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Abstract: A massive, nonrelativistic scalar field in an expanding spacetime is usually

approximated by a pressureless perfect fluid, which leads to the standard conclusion that

such a field can play the role of cold dark matter. In this paper, we systematically study

these approximations, incorporating subleading corrections. We provide two equivalent

effective descriptions of the system, each of which offers its own advantages and insights:

(i) A nonrelativistic effective field theory (EFT) with which we show that the relativistic

corrections induce an effective self-interaction for the nonrelativistic field. As a byproduct,

our EFT also allows one to construct the exact solution, including oscillatory behavior,

which is often difficult to achieve from the exact equations. (ii) An effective (imperfect)

fluid description, with which we demonstrate that, for a perturbed Friedmann-Lemâıtre-

Robertson-Walker (FLRW) universe: (a) The pressure is small but nonzero (and positive),

even for a free theory with no tree-level self-interactions. (b) The sound speed of small

fluctuations is also nonzero (and positive), reproducing already known leading-order results,

correcting a subdominant term, and identifying a new contribution that had been omitted

in previous analyses. (c) The fluctuations experience a negative effective bulk viscosity.

The positive sound speed and the negative bulk viscosity act in favor of and against the

growth of overdensities, respectively. The net effect may be considered a smoking gun for

ultra-light dark matter.
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1 Introduction

Ultra-light particles have been considered a promising candidate for dark matter [1–3].

Axions, axion-like particles, and fuzzy dark matter are examples of this class of dark matter

models. They arise naturally in UV-complete theories like string theory [4]. Presumably

any such dark-matter candidates would arise in a fully relativistic setting, though their

astrophysical implications would become most relevant deep in the nonrelativistic regime.

Hence it is imperative to develop a self-consistent, effective description of the low-energy

dynamics of such particles in an expanding spacetime, which incorporates corrections from

subleading contributions. Building on refs. [5, 6], we develop such a formalism here. Our

analysis applies to any massive scalar field oscillating in an expanding universe, for which

interactions with relativistic fields can be neglected, including cases of physical interest

such as ultra-light dark matter.
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In this paper we study the dynamics of a massive scalar field φ minimally coupled

to gravity. Our main interest concerns the case in which such a field plays the role of

dark matter, although our analysis applies to other situations as well. The particles being

ultra-light implies that, to account for the observed density of dark matter, the occupation

numbers of φ particles must be very large. This, in turn, suggests that the system should

be describable by a classical scalar field to a good approximation [5, 7]. On the other

hand, the dark matter is supposed to be cold, and therefore nonrelativistic. Putting these

two statements together, we deduce that a classical field theory in the nonrelativistic limit

should provide an appropriate description of such a system.

The dynamics of a classical scalar field of mass m in the nonrelativistic limit should

be dominated by oscillations with nearly constant frequency m. That is, the energy of

φ should be dominated by its rest mass. Although the scalar field oscillates very fast

(compared to the Hubble scale, for example), we develop a formalism with which to study

the dynamics of the system over time-scales much longer than 1/m. If we introduce the

ansatz [5]

φ(t,x) =
1√
2m

(
e−imtψ(t,x) + eimtψ∗(t,x)

)
, (1.1)

where ψ is a slowly varying function of time, then (as we will demonstrate below) the

energy density of φ in a Friedmann-Lemâitre-Robertson-Walker (FLRW) universe is given

(to leading order) by

ρ = m|ψ|2 ∝ a−3 , (1.2)

which is slowly varying compared to the frequency of oscillations m. On the other hand,

to leading order the pressure only contains rapidly oscillating terms which average out to

zero on time scales larger than 1/m.

This motivates an approach that focuses on the slowly varying variable ψ. We therefore

take the relation (1.1) as a field redefinition, with which to define the nonrelativistic field

ψ. We will consider this field redefinition in more detail in the next section. Note that

the ψ field will not remain entirely as a slowly varying function of time; subdominant but

highly oscillating contributions will develop as a result of nonlinear dynamics of the system.

Because we are interested in the slowly varying part of the field, we develop techniques

with which to remove the rapidly oscillating terms systematically. The result is an effective

field theory (EFT) for the slowly varying part. The main aim of this paper is to derive

such an EFT.

Our nonrelativistic EFT will be an expansion in powers of several small parameters.

To identify the relevant small parameters, consider a massive, possibly self-interacting,

real-valued scalar field φ coupled minimally to gravity, with action given by

S =

∫
d4x

[
1

2
MPl

2√−gR+ Lφ
]
, (1.3)

where the matter Lagrangian is

Lφ = −
√
−g
2

[
gµν∂µφ∂νφ+m2φ2 +

λ

4!
φ4

]
. (1.4)

– 2 –



J
H
E
P
0
7
(
2
0
2
0
)
0
5
9

The resulting Klein-Gordon equation in an expanding universe reads

φ̈+ 3Hφ̇− ∇
2

a2
φ+m2φ+

λ

6
φ3 = 0. (1.5)

In the nonrelativistic limit, any dimensionful parameter with dimension mass should be

smaller than the mass of the scalar field. Given the form of eq. (1.5), this suggests three

relevant, small quantities:

εH ∼
H

m
, εk ∼

k2
p

m2
, ελ ∼ λ

φ2

m2
, (1.6)

where kp is a typical physical wavenumber. Furthermore, after removing φ in favor of

the new field ψ as in eq. (1.1), all remaining variables are expected to be slowly varying

compared to the time-scale 1/m. This suggests a fourth small parameter,

εt ∼
1

mX

∂X

∂t
, (1.7)

where X is a variable in the theory. We will make our expansion in terms of such small

parameters more explicit in the following sections. We will see that this perturbative

expansion also allows us to construct the full solution, including oscillations, by solving well-

behaved non-oscillatory equations. This can be considered a reliable method for finding

solutions of an otherwise generically stiff system of equations with rapidly oscillating terms,

with much broader application than what shall be discussed here.

In this paper we mainly focus on the case of a free, massive scalar field, setting λ = 0.

As we will see, even in the absence of tree-level self-interactions for φ, the backreaction from

rapidly oscillating modes on the evolution of the nonrelativistic system in an expanding

FLRW spacetime induces subdominant self-interaction terms in the evolution of ψ. The

induced self-coupling could be of interest in the light of astrophysical observations [8]

which suggest that cold dark matter particles might depart from a purely collisionless

regime [3, 9, 10], though a direct comparison of effects arising from the induced self-

interaction with recent astrophysical observations remains beyond the scope of the present

paper. In appendix D we consider the case of tree-level self-interactions as well.

Besides deriving an EFT for the nonrelativistic field, we also develop an equivalent de-

scription of the system in terms of an imperfect fluid. We show that in the latter description,

one needs to identify a nonzero pressure, a nontrivial sound speed, and an effective bulk

viscosity to fully express the EFT, up to the working order, in the fluid language.

While the effect of oscillations of ultra-light particles as dark matter are neglected in

a majority of related analyses, they are studied in a rather restricted literature. The effect

of oscillations on the dynamics of binaries is studied in ref. [11], while ref. [12] explores

their impact on the orbital motion of stars in galactic halos. The resulting parametric

resonance is also studied e.g. in ref. [13] and recently in ref. [14]. Ref. [15] also compares

the predictions for effects on the cosmic microwave background (CMB) from the naive

theory, in which oscillations are neglected, with predictions from the exact theory.

Let us make some remarks on terminology used in this paper. We work up to linear

order in spatially varying fluctuations around a homogeneous and isotropic background.
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We are interested in nonlinearities in the time evolution of various quantities which occur

even at this order; these nonlinearities arise because of the coupling between different time-

dependent variables, which yield a mode coupling once we decompose the relevant quantities

into series of modes with distinct characteristic time dependencies. To avoid confusion and

simplify the terminology, we refer to quantities that vary in space (around a homogeneous,

isotropic background) as “fluctuations,” and restrict “(non)linearities” to features of the

time evolution of various quantities. Furthermore, as noted above, we are interested in

an EFT for the slowly varying parts of the fields, which we denote the “slow modes,”

while we systematically remove the rapidly oscillating contributions, which correspond to

nonzero modes in the mode decomposition (in time) of various quantities. Finally, we adopt

a perturbative scheme, accounting for various contributions to the effective equations of

motion in terms of different powers of small parameters. We therefore distinguish between

“perturbations” (as powers of these small expansion parameters) and “fluctuations” (as

spatially varying quantities around the FLRW background).

The rest of the paper is organized as follows. In section 2 we introduce a suitable field

redefinition for the scalar field in a general spacetime geometry as well as in a perturbed

FLRW universe. In section 3, we derive our EFT for the background evolution as well

as fluctuations. In section 4 we re-express our EFT results in terms of fluid dynamics.

In section 5 we confirm the validity of our results by numerical analysis, and in section 6

we summarize our main results and discuss possible future directions. Furthermore, in a

number of appendices, we explore different corners of the subject and extend the analyses

presented in the main body of the paper. In appendix A we derive the Hamiltonian of

the system after the field redefinition discussed in section 2. In appendix B we present the

equations for higher-order nonzero modes, ignored in the results of section 3. In appendix C

we discuss how an imperfect fluid can be described in the general relativistic framework,

the results of which are used for the fluid interpretation of our EFT in section 4. In appen-

dices D and E, we extend our results to the self-interacting case and to a multicomponent

universe, respectively. In appendix F we employ a nonlocal field redefinition in Minkowski

spacetime to confirm the higher-order, momentum-dependent terms we obtained in the ef-

fective sound speed (which has a different numerical factor compared to previous analyses).

The resulting sound speed is valid for arbitrary momentum and reduces to the well-known

results in the limits of small and large momenta. Finally, in appendix G we derive the

gauge transformation that can be used to express our EFT (written in Newtonian gauge)

in other gauges.

2 A suitable field redefinition

Taking the nonrelativistic limit of a scalar field theory is usually done by starting with an

appropriate field redefinition, which is the subject of this section. Similar to the approach

in ref. [6], we aim to take the nonrelativistic limit and obtain higher-order corrections to a

low-energy EFT after performing the field redefinition.

We are interested in studying the system at low energies, for which the mass term is

the dominant contribution in the system’s evolution. That is, we expect the main time
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dependence of the system to be rapid oscillations with frequency approximately equal to

the mass m. This motivates a natural choice for a complex-valued nonrelativistic field, ψ,

related to φ as in eq. (1.1). The prefactor 1/
√

2m in eq. (1.1) has been chosen so that |ψ|2

corresponds to the number density of particles, as will become evident below. We will also

see that this field transformation, to leading order, yields a Schrödinger-like equation for

ψ in Minkowski spacetime.

As discussed above, ψ is expected to be a slowly varying function of time in the

nonrelativistic limit. Note that since, by Einstein’s equations, the metric components are

sourced by the energy-momentum tensor, which is quadratic in the original field φ —

and hence in the new field ψ — the metric components are dominated by slowly varying

functions of time, although they also contain subdominant oscillatory contributions. For

this reason, we do not make a similar field redefinition for the spacetime metric.

As mentioned in ref. [6], the field redefinition of eq. (1.1) may not be considered com-

plete if the real and imaginary parts of ψ are treated as two independent variables, since

that would consist of replacing one degree of freedom with two degrees of freedom. In

ref. [6], this is addressed by adding to eq. (1.1) a comparable field redefinition for π, the

conjugate momentum of φ, such that the transformation from (φ, π) to (ψ,ψ∗) becomes

a canonical transformation. In addition, in ref. [6] a nontrivial nonlocal operator is used

within the transformation, which simplifies the equation of motion for ψ in Minkowski

spacetime. In principle, a similar procedure can be employed when studying the behav-

ior of ψ in a curved spacetime. However, as we discuss in appendix F, a nonlocal field

redefinition does not in general result in any simplification in curved spacetime, even for

the simple case of an exact FLRW universe. Notice that the nonlocal field redefinition is

not essential for obtaining the nonrelativistic limit and we will not exploit it in a curved

geometry.1 Furthermore, making a transformation for π similar to what was used in ref. [6]

results in equations of motion different from the Schrödinger equation written in an FLRW

background [5]. Finally, we note that in terms of the original field φ, the conjugate mo-

mentum differs from φ̇ in a curved spacetime, leaving more freedom for an appropriate

field redefinition.

