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1 Introduction

Third family t-b-τ Yukawa Unification (YU) [1–3] arises naturally in the simplest versions of

supersymmetric SO(10) and SU(4)c×SU(2)L×SU(2)R (4-2-2) models and it has attracted

a fair amount of attention in recent years [4–30]. Most work on the implications of YU have

assumed the presence of a discrete Left-Right (LR) symmetry (more precisely C-parity, also

known as D-parity), which restricts the number of Soft Supersymmetry Breaking (SSB)

parameters. It was also shown that t-b-τ YU allows the gluino NLSP solutions in 4-2-2 [31–

35] models with LR symmetry. In this case the LSP neutralino can provide the desired

dark matter (DM) abundance, but the gluino turns out to be not much heavier than a

TeV or so. Switching from t-b-τ YU to b-τ YU also allows stop NLSP solutions with

mt̃1
. 1 TeV [36].

The spontaneous breaking of SO(10) to its maximal subgroup 4-2-2 can be accom-

plished either with a Higgs 54-plet or 210-plet. The breaking with 54-plet leaves the LR

symmetry unbroken [37–39]. However, using the 210-plet yields 4-2-2 symmetry but the

C-parity in this case is absent [40]. The spontaneous breaking of LR symmetry also avoids

a potential domain wall problem [38]. Recent works [41, 42] have discussed the sparticle

spectroscopy, DM implications and muon g − 2 in 4-2-2 with broken LR symmetry in the

softly broken scalar sector without imposing the t-b-τ YU condition.

In the case of broken LR symmetry the universality between the SU(2)L and SU(2)R
gauginos does not hold, i.e. M2L 6= M2R. Besides, the symmetrical structure of 4-2-2 also

allows non-universality among the other gauginos as

M1 =
3

5
M2R +

2

5
M3 . (1.1)

Despite non-universal gaugino masses, the gauge coupling unification can be main-

tained if 4-2-2 breaks to the MSSM gauge group at the grand unification scale (MGUT).

We should also note the fact that the presence of Higgs 210-plet, in general, breaks YU [43].

However, t-b-τ YU can be largely preserved if the third family matter fields acquire masses

from the (1, 2, 2) components of the effective MSSM Higgs doublets [44].
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In this paper we explore the low energy consequences of imposing t-b-τ YU in a su-

persymmetric 4-2-2 model without assuming LR symmetry in the softly broken scalar and

gaugino sectors. We employ a variety of constraints from collider physics, rare B−meson

decays and DM searches, and we require that the LSP neutralino saturates the dark mat-

ter limits set by the Planck satellite experiment. The rest of the paper is organized as

follows. We briefly describe in section 2 the scanning procedure and the experimental con-

straints. Section 3 discusses the low energy implications if t-b-τ YU is imposed at MGUT

and present some benchmark points to exemplify our findings. In section 4 we summarize

our conclusions.

2 Scanning procedure and experimental constraints

We employ the ISAJET 7.84 package [45] to perform random scans over the parameter

space given below. In this package, the weak scale values of gauge and third generation

Yukawa couplings are evolved to MGUT via the MSSM renormalization group equations

(RGEs) in the DR regularization scheme. We apply the gauge coupling unification con-

dition approximately as g3 ≈ g2 = g1, since g3 can deviate from the unification by a few

percent due to unknown GUT scale threshold corrections [46–48]. We only accept solutions

in which g3 deviates from unification up to 3%, at most. With the boundary conditions

given at MGUT, all the SSB parameters, along with the gauge and Yukawa couplings, are

evolved back to the weak scale MZ.

In evaluating Yukawa couplings the SUSY threshold corrections [49] are taken into

account at the common scale MSUSY =
√
mt̃L

mt̃R
. The entire parameter set is iteratively

run between MZ and MGUT using the full 2-loop RGEs until a stable solution is obtained.

To better account for leading-log corrections, one-loop step-beta functions are adopted

for gauge and Yukawa couplings, and the SSB parameters mi are extracted from RGEs at

appropriate scales mi = mi(mi). The RGE-improved 1-loop effective potential is minimized

at an optimized scale MSUSY, which effectively accounts for the leading 2-loop corrections.

