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1 Introduction

The experimental observation of neutrino flavor oscillations constitutes a milestone in par-

ticle physics and proves that the Standard Model (SM) is an incomplete theory. Although

many questions remain open, such as the Majorana or Dirac nature of neutrinos or the pos-

sible violation of CP in the leptonic sector, the SM must certainly be extended to include

a mechanism that accounts for non-zero neutrino masses and mixings.

Many neutrino mass models have been proposed along the years. Among them, radia-

tive models are particularly appealing. After the pioneer models in the 80’s [1–4], countless

radiative models have been proposed and studied [5]. The suppression introduced by the

loop factors allows one to accommodate the observed solar and atmospheric mass scales

with sizable couplings and relatively light (TeV scale) mediators. This typically leads to a

richer phenomenology compared to the usual tree-level scenarios and, in fact, the new medi-

ators may even be accessible to current colliders. Furthermore, in some radiative models one

can easily address a completely independent problem: the nature of the dark matter (DM)

of the Universe. Discrete symmetries, connected to the radiative origin of neutrino masses,

may be used to stabilize viable DM candidates, resulting in very economical scenarios [6].

The first and arguably most popular model of this class is the Scotogenic model [7].

The addition of just three singlet fermions and one scalar doublet, as well as a dark Z2

parity under which these new states are odd, suffices to simultaneously induce neutrino

masses at the 1-loop level and obtain a weakly-interacting DM candidate.
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Since the appearance of the original Scotogenic model, many variations and extensions

have been put forward. These include colored versions of the model [8–11] and versions with

additional states and/or symmetries, both in Dirac [12–20] and Majorana fashion [21–65].

The Z2 parity can also be promoted to a local [66, 67] or global U(1) symmetry [68–71],

or to a Peccei-Quinn quasi-symmetry [72–74]. Finally, Scotogenic-like scenarios have also

been combined with, or even obtained from, extended gauge symmetries [75–78].

Here we pursue a different type of generalization of the Scotogenic model. In its original

version, three generations of singlet fermions and a single copy of the inert doublet were

included.1 However, this was just a choice and a Scotogenic model with alternative numbers

of generations can be considered [79, 80]. This is the aim of this paper, to introduce the

general Scotogenic model, with arbitrary numbers of generations of the Scotogenic states,

and study its more relevant features.

The rest of the manuscript is organized as follows. In section 2 we present our general-

ization of the Scotogenic model to any number of singlet fermions and inert scalar doublets.

Section 3 is devoted to the calculation of the induced 1-loop neutrino masses, whereas some

aspects of the high-energy behavior of the model and the relevance of thermal effects are

discussed in sections 4 and 5, respectively. We summarize our findings and conclude with

some further comments in section 6. Additional details are given in appendices A and B.

2 The general Scotogenic model

The Scotogenic model [7] is a simple extension of the SM that induces radiative neutrino

masses and provides a potential dark matter candidate. Here we consider a generalization

of the model. The SM particle content is extended by an unspecified number, nN , of singlet

fermions N , and also an arbitrary number, nη, of inert scalar doublets η. Particular cases

of this particle spectrum can be labeled by their (nN , nη) values. In addition, the symmetry

group of the SM is enlarged with a dark Z2 parity, under which all the new fields are odd,

while the SM particles are even. The scalar and fermion particle content of the model, as

well as their representations under the gauge group SU(3)c × SU(2)L × U(1)Y and the Z2

parity of the model are given in table 1.

The relevant Yukawa and bare mass terms for our discussion are

LN ⊃ ynaαNn ηa `
α
L +

1

2
MNn N

c
nNn + h.c. , (2.1)

where n = 1, . . . , nN , a = 1, . . . , nη and α = 1, 2, 3 are generation indices and y is a general

complex nN × nη × 3 object. Besides, MN is a symmetric nN × nN Majorana mass matrix

that has been chosen diagonal without loss of generality. Furthermore, one can also write

the scalar potential

V = m2
HH

†H +
(
m2
η

)
ab
η†aηb +

1

2
λ1

(
H†H

)2
+

1

2
λabcd2

(
η†aηb

)(
η†cηd

)
+ λab3

(
H†H

)(
η†aηb

)
+ λab4

(
H†ηa

)(
η†bH

)
+

1

2

[
λab5

(
H†ηa

)(
H†ηb

)
+ h.c.

]
.

(2.2)

1Even though this version of the Scotogenic model is often referred to as the minimal Scototogenic model,

we note that more minimal setups can be built [23, 54, 55].
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Field Generations SU(3)c SU(2)L U(1)Y Z2

`L 3 1 2 −1/2 +

eR 3 1 1 −1 +

H 1 1 2 1/2 +

η nη 1 2 1/2 −
N nN 1 1 0 −

Table 1. Scalar and fermion particle content of the model and representations under the gauge

and global symmetries. `L and eR are the SM left- and right-handed leptons, respectively, and H

is the SM Higgs doublet.

Here all the indices are η generation indices. Therefore, m2
η and λ3,4,5 are nη×nη matrices

while λ2 is an nη × nη × nη × nη object. Note that λ5 must be symmetric whereas λ3,4

must be Hermitian. Again, m2
η will be assumed to be diagonal without loss of generality.

Finally, we highlight the presence of the scalar potential quartic couplings λab5 , which play

a major role in the neutrino mass generation mechanism, as shown in section 3.

We will assume that the minimization of the scalar potential in eq. (2.2) leads to the

vacuum configuration 〈
H0
〉

=
v√
2
,

〈
η0
a

〉
= 0 , (2.3)

with a = 1, . . . , nη. Therefore, only the neutral component of H acquires a non-zero vacuum

expectation value (VEV), which breaks the electroweak symmetry in the standard way,

while the ηa scalars are inert doublets with vanishing VEVs. In this way, the Z2 symmetry

remains unbroken and the stability of the lightest Z2-charged particle is guaranteed. We

will come back to the possibility of Z2 breaking due to Renormalization Group Equations

(RGEs) effects later.

