

not very large. There is however one exception, i.e. the parameters σ and λ seem to be

strongly anti-correlated. This may indicate that the interplay between q-Gaussian and

Gaussian may be significantly x dependent. We leave a deeper study of this feature to a

future publication.

To conclude this section, in figure 5 we show the down-quark TMD at µ =
√
ζ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum

k⊥ for x = 0.001, 0.1, 0.3. The 1-σ uncertainty bands are also shown. As expected, TMDs

are suppressed as k⊥ grows and the suppression becomes relatively stronger as Q increases.

4.3 Perturbative convergence

In the previous section we discussed the quality of our fit at N3LL, which is the best

accuracy presently available. In this section we show how the inclusion of perturbative

corrections is crucial to achieve a better description of the experimental data. To this end,

we performed fits at NLL′, NNLL, and NNLL′ (see section 2.4), and compared them to the

9We stress that the parameters reported in table 5 are not meant to be used in the parameterisation in

eqs. (2.39)–(2.40) as they are not a direct result of any of our fits.
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Figure 5. The TMD of the down quark at µ =
√
ζ = Q = 2 GeV (left plot) and 10 GeV (right

plot) as a function of the partonic transverse momentum k⊥ for three different values of x. The

bands give the 1-σ uncertainty.

NLL′ NNLL NNLL′ N3LL

Global χ2 1126 571 379 360

Table 6. Values of the global χ2 of the fits at NLL′, NNLL, NNLL′, and N3LL accuracy.
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Figure 6. Graphical representation of table 6.

N3LL fit. We did not consider LL and NLL accuracies because in both cases the description

of the data is very poor (χ2 & 20).

Table 6 reports the values of the global χ2 for each of the four accuracies considered.

In order to appreciate the significance of the differences,10 we have reported the absolute

values of the χ2 without dividing by the number of data points Ndat. Figure 6 shows a

graphical representation of table 6. The global quality of the fit improves significantly as

the perturbative accuracy increases. In addition, figure 6 shows that the convergence rate

decreases when going to larger perturbative orders. On the one hand, we conclude that it

10Note that a difference of n units at the level of the global χ2 roughly means a separation of around
√
n

standard deviations.

– 24 –



J
H
E
P
0
7
(
2
0
2
0
)
1
1
7

0.03

0.04

0.05

0.06

1 σ

d
σ

d
q

T

[1
/
G

e
V

]

ATLAS 8 TeV, 1.6 < |y| < 2 NLL′

NNLL

NNLL′

N3LL

Data

0 2 4 6 8 10 12
qT [GeV]

0.9

1.0

R
a
ti

o

Figure 7. Comparison between experimental data for the ATLAS 8 TeV measurements in the

bin 66 GeV < Q < 116 GeV and 1.6 < |y| < 2 and the theoretical predictions obtained from the

fits to all perturbative orders considered in this analysis, i.e. NLL′, NNLL, NNLL′, and N3LL (see

section 2.4). The layout of the plot is the same as in figure 4.

is necessary to include higher perturbative corrections to obtain a good description of the

data and that N3LL corrections are still significant. On the other hand, it appears that

the perturbative series is nicely converging and N3LL accuracy seems appropriate within

the current experimental uncertainties.

In order to quantify the numerical impact of higher-order corrections, in figure 7 we

compare the predictions for all the available perturbative orders to the ATLAS 8 TeV data

in the bin 66 GeV < Q < 116 GeV and 1.6 < |y| < 2. This plot shows how the inclusion

of higher-order corrections improves the shape of the predictions, particularly around the

peak region.

4.4 Reduced dataset and x dependence

The non-perturbative function fNP, eq. (2.36), accounts for the large-bT behaviour of

TMDs. It is in general a function of bT , ζ, and x. While the asymptotic dependence

on bT is driven by first-principle considerations (see section 2.5) and the evolution with ζ is

determined by the Collins-Soper equation (2.11), the dependence on x is totally unknown.

Moreover, a direct access to the x dependence is particularly difficult to achieve because it

requires cross-section data finely binned in rapidity y. In the dataset considered here, only

the ATLAS experiment delivers data differential in rapidity. Therefore, one would expect

that these datasets provide most of the sensitivity to the x dependence of TMDs.

In order to test this conjecture, we employed a particularly simple x-independent pa-

rameterisation of the non-perturbative function:

fDWS
NP (bT , ζ) = exp

[
−1

2

(
g1 + g2 ln

(
ζ

2Q2
0

))
b2T

]
, (4.2)
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Full dataset No y-differential data

Global χ2/Ndat 1.339 0.895

g1 0.304 0.207

g2 0.028 0.093

Table 7. The values of the global χ2 normalised to the number of data points Ndat from the fit to

the full dataset and to a reduced dataset without the y-differential ATLAS datasets, both using the

parameterisation in eq. (4.2). For completeness, we also report the best-fit values of the parameters

g1 and g2.

with two free parameters, g1 and g2, and Q2
0 = 1.6 GeV2 (inspired by the pioneering work

of Davies, Webber, and Stirling. [4]). Using eq. (4.2) we first performed a fit at N3LL to

the full dataset. Then we excluded the ATLAS datasets differential in rapidity (but we

kept the off-peak ATLAS 8 TeV datasets because inclusive in rapidity). The resulting χ2s

normalised to the number of data points are reported in table 7. For completeness, we also

show the best-fit values of the parameters g1 and g2.

Firstly, the χ2 of the fit to the full dataset using eq. (4.2) (1.339) is significantly larger

than that obtained using the parameterisation in eqs. (2.39)–(2.40) (1.020). This suggests

that an x-dependent fNP is required to obtain a good description of the data. Secondly,

the χ2 of the fit without the y-differential ATLAS data comes out to be particularly low

(0.895). We conclude that at N3LL accuracy the x dependence of the TMDs extracted

from the currently available DY data is mostly constrained by the ATLAS data differential

in the boson rapidity y. We note however that the agreement with the very precise ATLAS

data may be influenced also by other small corrections (e.g. power corrections).

4.5 Dependence on the cut on qT/Q

As discussed in section 2, our analysis is based on TMD factorisation whose validity is

restricted to the region qT � Q. As a consequence, we consider only measurements that

respect this constraint. More precisely, we require that the maximum value of the ratio

qT /Q for a point to be included in the fit be 0.2 (see section 3). Despite this particular

value seems to be generally recognised in the literature (see, e.g., ref. [15]), it is interesting

to study how the global description of the dataset changes by varying this cut. This will

help us assess more quantitatively the validity range of TMD factorisation.

Figure 8 displays the behaviour of the global χ2/Ndata for the N3LL fit as a function

of the qT /Q cut ranging between 0.1 and 0.28 in steps of 0.02. As expected, the quality of

the fit tends to degrade as the cut on qT /Q increases. Of course, it is impossible to draw

a line between validity and non-validity regions. However, this study gives a quantitative

justification for choosing the value 0.2 for the qT /Q cut.

5 Conclusions

In this paper we presented an extraction of TMDs from Drell-Yan data accurate up to

N3LL. The dataset used in this analysis includes low-energy data from FNAL (E605 and
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Figure 8. The global χ2/Ndat as a function of the cut on qT /Q. The blue point corresponds to

the reference cut used in this analysis.

E288) and RHIC (STAR) and high-energy data from Tevatron (CDF and D0) and the

LHC (LHCb, CMS, and ATLAS), for a total of 353 data points.

