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1 Introduction

To the best of our knowledge, Lorentz invariance is a fundamental symmetry of nature.

Yet, with the exception of the vacuum, all states of matter we typically consider break

boost invariance. For states made up of a finite number of particles, such as those that we
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consider for scattering experiments, there is a preferred reference frame — the so called

center-of-mass frame, where the total momentum vanishes. For states with a finite density

of particles per unit volume, even if we adopt a coarse-grained description that cannot

resolve the individual particles and treat the whole system as a homogeneous solid or fluid

continuum, there is also a preferred frame — the one in which the medium is at rest.

Such a breaking of boost invariance is of the spontaneous type: the dynamical laws are

Lorentz invariant, but the state of the system is not. Goldstone’s theorem and its several

variations have taught us to expect, in situations like this, gapless excitations [1, 2]. So,

are there gapless Goldstone bosons associated with the spontaneous breaking of boosts?

There happen to be subtleties related to the spontaneous breaking of spacetime sym-

metries, having to do, in particular, with the relationship between the number of broken

generators and the number of independent Goldstone excitations [3, 4] (see [5] for a recent

review). At the level of the effective field theory for the Goldstone fields, such subtleties

are associated with the so-called inverse Higgs constraints [6, 7]. These correspond to con-

ditions expressing some Goldstone fields as certain derivatives of other Goldstone fields.

For instance, for superfluids, the phonon field π(x) can be thought of as the Goldstone field

associated with the spontaneous breaking of a U(1) symmetry, say particle number. On the

other hand, the Goldstone fields for boosts need not be independent degrees of freedom,

because it turns out that certain non-linear combinations of π(x) and its derivatives [8],

~η(x) ∝ ~∇π(x) +O(π2) , (1.1)

have the right transformation properties to serve as boost Goldstone fields. Similarly, for

solids, the phonon fields ~π(x) are the Goldstone fields for spontaneously broken translations,

and certain non-linear combinations of them and their derivatives,

~η(x) ∝ ~̇π(x) +O(π2) , (1.2)

can serve as boost Goldstone fields.

The practical rule that emerges from the coset construction to assess when a phe-

nomenon like this can take place involves only the symmetry breaking pattern, and is

schematically as follows. Calling P̄a the set of unbroken translation generators, XA the set

of broken generators (for spacetime or internal symmetries), and πA(x) their associated

Goldstone fields, if (i) [P̄a, X1] ⊃ X2, and (ii) X1 and X2 do not belong to the same ir-

reducible representation of the unbroken symmetries (apart from translations), then it is

consistent with all the symmetries — broken and unbroken alike — to express the Gold-

stone field π1(x) for X1 as a combination of π2(x) and its derivatives:

π1(x) ∝ ∂aπ2(x) +O(π2
2) . (1.3)

This is called an inverse Higgs constraint [6, 7] (see also, e.g. [9] for a more modern

discussion).

By now it is clear that, at least for media that are homogeneous on large scales, usually

there are no independent Goldstone excitations for boosts, because the Goldstone excita-

tions for other spontaneously broken symmetries can play that role as well. In particular,

– 2 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
6

based on the general ideas sketched above, ref. [10] attempted a general classification of

the possible ‘condensed matter’ systems. By these it is meant, there and here, states of

matter that spontaneously break the Poincaré group down to suitably defined, perhaps

suitably coarse-grained time translations, spatial translations, and, possibly, spatial rota-

tions. Such a classification correctly reproduces the spectrum of low-energy excitations and

more in general the infrared dynamics of solids, ordinary fluids, superfluids, and supersolids

(see also [8] for an earlier work). For these systems, there are always inverse Higgs con-

straints at work, which remove, in particular, the boost Goldstones as independent degrees

of freedom. Nevertheless, regarding that classification, there are both an oddity and a

notable exception, and both have to do with systems that only break boosts and no other

symmetries.

The oddity is the so-called framid: a framid is a hypothetical isotropic and homo-

geneous medium whose only low-energy degrees of freedom are the Goldstone bosons for

spontaneously broken boosts. Its infrared dynamics are described by a consistent effective

field theory, but it is admittedly a peculiar system: for instance, contrary to more mun-

dane media, its equilibrium state has the same energy-momentum tensor as a cosmological

constant, that is, it has 〈Tµν〉 ∝ ηµν , oblivious to the fact that Lorentz invariance is spon-

taneously broken. Despite being the simplest implementation of the symmetry breaking

pattern for condensed matter as defined above, the framid does not seem to be realized in

nature as a phase of matter.

The notable exception instead is the degenerate Fermi liquid: it does seem to be

realized in nature, it is described by a consistent effective field theory [11], yet it does

not conform to the allegedly ‘general’ classification of [10]. It breaks boosts but no other

symmetries, but it cannot be described by the framid’s effective field theory, because, for

instance, for a non-relativistic Fermi liquid the mass density is much bigger than the other

entries of the stress-energy tensor. In particular, ρ+ p 6= 0 for Fermi liquids.

In fact, even setting aside ref. [10] and framids, there is a more general paradox con-

cerning Fermi liquids. Where are the boost Goldstones? If no other symmetries are broken

apart from boosts, there are no inverse Higgs constraints available to remove the boost

Goldstones, which then should be there. But the low-energy spectrum of bosonic exci-

tations in a Fermi liquid — corresponding to specific deformations of the Fermi surface

— does not provide us with obvious candidates. At zero temperature, there can be zero-

sound, which is a spin singlet, and spin waves, which make up a spin triplet. But from

Goldstone’s theorem one generically expects Goldstone bosons with the same (unbroken)

quantum numbers as the broken generators [12]. If boosts are broken but rotations are not,

the Goldstone bosons should come in a triplet under rotations. But in the non-relativistic

limit spin and orbital angular momentum are independent quantum numbers. So, one

expects Goldstones in an orbital triplet/spin singlet representation of rotations (like the

broken boost generators), which apparently leaves us only with the ` = 1 zero-sound modes

as possible Goldstone candidates. More precisely, at finite momentum, it leaves us with

the helicity zero and helicity ±1 zero-sound modes. However, in Fermi liquid theory such

modes have no special status — they are just three out of possibly infinitely many (or

possibly zero) propagating modes: the existence of any zero-sound or spin-wave modes
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in the spectrum depends crucially on the detailed structure of interactions. In fact, in

low-temperature experiments on liquid helium-3, zero-sound shows up at best as a broad

resonance (with a relative width of more than 20%), and the experimental evidence for

spin waves is not as clean [13, 14].

Finally, let us mention that here has been a lot of theoretical work on Fermi liquids

and many of its properties, including some of the reasons behind the remarkable success

of Landau’s Fermi liquid theory [15, 16] have been fully or partly understood [11, 17–

19]. Also, even more exotic states of matter that are not contained in the classification

of [10] have been found in the past decades, like bad metals [20, 21], non-Fermi liquids [19]

and anisotropic Fermi liquids [22], to name a few. In the existing theories describing

such materials one is however not really looking at the excitations of the underlying solid

that breaks boosts spontaneously. And so, in these theories, boosts are effectively broken

explicitly. Understanding these strongly coupled systems often requires going beyond the

standard condensed matter methodology and use instead the techniques from the AdS/CFT

correspondence (see e.g. [23–25]).

Motivated by all of the above, our paper is devoted to understanding the Goldstone

phenomenon for spontaneously broken boosts. We start in the next section with a simple

argument that shows that, on general grounds, one should expect the Goldstone excitations

associated with boosts to be peculiar: in general, applying to boosts the standard Goldstone

‘know-how’ does not work. We then prove a non-perturbative Goldstone theorem for

boosts. It predicts the existence of gapless excitations, and forces certain matrix elements

between such states and the Lorentz breaking state one is perturbing about to be related

to certain expectation values. Despite obvious similarities with more standard Goldstone

theorems, ours differs from those in an apparently harmless, minor technical way, which

however turns out to have far reaching implications. We check that while for standard

systems with Goldstone bosons — framids and superfluids — our theorem is saturated, as

expected, by single-particle Goldstone boson states, for a Fermi liquid it is saturated by

a particle-hole continuum. For that system, there are no single-particle Goldstone boson

states. What plays that role is instead a continuum in the spectrum, akin to a multi-

particle continuum.

Note added: an anonymous JHEP referee has brought refs. [26–28] to our attention.

Even though these papers’ focus is on finite temperature systems, they have a substan-

tial overlap with our analysis and results. They all discuss the possible role of particle-

hole (thermal) pairs as Goldstone states for spontaneously broken spacetime symmetries.

Ref. [27], in particular, derives a general Goldstone theorem for boosts that is the finite

temperature version of our theorem of section 3 and mentions the free Fermi gas as an

example of a system featuring particle-hole Goldstone states. We have added references

to these papers where appropriate, and we thank the aforementioned referee for kindly

pointing out these earlier results.

Notation and conventions: we keep our analysis relativistic all along, but for simplicity

we take the non-relativistic limit at some point when discussing Fermi liquids. We use

the mostly minus metric signature, +−−−, and natural units, ~ = c = 1. When the
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number of momentum-space delta-functions escalates, we use a shorthand notation for

them: δp1p2 ≡ (2π)3δ3(~p1 − ~p2). When needed, we introduce a finite volume V to regulate

momentum-space delta-functions: δpp = V . Finally, for single-particle states we use the

so-called non-relativistic normalization: 〈~p1|~p2〉 = δp1p2 .

2 Why boost Goldstones are special

In the next section we will prove a general Goldstone theorem for spontaneously broken

boosts, and in the following ones we will see how different media can obey such a theorem in

qualitatively different ways. Here instead we want to give a somewhat heuristic argument

which shows how in the case of spontaneously broken boosts the Goldstone phenomenon

must feature some peculiarities compared to more standard symmetry breaking patterns.

Consider a zero-temperature medium in a state that, at least at large distances, is

homogeneous and isotropic, but breaks boosts. The energy-momentum operator Tµν(x)

must have expectation values of the form

〈T 00〉 = ρ , 〈T 0i〉 = 0 , 〈T ij〉 = P δij , (2.1)

where ρ and P are suitable constants — the energy density and pressure of our state.

Consider now how the total energy and momentum of the system, Pµ ≡
∫
d3xT 0µ,

change if we perform an infinitesimal boost modulated by a weakly space-time dependent

rapidity parameter ~η(x) that goes to zero at spatial infinity. To first order in ~η and zeroth

order in its derivatives,

δP 0 ' 2

∫
d3x ηj(x)〈T 0j〉 = 0 (2.2)

δP i '
∫
d3x

[
ηi(x)〈T 00〉+ ηj(x)〈T ij〉

]
= (ρ+ P )

∫
d3x ηi(x) . (2.3)

According to the standard relationship between Goldstone particles and Goldstone fields,

if there are Goldstone bosons associated with the spontaneous breaking of boosts, we can

think of ~η(x) as the field operator that creates and annihilates them. But then eq. (2.3)

creates a potential problem. The reason is that, according to it, the momentum carried by

the Goldstones starts linear in ηi(x), that is, linear in creation (a†) and annihilation (a)

operators. But if spatial translations are unbroken, the excitations of the system can be

taken to be eigenstates of the momentum operator. This however is only possible if the

momentum operator starts quadratic in the field operators that create and annihilate such

excitations, so that there is a chance to have, schematically, δP i ∼ a†a.

The only ways out we see are:

1. Spatial translations are in fact also spontaneously broken, and so there is no need

for the excitations of the system to be eigenstates of momentum. This is the case

relevant for solids. Notice that for solids there is an extra subtlety: not only the boost

Goldstones are not momentum eigenstates, they are also not independent excitations,

since their field operator ~η(x) can be expressed in terms of the field operator ~π(x)

associated with the translation Goldstones (the phonons):

~η(x) ∝ ~̇π(x) +O(π2) . (2.4)
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This last property however has no role in solving the potential problem outlined in

the paragraph right after eq. (2.3).

2. The field operator ~η(x) is in fact the spatial derivative of another local field, in which

case the r.h.s. of (2.3) integrates to zero. This is the case relevant for superfluids.

There, like for solids, the boost Goldstones are not independent excitations, but now

the relationship between their field operator and the superfluid phonon field π(x)

involves a spatial derivative:

~η(x) ∝ ~∇π(x) +O(π2) . (2.5)

3. The prefactor in the r.h.s. of (2.3) vanishes:

ρ+ P = 0 . (2.6)

This is the case relevant for the elusive ‘framids’ [10].

In particular, there seems to be no room for boost Goldstones in a system such as a non-

relativistic Fermi liquid, which spontaneously breaks boosts but no other symmetries, and

has a mass density (times c2) much bigger than its pressure.

To proceed, we thus need to understand what the Goldstone theorem actually has to

say about the spontaneous breaking of boosts.

3 A Goldstone theorem for spontaneously broken boosts

Consider a Poincaré invariant local QFT in a state |Ω〉 that:

1. Does not break time translations. This means that |Ω〉 is an eigenstate of the Hamil-

tonian. For simplicity, we can add a constant offset to all energies to set that of |Ω〉
to zero.

2. Does not break spatial translations. This means that |Ω〉 is an eigenstate of momen-

tum. For simplicity, we consider only cases in which the corresponding eigenvalue is

zero, but it is immediate to generalize what follows to more general cases.

3. Breaks boosts.

Such a state could be the ground state, or the ground state at a definite chemical potential

or density for some conserved charge, or a more general state with the above properties.

Below, we will refer to |Ω〉 as the ‘reference state’.

The fact that |Ω〉 breaks boosts operationally means that there exists a local operator

O(x) in a non-trivial representation of Lorentz such that its variation under an infinitesimal

boost has a non-zero expectation value on |Ω〉:

〈Ω| δKiO(x) |Ω〉 ≡ i〈Ω|
[
Ki, O(x)

]
|Ω〉 6= 0 , (3.1)

where Ki is the boost generator. We will be more concrete about the possible choices

for O(x) below, but for now we can keep such an operator generic, including also the
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representation of Lorentz it belongs to. For simplicity though, we will restrict to cases

where O(x) is hermitian.

Let us work in Heisenberg picture. Then |Ω〉 is time-independent but operators in

general depend on time. However, since Lorentz is a symmetry of the dynamics, Ki is

conserved, that is, time-independent in Heisenberg picture.1 Then, since |Ω〉 does not

break space or time translations, the expectation values in (3.1) must be independent of

the space-time coordinates x:

〈Ω|
[
Ki, O(x)

]
|Ω〉 ≡ −iA , A = const ∈ R . (3.2)

For simplicity, let us then set x to zero.

We can now use the explicit expression for the boost generators,

Ki = P it−
∫
d3x′ x′iT 00(~x ′, t) , (3.3)

where t is an arbitrary time, and P i is the momentum operator. Notice that, since |Ω〉 does

not break spatial translations, we can drop the P it term when we plug (3.3) into (3.2). We

thus get ∫
d3x′x′i〈Ω|T 00(~x ′, t)O(0) |Ω〉 − c.c = iA . (3.4)

Consider now inserting an orthogonal complete set of states between the two operators

on the l.h.s. Because of the properties of |Ω〉, such states can be taken to be eigenstates

of momentum and energy. In particular, we can parametrize them as |n, ~p 〉, where ~p is

the momentum eigenvalue, and n collectively denotes all other labels needed to uniquely

identify an energy eigenstate. We will denote the corresponding energy eigenvalue by

En(~p ). We normalize these states in such a way that the completeness relation reads

1 =

∫
d3p

(2π)3

∑
n

|n, ~p 〉〈n, ~p | , (3.5)

where the sum over n can include integrals over continuous variables such as relative mo-

menta in multi-particle states. Notice that for single-particle states the above normalization

is the so-called non-relativistic one, 〈~p |~p ′〉 = (2π)3δ3(~p − ~p ′). An important fact (which

is relevant for other Goldstone theorems as well [3, 4]) is that our reference state |Ω〉 can-

not contribute as an intermediate state in the sum in eq. (3.4). The reason is that its

contributions cancel between the two terms on the l.h.s.

We thus have∫
d3p

(2π)3
d3x′x′i

∑
n

〈Ω|T 00(~x ′, t)|n, ~p 〉〈n, ~p |O(0)|Ω〉 − c.c = iA , (3.6)

where we exchanged the order of integration over ~x ′ and ~p. Using the translation operators

we can write

T 00(~x ′, t) = e−i
~P ·~x ′ e+iHt T 00(0) e−iHt ei

~P ·~x ′ . (3.7)

1Notice that Ki does not commute with the Hamiltonian and is also explicitly time-dependent — see

eq. (3.3). These two sources of time-dependence for Ki cancel each other, thus ensuring that Ki is conserved.
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Then, using properties 1 and 2 above, after straightforward algebra we get

lim
~p→0

∂

∂pi

∑
n

e−iEn(~p )t T 00
n (~p )O∗n(~p ) + c.c. = A , (3.8)

where the script capital letters stand for the matrix elements of the corresponding operators

between |Ω〉 and |n, ~p 〉:

T 00
n (~p ) ≡ 〈Ω|T 00(0)|n, ~p 〉 , On(~p ) ≡ 〈Ω|O(0)|n, ~p 〉 . (3.9)

The derivative with respect to ~p is the only qualitative novelty compared to more standard

Goldstone theorems, and it stems from the explicit spatial dependence of the boost charge

density. Such a novelty turns out to have far reaching implications, as we will see in the

following sections.

The derivative with respect to ~p in principle can act on any of the factors inside

the sum. In fact, it can also act on the range of the sum over n, as we will see in one

of the examples below: there are systems for which the number of allowed states of total

momentum ~p changes as ~p changes. However, regardless of where it acts, the above identity

implies that there are states other than |Ω〉 whose energy goes to zero at zero momentum.

The reason is that, after taking the ~p derivative and setting ~p to zero, we are left with an

overall e−iEn(0)t factor for each term in the sum. But the r.h.s. of (3.8) is time-independent.

This means that there must be states such that En(0) = 0, and that these are the only

ones that contribute to the l.h.s.

Notice that so far we have not used rotational invariance in any way. If rotations

are unbroken by |Ω〉, then we can use the usual selection rules of Goldstone theorems and

further conclude that the gapless intermediate states that contribute to the l.h.s. of (3.8)

must have zero helicity. This is because T 00 is a scalar operator under rotations, and so

its matrix element in (3.9) is nonzero only if |n, ~p 〉 has zero helicity.