We now decompose the neutral component of the ηa multiplets, η0
a, as

η0
a =

1√
2

(ηRa + i ηIa) . (2.4)

In the following we will assume that all the parameters in the scalar potential are real,

hence conserving CP in the scalar sector. In this case, the real and imaginary components

of η0
a do not mix. After electroweak symmetry breaking, the nη ×nη mass matrices for the

real and imaginary components are given by

(M2
R)ab = (mη)

2
aa δab +

(
λab3 + λab4 + λab5

) v2

2
(2.5)

and

(M2
I)ab = (mη)

2
aa δab +

(
λab3 + λab4 − λab5

) v2

2
, (2.6)

respectively. We note that M2
R =M2

I in the limit λ5 → 0, in which all the elements of λ5

vanish. This will be crucial in the calculation of neutrino masses, as shown below. Both
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mass matrices can be brought into diagonal form by means of a change of basis. The gauge

eigenstates, ηAa , are related to the mass eigenstates, η̂Ab , where A = R, I, by

ηA = VA η̂A . (2.7)

Here ηA and η̂A are nη-component vectors. In general, the nη×nη matrices VA are unitary,

such that VAV
†
A = V †AVA = Inη , where Inη is the nη × nη identity matrix. However, in the

simplified scenario of CP conservation in the scalar sector,M2
R andM2

I are real symmetric

matrices, and then the VA matrices are orthogonal, such that VAV
T
A = V T

A VA = Inη . With

these transformations, the diagonal mass matrices are given by

M̂2
A =


m2
A1

0
. . .

0 m2
Anη

 = V T
AM2

AVA . (2.8)

The resulting analytical expressions for the mass eigenvalues m2
Aa

and mixing matrices VA
involve complicated combinations of the scalar potencial parameters. However, under the

assumptions2

λaa3,4

v2

2
�
(
m2
η

)
aa

and λab5 � λab3,4 � 1 (2.9)

one can find simple expressions. The m2
Aa

mass eigenvalues are given by

m2
Ra =

(
m2
η

)
aa

+ (λaa3 + λaa4 + λaa5 )
v2

2
, (2.10)

m2
Ia =

(
m2
η

)
aa

+ (λaa3 + λaa4 − λaa5 )
v2

2
. (2.11)

We note that the mass splitting m2
Ra
− m2

Ia
= λaa5 v2 vanishes in the limit λ5 → 0. In

what concerns the VA orthogonal matrices, each of them can be expressed as a product of

nη(nη − 1)/2 rotation matrices, with the scalar mixing angles given by

tan 2 θabA =
2 (M2

A)ab
(M2

A)bb − (M2
A)aa

=
(
λab3 + λab4 + κ2

A λ
ab
5

) v2

m2
Ab
−m2

Aa

, (2.12)

where the κ2
A sign (κ2

R = +1 and κ2
I = −1) has been introduced.

3 Neutrino masses

The generation of neutrino masses takes place at the 1-loop level à la scotogenic [7]. In

the presence of the terms given in eqs. (2.1) and (2.2), lepton number is explicitly broken

in two units, hence inducing Majorana neutrino masses. Assuming that the potential is

such that the ηa scalars do not get VEVs, see eq. (2.3), neutrino masses are forbidden at

tree-level. Nevertheless, they are induced at the 1-loop level, as shown in figure 1. Several

diagrams contribute to the neutrino mass matrix. Therefore, one can write

(mν)αβ =
∑
A,a,n

(
mA
ν

)an
αβ

, (3.1)

2Note that this assumption is technically natural [81]: the smallness of λ5 is not dynamically explained

but is stable against RGE flow. This is due to the fact that the limit λ5 → 0 increases the symmetry of the

model by restoring lepton number. Therefore, if λ5 is set small at one scale it will remain small at all scales.
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νL νL

H0 H0

η η

N N ναL ν
β
L

ηRa
, ηIa

Nn

Figure 1. Neutrino mass generation. To the left, Feynman diagram with gauge eigenstates. To

the right, the analogous Feynman diagram with the physical mass eigenstates that propagate in

the loop.

where
(
mA
ν

)an
αβ

is the contribution to (mν)αβ generated by the Nn − ηAa loop, given by

− i
(
mA
ν

)an
αβ

= CAnaα

∫
dDk

(2π)D
i

k2 −m2
Aa

i (/k +MNn)

k2 −M2
Nn

CAnaβ , (3.2)

where D = 4− ε is the number of space-time dimensions, the external neutrinos are taken

at rest and k is the momentum running in the loop. We note that the term proportional to

/k does not contribute because it is odd in the loop momentum. CAnaα is the Nn− ηAa − ναL
coupling, given by

CAnaα = i
κA√

2

∑
b

(VA)∗ba ynbα , (3.3)

with κR = 1 and κI = i. Since we assume real parameters in the scalar sector, complex

conjugation in VA will be dropped in the following. Replacing eq. (3.3) into eq. (3.2) and

introducing the standard Passarino-Veltman loop function B0 [82],

B0

(
0,m2

Aa ,M
2
Nn

)
= ∆ε + 1−

m2
Aa

logm2
Aa
−M2

Nn
logM2

Nn

m2
Aa
−M2

Nn

, (3.4)

where ∆ε diverges in the limit ε→ 0, eq. (3.1) becomes

(mν)αβ = − 1

32π2

∑
A,a,b,c,n

MNn κ
2
A (VA)ba (VA)ca ynbα yncβ B0(0,m2

Aa ,MNn) . (3.5)

Eq. (3.5) constitutes our central result for the 1-loop neutrino mass matrix in the model. It

is important to note that the divergent pieces cancel exactly. Indeed, the κ2
A factor implies

that the term proportional to ∆ε in eq. (3.5) involves the combination∑
a

[(VR)ba (VR)ca − (VI)ba (VI)ca] =
(
VR V

T
R

)
bc
−
(
VI V

T
I

)
bc

= δbc − δbc = 0 , (3.6)

which vanishes due to the orthogonality of the VA matrices, ensuring the cancellation of

the divergent part of the B0 functions. This was expected since the neutrino mass matrix

is physical and therefore finite.
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While eq. (3.5) provides a simple analytical expression for the neutrino mass matrix,

the dependence on the fundamental parameters of the model is not explicit. The neutrino

mass matrix involves a product of VA matrices and B0 functions, both in general depending

on the scalar potential parameters in a non-trivial way. In order to identify more clearly

the role of the scalar potential parameters, we will work under the assumptions in eq. (2.9)

and derive an approximate form for the neutrino mass matrix, valid for small λab5 couplings

and small mixing angles in the scalar sector. First, it is convenient to make an expansion

in powers of λab5 � 1. One can write

(mν)αβ = − 1

32π2

∑
n

MNn

∑
a,b,c

ynbα yncβ (3.7)