The fit was performed with a proper treatment of the experimental uncertainties,

which were propagated into the fitted TMD distributions by means of the Monte Carlo

sampling method. This allowed us to obtain a very good description of the entire dataset

(χ2/Ndat = 1.02) without the need of introducing ad hoc normalisations. A more detailed

analysis of the fit quality shows that both low- and high-energy datasets are separately

well described. This is a remarkable achievement given the very high precision of the LHC

datasets, especially those from ATLAS.

A particularly interesting aspect of our analysis concerns the QCD convergence of the

perturbative series. We performed fits at NLL′, NNLL, NNLL′, and N3LL accuracy and

showed that the fit quality improves significantly going from NLL′ to N3LL. The difference

between the highest orders, i.e. NNLL′ and N3LL, is moderate but still significant. This

shows at the same time that the perturbative series is converging, but also that N3LL

corrections are relevant in relation to the current experimental uncertainties.

We parameterised the non-perturbative contributions by adopting a reasonably flexible

functional form: all nine free parameters turned out to be well constrained, with moderate

correlations amongst them. An important feature of our parameterisation of the non-

perturbative contribution fNP is its explicit x dependence. We proved that the x-dependent

part of fNP is mostly constrained by the rapidity-dependent on-peak data at 7 and 8 TeV

from ATLAS. While on the one hand, this was to be expected because the x dependence

is strictly connected with the rapidity y, on the other hand it also demonstrates that most

of the datasets are not sensitive to the x dependence of TMDs.

Finally, we studied the validity range of TMD factorisation in Drell-Yan by varying the

cut on qT /Q. In line with the literature, we found that the region qT . 0.2Q is appropriate

when working within the TMD factorisation framework.
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In this paper we set the foundation for a number of future studies. In the first place, we

plan to extend the fitted dataset by including the abundant and precise semi-inclusive DIS

data from HERMES [61] and COMPASS [62, 100], as well as future data from Jefferson Lab

at 12 GeV [101]. On top of providing access to TMD fragmentation functions, we expect

that the inclusion of semi-inclusive DIS data will have an impact on the determination

of the x dependence of TMD PDFs and will make it possible to determine the flavour

dependence of the non-perturbative function fNP. We remark that a better knowledge of

TMDs will be important not only to obtain a deeper knowledge of hadron stucture and

QCD, but also for precision studies in high-energy processes involving hadrons, for instance

for the determination of critical Standard Model parameters such as the W mass [25, 63].

In the future, the Electron-Ion Collider will provide an unprecedented opportunity to

make progress in the determination of TMDs [102, 103]. Nevertheless, we are convinced

that the era of precision physics with TMDs has already started and it will be beneficial

also for studies at higher energies in the perturbative domain of QCD.
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A Numerics and delivery

In this appendix we give a brief general overview of the numerical implementation of the

analysis discussed above. The code used is publicly available at

https://github.com/vbertone/NangaParbat

where a more detailed documentation can be found along with a collection of results.

The code uses APFEL++ [104, 105] as an engine for the computation of the theoretical

predictions. In order to speed up the fit on the non-perturbative function fNP, eq. (2.36),

we use interpolation techniques inspired by those heavily used for collinear-factorisation

predictions [106–108]. Schematically, we reduce the computation of the cross section in

eq. (3.2) for a given kinematic bin to the weighted sum

dσ

dqT
'
∑
n,α,τ

WnατfNP(x
(α,τ)
1 , b

(n)
T , ζ(τ))fNP(x

(α,τ)
2 , b

(n)
T , ζ(τ)) , (A.1)

where the discrete variables x
(α,τ)
1,2 , b

(n)
T , and ζ(τ) run over appropriately defined grids. The

computationally expensive part of the calculation is isolated into the weights Wnατ that

are precomputed and stored. This procedure makes the computation of predictions very

fast and thus suitable for a fit that requires a large number of iterations.

In order to fit the function fNP to data, we used two independent codes: Minuit2 [109]

as implemented in ROOT, and ceres-solver [110]. While the first (Minuit) is routinely used
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for this kind of tasks since many years, the second (ceres-solver) is relatively new and

typically used for more complex problems such as image recognition, 3D modeling, etc..

Recently, the xFitter Collaboration [111] has used ceres-solver for fitting collinear

PDFs [112], showing that this tool is suitable also for this kind of tasks. Having two

independent codes within the same framework turned out to be particularly useful to cross

check our results.

All the datasets included in this analysis, except the preliminary STAR data, have

been taken from the public HEPData repository [113] in YAML format and slightly adapted

to fit our needs.

Finally, we mention that the TMDs sets determined in this analysis will be made

publicly available also through the TMDplotter interface [114].

B Integrating over qT

Experimental measurements of differential distributions are usually delivered as integrated

over finite regions of the final-state kinematic phase space (see eq. (3.2)). As a consequence,

in order to compare theoretical predictions to data, it is necessary to carry out these

integrations. These nested integrals, if evaluated numerically, represent a heavy task that

makes an extraction of TMDs from Drell-Yan data computationally very intensive and thus

slow. While the integrals over Q and y do need to be computed numerically, the integration

in qT can be carried out analytically which substantially reduces the numerical load. To

do so, we exploit the following property of the Bessel functions

d

dx
[xnJn(x)] = xnJn−1(x) , (B.1)

that leads to∫
dxxJ0(x) = xJ1(x) ⇒

∫ x2

x1

dxxJ0(x) = x2J1(x2)− x1J1(x1) . (B.2)

Neglecting for the moment the dependence on qT of the phase-space reduction factor P
(which is strictly correct for inclusive observables in the final-state leptons), the differential

cross section in eq. (2.10) has the following structure

dσ

dQdydqT
=

∫ ∞
0

dbT S(bT ) qTJ0(bT qT ) (B.3)

where S is a function that depends on bT (and on the other kinematic variables) but not

on qT . Using eq. (B.2), one finds∫ qT,max

qT,min

dqT

[
dσ

dQdydqT

]
=

∫ ∞
0

dbT S(bT )

∫ qT,max

qT,min

dqT qTJ0(bT qT )

=

∫ ∞
0

dbT
S(bT )

bT
[qT,maxJ1(bT qT,max)−qT,minJ1(bT qT,min)] .

(B.4)

In conclusion, the quantity

K(qT ) ≡
∫ ∞

0
dbT

S(bT )

bT
qTJ1(bT qT ) , (B.5)
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is the indefinite integral over qT (the primitive function) of the cross section in eq. (2.10).

Analogously to the unintegrated cross section, K can be computed numerically by per-

forming a Bessel transform of degree one rather than degree zero. Therefore, the integral

over a qT bin can be evaluated by taking the difference of K computed at the bin bounds:∫ qT,max

qT,min

dqT

[
dσ

dQdydqT

]
= K(qT,max)−K(qT,min) , (B.6)

which is enormously more convenient than computing the integral numerically.

B.1 Kinematic cuts

In the presence of kinematic cuts, such as those on the final-state leptons, the analytic inte-

gration over qT discussed above cannot be directly performed. The reason is that the imple-

mentation of these cuts effectively introduces the qT -dependent function P in the integral

dσ

dQdydqT
=

∫ ∞
0

dbT S(bT )P(qT )qTJ0(bT qT ) , (B.7)

that prevents the direct use of eq. (B.2). Fortunately, P is a slowly-varying function of qT
over the typical bin size. This allows one to approximate the integral over the bins in qT as∫ qT,max

qT,min

dqT qTJ0(bT qT )P(qT ) ' P
(
qT,max + qT,min

2

)∫ qT,max

qT,min

dqT qTJ0(bT qT )

= P
(
qT,max + qT,min

2

)
1

bT
[qT,maxJ1(bT qT,max)− qT,minJ1(bT qT,min)] .