3.1 Formulation in terms of spectral densities

The conclusion that there are gapless states is perhaps more transparent in the language

of correlation functions and spectral densities. Define the Wightman correlation function

GT 00,O(x− y) ≡ 〈Ω|T 00(x)O(y)|Ω〉 . (3.10)

Then, eq. (3.4) reads ∫
d3x′x′i

[
GT 00,O(~x ′, t)−G∗T 00,O(~x ′, t)

]
= iA , (3.11)

which in Fourier space becomes

lim
~p→0

∂

∂pi

[
G̃T 00,O(~p, ω)− G̃∗T 00,O(−~p,−ω)

]
= A (2π)δ(ω) . (3.12)

Now, it so happens that in Fourier space Wightman correlation functions are proportional

to their spectral densities, with no convolution needed; we review this and the systematics
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of spectral densities for non-relativistic theories or states in appendix A. More concretely,

for any two local operators Oa, Ob, one simply has

G̃ab(~p, ω) =
1

2ω
ρab(~p, ω) , (3.13)

with the spectral density ρab normalized in such a way that for a free, canonically normal-

ized scalar field φ(x) that annihilates single particle states with generic dispersion relation

E = E(~p ), the φφ spectral density is

ρφφ(~p, ω) = (2π)δ(ω − E(~p )) . (3.14)

Then, eq. (3.12) is directly a statement about the T 00-O spectral density:

lim
~p→0

1

2ω

∂

∂pi

[
ρT 00,O(~p, ω)− ρ∗T 00,O(−~p,−ω)

]
= A (2π)δ(ω) . (3.15)

Clearly, this implies that the spectral density must have support concentrated at ω = 0 for

~p going to zero, in agreement with our analysis of eq. (3.8), that is, with the conclusion

that there are gapless states.

Again, the only qualitative difference with more standard Goldstone theorems is the

derivative with respect to ~p on the l.h.s. In those cases, the appearance of the δ(ω) on

the r.h.s. is usually taken as an indication that the low-energy states that saturate the

Goldstone theorem become stable single-particle states at low momenta. Strictly speaking,

such a conclusion is justified only in relativistic cases, that is, when |Ω〉 is a Poincaré

invariant vacuum of a relativistic theory. In practice however, to the best of our knowledge,

that conclusion turns out to be correct also for spontaneous symmetry breaking in non-

relativistic situations. For instance, for superfluid helium-4 at zero temperature, a finite-

momentum phonon has a decay rate Γ ∼ p5 [16], and so it becomes more and more stable

at lower and lower momenta, in the sense that Γ/ω → 0 for ~p→ 0.

So, the natural question is whether in our case as well we expect the identities (3.8)

and (3.15) to be saturated by zero-energy single-particle states — that is, Goldstone bosons.

The short answer to this is definitely ‘no’. We already saw in the previous section that there

is a tension between the usual properties of Goldstone bosons and the spontaneous breaking

of boosts. In fact, in section 6 we will see that for Fermi liquids the identities above are

saturated not by Goldstone bosons — there aren’t any — but rather by particle-hole states,

which form a continuum, analogous to a multi-particle continuum. As we shall show in

subsection 6.1.3, these particle-hole pairs do not create a δ(ω)-type singularity in correlation

functions that would allow for a straightforward interpretation as zero-energy single particle

states. Instead, we find that the correlation functions vanish as the momentum goes to

zero. However, the aforementioned derivative w.r.t. ~p in the Goldstone theorem (3.12)

uplifts the contribution from the particle-hole pairs allowing them to satisfy the theorem.

The same effect was earlier observed in ref. [27] for finite temperature systems in cases

when the generator of the spontaneous symmetry breaking contains an explicit coordinate

dependence. Also here it is the explicit xi dependence of the boost generator in (3.3)

that then results in the additional momentum derivative in the Goldstone theorem (3.8)
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and (3.12). As a result, the particle-hole states can indeed be identified with zero-energy

Goldstone states.

Before we turn to the example of Fermi liquids, let us demonstrate how cases 2 and

3 discussed at the end of section 2, which feature Goldstone bosons for boosts, agree with

our theorem. We leave out case 1, because it involves a spontaneous breaking of spatial

translations, and our theorem would need to be modified to accommodate that. We start

with a brief digression about order parameters.

3.2 Convenient order parameters

So far we have been generic about the nature of our order parameter O(x), but, depending

on the system, there can be obviously convenient choices.

If a system features a conserved internal charge and is in a state of finite density for

it, we can use the associated Noether current Jµ as an order parameter. More precisely,

we can take O(x) = J j(x), so that

〈Ω|
[
Ki, J j(x)

]
|Ω〉 = −i〈Ω|J0(x)|Ω〉δij = −i n δij , (3.16)

where n ≡ 〈Ω|J0(x)|Ω〉 is the charge density of |Ω〉. In that case, our theorem only involves

matrix elements and expectation values of conserved currents—Tµν and Jµ:

lim
~p→0

∂

∂pi

∑
n 6=Ω

e−iEn(~p )t T 00
n (~p )J jn∗(~p ) + c.c. = n δij , (3.17)

or, in the language of spectral densities,

lim
~p→0

1

2ω

∂

∂pi

[
ρT 00,Jj (~p, ω)− ρ∗T 00,Jj (−~p,−ω)

]
= n δij(2π)δ(ω) . (3.18)

However, even if our system does not feature internal charges, or if our state |Ω〉 does

not turn on any of the corresponding densities, the stress energy tensor itself is usually a

good order parameter. More precisely, choosing O(x) = T 0j(x), we have

〈Ω|
[
Ki, T 0j(x)

]
|Ω〉 = −i〈Ω|T 00(x)δij + T ij(x) |Ω〉 = −i (ρ+ P ) δij , (3.19)

where ρ and P are the energy density and pressure of |Ω〉, as in eq. (2.1). (Although not

necessary for our theorem, here we are assuming that |Ω〉 does not break rotations.) So,

Tµν is not a good order parameter only for Lorentz-violating states that have vanishing

ρ + P — such as the framid’s ground state — i.e., only when 〈Ω|Tµν |Ω〉 ∝ ηµν , which is

clearly exceptional for a Lorentz-violating state |Ω〉. In all other cases, Tµν is a partic-

ularly convenient choice of order parameter, because it exists for all local theories, and

because with this choice our theorem only involves matrix elements and expectation values

of Tµν itself:

lim
~p→0

∂

∂pi

∑
n 6=Ω

e−iEn(~p )t T 00
n (~p ) T 0j

n
∗(~p ) + c.c. = (ρ+ P ) δij , (3.20)
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or, equivalently,

lim
~p→0

1

2ω

∂

∂pi

[
ρT 00,T 0j (~p, ω)− ρ∗T 00,T 0j (−~p,−ω)

]
= (ρ+ P ) δij(2π)δ(ω) . (3.21)

Finally, one is often interested in a non-relativistic system, by which we mean a state

in a relativistic field theory that features a mass density (times c2) much bigger than

the typical binding energy density, kinetic energy density, pressure, etc., and propagation

speeds for excitations much smaller than that of light. This is the case for typical con-

densed matter systems in the lab. In those cases, both choices above are available, and

are in fact equivalent. This is because in the non-relativistic limit there is automatically a

new conserved charge, the total mass M , whose density J0 and current density ~J obey a

continuity equation,

J̇0 + ~∇ · ~J = 0 . (3.22)

But J0 and ~J can also be thought of as the non-relativistic limits of suitable entries of Tµν :

(NR limit) T 00 ' J0 , T 0i ' J i , T ij � J0 . (3.23)

From the expressions above we thus get for both (3.17) and (3.20)

(NR limit) lim
~p→0

∂

∂pi

∑
n 6=Ω

e−iEn(~p )t J 0
n (~p )J jn∗(~p ) + c.c. = ρm δ

ij , ρm ≡ 〈Ω|J0(x)|Ω〉 ,

(3.24)

or, equivalently,

(NR limit) lim
~p→0

1

2ω

∂

∂pi

[
ρJ0,Jj (~p, ω)− ρ∗J0,Jj (−~p,−ω)

]
= ρm δ

ij(2π)δ(ω) . (3.25)

4 Systems with Goldstones

4.1 Framids

A (type-I) framid is a hypothetical phase of matter that breaks Lorentz boosts but no

other symmetry, and that features Goldstone fields non-linearly realizing the broken boosts.

The low-energy effective theory for such a system has been developed in [10]. It involves

three gapless boost Goldstone fields making up a 3-vector, ~η(x), whose longitudinal and

transverse parts both have linear dispersion relations, generically with different speeds, and

pion-like derivative interactions. Their dynamics are governed by an effective action which

at quadratic order takes the form

Sη =

∫
d4x

1

2

[
M2

1 (~̇η )2 −M2
2∂iη

j∂iη
j −M2

3 (∂iη
i)2
]
, (4.1)

where Mi are arbitrary mass scales. Finding the corresponding stress-energy tensor is

more straightforward when writing the low energy action in terms of the order parameter.

We shall discuss a convenient choice of order parameter below and refer the reader to the
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appendix A of [10] for the exact expressions for the stress tensor. The fields ηi(x) admit

the standard mode expansion

ηi(x) =
1

M1

∫
d3p

(2π)3

∑
h

1√
2Eh(~p )

[
ah~p ε

i
h,~p e

−ip·x + ah†~p ε
i ∗
h,~p e

ip·x
]
, (4.2)

where a†h~p , a
h
~p are the creation and annihilation operators, h stands for the helicities 0,±1,

and εih,p denote the associated (orthonormal) polarization vectors.

To see how such a system obeys our theorem through single-particle Goldstone states,

we need:

1. An order parameter: as already emphasized, Tµν is of no use here, because it has a

Lorentz-preserving expectation value on the ground state, 〈Tµν〉 ∝ ηµν . For simplicity

we will assume that the microscopic theory features a local 4-vector operator V µ(x)

with a Lorentz-breaking expectation value on |Ω〉,

〈Ω|V µ(x)|Ω〉 = δµ0 , (4.3)

although one can generalize the analysis that follows to more complicated representa-

tions of Lorentz as well. Vµ could be a conserved Noether current, or a more general

vector operator. Then, setting O(x) = V j(x) in our theorem, eq. (3.8) becomes

similar to (3.17):

lim
~p→0

∂

∂pi

∑
n 6=Ω

e−iEn(~p )t T 00
n (~p )Vjn∗(~p ) + c.c. = δij , (4.4)

where the r.h.s comes from i〈Ω|
[
Ki, V j(x)

]
|Ω〉 = 〈Ω|V 0(x)|Ω〉δij = δij . Eq. (4.4) is

the identity that we need to check. In particular, we will see that it is obeyed if we

restrict the sum to just single-particle Goldstone states.

2. The matrix elements of the order parameter between the ground state and single

particle states: to this end, we need the expression of Vµ(x) to first order in the

Goldstone fields obtained by performing an infinitesimal boost transformation on the

expectation value of the order parameter:

V µ(x) =
(
eiη

i(x)Ki
)µ

ν〈Ω|V ν(x)|Ω〉 ' δµ0 + δµi η
i(x) . (4.5)

3. The matrix elements of T 00 between the ground state and single particle states: to

this end, we need the expression of T 00 to first order in the Goldstone fields. This

is [10]

T 00(x) ' Λ +M2
1
~∇ · ~̇η(x) , (4.6)

where Λ is the ground state’s energy, and M1 is the scale appearing as an overall factor

in the quadratic Lagrangian (4.1) for ~η. Notice that, because of the spatial divergence

in (4.6), only the longitudinal Goldstone states (with h = 0) will contribute to the

matrix elements we are interested in.
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Given all of the above, if we use single-particle longitudinal Goldstone states |~p, L〉 ≡
a†~p,h=0|0〉 as intermediate states for our theorem, we have:

T 00
L (~p ) = M1

√
EL(~p )

2
|~p | , ~VL(~p ) =

1

M1

1√
2EL(~p )

p̂ , (4.7)

obtained by evaluating T 00
L (~p ) and ~VL(~p ) by using the mode expansion (4.2). As antici-

pated, we see that eq. (4.4) is saturated by these states.

4.2 Superfluids

From a quantum field theory standpoint, a superfluid is a system with a continuous internal

symmetry in a state that on the one hand spontaneously breaks that symmetry, and on

the other hand has a finite density for the associated conserved charge [29]. This charac-

terization is equivalent to the traditional one in terms of Bose-Einstein condensation for

free bosons [16], but, unlike that one, it has the advantage of being perfectly well defined

for interacting theories as well, even at strong coupling.

One can think of the ground state of a superfluid at some chemical potential µ as the

lowest-lying eigenstate of the modified Hamiltonian [4]

H̄ ≡ H − µQ , (4.8)

where H is the Hamiltonian, and Q the conserved charge in question. We will call such a

state |Ω〉, and use it as reference state for our Goldstone theorem. However, the requirement

thatQ be spontaneously broken implies that H also is. In other words, if |Ω〉 is an eigenstate

of H̄ but not of Q, it cannot be an eigenstate of H. Thus, a superfluid violates assumption

1 of our theorem.

Fortunately, there is an easy fix. The only places where the Hamiltonian operator is

introduced in our theorem are:

1. Implicitly, in the sum over the complete set of states of eq. (3.5): those states are

supposed to be eigenstates of H. In our case, since |Ω〉 breaks H but not H̄, we can

classify its excitations in terms of eigenstates of H̄. And, so, we can still use eq. (3.5),

but with the understanding that |n, ~p 〉 is now an eigenstate of ~P and H̄, but not of

H (or Q). We will call En(~p ) the corresponding eigenvalue of H̄, and refer to it as

the ‘energy’ of |n, ~p 〉.

2. Explicitly, in eq. (3.7). However, since T 00 and H are both neutral under Q (i.e.,

they commute with it, because Q generates an internal symmetry), that equation is

equally valid if one uses H̄ in place of H in it:

e+iHt T 00(0) e−iHt = e+iH̄t T 00(0) e−iH̄t (4.9)

We thus reach the conclusion that our theorem should be valid for superfluids as well, as

long as one interprets the states and energies appearing there as eigenstates and eigenvalues

of H̄ rather than of H.2

2Notice that, however unsurprising it might sound, this conclusion was not obvious a priori : our theorem

has to do with boosts, and H and H̄ behave very differently under boosts. The former is the timelike

component of a four-vector Pµ, the latter is a linear combination of this and of a scalar Q.
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With these qualifications in mind, we can now check that, for superfluids, single-particle

phonon states saturate our Goldstone theorem for boosts. The effective field theory for

low-energy excitations of relativistic superfluids was developed by Son [29]. It involves a

Lorentz scalar φ(x) with a shift symmetry, φ→ φ+const, expanded about the background

configuration 〈Ω|φ(x)|Ω〉 = µt:

φ(x) = µt+ π(x) , (4.10)

where π(x) is the field that creates and annihilates phonons.

The low-energy effective action is

S =

∫
d4xP

(
X
)
, X ≡ (∂φ)2 , (4.11)

where P (µ2) is the superfluid’s equation of state, given by the pressure as a function of the

chemical potential (squared). From this, one can compute the stress-energy tensor and the

U(1) current:

Tµν = 2P ′(X)∂µφ∂νφ− ηµνP (X) , Jµ = 2P ′(X)∂µφ . (4.12)

We can use J i as our order parameter O. Our theorem thus takes the form (3.17). Notice

that the background charge density is

n = 〈Ω|J0|Ω〉 = 2P ′(µ2)µ =
dP

dµ
, (4.13)

as befits a zero-temperature superfluid.

Similarly to the framids’ case, we will need the expansion of T 00 and of J i to first-order

in the Goldstone field π(x). We have:

T 00 ' n

c2
s

π̇ , J i = −n
µ
∂iπ , (4.14)

where we used eq. (4.13) as well the expression for the speed of sound:3

c2
s =

dP

dρ
=

P ′

2P ′′µ2 + P ′
. (4.15)

Finally, we need to know the normalization of the π field compared to canonical normal-

ization. For this, we need the expansion of the effective action to quadratic order in π:

S ' n

µc2
s

∫
d4x

1

2

[
π̇2 − c2

s

(
~∇π
)2]

. (4.16)

With this normalization of π(x), for a single-particle phonon state |~p 〉 we have

〈Ω|π(0) |~p 〉 = cs

√
µ

n

1√
2E(~p )

, E(~p ) = csp , (4.17)

3The expression for the energy density ρ in terms of µ2 can be found from eq. (4.12) above as ρ = T 0
0 ,

or, equivalently, from the zero-temperature thermodynamic identity ρ+ P = µn.
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and thus the matrix elements relevant for our theorem are

T 00(~p ) = −i
√
nµ

cs

√
p

2
, ~J (~p ) = −i

√
ncs
µ

~p√
2p

, (4.18)

in perfect agreement with eq. (3.17).

Notice that here we have T 00 ∼ p1/2 and O = ~J ∼ p1/2, while for the framid we

had T 00 ∼ p3/2 and O = ~V ∼ p−1/2. In both cases T 00O∗ scales as p, as it should in

order to satisfy our theorem. Still, this linear scaling with p of the product is achieved in

substantially different ways in the two cases. We expect this to be related to the presence

of inverse Higgs constraints for the superfluid, ~η ∼ ~∇π, although the precise relationship

is not immediately obvious to us.

5 Systems without Goldstones: the massive particle

As a warmup for the more physically relevant example of Fermi liquids, let’s consider a

relativistic QFT whose lightest states are spinless massive particles of mass m. The theory

can have generic interactions, not necessarily perturbative, as long as there exist asymptotic

states, the lightest of which have mass m.

Now, if we take one such particle in a state of definite momentum ~p, such a state has

all the properties spelled out at the outset of section 3, and thus qualifies as a perfectly

good reference state for our theorem. In fact, since the particle is massive, we can go to

its rest frame, and consider the zero-momentum reference state4

|Ω〉 ≡ 1√
V
|~p = 0〉 =

1√
V
a†0|0〉 , (5.1)

which simplifies the analysis somewhat.

How is our theorem obeyed? Clearly the theory has no gapless Goldstone bosons: the

lightest single-particle states are our massive particles. However, starting from the |Ω〉
above, we can find states that are arbitrarily close to it in energy when their momentum

approaches zero: such states describe the same one particle that is already there, but with

momentum slightly different from zero. In other words, they are slightly boosted versions

of our reference state |Ω〉. These are simply

|~p 〉 , ~p 6= 0 , (5.2)

and their energy with respect to |Ω〉 in the low-momentum limit is

E(~p ) ' ~p 2

2m
, (5.3)

which goes to zero for ~p going to zero.

One could argue that these are in fact single-particle states. They are, but only as far

as the true vacuum of the theory in concerned. Instead, with respect to our boost-breaking

4The volume factor upfront makes |Ω〉 normalized to one, as implicitly assumed in our theorem. Sim-

ilarly, all the other volume factors introduced in this section make normalizations consistent with our

previous choices.
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reference state, they are particle-hole states: to get them from |Ω〉, we must first annihilate

a particle with zero momentum, and then create one with momentum ~p :

|~p 〉 =
1√
V
a†~p a0|Ω〉 . (5.4)

These states do not form a continuum like more standard multi-particle or particle-

hole states: for each total momentum ~p, there is only one state in this class, with energy

(w.r.t. |Ω〉) given by (5.3). This again may lead one to believe that these are standard

single-particle states also as far as |Ω〉 is concerned. But they are not. In fact, taking the

energy of |Ω〉 as a reference point, the spectrum of the theory is quite peculiar: we can only

have one quantum whose energy goes to zero with ~p, but no more. We cannot add more

quanta of this excitation. Once we apply a†~p a0 to |Ω〉, the only way to get another gapless

excitation at small momentum is to apply something like a†~q a~p, which gives us again one

of our states, this time with momentum ~q, but that with momentum ~p is gone. All the

other states correspond to adding more particles of the original theory, and thus have gap

m. Put another way: taking |Ω〉 as reference state, we have gapless single-quantum states,

but the multi-quantum continuum is gapped.