Given these considerations, in this paper we follow a different approach compared to

ref. [6]. From eq. (1.1), it is evident that there is a redundancy in the definition ψ of

the form

ψ(t,x)→ ψ(t,x) + ieimtη(t,x) , (2.1)

with η any real function of space and time. It is easy to show that this transformation

leaves φ — and, as a result, the Lagrangian — invariant. To fix the gauge and remove the

redundancy, the following transformation from an arbitrary gauge seems to be appropriate:

η =
1

2m

(
e−imtψ̇ + eimtψ̇∗

)
. (2.2)

1See, however, ref. [16] where a generalization of the nonlocal operator introduced in ref. [6] to the case

of expanding background has been employed.
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Note that this choice of the gauge guarantees that the following constraint is satisfied in

the new gauge:

e−imtψ̇ + eimtψ̇∗ = 0 , (2.3)

which allows us to have a first order, Schrödinger-like equation for ψ. Therefore, we may

obtain the equations of motion for the new fields after gauge fixing by varying the following

Lagrangian with respect to ψ and ψ∗:

Lφ(ψ,ψ∗) + ξ(e−imtψ̇ + eimtψ̇∗) , (2.4)

where Lφ(ψ,ψ∗) is the Lagrangian given in eq. (1.4) with φ replaced by the field redefinition

of eq. (1.1), and ξ is a Lagrange multiplier, which ensures that the constraint of eq. (2.3)

is satisfied as a result of gauge fixing. Note that in this gauge, we have

φ̇ = −i
√
m

2

(
e−imtψ − eimtψ∗

)
, (2.5)

or, by using eqs. (1.1) and (2.5),

ψ =

√
m

2
eimt

(
φ+ i

φ̇

m

)
, (2.6)

which shows that our field redefinition is invertible. Notice that the equation of motion for

ξ is a differential equation, rather than an algebraic constraint, and it is not possible to

substitute the solution of ξ back into the Lagrangian. In other words, the gauge condition

cannot be imposed at the level of the Lagrangian. This makes the Lagrangian rather

complex. It is, however, possible to derive a different, and simpler, Lagrangian which

yields the same equations of motion via the following procedure. First, in the original

theory in terms of φ, we introduce a new field by the relation χ = φ̇ (at the level of

equations of motion); next we replace φ̇ with χ in the Lagrangian and add a Lagrange

multiplier to guarantee the equivalence of the two theories:

L̄φ(φ, χ) = Lφ(φ, χ, ∂iφ) + π(φ̇− χ) . (2.7)

Note that at this stage, the field π is only a Lagrange multiplier and not the momentum

conjugate of φ. The equations of motion for this Lagrangian are as follows:

φ̇− χ = 0 ,
∂Lφ
∂χ
− π = 0 ,

∂Lφ
∂φ
− ∂i

∂Lφ
∂∂iφ

− π̇ = 0 . (2.8)

The first equation is the constraint. The second equation, together with χ = φ̇, shows

that the Lagrange multiplier is nothing but the momentum conjugate of the scalar field in

the original Lagrangian (hence our motivation for the notation, π). Finally, using the first

two equations, the last one gives the correct equation of motion for φ. Therefore, the two

theories Lφ and L̄φ are equivalent.

In the theory governed by L̄φ, the parameter π is nondynamical, so one can replace it

by its solution to simplify the Lagrangian. From eq. (2.8) we have:

π = −
√
−g(g00χ+ g0i∂iφ) . (2.9)

– 6 –
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Plugging this solution back into the Lagrangian results in

L(φ, χ) = −1

2

√
−g
[
−g00χ2 + 2(g00χ+ g0i∂iφ)φ̇+ gij∂iφ∂jφ+m2φ2

]
, (2.10)

where, from now on, we consider a non-self-interacting theory, i.e. we set λ = 0 in eq. (1.4).

(We will consider tree-level self-interactions in appendix D.) Again, one can show that

the Lagrangian in eq. (2.10) yields consistent equations of motion. The next step is to

introduce the nonrelativistic fields ψ and ψ∗, which we define by the following expressions:

φ =
1√
2m

(
e−imtψ + eimtψ∗

)
, χ = −i

√
m

2

(
e−imtψ − eimtψ∗

)
, (2.11)

which are indeed suggested by eqs. (1.1) and (2.5). With these definitions, the Lagrangian

in eq. (2.10) may be written

L(ψ,ψ∗) =−
√
−g
2

[
ig0µ(ψ∗∂µψ−ψ∂µψ∗)+

1

m
gµ
′ν′∂µ′ψ∂ν′ψ

∗+m(g00 +1)ψ∗ψ

+

{
e−2imt

2m

(
gµ
′ν′∂µ′ψ∂ν′ψ+

(
m2(g00 +1)+

im√
−g

∂µ(
√
−gg0µ)

)
ψ2

)
+c.c.

}]
.

(2.12)

Here “c.c.” denotes the complex conjugate of the immediately preceding expression, and

the primes on indices in gµ
′ν′ indicate that µ and ν cannot both be time components, i.e.,

µ× ν 6= 0. (In appendix A, we consider the Hamiltonian of this theory in terms of ψ and

ψ∗.) From eq. (2.12), the equation of motion for ψ can be written as

ig00ψ̇ +Dψ + e2imtD∗ψ∗ = 0 , (2.13)

where we have defined the operator

D =
m

2

(
g00 + 1

)
+ ig0i∂i +

i

2
√
−g

∂µ(
√
−gg0µ)− 1

2m
√
−g

∂µ(
√
−ggµi)∂i −

1

2m
gij∂i∂j .

(2.14)

As promised, the equation of motion for ψ is first order in time derivatives and is identical

to the equation of motion from the constrained Lagrangian of eq. (2.4). In Minkowski

spacetime the Lagrangian reduces to

L(ψ,ψ∗) =
i

2
(ψψ̇∗−ψ∗ψ̇)− 1

2m
∂iψ∂jψ

∗−
{
e−2imt

4m
∂iψ∂jψ + c.c.

}
for Minkowski. (2.15)

Neglecting the last term, which is rapidly oscillatory, the resulting theory has a global

U(1) symmetry associated to which there is a conserved charge,
∫
d3x|ψ|2, which is the

number of particles, a quantity that is conserved in a nonrelativistic theory. The equation

of motion reads

iψ̇ +
∇2

2m
(ψ + e2imtψ∗) = 0 for Minkowski, (2.16)

which, again after neglecting the oscillating term, is just the Schrödinger equation with

vanishing potential. Note, however, that so far our equations are exact and only a field
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redefinition has been performed. We will see how one can remove the oscillatory terms in

a systematic way, rather than just neglecting them, in section 3.

In a curved background, the complete set of equations also includes the Einstein equa-

tions, MPl
2Gµν = Tµν , where the energy-momentum tensor for the scalar field is

Tµν = ∂µφ∂νφ−
1

2
gµν

(
gαβ∂αφ∂βφ+m2φ2

)
, (2.17)

in which we must insert definitions of eqs. (1.1) and (2.5). To avoid clutter we do not write

out Tµν(ψ,ψ∗) explicitly here.

2.1 FLRW background

What has been derived so far is valid for a general curved geometry. For the remainder of

this paper, we consider the case of a spatially flat FLRW spacetime with small fluctuations

around it. Neglecting the tensor and vector degrees of freedom, in Newtonian gauge, the

line element takes the form

ds2 = −(1 + 2Φ) dt2 + a2(t)(1− 2Φ)δij dxi dxj , (2.18)

where Φ(t,x) is the Newtonian potential. Since the anisotropic stress vanishes (to leading

order in fluctuations) for an FLRW spacetime filled with a scalar field, the fluctuation in

the 00-component of the metric is identical to the fluctuation in the spatial components.

We split the field into a background component and small fluctuations,2 ψ(t,x) = ψ̄(t) +

δψ(t,x), where the splitting becomes unambiguous by requiring that the spatial average of

δψ(t,x) vanishes. The operator D defined in eq. (2.14) up to linear order in Φ is

D = −3iH

2
− ∇2

2ma2
+mΦ + 3iHΦ + 2iΦ̇ . (2.19)

Hence, from eqs. (2.13) and (2.17), the equations governing the background evolution are

i ˙̄ψ + i
3

2
H
(
ψ̄ − e2imtψ̄∗

)
= 0 (2.20)

3MPl
2H2 −mψ̄∗ψ̄ = 0 . (2.21)

To linear order in spatially varying quantities, we find from the Klein-Gordon equation and

the 0i-component of Einstein’s equations (after some algebra) the coupled equations

i ˙δψ + [Dδψ − (m− 2iH)ψ̄Φ] + e2imt[D∗δψ∗ − (m+ 2iH)ψ̄∗Φ] = 0, (2.22)

Φ̇ +HΦ +
i

4MPl
2

(
ψ̄δψ∗ − ψ̄∗δψ + e−2imtψ̄δψ − e2imtψ̄∗δψ∗

)
= 0 , (2.23)

in which we have defined a new operator

D =
3iH

2
+
∇2

2ma2
− 1

2MPl
2

(
e−imtψ̄ − eimtψ̄∗

)2
. (2.24)

2Note that the assumption of existence of a smooth background field may not hold in some certain cases.

For example, an axion field for which the Pecci-Quinn symmetry breaking happens after the end of inflation

will have large inhomogeneities at small scales. We thank Mark Hertzberg for discussions on this issue.
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Note the difference between the new operator D and the operator D in eq. (2.14) for a

general metric and its form for FLRW universe in eq. (2.19). In deriving eq. (2.22) for δψ

we have used eq. (2.23) to eliminate the Φ̇ term appearing in eq. (2.19). Further, note that

Φ is a non-dynamical degree of freedom and can be eliminated by solving the 00-component

of Einstein’s field equations,

∇2Φ

a2
=

m

2MPl
2 (ψ̄δψ∗ + ψ̄∗δψ) + 3HΦ̇ +

m

4MPl
2 (e−imtψ̄ + eimtψ̄∗)2Φ , (2.25)

which is the relativistic form of the Poisson equation. Here we have not explicitly eliminated

the Φ̇ term from eq. (2.23) to avoid unnecessary complications, but we will do so in the

calculations of the next section. Although it seems redundant to consider eq. (2.23) for Φ, it

would be much easier to obtain an effective description using eq. (2.23) rather than (2.25).

But we will keep track of eq. (2.25) and its effective form in the following sections since it

helps us to interpret the results in the form of an effective imperfect fluid.

Note again that the equations are so far exact, up to O(Φ, δψ). However, in the

nonrelativistic (i.e. large mass) limit, we may neglect terms that are rapidly oscillating,

since they average out to zero, as well as terms that are suppressed by factors of (H/m).

The above system of equations then reduces to the well-known Schrödinger-Friedmann and

Schrödinger-Poisson equations for background and fluctuations, respectively [5]:

i ˙̄ψ + i
3

2
H ψ̄ ' 0 , 3MPl

2H2 = mψ̄∗ψ̄ , (2.26)

i ˙δψ +
3

2
iHδψ +

∇2

2ma2
δψ −mψ̄Φ ' 0 , (2.27)(

∇2

a2
+

3

2
H2

)
Φ ' m

2MPl
2 (ψ̄δψ∗ + ψ̄∗δψ) , (2.28)

where the second term on the left-hand side of the last equation is usually neglected, as

these equations are usually considered for short (sub-horizon) scales. Note that the above

equations are equivalent to a system of equations governing the evolution of a matter-

dominated universe, showing that a nonrelativistic scalar field can play the role of cold

dark matter (to leading order; see section 3 and section 4 for subleading deviations from

this statement).

We expect the above simplified equations to be valid to a good approximation. However

we are interested in how subleading contributions change the dynamics of the approximated

system. In particular, we want to take into account the backreaction of rapidly oscillating

modes on the evolution of the slowly varying quantities. We therefore keep the subleading

terms and later on will remove the fast oscillating modes in a systematic way to obtain

an effective theory for slow modes. Note that, as discussed in the introduction, we are

considering a system in which terms that vary on different characteristic time-scales couple

to each other, which gives rise to the backreaction.

3 The effective field theory in the nonrelativistic limit

In this section we outline the derivation and present the results of our effective field theory.

We first introduce an appropriate mode decomposition (in time) to disentangle the part of
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the fields in which we are most interested (which varies slowly in time) from the parts that

need to be systematically removed (which oscillate rapidly). We then discuss a procedure

for removing the latter part, resulting in an effective theory for the former. We mainly fol-

low the procedure outlined in ref. [6] (but see also refs. [17, 18] for different, but equivalent,

approaches). Here we consider the case in which the single field φ dominates the FLRW

universe, and neglect any tree-level self-interactions. The effect of self-interaction shall be

detailed in appendix D while the EFT for the case of a multicomponent universe is studied

in appendix E.

3.1 Smearing and mode expansion

By applying the field redefinition introduced in the last section, in which we isolated the

main time dependence of the field as an oscillatory factor (to leading order), we expect

that apart from explicit factors like exp(2imt) appearing in the equations of motion, all

remaining functions to be slowly varying in time. Let us denote the variables appearing

in the equations of the last section collectively by X(t), where we suppress any possible

spatial dependence. By the above reasoning we expect Ẋ(t) � mX(t) with m the mass

of the scalar field. In other words, the spectrum of X(t) in the frequency domain, X̂(ω),

would be localized around ω = 0. However, this cannot be the whole story because the

explicit rapidly oscillating factors in the equation of motion, proportional to exp(2imt),

will induce high-frequency components in the spectrum of X(t). This happens through

nonlinear multiplicative terms in eqs. (2.20)–(2.25), which cause different frequencies to

couple. Since the spectrum of the oscillatory factors like eiνmt (with ν an integer) would

be a delta function at frequencies ω = νm, we expect that at higher orders a localization

happens around the frequencies ω = νm. These subleading contributions would then

backreact, again due to nonlinearities in the equations, on the slowly varying modes, whose

spectra are localized around ω = 0. Our aim in this section is to study this backreaction

to see how it affects the dynamics of the slow modes of different variables.