(B.8)

Unfortunately, this structure is inconvenient because it mixes different bin bounds and

prevents a recursive computation. However, it is possible to go further and, assuming that

the bin width is small enough, we expand P in the following two equivalent ways

P
(
qT,max + qT,min

2

)
=

{
P (qT,min + ∆qT ) ' P (qT,min) + P ′ (qT,min) ∆qT
P (qT,max −∆qT ) ' P (qT,max)− P ′ (qT,max) ∆qT

, (B.9)

with

∆qT =
qT,max − qT,min

2
. (B.10)

Plugging the expansions above into eq. (B.8), one finds

bT

∫ qT,max

qT,min

dqT qTJ0(bT qT )P(qT )' qT,maxJ1(bT qT,max)
[
P (qT,max)−P ′ (qT,max)∆qT

]
−qT,minJ1(bT qT,min)

[
P (qT,min)+P ′ (qT,min)∆qT

]
.

(B.11)

The advantage of this formula as compared to eq. (B.8) is that each of the terms in the r.h.s.

depends on one single bin bound in qT rather than on a combination of two consecutive

bounds. This allows for a recursive computation of predictions in neighbouring bins in qT .
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C Cuts on the final-state leptons

In this section, we derive the explicit expression of the phase-space reduction factor P
introduced in section 2. This factor is defined as11

P(q) =

∫
fid. reg.

d4p1d
4p2 δ(p

2
1)δ(p2

2)θ(p1,0)θ(p2,0)δ(4)(p1 + p2 − q)L⊥(p1, p2)∫
d4p1d

4p2 δ(p
2
1)δ(p2

2)θ(p1,0)θ(p2,0)δ(4)(p1 + p2 − q)L⊥(p1, p2)

, (C.1)

where p1 and p2 are the four-momenta of the outgoing leptons. The integral in the nume-

rator extends over the fiducial region defined by the cuts on the final-state leptons. The

quantity L⊥ is defined as

L⊥ = gµν⊥ Lµν , (C.2)

where Lµν is the (parity-conserving part of the) leptonic tensor that, assuming massless

leptons, reads

Lµν = 4(pµ1p
ν
2 + pµ2p

ν
1 − gµνp1p2) , (C.3)

while the transverse metric is given by

gµν⊥ = gµν + zµzν − tµtν . (C.4)

The vectors zµ and tµ, in the Collins-Soper frame, are defined as

zµ = (sinh y,0, cosh y) , tµ =
qµ

Q
, (C.5)

and they are such that z2 = −1, t2 = 1 and (z · q) = 0. The effect of integrating over the

fiducial region in the numerator of eq. (C.1) can be implemented by defining a generalised

θ-function, Φ(p1, p2), that is equal to one inside the fiducial region and zero outside. This

allows one to integrate also the numerator over the full phase-space of the two outgoing

leptons. Next, we integrate out one of the momenta, say p2, exploiting the momentum-

conservation δ-function:

P (q) =

∫
d4pδ(p2)δ((q − p)2)θ(p0)θ(q0 − p0)L⊥(p, q − p)Φ(p, q − p)∫

d4pδ(p2)δ((q − p)2)θ(p0)θ(q0 − p0)L⊥(p, q − p)
, (C.6)

where we have renamed p = p1. The remaining δ-functions can be used to constrain two

of the four components of the momentum p. The first, δ(p2), is typically used to set the

energy component of p, p0, on the mass shell. Since the leptons are massless, this produces∫
d4pδ(p2)θ(p0) =

∫
d4p δ(p2

0 − |p|2)θ(p0) =

∫
dp0d

3p

2|p|
δ(p0 − |p|) =

∫
d3p

2|p|
. (C.7)

11In eq. (C.1) a parity-violating term is neglected. We will argue in section C.1 that its contribution is

negligible for realistic cuts.
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Of course, the four-momentum p appearing in the rest of the integrand has to be set on shell

(p0 = |p|). Now we express the three-dimensional measure d3p in terms of the transverse

momentum pT , the pseudo-rapidity η, and the azimuthal angle φ of the lepton:∫
d3p

2|p|
=

∫
d|pT |2

4
dη dφ . (C.8)

Now we consider the second δ-function, δ((q − p)2), in eq. (C.6). It is convenient to

express the vectors q and p in terms of the respective invariant mass, pseudo-rapidity, and

transverse momentum:

q = (M cosh y,qT ,M sinh y) ,

p = (|pT | cosh η,pT , |pT | sinh η) ,
(C.9)

with M =
√
Q2 + |qT |2. Without loss of generality, we assume that the two-dimensional

vector qT is aligned with the x axis so that pT · qT = |pT ||qT | cosφ.12 This leads to

δ((q − p)2) = δ
(
Q2 − 2|pT | [M cosh (η − y)− |qT | cosφ]

)
, (C.10)

so that

P(q) =

∫
d|pT |2

4
dηdφδ

(
Q2−2|pT | [M cosh(η−y)−|qT |cosφ]

)
L⊥(p,q−p)Φ(p,q−p)∫

d|pT |2

4
dηdφδ

(
Q2−2|pT | [M cosh(η−y)−|qT |cosφ]

)
L⊥(p,q−p)

,

(C.11)

where the vector p is understood to be on-shell. Now we compute L⊥(p, q− p) contracting

Lµν in eq. (C.3) with the transverse metric gµν⊥ in eq. (C.4) using eq. (C.9):

L⊥(p, q − p) = 2Q2

[
1 + 4 sinh2(y − η)

|pT |2

Q2

]
. (C.12)

We can now integrate out one of the variables in the integrals in eq. (C.11) by making use

of the remaining δ-function. Somewhat counterintuitively, it is convenient to integrate over

|pT |. This produces

P (q) =

∫ ∞
−∞

dη

∫ 2π

0
dφ

[
2p2
T

Q2
+ 2 sinh2(y − η)

p4
T

Q4

]
Φ(p, q − p)∫ ∞

−∞
dη

∫ 2π

0
dφ

[
2p2
T

Q2
+ 2 sinh2(y − η)

p4
T

Q4

] , (C.13)

where pT is defined as

pT =
Q2

2|qT |
1[

M cosh(η−y)
|qT | − cosφ

] , (C.14)

12In the general case in which qT forms an angle β with the x axis, the scalar product would result

in |pT ||qT | cos(φ − β). However, for observables inclusive in azimuthal angle, the angle β can always be

reabsorbed in a redefinition of φ.
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and p symbolises the on-shell vector p with the absolute value of the transverse component

set equal to eq. (C.14). Next we turn to consider the integral in φ. To this end, the

following relation ∫ 2π

0
dφ f(cosφ) =

∫ 1

−1

dx√
1− x2

[f(x) + f(−x)] , (C.15)

along with the indefinite integrals∫
dx

(a± x)2
√

1− x2
=

√
1− x2

(a2 − 1)(x± a)
± a

(a2 − 1)3/2
tan−1

(
1± ax√

a2 − 1
√

1− x2

)
, (C.16)

and∫
dx

(a± x)4
√

1− x2
=

√
1− x2

[
(11a2 + 4)x2 ± 3a(9a2 + 1)x+ (18a4 − 5a2 + 2)

]
6(a2 − 1)3(x± a)3

± a(2a2 + 3)

2(a2 − 1)7/2
tan−1

(
1± ax√

a2 − 1
√

1− x2

)
,

(C.17)

enable us to compute analytically the primitive function of the integrals in φ in eq. (C.13).