Full 1-loop radiative corrections are incorporated for all sparticle masses.

We have scanned the parameter space of 4-2-2 with broken LR symmetry in both

the scalar and gaugino sectors. The fundamental parameters in this framework and their

ranges are as follows:

0.1 ≤ mL ≤ 10 TeV

0.05 ≤ M2L ≤ 5 TeV

−3 ≤ M3 ≤ 5 TeV

−3 ≤ A0/mL ≤ 3

2 ≤ tanβ ≤ 65

−3 ≤ xLR ≤ 3

−3 ≤ yLR ≤ 3

0 ≤ xd ≤ 3

−1 ≤ xu ≤ 2 .

(2.1)
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Here mL is the universal SSB mass term for the left-handed SUSY scalars, while M2 and

M3 are the SSB gaugino mass terms. A0 denotes the SSB trilinear scalar interaction term,

and tanβ is the ratio of the vacuum expectation values of the MSSM Higgs doublets such

that tan β ≡ vu/vd. xLR measures the LR breaking in the scalar sector with m2R =

xLRmL, where m2R is the SSB mass term for the right-handed SUSY scalars. Similarly

yLR parametrizes the LR breaking in the gaugino sector as M2R = yLRM2L. We also

employ non-universal SSB masses for the MSSM Higgs fields by setting mHd
= xdmL and

mHu = xumL.

In scanning the parameter space, we employ the Metropolis-Hastings algorithm as

described in [50, 51]. The data points collected all satisfy the requirement of REWSB,

with the neutralino in each case being the LSP. After collecting data, we impose the mass

bounds on all particles [52] including the current bounds on the Higgs boson [53, 54]

and the gluino [55]. In addition, we use the IsaTools package [56–61] to implement the

phenomenological constraints from rare B−meson decays such as those from BR(Bs →
µ+µ−) [62], BR(Bs → Xsγ) [63] and BR(Bu → τν) [64]. We also apply the Planck

bound on the relic density of LSP neutralino within 5σ [65]. The following experimental

constraints along with their uncertainties are employed in our analyses:

mh = 123− 127 GeV

mg̃ ≥ 2.1 TeV (≥ 0.8 TeV if gluino is NLSP)

0.8× 10−9 ≤ BR(Bs → µ+µ−) ≤ 6.2× 10−9 (2σ)

2.99× 10−4 ≤ BR(B → Xsγ) ≤ 3.87× 10−4 (2σ)

0.15 ≤ BR(Bu → τντ )MSSM

BR(Bu → τντ )SM
≤ 2.41 (3σ)

0.114 ≤ ΩCDMh
2 ≤ 0.126 (5σ) .

(2.2)

In addition to these constraints, we quantify t-b-τ YU with the parameter Rtbτ as

Rtbτ ≡
Max(yt, yb, yτ )

Min(yt, yb, yτ )
(2.3)

where Rtbτ = 1 means perfect t-b-τ YU. However, considering various uncertainties we

consider solutions to be compatible with t-b-τ YU for Rtbτ ≤ 1.1.

After the mass spectrum and DM implications are calculated, it is interesting to con-

front the predictions from the models consistent with the constraints given in eq. (2.2)

as well as t-b-τ YU with the LHC bounds and future prospects. To this end, we employ

the tools provided by the Smodels-v1.2.2. [66–69]. This package decomposes the theoret-

ical models into the Simplified Model Spectra (SMS) which are compared with the data

provided by the ATLAS and CMS collaborations [70, 71]. For each model, we use SUSY-

HIT [72] to compute the decay ratios of the SUSY particles and PYTHIA [73] to produce

the corresponding cross sections.