Since we are interested in the slow mode of functions of time (i.e. the portion of

functions that are slow compared to oscillations with frequency m or higher), as discussed

in section 1, we can define a smearing operator acting on each function, which can be

thought of as a time-average of the function, subject to a window function W (t):

〈X(t)〉 =

∫ ∞
−∞

dt′X(t′)W (t− t′) . (3.1)

This is the temporal counterpart of the spatial average considered for example in ref. [19].

To adopt a suitable window function, note that in Fourier space, the right-hand side of

eq. (3.1) takes the form X̂(ω)Ŵ (ω). As mentioned above, since the slow mode is localized

around ω = 0 in the frequency domain, a natural choice for the window function would be

a top-hat in Fourier space:

Ŵ (ω) =

{
1 |ω| < m/2

0 otherwise .
(3.2)

Note that we have chosen the half-width of the square function to be m/2, which means

that the window function removes the portion of the field that is spread away more than

– 10 –



J
H
E
P
0
7
(
2
0
2
0
)
0
5
9

Figure 1. The window function W (t) (left) and its Fourier transform (right).

m/2 from each side of ω = 0. Choosing such a width is, first, consistent with requiring

that the resulting smeared function has to be slowly varying compared to frequency m

and, second, leads to a convenient (and exact) mode expansion of X(t), as we will explain

below. The window function in the time domain is then

W (t) =

∫ ∞
−∞

dω

2π
Ŵ (ω)eiωt =

sin(mt/2)

πt
. (3.3)

Figure 1 visualizes the window function in time and frequency domains. Note that the

peculiar form of the window function in the time domain, with many zeros, is essential for

capturing the low-frequency part (i.e. the slow mode) of the function.

As mentioned earlier, in our nonlinear system, even if we start with purely slow func-

tions of time, subdominant nonzero modes (which mainly vary with frequencies νm with

nonzero integer ν) would develop. To capture these nonzero modes we can apply the same

smearing operator and define the mode ν of the function by

Xν(t) =
〈
X(t)e−iνmt

〉
=

∫ m/2

−m/2

dω

2π
X̂(ω + νm)eiωt , (3.4)

where in the last equality we explicitly used the adopted window function in the frequency

domain. This result allows us to write any function of time by a mode expansion as follows:

X(t) =
∞∑

ν=−∞
Xν(t)eiνmt . (3.5)

This is the key relation that will be used in the derivation of our EFT and from now on,

our discussion will not explicitly rely on the smearing operator. Note that the specific

choice of the window function makes the smearing operator a projection operator, i.e.

〈〈X(t)〉〉 = 〈X(t)〉. Note also that eq. (3.5) is indeed exact, as a result of the appropriate

choice of window function and its width; as can be checked by replacing the definition of Xν

from (3.4) into (3.5). For later usage, note that the following relations hold for arbitrary

functions of time X(t) and Y (t):

(XY )ν =
∑
α

XαYν−α , (Xeiµmt)ν = Xν−µ , (X∗)ν = X∗−ν , (3.6)
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where the last equality should be understood as a relation between the modes of the

complex conjugate of the field and the complex conjugate of the modes of the field. It is

also easy to show that for a real function R(t) we have R−ν = R∗ν .

In the nonrelativistic limit, we will be interested in functions that are mainly localized

around integer multiples of the characteristic frequency of the system m. In this regime, all

coefficients Xν(t) are slowly varying in time. Furthermore, in the same limit, the fields are

mainly concentrated around ω = 0, i.e. the slow mode dominates over all other modes. This

implies that the functions of time that we will be dealing with are slowly varying, so that

a dimensionless parameter like εt ∼ |Ẋ/mX| would always be small. Our EFT will then

be an expansion in powers of such a parameter, although other small parameters will come

in as well, as discussed in the introduction and will be made explicit in the next section.

Now that we have a procedure to expand any function of time in terms of its different

modes, we can derive differential equations for each mode. We are specially interested in

the equation for the slow mode which, for later convenience, we denote by Xs(t) ≡ Xν=0(t).

The evolution of each mode involves all other modes due to nonlinearities in the equations.

In the nonrelativistic limit, in which our time-dependent functions should be dominated

by the slow mode, we require |Xs| � |Xν | for ν 6= 0. In this regime, we can solve equations

for nonzero modes perturbatively in the small quantities discussed in the Introduction. To

achieve this, we further decompose each nonzero mode by a perturbative expansion

Xν =

∞∑
n=1

X(n)
ν = X(1)

ν +X(2)
ν + . . . , for ν 6= 0, (3.7)

where for each n we have X
(n)
ν = O(εn) and ε is a small parameter, to be determined by

the equations governing the dynamics of the system, as in eqs. (1.6) and (1.7). We always

work up to the same order in all small parameters so that we can schematically show the

orders in a perturbative expansion by just one parameter ε as above. After obtaining the

solutions of the nonzero modes (in terms of the slow modes) order by order in perturbation

theory, we plug the solutions back into the equations for the slow mode. This procedure

leads to an effective equation for the slow mode. The tools that we have developed here

(mostly implicitly) will allow us to obtain EFTs for the background evolution as well as

for the small fluctuations, as we shall show explicitly below.

3.2 Effective field theory for the background

In this section we apply the procedure we outlined in the last section to the equations

of motion for the spatially homogeneous scalar field in an FLRW background, eqs. (2.20)

and (2.21). For convenience, we introduce the rescaled, dimensionless quantities

ψ̃(t) ≡ ψ̄(t)√
mMPl

, H̃(t) ≡ H(t)

m
, (3.8)

which we use in the course of calculations. We also rescale the time t̃ = mt. Application

of the mode expansion introduced in the previous section to eqs. (2.20) and (2.21), with
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rescaled variables, results in the following equations for each mode ν:

ψ̃′ν + iνψ̃ν +
3

2
H̃α(ψ̃ν−α − ψ̃∗2+α−ν) = 0 (3.9)

3H̃αH̃ν−α − ψ̃αψ̃∗α−ν = 0 , (3.10)

where the summation over repeated indices is understood and the prime denotes the deriva-

tive with respect to t̃. We are, in particular, interested in the equations for the slow mode

quantities ψ̄s =
〈
ψ̄
〉

and Hs = 〈H〉, with the corresponding equations after rescaling

the variables:

ψ̃′s +
3

2

(
H̃sψ̃s +

∑
α 6=0

H̃αψ̃α

)
− 3

2

(
H̃sψ̃

∗
2 + H̃−2ψ̃

∗
s +

∑
α 6=0,−2

H̃αψ̃
∗
α+2

)
= 0 , (3.11)

and

3

(
H̃2
s +

∑
α 6=0

|H̃α|2
)
−
(
|ψ̃s|2 +

∑
α 6=0

|ψ̃α|2
)

= 0 , (3.12)

which are obtained simply by setting ν = 0 in eqs. (3.9) and (3.10). We see clearly from the

last set of equations that the slow mode of each function is coupled to all nonzero modes

due to nonlinearities of the system. We can solve the equations for the nonzero modes

perturbatively in small parameters. As discussed in the introduction, we identify a new

small parameter, in addition to εt, from the Hubble scale

εH ∼
H

m
= H̃ . (3.13)

It is evident that such a quantity has to be small for a nonrelativistic field rapidly oscillating

around the minimum of its potential. Thus, at the background level, we have two small

parameters in the problem, which we collectively denote by ε = {εt, εH}. In this section we

will keep terms up to third order in ε but our formalism is general and can be continued

to higher orders. Note that the rescaled variables introduced in eq. (3.8) are first order

in ε, i.e. ψ̃s = O(ε) and H̃s = O(ε), which makes the power counting in the derivation of

EFT fairly easy. We also have ψ̃′s ∼ εψ̃s = O
(
ε2
)
. It is important to notice that working

up to order n in solving for nonzero modes would result in an EFT for the slow modes up

to O
(
εn−1

)
corrections once the corrections are compared to leading order terms. This is

because even the zeroth-order equations for the slow modes are suppressed by a factor of

O(ε) (due to, for example, the time derivative operator or the Hubble parameter). The

same statement will be valid for fluctuations as well.

To proceed systematically, we apply the perturbative expansion of (3.7) to the nonzero

modes. Note that we do not apply the perturbative expansion to the slow modes since we

are interested in the effective equations for those quantities, rather than their corresponding

solutions. From (3.9) and for ν 6= 0 we have

ψ̃(n)
ν =− ψ̃

(n−1)′
ν

iν
− 3

2iν

[
H̃sψ̃

(n−1)
ν +H̃(n−1)

ν ψ̃s+

n−2∑
`=1

∑
α 6=0,ν

H̃(`)
α ψ̃

(n−`−1)
ν−α

]
(3.14)

+
3

2iν

[
H̃sψ̃

∗
sδν,2δn,2+(1−δν,2)

(
H̃sψ̃

(n−1)
2−ν

∗+H̃
(n−1)
ν−2 ψ̃∗s

)
+

n−2∑
`=1

∑
α 6=0,ν−2

H̃(`)
α ψ̃

(n−`−1)∗

2+α−ν

]
,
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where n ≥ 1. Similarly from eq. (3.10) for ν 6= 0 we get

H̃(n)
ν =

1

6H̃s

[
ψ̃sψ̃

(n)
−ν
∗ + ψ̃∗s ψ̃

(n)
ν +

n∑
`=1

∑
α 6=0,ν

ψ̃(`)
α ψ̃

(n+1−`)
α−ν

∗
]
− 1

2H̃s

n∑
`=1

∑
α 6=0,ν

H̃(`)
α H̃

(n+1−`)
ν−α .

(3.15)

Note that since the rescaled variables ψ̃ and H̃ are first order in ε we expect the nonzero

modes ψ̃ν and H̃ν to start from the second order. We will see below that it is in fact the

case. By using eqs. (3.15) and (3.14) we see that

ψ̃(1)
ν = H̃(1)

ν = 0 , (3.16)

and for the leading nonzero modes we find

ψ̃(2)
ν =

3

4i
H̃sψ̃

∗
s δν,2 , H̃(2)

ν =
1

8i
ψ̃∗s

2 δν,2 −
1

8i
ψ̃2
s δν,−2 . (3.17)

In obtaining this result there was no need to solve a differential equation, since the time

derivative term is subleading, contributing to higher orders. The relation between nonzero

modes and the zero modes is one of the main results of our paper. We can easily proceed

and compute higher-order terms in ε. After some algebra we find that for n = 3,

ψ̃(3)
ν =

(
3

8
(H̃sψ̃

∗
s)
′ +

9

16
H̃2
s ψ̃
∗
s +

3

32
|ψ̃s|2ψ̃∗s

)
δν,2 +

3

32
ψ̃3
s δν,−2 −

3

64
ψ̃∗s

3 δν,4 , (3.18)

and similarly for the Hubble parameter,

H̃(3)
ν =

1

6H̃s

(
3

8
(H̃sψ̃

∗
s)
′ψ̃∗s +

9

16
H̃2
s ψ̃
∗
s

2 +
3

32
|ψ̃s|4 +

3

32
ψ̃4
s

)
δν,2

+
1

6H̃s

(
3

8
(H̃sψ̃s)

′ψ̃s +
9

16
H̃2
s ψ̃s

2 +
3

32
|ψ̃s|4 +

3

32
ψ̃∗s

4

)
δ−ν,2 .

(3.19)

Since in this section we will only consider corrections up to order n = 3 for the background

equations, we can use the leading-order equations (2.26) for the slow modes to simplify the

above relations to the same order, which yields

ψ̃(3)
ν = − 3

32
|ψ̃s|2ψ̃∗s δν,2 +

3

32
ψ̃3
s δν,−2 −

3

64
ψ̃∗s

3 δν,4 , H̃(3)
ν = 0 . (3.20)

Now that we have obtained the solutions for nonzero modes, we may substitute into the

equations of motion for the slow modes, eqs. (3.11) and (3.12). Considering terms up to

order n = 3 we have

ψ̃′s +
3

2
H̃sψ̃s

− 3

2

(
H̃sψ̃

(2)
2
∗ + H̃

(2)
−2 ψ̃

∗
s

)
− 3

2

(
H̃sψ̃

(3)
2
∗ + H̃

(3)
−2 ψ̃

∗
s − H̃

(2)
2 ψ̃

(2)
2

)
+O

(
ε5
)

= 0 ,

(3.21)

and

3H̃2
s − |ψ̃s|2

+ 3
(
H̃

(2)
2

)2
+ 3

(
H̃

(2)
−2

)2
− |ψ̃(2)

2 |
2 +O

(
ε5
)

= 0 ,
(3.22)
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where we have written the terms that are at the same order in the same line and we have

excluded the terms that contain nonzero modes at order n = 1 as they vanish identically.