Eqs. (C.16) and (C.17) are particularly useful because they allow us to compute the integral

over φ analytically also in the presence of cuts. Let us first compute the integral in the

denominator of eq. (C.13), i.e. the integral of L⊥ over the full phase-space. To do so, using

eqs. (C.16) and (C.17), we compute the following definite integrals∫ 1

−1

dx

(a± x)2
√

1− x2
=

πa

(a2 − 1)3/2
, (C.18)

and: ∫ 1

−1

dx

(a± x)4
√

1− x2
=
πa(2a2 + 3)

2(a2 − 1)7/2
. (C.19)

Using these results, and finally integrating over η, gives the well-known result∫
d4p1d

4p2 δ(p
2
1)δ(p2

2)θ(p1,0)θ(p2,0)δ(4)(p1 + p2 − q)L⊥(p1, p2) =
4π

3
Q2 . (C.20)

In order to compute the numerator of eq. (C.13), we need to insert the appropriate

function Φ. Typically, in DY production the kinematic cuts are imposed independently

on the same variables for both the final-state leptons. Therefore, the function Φ factorises

into two identical functions acting on each lepton momentum:

Φ(p1, p2) = Θ(p1)Θ(p2) . (C.21)

We are specifically interested in kinematic cuts on the rapidity and on the transverse

momentum of the following kind

ηmin < η1(2) < ηmax and |pT,1(2)| > pT,min . (C.22)

Therefore

Θ(p) = ϑ(η − ηmin)ϑ(ηmax − η)ϑ(|pT | − pT,min) . (C.23)
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Using eqs. (C.9) and (C.14) gives

Φ(p, q − p) = ϑ(η − ηmin)× ϑ(ηmax − η)

× ϑ(cosφ− f (2)(η, pT,min))

× ϑ(f (3)(η, ηmin)− cosφ)× ϑ(f (3)(η, ηmax)− cosφ)

× ϑ(f (4)(η, pT,min)− cosφ) ,

(C.24)

with

f (2)(η,pT,cut) =
2MpT,cut cosh(η−y)−Q2

2pT,cut|qT |
,

f (3)(η,ηcut) =
M cosh(η−y)

|qT |
−Q

2 (sinh(η−y)coth(y−ηcut)+cosh(η−y))

2|qT |M
,

f (4)(η,pT,cut) =
M cosh(η−y)(Q2−2p2

T,cut+2|qT |2)−Q2
√
M2 sinh2(η−y)+p2

T,cut

2|qT |
(
M2−p2

T,cut

) .

(C.25)

Now the question is identifying the integration domain on the (η, cosφ)-plane defined by

Φ(p, q− p) in eq. (C.24). Considering that −1 ≤ cosφ ≤ 1, eq. (C.24) can be written in an

more convenient way as

Φ(p, q − p) = ϑ(η − ηmin)ϑ(ηmax − η)

× ϑ(cosφ−max[f (2)(η, pT,min),−1])

× ϑ(min[f (3)(η, ηmin), f (3)(η, ηmax), f (4)(η, pT,min), 1]− cosφ) .

(C.26)

Now we use eq. (C.15) to change cosφ into x. This way, the double integral at the numerator

of eq. (C.13) reads∫ ∞
−∞

dη

∫ 1

−1
dxΦ(p, q − p) · · · =

∫ ηmax

ηmin

dη ϑ(x2(η)− x1(η))

∫ x2(η)

x1(η)
dx . . . , (C.27)

with

x1(η) = max[f (2)(η, pT,min),−1]

x2(η) = min[f (3)(η, ηmin), f (3)(η, ηmax), f (4)(η, pT,min), 1] .
(C.28)

As an example, figure 9 shows the integration domain of the numerator of eq. (C.13)

for pT,min = 20 GeV and −ηmin = ηmax = 2.4 at Q = 91 GeV, |qT | = 10 GeV, and y = 1.

The grey band corresponds to the region −1 ≤ cosφ ≤ 1. The θ-functions in the first line of

eq. (C.26) limits the region to the vertical strip defined by ηmin < η < ηmax (black vertical

lines), the θ-function in the second line defines the region above the red line, finally the θ-

functions in the third line defines the region below the blue and green lines. The intersection

of all regions gives the red-shaded area corresponding to the integration domain.

Gathering all pieces, the final expression for the phase-space reduction factor reads

P(q) = P(Q, y, qT ) =

∫ ηmax

ηmin

dη ϑ(x2(η)− x1(η))
[
F (x2(η), η)− F (x1(η), η)

]
. (C.29)
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The function F is given by the combination

F (x, η) =
3

4
F (x, η) +

1

4
G(x, η) , (C.30)

with

F (x,η) =
1

4π

Q2

E2
q−q2

T

q2
Tx
√

1−x2

x2q2
T−E2

q

− Eq√
E2
q−q2

T

tan−1

 qT−xEq√
E2
q−q2

T

√
1−x2

−tan−1

 qT +xEq√
E2
q−q2

T

√
1−x2

 ,

(C.31)

and

G(x, η) =
1

16π
sinh2(y − η)

Q4

(E2
q − q2

T )3

√1− x2qT

×

[
(11E2

q q
2
T + 4q4

T )x2 + 3EqqT (9E2
q + q2

T )x+ (18E4
q − 5E2

q q
2
T + 2q4

T )

(xqT + Eq)3

+
(11E2

q q
2
T + 4q4

T )x2 − 3EqqT (9E2
q + q2

T )x+ (18E4
q − 5E2

q q
2
T + 2q4

T )

(xqT − Eq)3

]

−
6Eq(2E

2
q + 3q2

T )√
E2
q − q2

T

tan−1

 qT − xEq√
E2
q − q2

T

√
1− x2


− tan−1

 qT + xEq√
E2
q − q2

T

√
1− x2

 ,

(C.32)

where we have defined Eq = M cosh(η − y) and qT = |qT |. Interestingly, in the limit

y = qT = 0 and assuming ηmin = −ηmax, P can be computed analytically. The result is

P(Q, 0, 0) = ϑ(Q− 2pT,min) tanh(max[ηmax, η])

[
1− 1

4 cosh2(max[ηmax, η])

]
, (C.33)

with η defined as

η = cosh−1

(
Q

2pT,min

)
. (C.34)

The relation above can be written more explicitly as

P(Q, 0, 0) =


0 Q < 2pT,min ,(

1− p2T,min

Q2

)√
1− 4p2T,min

Q2 2pT,min ≤ Q < 2pT,min cosh ηmax ,

tanh(ηmax)
[
1− 1

4 cosh2(ηmax)

]
Q ≥ 2pT,min cosh ηmax .

(C.35)
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Figure 9. The red area indicates the integration domain of the numerator of the phase-space reduc-

tion factor eq. (C.13) for pT,min = 20 GeV and −ηmin = ηmax = 2.4 at Q = 91 GeV, |qT | = 10 GeV,

and y = 1.