{
[(V )ba (V )ca]

(0)
[
B

(1)
0 (0,m2

Ra ,MNn)−B(1)
0 (0,m2

Ia ,MNn)
]

+ [(VR)ba (VR)ca − (VI)ba (VI)ca]
(1) B

(0)
0 (0,m2

a,MNn)
}

+O
(
λ2

5

)
,

where the superindex (i), with i = 0, 1, denotes the order in λab5 . We highlight that the

expansion begins at 1st order in λ5. This was indeed expected, since λ5 = 0 would imply

the restoration of lepton number and massless neutrinos. With this in mind, the origin

of the two terms in eq. (3.7) is easy to understand. In the first term, the λab5 couplings

are neglected in the VA matrices but kept at leading order in the B0 functions. This term

is proportional to the B0(0,m2
Ra
,MNn) − B0(0,m2

Ia
,MNn) difference, which would vanish

for λaa5 = 0, see eqs. (2.10) and (2.11). The mass matrices for the real and imaginary

components of η0 are equal at 0th order in λ5, M̂2 (0)
R = M̂2 (0)

I , and then we can define

V ≡ V
(0)
R = V

(0)
I . In the second term, the λab5 couplings are neglected in the B0 functions

but kept at leading order in the VA mixing matrices. Since m
(0)
Ra

= m
(0)
Ia
≡ ma at 0th order

in λaa5 , then the B
(0)
0 function has the argument

m2
a =

(
m2
η

)
aa

+ (λaa3 + λaa4 )
v2

2
. (3.8)

We note that this term will only be non-zero when the λ5 matrix contains non-vanishing

off-diagonal entries, since this is the only way the (VR)ba (VR)ca − (VI)ba (VI)ca would

not vanish at 1st order in λ5. Next, we find approximate expressions for the VA mixing

matrices. This is only feasible by assuming small scalar mixing angles, in agreement with

eq. (2.9). In this case one can expand V not only in powers of λ5, but also in powers of

the small parameter

sab =
1

2

(
λab3 + λab4

) v2

m2
b −m2

a

� 1 , (3.9)

which is defined for a 6= b and corresponds to sin θabR or sin θabI at 0th order in λ5, see

eq. (2.12). With this definition, one finds the general expression (V )ab = δab + (1 −
δab) sab +O

(
s2
)
. Analogous expressions are found for VR and VI replacing s by sin θR and

sin θI , respectively. With all these ingredients, eq. (3.7) can be written as

(mν)αβ =
v2

32π2

∑
n,a,b

ynaα ynbβ
MNn

Γabn +O
(
λ2

5

)
+O

(
λ5 s

2
)
, (3.10)

– 6 –
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where we have defined the dimensionless quantity

Γabn = δab λ
aa
5 fan − (1− δab)

[(
λaa5 fan − λbb5 fbn

)
sab −

M2
Nn

m2
b −m2

a

λab5 gabn

]
(3.11)

and the loop functions

fan =
M2
Nn

m2
a −M2

Nn

+
M4
Nn(

m2
a −M2

Nn

)2 log
M2
Nn

m2
a

, (3.12)

gabn =
m2
a

m2
a −M2

Nn

log
M2
Nn

m2
a

−
m2
b

m2
b −M2

Nn

log
M2
Nn

m2
b

. (3.13)

Eq. (3.10) involves the quantity Γabn, which we have written in eq. (3.11) as the sum of

two terms. The first term in Γabn contributes only for a = b and involves only diagonal

elements of λ5. The second term, which involves diagonal as well as off-diagonal elements

of λ5, only contributes for a 6= b. We also note that gabn = −gban.

Eq. (3.10) is the main analytical result of our work. Under the assumptions of eq. (2.9),

it reproduces the neutrino mass matrix in very good approximation. It is valid for any nN
and nη values. We will now show how in some particular cases it reduces to well-known

expressions in the literature.

3.1 Particular case 1: (nN , nη) = (3, 1)

The first example we consider is the standard Scotogenic model originally introduced in [7]

and obtained for (nN , nη) = (3, 1). In this case, only one inert doublet η is introduced.

Therefore all the matrices in the scalar sector become just scalar parameters: VA = 1,

λab5 ≡ λ11
5 ≡ λ5 and (m2

η)aa ≡ (m2
η)11 ≡ m2

η. Besides, the Yukawa couplings become 3 × 3

matrices: ynaα ≡ yn1α ≡ ynα. Similarly, fan ≡ f1n ≡ fn, and the second term in eq. (3.11)

does not contribute. With these simplifications, the general Γabn reduces to Γ
(3,1)
n , given by

Γ
(3,1)
abn ≡ Γ

(3,1)
11n ≡ Γ(3,1)

n = λ5 fn . (3.14)

Replacing this into eq. (3.10), one obtains the well-known neutrino mass matrix

(mν)
(3,1)
αβ =

λ5 v
2

32π2

∑
n

ynα ynβ
MNn

[
M2
Nn

m2
0 −M2

Nn

+
M4
Nn(

m2
0 −M2

Nn

)2 log
M2
Nn

m2
0

]
, (3.15)

with m2
0 = m2

η + (λ3 + λ4) v2/2. This expression agrees with [7] up to a factor of 1/2 that

was missing in the original reference.3

3.2 Particular case 2: (nN , nη) = (1, 2)

A version of the Scotogenic model with one singlet fermion and two inert doublets,

(nN , nη) = (1, 2), has been considered in [79, 80]. Since the model contains only one

singlet fermion N , MNn ≡ MN is just a parameter. The Yukawa couplings become 2 × 3

3The correct expression was first shown in version 1 of [83] and later reproduced in [5, 84].

– 7 –



J
H
E
P
0
7
(
2
0
2
0
)
0
9
7

matrices: ynaα ≡ y1aα ≡ yaα. Finally, fna ≡ f1a ≡ fa and gabn ≡ gab1 ≡ gab. Both refer-

ences work in the basis in which the m2
η matrix is diagonal. However, they take different

simplifying assumptions about the scalar potential parameters.