After substitution of nonzero modes we finally obtain the effective equations of motion for

the slow modes. For convenience we write the equations in this last step using the original,

dimensionful variables:

i ˙̄ψs + i
3

2
Hsψ̄s +

9

16

|ψ̄s|2

MPl
2 ψ̄s + i

9

32

Hs

m

|ψ̄s|2

MPl
2 ψ̄s +O

(
ε3
)
Hsψ̄s = 0 , (3.23)

3MPl
2H2

s = m|ψ̄s|2 +
3

32MPl
2 |ψ̄s|

4 +O
(
ε4
)
m|ψ̄s|2 . (3.24)

This is one of our main results in this paper. Note that, interestingly, the backreaction of

the nonzero modes on the slow mode effectively induces a kind of self-interaction for the slow

mode and a new contribution to the energy density, which sources the Hubble parameter.

(We will consider characteristics of the induced self-interaction below, after deriving our

EFT for the fluctuations.) We expect these nontrivial corrections to the Schrödinger and

Friedmann equations to help improve the validity of the simplified nonrelativistic equations

when compared to the exact equations. In section 5, where we present the numerical

solutions, we will confirm that this is indeed the case, and illustrate that the solutions of

our EFT follow the exact solutions closely. We can also provide further insight into the

above results by describing the system as a fluid in an expanding background, which will

be done in section 4.

The scale factor. Since in a flat FLRW universe, the background equations do not

depend on the scale factor explicitly, we did not need to solve for it. However, since the

scale factor would show up in the equations governing small fluctuations, we would need

to have a perturbative expansion of it as well. A simple way to achieve this is to use

its differential equation ȧ = aH, which, after the mode expansion and using the rescaled

variables, results in

a′ν + iνaν = aαH̃ν−α . (3.25)

As before, we perform a perurbative expansion for nonzero modes, and it is easy to see

that a
(1)
ν = 0 for all ν. For n > 1 we have

a(n)
ν = −a

(n−1)
ν

′

iν
+
asH̃

(n)
ν

iν
+
a

(n−1)
ν H̃s

iν
+
n−1∑
`=1

∑
α 6={0,ν}

a
(`)
α H̃

(n−`)
ν−α
iν

. (3.26)

Specifically, for n = 2 we have

a(2)
ν =

1

2i
H̃(2)
ν as =

(
− 1

16
ψ̃∗s

2 δν,2 −
1

16
ψ̃2
s δν,−2

)
as . (3.27)

Since, for the fluctuations, we work up to n = 2 in a perturbative expansion, we only need

the scale factor up to this order. Therefore, we neglect higher-order corrections to the

scale factor. Finally, the effective equation for the slow-mode scale factor as = 〈a〉 to this

order becomes

ȧs = asHs +O
(
ε2
)
asHs , (3.28)
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that is, to this order, the slow mode of the scale factor does not receive any correction from

nonzero modes. Before concluding this section, we define variables for the inverse of the

scale factor and its square for later use:

q(t) ≡ 1

a(t)
, r(t) ≡ 1

a(t)2
. (3.29)

Then it is straightforward to show that q
(1)
ν = r

(1)
ν = 0 and for n = 2 we have q

(2)
ν =

−a(2)
ν /a2

s and r
(2)
ν = −2a

(2)
ν /a3

s.

3.3 Effective field theory for fluctuations

We now proceed to find the effective equations of motion for the slow modes of the linear

fluctuations around FLRW background. The procedure is similar to the last section. We

start by applying the mode expansion to eqs. (2.22) and (2.23). Note that we need to

use background quantities and their mode expansion as well. We again use the rescaled

variables defined in eq. (3.8) as well as

δ̃ψ(t,x) ≡ δψ(t,x)√
mMPl

. (3.30)

Furthermore, to make all the expressions dimensionless (which makes the power counting

more straightforward) we rescale the spatial coordinates by x̃ = mx and use the notation

∇̃2 for the corresponding comoving spatial Laplacian operator. Our aim is to compute the

effective equations of motion for δψs = 〈δψ〉 and Φs = 〈Φ〉. The relevant equations for

general mode ν from eqs. (2.22) and (2.23) in rescaled variables read

iδ̃ψ
′
ν − νδ̃ψν + (D̃αδ̃ψν−α + D̃∗−αδ̃ψ

∗
2+α−ν)

− Φα(ψ̃ν−α + ψ̃∗2+α−ν − 2iH̃β(ψ̃ν−α−β − ψ̃∗2+α+β−ν)) = 0 , (3.31)

Φ′ν + iνΦν + H̃αΦν−α −
1

4i
(ψ̃αδ̃ψ

∗
α−ν − ψ̃∗−αδ̃ψν−α + ψ̃αδ̃ψν+2−α − ψ̃∗−αδ̃ψ

∗
2+α−ν) = 0 ,

(3.32)

where the rescaled operator is

D̃ν =
1

2

(
3iH̃ν − rν∇̃2 + 2ψ̃∗−βψ̃ν−β − ψ̃βψ̃ν+2−β − ψ̃∗−βψ̃2+β−ν

)
, (3.33)

and we have used the notation defined in eq. (3.29) for the mode expansion of 1/a2. The

Poisson equation, eq. (2.25), leads to

rα∇̃2Φν−α =
1

2
(ψ̃∗−αδ̃ψν−α + ψ̃αδ̃ψ

∗
α−ν) + 3H̃ν−α(Φ′α + iαΦα)

+
1

4
(ψ̃αψ̃ν+2−α−β + ψ̃∗−αψ̃

∗
2+α+β−ν + 2ψ̃∗−αψ̃ν−α−β)Φβ .

(3.34)

Note that we can eliminate the Φ′α term by using eq. (3.32).

Once again we have an infinite set of coupled equations and to proceed we have to

identify small parameters in the problem. Besides the previously introduced parameters
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εH and εt, there is another one due to the fact that we are now dealing with field fluctuations

with nonzero momenta. In the nonrelativistic limit we expect εk ∼ (k2/m2a2) to be small,

where k is the comoving momentum of the nonrelativistic field. Furthermore, in order to

make the power counting in the perturbative expansion tractable, we take into account the

fact that the rescaled fluctuations are small (compared to the background quantities), which

we quantify by yet another small parameter εg, so that we have δ̃ψ = O(εg). It is important

to note that since we are working only to linear order in spatially varying quantities, the

new parameter εg becomes irrelevant. Nevertheless, introducing this parameter is helpful

for the perturbative expansion of nonzero modes, when we must evaluate the size of each

term. Therefore, our EFT for the field fluctuations would be an expansion in four small

parameters, ε = {εt, εH , εk, εg}. Note that we have not made any assumption about the

possible hierarchy between these parameters. In particular, fluctuations can be both at

sub-horizon and super-horizon scales without affecting the following analysis, as long as

the Hubble parameter and the physical wavenumber are small compared to the mass of the

field. Note that in terms of rescaled variables, we have a useful order of magnitude relation

δ̃ψs ∼ Φs = O(ε).

Similar to what has been done in the previous section, by using the perturbative

expansion in eq. (3.7), we can solve for the relevant nonzero modes and find the effective

equations of motion for the slow modes. Again, similar to the background case, we can

deduce that at order n = 1 we have

δ̃ψ
(1)
ν = Φ(1)

ν = 0 , (3.35)

and the leading nonzero modes corresponding to n = 2 can be obtained by using eqs. (3.31)

and (3.32)

δ̃ψ
(2)
ν =

(
3

4i
H̃sδ̃ψ

∗
s +
∇̃2δ̃ψ

∗
s

4a2
s

− 1

2
ψ̃∗sΦs

)
δν,2 , Φ(2)

ν =
1

8

(
ψ̃∗s δ̃ψ

∗
sδν,2 + ψ̃sδ̃ψsδν,−2

)
.

(3.36)

We will present the equations for higher orders (n > 2) in appendix B and limit ourselves to

order n = 2 (and hence up to O(ε) corrections to the equations for the slow-modes) in this

section. As we will see, even at this order we find nontrivial terms in the effective equations

of motion. Having found the solutions for the leading-order nonzero modes, the effective

equations governing the slow mode fluctuations δψs and Φs can be obtained by setting

ν = 0 in eqs. (3.31) and (3.32) and replacing the nonzero modes of the background and

fluctuation variables by their corresponding solutions. Returning to the original variables

at the last step, this procedure results in

i ˙δψs + i
3

2
Hsδψs +

∇2δψs
2ma2

s

−mψ̄sΦs

+
9

8

|ψ̄s|2

MPl
2 δψs −

7

16

ψ̄2
s

MPl
2 δψ

∗
s +
∇4δψs
8m3a4

s

+ 2iHsψ̄sΦs +O
(
ε2
)
Hsδψs = 0 ,

(3.37)
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as the effective Schrödinger equation, and

Φ̇s +HsΦs +
i

4MPl
2 (ψ̄sδψ

∗
s − ψ̄∗sδψs)

+
3Hs

8mMPl
2 (ψ̄sδψ

∗
s + ψ̄∗sδψs) +

i

8mMPl
2

∇2

2ma2
s

(ψ̄sδψ
∗
s − ψ̄∗sδψs) +O

(
ε2
)
HsΦs = 0 ,

(3.38)

as the equation for the slow-mode Newtonian potential Φs. We also have the effective

Poisson equation,

∇2Φs

a2
s

=
m

2MPl
2 (ψ̄∗sδψs + ψ̄sδψ

∗
s)

+
3i

4MPl
2Hs(ψ̄

∗
sδψs − ψ̄sδψ∗s)−

3

2
H2
sΦs +O

(
ε2
)
H2
s

δψs
ψ̄s

.

(3.39)

Once again we see that the nonzero modes induce nontrivial corrections to all equations

for the slow modes. We stress that all these corrections have been mostly neglected in

the literature to date. In section 4, we provide an alternative description of the system in

terms of an imperfect fluid, to extract useful effective quantities for the system, such as

the sound speed and viscosity. Also, in section 5, we confirm the validity of our EFT by

numerical analysis. In appendix E we study the case of a multicomponent universe and

in appendix D we take into account the self-interaction of the scalar field, which has been

neglected so far.

In both eq. (3.23) for ψ̄s and eq. (3.37) for δψs, we find nonlinear terms in the effective

equations of motion that take the form of self-interaction terms, even though we began with

a free scalar field. To further characterize the induced self-interaction, we may consider

eqs. (D.3) and (D.5) for the evolution of the slow modes ψ̄s and δψs in the presence of a

tree-level self-interaction of the form V (φ) = λφ4/(4!) for the original (relativistic) scalar

field φ. If we consider ψs(t,x) = ψ̄s(t) + δψs(t,x) and work to first order in fluctuations,

we may combine eqs. (D.3) and (D.5) to write

iψ̇s +
3i

2
Hsψs +

∇2ψs
2ma2

s

− λ

8m2
|ψs|2ψs +

9

16MPl
2 |ψs|

2ψs

+
∇4ψs
8m3a4

s

−mψ̄s
[
1− 2i

(
Hs

m

)]
Φs +O(ε3)mψs = 0.

(3.40)

(In the limit of a rigid spacetime, with as(t) → 1, (m/MPl) → 0, and |Φs(t,x)| → 0,

eq. (3.40) matches the equation of motion found in ref. [6] for the slow mode ψs(t,x) in

Minkowski spacetime, to the appropriate order.) The form of eq. (3.40) suggests that the

induced self-interaction strength, even in the absence of a tree-level self-coupling, takes

the form

λeff = −9

2

(
m

MPl

)2

+O(ε2). (3.41)
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We see immediately that the induced self-interaction is attractive (λeff < 0) and that it

arises gravitationally (being proportional to G ∼ 1/MPl
2).3

The emergence of a gravitationally induced self-coupling could be of interest in the con-

text of self-interacting dark matter [8–10], though estimating the magnitude of the effects

remains subtle. To address various astrophysical observations, models of self-interacting

dark matter typically introduce interactions that yield σ/m . 1 cm2/g = 4.6× 103 GeV−3,

where σ is the total scattering cross section. Given the form of λeff in eq. (3.41), the

induced self-interactions we have identified appear, at least naively, to be much too weak

to account for such interactions. However, a direct comparison between the cross section

deduced from our EFT and the cross section required in self-interacting dark matter mod-

els is complicated for at least two reasons. First, our EFT calculation is only valid up

to linear order in spatially varying fluctuations, whereas the self-interactions within dark

matter halos require a fully nonlinear analysis. Second, the very high occupation numbers

of particles in ultra-light dark matter models implies that classical field equations yield a

more reliable description of the system [20] than naive scattering amplitudes calculated

within quantum field theory. We leave a more systematic study of this interesting topic for

future work. As we will see in the next section, however, despite the small magnitude of

the gravitationally induced self-coupling, the backreaction effects captured in our effective

description lead to interesting — and in principle observable — phenomenological features,

including nontrivial pressure, sound speed, and bulk viscosity.