C.1 Azimuthally-dependent contributions

Azimuthally-dependent modulations disappear in the cross sections if the integration over

the azimuthal angle of the virtual boson, Φ, is complete. In the presence of cuts on the

final-state leptons, these modulations could generate contributions that were neglected in

our analysis, but could be relevant for the description of high-precision data.

We first consider parity-violating effects that generate a sin Φ modulation [26]. These

contributions stem from interference of the antisymmetric contributions to the lepton ten-

sor, proportional to pµ1p
ν
2εµνρσ, and to the hadronic tensor, proportional to εµν⊥ defined as

εµν⊥ ≡ ε
µνρσtρzσ , (C.36)

where tµ and zµ are given in eq. (C.5). Therefore, the contributions we are after result

from the contraction of the following Lorentz structures

LPV ≡ pµ1p
ν
2εµνρσε

ρσ
⊥ =

2|pT |2

Q
sinh(y − η) [M cosh(y − η)− |qT | cosφ] . (C.37)

Due to the presence of sinh(y − η), eq. (C.37) is such that∫ ∞
−∞

dη LPV = 0 . (C.38)

Therefore, for observables inclusive in the lepton phase space, the parity-violating term

does not give any contribution. Conversely, the presence of cuts on the final-state leptons

may prevent eq. (C.38) from being satisfied, leaving a residual contribution. In order to
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quantify this effect, we have taken the same steps performed above to integrate LPV over

the fiducial region. It turns out that, for realistic cuts, the numerical size of PPV relative

to the parity-conserving P is never larger than O(10−6). We conclude that the impact of

parity-violating effects in the present analysis is negligible.

Finally, we consider also cos Φ modulations, stemming from the following contraction:

Lφ = (zµtν + zνtµ)Lµν , (C.39)

where the (symmetric part of the) leptonic tensor reads:

Lµν = 4(pµ1p
ν
2 + pµ2p

ν
1 − gµνp1p2) . (C.40)

We find that

Lφ = 16
p2
T

Q
sinh(y − η)

[
Q2

2pT
−M cosh(y − η) + qT cosφ

]
. (C.41)

Due to the presence of the overall factor sinh(y−η), for relatively central rapidities and for

symmetric cuts this term is expected to be very small, in particular to be comparable in size

to the parity violating contribution. Moreover, this term would be multiplied by a structure

function that has been measured to be small, below 4% in the region of interest here [115].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[33] W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at

N3LL+NNLO, JHEP 12 (2018) 132 [arXiv:1805.05916] [INSPIRE].

[34] J. Collins and T.C. Rogers, Connecting Different TMD Factorization Formalisms in QCD,

Phys. Rev. D 96 (2017) 054011 [arXiv:1705.07167] [INSPIRE].

[35] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at

hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2195

[arXiv:1209.0158] [INSPIRE].

[36] M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum

Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading

order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].

[37] M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at

the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020) 092001

[arXiv:1912.05778] [INSPIRE].

[38] Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for

Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004

[arXiv:1604.01404] [INSPIRE].

[39] J. Davies, A. Vogt, B. Ruijl, T. Ueda and J.A.M. Vermaseren, Large-Nf contributions to

the four-loop splitting functions in QCD, Nucl. Phys. B 915 (2017) 335

[arXiv:1610.07477] [INSPIRE].

[40] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-Loop Non-Singlet

Splitting Functions in the Planar Limit and Beyond, JHEP 10 (2017) 041

[arXiv:1707.08315] [INSPIRE].

– 39 –

https://doi.org/10.1103/PhysRevD.100.074027
https://doi.org/10.1103/PhysRevD.100.074027
https://arxiv.org/abs/1906.00919
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.00919
https://doi.org/10.1016/j.physletb.2018.11.002
https://arxiv.org/abs/1807.02101
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.02101
https://doi.org/10.1103/PhysRevD.60.014012
https://doi.org/10.1103/PhysRevD.60.014012
https://arxiv.org/abs/hep-ph/9902255
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9902255
https://inspirehep.net/search?p=find+J%20%22Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol.%2C32%2C1%22
https://doi.org/10.1016/0550-3213(81)90339-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB193%2C381%22
https://doi.org/10.1103/PhysRevLett.108.151601
https://doi.org/10.1103/PhysRevLett.108.151601
https://arxiv.org/abs/1104.0881
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.0881
https://doi.org/10.1007/JHEP05(2012)084
https://arxiv.org/abs/1202.0814
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.0814
https://doi.org/10.1007/JHEP08(2018)003
https://doi.org/10.1007/JHEP08(2018)003
https://arxiv.org/abs/1803.11089
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.11089
https://doi.org/10.1007/JHEP03(2020)182
https://arxiv.org/abs/1907.02971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.02971
https://doi.org/10.1007/JHEP12(2018)132
https://arxiv.org/abs/1805.05916
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.05916
https://doi.org/10.1103/PhysRevD.96.054011
https://arxiv.org/abs/1705.07167
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.07167
https://doi.org/10.1140/epjc/s10052-012-2195-7
https://arxiv.org/abs/1209.0158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.0158
https://doi.org/10.1007/JHEP09(2016)004
https://arxiv.org/abs/1604.07869
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.07869
https://doi.org/10.1103/PhysRevLett.124.092001
https://arxiv.org/abs/1912.05778
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.05778
https://doi.org/10.1103/PhysRevLett.118.022004
https://arxiv.org/abs/1604.01404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.01404
https://doi.org/10.1016/j.nuclphysb.2016.12.012
https://arxiv.org/abs/1610.07477
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.07477
https://doi.org/10.1007/JHEP10(2017)041
https://arxiv.org/abs/1707.08315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08315


J
H
E
P
0
7
(
2
0
2
0
)
1
1
7

[41] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On quartic colour factors in

splitting functions and the gluon cusp anomalous dimension, Phys. Lett. B 782 (2018) 627

[arXiv:1805.09638] [INSPIRE].

[42] I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet pT resummation in Higgs

production at NNLL′ +NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808]

[INSPIRE].

[43] M.A. Ebert and F.J. Tackmann, Resummation of Transverse Momentum Distributions in

Distribution Space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].

[44] S. Catani, Higher order QCD corrections in hadron collisions: Soft gluon resummation and

exponentiation, hep-ph/9610413 [INSPIRE].

[45] G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan

lepton pairs in hadron collisions: Transverse-momentum resummation at

next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207

[arXiv:1007.2351] [INSPIRE].

[46] T. Becher, M. Neubert and D. Wilhelm, Higgs-Boson Production at Small Transverse

Momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].

[47] A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, The two-jet rate in e+e− at

next-to-next-to-leading-logarithmic order, Phys. Rev. Lett. 117 (2016) 172001

[arXiv:1607.03111] [INSPIRE].

[48] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation

and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73

[hep-ph/0508068] [INSPIRE].

[49] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of

transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881

(2014) 414 [arXiv:1311.1654] [INSPIRE].

[50] C. Muselli, S. Forte and G. Ridolfi, Combined threshold and transverse momentum

resummation for inclusive observables, JHEP 03 (2017) 106 [arXiv:1701.01464] [INSPIRE].

[51] S. Alioli, A. Broggio, S. Kallweit, M.A. Lim and L. Rottoli, Higgsstrahlung at

NNLL′ +NNLO matched to parton showers in GENEVA, Phys. Rev. D 100 (2019)

096016 [arXiv:1909.02026] [INSPIRE].