Let’s check that if we use the states (5.4) as the intermediate |n, ~p 〉 states in our

Goldstone theorem, the theorem (3.20) is obeyed. First, notice that in this case we do not

need the additional label n to characterize the intermediate states. Second, notice that the

states are already normalized correctly. Then, we just need to compute the matrix elements

T µν(~p ) ≡ 〈Ω|Tµν(0)|~p 〉 (5.5)

for small ~p. In particular, we need the terms of first order in ~p in the product T 00(~p )T 0j∗(~p)

(see eq. (3.20)).

In a relativistic field theory, because of Lorentz invariance and basic symmetry prop-

erties, the matrix elements of Tµν between single-particle states (of identical spinless par-

ticles) must take the form

〈~k |Tµν(0)|~p 〉 =
1

2
(kµkν + pµpν)F (k · p) +

1

2
(kµpν + pµkν)G(k · p)

+ ηµνH(k · p) + i
1

2
(kµkν − pµpν)I(k · p) , (5.6)

for some real functions F , G, H, I, and must obey the limit5

〈~k |Tµν(0)|~p 〉 → kµkν

k0
for ~p→ ~k . (5.7)

This implies

F (m2) +G(m2) =
1

k0
, H(m2) = 0 . (5.8)

Furthermore, conservation of Tµν , in the form [Pµ, T
µν ] = 0, implies

〈~k |Tµν(0)|~p 〉 (kµ − pµ) = 0 , (5.9)

5This follows from Lorentz invariance and from imposing, with our normalizations,
∫
d3x 〈~k |T 0µ(x)|~p 〉 →

V · kµ for ~p→ ~k. Cf. [30].
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that is,

I(k · p) = 0 , H(k · p) =
(
F (k · p)−G(k · p)

)
· (k · p−m2) . (5.10)

For us, to the order we are interested in, all this implies

T 00(~p ) ' 1√
V
m , T 0j(~p ) ' 1√

V

1

2
pj , (5.11)

which, plugged into the l.h.s. of eq. (3.20), yields

lim
~p→0

∂

∂pi
[
e−iE(~p )t T 00(~p ) T 0j∗(~p ) + c.c.

]
=
m

V
δij . (5.12)

This is precisely the expected result according to eq. (3.20): since we have a single particle

at rest in a volume V , the expectation value of T 00 is m/V , and that of T ij vanishes.

This is admittedly a fairly degenerate example: in the infinite volume limit, all the

physical effects of having a single zero-momentum particle rather than the vacuum must be

infinitely diluted. For instance, assuming the theory has local quartic interactions of some

kind (e.g. λφ4), the two-to-two cross section for particles propagating in the true vacuum

of the theory is finite,

dσ0
1,2→3,4 =

1

2E1

1

2E2

1

v12
|M0

1,2→3,4|2dΠ3,4 , (5.13)

where we are using standard relativistic scattering theory notation, and the superscript

zero reminds us that the corresponding quantities are to be computed in the vacuum.

However, if one of the initial particles, say 1, is at rest, and one of the final ones, say 3, has

very small momentum compared to m, we can think of this same process as a one-to-two

process taking place in |Ω〉, whereby gapped excitation 2 decays into gapless excitation 3

and gapped excitation 4. The rate for this one-to-two process takes the form

dΓΩ
2→3,4 =

1

2E2
|MΩ

2→3,4|2dΠ3,4 , (5.14)

where the superscript Ω reminds us that, now, the corresponding quantities are to be com-

puted in |Ω〉. In particular, |2〉 ≡ a†2|Ω〉 = 1√
V
a†2a
†
0|0〉 and 〈3, 4| ≡ 〈Ω| 1√

V
a†0a3a4 = 〈0|a3a4.

And this is where we see the dilution phenomenon alluded to above: the physical process

is exactly the same, but the kinematical factors we have to use for correctly normalizing

the amplitude M are different in the two cases — they depend on the number of external

legs. Following standard scattering theory, for our kinematics we have

MΩ
2→3,4 =

1√
2mV

M0
1,2→3,4 , (5.15)

and so

dΓΩ
2→3,4 =

1

V
× v2 dσ

0
1,2→3,4 , (5.16)

which goes to zero at infinite volume, as expected.

Yet, this perhaps academic example serves to illustrate that systems that spontaneously

break boosts and no other symmetries can have quite peculiar spectra of excitations.
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6 Fermi liquids

Fermi liquid theory is normally used to describe electrons in metals at low temperatures.

There, however, boost invariance is broken by the underlying solid, whose phonons can

serve as Goldstone bosons both for translations and for boosts. Here instead, we are

interested in cases in which it is the ground state of the Fermi liquid itself that breaks

boosts while preserving translational invariance. The prime example of this is liquid helium-

3, at temperatures low enough so that Fermi degeneracy is more important than thermal

fluctuations (T . 1 K), but high enough so that Cooper-pairing and the associated onset of

superfluidity can be neglected (T & 1 mK). Fermi liquid theory assumes that the ground

state of a Fermi liquid consists of fermionic particles that occupy all momentum states

with |~p | ≤ pF, as is the case also for a free Fermi gas. It then further assumes that these

quasiparticles in an energy band close to the Fermi surface (i.e. |~p | = pF) are weakly

interacting (this is shown in figure 1 [left]). This theory correctly predicts the spectrum of

lowest-lying excitations in Fermi liquids, consisting of particle-hole continuum and first and

zero sound modes [16, 31]. From an effective field theory viewpoint, Landau’s theory can

be reinterpreted as a theory of almost free fermionic particles with momentum close to the

Fermi momentum pF with an irrelevant quartic interaction that only becomes marginal for

specific momentum configurations [11]. Despite their apparent simplicity, there is no local

position space Lagrangian description of Fermi liquids and their low-energy dynamics. As

we shall see below, the Goldstone theorem (3.20) presented in this work can in turn be

equally well used also for Fermi liquids even in the absence of a local field theory description.

Importantly in the context of this paper, the ground state of a Fermi liquid is a state

of finite energy density and low pressure, thus breaking boosts. We define a Fermi liquid’s

ground state as a tensor product of single-particle momentum eigenstates:

|FL〉 ≡ N
∏
s

∏
|~p |≤pF

|~p 〉 , |~p 〉 ≡ cs~p †|0〉 , (6.1)

where cs~p
† is the fermionic creation operator creating a single particle state of momentum

~p and spin s, satisfying the anticommutation relation {cs~p, c
s′†
~p ′ } = (2π)3δ(3)(~p− ~p ′)δss′ . We

emphasize that the c†’s and c’s create and annihilate quasiparticle states, which are dressed

versions of the single-particle states defined on the vacuum state |0〉 of the microscopic

theory. Such ‘dressing’ depends both on the interactions of the microscopic theory and,

crucially, on the density of particles present in the state we are considering, which is |FL〉
itself. So, (6.1) is an implicit definition of our state. Landau’s Fermi liquid theory essentially

assumes that such a definition in terms of quasiparticle states is possible (see, e.g. [19]).

The normalization factor N is chosen so that 〈FL|FL〉 = 1. Due to the anticommutation

properties, it is clear that there can in fact only be one-particle states inside our Fermi

liquid ground state, which further satisfies

cs~p
†|FL〉 = 0 , |~p | ≤ pF , (6.2)

cs~p |FL〉 = 0 , |~p | > pF . (6.3)
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~p ⌘ ~p1 � ~p2
<latexit sha1_base64="quwBgQ2Vdvd0Fu10lWPDgAWf1tE=">AAACCXicbZDLSsNAFIYnXmu8RV26GSyCG0tSCrosuHFZwV6gCWEyPWmHTiZxZlIooVs3voobF4q49Q3c+TYmbRba+sPAN/85h5nzBwlnStv2t7G2vrG5tV3ZMXf39g8OraPjjopTSaFNYx7LXkAUcCagrZnm0EskkCjg0A3GN0W9OwGpWCzu9TQBLyJDwUJGic4t38LuBChOXHhI2aS8+M5lCXXT9K2qXbPnwqvglFBFpVq+9eUOYppGIDTlRKm+Yyfay4jUjHKYmW6qICF0TIbQz1GQCJSXzTeZ4fPcGeAwlvkRGs/d3xMZiZSaRkHeGRE9Usu1wvyv1k91eO1lTCSpBkEXD4UpxzrGRSx4wCRQzac5ECpZ/ldMR0QSqvPwihCc5ZVXoVOvOXbNuWtUm40yjgo6RWfoAjnoCjXRLWqhNqLoET2jV/RmPBkvxrvxsWhdM8qZE/RHxucPyGuYYw==</latexit><latexit sha1_base64="quwBgQ2Vdvd0Fu10lWPDgAWf1tE=">AAACCXicbZDLSsNAFIYnXmu8RV26GSyCG0tSCrosuHFZwV6gCWEyPWmHTiZxZlIooVs3voobF4q49Q3c+TYmbRba+sPAN/85h5nzBwlnStv2t7G2vrG5tV3ZMXf39g8OraPjjopTSaFNYx7LXkAUcCagrZnm0EskkCjg0A3GN0W9OwGpWCzu9TQBLyJDwUJGic4t38LuBChOXHhI2aS8+M5lCXXT9K2qXbPnwqvglFBFpVq+9eUOYppGIDTlRKm+Yyfay4jUjHKYmW6qICF0TIbQz1GQCJSXzTeZ4fPcGeAwlvkRGs/d3xMZiZSaRkHeGRE9Usu1wvyv1k91eO1lTCSpBkEXD4UpxzrGRSx4wCRQzac5ECpZ/ldMR0QSqvPwihCc5ZVXoVOvOXbNuWtUm40yjgo6RWfoAjnoCjXRLWqhNqLoET2jV/RmPBkvxrvxsWhdM8qZE/RHxucPyGuYYw==</latexit><latexit sha1_base64="quwBgQ2Vdvd0Fu10lWPDgAWf1tE=">AAACCXicbZDLSsNAFIYnXmu8RV26GSyCG0tSCrosuHFZwV6gCWEyPWmHTiZxZlIooVs3voobF4q49Q3c+TYmbRba+sPAN/85h5nzBwlnStv2t7G2vrG5tV3ZMXf39g8OraPjjopTSaFNYx7LXkAUcCagrZnm0EskkCjg0A3GN0W9OwGpWCzu9TQBLyJDwUJGic4t38LuBChOXHhI2aS8+M5lCXXT9K2qXbPnwqvglFBFpVq+9eUOYppGIDTlRKm+Yyfay4jUjHKYmW6qICF0TIbQz1GQCJSXzTeZ4fPcGeAwlvkRGs/d3xMZiZSaRkHeGRE9Usu1wvyv1k91eO1lTCSpBkEXD4UpxzrGRSx4wCRQzac5ECpZ/ldMR0QSqvPwihCc5ZVXoVOvOXbNuWtUm40yjgo6RWfoAjnoCjXRLWqhNqLoET2jV/RmPBkvxrvxsWhdM8qZE/RHxucPyGuYYw==</latexit><latexit sha1_base64="quwBgQ2Vdvd0Fu10lWPDgAWf1tE=">AAACCXicbZDLSsNAFIYnXmu8RV26GSyCG0tSCrosuHFZwV6gCWEyPWmHTiZxZlIooVs3voobF4q49Q3c+TYmbRba+sPAN/85h5nzBwlnStv2t7G2vrG5tV3ZMXf39g8OraPjjopTSaFNYx7LXkAUcCagrZnm0EskkCjg0A3GN0W9OwGpWCzu9TQBLyJDwUJGic4t38LuBChOXHhI2aS8+M5lCXXT9K2qXbPnwqvglFBFpVq+9eUOYppGIDTlRKm+Yyfay4jUjHKYmW6qICF0TIbQz1GQCJSXzTeZ4fPcGeAwlvkRGs/d3xMZiZSaRkHeGRE9Usu1wvyv1k91eO1lTCSpBkEXD4UpxzrGRSx4wCRQzac5ECpZ/ldMR0QSqvPwihCc5ZVXoVOvOXbNuWtUm40yjgo6RWfoAjnoCjXRLWqhNqLoET2jV/RmPBkvxrvxsWhdM8qZE/RHxucPyGuYYw==</latexit>

p
<latexit sha1_base64="teE6495sKWhsX6DzRO93qX1E8+M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94izhfkTHSoSCUbTSQ1IZVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+trh0Ti6sMiJhrG0pJAv190RGI2NmUWA7I4oTs+rl4n9eP8Xwxs+ESlLkii0XhakkGJP8bTISmjOUM0so08LeStiEasrQhpOH4K2+vE46V3XPrXv3jVqzUcRRhjM4h0vw4BqacActaAODEJ7hFd6cqfPivDsfy9aSU8ycwh84nz8Kboz6</latexit><latexit sha1_base64="teE6495sKWhsX6DzRO93qX1E8+M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94izhfkTHSoSCUbTSQ1IZVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+trh0Ti6sMiJhrG0pJAv190RGI2NmUWA7I4oTs+rl4n9eP8Xwxs+ESlLkii0XhakkGJP8bTISmjOUM0so08LeStiEasrQhpOH4K2+vE46V3XPrXv3jVqzUcRRhjM4h0vw4BqacActaAODEJ7hFd6cqfPivDsfy9aSU8ycwh84nz8Kboz6</latexit><latexit sha1_base64="teE6495sKWhsX6DzRO93qX1E8+M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94izhfkTHSoSCUbTSQ1IZVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+trh0Ti6sMiJhrG0pJAv190RGI2NmUWA7I4oTs+rl4n9eP8Xwxs+ESlLkii0XhakkGJP8bTISmjOUM0so08LeStiEasrQhpOH4K2+vE46V3XPrXv3jVqzUcRRhjM4h0vw4BqacActaAODEJ7hFd6cqfPivDsfy9aSU8ycwh84nz8Kboz6</latexit><latexit sha1_base64="teE6495sKWhsX6DzRO93qX1E8+M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94izhfkTHSoSCUbTSQ1IZVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+trh0Ti6sMiJhrG0pJAv190RGI2NmUWA7I4oTs+rl4n9eP8Xwxs+ESlLkii0XhakkGJP8bTISmjOUM0so08LeStiEasrQhpOH4K2+vE46V3XPrXv3jVqzUcRRhjM4h0vw4BqacActaAODEJ7hFd6cqfPivDsfy9aSU8ycwh84nz8Kboz6</latexit>

pF
<latexit sha1_base64="Cg8eNUCsNZZSaRQECaD3tZBJYHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTm7nfeUKleSwfzTRBP6IjyUPOqLHSQzK4HZQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAbHo2f</latexit><latexit sha1_base64="Cg8eNUCsNZZSaRQECaD3tZBJYHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTm7nfeUKleSwfzTRBP6IjyUPOqLHSQzK4HZQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAbHo2f</latexit><latexit sha1_base64="Cg8eNUCsNZZSaRQECaD3tZBJYHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTm7nfeUKleSwfzTRBP6IjyUPOqLHSQzK4HZQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAbHo2f</latexit><latexit sha1_base64="Cg8eNUCsNZZSaRQECaD3tZBJYHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTm7nfeUKleSwfzTRBP6IjyUPOqLHSQzK4HZQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAbHo2f</latexit>

p

pF ~p1
<latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="1UZVhXKgSMGOajpYTdN/Of/hL7k=">AAAB5HicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHFZwT6gHUomvdOGZjJjcqdQhv4JNy4U8Te589+YPhZqPRD4OCch954oU9KS7395pa3tnd298n7loHp4dFw7qbZtmhuBLZGq1HQjblFJjS2SpLCbGeRJpLATTe4WeWeKxspUP9IswzDhIy1jKTg5q9ufomDZIBjU6n7DX4ptQrCGOqzVHNQ++8NU5AlqEopb2wv8jMKCG5JC4bzSzy1mXEz4CHsONU/QhsVy3jm7cM6QxalxRxNbuj9fFDyxdpZE7mbCaWz/Zgvzv6yXU3wTFlJnOaEWq4/iXDFK2WJ5NpQGBamZAy6MdLMyMeaGC3IVVVwJwd+VN6F91Qj8RvDgQxnO4BwuIYBruIV7aEILBCh4hld48568F+99VVfJW/d2Cr/kfXwDMCKOKg==</latexit><latexit sha1_base64="1UZVhXKgSMGOajpYTdN/Of/hL7k=">AAAB5HicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHFZwT6gHUomvdOGZjJjcqdQhv4JNy4U8Te589+YPhZqPRD4OCch954oU9KS7395pa3tnd298n7loHp4dFw7qbZtmhuBLZGq1HQjblFJjS2SpLCbGeRJpLATTe4WeWeKxspUP9IswzDhIy1jKTg5q9ufomDZIBjU6n7DX4ptQrCGOqzVHNQ++8NU5AlqEopb2wv8jMKCG5JC4bzSzy1mXEz4CHsONU/QhsVy3jm7cM6QxalxRxNbuj9fFDyxdpZE7mbCaWz/Zgvzv6yXU3wTFlJnOaEWq4/iXDFK2WJ5NpQGBamZAy6MdLMyMeaGC3IVVVwJwd+VN6F91Qj8RvDgQxnO4BwuIYBruIV7aEILBCh4hld48568F+99VVfJW/d2Cr/kfXwDMCKOKg==</latexit><latexit sha1_base64="JlQdZPVlJJVqu8BoAqzc6Xj+qYE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cK9gPaUDbbSbt0s4m7m0IJ/RNePCji1b/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkbuF3pqg0j+WjmSXoR3QkecgZNVbq9qfISDLwBtWaW3dzkHXiFaQGBZqD6ld/GLM0QmmYoFr3PDcxfkaV4UzgvNJPNSaUTegIe5ZKGqH2s/zeObmwypCEsbIlDcnV3xMZjbSeRYHtjKgZ61VvIf7n9VIT3voZl0lqULLlojAVxMRk8TwZcoXMiJkllClubyVsTBVlxkZUsSF4qy+vk/ZV3XPr3oNba1wXcZThDM7hEjy4gQbcQxNawEDAM7zCm/PkvDjvzseyteQUM6fwB87nD1noj3I=</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit>
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<latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="MLztN4Fa83Rvj5SXx4jMQ9/HPkE=">AAAB5HicbZBLSwMxFIXv1FetVatbN8EiuCoz3ehScOOygn1AW0omvdOGZjJjcqdQhv4JNy4U8Te589+YPhbaeiDwcU5C7j1hqqQl3//2Cju7e/sHxcPSUfn45LRyVm7ZJDMCmyJRiemE3KKSGpskSWEnNcjjUGE7nNwv8vYUjZWJfqJZiv2Yj7SMpODkrE5vioKlg/qgUvVr/lJsG4I1VGGtxqDy1RsmIotRk1Dc2m7gp9TPuSEpFM5LvcxiysWEj7DrUPMYbT9fzjtnV84Zsigx7mhiS/f3i5zH1s7i0N2MOY3tZrYw/8u6GUW3/VzqNCPUYvVRlClGCVssz4bSoCA1c8CFkW5WJsbccEGuopIrIdhceRta9Vrg14JHH4pwAZdwDQHcwB08QAOaIEDBC7zBu/fsvXofq7oK3rq3c/gj7/MHMZuOKw==</latexit><latexit sha1_base64="MLztN4Fa83Rvj5SXx4jMQ9/HPkE=">AAAB5HicbZBLSwMxFIXv1FetVatbN8EiuCoz3ehScOOygn1AW0omvdOGZjJjcqdQhv4JNy4U8Te589+YPhbaeiDwcU5C7j1hqqQl3//2Cju7e/sHxcPSUfn45LRyVm7ZJDMCmyJRiemE3KKSGpskSWEnNcjjUGE7nNwv8vYUjZWJfqJZiv2Yj7SMpODkrE5vioKlg/qgUvVr/lJsG4I1VGGtxqDy1RsmIotRk1Dc2m7gp9TPuSEpFM5LvcxiysWEj7DrUPMYbT9fzjtnV84Zsigx7mhiS/f3i5zH1s7i0N2MOY3tZrYw/8u6GUW3/VzqNCPUYvVRlClGCVssz4bSoCA1c8CFkW5WJsbccEGuopIrIdhceRta9Vrg14JHH4pwAZdwDQHcwB08QAOaIEDBC7zBu/fsvXofq7oK3rq3c/gj7/MHMZuOKw==</latexit><latexit sha1_base64="Ebkyqbty3+zJ2YwAcPc8Tsh65sA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XtwK42bPI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbbI9z</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit>