As a final — but important — remark, notice that a by-product of our EFT is the

ability to construct the full solution: Once the slow modes are found by (perhaps numer-

ically) solving the effective equations, we are able to find the full solution, including its

oscillatory behavior. For example, the field ψ can be constructed via ψ =
∑

ν ψν e
iνmt,

where ψν for ν 6= 0 are obtained order by order by our perturbative prescription and are

given once the solution for ψs is obtained from the EFT. In section 5 we show that this

procedure leads to results that match to the exact solution with very good accuracy (and

one can obtain even more accurate results by going to higher orders in the perturbation

theory). In situations where the oscillatory behavior is of interest, this procedure is ex-

pected to be much more efficient compared to solving the exact equations. This is because

the exact equations of motion, involving rapidly oscillating factors, are generically expected

to suffer from stiffness and instabilities. On the other hand, the EFT equations are well

behaved and are expected to be solved easily by standard numerical algorithms. Such a

theoretical framework would be appropriate for a variety of situations, relevant to cosmol-

ogy and astrophysics. Examples of such situations are the change in the orbits of planets

and stars in the dark matter halo [12] or the resonances in binary pulsars [11] as results of

the oscillations of dark matter.

3The right-hand side of the effective Friedmann equation in eq. (3.24) includes a contribution to ρeff

proportional to λeff |ψ̄s|4, scaling with λeff and ψ̄s in the way one would naively expect from the form of

the induced self-coupling, though with a different sign and overall coefficient. The term proportional to

|ψ̄s|4 in eq. (3.24) arises from backreaction of rapid oscillations on H
(2)
2 and H

(2)
−2 . How best to incorporate

global gravitational effects arising from the gravitationally induced self-interactions remains the subject of

further study.
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4 Effective fluid description

Having derived an EFT for the system, it is instructive to find a more intuitive way to

interpret the results. In this section, we obtain an equivalent description of the system

in terms of an imperfect fluid and argue that the higher-order terms in our EFT can be

understood as new contributions to the variables describing the fluid.

To start, we may interpret the equations (3.23) and (3.24) as a universe (effectively)

expanding with rate Hs and filled with some effective fluid. As a result, we may consider

the right-hand side of the Friedmann equation, eq. (3.24), as an effective energy density of

the fluid:

ρeff = m|ψ̄s|2 +
3

32MPl
2 |ψ̄s|

4 . (4.1)

Using the Schrödinger equation, eq. (3.23), we can then derive a continuity equation for

the fluid in an FLRW background,

ρ̇eff + 3Hs(ρeff + peff) = 0 , (4.2)

where the effective pressure turns out to be

peff =
9

32MPl
2 |ψ̄s|

4 . (4.3)

Notice that the effective pressure is of order ∼ O
(
ε2
)
ρeff, so to O(ε)ρeff the effective fluid be-

haves like pressureless matter, consistent with cold dark matter.4 Nonetheless, the rapidly

oscillating modes induce a small effective pressure, which yields an effective equation of

state weff = peff/ρeff of the form

weff =
27

32

(
Hs

m

)2

+O(ε3), (4.4)

upon using eq. (3.24) for Hs. It is evident that the effective pressure is a purely gravitational

effect which induces a sort of interaction in the fluid, even though the original theory

involves only a free scalar field.

We aim to make a similar analogy between field fluctuations in our EFT and fluctua-

tions of the fluid. Once we include spatially varying field fluctuations, our corresponding

fluid description will feature an imperfect fluid. For such a description, we must incorpo-

rate the bulk viscosity, parameterized by the coefficient ζ.5 In appendix C we present some

4The effective pressure in eq. (4.3) should not be confused with the smeared pressure of the scalar field

appearing in the energy-momentum tensor at the level of the background, 〈pφ〉 = 〈 1
2
φ̇2 − 1

2
m2φ2〉, as is

done for example in ref. [11]. The reason is that in the former, we absorbed another contribution from the

left-hand side of the Friedmann equation, which appears as a result of integrating out the nonzero modes

of the Hubble parameter, such as H2 and H−2.
5In principle, we expect other variables in the imperfect fluid, such as the shear viscosity and the effect

of heat transfer, to appear as well. This is because such contributions are consistent with — and hence

allowed by — the symmetries of the problem. However, as we will see, these additional variables are not

required to fully describe the low-energy system under study to working order, although they may show up

at higher orders, neglected in this paper.
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equations governing an imperfect fluid with bulk viscosity. As can be seen from the results

of appendix C, at the background level, the pressure and bulk viscosity are degenerate

and always appear in the form p − 3Hζ. It is this combination that we denoted by peff.

However, when we incorporate fluctuations, the degeneracy will be broken. Note that the

effective equation of motion for fluctuations, eq. (3.37), has been obtained to O(ε). At

this order, the background fluid is effectively pressureless. As a result, in the equations

for fluctuations of a viscous fluid we set peff = 0 or p = 3Hζ wherever these background

quantities appear.

We may define the comoving overdensity of the fluid, δeff , in terms of the right-hand

side of the effective Poisson equation, eq. (3.39):

∇2Φs

a2
s

=
1

2MPl
2 ρeff δeff , (4.5)

where ρeff is the effective energy density of the background in eq. (4.1), which, to O(ε), is

ρeff = m|ψ̄s|2. This yields

δeff =

(
δψs
ψ̄s

+
δψ∗s
ψ̄∗s

)
+ i

3Hs

2m

(
δψs
ψ̄s
− δψ∗s

ψ̄∗s

)
− Φs . (4.6)

Note that although δeff is constructed from complex quantities, the combination in eq. (4.6)

remains real. Other fluid fluctuations, such as the effective fluctuations in density, velocity,

and pressure, can also be derived by comparing the effective equations in section 3 with

the fluid equations outlined in appendix C. This results in

δρeff = m|ψ̄s|2
(
δψs
ψ̄s

+
δψ∗s
ψ̄∗s
− Φs

)
, (4.7)

δueff =
1

2mi

(
δψs
ψ̄s
− δψ∗s

ψ̄∗s

)
+

3Hs

4m2

(
δψs
ψ̄s

+
δψ∗s
ψ̄∗s

)
+

1

2mi

∇2

4m2a2
s

(
δψs
ψ̄s
− δψ∗s

ψ̄∗s

)
, (4.8)

δpeff = m|ψ̄s|2
[(
− ∇2

4m2a2
s

− ∇4

8m4a4
s

+
21H2

s

16m2

)(
δψs
ψ̄s

+
δψ∗s
ψ̄∗s

)
− 3iHs∇2

8m3a2
s

(
δψs
ψ̄s
− δψ∗s

ψ̄∗s

)]
.

(4.9)

Note that the above gauge-dependent variables are written in the Newtonian gauge. (See

appendix G for relevant gauge transformations and corresponding expressions in the time-

averaged comoving gauge.)

Using eq. (4.6) and eqs. (3.37) and (3.38) we can derive a second-order differential

equation for δeff, from which we can read new variables for the fluid, by making the analogy

between the resulting equation and the standard second-order equation for an imperfect

fluid outlined in appendix C (see eq. (C.14)). In this way, we obtain

δ̈eff + 2Hsδ̇eff − c2
eff

∇2δeff

a2
s

− ζeff

ρeff

∇2δ̇eff

a2
s

=
ρeff

2MPl
2 δeff , (4.10)
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where we have defined the effective speed of sound by

c2
eff =

k2

4m2a2
s

− k4

8m4a4
s

+
15

16

H2
s

m2
, (4.11)

and the effective coefficient of bulk viscosity by

ζeff = − Hs

2m2
ρeff . (4.12)

The bulk viscosity coefficient may be re-expressed in terms of another quantity with di-

mension of velocity [21]:

c2
bv ≡

Hs

ρeff
ζeff = − H2

s

2m2
, (4.13)

which may be compared with c2
eff in eq. (4.11).

Some remarks are in order regarding these results. The leading term in the effective

speed of sound in eq. (4.11) is well known [22, 23]. However, we find two additional

contributions. The second term is a higher-order, momentum-dependent contribution. A

similar term also appears in the analyses of refs. [22, 23] but with a different coefficient.

(Our term is larger than the result of refs. [22, 23] by a factor of 2.) We trace this

discrepancy to the fact that in refs. [22, 23], the backreaction of the nonzero modes has

been neglected, though they contribute at the same order. Note also that, despite the

claims of ref. [22] (and also recently in ref. [24]), we do not expect these results to hold for

arbitrary momentum, since the whole formalism breaks down as soon as the momentum of

the field becomes comparable to its mass. However, in Minkowski spacetime, one can make

a nonlocal field redefinition which yields an EFT that is nonperturbative in εk and holds

for arbitrary momentum. Upon doing so, we confirm our coefficient, which is different

from that obtained in refs. [22, 23]. (See appendix F for details, where we also show that,

thanks to the nonlocal field redefinition, the resulting sound speed approaches unity in the

large-momentum limit, consistent with the expectation for a scalar field with canonical

kinetic energy.)

Finally, the last term in eq. (4.11), which is a nontrivial, momentum-independent

contribution from the background evolution, is new and has not been identified in previous

analyses. This term shows that all field fluctuations experience an effective sound speed,

even modes that are well beyond the horizon. Note that since the effective sound speed

is always positive, it suppresses structure formation. Explicit investigation of this effect

would be interesting but is beyond the scope of this paper.

Besides the sound speed, we have also derived the coefficient of the bulk viscosity in

eq. (4.12), which has also been omitted in previous analyses. In principle one could have

anticipated that such a term would appear from an EFT perspective, since it is consistent

with the symmetries of the system. Note that this coefficient is negative. From the second

law of thermodynamics it can be shown that the coefficient of bulk viscosity of an isolated,

imperfect fluid in thermal equilibrium must be positive [25]. However, our nonrelativistic

system is not an isolated system: it exchanges energy with the relativistic sector of the

field/fluid, and our effective description remains ignorant about the latter. Therefore, the
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sign in eq. (4.12) is not inconsistent with the second law of thermodynamics.6 A negative

bulk viscosity would lead to an enhancement in the development of structures, competing

with the positive sound speed. It would be interesting to investigate which contribution

dominates, and whether the balance depends on time or length-scale.

5 Comparison with numerical solutions

In this section we show that the effective description for the slow modes, as well as the

nontrivial expressions for the nonzero modes obtained in section 3, are consistent with the

smearing of the exact solutions by the method discussed in section 3.1. We also show that

the EFT is able to construct the full oscillating solution with good accuracy, while our

effective equations are well-behaved with no oscillatory terms.

In section 3.1 we adopted the window function W (t) of eq. (3.3) for obtaining differ-

ent modes of each variable. It was an appropriate choice for a mathematically rigorous

formulation of the smearing procedure and for the exact mode decomposition. However,

it is impractical for numerical purposes. The amplitude of the sinc function does not fall

off sufficiently rapidly and, further, the naive truncation of the function W (t) beyond the

range of the simulation time results in the Gibbs phenomenon at discontinuities after a

(numerical) Fourier transformation [28]. To efficiently circumvent these issues in our nu-

merical smearing (as is well-known in the field of signal processing) we replace W (t) with

W (t)B(t/T ), where B(t) is the Blackman window function [28] and T is the total time of

the simulation. Figure 2 depicts the results of this smearing procedure for the slow mode

as well as the leading nonzero modes for the exact numeric solutions of ψ and δψ (i.e. the

solutions of eqs. (2.20), (2.21), (2.22) and (2.23)). In the same figure, we compare these

results with the predictions of our EFT, the solutions of eqs. (3.23), (3.24), (3.37), (3.38),

and (3.39), along with the nonzero modes obtained in eqs. (3.17), (3.20), and (3.36) in

terms of the slow modes. This confirms that our EFT predictions match the numerical

smearing with good accuracy. Figure 2 also shows the hierarchy between nonzero modes

among themselves and with the slow mode as predicted by the EFT.