[52] M.G. Echevarria, T. Kasemets, J.-P. Lansberg, C. Pisano and A. Signori, Matching

factorization theorems with an inverse-error weighting, Phys. Lett. B 781 (2018) 161

[arXiv:1801.01480] [INSPIRE].

[53] G. Lustermans, J.K.L. Michel, F.J. Tackmann and W.J. Waalewijn, Joint two-dimensional

resummation in qT and 0-jettiness at NNLL, JHEP 03 (2019) 124 [arXiv:1901.03331]

[INSPIRE].

[54] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in

the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989]

[INSPIRE].

[55] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.

C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

[56] S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Resummation of soft gluons in

hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].

– 40 –

https://doi.org/10.1016/j.physletb.2018.06.017
https://arxiv.org/abs/1805.09638
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.09638
https://doi.org/10.1103/PhysRevD.89.054001
https://arxiv.org/abs/1307.1808
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.1808
https://doi.org/10.1007/JHEP02(2017)110
https://arxiv.org/abs/1611.08610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.08610
https://arxiv.org/abs/hep-ph/9610413
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9610413
https://doi.org/10.1016/j.physletb.2010.12.024
https://arxiv.org/abs/1007.2351
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.2351
https://doi.org/10.1007/JHEP05(2013)110
https://arxiv.org/abs/1212.2621
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.2621
https://doi.org/10.1103/PhysRevLett.117.172001
https://arxiv.org/abs/1607.03111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.03111
https://doi.org/10.1016/j.nuclphysb.2005.12.022
https://arxiv.org/abs/hep-ph/0508068
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0508068
https://doi.org/10.1016/j.nuclphysb.2014.02.011
https://doi.org/10.1016/j.nuclphysb.2014.02.011
https://arxiv.org/abs/1311.1654
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.1654
https://doi.org/10.1007/JHEP03(2017)106
https://arxiv.org/abs/1701.01464
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.01464
https://doi.org/10.1103/PhysRevD.100.096016
https://doi.org/10.1103/PhysRevD.100.096016
https://arxiv.org/abs/1909.02026
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.02026
https://doi.org/10.1016/j.physletb.2018.03.075
https://arxiv.org/abs/1801.01480
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.01480
https://doi.org/10.1007/JHEP03(2019)124
https://arxiv.org/abs/1901.03331
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.03331
https://doi.org/10.1140/epjc/s10052-015-3397-6
https://arxiv.org/abs/1412.3989
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3989
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7420
https://doi.org/10.1016/0550-3213(96)00399-9
https://arxiv.org/abs/hep-ph/9604351
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9604351


J
H
E
P
0
7
(
2
0
2
0
)
1
1
7

[57] J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in

Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

[58] J. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato and B. Wang, Relating

Transverse Momentum Dependent and Collinear Factorization Theorems in a Generalized

Formalism, Phys. Rev. D 94 (2016) 034014 [arXiv:1605.00671] [INSPIRE].

[59] M. Burkardt and B. Pasquini, Modelling the nucleon structure, Eur. Phys. J. A 52 (2016)

161 [arXiv:1510.02567] [INSPIRE].

[60] D. Müller and D.S. Hwang, The concept of phenomenological light-front wave functions —

Regge improved diquark model predictions, arXiv:1407.1655 [INSPIRE].

[61] HERMES collaboration, Multiplicities of charged pions and kaons from semi-inclusive

deep-inelastic scattering by the proton and the deuteron, Phys. Rev. D 87 (2013) 074029

[arXiv:1212.5407] [INSPIRE].

[62] COMPASS collaboration, Transverse-momentum-dependent Multiplicities of Charged

Hadrons in Muon-Deuteron Deep Inelastic Scattering, Phys. Rev. D 97 (2018) 032006

[arXiv:1709.07374] [INSPIRE].

[63] G. Bozzi and A. Signori, Nonperturbative Uncertainties on the Transverse Momentum

Distribution of Electroweak Bosons and on the Determination of the Boson Mass at the

LHC, Adv. High Energy Phys. 2019 (2019) 2526897 [arXiv:1901.01162] [INSPIRE].

[64] A. Bacchetta, F. Conti and M. Radici, Transverse-momentum distributions in a diquark

spectator model, Phys. Rev. D 78 (2008) 074010 [arXiv:0807.0323] [INSPIRE].

[65] M. Wakamatsu, Transverse momentum distributions of quarks in the nucleon from the

Chiral Quark Soliton Model, Phys. Rev. D 79 (2009) 094028 [arXiv:0903.1886] [INSPIRE].

[66] A.V. Efremov, P. Schweitzer, O.V. Teryaev and P. Zavada, The relation between TMDs and

PDFs in the covariant parton model approach, Phys. Rev. D 83 (2011) 054025

[arXiv:1012.5296] [INSPIRE].

[67] C. Bourrely, F. Buccella and J. Soffer, Semiinclusive DIS cross sections and spin

asymmetries in the quantum statistical parton distributions approach, Phys. Rev. D 83

(2011) 074008 [arXiv:1008.5322] [INSPIRE].

[68] H.H. Matevosyan, W. Bentz, I.C. Cloet and A.W. Thomas, Transverse Momentum

Dependent Fragmentation and Quark Distribution Functions from the NJL-jet Model, Phys.

Rev. D 85 (2012) 014021 [arXiv:1111.1740] [INSPIRE].

[69] P. Schweitzer, M. Strikman and C. Weiss, Intrinsic transverse momentum and parton

correlations from dynamical chiral symmetry breaking, JHEP 01 (2013) 163

[arXiv:1210.1267] [INSPIRE].

[70] B.U. Musch, P. Hagler, J.W. Negele and A. Schafer, Exploring quark transverse momentum

distributions with lattice QCD, Phys. Rev. D 83 (2011) 094507 [arXiv:1011.1213]

[INSPIRE].

[71] A. Bacchetta and M.G. Echevarria, QCD×QED evolution of TMDs, Phys. Lett. B 788

(2019) 280 [arXiv:1810.02297] [INSPIRE].

[72] L. Cieri, G. Ferrera and G.F.R. Sborlini, Combining QED and QCD transverse-momentum

resummation for Z boson production at hadron colliders, JHEP 08 (2018) 165

[arXiv:1805.11948] [INSPIRE].

[73] O. Lupton and M. Vesterinen, Simultaneously determining the W± boson mass and parton

shower model parameters, arXiv:1907.09958 [INSPIRE].