– 3 –
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Figure 1. Plots in the Rtbτ − mL̃, Rtbτ − mR̃, Rtbτ −M2L and Rtbτ −M2R planes. All points

are comparible with the REWSB and LSP neutralino conditions. Green points satisfy the mass

bounds and constraints from rare B−meson decays. Brown points form a subset of green and they

yield relic abundance of LSP neutralino consistent with the Planck measurements within 5σ. The

regions below the horizontal lines correspond to Rtbτ = 1.1 are considered as to be compatible with

the t-b-τ Yukawa unification.

3 t-b-τ YU and DM Implications

In this section we present our results for t-b-τ YU within the 4-2-2 framework. Figure 1

displays the fundamental parameter space of t-b-τ YU in terms of the SSB scalar (top

panels) and gaugino (bottom panels) mass terms with plots in the Rtbτ −mL̃, Rtbτ −mR̃,

Rtbτ − M2L and Rtbτ − M2R planes. All points are compatible with REWSB and LSP

neutralino conditions. Green points satisfy the mass bounds and constraints from rare

B−meson decays. Brown points form a subset of green and they yield relic abundance of

LSP neutralino consistent with the Planck measurements within 5σ. The horizontal line

indicates the region with Rtbτ = 1.1, and points below this line are considered as being in

very good agreement with the t-b-τ Yukawa unification. The Rtbτ −mL̃ plane shows that

t-b-τ YU can be realized within a wide range of mL̃ from about 400 GeV to 10 TeV. Two

regions can be identified, which are separated by a gray area. The gray region between

them is excluded mostly by the gluino mass bound, which will be shown in more detail

later. The SSB mass term for the right-handed scalar particles can be as light as about

1 TeV, while t-b-τ YU condition restricts it at about 15 TeV from above, as seen from the

– 4 –
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Figure 2. Plots in the Rtbτ −xLR, Rtbτ − yLR, Rtbτ −M1 and Rtbτ −M3 planes. The color coding

is the same as in figure 1.

Rtbτ −mR̃ plane. The left-bottom plane displays the SSB mass term for M2L, and as is

seen, the t-b-τ YU solutions can be realized in a wide range of values for M2L in our scan.

It is bounded at about 800 GeV from below by the DM constraints. The mass term for the

SU(2)R gaugino could lie in a wider range from about −10 TeV to 4 TeV consistent with

all the LHC and DM constraints.

The parameters quantifying non-universality in the scalar and gaugino sectors are

shown in figure 2 along with the SSB gaugino mass terms with plots in the Rtbτ − xLR,

Rtbτ − yLR, Rtbτ −M1 and Rtbτ −M3 planes. The color coding is the same as in figure 1.

Despite its wider range in our scan, the Rtbτ − xLR plane shows that LR breaking in the

scalar sector can be realized consistent with the DM constraints if 0.8 . xLR . 1.6. Note

that xLR = 1 restores the symmetry in the scalar sector. On the other hand, the LR

breaking in the gaugino sector can be crucial for t-b-τ YU, as seen from the Rtbτ − yLR
plane with |yLR| as large as 3. Even though t-b-τ YU mostly prefers yLR to be negative,

it is possible to realize positive yLR values in a relatively small portion of the parameter

space, which also leads to negative M2R in most of the parameter space. Its impact can be

seen from the Rtbτ −M1 plane where M1 is mostly negative and its magnitude can be as

high as about 5 TeV, while it is restricted to M1 ∼ 2 TeV in the positive region. Since M1

controls the bino mass at the low scale, such large values of M1 prevent bino from being

the LSP. The parameter M3 is shown in the right-bottom panel, and it is seen that t-b-τ
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Figure 3. Plots in the mg̃ −mχ̃0
1
, mA −mχ̃0

1
, mτ̃1 −mχ̃0

1
and mχ̃±

1
−mχ̃0

1
planes. All points are

compatible with the REWSB and LSP neutralino conditions. Green points satisfy the mass bounds

and constraints from rare B−meson decays. Orange points form a subset of green and they are

compatible with t-b-τ Yukawa unification. Brown points are a subset of orange, they are consistent

with the Planck bound on the relic abundance of LSP neutralino within 5σ. The diagonal lines

indicate regions in which the displayed particles are degenerate in mass, except for the line in the

mA −mχ̃0
1

plane which shows the solutions with mA = 2mχ̃0
1
.