As we saw in section 3, all the variables can be represented by a mode expansion. For

instance for the background variable ψ̄(t), to working order, we can write

ψ̄(t) = ψ̄s + ψ̄2e
2imt + ψ̄4e

4imt + ψ̄−2e
−2imt + . . . , (5.1)

while similar expressions hold for the other variables. As mentioned earlier, since the

nonzero modes are also expressed in terms of the slow mode, solving the obtained effective

equations for the slow mode allows us to construct the full solution by relations like eq. (5.1)

order by order in our perturbation theory. In figures 3 and 4 we compare the exact solutions

of ψ̄ and δψ with the solution for the slow mode in our EFT (labeled “EFT, slow mode”),

6Taking both sectors into account simultaneously must result in a non-negative viscosity coefficient,

and, indeed, a canonically normalized (relativistic) scalar field, re-expressed in terms of fluid dynamics,

shows no viscocity. In a similar way, the usual energy conditions, such as the strong, weak, and dominant

energy conditions, need not hold in a low-energy EFT, even if the underlying (relativistic) theory obeys

them [26, 27].
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Figure 2. Absolute values of the slow mode as well as the leading nonzero modes for ψ̃(t) (left)

and δ̃ψ(t) (right) obtained by smearing the exact numerical solutions (solid, blue curve) compared

with the predictions of our EFT (dashed, orange curve). We have set H(0)/m = 0.06, k/m = 0.02

and as(0) = 1 which, from the EFT, implies a(0) = 0.998. The initial conditions for the slow

mode are ψ̃s(0) = 0.1 + 0.025i and δ̃ψs(0) = (1 − 1.75i) × 10−6 which, from the EFT, imply

ψ̃(0) = 0.098 + 0.020i and δ̃ψ(0) = (0.326 − 1.61i) × 10−6 for the exact equations. The horizon

crossing for the (randomly chosen) mode occurs around t̃ = 25.

Figure 3. Comparison of the real (left) and imaginary part (right) of ψ̃ between the exact numerical

results, the full solution constructed out of EFT, the slow mode, and the naive solutions. The choice

of parameters and initial conditions are the same as figure 2.

the full solution constructed out of our EFT (labeled“EFT, constructed”), and the “naive”

theory (where all oscillatory terms are simply neglected in the equations of motion, as is

typically done in analyses of axion-like dark matter models). It is evident from these plots

that the naive theory can cause notable error, while the EFT solution follows the exact

solution quite reliably. We, however, warn that the amount of deviation is sensitive to the

small parameters based on which our EFT is constructed. (Here, for example, we take

H/m = 0.06 and k/am = 0.02 at the initial time of the simulation, a somewhat random

choice.) An interesting investigation, which we will leave for future work, would be to study

the error that one encounters by using the naive theory in a realistic situation where, e.g.,

the other components of matter in the universe are taken into account and the parameter

space is chosen based on observational constraints.

A remark regarding the choice of initial conditions for comparison is in order. For

the naive theory (which simply neglects any rapidly oscillating contribution) we have no

– 24 –



J
H
E
P
0
7
(
2
0
2
0
)
0
5
9

Figure 4. Comparison of the real (left) and imaginary part (right) of δ̃ψ between the exact

numerical results, the full solution constructed out of the EFT, the slow mode, and the naive

solutions. The choice of parameters and initial conditions are the same as figure 2.

Figure 5. Relative error in variables H, a, δc, and δu for the naive theory compared with the EFT.

The choice of parameters and initial conditions are the same as figure 2.

option other than choosing the initial conditions to be the same as the exact theory. In the

EFT, on the other hand, we have perturbative access to the full solution, as just described

above, so that we can match the initial conditions of the full solution constructed out

of the EFT to the ones chosen for the exact solution.7 That is why in figures 3 and 4

the initial condition for the slow mode is different from the exact solution (since nonzero

modes contribute to the initial conditions as well). Note that this is the natural choice of

the initial conditions for our EFT, suggested by the EFT itself.

Finally, having confirmed the validity of our EFT, we can consider the results of the

EFT to be a sufficiently accurate description of the dynamics of the system, and then

compare it with the naive theory in variables that are of observational interest. In figure 5

we make this comparison for the Hubble parameter, the scale factor, the density contrast,

and the velocity potential. Depending on the parameters and initial conditions, the error

seems to be in fact observable. The quantification of that statement in realistic situations,

however, is beyond the scope of this paper and will be studied elsewhere.

7In fact, we found it more convenient to fix the initial conditions for the EFT first and then obtain the

corresponding initial conditions for the exact solution. Note, however, that the inverse procedure (which is

more realistic) is also possible.
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6 Summary and outlook

In this paper we have obtained an EFT for a massive, nonrelativistic scalar field in an

expanding background by systematically integrating out rapidly oscillating modes. We

applied our formalism to spatially homogeneous quantities as well as to spatially varying

fluctuations (working to linear order in the fluctuations), but the same methods can be

employed for studying any system in which there are fast oscillations while the physically

interesting variables are slowly varying in time. For the sake of convenient access, we

summarize our main results here. The effective equations governing the dynamics of the

system (in an expanding massive-field-dominated universe) are

i ˙̄ψs +
3i

2
Hsψ̄s +

9

16

[
1 +

iHs

2m

]
|ψ̄s|2

MPl
2 ψ̄s ' 0 , 3MPl

2H2
s ' m|ψ̄s|2 +

3

32MPl
2 |ψ̄s|

4 ,

(6.1)

for the background variables (up to O(ε2)), and

i ˙δψs+
3i

2
Hsδψs+

(
1+

∇2

4m2a2
s

)
∇2δψs
2ma2

s

−
(

1− 2iHs

m

)
mψ̄sΦs

+
9|ψ̄s|2

8MPl
2 δψs−

7ψ̄2
s

16MPl
2 δψ

∗
s ' 0 , (6.2)

Φ̇s+HsΦs+
1

4MPl
2

[
i

(
1+

∇2

4m2a2
s

)
(ψ̄sδψ

∗
s−ψ̄∗sδψs)+

3Hs

2m
(ψ̄sδψ

∗
s+ψ̄∗sδψs)

]
' 0 , (6.3)[

∇2

a2
s

+
3

2
H2
s

]
Φs'

m

2MPl
2 (ψ̄∗sδψs+ψ̄sδψ

∗
s)+

3iHs

4MPl
2 (ψ̄∗sδψs−ψ̄sδψ∗s) , (6.4)

for fluctuations (up to O(ε)), where, as a reminder, we parameterize the field as ψ(t,x) =

ψ̄(t) + δψ(t,x). To leading order, these equations correspond to the already well-known

Schrödinger and Schrödinger-Poisson equations for the background evolution and for the

fluctuations, respectively. However, in our EFT, we have obtained nontrivial corrections

as a result of integrating out the nonzero, rapidly oscillating modes (rather than neglecting

them). Furthermore, we have also interpreted the results more intuitively by describing the

system as an effective (imperfect) fluid. To fully describe the system, to working order, we

identify a nonzero effective pressure as well as an effective sound speed and a bulk viscosity

as follows:

peff =
9

32MPl
2 |ψ̄s|

4 , c2
eff =

k2

4m2a2
s

− k4

8m4a4
s

+
15

16

H2
s

m2
, ζeff = − Hs

2m2
ρeff . (6.5)

Note that the pressure and the bulk viscosity were missing in all previous analyses. Further-

more, the second term in the sound speed has a different numerical prefactor, compared to

other results in the literature (see e.g., refs. [22, 23]). The discrepancy seems to be due to an

extra contribution as a result of nontrivial effects of oscillatory (nonzero) modes, neglected

in other studies. The last term in the sound speed was also missing in previous analyses.

The size of the error arising by neglecting these terms requires further investigation in

realistic situations, which is beyond the scope of this paper.
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The derived EFT is interesting from both a theoretical and a practical point of

view. On the theoretical side we can see that gravity induces an effective, attractive

self-interaction in a free scalar field theory, which manifests as nontrivial pressure, sound

speed, and viscosity. These effects can be important for the background evolution as well

as for the growth of overdensities. Note that the effective sound speed is positive while

the viscosity is negative, so that they act in opposite directions: the former suppresses

the growth of overdensities while the latter tends to enhance it. It would be interesting

to investigate in which situations the various variables win, and how their incorporation

changes the results compared to the naive theory. We leave such a study for future work.

From a practical point of view, as we saw in section 5, whereas the naive treatment

can deviate substantially from the exact results and hence may cause error in interpreting

observations, our EFT remains quantitatively reliable. In addition, our method paves

the way for efficiently obtaining accurate solutions (including oscillatory behavior) without

having to solve the exact equations (which are expected to be stiff due to rapid oscillations).

Note that simulating the exact theory numerically requires time increments ∆t < 1/m in

order to accurately capture effects of the oscillating terms, whereas the corresponding

equations within our EFT remain well-behaved, with no rapidly oscillating terms, so that

it is sufficient to use ∆t < min(1/H, a/k); roughly speaking, this yields an O(1/ε) increase

in efficiency. The full solution can then be constructed order by order using the mode

decomposition outlined in section 3 with no difficulty. Such a method for solving differential

equations containing rapidly oscillating terms can have interesting applications in much

broader situations of scientific interest.

There are a number of different directions — besides the ones already mentioned —

that we would like to explore in future work. Such studies include the application of our

EFT to predictions of possible impacts of ultra-light dark matter models on the CMB and

other observations; the EFT in the nonlinear regime and the corresponding corrections to

structure formation (cf. refs. [29–31]) as well as the dynamics of celestial objects as they

move through dark matter halos; and the extension of our EFT to the situation in which

the nonrelativistic field is coupled to another (perhaps relativistic) dynamical field.
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A The Hamiltonian

In this appendix we will find the Hamiltonian for the evolution of ψ in a general curved

background. Since the gravity sector is standard and we have not performed any redefi-

nition for the metric we will assume the gravity sector as a fixed background with given
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time evolution. Standard treatment of the Hamiltonian for the metric can be found for

example in ref. [32]. Here, instead of deriving the Hamiltonian from the rather involved

Lagrangian for the ψ field in eq. (2.12), we first work out the Hamiltonian of the Lagrangian

in eq. (2.10) in terms of φ and the auxiliary field χ and then perform the field redefini-

tion, via a canonical transformation, to derive a Hamiltonian for ψ and ψ∗. Recall that

after removing φ̇ in favor of a new variable χ and integrating out a nondynamical field, we

obtained the Lagrangian in eq. (2.10), which we repeat here:

L(φ, χ) = −1

2

√
−g
[
−g00χ2 + 2(g00χ+ g0i∂iφ)φ̇+ gij∂iφ∂jφ+ 2V

]
. (A.1)

Here, we have again written the potential term in its general form V (φ) for the scalar

field which can contain both the mass term and the interaction. Before computing the

Hamiltonian it is instructive to count the number of degrees of freedom in our theory.

Since the metric is assumed to be fixed, in the original scalar field theory we had only two

degrees of freedom, (φ, πφ). In eq. (A.1), we introduced a different Lagrangian which is

completely equivalent, in the sense that it leads to the same equations of motion. Naively,

the Lagrangian in eq. (A.1) appears to involve two fields, φ and χ, so in principle it may

have four degrees of freedom, (φ, χ, πφ, πχ). However, the new theory is a constrained

system [33, 34]. To see this we compute the conjugate momenta

πφ =
δL
δφ̇

= −
√
−g(g00χ+ g0i∂iφ) (A.2)

πχ =
δL
δχ̇

= 0 . (A.3)

We therefore see that we cannot solve for φ̇ and χ̇ in terms of phase space variables, that

is, the Lagrangian is degenerate. The dynamics in phase space are constrained to a part

of the phase space specified by primary constraints Ci = 0 for i ∈ {1, 2}, where

C1 = πχ (A.4)

C2 = πφ +
√
−g(g00χ+ g0i∂iφ) . (A.5)

These two constraints reduce the number of degrees of freedom to 4 − 2 = 2, which is

consistent with the original theory. The Hamiltonian density can then be computed from

the standard procedure for a constrained system:

HT = u1C1 + u2C2 +H , (A.6)

with

H =
1

2

√
−g
[
−g00χ2 + gij∂iφ∂jφ+ 2V

]
, (A.7)

and u1 and u2 are unspecified functions. Note that the dynamics is controlled by the total

Hamiltonian HT , and we are not allowed to impose constraints on the total Hamiltonian

before computating the relevant Poisson brackets. The constraints must be preserved in

time; we therefore have the following set of equations describing the system:

Q̇i(x) = {Qi(x), HT } , Ṗi(x) = {Pi(x), HT }, Ċi =
∂Ci
∂t

+{Ci, HT } = 0, with i = 1, 2 (A.8)
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where Q1 = φ, Q2 = χ, Pi are their corresponding conjugate momenta, and HT =
∫

d3xHT
is the total Hamiltonian. The first term on the right-hand side of the equation for Ċi is

due to the fact that the metric components (and hence constraints) can explicitly depend

on time. Note that the Poisson brackets must be understood as operators in terms of

functional derivatives, i.e.

{f(x), g(x′)} ≡
∑
i=1,2

∫
d3x′′

[
δf(x)

δQi(x′′)

δg(x′)

δPi(x′′)
− δf(x)

δPi(x′′)

δg(x′)

δQi(x′′)

]
. (A.9)

From the set of equations in eq. (A.8), we find u1 = χ̇ and u2 = φ̇ as well as the Klein-

Gordon equation for the original field φ.