– 41 –

https://doi.org/10.1016/0550-3213(85)90479-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB250%2C199%22
https://doi.org/10.1103/PhysRevD.94.034014
https://arxiv.org/abs/1605.00671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.00671
https://doi.org/10.1140/epja/i2016-16161-7
https://doi.org/10.1140/epja/i2016-16161-7
https://arxiv.org/abs/1510.02567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.02567
https://arxiv.org/abs/1407.1655
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.1655
https://doi.org/10.1103/PhysRevD.87.074029
https://arxiv.org/abs/1212.5407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.5407
https://doi.org/10.1103/PhysRevD.97.032006
https://arxiv.org/abs/1709.07374
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.07374
https://doi.org/10.1155/2019/2526897
https://arxiv.org/abs/1901.01162
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.01162
https://doi.org/10.1103/PhysRevD.78.074010
https://arxiv.org/abs/0807.0323
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.0323
https://doi.org/10.1103/PhysRevD.79.094028
https://arxiv.org/abs/0903.1886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.1886
https://doi.org/10.1103/PhysRevD.83.054025
https://arxiv.org/abs/1012.5296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.5296
https://doi.org/10.1103/PhysRevD.83.074008
https://doi.org/10.1103/PhysRevD.83.074008
https://arxiv.org/abs/1008.5322
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.5322
https://doi.org/10.1103/PhysRevD.85.014021
https://doi.org/10.1103/PhysRevD.85.014021
https://arxiv.org/abs/1111.1740
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.1740
https://doi.org/10.1007/JHEP01(2013)163
https://arxiv.org/abs/1210.1267
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.1267
https://doi.org/10.1103/PhysRevD.83.094507
https://arxiv.org/abs/1011.1213
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1213
https://doi.org/10.1016/j.physletb.2018.11.019
https://doi.org/10.1016/j.physletb.2018.11.019
https://arxiv.org/abs/1810.02297
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.02297
https://doi.org/10.1007/JHEP08(2018)165
https://arxiv.org/abs/1805.11948
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.11948
https://arxiv.org/abs/1907.09958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.09958


J
H
E
P
0
7
(
2
0
2
0
)
1
1
7

[74] R.-b. Meng, F.I. Olness and D.E. Soper, Semiinclusive deeply inelastic scattering at

electron-proton colliders, Nucl. Phys. B 371 (1992) 79 [INSPIRE].

[75] C.A. Aidala, B. Field, L.P. Gamberg and T.C. Rogers, Limits on transverse momentum

dependent evolution from semi-inclusive deep inelastic scattering at moderate Q, Phys. Rev.

D 89 (2014) 094002 [arXiv:1401.2654] [INSPIRE].

[76] Z.-B. Kang, A. Prokudin, P. Sun and F. Yuan, Extraction of Quark Transversity

Distribution and Collins Fragmentation Functions with QCD Evolution, Phys. Rev. D 93

(2016) 014009 [arXiv:1505.05589] [INSPIRE].

[77] J. Collins and T. Rogers, Understanding the large-distance behavior of

transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel,

Phys. Rev. D 91 (2015) 074020 [arXiv:1412.3820] [INSPIRE].

[78] M.A. Ebert, I.W. Stewart and Y. Zhao, Determining the Nonperturbative Collins-Soper

Kernel From Lattice QCD, Phys. Rev. D 99 (2019) 034505 [arXiv:1811.00026] [INSPIRE].

[79] G. Moreno et al., Dimuon production in proton-copper collisions at
√
s = 38.8-GeV, Phys.

Rev. D 43 (1991) 2815 [INSPIRE].

[80] A.S. Ito et al., Measurement of the Continuum of Dimuons Produced in High-Energy

Proton-Nucleus Collisions, Phys. Rev. D 23 (1981) 604 [INSPIRE].

[81] CDF collaboration, The transverse momentum and total cross section of e+e− pairs in the

Z boson region from pp̄ collisions at
√
s = 1.8 TeV, Phys. Rev. Lett. 84 (2000) 845

[hep-ex/0001021] [INSPIRE].

[82] CDF collaboration, Transverse momentum cross section of e+e− pairs in the Z-boson

region from pp̄ collisions at
√
s = 1.96 TeV, Phys. Rev. D 86 (2012) 052010

[arXiv:1207.7138] [INSPIRE].

[83] D0 collaboration, Measurement of the inclusive differential cross section for Z bosons as a

function of transverse momentum in p̄p collisions at
√
s = 1.8 TeV, Phys. Rev. D 61 (2000)

032004 [hep-ex/9907009] [INSPIRE].

[84] D0 collaboration, Measurement of the shape of the boson transverse momentum distribution

in pp̄→ Z/γ∗ → e+e− +X events produced at
√
s = 1.96-TeV, Phys. Rev. Lett. 100 (2008)

102002 [arXiv:0712.0803] [INSPIRE].

[85] D0 collaboration, Measurement of the Normalized Z/γ∗ → µ+µ− Transverse Momentum

Distribution in pp̄ Collisions at
√
s = 1.96 TeV, Phys. Lett. B 693 (2010) 522

[arXiv:1006.0618] [INSPIRE].

[86] LHCb collaboration, Measurement of the forward Z boson production cross-section in pp

collisions at
√
s = 7 TeV, JHEP 08 (2015) 039 [arXiv:1505.07024] [INSPIRE].

[87] LHCb collaboration, Measurement of forward W and Z boson production in pp collisions at√
s = 8 TeV, JHEP 01 (2016) 155 [arXiv:1511.08039] [INSPIRE].

[88] CMS collaboration, Measurement of the Rapidity and Transverse Momentum Distributions

of Z Bosons in pp Collisions at
√
s = 7 TeV, Phys. Rev. D 85 (2012) 032002

[arXiv:1110.4973] [INSPIRE].

[89] CMS collaboration, Measurement of the transverse momentum spectra of weak vector

bosons produced in proton-proton collisions at
√
s = 8 TeV, JHEP 02 (2017) 096

[arXiv:1606.05864] [INSPIRE].

– 42 –

https://doi.org/10.1016/0550-3213(92)90230-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB371%2C79%22
https://doi.org/10.1103/PhysRevD.89.094002
https://doi.org/10.1103/PhysRevD.89.094002
https://arxiv.org/abs/1401.2654
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.2654
https://doi.org/10.1103/PhysRevD.93.014009
https://doi.org/10.1103/PhysRevD.93.014009
https://arxiv.org/abs/1505.05589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.05589
https://doi.org/10.1103/PhysRevD.91.074020
https://arxiv.org/abs/1412.3820
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3820
https://doi.org/10.1103/PhysRevD.99.034505
https://arxiv.org/abs/1811.00026
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.00026
https://doi.org/10.1103/PhysRevD.43.2815
https://doi.org/10.1103/PhysRevD.43.2815
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD43%2C2815%22
https://doi.org/10.1103/PhysRevD.23.604
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD23%2C604%22
https://doi.org/10.1103/PhysRevLett.84.845
https://arxiv.org/abs/hep-ex/0001021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0001021
https://doi.org/10.1103/PhysRevD.86.052010
https://arxiv.org/abs/1207.7138
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.7138
https://doi.org/10.1103/PhysRevD.61.032004
https://doi.org/10.1103/PhysRevD.61.032004
https://arxiv.org/abs/hep-ex/9907009
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F9907009
https://doi.org/10.1103/PhysRevLett.100.102002
https://doi.org/10.1103/PhysRevLett.100.102002
https://arxiv.org/abs/0712.0803
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.0803
https://doi.org/10.1016/j.physletb.2010.09.012
https://arxiv.org/abs/1006.0618
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.0618
https://doi.org/10.1007/JHEP08(2015)039
https://arxiv.org/abs/1505.07024
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.07024
https://doi.org/10.1007/JHEP01(2016)155
https://arxiv.org/abs/1511.08039
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.08039
https://doi.org/10.1103/PhysRevD.85.032002
https://arxiv.org/abs/1110.4973
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.4973
https://doi.org/10.1007/JHEP02(2017)096
https://arxiv.org/abs/1606.05864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.05864


J
H
E
P
0
7
(
2
0
2
0
)
1
1
7

[90] ATLAS collaboration, Measurement of the transverse momentum and φ∗η distributions of

Drell-Yan lepton pairs in proton-proton collisions at
√
s = 8 TeV with the ATLAS detector,

Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].