YU condition allows only negative M3 values. In this context, according to eq. (1.1), one

can expect very large M2L for M1 > 0; thus this region is most likely to realize a bino or

Higgsino DM.

We present the low scale mass spectrum in figure 3 with plots in the mg̃ − mχ̃0
1
,

mA−mχ̃0
1
, mτ̃1−mχ̃0

1
and mχ̃±

1
−mχ̃0

1
planes. All points are compatible with REWSB and

LSP neutralino conditions. Green points satisfy the mass bounds and constraints from rare

B−meson decays. Orange points form a subset of green and they are compatible with t-b-τ

YU. Brown points are a subset of orange and they are consistent with the Planck bound

on the relic abundance of LSP neutralino within 5σ. The diagonal lines indicate regions in

which the displayed particles are degenerate in mass, and the line in the mA −mχ̃0
1

plane

depicts solutions with mA = 2mχ̃0
1
. Some of the most interesting results correspond to

NLSP gluino solutions. In previous studies NLSP gluino masses of order 1 TeV are found,

compatible with t-b-τ YU in the presence of LR symmetry. However, the mg̃ −mχ̃0
1

plane

shows that in our case one can realize NLSP gluino solutions compatible with t-b-τ YU

– 6 –
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Figure 4. Spin-independent (left) and spin-dependent (right) scattering cross-sections versus the

LSP neutralino mass. In the σSI −mχ̃0
1

plane, the dashed (solid) blue line represents the current

(future) results from the SuperCDMS experiment [74]. The dashed (solid) black line indicates the

current (future) results from the LUX-Zeplin experiment [75]. In the σSD −mχ̃0
1

plane, the solid

black line represents the currrent bound from Super-K [76], and the solid orange line is set by the

LUX results [77]. The green line is obtained from collider analyses [78], and the dashed (solid) blue

line shows the current (future) results from IceCube DeepCore.

for gluino mass scales up to about 2.5 TeV. Moreover, as seen from the other panels of

figure 3, the mass spectra also favor the A−resonance solution if 1 . mA . 3 TeV, and

stau-neutralino and chargino-neutralino coannihilation solutions if 0.6 . mτ̃1 . 1.6 TeV.

The mχ̃±
1
−mχ̃0

1
plane also shows that the lightest chargino is almost as light as the LSP

neutralino in most of the parameter space. Approximate mass degeneracy between the

lightest chargino and LSP neutralino is one of the characteristics features of DM composed

of wino or Higgsino.

With a wino and/or Higgsino DM, one can expect large cross-section in the DM scat-

tering processes. For wino DM, the scattering off nuclei occurs through SU(2) interactions,

while Yukawa interactions take part if the Higgsino happens to be the LSP. Figure 4 shows

results for the spin-independent (left) and spin-dependent (right) scattering cross-sections

versus the LSP neutralino mass. In the σSI−mχ̃0
1

plane, the dashed (solid) blue line repre-

sents the current (future) results from the SuperCDMS experiment [74]. The dashed (solid)

black line indicates the current (future) results from the LUX-Zeplin experiment [75]. In

the σSD−mχ̃0
1

plane, the solid black line represents the currrent bound from Super-K [76],

and the solid orange line is set by the LUX results [77]. The green line is obtained from col-

lider analyses [78], and the dashed (solid) blue line shows the current (future) results from

IceCube/DeepCore. The region in the σSI −mχ̃0
1

plane, which is cut by the dashed black

exclusion curve of the current results from the LUX measurements, implies a Higgsino DM.

Even though many solutions are already excluded due to large scattering cross-sections,

it is still possible to realize a Higgsino DM slightly below this curve. These solutions are

expected to be probed in the direct detection DM experiments in the near future. The

solutions between the current and future exclusion curves also yield a wino DM, and they

are within reach of future experiments. The remaining solutions lying below all the curves

represent the DM in which bino is involved.