An alternative approach which can lead to a simplified Hamiltonian formulation in a

constrained system is to use the Dirac formalism [33]. To employ this method, we first

note that the Poisson bracket of constraints is nonzero. Let us then define

∆ij(x,x
′) ≡ {Ci(x), Cj(x

′)} . (A.10)

It can be shown that

∆ =

[
0 −N
N

(
N i∂i −N i′∂′i

)]× δ3(x− x′) , (A.11)

where we have defined N ≡
√
−gg00 and N i ≡

√
−gg0i. A prime over N i′ denotes that the

argument is evaluated at x′, while ∂′i denotes differentiation with respect to x′i. Note that

the bracket of C2 with itself is nonzero due to the presence of the spatial derivative terms.

With the help of the inverse matrix ∆ij , we can construct Dirac brackets defined by

{f(x),g(x′)}D = {f(x),g(x′)}−
∫
d3yd3y′ {f(x),Ci(y)}∆ij(y,y′){Cj(y′),g(x′)} . (A.12)

The inverse can be computed to be

∆−1 =
1

N N ′

[(
N i∂i −N i′∂′i

)
N ′

−N ′ 0

]
× δ3(x− x′) , (A.13)

where by inverse we mean∑
k

∫
d3y∆ik(x,y)∆−1

kj (y,x′) = δijδ
3(x− x′) . (A.14)

Using the Dirac brackets allows us to use the simplified Hamiltonian, in which the constraint

terms are removed. In other words, we simply use the Hamiltonian H in eq. (A.7), with the

price paid that the Poisson brackets are replaced with Dirac ones. Two relevant brackets are

{φ, χ}D = − 1

N
δ3(x− x′) , (A.15)

and

{χ, χ}D =
1

N N ′
(
N i∂i −N i′∂′i

)
δ3(x− x′). (A.16)

One can then see that Q̇i = {Qi, H}D with H =
∫
Hd3x gives the correct equations

of motion.
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The next step is to express everything in terms of ψ and ψ∗ with the help of the field

redefinition of eq. (2.11). We must add to eq. (2.11) a suitable transformation for their

conjugate momenta so the transformation is guaranteed to be a canonical transformation.

We use the standard procedure of constructing a generating function [35]. Let us consider

a generating function of old momenta πφ and πχ and new variables ψ and ψ∗ of the form

F3(πφ, πχ, ψ, ψ
∗). Then we must have

φ = −δF3

δπφ
, χ = −δF3

δπχ
, (A.17)

which, by using eq. (2.11), we can find F3 to be

F3 =

∫
d3x

[
−

πφ√
2m

(e−imtψ + eimtψ∗) + i

√
m

2
πχ(e−imtψ − eimtψ∗)

]
. (A.18)

The Hamiltonian for ψ and ψ∗ is then

Hψ = H(ψ,ψ∗) +
∂F3

∂t
, (A.19)

where the first term is the Hamiltonian of eq. (A.7) expressed in terms of ψ and ψ∗, which

takes form

H =

√
−g
2

[
−mg00ψ∗ψ +

gij

2m
(∂iψ∂jψ

∗ + ∂iψ
∗∂jψ) + 2V

+

{
e−2imt

2m

(
g00m2ψ2 + gij∂iψ∂jψ

)
+ c.c.

}]
,

(A.20)

and the second term is a partial time derivative of the density F3, defined by F3 =
∫

d3xF3,

which takes the form

∂F3

∂t
= −
√
−g
2

[
mg00(e−imtψ − eimtψ∗)2 + ig0i(e−imtψ − eimtψ∗)∂i(e−imtψ + eimtψ∗)

]
,

(A.21)

where we have imposed the constraints of eqs. (A.4) and (A.5) to eliminate old momenta

at the level of the Hamiltonian. Therefore, we have

Hψ =

√
−g
2

[
mg00ψ∗ψ +

gij

2m
(∂iψ∂jψ

∗ + ∂iψ
∗∂jψ)− ig0i(ψ∂iψ

∗ − ψ∗∂iψ) + 2V

+

(
e−2imt

2m

(
−m2g00ψ2 − 2img0iψ∂iψ + gij∂iψ∂jψ

)
+ c.c.

)]
.

(A.22)

The final step is to find consistent Dirac brackets for ψ and ψ∗. From the inverse transfor-

mation we have

ψ =

√
m

2
eimt

(
φ+

i

m
χ

)
, (A.23)

and using eqs. (A.15) and (A.16) it is easy to show that

{ψ,ψ∗}D =

(
i

N
+

1

2mN N ′
(
N i∂i −N i′∂′i

))
δ3(x− x′) , (A.24)
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and

{ψ,ψ}D = − e2imt

2mN N ′
(
N i∂i −N i′∂′i

)
δ3(x− x′) . (A.25)

It is then simple to check that the relation ψ̇ = {ψ,Hψ}D (and its complex conjugate)

leads to the correct dynamics for the system, where Hψ =
∫

d3xHψ is the Hamiltonian

with the Hamiltonian density given in eq. (A.22).

B Higher-order terms for fluctuations

In section 3.3, we have only shown nonzero modes up to order n = 2 for the fluctuations

δψ(t,x) and Φ(t,x). For completeness, we present the general form to arbitrary order and

also derive equations up to order n = 3. From eq. (3.32) we can deduce for nonzero modes

Φ(n)
ν =− 1

iν

[
Φ(n−1)′
ν + H̃sΦ

(n−1)
ν + H̃(n−1)

ν Φs +
n−1∑
`=1

∑
α 6=0,ν

H̃(`)
α Φ

(n−`)
ν−α

]

− 1

4ν

[
ψ̃sδ̃ψsδν,−2δn,2 − ψ̃∗s δ̃ψ

∗
sδν,2δn,2 + (1− δν,−2)(ψ̃sδ̃ψ

(n−1)
ν+2 + ψ̃

(n−1)
ν+2 δ̃ψs)

− (1− δν,2)(ψ̃∗s δ̃ψ
(n−1)
2−ν

∗ + ψ̃
(n−1)
2−ν

∗δ̃ψ
∗
s) + ψ̃sδ̃ψ

(n−1)
−ν

∗ + ψ̃(n−1)
ν δ̃ψ

∗
s

− ψ̃∗s δ̃ψ
(n−1)
ν − ψ̃(n−1)

−ν
∗δ̃ψs +

n−1∑
`=1

∑
α 6=0,ν

(ψ̃(`)
α δ̃ψ

(n−`)
α−ν

∗ − ψ̃(`)
−α
∗δ̃ψ

(n−`)
ν−α )

+
n−1∑
`=1

( ∑
α 6=0,ν+2

ψ̃(`)
α δ̃ψ

(n−`)
ν+2−α −

∑
α 6=0,ν−2

ψ̃
(`)
−α
∗δ̃ψ

(n−`)
α+2−ν

∗
)]
,

(B.1)

and similarly from eq. (3.31) we get

δ̃ψ
(n)
ν = − δ̃ψ

(n−1)′

ν

iν
+A(n)

ν +B(n)
ν + C(n)

ν +D(n)
ν , (B.2)

where

A(n)
ν ≡

− 3

2iν

[
H̃sδ̃ψ

(n−1)
ν +H̃(n−1)

ν δ̃ψs+

n−1∑
`=1

∑
α 6=0,ν

H̃(`)
α δ̃ψ

(n−`)
ν−α

]

+
3

2iν

[
H̃sδ̃ψsδν,2δn,2+(1−δν,2)(H̃sδ̃ψ

(n−1)
2−ν

∗+H̃
(n−1)
ν−2 δ̃ψ

∗
s)+

n−1∑
`=1

∑
α 6=0,ν−2

H̃(`)
α δ̃ψ

(n−`)
α+2−ν

∗
]

+
1

2ν

[
∇̃2δ̃ψ

∗
s

a2
s

δν,2δn,2+
∇̃2δ̃ψ

(n−1)
ν

a2
s

+(1−δν,2)(
∇̃2δ̃ψ

(n−1)
2−ν

∗

a2
s

+r
(n−2)
ν−2 ∇̃

2δ̃ψ
∗
s)

+r(n−2)
ν ∇̃2δ̃ψs+

n−2∑
`=1

( ∑
α 6=0,ν

r(`)
α ∇̃2δ̃ψ

(n−`−1)
ν−α +

∑
α 6=0,ν−2

r(`)
α ∇̃2δ̃ψ

(n−`−1)
α+2−ν

∗
)]

− 1

ν

[
Φsψ̃

(n−1)
ν +Φ(n−1)

ν ψ̃s+Φsψ̃sδν,2δn,2+(1−δν,2)(Φsψ̃
(n−1)
2−ν

∗+Φ
(n−1)
ν−2 ψ̃∗s)

+

n−1∑
`=1

( ∑
α 6=0,ν

Φ(`)
α ψ̃

(n−`)
ν−α +

∑
α 6=0,ν−2

Φ(`)
α ψ̃

(n−`)
α+2−ν

∗
)]
, (B.3)
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B(n)
ν ≡
−1

2ν

[
ψ̃2
s δ̃ψ

(n−2)
−ν

∗+2ψ̃sδ̃ψ
∗
sψ̃

(n−2)
ν +ψ̃2

s δ̃ψsδν,−2δn,3+ψ̃∗s
2δ̃ψsδν,2δn,3+ψ̃∗s

2δ̃ψ
∗
sδν,4δn,3

+(1−δν,2)(ψ̃∗s
2δ̃ψ

(n−2)
ν−2 +2ψ̃∗s δ̃ψsψ̃

(n−2)
2−ν

∗)+(1−δν,4)(ψ̃∗s
2δ̃ψ

(n−2)
4−ν

∗+2ψ̃∗s δ̃ψsψ̃
(n−2)
4−ν

∗)

+(1−δν,−2)(ψ̃2
s δ̃ψ

(n−2)
ν+2 +2ψ̃sδ̃ψsψ̃

(n−2)
ν+2 )

+

n−2∑
`,=1

′
( ∑
α,β 6=0,ν;α+β 6=ν

ψ̃(`)
α ψ̃

()
β δ̃ψ

(n−`−−1)
α+β−ν

∗+
∑

α,β 6=0,ν+2;α+β 6=ν+2

ψ̃(`)
α ψ̃

()
β δ̃ψ

(n−`−−1)
2+ν−α−β

)

+
n−2∑
`,=1

′
( ∑
α,β 6=0,ν−4;α+β 6=ν−4

ψ̃
(`)
−α
∗ψ̃

()
−β
∗δ̃ψ

(n−`−−1)
α+β+4−ν

+
∑

α,β 6=0,ν−2;α+β 6=ν−2

ψ̃
(`)
−α
∗ψ̃

()
−β
∗δ̃ψ

(n−`−−1)
ν−2−α−β

)

+

n−2∑
`=1

∑
α 6=0,ν

(2ψ̃sψ̃
(`)
α δ̃ψ

(n−`−1)
α−ν

∗+δ̃ψ
∗
sψ̃

(`)
α ψ̃

(n−`−1)
ν−α )

+
n−2∑
`=1

∑
α 6=0,ν+2

(2ψ̃sψ̃
(`)
α δ̃ψ

(n−`−1)
ν+2−α

∗+δ̃ψsψ̃
(`)
α ψ̃

(n−`−1)
ν+2−α )

+

n−2∑
`=1

∑
α 6=0,ν−2

(δ̃ψsψ̃
(`)
−α
∗ψ̃

(n−`−1)
2+α−ν

∗+2ψ̃∗s ψ̃
(`)
−α
∗δ̃ψ

(n−`−1)
ν−2−α )

+
n−2∑
`=1

∑
α 6=0,ν−4

(2ψ̃∗s ψ̃
(`)
−α
∗δ̃ψ

(n−`−1)
4+α−ν

∗+δ̃ψ
∗
sψ̃

(`)
−α
∗ψ̃

(n−`−1)
4+α−ν

∗)

]
. (B.4)

C(n)
ν ≡

2

iν

[
H̃sψ̃

∗
sΦsδν,2δn,3+(1−δν,2)(H̃sΦsψ̃

(n−2)
2−ν

∗+H̃sψ̃
∗
sΦ

(n−2)
ν−2 +Φsψ̃

∗
sH̃

(n−2)
ν−2 )

−H̃sψ̃sΦ
(n−2)
ν −H̃sΦsψ̃

(n−2)
ν −Φsψ̃sH̃

(n−2)
ν

−
n−2∑
`=1

∑
α 6=0,ν

(H̃sΦ
(`)
α ψ̃

(n−`−1)
ν−α +ΦsH̃

(`)
α ψ̃

(n−`−1)
ν−α +ψ̃sH̃

(`)
α Φ

(n−`−1)
ν−α )