~p
<latexit sha1_base64="HjMMxAdaQ8MUTDrYieonUjyzgR0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpb2zu7e+X9ysHh0fFJ9fSso+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpfe53Z6g0j+WTmSfoR3QsecgZNVbqDmbISFIZVmtu3V2CbBKvIDUo0BpWvwajmKURSsME1brvuYnxM6oMZwIXlUGqMaFsSsfYt1TSCLWfLc9dkCurjEgYK1vSkKX6eyKjkdbzKLCdETUTve7l4n9ePzXhnZ9xmaQGJVstClNBTEzy38mIK2RGzC2hTHF7K2ETqigzNqE8BG/95U3Sual7bt17bNSajSKOMlzAJVyDB7fQhAdoQRsYTOEZXuHNSZwX5935WLWWnGLmHP7A+fwBaIiO5g==</latexit><latexit sha1_base64="HjMMxAdaQ8MUTDrYieonUjyzgR0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpb2zu7e+X9ysHh0fFJ9fSso+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpfe53Z6g0j+WTmSfoR3QsecgZNVbqDmbISFIZVmtu3V2CbBKvIDUo0BpWvwajmKURSsME1brvuYnxM6oMZwIXlUGqMaFsSsfYt1TSCLWfLc9dkCurjEgYK1vSkKX6eyKjkdbzKLCdETUTve7l4n9ePzXhnZ9xmaQGJVstClNBTEzy38mIK2RGzC2hTHF7K2ETqigzNqE8BG/95U3Sual7bt17bNSajSKOMlzAJVyDB7fQhAdoQRsYTOEZXuHNSZwX5935WLWWnGLmHP7A+fwBaIiO5g==</latexit><latexit sha1_base64="HjMMxAdaQ8MUTDrYieonUjyzgR0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpb2zu7e+X9ysHh0fFJ9fSso+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpfe53Z6g0j+WTmSfoR3QsecgZNVbqDmbISFIZVmtu3V2CbBKvIDUo0BpWvwajmKURSsME1brvuYnxM6oMZwIXlUGqMaFsSsfYt1TSCLWfLc9dkCurjEgYK1vSkKX6eyKjkdbzKLCdETUTve7l4n9ePzXhnZ9xmaQGJVstClNBTEzy38mIK2RGzC2hTHF7K2ETqigzNqE8BG/95U3Sual7bt17bNSajSKOMlzAJVyDB7fQhAdoQRsYTOEZXuHNSZwX5935WLWWnGLmHP7A+fwBaIiO5g==</latexit><latexit sha1_base64="HjMMxAdaQ8MUTDrYieonUjyzgR0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpb2zu7e+X9ysHh0fFJ9fSso+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpfe53Z6g0j+WTmSfoR3QsecgZNVbqDmbISFIZVmtu3V2CbBKvIDUo0BpWvwajmKURSsME1brvuYnxM6oMZwIXlUGqMaFsSsfYt1TSCLWfLc9dkCurjEgYK1vSkKX6eyKjkdbzKLCdETUTve7l4n9ePzXhnZ9xmaQGJVstClNBTEzy38mIK2RGzC2hTHF7K2ETqigzNqE8BG/95U3Sual7bt17bNSajSKOMlzAJVyDB7fQhAdoQRsYTOEZXuHNSZwX5935WLWWnGLmHP7A+fwBaIiO5g==</latexit>
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<latexit sha1_base64="jyuMvlByuPMtrDVDINtgfn4+FK0=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI8BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMb8KpUGmGoPhyUZxJiprOX6cDYYCjnDjCuBHuVspHzDCOLqCSCyFYfXmdtK6qgV8N7muVei2Po0jOyDm5JAG5JnVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+fwY8a</latexit><latexit sha1_base64="jyuMvlByuPMtrDVDINtgfn4+FK0=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI8BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMb8KpUGmGoPhyUZxJiprOX6cDYYCjnDjCuBHuVspHzDCOLqCSCyFYfXmdtK6qgV8N7muVei2Po0jOyDm5JAG5JnVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+fwY8a</latexit><latexit sha1_base64="jyuMvlByuPMtrDVDINtgfn4+FK0=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI8BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMb8KpUGmGoPhyUZxJiprOX6cDYYCjnDjCuBHuVspHzDCOLqCSCyFYfXmdtK6qgV8N7muVei2Po0jOyDm5JAG5JnVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+fwY8a</latexit><latexit sha1_base64="jyuMvlByuPMtrDVDINtgfn4+FK0=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI8BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMb8KpUGmGoPhyUZxJiprOX6cDYYCjnDjCuBHuVspHzDCOLqCSCyFYfXmdtK6qgV8N7muVei2Po0jOyDm5JAG5JnVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+fwY8a</latexit>

p

strong

coupling


p = pF

weak

coupling


~p ⌘ ~p1 � ~p2
<latexit sha1_base64="quwBgQ2Vdvd0Fu10lWPDgAWf1tE=">AAACCXicbZDLSsNAFIYnXmu8RV26GSyCG0tSCrosuHFZwV6gCWEyPWmHTiZxZlIooVs3voobF4q49Q3c+TYmbRba+sPAN/85h5nzBwlnStv2t7G2vrG5tV3ZMXf39g8OraPjjopTSaFNYx7LXkAUcCagrZnm0EskkCjg0A3GN0W9OwGpWCzu9TQBLyJDwUJGic4t38LuBChOXHhI2aS8+M5lCXXT9K2qXbPnwqvglFBFpVq+9eUOYppGIDTlRKm+Yyfay4jUjHKYmW6qICF0TIbQz1GQCJSXzTeZ4fPcGeAwlvkRGs/d3xMZiZSaRkHeGRE9Usu1wvyv1k91eO1lTCSpBkEXD4UpxzrGRSx4wCRQzac5ECpZ/ldMR0QSqvPwihCc5ZVXoVOvOXbNuWtUm40yjgo6RWfoAjnoCjXRLWqhNqLoET2jV/RmPBkvxrvxsWhdM8qZE/RHxucPyGuYYw==</latexit><latexit sha1_base64="quwBgQ2Vdvd0Fu10lWPDgAWf1tE=">AAACCXicbZDLSsNAFIYnXmu8RV26GSyCG0tSCrosuHFZwV6gCWEyPWmHTiZxZlIooVs3voobF4q49Q3c+TYmbRba+sPAN/85h5nzBwlnStv2t7G2vrG5tV3ZMXf39g8OraPjjopTSaFNYx7LXkAUcCagrZnm0EskkCjg0A3GN0W9OwGpWCzu9TQBLyJDwUJGic4t38LuBChOXHhI2aS8+M5lCXXT9K2qXbPnwqvglFBFpVq+9eUOYppGIDTlRKm+Yyfay4jUjHKYmW6qICF0TIbQz1GQCJSXzTeZ4fPcGeAwlvkRGs/d3xMZiZSaRkHeGRE9Usu1wvyv1k91eO1lTCSpBkEXD4UpxzrGRSx4wCRQzac5ECpZ/ldMR0QSqvPwihCc5ZVXoVOvOXbNuWtUm40yjgo6RWfoAjnoCjXRLWqhNqLoET2jV/RmPBkvxrvxsWhdM8qZE/RHxucPyGuYYw==</latexit><latexit sha1_base64="quwBgQ2Vdvd0Fu10lWPDgAWf1tE=">AAACCXicbZDLSsNAFIYnXmu8RV26GSyCG0tSCrosuHFZwV6gCWEyPWmHTiZxZlIooVs3voobF4q49Q3c+TYmbRba+sPAN/85h5nzBwlnStv2t7G2vrG5tV3ZMXf39g8OraPjjopTSaFNYx7LXkAUcCagrZnm0EskkCjg0A3GN0W9OwGpWCzu9TQBLyJDwUJGic4t38LuBChOXHhI2aS8+M5lCXXT9K2qXbPnwqvglFBFpVq+9eUOYppGIDTlRKm+Yyfay4jUjHKYmW6qICF0TIbQz1GQCJSXzTeZ4fPcGeAwlvkRGs/d3xMZiZSaRkHeGRE9Usu1wvyv1k91eO1lTCSpBkEXD4UpxzrGRSx4wCRQzac5ECpZ/ldMR0QSqvPwihCc5ZVXoVOvOXbNuWtUm40yjgo6RWfoAjnoCjXRLWqhNqLoET2jV/RmPBkvxrvxsWhdM8qZE/RHxucPyGuYYw==</latexit><latexit sha1_base64="quwBgQ2Vdvd0Fu10lWPDgAWf1tE=">AAACCXicbZDLSsNAFIYnXmu8RV26GSyCG0tSCrosuHFZwV6gCWEyPWmHTiZxZlIooVs3voobF4q49Q3c+TYmbRba+sPAN/85h5nzBwlnStv2t7G2vrG5tV3ZMXf39g8OraPjjopTSaFNYx7LXkAUcCagrZnm0EskkCjg0A3GN0W9OwGpWCzu9TQBLyJDwUJGic4t38LuBChOXHhI2aS8+M5lCXXT9K2qXbPnwqvglFBFpVq+9eUOYppGIDTlRKm+Yyfay4jUjHKYmW6qICF0TIbQz1GQCJSXzTeZ4fPcGeAwlvkRGs/d3xMZiZSaRkHeGRE9Usu1wvyv1k91eO1lTCSpBkEXD4UpxzrGRSx4wCRQzac5ECpZ/ldMR0QSqvPwihCc5ZVXoVOvOXbNuWtUm40yjgo6RWfoAjnoCjXRLWqhNqLoET2jV/RmPBkvxrvxsWhdM8qZE/RHxucPyGuYYw==</latexit>

p
<latexit sha1_base64="teE6495sKWhsX6DzRO93qX1E8+M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94izhfkTHSoSCUbTSQ1IZVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+trh0Ti6sMiJhrG0pJAv190RGI2NmUWA7I4oTs+rl4n9eP8Xwxs+ESlLkii0XhakkGJP8bTISmjOUM0so08LeStiEasrQhpOH4K2+vE46V3XPrXv3jVqzUcRRhjM4h0vw4BqacActaAODEJ7hFd6cqfPivDsfy9aSU8ycwh84nz8Kboz6</latexit><latexit sha1_base64="teE6495sKWhsX6DzRO93qX1E8+M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94izhfkTHSoSCUbTSQ1IZVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+trh0Ti6sMiJhrG0pJAv190RGI2NmUWA7I4oTs+rl4n9eP8Xwxs+ESlLkii0XhakkGJP8bTISmjOUM0so08LeStiEasrQhpOH4K2+vE46V3XPrXv3jVqzUcRRhjM4h0vw4BqacActaAODEJ7hFd6cqfPivDsfy9aSU8ycwh84nz8Kboz6</latexit><latexit sha1_base64="teE6495sKWhsX6DzRO93qX1E8+M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94izhfkTHSoSCUbTSQ1IZVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+trh0Ti6sMiJhrG0pJAv190RGI2NmUWA7I4oTs+rl4n9eP8Xwxs+ESlLkii0XhakkGJP8bTISmjOUM0so08LeStiEasrQhpOH4K2+vE46V3XPrXv3jVqzUcRRhjM4h0vw4BqacActaAODEJ7hFd6cqfPivDsfy9aSU8ycwh84nz8Kboz6</latexit><latexit sha1_base64="teE6495sKWhsX6DzRO93qX1E8+M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94izhfkTHSoSCUbTSQ1IZVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+trh0Ti6sMiJhrG0pJAv190RGI2NmUWA7I4oTs+rl4n9eP8Xwxs+ESlLkii0XhakkGJP8bTISmjOUM0so08LeStiEasrQhpOH4K2+vE46V3XPrXv3jVqzUcRRhjM4h0vw4BqacActaAODEJ7hFd6cqfPivDsfy9aSU8ycwh84nz8Kboz6</latexit>

pF
<latexit sha1_base64="Cg8eNUCsNZZSaRQECaD3tZBJYHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTm7nfeUKleSwfzTRBP6IjyUPOqLHSQzK4HZQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAbHo2f</latexit><latexit sha1_base64="Cg8eNUCsNZZSaRQECaD3tZBJYHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTm7nfeUKleSwfzTRBP6IjyUPOqLHSQzK4HZQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAbHo2f</latexit><latexit sha1_base64="Cg8eNUCsNZZSaRQECaD3tZBJYHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTm7nfeUKleSwfzTRBP6IjyUPOqLHSQzK4HZQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAbHo2f</latexit><latexit sha1_base64="Cg8eNUCsNZZSaRQECaD3tZBJYHk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTm7nfeUKleSwfzTRBP6IjyUPOqLHSQzK4HZQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAbHo2f</latexit>