In [79] the matrix λ3 + λ4 was assumed to be diagonal. In this case, which we denote

as scenario (1, 2) I, (1− δab)sab = 0 and the general Γabn reduces to

Γ
(1,2) I

abn ≡ Γ
(1,2) I

ab1 ≡ Γ
(1,2) I

ab = δab λ
aa
5 fan + (1− δab)

M2
Nn

m2
b −m2

a

λab5 gabn . (3.16)

Replacing this expression into eq. (3.10) and arranging the different pieces properly, one

obtains

(mν)
(1,2) I
αβ =

v2

32π2

∑
a,b

yaα ybβ λ
ab
5

MN

m2
b−M2

N

[
m2
b

m2
a−m2

b

log
m2
a

m2
b

−
M2
N

m2
a−M2

N

log
m2
a

M2
N

]
, (3.17)

which agrees with the result in [79] up to a global factor of 1/4.

On the other hand, a diagonal λ5 matrix was taken in [80]. We denote this as scenario

(1, 2) II. Again, this simplifies Γabn, which becomes

Γ
(1,2) II

abn ≡ Γ
(1,2) II

ab1 ≡ Γ
(1,2) II

ab = δab λ
aa
5 fan − (1− δab)

(
λaa5 fan − λbb5 fbn

)
sab . (3.18)

With this result, one can easily use eq. (3.10) to derive

(mν)
(1,2) II

αβ =
v2

32π2MN

∑
a,b,c

yaα ybβ λ
cc
5 fcXabc , (3.19)

with

Xabc = δabδbc +
1

2
(1− δab) (δc2 − δc1)

(
λab3 + λab4

) v2

m2
b −m2

a

, (3.20)

which agrees with the expression given in [80] if terms of order s2
12 are neglected.

4 High-energy behavior

The conservation of the Z2 parity is crucial for the Scotogenic setup to be consistent. In

the absence of this symmetry, neutrinos would acquire masses at tree-level and the DM

candidate would no longer be stable. This motivates the study of the conservation of Z2

at high energies, a line of work initiated in [83]. As pointed out in this reference, the RGE

flow in the Scotogenic model might alter the shape of the scalar potential at high energies

and lead to the breaking of Z2. This issue was fully explored in subsequent works [85, 86],

which show that the breaking of the Z2 parity actually takes place in large regions of the

parameter space. A similar discussion for a variation of the Scotogenic model including

scalar and fermion triplets was presented in [48].

Some general features of the high-energy behavior of the model, and in particular of the

possible breaking of the Z2 symmetry, can be understood by inspecting the 1-loop β func-

tion for the m2
η parameter, shown in appendix A. Eq. (A.2) generalizes the result previously

derived in [83] and gives the 1-loop β function for the m2
η matrix, valid for any values of

– 8 –
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(nN , nη). In order to study the possible breaking of Z2, one must consider the sign (positive

or negative) of the individual contributions to the running of m2
η. In this regard, the neg-

ative contribution of the term proportional to Tr
[
y†aM∗NMNyb

]
turns out to be crucial. In

the following, we will refer to this term as the trace term. As first pointed out in [83] for the

standard Scotogenic model, in case of large Yukawa couplings (equivalent to λ5 � 1) and

M2
N & m2

η, the trace term dominates the m2
η running and drives it towards negative values.

Eventually, this leads to the breaking of the Z2 symmetry at high energies, once m2
η < 0

induces a minimum of the scalar potential with 〈η〉 6= 0. The same behavior is expected

in the general Scotogenic model. Other terms in eq. (A.2) may counteract this effect. In

particular, the terms proportional to the quartic scalar couplings may do so if their signs

are properly chosen. The contribution to the m2
η running will be positive for λ2 > 0 and

λ3,4 < 0 (since m2
H < 0), while their effect will reinforce that of the trace term otherwise.

We will now explore the scalar potential of the model at high energies by solving the

full set of RGEs numerically. In order to do that we will concentrate on two specific (but

representative) versions of the general Scotogenic model:

• The (3, 1) model, with three singlet fermions and one inert doublet. This is the

original Scotogenic model [7].

• The (1, 3) model, with one singlet fermion and three inert doublets.

We set all model parameters at the electroweak scale, which we take to be the Z-boson mass,

mZ . Therefore, in the following all values for the input parameters must be understood to

hold at µ = mZ . We compute m2
H by solving the tadpole equations of the model and set

the λ1 value to reproduce the measured Higgs boson mass. The remaining scalar potential

parameters are chosen freely, but always to values that guarantee that the potential is

bounded from below (BFB) at the electroweak scale. This is a non-trivial requirement

due to the complexity of the scalar potential of the general Scotogenic model. We refer to

appendix B for a detailed discussion on how we check boundedness from below. Finally, we

must accommodate the neutrino squared mass differences and the leptonic mixing angles

measured in neutrino oscillation experiments by properly fixing the Yukawa couplings of

the model. In the two variants of the general Scotogenic model considered the Yukawa

couplings become 3 × 3 matrices, and then they can be obtained by means of a Casas-

Ibarra parametrization [87], adapted to the Scotogenic model as explained in [88–91]. This

allows us to write the Yukawa matrices in full generality as

y = i V †Σ−1/2RD√m U
† . (4.1)

Here U is a 3×3 unitary matrix, defined by the Takagi decomposition of the neutrino mass

matrix

UT mν U = diag (m1,m2,m3) , (4.2)

with mi the three physical neutrino masses. R is a general 3 × 3 orthogonal matrix and

we have defined D√m = diag
(√
m1,
√
m2,
√
m3

)
. Finally, Σ and V are determined by the

matrix M , defined implicitly by the general expression mν = yT M y. Σ = diag (σ1, σ2, σ3)
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is a diagonal matrix containing the eigenvalues of M , while V is a 3 × 3 unitary matrix

such that M = V T ΣV . Indeed, as shown in section 3, the analytical expression for the

neutrino mass matrix in eq. (3.10) can be particularized to the (3, 1) and (1, 3) models

and in both cases one can write mν as the matrix product yT M y, with different forms

for the matrix M . With these definitions, eq. (4.1) ensures compatibility with neutrino

oscillation data. We consider neutrino normal mass ordering and the 1 σ ranges for the

oscillation parameters obtained in the global fit [92], including the CP-violating phase δ,

hence allowing for complex Yukawa couplings. For simplicity, we take m1 = 0 and R = I,
with I the 3× 3 identity matrix.4

Some comments are in order before presenting our numerical results. In what follows,

several regions of the parameter spaces of the (3, 1) and (1, 3) Scotogenic models will be

explored. Our focus is the study of the behavior of these models at high energies. While

several phenomenological directions of interest can be pursued, these are beyond the scope

of our work. In particular, we are interested in effects associated to the trace term, what

motivates the consideration of small λ5 values (λaa5 ≤ 10−8). Larger λ5 entries would require

smaller y Yukawa couplings in order to accommodate the mass scales measured in neutrino

oscillations experiments, see eqs. (3.15), (3.17) and (3.19), hence making the trace term

numerically less relevant. For this reason, all scenarios considered below have y ∼ O(1).