[91] PHENIX collaboration, Measurements of µµ pairs from open heavy flavor and Drell-Yan in

p+ p collisions at
√
s = 200 GeV, Phys. Rev. D 99 (2019) 072003 [arXiv:1805.02448]

[INSPIRE].

[92] LHCb collaboration, Measurement of the forward Z boson production cross-section in pp

collisions at
√
s = 13 TeV, JHEP 09 (2016) 136 [arXiv:1607.06495] [INSPIRE].

[93] ATLAS collaboration, Measurement of the Z/γ∗ boson transverse momentum distribution

in pp collisions at
√
s = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145

[arXiv:1406.3660] [INSPIRE].

[94] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its

application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002

[hep-ph/0703012] [INSPIRE].

[95] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at

hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009)

082001 [arXiv:0903.2120] [INSPIRE].

[96] G. D’Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum.

Meth. A 346 (1994) 306 [INSPIRE].

[97] G. D’Agostini, Bayesian reasoning in data analysis: A critical introduction, World Scientific

(2003) [INSPIRE].

[98] R.D. Ball et al., Parton Distribution Benchmarking with LHC Data, JHEP 04 (2013) 125

[arXiv:1211.5142] [INSPIRE].

[99] NNPDF collaboration, Fitting Parton Distribution Data with Multiplicative Normalization

Uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].

[100] COMPASS collaboration, Hadron Transverse Momentum Distributions in Muon Deep

Inelastic Scattering at 160 GeV/c, Eur. Phys. J. C 73 (2013) 2531 [Erratum ibid. 75 (2015)

94] [arXiv:1305.7317] [INSPIRE].

[101] J. Dudek et al., Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab, Eur.

Phys. J. A 48 (2012) 187 [arXiv:1208.1244] [INSPIRE].

[102] D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization,

tomography, arXiv:1108.1713 [INSPIRE].

[103] A. Accardi et al., Electron Ion Collider: The Next QCD Frontier : Understanding the glue

that binds us all, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].

[104] V. Bertone, S. Carrazza and J. Rojo, APFEL: A PDF Evolution Library with QED

corrections, Comput. Phys. Commun. 185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].

[105] V. Bertone, APFEL++: A new PDF evolution library in C++, PoS DIS2017 (2018) 201

[arXiv:1708.00911] [INSPIRE].

[106] T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, in

14th International Workshop on Deep Inelastic Scattering, pp. 483–486 (2006) [DOI]

[hep-ph/0609285] [INSPIRE].

– 43 –

https://doi.org/10.1140/epjc/s10052-016-4070-4
https://arxiv.org/abs/1512.02192
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.02192
https://doi.org/10.1103/PhysRevD.99.072003
https://arxiv.org/abs/1805.02448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.02448
https://doi.org/10.1007/JHEP09(2016)136
https://arxiv.org/abs/1607.06495
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.06495
https://doi.org/10.1007/JHEP09(2014)145
https://arxiv.org/abs/1406.3660
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.3660
https://doi.org/10.1103/PhysRevLett.98.222002
https://arxiv.org/abs/hep-ph/0703012
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0703012
https://doi.org/10.1103/PhysRevLett.103.082001
https://doi.org/10.1103/PhysRevLett.103.082001
https://arxiv.org/abs/0903.2120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.2120
https://doi.org/10.1016/0168-9002(94)90719-6
https://doi.org/10.1016/0168-9002(94)90719-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Instrum.Meth.%2CA346%2C306%22
http://inspirehep.net/record/633061
https://doi.org/10.1007/JHEP04(2013)125
https://arxiv.org/abs/1211.5142
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.5142
https://doi.org/10.1007/JHEP05(2010)075
https://arxiv.org/abs/0912.2276
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.2276
https://doi.org/10.1140/epjc/s10052-013-2531-6
https://arxiv.org/abs/1305.7317
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.7317
https://doi.org/10.1140/epja/i2012-12187-1
https://doi.org/10.1140/epja/i2012-12187-1
https://arxiv.org/abs/1208.1244
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.1244
https://arxiv.org/abs/1108.1713
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.1713
https://doi.org/10.1140/epja/i2016-16268-9
https://arxiv.org/abs/1212.1701
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.1701
https://doi.org/10.1016/j.cpc.2014.03.007
https://arxiv.org/abs/1310.1394
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1394
https://doi.org/10.22323/1.297.0201
https://arxiv.org/abs/1708.00911
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.00911
https://doi.org/10.1142/9789812706706_0110
https://arxiv.org/abs/hep-ph/0609285
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0609285


J
H
E
P
0
7
(
2
0
2
0
)
1
1
7

[107] fastNLO collaboration, New features in version 2 of the fastNLO project, in 20th

International Workshop on Deep-Inelastic Scattering and Related Subjects, pp. 217–221

(2012) [DOI] [arXiv:1208.3641] [INSPIRE].

[108] T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state

calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503

[arXiv:0911.2985] [INSPIRE].

[109] F. James, MINUIT Function Minimization and Error Analysis: Reference Manual Version

94.1, CERN-D-506 (1994) [INSPIRE].

[110] S. Agarwal, K. Mierle and Others, Ceres solver, http://ceres-solver.org.

[111] S. Alekhin et al., HERAFitter, Eur. Phys. J. C 75 (2015) 304 [arXiv:1410.4412]

[INSPIRE].

[112] xFitter web page, https://www.xfitter.org/xFitter/.

[113] E. Maguire, L. Heinrich and G. Watt, HEPData: a repository for high energy physics data,

J. Phys. Conf. Ser. 898 (2017) 102006 [arXiv:1704.05473] [INSPIRE].

[114] F. Hautmann et al., TMDlib and TMDplotter: library and plotting tools for

transverse-momentum-dependent parton distributions, Eur. Phys. J. C 74 (2014) 3220

[arXiv:1408.3015] [INSPIRE].

[115] ATLAS collaboration, Measurement of the angular coefficients in Z-boson events using

electron and muon pairs from data taken at
√
s = 8 TeV with the ATLAS detector, JHEP

08 (2016) 159 [arXiv:1606.00689] [INSPIRE].

– 44 –

https://doi.org/10.3204/DESY-PROC-2012-02/165
https://arxiv.org/abs/1208.3641
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.3641
https://doi.org/10.1140/epjc/s10052-010-1255-0
https://arxiv.org/abs/0911.2985
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.2985
http://inspirehep.net/record/1258343
http://ceres-solver.org
https://doi.org/10.1140/epjc/s10052-015-3480-z
https://arxiv.org/abs/1410.4412
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.4412
https://www.xfitter.org/xFitter/
https://doi.org/10.1088/1742-6596/898/10/102006
https://arxiv.org/abs/1704.05473
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05473
https://doi.org/10.1140/epjc/s10052-014-3220-9
https://arxiv.org/abs/1408.3015
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3015
https://doi.org/10.1007/JHEP08(2016)159
https://doi.org/10.1007/JHEP08(2016)159
https://arxiv.org/abs/1606.00689
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.00689

	Introduction
	Theoretical framework
	Drell-Yan cross section in TMD factorisation
	TMD evolution and matching
	Perturbative content
	Logarithmic ordering
	Non-perturbative content and its parameterisation

	Experimental data
	Results
	Fit quality
	TMD distributions
	Perturbative convergence
	Reduced dataset and x dependence
	Dependence on the cut on q(T)/ Q

	Conclusions
	Numerics and delivery
	Integrating over q(T)
	Kinematic cuts

	Cuts on the final-state leptons
	Azimuthally-dependent contributions