p

~p1
<latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="1UZVhXKgSMGOajpYTdN/Of/hL7k=">AAAB5HicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHFZwT6gHUomvdOGZjJjcqdQhv4JNy4U8Te589+YPhZqPRD4OCch954oU9KS7395pa3tnd298n7loHp4dFw7qbZtmhuBLZGq1HQjblFJjS2SpLCbGeRJpLATTe4WeWeKxspUP9IswzDhIy1jKTg5q9ufomDZIBjU6n7DX4ptQrCGOqzVHNQ++8NU5AlqEopb2wv8jMKCG5JC4bzSzy1mXEz4CHsONU/QhsVy3jm7cM6QxalxRxNbuj9fFDyxdpZE7mbCaWz/Zgvzv6yXU3wTFlJnOaEWq4/iXDFK2WJ5NpQGBamZAy6MdLMyMeaGC3IVVVwJwd+VN6F91Qj8RvDgQxnO4BwuIYBruIV7aEILBCh4hld48568F+99VVfJW/d2Cr/kfXwDMCKOKg==</latexit><latexit sha1_base64="1UZVhXKgSMGOajpYTdN/Of/hL7k=">AAAB5HicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHFZwT6gHUomvdOGZjJjcqdQhv4JNy4U8Te589+YPhZqPRD4OCch954oU9KS7395pa3tnd298n7loHp4dFw7qbZtmhuBLZGq1HQjblFJjS2SpLCbGeRJpLATTe4WeWeKxspUP9IswzDhIy1jKTg5q9ufomDZIBjU6n7DX4ptQrCGOqzVHNQ++8NU5AlqEopb2wv8jMKCG5JC4bzSzy1mXEz4CHsONU/QhsVy3jm7cM6QxalxRxNbuj9fFDyxdpZE7mbCaWz/Zgvzv6yXU3wTFlJnOaEWq4/iXDFK2WJ5NpQGBamZAy6MdLMyMeaGC3IVVVwJwd+VN6F91Qj8RvDgQxnO4BwuIYBruIV7aEILBCh4hld48568F+99VVfJW/d2Cr/kfXwDMCKOKg==</latexit><latexit sha1_base64="JlQdZPVlJJVqu8BoAqzc6Xj+qYE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cK9gPaUDbbSbt0s4m7m0IJ/RNePCji1b/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkbuF3pqg0j+WjmSXoR3QkecgZNVbq9qfISDLwBtWaW3dzkHXiFaQGBZqD6ld/GLM0QmmYoFr3PDcxfkaV4UzgvNJPNSaUTegIe5ZKGqH2s/zeObmwypCEsbIlDcnV3xMZjbSeRYHtjKgZ61VvIf7n9VIT3voZl0lqULLlojAVxMRk8TwZcoXMiJkllClubyVsTBVlxkZUsSF4qy+vk/ZV3XPr3oNba1wXcZThDM7hEjy4gQbcQxNawEDAM7zCm/PkvDjvzseyteQUM6fwB87nD1noj3I=</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit><latexit sha1_base64="WIKXatwGJJ0bHH89uIX719kYDr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8nAG5QrbtVdgmwSLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcC56V+qjGhbEJH2LNU0gi1ny3vnZMrqwxJGCtb0pCl+nsio5HWsyiwnRE1Y73uLcT/vF5qwls/4zJJDUq2WhSmgpiYLJ4nQ66QGTGzhDLF7a2EjamizNiISjYEb/3lTdK+qXpu1XuoVRq1PI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbKI92</latexit>
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<latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="MLztN4Fa83Rvj5SXx4jMQ9/HPkE=">AAAB5HicbZBLSwMxFIXv1FetVatbN8EiuCoz3ehScOOygn1AW0omvdOGZjJjcqdQhv4JNy4U8Te589+YPhbaeiDwcU5C7j1hqqQl3//2Cju7e/sHxcPSUfn45LRyVm7ZJDMCmyJRiemE3KKSGpskSWEnNcjjUGE7nNwv8vYUjZWJfqJZiv2Yj7SMpODkrE5vioKlg/qgUvVr/lJsG4I1VGGtxqDy1RsmIotRk1Dc2m7gp9TPuSEpFM5LvcxiysWEj7DrUPMYbT9fzjtnV84Zsigx7mhiS/f3i5zH1s7i0N2MOY3tZrYw/8u6GUW3/VzqNCPUYvVRlClGCVssz4bSoCA1c8CFkW5WJsbccEGuopIrIdhceRta9Vrg14JHH4pwAZdwDQHcwB08QAOaIEDBC7zBu/fsvXofq7oK3rq3c/gj7/MHMZuOKw==</latexit><latexit sha1_base64="MLztN4Fa83Rvj5SXx4jMQ9/HPkE=">AAAB5HicbZBLSwMxFIXv1FetVatbN8EiuCoz3ehScOOygn1AW0omvdOGZjJjcqdQhv4JNy4U8Te589+YPhbaeiDwcU5C7j1hqqQl3//2Cju7e/sHxcPSUfn45LRyVm7ZJDMCmyJRiemE3KKSGpskSWEnNcjjUGE7nNwv8vYUjZWJfqJZiv2Yj7SMpODkrE5vioKlg/qgUvVr/lJsG4I1VGGtxqDy1RsmIotRk1Dc2m7gp9TPuSEpFM5LvcxiysWEj7DrUPMYbT9fzjtnV84Zsigx7mhiS/f3i5zH1s7i0N2MOY3tZrYw/8u6GUW3/VzqNCPUYvVRlClGCVssz4bSoCA1c8CFkW5WJsbccEGuopIrIdhceRta9Vrg14JHH4pwAZdwDQHcwB08QAOaIEDBC7zBu/fsvXofq7oK3rq3c/gj7/MHMZuOKw==</latexit><latexit sha1_base64="Ebkyqbty3+zJ2YwAcPc8Tsh65sA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XtwK42bPI4iXMAlXIMHdWjAPTShBQwEPMMrvDlPzovz7nysWgtOPnMOf+B8/gBbbI9z</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit><latexit sha1_base64="yqYxs4YkHeZSqiHzQ2kb5zXMnsc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4r2A9oQ9lsJ+3SzSbubgol9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1Fip258iI8mgNihX3Kq7BNkkXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkv9VGNC2YSOsGeppBFqP1veOydXVhmSMFa2pCFL9fdERiOtZ1FgOyNqxnrdW4j/eb3UhLd+xmWSGpRstShMBTExWTxPhlwhM2JmCWWK21sJG1NFmbERlWwI3vrLm6Rdq3pu1XuoVxr1PI4iXMAlXIMHN9CAe2hCCxgIeIZXeHOenBfn3flYtRacfOYc/sD5/AFcrI93</latexit>
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<latexit sha1_base64="HjMMxAdaQ8MUTDrYieonUjyzgR0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpb2zu7e+X9ysHh0fFJ9fSso+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpfe53Z6g0j+WTmSfoR3QsecgZNVbqDmbISFIZVmtu3V2CbBKvIDUo0BpWvwajmKURSsME1brvuYnxM6oMZwIXlUGqMaFsSsfYt1TSCLWfLc9dkCurjEgYK1vSkKX6eyKjkdbzKLCdETUTve7l4n9ePzXhnZ9xmaQGJVstClNBTEzy38mIK2RGzC2hTHF7K2ETqigzNqE8BG/95U3Sual7bt17bNSajSKOMlzAJVyDB7fQhAdoQRsYTOEZXuHNSZwX5935WLWWnGLmHP7A+fwBaIiO5g==</latexit><latexit sha1_base64="HjMMxAdaQ8MUTDrYieonUjyzgR0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpb2zu7e+X9ysHh0fFJ9fSso+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpfe53Z6g0j+WTmSfoR3QsecgZNVbqDmbISFIZVmtu3V2CbBKvIDUo0BpWvwajmKURSsME1brvuYnxM6oMZwIXlUGqMaFsSsfYt1TSCLWfLc9dkCurjEgYK1vSkKX6eyKjkdbzKLCdETUTve7l4n9ePzXhnZ9xmaQGJVstClNBTEzy38mIK2RGzC2hTHF7K2ETqigzNqE8BG/95U3Sual7bt17bNSajSKOMlzAJVyDB7fQhAdoQRsYTOEZXuHNSZwX5935WLWWnGLmHP7A+fwBaIiO5g==</latexit><latexit sha1_base64="HjMMxAdaQ8MUTDrYieonUjyzgR0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpb2zu7e+X9ysHh0fFJ9fSso+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpfe53Z6g0j+WTmSfoR3QsecgZNVbqDmbISFIZVmtu3V2CbBKvIDUo0BpWvwajmKURSsME1brvuYnxM6oMZwIXlUGqMaFsSsfYt1TSCLWfLc9dkCurjEgYK1vSkKX6eyKjkdbzKLCdETUTve7l4n9ePzXhnZ9xmaQGJVstClNBTEzy38mIK2RGzC2hTHF7K2ETqigzNqE8BG/95U3Sual7bt17bNSajSKOMlzAJVyDB7fQhAdoQRsYTOEZXuHNSZwX5935WLWWnGLmHP7A+fwBaIiO5g==</latexit><latexit sha1_base64="HjMMxAdaQ8MUTDrYieonUjyzgR0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpb2zu7e+X9ysHh0fFJ9fSso+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpfe53Z6g0j+WTmSfoR3QsecgZNVbqDmbISFIZVmtu3V2CbBKvIDUo0BpWvwajmKURSsME1brvuYnxM6oMZwIXlUGqMaFsSsfYt1TSCLWfLc9dkCurjEgYK1vSkKX6eyKjkdbzKLCdETUTve7l4n9ePzXhnZ9xmaQGJVstClNBTEzy38mIK2RGzC2hTHF7K2ETqigzNqE8BG/95U3Sual7bt17bNSajSKOMlzAJVyDB7fQhAdoQRsYTOEZXuHNSZwX5935WLWWnGLmHP7A+fwBaIiO5g==</latexit>
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p = pF

Figure 1. The momentum space Fermi surface. Left: the weak (light green) and strong (dark

green) coupling regions. Right: the particle-hole state consisting of a hole (empty dot) with ~p2 and

a particle (full dot) with ~p1.

The first equality says that one cannot create another copy of a particle already contained in

the Fermi liquid ground state: this is the Pauli exclusion principle, and follows trivially from

the anticommutation relation between the fermionic creation and annihilation operators.

The second equality instead says that one cannot annihilate a particle that is not contained

in the Fermi liquid ground state already.

One can define a particle as a one-particle state on top of the Fermi liquid:

|1s~p〉 ≡ cs~p †|FL〉 , |~p | > pF . (6.4)

Similarly, a hole is defined as a Fermi liquid missing one particle of given momentum:

|1̄s~q〉 ≡ cs~q |FL〉 , |~q | ≤ pF . (6.5)

We can now introduce the concept of a particle-hole state as

|ψ 〉 ≡ cs †~p1 c
s′

~p2
|FL〉 , (6.6)

where the annihilation operator creates a hole with a momentum ~p2, |~p2| ≤ pF and spin s′

and the creation operator creates a particle with a momentum ~p1, |~p1| > pF and spin s. The

total momentum characterising the state |ψ 〉 is then given by the difference ~p ≡ ~p1 − ~p2.

This configuration is shown in figure 1. Although the total momentum of a low-energy

particle-hole state can be as large as |~p | ' 2pF, for the purpose of the Goldstone theorem

eventually we will be interested in the |~p | � pF case. In such a limit, the energy of a

particle-hole state is E(~p , ~p2) ≡ E(p1) − E(p2) ' ∂~p2E(~p2)~p ≡ vF p̂2 · ~p, where p̂2 is the

unit vector in the direction of ~p2 and vF is the so-called Fermi velocity [11].

We shall argue below that, in the case of Fermi liquids, our boost Goldstone the-

orem is obeyed by the particle-hole states (6.6). Restricted to them, the completeness

relations reads

1 ⊃
∑
s,s′

∫
d3p1

(2π)3

d3p2

(2π)3
|ψ 〉〈ψ | =

∑
s,s′

∫
d3p

(2π)3

d3p2

(2π)3
|ψ 〉〈ψ | , (6.7)
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where p in the last equality is the total momentum of the state |ψ〉 and we have chosen to

leave p2 as the other integration variable. The theorem (3.20) then takes the form6

lim
~p→0

∂

∂pi

∫
d3p2

(2π)3
e−iE(~p,~p2)t T 00(~p , ~p2) T 0j∗(~p , ~p2) + c.c. = (ρFL + PFL) δij , (6.8)

where now the matrix elements are defined as

T µν(~p , ~p2) ≡ 〈FL|Tµν(0)|ψ 〉 . (6.9)

The technical complication when discussing Fermi liquids is that there is no known

local position space quantum field theory describing them. In particular, there is no local

expression for the stress-energy tensor operator in terms of the fields describing the low-

energy excitations of the system. However, we do know that in the ground state the

stress-energy tensor satisfies

〈FL|T 00|FL〉 = ρFL , 〈FL|T 0i|FL〉 = 0 , 〈FL|T ij |FL〉 = PFL δ
ij , (6.10)

where ρFL and PFL are the ground state energy density and pressure. In the non-relativistic

limit one has PFL � ρFL. Furthermore, according to Landau’s theory, in a momentum band

close to the Fermi surface (see figure 1), Fermi liquid is well described by weakly interacting

quasiparticles. We therefore split the stress-energy tensor describing a Fermi liquid as

Tµν(x) = Tµνfree(x) + Tµνinteracting(x) . (6.11)

In the following subsections we focus on the structure of the free and interacting parts of

the stress-energy tensor. As we shall see, there is no actual need for separating it into

a free part and an interaction part. Nevertheless, it is instructive to do so in order to

distinguish between the properties of bosonic and fermionic quasiparticles. For the benefit

of the impatient reader, we provide in appendix B a quick check of our theorem for Fermi

liquids that does not require inspecting the structure of the stress-energy tensor too closely.

6.1 Free theory

6.1.1 Brute force

Given that Fermi liquid theory is an effective theory usually describing systems of strongly

interacting fermionic particles (e.g. electrons in metals), it is natural to assume that the cor-

responding quasi-particles are fermionic. This is, in fact, what has been done in [11] where

Landau’s theory was rederived from an EFT perspective. Hence using the stress-energy

tensor of free fermions as the Tµνfree(x) in (6.11) is certainly plausible. On the other hand,

some quantum liquids, e.g. liquid helium-4, can be described as interacting Bose gases [16].

We shall therefore consider both bosonic and fermionic quasiparticles in what follows.

6We omit the sum over spins for simplicity here, but will restore it in our explicit computations below

where necessary. In general, the spin indices always appear hand in hand with the associated momenta and

can thus be restored at the end of computations without any ambiguity.
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Bosons. One can in fact define a Fermi liquid-like state by using bosonic creation and

annihilation operators:

|FL〉 ≡ N
∏
|~p |≤pF

|~p 〉 , |~p 〉 ≡ a†~p|0〉 , (6.12)

where similarly as before the creation and annihilation operators satisfy the commutation

relation [a~p, a
†
~p ′ ] = (2π)3δ(3)(~p − ~p ′) and the normalization factor N is chosen so that

〈FL|FL〉 = 1. Such a state is certainly not the ground state of the theory, even at finite

chemical potential. Still, for free bosons, it is an eigenstate of the Hamiltonian, and can

thus be used as the reference state |Ω〉 in our theorem.

In distinction from a Fermi liquid state built out of fermionic operators, the only

relation that is satisfied by the bosonic |FL〉 is

a~p |FL〉 = 0 , |~p | > pF . (6.13)

Acting on the Fermi liquid state with a creation operator of momentum |~q | less than pF

would in turn create a state, very similar to (6.12), but with one of the single particle states

replaced by a two-particle state of momentum ~q. As before, one can define particle and

hole states as

|1~p〉 ≡ a†~p|FL〉 , |~p | > pF , (6.14)

|1̄~q〉 ≡ a~q |FL〉 , |~q | ≤ pF . (6.15)

For later convenience, let us emphasize that the hole (and also particle) states form an

orthogonal set of states, i.e. 〈FL|a†~ka~q|FL〉 = Ñ (2π)3δ(3)(~k − ~q ) for |~k| , |~q | ≤ pF. The

normalization constant can be determined by first noting that for any single particle state

|~p 〉 ≡ a†~p|0〉 it holds that a†~q a~q|~p 〉 = (2π)3δ(3)(~q − ~p )|~q 〉 and in particular a†~q a~q|~q 〉 =

(2π)3δ(3)(0)|~q 〉 ≡ V |~q 〉. Now, applying the same steps to the Fermi liquid ground state

allows us to determine Ñ = 1 and gives

〈FL|a†~q a~q|FL〉 = V , 〈FL|a†~ka~q|FL〉 = (2π)3δ(3)(~k − ~q) , |~k| , |~q | ≤ pF . (6.16)

Finally, the bosonic particle-hole state is defined as

|ψ 〉 ≡ a†~p1 a~p2 |FL〉 , |~p2| ≤ pF , |~p1| > pF . (6.17)

We then take a free relativistic scalar field described by the standard action7

S =

∫
d4x
√−g

[
1

2
(∂φ)2 − 1

2
m2φ2

]
(6.18)

giving for the Minkowski stress-energy tensor

Tµν(x) = ∂µφ∂νφ− ηµν
(

1

2
(∂φ)2 − 1

2
m2φ2

)
. (6.19)

7We remind the reader that we are using the (+,−,−,−) signature.
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Performing the mode expansion

φ(x) =

∫
d3k

(2π)3

1√
2ωk

(
a~ke
−ikx + a†~k

eikx
)

(6.20)

and evaluating the stress tensor at x = 0 for the relevant stress tensor components gives

T 00(0) ⊃
∫
d3k d3q

(2π)6

1

4

1
√
ωkωq

(
a†~k
a~q + a~ka

†
~q

)(
ωqωk + ~k · ~q +m2

)
,

T 0i(0) ⊃
∫
d3k d3q

(2π)6

1

2

√
ωk
ωq
qi
(
a†~k
a~q + a~ka

†
~q

)
,

(6.21)

where ⊃ indicates that we only look at the elements with equal number of creation and

annihilation operators. After normal ordering,8 we obtain in the non-relativistic limit

: T 00
N.R.(0) : = m

∫
d3k d3q

(2π)6
a†~k
a~q ,

: T 0i
N.R.(0) : =

1

2

∫
d3k d3q

(2π)6
a†~k
a~q (qi + ki) .

(6.22)

In order to evaluate the matrix elements (6.9) needed for the Goldstone theorem we need

〈FL|a†~ka~q|ψ〉 =〈FL|a†~ka
†
~p1
a~qa~p2 |FL〉+ (2π)3δ(3)(~q − ~p1)〈FL|a†~ka~p2 |FL〉

=(2π)6δ(3)(~q − ~p1) δ(3)(~k − ~p2) ,
(6.23)

where we have expressed the particle-hole state as in (6.17). On the second equality we

have used the property (6.13) for ~p1 and the expression for matrix elements (6.16). We

thus obtain

T 00(~p , ~p2) = m, T 0i(~p , ~p2) =
1

2
(pi1 + pi2) . (6.24)

For the Goldstone theorem in (6.8) above this means that we need to evaluate∫
d3p2

(2π)3
T 00(~p , ~p2) T 0j∗(~p , ~p2) + c.c. = m

∫
d3p2

(2π)3

(
pi1 + pi2

)
= m

∫
d3p2

(2π)3

(
2pi2 + pi

)
.

(6.25)

Note that we have disregarded the exponent exp(−iE(~p, ~p2)t) in the above expression. The

reason for this is that as we shall see below the integral above is already first order in ~p.

Therefore, if we were to take the derivative with respect to pi of the energy in the exponent,

it would come multiplied by a quantity linear in ~p and would vanish in the ~p→ 0 limit.

8Here we perform the normal ordering with respect to the true vacuum as : O :≡ O− 〈0|O|0〉. Alterna-

tively one could normally order with respect to |FL〉. However, the Goldstone theorem (3.19) is insensitive

to these specifics. The reason is that, due to Lorentz invariance, the contribution to the stress-energy tensor

being subtracted by normal ordering can only be proportional to ηµν . In other words, it can only shift the

cosmological constant, for which ρ + p = 0. Thus, it does not contribute to the right hand side of (3.19).

As for the left hand side, such contribution is proportional to the identity operator and cancels out of the

commutator.
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We evaluate the integral above in spherical coordinates, aligning the z-axis with ~p.

Since the integral involves various approximations and gives a non-trivial result with impor-

tant implications we present its full evaluation in appendix C. The end result for small ~p is∫
d3p2

(2π)3
(2~p2 + ~p ) =

1

6π2
p3

F~p+O(p2) . (6.26)

As for the right hand side of the theorem (6.8), we use the fact that in the non-relativistic

limit ρFL � PFL and evaluate

ρFL = 〈FL| : T 00
N.R.(0) : |FL〉 = m

∫
d3k d3q

(2π)6
〈FL|a†~ka~q|FL〉 = m

∫
|~k|≤pF

d3k

(2π)3

=
1

6π2
mp3

F .

(6.27)

By definition ρFL ≡ m·NV , where N is the total number of particles inside the Fermi surface.

The above equation in turn implies
∫
|~k|≤pF

d3k
(2π)3

= ρFL
m = N

V , coinciding with the number

density n = N/V . We further note that, due to the bosonic nature of the operators, the

number density for our system of free bosons is half of that of a free Fermi gas, where an

additional factor of 2 arises due to the sum over spins [32]. Inserting (6.26) and (6.27)

in the Goldstone theorem (6.8), we see that both sides are equal and thus the theorem is

satisfied for particle-hole excitations around the Fermi liquid ground state.

Let us note that the Goldstone theorem for the spontaneous breaking of Lorentz boosts

in free massive scalar field theory at finite temperature has been considered in ref. [27] . It

was similarly concluded that, in that case, the role of the zero-energy Goldstone excitations

is played by thermal pairs. Our result here extends their analysis to the case of particle-hole

pairs created on top of the Fermi liquid ground state.

Fermions. The stress tensor for fermions can be derived from the action of free relativistic

fermions

S =

∫
d4x ψ̄(i/∂ −m)ψ , (6.28)

where ψ̄ ≡ ψ†γ0, /∂ ≡ γµ∂µ, and γµ are the standard gamma matrices. For the properly

symmetrized stress tensor we obtain:

Tµν(x) =
i

4

[
ψ̄γµ∂νψ − ∂νψ̄γµψ + (µ↔ ν)

]
− ηµνL , (6.29)

where L is the Lagrangian density. We then use the standard mode expansion for fermions:

ψ =

∫
d3p

(2π)3

1√
2ωp

∑
s

(
cs~p u

s
~p e
−ip·x + ds†~p v

s
~p e

ip·x
)
, (6.30)

where cs~p, c
s†
~p and ds~p, d

s†
~p are the creation and annihilation operators for particles and an-

tiparticles, respectively. The spinors us~p and vs~p are the suitably normalized solutions of the

Dirac equations satisfying (/p−m)us~p = 0 and (/p+m)vs~p = 0. We give the full form of the
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solutions as well as any other notations used here in appendix D. In the non-relativistic

limit, we find for the normally ordered stress-energy tensor:

: T 00
N.R.(0) :=

∫
d3k

(2π)3

d3q

(2π)3

∑
s

m
(
cs†~k

cs~q + ds†~k
ds~q

)
(6.31)

and

: T 0i
N.R.(0) :=

1

2

∫
d3k

(2π)3

d3q

(2π)3

[∑
s

(
cs†~k

cs~q + ds†~k
ds~q

)
(ki + qi)

]

+
1

2

∑
s,s′

(
cs†~k

cs
′

~q + ds
′†
~k
ds~q

)
ξs†σiσj(qj − kj)ξs′

]
,

(6.32)

where ξ1 =
(

1
0

)
and ξ2 =

(
0
1

)
. The term on the second line of the above expression,

when evaluated inside 〈FL| . . . |ψ〉, comes out proportional to ~p = ~p1 − ~p2 and thus is of

higher order in p and can be neglected. Thus, the relevant matrix elements T 00(~p, ~p2) and

T 0i(~p, ~p2) coincide with (6.16) of the bosonic case (when the contribution from antiparticles

is disregarded). This similarly as before leads to

lim
~p→0

∑
s

∫
d3p2

(2π)3
T 00(~p , ~p2) T 0j∗(~p , ~p2) + c.c. =

1

3π2
mp3

Fp
i . (6.33)

For the particle energy density we find similarly as in (6.27):

ρFL = m
∑
s

∫
d3k d3q

(2π)6
〈FL|cs†~k c

s
~q|FL〉 = 2m

∫
|~k|≤pF

d3k

(2π)3
=

1

3π2
mp3

F , (6.34)

consistent with the energy density of the free Fermi gas [32]. Inserting the above results in

the Goldstone theorem (6.8) we see that it is satisfied for the case of free fermions.