While this may lead to conflict with the current bounds from the non-observation of charged

lepton flavor violating processes, we note the existence of many free parameters in the y

Yukawa matrices. This freedom can be used to cancel the most constraining observables, for

instance by choosing specific R matrices, without any impact on our discussion. Similarly,

the scenarios considered below, and in particular the values chosen for the masses of the

Z2-odd states, may not be compatible with the measured dark matter relic density.

First, we have rediscovered the parity problem in the standard (3, 1) Scotogenic model.

This is shown on the left-hand side of figure 2, which displays the RGE evolution of the

CP-even scalar mass mR with the energy scale µ. This is the most convenient parameter to

study the breaking of the Z2 symmetry. When m2
R becomes negative, the lightest CP-even

scalar becomes tachyonic, a clear sign that 〈η〉 = 0 is not the minimum of the potential.

We have checked that the scalar potential is BFB at all energy scales in this figure. We

note that due to our parameter choices the lightest singlet fermion, N1, has vanishing

Yukawa couplings. For the same reason, y2α � y3α and the effect is driven predominantly

by N3. This explains the drastic change in the evolution of mR at µ = 2 TeV, when

N3 becomes active. Below this scale, N3 effectively decouples and does not contribute to

the RGE running. We point out that a much less pronounced change takes also place at

µ = 1.5 TeV, when N2 becomes active, but this is not visible on the figure. The Z2 parity

gets broken at µ ' 60 TeV, after which the ηR state becomes tachyonic. These results

agree well with those found in [83] and confirm the possible breaking of Z2 in the original

4For a general discussion on the parametrization of Yukawa couplings in Majorana neutrino mass models

we refer to [90, 91]. Even though we have focused on the (3, 1) and (1, 3) Scotogenic models, in which the

Yukawa couplings are matrices, we note that the master parametrization introduced in these references can

be used in variants of the general Scotogenic model with both nN , nη > 1, which can be regarded as hybrid

scenarios, see appendix F of [91].
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Figure 2. Evolution of the CP-even scalar masses as a function of the energy scale µ in the (3, 1)

and (1, 3) Scotogenic models. To the left, the CP-even scalar mass mR in the standard (3, 1) model

with MN = (1, 1.5, 2) TeV, λ2 = λ3 = λ4 = 0.1, λ5 = 10−9 and m2
η = (200 GeV)2. To the right, the

three CP-even scalar masses mRa in the (1, 3) model with MN = 8 TeV, λaaaa2 = λaa3 = λaa4 = 0.1,

λaa5 = 10−9 and m2
η = (2002, 6002, 8002) GeV2, with the remaining scalar parameters set to zero.

Scotogenic model. A very similar behavior is found for the (1, 3) model, which only has

one singlet fermion, as shown on the right-hand side of figure 2. In this case, the three

CP-even scalar masses mRa are displayed. Again, we have checked that the scalar potential

is BFB at all energy scales in this figure. As in the case of the standard Scotogenic model,

when one of the CP-even scalar masses reaches zero the Z2 symmetry gets broken. We see

in this figure that this happens at µ ' 15 TeV, where one of the scalar masses (the one

receiving the largest contribution from the trace term) goes very sharply towards zero due

to the effect of the large MN = 8 TeV value. This is clearly the same behavior observed in

the standard (3, 1) Scotogenic model.

In the following we concentrate on the (1, 3) model. As already discussed, the singlet

fermion mass MN drives the scalar masses towards negative values via the trace term,

hence breaking the Z2 parity at high energies. Figure 3 shows the Z2 breaking scale as a

function of MN for several scalar parameter sets. The blue and red lines correspond to

moderate values for the quartic couplings, λaaaa2 = λaa3 = λaa4 = 0.1, while the green line

has increased (and additional) quartics, λaaaa2 = λaabb2 = λaa3 = λaa4 = 0.3. The λ5 matrix

is taken to be diagonal, with λaa5 = 10−9. We have explicitly checked that the scalar

potential is BFB at the electroweak scale in all scenarios.5 As expected, the Z2 breaking

scale decreases for larger MN since the effect of the trace term becomes stronger. While

different scalar potential couplings may alter the outcome, this generic behavior is found

in large portions of the parameter space. One should notice, however, that the green curve

begins at MN ' 2 TeV. For this specific scenario, lower values of MN do not break the Z2

symmetry, as we now proceed to discuss.

5We have allowed for (possible) non-BFB potentials at high energies, where some of the quartic couplings

become negative due to running effects. We note that our algorithm gives us only sufficient (and not

necessary) boundedness from below conditions, and in principle some of the possibly non-BFB potentials

might actually be BFB. Morevoer, even non-BFB potentials may be realistic if the electroweak vacuum is

metastable and has a large enough lifetime. This issue is already present in the SM and is clearly beyond

the scope of our analysis, which focuses on the possible breaking of the Z2 symmetry.
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Figure 3. Z2 breaking scale as a function of the singlet fermion mass MN in the (1, 3) Scotogenic

model for three different scenarios: λaaaa2 = λaa3 = λaa4 = 0.1 and m2
η =

(
2002, 3002, 4002

)
GeV2

(blue), λaaaa2 = λaa3 = λaa4 = 0.1 and m2
η =

(
2002, 6002, 8002

)
GeV2 (red, dashed), and λaaaa2 =

λaabb2 = λaa3 = λaa4 = 0.3 and m2
η =

(
2002, 3002, 4002

)
GeV2 (green, dotted). In the three cases

λaa5 = 10−9 and the remaining quartic parameters are set to zero.