– 7 –
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Most of the models allowed by the constraints listed in eq. (2.2) and compatible with

t-b-τ YU present topologies that cannot be detected at the LHC according to the Smodels

analysis. Note that this is the case for the subset of models satisfying the DM constraint.

Although many models predict relatively low SUSY masses, their signals escape the LHC

bounds as can be understood from our previous discussions. For instance, although the

constraints on gluino masses are quite severe, we can find cases with gluino masses of order

800 GeV compatible with t-b-τ YU. However, the DM constraint bound it at about 900 GeV

from below, as seen in figure 3. In this region, the gluino happens to be the NLSP, and it can

decay into a LSP neutralino along with a quark-antiquark pair from the first two families.

The bound from these processes is set as mg̃ & 800 GeV [79, 80]. Figure 3 also shows that

the stau can be as light as 500 GeV or so, consistent with all the constraints and t-b-τ

YU, where the LSP neutralino is formed mostly from bino and/or wino. If the charginos

and second lightest neutralino are allowed to decay into staus, YU with mτ̃ . 350 GeV

and/or mχ̃±
1
. 1.1 TeV is excluded [81–83]. On the other hand, the lightest stau in MSSM

is mostly composed of the right-handed stau, which forbids the lightest chargino to decay

into a stau. Besides, as seen from the chargino and LSP neutralino masses shown in the

right bottom panel of figure 3, the chargino decay into a LSP neutralino along with a

W−boson is not kinematically allowed, which also loosens the constraints on the chargino

and stau masses.

Before concluding the discussion about t− b− τ YU, we present five benchmark points

that are compatible with the experimental constraints. All masses are given in GeV, and

the masses shown in red indicate the mass degeneracy with the LSP neutralino within 10%,

except Point 3, in which the red color emphasizes the mass relation between the neutral

Higgs bosons and LSP neutralino, namely mH,A ' 2mχ̃0
1
. Points 1 and 2 depict solutions

for the gluino-neutralino coannihilation scenario with NLSP gluino masses of about 933

and 2357 GeV, respectively. Point 3 represents an A−resonance solution. The DM relic

abundance is saturated with bino-like LSP neutralino in the first three points. Point 4

displays a wino-like DM solution where the lightest chargino mass is close to the wino and

also to the lightest stau mass. Coannihilations of these three species lead to the desired

relic DM abundance. Point 5 is a typical solution for Higgsino-like DM with the chargino

and neutralino masses given as mχ̃±
1
∼ mχ̃0

2
∼ mχ̃0

1
. The spin-independent cross-section is

calculated to be slightly below the current LUX result and so this scenario will be tested

relatively soon.

In addition, Point 3 in table 1 depicts solutions with relatively light Higgs bosons whose

masses are about 1 TeV. Such solutions are severely constrained if these Higgs bosons

mostly decay into leptons [84, 85]. On the other hand, the solutions exemplified with

Point 3 predict that these Higgs bosons mostly decays into top and bottom quarks with

BR(H,A)→ bb̄ ≈ BR(H± → tb) ' 85%. The analyses for these decay channels lead to the

mass bounds as mH,A,H± & 800 GeV for moderate tan β values [86, 87]. In this context,

the predictions of our model can also be tested through the decay channels of the extra

Higgs bosons in Run-3 and HL−LHC.
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Point 1 Point 2 Point 3 Point 4 Point 5