6.1.2 Symmetry arguments

There is however a simpler way of deriving the matrix elements of Tµνfree at position x = 0

needed for our Goldstone theorem for the free theory. In particular, the stress-tensor of a

free theory can be written in terms quadratic in creation and annihilation operators as

Tµνfree(0) =

∫
d3k

(2π)3

d3q

(2π)3
b†~k
b~q F

µν(~k, ~q ) , (6.35)

where (b†~k
, b~k) can be either bosonic creation and annihilation operators, i.e. a†~k

, a~k with

[a~k, a
†
~q] = (2π)3δ(3)(~k−~q ), or fermionic ones, i.e. cs†~k

, cs~k
with {cs~k, c

s′†
~q } = (2π)3δss

′
δ(3)(~k−~q ),

and Fµν(~k, ~q ) are some functions to be characterized later. Henceforth we shall drop the

vector signs from the arguments of Fµν in order not to clutter the notations any further.

Note that on the Fermi Liquid ground state we obtain

〈FL|Tµνfree(0)|FL〉 =

∫
|~k|≤pF

d3k

(2π)3
Fµν(k, k) , (6.36)
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where we have used (6.16). In fact, it is straightforward to check that (6.16) holds also for

fermions. We thus use for the matrix elements 〈FL|b†~p b~k|FL〉 = (2π)3δ(3)(~p− ~k)
∣∣∣
|~p |,|~k|≤pF

.

Let us remark that, since we are considering the case of free particles, it is well justified to

extend the integral above to the inside of the Fermi sphere. When considering interactions

we shall keep in mind that the theory is weakly coupled only in the momentum band close

to the Fermi surface, as shown in figure 1 [left].

On can then show that the matrix elements (6.9) needed for the theorem can be

expressed as

〈FL|Tµνfree(0)|ψ〉 = 〈1~p2 |Tµνfree(0)|1~p1〉 ± 〈FL|{[Tµνfree(0), b~p2 ]}b†~p1 |FL〉
∓ (2π)3δ(3)(~p1 − ~p2)〈FL|Tµνfree(0)|FL〉 ,

(6.37)

where, as before, the particle-hole state is |ψ 〉 ≡ b†~p1 b~p2 |FL〉 and we have defined the single

particle states as
∣∣1~p1〉 ≡ b†~p1 |FL〉. The upper sign and the commutator are for the bosonic

case, while the lower sign and the anti-commutator are for the fermionic case. To derive

the above equation, we have used that for any operator O the following relationship holds:

Ob†~p1b~p2 = O{[b†~p1 , b~p2 ]} ± {
[
O, b~p2

]
}b†~p1 + bp2Ob†~p1 . (6.38)

where the ± and {[. . . ]} notation is the same as above.

In order to deal with the second term in (6.37), we further use that for fermions

{c†~kc~q, c~p2}c
†
~p1

= 2c~p2(c†~k
c~q)c

†
~p1
− {c†~k, c~p2}c~qc

†
~p1
, (6.39)

while for bosons

[a†~k
a~q, a~p2 ]a†~p1 = [a†~k

, a~p2 ]a~qa
†
~p1
. (6.40)

Inserting this into (6.37) leads to

T µν(~p, ~p2) ≡ 〈FL|Tµνfree(0)|ψ〉 = ±〈1~p2 |Tµνfree(0)|1~p1〉 ∓ Fµν(p2, p1)

∓ (2π)3δ(3)(~p1 − ~p2)〈FL|Tµνfree(0)|FL〉 ,
(6.41)

where again the upper sign is for bosons and the lower sign is for fermions. We shall

generalize these relationships to arbitrary operators when discussing the interacting theory

in section 6.2. Let us emphasize that in the above equation we are still only interested in

the situation when |~p1| > pF and |~p2| ≤ pF , and in particular ~p1 6= ~p2. In this case the last

term in (6.41) is absent while the matrix element 〈1~p2 |Tµνfree(0)|1~p1〉 vanishes for fermions

(because 〈FL|cs~p2 = 0) and is non-zero for bosons. We shall come back to this in a moment.

The benefit of equation (6.41) is that it relates the FL–(particle-hole) matrix elements

to particle-particle matrix elements. This turns out to be particularly handy in the situation

when ~p1 → ~p2. In that case one can use the fact that for any single particle state with

mass m and momentum ~k above the Fermi surface, i.e. with |~k | > pF , the stress-energy
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tensor components in the non-relativistic limit have to satisfy9

〈
1~k
∣∣T 00

free(0)
∣∣1~k〉 = ρFLV +m, (6.42)〈

1~k
∣∣T 0i

free(0)
∣∣1~k〉 = ki , (6.43)

where ρFL is the energy density of the Fermi Liquid in its ground state as defined in (6.10).

Similar relations also hold in the case of single hole states defined as |1̄~k〉 ≡ b~k|FL〉 and

〈1̄~k| ≡ 〈FL|b†~k with |~k| ≤ pF when in the non-relativistic limit we require〈
1̄~k
∣∣T 00

free(0)
∣∣1̄~k〉 = ρFLV −m, (6.44)〈

1̄~k
∣∣T 0i

free(0)
∣∣1̄~k〉 = −ki . (6.45)

This then completely fixes the equal-momentum components of the function Fµν :

F 00(k, k) = m, F 0i(k, k) = ki , (6.46)

and, importantly, the functions Fµν(k, k) are continuous at the Fermi surface. To show

how this works out in full generality we reintroduce the spin index for the operators bs, bs†

and functions Fµνss′ (k, q) and evaluate the matrix elements 〈1s2~p2 |T
µν
free(0)|1s1~p1〉 in eq. (6.41) for

various configurations of momenta ~p1 and ~p2 in appendix E.

With all the above relationships at hand we have now all the necessary ingredients

to evaluate the matrix elements T 00(~p , ~p2) and T 0i(~p , ~p2) needed for the Goldstone theo-

rem (6.8). Starting from the relation (6.41) between the matrix elements evaluated on a

particle-hole state and on the single-particle states, the next steps differ slightly depending

on whether we are considering a bosonic or fermionic Fermi liquid state.

Bosons. Using the result (E.11) for the single particle matrix elements for |~p1| > pF,

|~p2| ≤ pF and ~p1 6= ~p2, the relation (6.41) for bosons becomes

T µν(~p, ~p2) = 〈1~p2 |Tµνfree(0)|1~p1〉 − Fµν(p2, p1)

= 2Fµν(p2, p1)− Fµν(p2, p1)

= Fµν(p2, p1) .

(6.47)

Let us now evaluate the product T 00(~p , ~p2) T 0j∗(~p , ~p2) in the limit ~p→ 0 (or equivalently

~p1 → ~p2). We first note that we have established in appendix C that the integration

measure in the Goldstone theorem (6.8) is itself already linear in pi. Indeed, we have found

lim
~p→0

∫
d3p2

(2π)3
=

p2
F

(2π)3

∫ 2π

0
dϕ

∫ 1

0
d cos θ′

∫ −p cos θ′

0
dδp2 +O(p2)

= − p2
Fp

4π2

∫ 1

0
d cos θ′ cos θ′ . (6.48)

9Had we defined the single-particle states on a Lorentz invariant ground state, i.e. |~p 〉 ≡ b†~p |0〉, we could

use the discussion of subsection 5 to justify this. In particular, from (5.7) it follows that when evaluated on

a single-particle state the stress energy tensor has to obey 〈~p |T 00
free(0) |~p 〉 = p0 ≈ m and 〈~p |T 0i

free(0) |~p 〉 = pi.
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Hence, for our Goldstone theorem we are only interested in the matrix elements T µν(~p, ~p2)

in (6.47) up to the zeroth order in p. In particular, expanding in the limit ~p1 → ~p2 we get10

lim
~p1→~p2
~p1 6=~p2

Fµν(p2, p1) = Fµν(p2, p2) + ∂pi1
Fµν(p2, p1)

∣∣∣
~p1=~p2

· pi +O(p2) (6.49)

and only need to retain the leading term for which we have found earlier that F 00(p2, p2),

F 0i(p2, p2) obey (6.46). Hence, we do not need any additional information to find

lim
~p→0
T 00(~p , ~p2) T 0j∗(~p , ~p2) = lim

~p1→~p2
F 00(p2, p1)F 0j∗(p2, p1) = mpj2 = mpFp̂

j
2+O(p) . (6.50)

Substituting this in (6.8) we get for the Goldstone theorem

mp3
F

6π2
δij = ρFLδ

ij . (6.51)

Using the expression for the energy density in (6.27) we see again that the theorem is

satisfied.

Fermions. The analysis is different for fermionic Fermi liquids. The equation (6.41)

becomes:

〈FL|Tµνfree(0)c†~p1c~p2 |FL〉︸ ︷︷ ︸
=0, |~p2|>pF

+ 〈1~p2 |Tµνfree(0)|1~p1〉︸ ︷︷ ︸
=0, |~p2|≤pF

= Fµν(p2, p1) , (6.52)

where we have used that |~p1| > pF while keeping arbitrary values of ~p2. This implies, that
〈FL|Tµνfree(0)c†~p1c~p2 |FL〉 = Fµν(p2, p1) , |~p2| ≤ pF ,

〈1~p2 |Tµνfree(0)|1~p1〉 = Fµν(p2, p1) , |~p2| > pF .

(6.53)

Since the function Fµν(p2, p1) is continuous in p2 ≈ pF (i.e. we have not in any way incor-

porated our knowledge of the existence of the Fermi surface in the parametrization (6.35)),

this means

lim
~p2→~pF−

〈FL|Tµνfree(0)c†~p1c~p2 |FL〉 = lim
~p2→~pF+

〈1~p2 |Tµνfree(0)|1~p1〉 , (6.54)

where we use the standard notations ~p2 → ~pF− meaning that ~p2 approaches ~pF from below

(and similarly for ~p2 → ~pF+). For the matrix elements needed for the Goldstone theorem

we thus obtain for |~p1| > pF, |~p2| ≤ pF and ~p ≡ ~p1 − ~p2

lim
~p→0
T 00(~p , ~p2) = lim

~p1→~p2,
~p2→~pF+

〈
1s2~p2

∣∣∣T 00
free(0)

∣∣∣1s1~p1〉 =
〈
1s~p
∣∣T 00

free(0)
∣∣1s~p〉∣∣|~p|>pF − ρFLV = m,

(6.55)

where in the last equality we have used the requirements (6.42) and (6.43) in the non-

relativistic limit. In the above expression we have also subtracted the contribution ρFLV

10Note that we could have equivalently chosen to take the limit ~p → 0 by sending ~p2 → ~p1. In that

case we would need to evaluate Fµν(p1, p1) with |~p1| > pF. As we have shown in appendix E the functions

Fµν(k, k) are continuous at the Fermi surface and thus the result would remain unchanged.
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from the equal-momenta single particle matrix elements. The reason for that is that we

are considering the limit when ~p1 → ~p2, however, keeping in mind that ~p1 6= ~p2. Similarly

we obtain lim~p→0 T 0j(~p , ~p2) = pj2.

For the right hand side of the theorem we need to evaluate ρFL. Similarly as for the

bosons in (6.27) we find

ρFL = 〈FL|T 00
free(0)|FL〉 =

∑
s

m

∫
|~k|≤pF

d3k

(2π)3
=

1

3π2
mp3

F . (6.56)

Combining this with the findings above we see that the Goldstone theorem (6.8) is satisfied

in the case of free fermions.

6.1.3 Spectral densities

In order to gain further insight about the continuum of particle-hole states in a Fermi liquid,

let us also compute the relevant spectral densities for this system. From the definition (3.10)

of the Wightman correlation function with O(x) = T 0j(x) as order parameter, we find

G̃T 00,T 0j (~p , ω) =
∑
n

T 00
n (~p )T 0j∗

n (~p )(2π)δ(ω − En(~p )) . (6.57)

Defining further for the sum appearing in the Goldstone theorem (3.12)

Gj(~p, ω) ≡ G̃T 00,T 0j (~p, ω)− G̃∗T 00,T 0j (−~p,−ω) , (6.58)

we see that the latter can be evaluated for Fermi liquids composed of free bosons or fermions

by using the non-relativistic values of the matrix elements T 00(~p1, ~p2), T 0j(~p1, ~p2) in (6.16).

This leads to

Gj(~p, ω) = m
p3

F

4π2
pj
∫ 1

0
d cos θ cos2 θ (2π)

[
δ
(
ω − E(~p, ~p2)

)
+ δ
(
ω + E(~p, ~p2)

)]
, (6.59)

with an extra overall factor of two for the free fermions’ case. Recalling that the energy of

a particle-hole pair is E(~p, ~p2) ' vF p̂2 · ~p ' vFp cos θ, we find

Gj(~p, ω) ' m

π
p3

F p
j ω2

v3
Fp

3
θ(vFp− |ω|) . (6.60)

As we see, due to the prefactor pj the spectral function vanishes as the momentum goes

to zero and thus does not have the δ(ω) singularity usually expected for low-energy single-

particle states. However the remaining factors, when considered as a distribution in fre-

quency space for ~p going to zero, do become a δ-function,

lim
~p→0

ω2

v3
Fp

3
θ(vFp− |ω|) =

1

3
δ(ω) , (6.61)

as can be easily checked by integrating against a test function. Hence, we observe that

the spectral densities exhibit a δ(ω)-type singularity, similar to the single-particle case

in (3.14).
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6.2 Interactions

In this subsection we consider the stress-energy tensor of a fully interacting theory. This

means that instead of the free stress-energy tensor given in (6.35) we shall now parametrize

it as

Tµνinteracting(0) =

∞∑
n=1

∫ n∏
i,j=1

d3kj
(2π)3

d3qi
(2π)3

O+
nO−n Fµνn (~k1, . . . , ~kn; , ~q1, . . . , ~qn) , (6.62)

where we have extended the function Fµνn of (6.35) to multiple arguments and have intro-

duced the shorthand notation

O+
n =

n∏
j=1

b†~kj
, O−n =

n∏
i=1

b~qi . (6.63)

The n = 1 term in the sum corresponds to the free case discussed above. The n > 1

terms correspond to interactions. In fact, in Fermi liquid theory only certain n = 2 terms

survive when the quasi-particles’ momenta approach the Fermi surface. Specifically, for

a 2-2 scattering process the only kinematically allowed configurations are the ones with

back-to-back incoming momenta and forward scattering. All higher order terms are, in the

renormalization group sense, irrelevant [11].

6.2.1 Fermions

In the case of fermions, by using the identities

c~p2 O+
n =

n∑
j=1

(−1)j−1(2π)3δ(3)(~kj − ~p2)c†~k1
. . . c†~kj−1

c†~kj+1
. . . c†~kn

+ (−1)nO+
n c~p2 ,

O−n c†~p1 =

n∑
i=1

(−1)n−i(2π)3δ(3)(~qj − ~p1)c~q1 . . . c~qi−1
c~qi+1

. . . c~qn + (−1)nc†~p1 O
−
n

(6.64)

one can show

〈FL|Tµνinteracting(0)c†~p1c~p2 |FL〉 = 〈FL|c~p2Tµνint (0)c†~p1 |FL〉 − 〈FL|{Tµνint (0), c~p2}c†~p1 |FL〉
+ (2π)3δ(3)(~p1 − ~p2)

〈
FL|Tµνint (0)|FL

〉
.

(6.65)

This is the generalization of (6.37) for fermions. We can also generalize the relation-

ship (6.39) as

{O+
nO−n , c~p2}c†~p1 = 2c~p2O+

nO−n c†~p1 −
n∑
j=1

(−1)j−1{c~p2 , c†~kj}c
†
~k1
. . . c†~kj−1

c†~kj+1
. . . c†~kn

O−n c†~p1 .

(6.66)

Indeed, we recover (6.39) for n = 1. This leads to

〈FL|Tµνint (0)|ψ〉+ 〈1~p2 |Tµνint (0)|1~p1〉

= (2π)3δ(3)(~p1 − ~p2)〈FL|Tµνint (0)|FL〉

+

∞∑
n=1

n∑
j=1

(−1)j−1(2π)3

∫ n∏
i,l=1

d3kl
(2π)3

d3qi
(2π)3

δ(3)(~p2 − ~kj)

× 〈FL|c†~k1 . . . c
†
~kj−1

c†~kj+1
. . . c†~kn

O−n c†~p1 |FL〉Fµνn (k1, . . . , kn; q1, . . . , qn) ,

(6.67)
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where we have put the relation (6.65) in a form such that the operator c~p2 does not appear

explicitly in the last term anymore. As before, we have also dropped the vector signs on

the arguments of Fµνn . The last term in the above expression can be simplified further by

using the fact that the function Fµνn (k1, . . . , kn; q1, . . . , qn) is antisymmetric in k’s and q’s,

so that

Fµνn (k1, . . . , kn; q1, . . . , qn) =
1

n!
εi1...inF

µν
n (ki1 , . . . , kin ; q1, . . . , qn) , (6.68)

and similar for q’s. Another useful identity is

〈FL|c†~kn . . . c
†
~k1
c~q1 . . . c~qn |FL〉 = εi1...inδki1q1δki2q2 . . . δkinqn . (6.69)

We then find for the last term in (6.67)

n∑
j=1

(−1)j−1

∫ n∏
i,l=1

d3kl
(2π)3

d3qi
(2π)3

δp2kj

× 〈FL|c†~k1 . . . c
†
~kj−1

c†~kj+1
. . . c†~kn

O−n c†~p1 |FL〉Fµνn (k1, . . . , kn; q1, . . . , qn)

= (−1)n−1nn!