Figure 4. Evolution of the lightest scalar mass mR1
as a function of the energy scale µ in the (1, 3)

Scotogenic model. The scalar parameters are set to λaaaa2 = λaabb2 = λaa3 = λaa4 = 0.3, λaa5 = 10−9

and m2
η =

(
2002, 3002, 4002

)
GeV2, while MN takes the values 1 TeV (blue), 1.5 TeV (red, dashed),

1.9 TeV (green, dotted), 2.025 TeV (orange, dash-dotted) and 2.2 TeV (brown, double dashed).

Figure 4 shows the evolution of the lightest scalar mass mR1 as a function of the energy

for the parameter values corresponding to the green curve in figure 3. The results have been

obtained for several values of MN . It is important to note that this figure shows the mass

of the lightest scalar at each energy scale, and not the mass of a single mass eigenstate at

all energies. For MN = 2.2 TeV one observes that mR1 reaches zero and the Z2 symmetry
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Figure 5. Z2 breaking scale as a function of the λ22332 parameter in the (1, 3) Scotogenic model

for three different scenarios: λaaaa2 = λaa3 = λaa4 = 0.1, λaa5 = 10−8, m2
η =

(
2002, 3002, 4002

)
GeV2

and MN = 5 TeV (blue), λaaaa2 = λaa3 = λaa4 = 0.1, λaa5 = 10−9, m2
η =

(
2002, 2502, 3002

)
GeV2

and MN = 1.25 TeV (red, dashed), and λaaaa2 = λaabb2 = λaa3 = λaa4 = 0.3, λaa5 = 10−8, m2
η =(

2002, 6002, 8002
)

GeV2 and MN = 9 TeV (green, dotted). In the three cases the remaining quartic

parameters are set to zero.

gets broken at µ ' 107 GeV, in accordance with figure 3. For lower MN values, however,

mR1 never reaches zero. Although mR1 gets initially decreased due to the effect of the trace

term, it eventually increases at higher energies. The reason is the appearance of a Landau

pole in the λ2 quartic couplings. In this figure λaaaa2 = λaabb2 = 0.3 at the electroweak scale,

and this value grows with the energy until it completely dominates the m2
η β function with

a positive contribution, see eq. (A.2). The high multiplicity of λ2 couplings reinforces the

effect. Actually, we note that this Landau pole is present at very high energies, well above

the Z2 breaking scale, for many choices of the parameters at the electroweak scale.

We conclude our exploration of the high-energy behavior of the (1, 3) model with

figure 5. In this case we plot the Z2 breaking scale as a function of one of the λ2 parameters,

namely λ2233
2 . This is done for three scenarios: the blue curve corresponds to λaaaa2 = λaa3 =

λaa4 = 0.1, λaa5 = 10−8, m2
η =

(
2002, 3002, 4002

)
GeV2 and MN = 5 TeV, in red we show

the results for λaaaa2 = λaa3 = λaa4 = 0.1, λaa5 = 10−9, m2
η =

(
2002, 2502, 3002

)
GeV2 and

MN = 1.25 TeV, while the green line is for λaaaa2 = λaabb2 = λaa3 = λaa4 = 0.3, λaa5 = 10−8,

m2
η =

(
2002, 6002, 8002

)
GeV2 and MN = 9 TeV. In all cases we have checked that the

scalar potential is BFB at the electroweak scale. For the blue and green lines, the impact

of λ2233
2 is relatively mild. This is because the high values of MN (5 and 9 TeV, respectively)

make the trace term completely dominant and break the Z2 symmetry at relatively low

energies. In contrast, the Z2 breaking scale has a much stronger dependence on λ2233
2 in

the red scenario, which has a lower MN = 1.25 TeV. For λ2233
2 & 0.6, a Landau pole is

found before the Z2 symmetry gets broken.
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5 Thermal effects and the fate of the Z2 symmetry

To determine the cosmological impact of Z2 breaking one needs to take into account thermal

corrections. This is because the interaction with the hot, primordial plasma induces an

effective potential for the scalar fields. This effective potential, at 1-loop order, is given by

V1-loop(η, T ) = VCW(η) +
T 4

2π

[
nBJB(m2(η)/T 2)− nfJF (mf (η)2/T 2)

]
. (5.1)

Here VCW is the standard Coleman-Weinberg potential for η at zero temperature while

JB(mb(η)2/T 2) and JF (mf (η)2/T 2) are the bosonic and fermionic functions, respectively.

These functions admit a high-T expansion (see [93] for a review) which allows to write the

scalar mass as

m2
η(T ) ∼ m2

η + c T 2 . (5.2)

The coefficient c depends on the details of the theory, such as the quartic, gauge and

Yukawa couplings.6 At any given time in the early Universe, as it can be seen in eq. (5.2),

the effect of the temperature is usually to restore the symmetry with the subsequent dilution

of the effects of the running that we have discussed in the previous section. It is therefore

mandatory to study if temperature has any impact on the fate of the Z2 symmetry and,

therefore, on the stability of DM.

During inflation, the η field is expected to have large quantum fluctuations, comparable

to the Hubble parameter in this period, HI . These fluctuations can be much larger than

the scalar mass at zero temperature and, acting as a sort of random walk, might bring the

field to a vacuum where the Z2 is broken. Right after reheating, when the temperature is

potentially very large, the thermal mass of the scalar field may be large enough to overcome

all breaking effects. The reason is that, assuming the decay of the inflaton is fast enough

(instantaneous reheating, ΓΦ ∼ HI), the reheating temperature is roughly given by [96]

TRH ∼ 10−1
√
HIMP , (5.3)

where MP is the Planck mass. Note that this temperature is generically much larger

than HI . If the number of e-folds is not exceedingly large, TRH is expected to be larger

than any field excursion and we expect mη(TRH)2 > 0. In addition, this also implies

that mη(TRH)2 ∼ c T 2
RH � H(TRH)2, meaning that the field will fastly roll down to the

minimum, at zero value 〈η〉 = 0.7

As the temperature decreases, it may happen that RGE effects make the Z2 breaking

to occur at some high-energy scale. However, the η field will be already at 〈η〉 = 0, meaning

that it cannot experience such a breaking. As the temperature continues decreasing, we

reach the freeze-out temperature. From this point on, any breaking of the dark parity

would be a disaster for the DM stability. Note however, that since the η field is at its local

minimum, 〈η〉 = 0, it cannot notice this high-energy RGE induced symmetry breaking as

it will only feel the local properties of the vacuum around 〈η〉 = 0.