mL̃ 8031 9461 781 1202 3714

M1 1786 −4810 −1288 −3653 −4502

M2L 2859 3915 758.5 1559 2348

M3 −316.7 −926 −2904 −2802 −2537

A0/mL̃ −1.06 −0.13 1.57 1.16 1.30

tanβ 48.0 47.8 43.8 42.6 52.4

xLR 1.43 0.78 0.83 1.45 0.84

yLR 1.11 −1.89 −0.28 −2.71 −2.47

mR̃ 11460 7398 646.9 1740 3111

M2R 3188 −7399 −210.1 −4221 −5811

µ 8416 6401 3431 3398 894.4

mh 124.3 123.2 123.2 123.1 124.1

mH 6205 5568 1088 1549 2432

mA 6164 5531 1081 1539 2417

mH± 6206 5568 1093 1552 2434

mχ̃0
1
,mχ̃0

2
849.6, 2530 2259, 3438 558.1, 711.6 1387, 1638 850.6, 853.3

mχ̃0
3
,mχ̃0

4
7757, 7757 5962, 5962 3190, 3190 3165, 3165 2044, 2058

mχ̃±
1
,mχ̃±

2
2535, 7710 3439, 5962 713.8, 3162 1389, 3137 871.5, 2018

Mg̃ 933.9 2357 5954 5781 5360

mũL ,mũR 8183, 11379 9906, 7462 5172, 5145 5163, 5294 6019, 5540

mt̃1
,mt̃2

4075, 9113 4763, 7707 4371, 4506 4331, 4564 3523, 4338

md̃L
,md̃R

8183, 11558 9906, 7623 5173, 5151 5164, 5258 6019, 5516

mb̃1
,mb̃2

4131, 8784 3491, 7690 4340, 4490 4327, 4466 3556, 4327

mν̃e,µ ,mν̃τ 8104, 6498 9720, 8794 909.3, 905.6 1668, 1449 4042, 3245

mẽL ,mẽR 8110, 11641 9714, 7811 914.7, 843.7 1667, 2236 4043, 3600

mτ̃1 ,mτ̃2 6509, 9396 5167, 8783 605.6, 988.1 1436, 1896 1178, 3245

σSI (pb) 0.40× 10−14 0.71× 10−12 0.13× 10−13 0.47× 10−10 0.19× 10−9

σSD (pb) 0.16× 10−10 0.48× 10−10 0.68× 10−9 0.17× 10−7 0.29× 10−6

Ωh2 0.116 0.124 0.122 0.120 0.125

Rtbτ 1.04 1.08 1.09 1.08 1.09

Table 1. Benchmark points are compatible with all experimental constraints used in this paper.

All points are chosen to be allowed by the constraints. All masses are given in GeV. Points 1

and 2 depict NLSP gluino solutions and point 3 represents an A−resonance solution. The first

three points predict bino-like DM. Point 4 displays a stau-neutralino coannihilation solution with

a wino-like DM. Point 5 is a solution with a Higgsino-like DM and with mχ̃±
1
∼ mχ̃0

2
∼ mχ̃0

1
.
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4 Conclusion

We have explored the LHC and DM implications of t-b-τ YU in the supersymmetric 4-2-2

framework without imposing a discrete LR symmetry. We only accept solutions which yield

one of the neutralinos as the LSP that saturates the DM abundance. We identify the gluino-

neutralino coannihilation scenarios, and present consistent solutions for mg̃ . 2.4 TeV.

Without the NLSP constraint the gluino can be as heavy as about 6 TeV, which can be

probed at the LHC and future colliders. In addition to the gluino-neutralino coannihilation

scenario, some A−resonance solutions are also identified with 1 . mA . 3 TeV. Similarly,

the stau-neutralino and chargino-neutralino coannihilation processes can be realized with

the stau and chargino masses in the range 0.6 . mτ̃ ,mχ̃±
1
. 2 TeV.

The 4-2-2 model also yields wino and Higgsino-like DM as well as solutions with bino

DM. We observe that while many of the Higgsino DM solutions are excluded by the direct

detection experiments, it is still possible to realize some solutions lying slightly below the

current exclusion curves. In other words, Higgsino DM in the 4-2-2 framework will be

seriously tested in the near future. Wino-like DM solutions are allowed by the current

measurements, and they lie within the reach of the near future experiments.

We exemplify our findings with five benchmark points including the full spectrum for

the SUSY particles. In addition to the DM implications, the stop cannot be lighter than

about 3 TeV, while squarks of the first two families are relatively heavy (& 5 TeV). In

addition, we identify some solutions which predict the heavy Higgs bosons masses at about

1 TeV. These Higgs bosons mostly decay into the top and bottom quarks, and they are

expected to be tested in Run-3 and HL−LHC through their hadronic decays.
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