∫
d3l1

(2π)3
. . .

d3ln−1

(2π)3
Fµνn (p2, l1, . . . ln−1; p1, l1, . . . , ln−1)

≡ (−1)n−1nn!F̃µνn (p2, p1) ,

(6.70)

where in the last step we have defined a function F̃µνn (p2, p1), analogous to the Fµν(p2, p1)

in the case of free fermions. Indeed, for n = 1 we recover from the definition above that

F̃µν1 (p2, p1) = Fµν(p2, p1). The equation (6.67) now takes the form

〈FL|Tµνint (0)|ψ〉+〈1~p2 |Tµνint (0)|1~p1〉 = δp1p2〈FL|Tµνint (0)|FL〉+

∞∑
n=1

(−1)n−1nn!F̃µνn (p2, p1) ,

(6.71)

matching the equation (6.41) for fermions. Here we only care that this last term, F̃µνn (p2, p1)

is a function, continuous in ~p2. We have shown in the previous subsection that this is true

for free fermions and we have no reason to doubt that it also holds for interacting fermions

— the stress-energy tensor in (6.62) should not know of the existence of the Fermi surface.

Following the same argument as in the case of free fermions (i.e. a stress-energy tensor

quadratic in creation and annihilation operators) we conclude that also here

lim
~p2→~pF−

〈FL|Tµνint (0)c†~p1c~p2 |FL〉 = lim
~p2→~pF+

〈1~p2 |Tµνint (0)|1~p1〉 . (6.72)

The single-particle elements on the r.h.s. can be evaluated in the non-relativistic

limit giving:

lim
~p→0
T 00(~p , ~p2) = m, lim

~p→0
T 0i(~p , ~p2) = pi2 . (6.73)

To prove the theorem one can then proceed similarly as in the case of free fermions by

expressing the mass m and the energy density ρFL in terms of the functions F̃ 00
n , similarly
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as was done in (6.46) and (6.56). In particular, we find

〈FL|Tµνint (0)|FL〉 =
∑
s

∫
d3k

(2π)3

∞∑
n=1

n!F̃µνn,ss(k, k) , (6.74)

where we have reintroduced the spin indices in order to get the correct factors of 2 arising

from summing over the spin states in a Fermi gas. For the single hole matrix elements we

find in turn〈
1̄s2~p2

∣∣∣Tµνint (0)
∣∣∣1̄s1~p1〉 = −

∞∑
n=1

nn!F̃µνn,s1s2(p1, p2) + δp1p2〈FL|Tµνint (0)|FL〉 . (6.75)

This is very similar to the result obtained in the free theory — it reduces to (E.5) for n = 1.

We would now like to map this to the non-relativistic relationships (6.44) and (6.45) in the

case when both momenta are equal. We obtain

V ρFL −m = V 〈FL|T 00
int(0)|FL〉 −

∞∑
n=1

nn!F̃ 00
n,ss(p, p) , (6.76)

−pi = −
∞∑
n=1

nn!F̃ 0i
n,ss(p, p) . (6.77)

The first equality above naturally identifies ρFL = 〈FL|T 00
int(0)|FL〉. Recall that in the

free theory we were further able to express the energy density as ρFL = m · NV =

m
∑

s

∫
|~k|≤pF

d3k
(2π)3

. This seems to be problematic here if we were to identify the entire

second term on the r.h.s. of (6.76) with the mass. Indeed, note the additional factor of n

in comparison to the Fermi liquid state expectation value (6.74). In order to satisfy the

equations above we thus have to require that in the non-relativistic limit:

F̃ 00
1,ss(p, p) = m, F̃ 0i

1,ss(p, p) = pi , F̃ 0µ
n 6=1,ss(p, p) = 0 . (6.78)

In other words, we require that both the mass and momentum of these quasi-particles are

set by the non-relativistic limit of the free stress-energy tensor and do not get renormalized

by interactions. We can then further identify

ρFL = 〈FL|T 00
int(0)|FL〉 =

∞∑
n=1

n!
∑
s

∫
d3k

(2π)3
F̃ 00
n,ss(k, k) = m

∑
s

∫
|~k|≤pF

d3k

(2π)3
. (6.79)

With these identifications at hand we can now work out both sides of our Goldstone

theorem (6.8) and see that it is again satisfied.

Finally, let us further remark that, as a result of our non-relativistic approximation,

the expression (6.79) for the mass density coincides with the mass density (6.56) of the free

fermion gas. This approximation thus reduces to the original argument of Landau [16],

stating that an interacting Fermi liquid has the same relationship between number density

and pF as a free Fermi gas. We find however that this can only be true if the functions

Fµνn describing the fermion interactions satisfy the conditions (6.78). In the most relevant

case of n = 2, these conditions read F̃ 0µ
2 (~p, ~p ) =

∫
d3k

(2π)3
F 0µ

2 (~p,~k; ~p,~k ) = 0. The structure
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of the momentum arguments suggests that only the 2-2 scattering processes with equal

ingoing and outgoing momenta (i.e. ~pin,1 = ~pout,1 = ~p ) contribute to mass renormalization

away from the non-relativistic limit. This corresponds to one of the special kinematic

configurations of Fermi liquids — forward scattering.

6.2.2 Bosons

To work out the matrix elements needed for the Goldstone theorem in (3.20) for interact-

ing bosons, we shall follow the same steps as for the fermions analyzed in the previous

subsection. One can show that

〈FL|Tµνinteracting(0)a†~p1a~p2 |FL〉 = 〈FL|a~p2Tµνint (0)a†~p1 |FL〉+ 〈FL|[Tµνint (0), a~p2 ]a†~p1 |FL〉
− (2π)3δ(3)(~p1 − ~p2)

〈
FL|Tµνint (0)|FL

〉
,

(6.80)

coinciding with the relation (6.37) derived in the case of free bosons. As before, one needs

to deal with the second term in the above expression. In quadratic case we used (6.40) to

obtain (6.41). And then as the second step we used the expression (E.11) to arrive at the

final result in eq. (6.47). While it is still possible to generalize (6.40) to

[O+
nO−n , a~p2 ]a†~p1 = −

n∑
j=1

[a~p2 , a
†
~kj

]a†~k1
. . . a†~kj−1

a†~kj+1
. . . a†~kn

O−n a†~p1 , (6.81)

after inserting in (6.80) one is left with a sum of integrals over internal momenta of matrix

elements of the form

〈FL|a†~ka . . . a
†
~kn
a~q1 . . . a~qn |FL〉

=
∑
in∈Sn

δki1q1δki2q2 . . . δkinqn −
n!δn>1

V n−1
δk1k2δk2k3 . . . δknq1 . . . δqn−1qn . (6.82)

Here Sn denotes the group of all possible permutations of n symbols and we use δn>1 to

emphasize that this last term is only added in the case when n > 1. It is these last terms

appearing for the cases of coincidental internal momenta that (perhaps not unexpectedly)

are problematic. In particular, we have checked explicitly that a simplification (such as

what is occurring for fermions) allowing to simplify (6.80) to something similar to (6.71)

is not happening for bosons. Physically this was to be expected because naturally bosons

are not obeying Pauli exclusion principle (nor Fermi statistics, as a consequence), needed

to construct the Fermi liquid ground state.

7 Concluding remarks and outlook

Goldstone theorems provide essential information about the low-energy excitations in sys-

tems with spontaneous symmetry breaking. In this work we have focused on systems with

broken invariance under Lorentz boosts. These are known to exhibit peculiar properties

— in most cases the boost Goldstone bosons are non-dynamical and are absorbed in the

Goldstones of some other broken spacetime symmetries. A particularly curious example is
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the case of framids — systems in which there are no other broken symmetries and thus no

other Goldstone bosons that could govern the low-energy dynamics. In such a situation

we do expect to see the boost Goldstones, even if due to the peculiar properties of their

stress-energy tensor (satisfying ρ + p = 0) such systems do not appear to be realized in

laboratory. On the other hand there is a prominent condensed matter example in which

indeed no other symmetries apart from the Lorentz boosts are broken — the Fermi liq-

uids. These are strongly coupled phases of interacting fermions at temperatures so low

that the dynamics are completely determined by quantum effects. As such, even though

the material is in a liquid state its dynamics is not described in terms of the usual collective

excitations of fluid dynamics, the phonons.

With this in mind, we have derived from first principles a boost Goldstone theorem

in terms of a generic order parameter, which can be conveniently chosen in a way that

is most suited for the medium under consideration. We have shown how the theorem

is satisfied by standard examples of phases of matter with broken boost invariance —

framids and superfluids. Considering a toy example of a reference state made out of a

single massive particle at rest, we have demonstrated how single-particle Goldstone boson

states are instead replaced by particle-hole states. As the main result of this work, we have

then shown that the boost Goldstone theorem is satisfied for Fermi liquids by the particle-

hole continuum. Remarkably, this works out in the absence of a position-space Lagrangian

describing the Fermi liquid’s excitations. Instead, it relies entirely on Landau’s original

hypothesis that the Fermi liquid admits a quasiparticle description. It is worth noting

that we have checked the theorem in the non-relativistic limit, where we have made use of

the fact that the single-particle expectation values of the stress-energy tensor are given in

terms of the mass and momentum of the quasiparticles. We have also seen that away from

the non-relativistic limit the relevant matrix elements receive higher order corrections due

to forward scattering.

Finally, let us emphasize that, to the best of our knowledge, this is the first example of

an interacting zero-temperature theory where a Goldstone theorem is obeyed not by single-

particle states, but by a particle-hole continuum.11 Thanks to this peculiarity, Fermi liquids

can evade the paradox of section 2: there are gapless Goldstone states, but since these are

not single-particle states, they are not interpolated by a local Goldstone field. The usual

ideas of non-linearly realizing the broken symmetries through local Goldstone fields simply

do not apply. It is not obvious what replaces them though: Rothstein and Shrivastava

have studied what it means for the momentum-space Fermi liquid effective action to be

consistent with spontaneously broken boosts [17, 18], but it is not clear to us what the

relationship is between their results and ours. For instance, they find that spontaneously

broken boost invariance requires interactions in the IR to take the standard Landau form

(back-to-back and forward scattering.) In comparison, we find that in the non-relativistic

limit our Goldstone theorem is obeyed by the particle-hole continuum regardless of the

structure of interactions.

11By arguments similar to those applied in this work, it has been shown that the Goldstone theorem for

spontaneously broken boosts at finite-temperature is also satisfied by (thermal) particle-hole pairs [26–28].
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We envision possible extensions of our results. For Fermi liquids, it would be interesting

to go beyond the non-relativistic limit and see how the boost Goldstone theorem is obeyed

in the relativistic case. In fact, by requiring that it be obeyed, we might learn some universal

identities for relativistic Fermi liquid theory, which is certainly not as developed as the non-

relativistic one. For fermions at unitarity (see e.g. [33] for a review), there are indications

that the low-energy spectrum cannot be that of a Fermi liquid [18]. It would then be

interesting to see how our boost Goldstone theorem is obeyed in that case. Perhaps related

to this, the only technical difference between our Goldstone theorem compared to more

standard ones is a derivative with respect to momentum, which stems directly from the

broken generators’ having an explicit dependence on the spacetime coordinates. Since the

currents for conformal transformations also depend explicitly on coordinates, we wonder

whether there could be systems in which conformal invariance is spontaneously broken

yet there is no dilaton, with the associated Goldstone theorem being obeyed by a less

conventional spectrum, akin to the particle-hole continuum of our Fermi liquid case.
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A Spectral densities without Lorentz invariance

For a Poincaré invariant theory in a Poincaré invariant vacuum state |Ω〉, the Källen-

Lehmann representation conveniently expresses two-point functions of Lorentz covariant

local operators in terms of free-field two-point functions and of spectral densities that

are just functions of the intermediate states’ invariant mass. For instance, the Feynman

two-point function of a Lorentz scalar operator O(x) is simply

G̃FOO(p) =

∫ ∞
0

dµ2

(2π)

i

p2 − µ2 + iε
ρOO(µ2) , (A.1)

where ρOO(µ2) is a non-negative spectral density, normalized in such a way that for a

canonically normalized, free scalar field φ of mass m, the spectral density is ρφφ(µ2) =

(2π)δ(µ2 −m2).

However, if the theory is not Lorentz invariant, or if the state on which we are comput-

ing correlation functions is not Lorentz invariant, the spectral representation of a generic

correlation function will involve a spectral density that is a function separately of energy

and momentum — the invariant mass combination plays no special role without Lorentz

invariance.
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Without loss of generality, we can consider Wightman two-point functions, since all

the other relevant ones (symmetric, anti-symmetric, retarded, advanced, T -ordered, anti-

T -ordered, etc.) are suitable linear combinations of the Wigthman ones, possibly with

θ-function coefficients. For notational simplicity, let us restrict to hermitian operators. For

two generic local operators Oa, Ob, the Wightman two-point function on a translationally

invariant state |Ω〉 is

Gab(x− y) ≡ 〈Ω|Oa(x)Ob(y)|Ω〉 . (A.2)

Inserting an orthogonal complete set of states as in (3.5), we have

Gab(x− y) =

∫
d3p

(2π)3
ei~p·(~x−~y)

∑
n

e−iEn(~p )(tx−ty)Oa,n(~p )O∗b,n(~p ) , (A.3)

where the O’s are the matrix elements

Oa,n(~p ) ≡ 〈Ω|Oa(0)|n, ~p 〉 . (A.4)

One can then define the Oa-Ob spectral density in a way analogous to the relativistic case,

but without using Lorentz invariance:

ρab(E, ~p ) ≡ 2E
∑
n

Oa,n(~p )O∗b,n(~p )× (2π)δ(E − En(~p )) . (A.5)

To guide the intuition, notice that if |Ω〉 is the ground state of the system, and Oa = Ob = φ,

with φ being a canonically normalized, free, real scalar field that creates and annihilates

single-particle states with generic dispersion relation E(~p ),

φ(x) =

∫
d3p

(2π)3

1√
2E(~p )

[
a~p e

−iE(~p )tei~p·~x + a†~p e
+iE(~p )te−i~p·~x

]
, (A.6)

the spectral density reduces simply to ρφφ(E, ~p ) = (2π)δ(E − E(~p )), which is what we

want the spectral density to be in this case.

Going back to the general case, using (A.5), our two-point function becomes

Gab(x− y) =

∫
d3p

(2π)3

dE

(2π)

1

2E
e−iE(tx−ty)ei~p·(~x−~y)ρab(E, ~p ) , (A.7)

or, in Fourier transform,

G̃ab(~p , ω) =

∫
dE

(2π)

1

2E
(2π)δ(ω − E) ρab(E, ~p) (A.8)

=
1

2ω
ρab(ω, ~p ) . (A.9)

The final result is of course very simple and convenient, but it only holds for Wightman

two-point functions. The intermediate integral expression (A.8) is conceptually more useful,

in that it highlights that our two-point function is, like in the relativistic case, a convolution
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of a free-field two-point function with a spectral density. Indeed, for the free scalar of

eq. (A.6), the Wightman two-point function is12

G̃φφ(~p , ω) =
1

2E(~p )
(2π)δ(ω − E(~p )) (A.10)

So, a general two-point function, with general ordering of the operators, will be

G̃gen
ab (~p , ω) =

∫
dE

(2π)
G̃gen

free(~p , ω;E) ρab(E, ~p) , (A.11)

where ρab(E, ~p ) is the same spectral density defined above, and Ggen
free(~p , ω;E) is the corre-

sponding two-point function for a canonically normalized free scalar field that, at momen-

tum ~p, creates and annihilates excitations of energy E.

The properties discussed above are all we need for our purposes, but there is of course a

vast literature on the subject of spectral functions for non-relativistic situations, including

for systems at finite temperature. See e.g. [34] and references therein.

B A quick analysis of the Fermi liquid case

To check if our Goldstone theorem is obeyed by particle-hole states in a Fermi liquid, we

need to compute the matrix elements

〈FL|Tµν(0) c†1c2|FL〉 , (B.1)

where we are using the shorthand notation ca ≡ csa~pa . In particular, we need these matrix

elements in the limit ~p ≡ ~p1 − ~p2 → 0, but with p1 > pF (particle) and p2 < pF (hole).

We want to relate these to the particle-particle matrix elements

〈FL|c2 T
µν(0) c†1|FL〉 , (B.2)

still in the limit ~p ≡ ~p1− ~p2 → 0, but now with p1, p2 > pF (particle, particle). The reason

we want to do so is that these are easy to compute. In particular, for the entries relevant

for our theorem in the non-relativistic limit we have, by definition,

〈FL|c2 T
00(0) c†1|FL〉 → m , 〈FL|c2 T

0i(0) c†1|FL〉 → pi2 (B.3)

(cf. section 5).

In order to relate (B.1) to (B.2), we need to move c2 all the way to left. Clearly, we

want to use the fact that c2 has simple anticommutation relations with the other c’s and

c†’s. This means that whenever we need to move c2 through an operator with an odd

number of c’s and c†’s, we want to use an anticommutator, whereas whenever we need

12As a check, notice that for a relativistic dispersion relation, E(~p ) =
√
~p 2 +m2, eq. (A.10) can be

written in a manifestly covariant form as

G̃φφ(~p , ω) = θ(ω) (2π)δ(p2 −m2) ,

which is the correct Wightman two-point function for a free relativistic scalar field.
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to move c2 through an operator with an even number of c’s and c†’s, we want to use a

commutator.13 Notice that in both (B.1) and (B.2) we are keeping ~p1 6= ~p2, and so c†1 and

c2 anticommute. So, we write

Tµν(0) c†1c2 = −c2 T
µν(0) c†1 −

[
Tµν(0), c2

]
c†1 ,

(
~p1 6= ~p2

)
, (B.4)

where we used the fact that the stress-energy tensor operator, being a bosonic operator,

must be a sum of terms with an even number of c’s and c†’s.

It is more useful to write the above identity as

Tµν(0) c†1c2 + c2 T
µν(0) c†1 = −

[
Tµν(0), c2

]
c†1 ,

(
~p1 6= ~p2

)
. (B.5)

Now imagine evaluating both sides of this equation on |FL〉, keeping ~p1 always above the

Fermi surface, but moving ~p2 from just below to just above the Fermi surface: on the

l.h.s., the first term goes from being nonzero (p2 < pF ) to being zero (p2 > pF ), while

the second term goes from being zero (p2 < pF ) to being non-zero (p2 > pF ). On the

other hand, the r.h.s. is continuous when ~p2 crosses the Fermi surface, because
[
Tµν(0), c2

]
involves anticommutators of c2 with other c’s and c†’s, which remove c2 — the only source

of discontinuity. Note that c2 does not drop out if instead we use the anticommutator

{Tµν(0), c2} (see, for example, (6.39)) — the reason why expressing (B.4) in terms of a

commutator is more convenient in this case.