6The thermal effects and phase transition have been extensively studied for the inert doublet model,

see [94, 95].
7In the thermal phase the field will experience oscillations around η = 0 with an amplitude that decreases

fast due to Hubble expansion and interactions with the thermal plasma.
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Of course, this does not mean that RGE effects are completely harmless for the Sco-

togenic model. In fact, the RGE-induced breaking could induce the appearance of deeper

minima in the potential, implying that the stability of DM is just a local property of our

vacuum, which could be a false vacuum, and not a global feature of the potential.

6 Summary and discussion

The Scotogenic model is a well-known radiative scenario for the generation of neutrino

masses. The introduction of three singlet fermions and one inert scalar doublet, all charged

under a new Z2 parity, leads to 1-loop Majorana neutrino masses and, as a bonus, provides

a viable weakly-interacting dark matter candidate. In this work we have considered a

generalization of this setup to any numbers of generations of singlet fermions and inert

doublets. After computing the 1-loop neutrino mass matrix in the general version of

the model, we have studied its high-energy behavior, focusing on two specific variants:

the original Scotogenic model with (nN , nη) = (3, 1) and a new multi-scalar variant with

(nN , nη) = (1, 3). Our main conclusion is that all the features of the original model are

kept in the multi-scalar version, with some particularities due to the presence of a more

involved scalar sector.

Our generalization of the Scotogenic model offer several novel possibilities. For in-

stance, flavor model building could benefit from an interesting feature of multi-scalar ver-

sions of the model. In the (nN , nη) = (1, 3) model, one obtains three massive neutrinos and

leptonic mixing can be fully explained even if the Yukawa matrices are completely diagonal.

In this case the leptonic mixing matrix would be generated by mixing in the scalar sector.

This could be relevant in some flavor models. For example, it may be a crucial ingredient

to rescue models where lepton mixing is predicted to be similar to quark mixing. Novel

phenomenological signatures might exist as well. The η doublets can be produced at the

Large Hadron Collider due to their couplings to the SM gauge bosons. Exotic signatures

might be possible in models with many η generations, such as the (nN , nη) = (1, 3) model.

Cascade decays initiated by the production of the heaviest η doublets would lead to strik-

ing multilepton signatures, including missing energy due to the production of the lightest

Z2-odd state at the end of the decay chain. Finally, the dark matter production rates in

the early Universe might be affected as well by the presence of additional scalar degrees of

freedom. These interesting questions certainly deserve further study.
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A Renormalization Group Equations

At the 1-loop order, the RGEs of a model can be written as

dx(t)

dt
=

1

16π2
βx , (A.1)

where t ≡ log µ, µ is the renormalization scale and βx is the 1-loop β function for the

parameter x. In our analysis, the full 1-loop running in the Scotogenic model with arbitrary

numbers of N and η generations has been considered. Analytical expressions for all the

1-loop β functions have been derived with the help of SARAH [97–101].8 These have been

included in a code that solves the complete set of RGEs numerically.

We are mainly interested in the possible breaking of the Z2 parity at high energies, and

this is associated to the running of the m2
η matrix. The corresponding 1-loop β functions

are given by

(
βm2

η

)
ab

= − 9

10
g2

1

(
m2
η

)
ab
− 9

2
g2

2

(
m2
η

)
ab

+

nη∑
c,d=1

[
4λabcd2

(
m2
η

)
dc

+ 2λacdb2

(
m2
η

)
cd

]

+
[
4λab3 + 2λab4

]
m2
H +

(
m2
η

)
ab

nN∑
n=1

3∑
α=1

(
|ynaα|2 + |ynbα|2

)
− 4Tr

[
y†aM

∗
NMNyb

]
.

(A.2)

Here ya ≡ [ynaα] is a nN×3 matrix, being the first index a singlet fermion family index and

the third one a charged lepton family index. We have explicitly checked that for nN = 3

and nη = 1, eq. (A.2) reduces to the m2
η β function in the standard Scotogenic model [83].

B Boundedness from below

In order to ensure the existence of a stable vacuum, the scalar potential of the theory

must be BFB. There exist several approaches to analyze boundedness from below. Ideally,

one would like to have a BFB test that provides necessary and sufficient conditions. This

way, one could not only guarantee that all potentials that pass the test are BFB (sufficient

condition), but also discard potentials that fail it (necessary condition). In this regard, a

major step forward was given in [102] and more recently in [103]. The algorithm proposed

in the second reference provides necessary and sufficient conditions for boundedness from

below in a generic scalar potential using notions of spectral theory of tensors. However,

applying this algorithm beyond a few simple cases turns out to be impractical due to the

computational cost involved. For this reason, in phenomenological analyses one usually

resorts to less ambitious approaches which only provide sufficient conditions, but not nec-

essary. These methods are overconstraining, since one must reject potentials not passing

the test, even though they might actually be BFB. Nevertheless, if the potential passes

the test, one can fully trust that boundedness from below is guaranteed.

8See [84] for a pedagogical introduction to the use of SARAH in the context of non-supersymmetric models.
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Here we will employ the copositivity criterion, which combined with a recently devel-

oped mathematical algorithm, never applied to a high-energy physics scenario, will give

us sufficient (but not necessary) conditions. To the best of our knowledge, the first pa-

per relating copositivity with boundedness from below was [104]. One must first express

the quartic part of the scalar potential, V4, as a quadratic form of the n real fields ϕa
(a = 1, 2, . . . n) in the theory,

V4 = Λab ϕ
2
aϕ

2
b . (B.1)

The scalar potential is BFB if and only if the matrix of quartic couplings Λab is copositive. A

real matrix A is said to be copositive if xTAx > 0 for every non-negative vector x > 0, that

is, xi > 0. If the inequality is strict, the matrix is strictly copositive. Therefore, checking for

the copositivity of the matrix of quartic couplings would in principle provide sufficient and

necessary boundedness from below conditions. However, in complicated models such as the

general Scotogenic model, one cannot write V4 as a quadratic form without introducing

mixed bilinears (scalar field combinations involving two different fields). For this reason,

this method only leads to sufficient conditions, as we now explain.