More concretely, parametrizing Tµν(0) as a sum of terms schematically of the form (as

done in section 6.2)∫
k1,...kn,q1,...qn

Fµν
(
~k1, . . . , ~kn; ~q1, . . . ~qn

)
c†k1 . . . c

†
kn
cq1 . . . cqn , (B.6)

(we use the shorthand notation
∫
~p ≡

∫ d3p
(2π)3

and a sum over spin labels is understood),

when we take the commutator with c2 we are left with terms of the form∫
k2...kn,q1,...qn

Fµν
(
~p2, ~k2, . . . , ~kn; ~q1, . . . ~qn

)
c†k2 . . . c

†
kn
cq1 . . . cqn . (B.7)

The only dependence on ~p2 is now inside Fµν , but this function is continuous when its

momentum arguments cross the Fermi surface, because moving a quasiparticle from slightly

below to slightly above the Fermi surface does not change its physical properties nor its

interactions with the rest of the Fermi liquid in a discontinuous manner.

In conclusion, since the r.h.s. of (B.5) evaluated on |FL〉 is continuous for ~p2 crossing

the Fermi surface, we have

lim
p2→pF−

〈FL|Tµν(0) c†1c2|FL〉 = lim
p2→pF+

〈FL|c2 T
µν(0) c†1|FL〉 . (B.8)

And, so, given (B.3) above, for our theorem we have

lim
~p→0

(
T 00T 0j∗ + c.c.

)
= 2mpj2 . (B.9)

13These simple rules of thumb follow from using recursively [AB,C] = A{B,C}−{A,C}B and {AB,C} =

A{B,C} − [A,C]B (or variations thereof), which are valid for any three operators A,B,C.
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As shown in appendix C, integrating this over the phase space of particle-hole states with

total momentum ~p, yields, to first order in ~p,

1

6π2
mp3

F ~p , (B.10)

which obeys our theorem, once we take into account an extra factor of 2 coming from the

sum over spin states, and the fact that in (non-relativistic) Fermi liquid theory the mass

density is 1
3π2mp

3
F (again including a factor of 2 coming from the spin states) [16].

Notice that a minor variation of (B.5) applies to the bosonic case discussed in sec-

tions 6.1.1, 6.1.2, 6.2.2:

Tµν(0) a†1a2 − a2 T
µν(0) a†1 =

[
Tµν(0), a2

]
a†1,

(
~p1 6= ~p2

)
. (B.11)

However, the crucial difference with the fermionic case is that when we evaluate both sides

on a Fermi liquid-like state, the second term on the l.h.s. now is nonzero even for ~p2 below

the Fermi surface: there is no Pauli exclusion principle. As a result, in general there is

no relationship similar to (B.8) for bosonic Fermi liquid-like states. The exception is the

free boson case discussed in sects. 6.1.1, 6.1.2, where the expectation values on |FL〉 of the

r.h.s. of (B.11) and of the second term on the l.h.s. happen to be proportional to each other.

C The integral

In this section we perform the integral given in eq. (6.25) for our particle-hole excited state

around the Fermi liquid ground state. To do so we first go to a spherical coordinate system

with z-axis aligned along ~p. The integration variables are then the absolute value p2 ≡ |~p2|
and the two angles ϕ, θ′. Note that θ′ = π− θ, where θ is the angle between ~p and ~p2. The

corresponding setup is shown in figure 2. We thus have:∫
d3p2

(2π)3

(
2pi2 + pi

)
=

1

(2π)3

∫
dϕ dθ′dp2 p

2
2 sin θ′(2pi2 + pi) . (C.1)

Let us establish the integration limits for a given vector ~p, independent from ~p2. We

shall make use of the fact that ~p1 = ~p+ ~p2 and paramterize the absolute values as

p1 ≡ |~p1| = pF + δp1 , p2 ≡ |~p2| = pF − δp2 , 0 ≤ δp1

pF
,
δp2

pF
� 1 , (C.2)

where the last condition arises due to the fact that it is only in the region close to the

Fermi surface that the quasiparticles can be treated as weakly interacting. The range of

integration of ϕ is not affected by these constraints and remains ϕ ∈ [0, 2π]. However, from

the relationship |~p1|2 = (~p+ ~p2)2 and demanding that δp1 ≥ 0 there is an upper bound on

the absolute value of δp2 leading to the range of integration:

0 ≤ δp2 ≤ δp2,max ≡
−p cos θ′ + p2

2pF

1− p
pF

cos θ′
+O(δp2

i ) . (C.3)

Note that we have not constrained the absolute value of ~p/pF. Although we shall take

the limit ~p→ 0 in order to prove the Goldstone theorem, for the sake of completeness we
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pFz

pFy

pFx

~p

↵

p2z

p2y

p2x

✓
✓0

'
~p2

~p1

Figure 2. The coordinate system used in performing the integral (6.25).

choose not to impose this constraint here. The reason is that although Landau’s theory

does say that the system of particles and holes is weakly interacting only in the vicinity

of the Fermi surface, it imposes no condition on the total momentum of the system ~p. In

other words, while we do demand that δpi/pF � 1 the total momentum can take the values

in the range p ∈ [0, 2pF].

It remains to find the range of integration for θ′ for a given ~p. Obviously, the minimal

value of θ′ occurs when the particle and hole are almost antipodal and p ≈ 2pF in which

case θ′ → 0. To find its maximal allowed value it turns out to be useful to express cos α

(the angle α is defined in figure 2) by making use of the cosine theorem for α. This leads to

cosα = 1− p2

2p2
F

+O(δpi) . (C.4)

The angles θ′ and α can in turn be related by

cos θ′ =
1

p
(p2 − p1 cosα) ⇒ cos θ′max =

p

2pF
+O(δpi) . (C.5)

The integral above then becomes∫
d3p2

(2π)3

(
2pi2 + pi

)
=

1

(2π)3

∫ 2π

0
dϕ

∫ 1

p
2pF

d cos θ′
∫ δp2,max

0
dδp2 (pF− δp2)2(2pi2 +pi) (C.6)

where we have changed the integration variable from p2 to δp2 and δp2,max is defined

in (C.3). We note that in the small ~p limit the integration measure becomes

lim
~p→0

∫
d3p2

(2π)3
=

p2
F

(2π)3

∫ 2π

0
dϕ

∫ 1

0
d cos θ′

∫ −p cos θ′

0
dδp2 +O(p2) . (C.7)

Hence, due to the upper integration limit for δp2, this means that the integration measure

itself is already linear in p and only the last term in (C.6) needs to be considered. As the
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last step we note that only the z component of pi2 survives after the integration over ϕ is

performed. In small p limit we thus have

lim
~p→0

∫
d3p2

(2π)3
(2~p2 + ~p) = − 1

4π2
p2

Fp

∫ 1

p
2pF

d cos θ′ cos θ′(−2p2 cos θ′p̂+O(p))

=
1

6π2
p3

F~p+O(p2) ,

(C.8)

where p̂ denotes the unit vector in the direction of ~p (which coincides with the z axis).

D Stress-energy tensor for free fermions

As we are interested in the non-relativistic limit, we consider the solutions to the Dirac

equations in Dirac representation where the gamma matrices are defined as

γi =

(
0 σi

−σi 0

)
, γ0 =

(
1 0

0 −1

)
, γ5 =

(
0 1
1 0

)
. (D.1)

The solutions for the Dirac spinors in (6.30) are then up to first order in the non-relativistic

limit:

us~p =
√

2m

(
ξsp

~σ·~p
2mξ

s
p

)
, vs~p =

√
2m

(~σ·~p
2mχ

s
p

χsp

)
, (D.2)

where

ξ1
p =

(
1

0

)
, ξ2

p =

(
0

1

)
, χsp =

~σ · ~p
2m

ξsp . (D.3)

We then use the non-relativistic limit relations

us†~p u
s′

~k
= vs†~p v

s′

~k
= 2mδss

′
, us†~p v

s′

~k
= vs†~p u

s′

~k
= 0 (D.4)

in order to find the T 00(0) components. Similarly, we derive the following relationships

us†~p γ
0γius

′

~k
= ξs†

(
σiσjkj + pjσjσi

)
ξs
′
,

vs†~p γ
0γivs

′

~k
= ξs†

(
σiσj(kj − pj) + 2δijpj

)
ξs
′
,

vs†~p γ
0γius

′

~k
= us†~p γ

0γivs
′

~k
= 2mξs†σiξs

′
,

(D.5)

where we have used the fact that in the non-relativistic limit ξsp does not depend on p and

have dropped the subscript. These allow one to find the T 0i(0) components. The final

expressions are given in eqs. (6.31), (6.32) in the main text.

E Matrix elements

Here we evaluate the matrix elements 〈1s2~p2 |T
µν
free(0)|1s1~p1〉 and

〈
1̄s2~p2

∣∣∣Tµνfree(0)
∣∣∣1̄s1~p1〉 for various

relevant configurations of momenta ~p1 and ~p2:
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• |~p1| > pF and |~p2| > pF

When both momenta are above the Fermi surface, the states 〈1s2~p2 | ≡ 〈FL|bs2~p1 and

|1s1~p1〉 ≡ b
†s1
~p1
|FL〉 both correspond to single particle states. In this case, we find〈

1s2~p2

∣∣∣ bs †~k bs′~q ∣∣∣1s1~p1〉 ≡ 〈FL| bs2~p2b
s †
~k
bs
′

~q b
s1†
~p1
|FL〉 = δp1qδp2k + δp1p2δqk||~k|,|~q|≤pF (E.1)

for both bosonic and fermionic creation and annihilation operators. Here and hence-

forth, we use the shorthand notations δp1p2 ≡ (2π)3δs1s2δ(3)(~p1− ~p2) etc. This allows

one to evaluate〈
1s2~p2

∣∣∣Tµνfree(0)
∣∣∣1s1~p1〉 = Fµνs2s1(p2, p1) + δp1p2〈FL|Tµνfree(0)|FL〉 . (E.2)

Comparing this with the non-relativistic single-particle relations (6.42) and (6.43) we

obtain:14

F 00
ss (p, p) = m, F 0i

ss (p, p) = pi , for |~p | > pF . (E.3)

• |~p1| ≤ pF and |~p2| ≤ pF
The situation is slightly more complex when both momenta are below the Fermi

surface, since the bosonic and fermionic cases require a separate treatment. In this

case the states 〈1̄s2~p2 | ≡ 〈FL|bs2†~p2 and |1̄s1~p1〉 ≡ b
s1
~p1
|FL〉 correspond to single hole states.

To evaluate the matrix elements for the single hole states we first find for fermions:〈
1̄s2~p2

∣∣∣ cs†~k cs′~q ∣∣∣1̄s1~p1〉 ≡ 〈FL| cs2†~p2 c
s †
~k
cs
′

~q c
s1
~p1
|FL〉 = −δp1kδp2q + δp1p2δqk , (E.4)

where we have made use of the fact that the above matrix elements vanish unless also

|~q|, |~k| ≤ pF and that for a fermionic Fermi liquid cs1†~p1 |FL〉 = 0 for any momentum

|~p1| ≤ pF. This leads to〈
1̄s2~p2

∣∣∣Tµνfree(0)
∣∣∣1̄s1~p1〉 = −Fµνs1s2(p1, p2) + δp1p2〈FL|Tµνfree(0)|FL〉 . (E.5)

Note that the order in the arguments of the first term is different from the result

for single particle states in (E.2). Using as before that ρFL = 〈FL|Tµνfree(0)|FL〉 and

matching with the requirements (6.44) and (6.45) for the non-relativistic case we

obtain that for fermions:

F 00
ss (p, p) = m, F 0i

ss (p, p) = pi , |~p| ≤ pF . (E.6)

14One could in fact be more precise when defining the function Fµνss′ (k, p). In particular, we can split

F 00
ss′(k, q) = f0(k, q)δss

′
+ gi(k, q)σss

′
i ,

F 0i
ss′(k, q) = f i(k, q)δss

′
+ g(k, q)σss

′
i + εijkh

j(k, q)σss
′

k .

In the above expressions, σi are the Pauli matrices and we have accounted for the different spins by

expanding in a basis of Hermitian 2×2 matrices. From (E.3) we can then read off: f0(p, p) = m, gi(p, p) = 0

and f i(p, p) = pi, g(p, p) = 0, hi(p, p) = 0.
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For bosons a†~p1 |FL〉 6= 0 (while a~p1 |FL〉 = 0 still holds) and thus the matrix el-

ements 〈FL| a†~p2a
†
~k
a~q a~p1 |FL〉 have to be evaluated explicitly. It is instructive to

first evaluate it between two-particle states like |a, b 〉 ≡ a†~qaa
†
~qb
|0〉. This gives

〈c, d |a†~p2a
†
~k
a~q a~p1 |a, b 〉 = (δqckδqdp2 + δqcp2δqdk)(δqap1δqqb + δqqaδqbp1). We can then

recall that the Fermi liquid state |FL〉 was defined in (6.12) as a tensor product of

all single particle states with momenta below the Fermi surface. Importantly, it is

a product of single particle states of distinct momenta. In the above example this

would mean that only one of the δ’s in each bracket can be satisfied simultaneously,

i.e. if ~qa = ~q this means that ~qa 6= ~p1 etc. For a Fermi liquid ground state and for

|~p1|, |~p2|, |~q|, |~k| ≤ pF this means

〈FL| a†~p2a
†
~k
a~q a~p1 |FL〉 = δp1kδp2q + δp1p2δqk −

2

V
δp2kδkqδqp1 , (E.7)

where we have used 〈FL|FL〉 = 1. The first two terms above give the correct result

when the momenta in the creation and annihilation ‘pairs’ are different, i.e. ~p2 6= ~k,

~p1 6= ~q, while the last term accounts for the special case when all the momenta are

equal. Its normalization is determined by demanding that 〈FL|a†~p a
†
~p a~p a~p|FL〉 = 0

due to the property a~p a~p|FL〉 = 0 for |~p| ≤ pF. The above result thus gives

〈
1̄~p2
∣∣Tµνfree(0)

∣∣1̄~p1〉 = Fµν(p1, p2)− 2Fµν(p1, p2)
δ(3)(~p1 − ~p2)

δ(3)(0)
+ δp1p2〈FL|Tµνfree(0)|FL〉 .

(E.8)

Comparing with (6.42) and (6.43) in a continuous way gives:

F 00(p, p) = m, F 0i(p, p) = pi , |~p| ≤ pF , (E.9)

as for the case of fermions in (E.6). Together with (E.3) this means that the functions

Fµν(p, p) are continuous at the Fermi surface.

• |~p1| > pF and |~p2| ≤ pF
At last, let us consider the particle-hole momentum configuration appearing in (6.41).

We find that
〈
1s2~p2

∣∣∣ cs †~k cs′~q ∣∣∣1s1~p1〉 ≡ 〈FL| cs2~p2c
s †
~k
cs
′

~q c
s1†
~p1
|FL〉 = 0 for fermions, due to

property (6.2). Instead, for bosons we find〈
1s2~p2

∣∣∣ as †~k as′~q ∣∣∣1s1~p1〉 ≡ 〈FL| as2~p2a
s †
~k
as
′

~q a
s1†
~p1
|FL〉 = 2δp1qδp2k + δp1p2δqk . (E.10)

Note the factor of 2 in the first term. This leads to〈
1s2~p2

∣∣∣Tµνfree(0)
∣∣∣1s1~p1〉 = 2Fµνs2s1(p2, p1) + δp1p2〈FL|Tµνfree(0)|FL〉 . (E.11)

Open Access. This article is distributed under the terms of the Creative Commons
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[21] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Bad metals from fluctuating

density waves, SciPost Phys. 3 (2017) 025 [arXiv:1612.04381] [INSPIRE].

[22] V. Oganesyan, S. Kivelson and E. Fradkin, Quantum theory of a nematic Fermi fluid, Phys.

Rev. B 64 (2001) 195109 [cond-mat/0102093] [INSPIRE].

[23] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys.

Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

[24] H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83

(2011) 065029 [arXiv:0903.2477] [INSPIRE].

[25] S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324

[INSPIRE].

[26] I. Ojima, Lorentz invariance versus temperature in QFT, Lett. Math. Phys. 11 (1986) 73

[INSPIRE].

[27] H. Matsumoto, H. Umezawa, N. Yamamoto and N.J. Papastamatiou, Nonparticle like

Goldstone modes in the spontaneous breakdown of symmetry, Phys. Rev. D 34 (1986) 3217

[INSPIRE].

[28] M. Requardt, Spontaneous symmetry breaking of Lorentz and (Galilei) boosts in (relativistic)

many-body systems, arXiv:0805.3022 [INSPIRE].

[29] D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199

[INSPIRE].

[30] S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B 96 (1980) 59

[INSPIRE].

[31] A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of quantum field theory in

statistical physics, Prentice Hall, U.S.A. (1963).

[32] L.D. Landau and E.M. Lifshitz, Statistical physics, Part 1, Course of Theoretical Physics

volume 5, Butterworth-Heinemann, Oxford U.K. (1980).

[33] Y. Nishida and D.T. Son, Unitary Fermi gas, ε-expansion and nonrelativistic conformal field

theories, vol. 836, pp. 233–275 (2012), DOI [arXiv:1004.3597] [INSPIRE].

[34] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics,

arXiv:0903.3246 [INSPIRE].

– 44 –

https://doi.org/10.1103/PhysRevLett.74.3253
https://doi.org/10.1103/PhysRevLett.74.3253
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C74%2C3253%22
https://doi.org/10.21468/SciPostPhys.3.3.025
https://arxiv.org/abs/1612.04381
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.04381
https://doi.org/10.1103/PhysRevB.64.195109
https://doi.org/10.1103/PhysRevB.64.195109
https://arxiv.org/abs/cond-mat/0102093
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB64%2C195109%22
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://arxiv.org/abs/0803.3295
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.3295
https://doi.org/10.1103/PhysRevD.83.065029
https://doi.org/10.1103/PhysRevD.83.065029
https://arxiv.org/abs/0903.2477
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.2477
https://arxiv.org/abs/1612.07324
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.07324
https://doi.org/10.1007/BF00417467
https://inspirehep.net/search?p=find+J%20%22Lett.Math.Phys.%2C11%2C73%22
https://doi.org/10.1103/PhysRevD.34.3217
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD34%2C3217%22
https://arxiv.org/abs/0805.3022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.3022
https://arxiv.org/abs/hep-ph/0204199
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0204199
https://doi.org/10.1016/0370-2693(80)90212-9
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C96B%2C59%22
https://doi.org/10.1007/978-3-642-21978-8_7
https://arxiv.org/abs/1004.3597
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.3597
https://arxiv.org/abs/0903.3246
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.3246

	Introduction
	Why boost Goldstones are special
	A Goldstone theorem for spontaneously broken boosts
	Formulation in terms of spectral densities
	Convenient order parameters

	Systems with Goldstones
	Framids
	Superfluids

	Systems without Goldstones: the massive particle
	Fermi liquids
	Free theory
	Brute force
	Symmetry arguments
	Spectral densities

	Interactions
	Fermions
	Bosons


	Concluding remarks and outlook
	Spectral densities without Lorentz invariance
	A quick analysis of the Fermi liquid case
	The integral
	Stress-energy tensor for free fermions
	Matrix elements