In order to write the quartic part of the scalar potential as a quadratic form we define

ϕ†iϕi = h2
i , ϕ†iϕj = |hi| |hj | ρijeiφij = h2

ij ρije
iφij , (B.2)

with |ρij | ∈ [0, 1] by virtue of the Cauchy-Schwarz inequality. Thus, we can express the

boundedness from below condition as

V4 = xT V4 x > 0 , (B.3)

with x =
(
h2

1 . . . h2
i . . . h

2
ij . . .

)
and the matrix V4 is given by a combination of the

quartic couplings, the λ’s, as well as the ρ’s and φ phases.9 The reason why this method

provides only sufficient conditions is the presence of the mixed bilinears. Notice that the

direction given by h2
ij is not independent of h2

i and h2
j . Therefore, imposing xT V4 x > 0

for every non-negative x vector is overconstraining, since unphysical directions would be

included in the test. Nonetheless, when the test is positive, the potential is BFB. In

summary, a scalar potential is BFB if the associated V4 matrix is copositive. However,

when the matrix is not copositive nothing can be said about the potential.

There is mathematical work showing that a symmetric matrix A of order n is (strictly)

copositive if and only if every principal submatrix B of A has no eigenvector w > 0 with

associated eigenvalue κ < 0 (6 0) [105]. However, these theorems are of little practical value

when the matrix has a large order, since there will be 2n−1 principal submatrices. Luckily,

we can make use of [106] instead. The authors of this work proposed an algorithm that

leads to necessary and sufficient conditions for the copositivity of unit diagonal matrices

(matrices with all diagonal elements equal to 1). Although the algorithm in [106] could

only be applied for up to 7 × 7 matrices, incidentally the case in the (1, 3) Scotogenic

model, more recent work by the same authors contains indications to extend it to higher

orders [107].

9In the model under consideration, this includes also the phases of the λ5 couplings.
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After all these considerations, our procedure to check for copositivity is as follows:

1. We replace all the quartic couplings in V4 by the numerical values in the scalar

potential we want to test.

2. We transform each element of the matrix to the worst case scenario. This is achieved

by treating the remaining ρ and φ parameters as independent variables and setting

them to the configuration for which the term is minimal.10

3. We check if the matrix has null entries in the diagonal. If it does, we remove the cor-

responding rows and columns. The original matrix will be copositive if the remaining

one is and the removed elements are non-negative.

4. We need the matrix to have unit diagonal to be able to apply the algorithm in [106].

Therefore, we divide all its entries by the smallest element in the diagonal and we

replace all the values greater than 1 by 1. The original matrix will be copositive if

the new one is.

5. We finally check the copositivity of the resulting matrix with the algorithm in [106].

A final remark about our method is in order. The stability in charge-breaking directions

is ignored in many analyses. However, since we are being overly restrictive treating all the ρ

moduli and φ phases as independent variables in the different entries of V4, charge-breaking

directions are included as well in our BFB test. In order to prove it, let us parametrize the

scalar doublets of the model under consideration as

φi =
√
rie

iγi

(
sin (αi)

cos (αi) e
iβi

)
. (B.4)

This parametrization and an example of how to use it to explore boundedness from below

is shown in [108]. Let us consider a contraction of scalar doublets(
φ†iφj

)
=
√
rirj

[
sinαi sinαj + cosαi cosαje

−i(βi−βj)
]
, (B.5)

and take the modulus of the term in square brackets∣∣∣sinαi sinαj + cosαi cosαje
iβ
∣∣∣2

= sin2 αi sin2 αj + cos2 αi cos2 αj + sinαi sinαj cosαi cosαj

(
eiβ + e−iβ

)
= sin2 αi sin2 αj + cos2 αi cos2 αj + 2 sinαi sinαj cosαi cosαj cosβ 6 1 .

(B.6)

As expected, the product is, at most, as large as the modulus of the fields,
√
ri. Therefore,

if we treat the factors that multiply
√
rirj as independent variables (that is, being overly

restrictive as explained in footnote 10), ρije
iφij , and make all combinations minimal, our

method will cover boundedness from below in charge-breaking directions as well.

10We emphasize that we do this for each element. This means that even if the same ρ parameter appears

in two elements, it is treated as if each appearance is independent. This way we make sure that all the

negative directions in the scalar potential are considered. However, we are again taking an overconstraining

(and then very conservative) approach.

– 18 –
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[5] Y. Cai, J. Herrero-Garćıa, M.A. Schmidt, A. Vicente and R.R. Volkas, From the trees to the

forest: a review of radiative neutrino mass models, Front. in Phys. 5 (2017) 63

[arXiv:1706.08524] [INSPIRE].

[6] D. Restrepo, O. Zapata and C.E. Yaguna, Models with radiative neutrino masses and viable

dark matter candidates, JHEP 11 (2013) 011 [arXiv:1308.3655] [INSPIRE].

[7] E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev.

D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

[8] P. Fileviez Perez and M.B. Wise, On the Origin of Neutrino Masses, Phys. Rev. D 80

(2009) 053006 [arXiv:0906.2950] [INSPIRE].

[9] Y. Liao and J.-Y. Liu, Radiative and flavor-violating transitions of leptons from interactions

with color-octet particles, Phys. Rev. D 81 (2010) 013004 [arXiv:0911.3711] [INSPIRE].

[10] M. Reig, D. Restrepo, J.W.F. Valle and O. Zapata, Bound-state dark matter and Dirac

neutrino masses, Phys. Rev. D 97 (2018) 115032 [arXiv:1803.08528] [INSPIRE].

[11] M. Reig, D. Restrepo, J.W.F. Valle and O. Zapata, Bound-state dark matter with Majorana

neutrinos, Phys. Lett. B 790 (2019) 303 [arXiv:1806.09977] [INSPIRE].

[12] Y. Farzan and E. Ma, Dirac neutrino mass generation from dark matter, Phys. Rev. D 86

(2012) 033007 [arXiv:1204.4890] [INSPIRE].

[13] W. Wang, R. Wang, Z.-L. Han and J.-Z. Han, The B − L Scotogenic Models for Dirac

Neutrino Masses, Eur. Phys. J. C 77 (2017) 889 [arXiv:1705.00414] [INSPIRE].

[14] Z.-L. Han and W. Wang, Z ′ Portal Dark Matter in B − L Scotogenic Dirac Model, Eur.

Phys. J. C 78 (2018) 839 [arXiv:1805.02025] [INSPIRE].
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