+
n−2∑
`=1

∑
α 6=0,ν−2

(H̃sΦ
(`)
α ψ̃

(n−`−1)
2+α−ν

∗+ΦsH̃
(`)
α ψ̃

(n−`−1)
2+α−ν

∗+ψ̃∗sH̃
(`)
α Φ

(n−`−1)
ν−2−α )

+

n−2∑
`,=1

′
( ∑
α,β 6=0,ν−2;α+β 6=ν−2

H̃αΦβψ̃2+α+β−ν
∗−

∑
α,β 6=0,ν;α+β 6=ν

H̃(`)
α Φ

()
β ψ̃

(n−`−−1)
ν−α−β

)]
,

(B.5)
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and

D(n)
ν ≡

3

ν

[
H̃2
s δ̃ψ

∗
sδν,2δn,3+(1−δν,2)(H̃2

s δ̃ψ
(n−2)
2−ν

∗+2H̃sδ̃ψ
∗
sH̃

(n−2)
2−ν )+H̃2

s δ̃ψ
(n−2)
ν +2H̃sδ̃ψsH̃

(n−2)
ν

+

n−2∑
`,=1

′
( ∑
α,β 6=0,ν;α+β 6=ν

H̃(`)
α H̃

()
β δ̃ψ

(n−`−−1)
ν−α−β +

∑
α,β 6=0,ν−2;α+β 6=ν−2

H̃(`)
α H̃

()
β δ̃ψ

(n−`−−1)
2+α+β−ν

∗
)

+

n−2∑
`=1

∑
α 6=0,ν

(2H̃sH̃
(`)
α δ̃ψ

(n−`−1)
ν−α +δ̃ψsH̃

(`)
α H̃

(n−`−1)
ν−α )

+
n−2∑
`=1

∑
α 6=0,ν−2

(2H̃sH̃
(`)
α δ̃ψ

(n−`−1)
2+α−ν

∗+δ̃ψ
∗
sH̃

(`)
α H̃

(n−`−1)
ν−2−α )

]
. (B.6)

In the above expressions, a prime over the summation means ` +  must be less than the

upper limit. Most of the above terms are zero at leading order, but at higher orders more

and more terms contribute. For instance it can be shown that for n = 3 we have

δ̃ψ
(3)
ν = δν,2

[(
− 3

32
ψ̃∗s

2 +
1

16
|ψ̃s|2 +

∇̃4

8a4
s

+
5H̃s∇̃2

8ia2
s

)
δ̃ψ
∗
s −

ψ̃∗s
2

8
δ̃ψs

]
+ δν,−2

13

32
ψ̃2
s δ̃ψs − δν,4

13

64
ψ̃∗s

2δ̃ψ
∗
s ,

(B.7)

and

Φ(3)
ν = δν,2

[
ψ̃∗s

(
∇̃2

16a2
s

+
H̃s

8i

)
δ̃ψ
∗
s−

1

16
ψ̃∗2Φs

]
+δν,−2

[
ψ̃s

(
∇̃2

16a2
s

− H̃s

8i

)
δ̃ψs−

1

16
ψ̃2Φs

]
.

(B.8)

This procedure can be continued straightforwardly to obtain higher orders. These terms

can then be used to get an effective equation for the slow modes of different variables as

done in section 3. After lengthy algebra we obtain the effective equation for δψs, up to this

order, as follows

i ˙δψs+i
3

2
Hsδψs+

∇2δψs
2ma2

s

−mψ̄sΦs

+
9

8

|ψ̄s|2

MPl
2 δψs−

7

16

ψ̄2
s

MPl
2 δψ

∗
s+
∇4δψs
8m3a4

s

+2iHsψ̄sΦs

+

(
3i|ψ̄s|2Hs

16mMPl
2 +

17|ψ̄s|2∇2

32m2MPl
2a2
s

− Hs∇4

8im4a4
s

+
∇6

16m5a6
s

)
δψs+

(
57iψ̄2

sHs

32mMPl
2−

7ψ̄2
s∇2

32m2MPl
2a2
s

)
δψ∗s

+
7|ψ̄s|2ψ̄s
8MPl

2 Φs = 0 . (B.9)
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Likewise, for Φs we have

Φ̇s+HsΦs+
i

4MPl
2 (ψ̄sδψ

∗
s−ψ̄∗sδψs)

+
3Hs

8mMPl
2 (ψ̄sδψ

∗
s+ψ̄∗sδψs)+

i∇2

16m2MPl
2a2
s

(ψ̄sδψ
∗
s−ψ̄∗sδψs)

+
i|ψ̄s|2

16mMPl
4 (ψ̄sδψ

∗
s−ψ̄∗sδψs)+

13Hs∇2

64m3MPl
2a2
s

(ψ̄sδψ
∗
s+ψ̄∗sδψs)+

i∇4

32m4MPl
2a4
s

(ψ̄sδψ
∗
s−ψ̄∗sδψs)

− 3Hs|ψ̄s|2

16mMPl
2 Φs = 0 . (B.10)

The effective Poisson equation takes form

∇2Φs

a2
s

=
m

2MPl
2 (ψ̄∗sδψs + ψ̄sδψ

∗
s)

+
3iHs

4MPl
2 (ψ̄∗sδψs − ψ̄sδψ∗s)−

3

2
H2
sΦs

+
11|ψ̄s|2

32MPl
4 (ψ̄sδψ

∗
s + ψ̄∗sδψs) +

3iHs∇2

32m2MPl
2a2
s

(ψ̄sδψ
∗
s − ψ̄∗sδψs) .

(B.11)

C Viscous fluid

In this appendix we review the equations for the evolution for an imperfect fluid, which are

discussed in various references; see, e.g., refs. [25, 36–38]. When describing an imperfect

fluid, one typically characterizes the deviation from a perfect fluid by ∆Tµν :

Tµν = pgµν + (p+ ρ)uµuν + ∆Tµν , (C.1)

where p, ρ and uµ are the pressure, density, and 4-velocity of the fluid. Here we adopt

the convention of refs. [25, 37] that ui is the velocity of energy transport. In general, for

first-order hydrodynamics, one may consider effects of shear and bulk viscosity as well as

heat transfer. However, for the purpose of our effective fluid description, up to the working

order of section 4 we only need to consider the bulk viscosity to fully describe the system.

At higher order, on the hand, we expect the effective shear viscosity and the effective heat

transfer to appear (since these contributions are consistent with the symmetries of the

low-energy effective theory). In this simplified case ∆Tµν takes the form

∆Tµν = −ζ(gµν + uµuν)uκ;κ , (C.2)

where ζ is the coefficient of bulk viscosity (which can be both time and position dependent,

the latter of which will be ignored here); and a semicolon denotes covariant differentiation.

Note that the form of ∆Tµν suggests modification of the pressure p with bulk viscosity

pressure Πbv of the form: p→ p+Πbv where Πbv = −ζuκ;κ is proportional to the divergence

of the velocity of the fluid. For the background equations this causes a trivial modification

in the continuity equation of the form

ρ̇+ 3H(ρ+ peff) = 0 , (C.3)
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where we have defined peff = p − 3Hζ. As a result, the effect of bulk viscosity at the

background level is degenerate with the effect of pressure. In the language of our effective

fluid description for the background evolution, the effective pressure in eq. (4.3) must

include the bulk viscosity term, i.e. it is the expression for peff.

On the other hand, for fluctuations of the fluid, the bulk viscosity has nontrivial effects

in the equations of motion, and the aforementioned degeneracy beteween pressure and the

bulk viscosity will be broken. The energy conservation for fluctuations results in

δ̇ρ+ 3H(δρ+ δp) + (ρ+ peff)
∇2δu

a2
− 3(ρ+ peff)Φ̇ + 9Hζ

(
Φ̇ +HΦ− ∇

2δu

3a2

)
= 0 , (C.4)

where δρ and δp are fluctuations of density and pressure, respectively, and δu is the fluc-

tuation in the velocity potential. Note that for fluctuations of the bulk viscosity pressure

we set δΠbv = −ζδ(uκ;κ), i.e., we will not consider fluctuations of ζ. We will see that this

is sufficient to fully describe the system to the working order. Other equations for the

fluctuations read

δp+ ṗeff δu+ (ρ+ peff)( ˙δu+ Φ)− 3ζ(ρ+ peff)

2MPl
2 δu− ζ∇

2δu

a2
= 0 , (C.5)

Φ̇ +HΦ +
(ρ+ peff)

2MPl
2 δu = 0 , (C.6)

∇2Φ

a2
=

1

2MPl
2 [δρ− 3H(ρ+ peff)δu] . (C.7)

We must add to these equations a relation between pressure and the density fluctuations.

This is usually done in the comoving gauge, defined by the condition δuc = 0, where

we define

δpc = c2
s δρc . (C.8)

Here the subscript ‘c’ denotes that eq. (C.8) holds in the comoving gauge, and cs is the

sound speed [39]. By a gauge transformation, we can find a similar relation in a general

gauge as follows:

δp = c2
s [δρ− 3H(ρ+ peff)δu]−

[
ṗeff −

3ζ(ρ+ peff)

2MPl
2 + 3Hζ̇

]
δu , (C.9)

where we have used eq. (C.3) for the background energy conservation. Defining the co-

moving overdensity by

δ ≡ 1

ρ
[δρ− 3H(ρ+ peff)δu] , (C.10)

and using other equations (and their time derivatives) to remove all variables other than

δ, we obtain the following second-order differential equation for δ:

δ̈ + 2γHδ̇ −
[
c2
s − ζ

3Hpeff

ρ(ρ+ peff)

]
∇2δ

a2
− ζ

(ρ+ peff)

∇2δ̇

a2
=

ϑρ

2MPl
2 δ , (C.11)
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in which we have defined

γ = 1− 3peff

ρ
+

3ṗeff

2ρ̇
− 3ζ̇

2(ρ+ peff)
(C.12)

ϑ = 1 +
8peff

ρ
−

3p2
eff

ρ2
− 6ṗeff

ρ̇
− 6peffζ̇

ρ(ρ+ peff)
. (C.13)

For the special case of peff = 0 we have a simpler form

δ̈ + 2H

[
1− 3ζ̇

2ρ

]
δ̇ − c2

s

∇2δ

a2
− ζ

ρ

∇2δ̇

a2
=

ρ

2MPl
2 δ . (C.14)

This is the equation that is of our interest in section 4 since there we are working to O(ε)

for the field fluctuations, and to that order, peff vanishes; its nonzero value only appears

at O(ε2) and higher, which will be ignored. However, when we consider self-interaction in

appendix D the effective pressure is nonzero at leading order and we must use eq. (C.11).

Other fluid fluctuations can be written in terms of δ as

∇2δu

a2
=
−ρδ̇ + 3Hpeffδ

ρ+ peff
,

∇2Φ

a2
=

ρ

2MPl
2 δ (C.15)

δρ = ρδ + 3H(ρ+ peff)δu , δp = c2
sρδ −

[
ṗeff −

3ζ(ρ+ peff)

2MPl
2 + 3Hζ̇

]
δu . (C.16)

Before concluding this section we report similar equations in comoving gauge, i.e. δuc = 0

(which will be used in appendix G). We write the line element in this gauge by

ds2 = −(1 + 2N) dt2 + 2a(t)∂iσ dt dxi + a(t)2(1 + 2R)δij dxi dxj . (C.17)

The equations are then found to take the following form:

Ṙ = H N , σ̇ + 2H σ +
1

a
(N +R) = 0 ,

∇2R
a2

+
H∇2σ

a2
+

δρc

2MPl
2 = 0 , (C.18)

and, for the continuity and Euler equations we have

δ̇ρc + 3Hδρc − (ρ+ peff)
∇σ
a

= 0 , δpc + (ρ+ peff)N + ζ
∇σ
a

= 0 . (C.19)

D EFT for the self-interacting field

In this appendix we consider a self-interaction term in the potential,

V (φ) =
1

2
m2φ2 +

1

4!
λφ4 . (D.1)

Such self-interactions, even with a very weak coupling λ, might play an important role in

the context of cold dark matter scenarios [5, 6, 9, 10]. We follow the same procedure as

in section 3 to construct a low-energy EFT. We perform the field redefinition introduced

in section 2, expand the new field ψ as an infinite series of different modes, and find

the equation of motion for each mode. Then we identify appropriate small parameters,
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perform a perturbative expansion of the nonzero modes, and incorporate the backreaction

from (rapidly oscillating) nonzero modes into the effective equations of motion for the

slow modes. To identify appropriate small parameters, we consider the equation of motion

in terms of φ as discussed in the introduction. Since we are interested in the regime of

oscillating solutions with dominant frequency m, we must have

ελ ∼ λ
|ψ2|
m3
� 1 , (D.2)

where we have expressed what we had in eq. (1.6) in terms of ψ. This new parameter,

together with εt, εH , and εk, forms the set of small parameters for our problem. As

discussed in section 3, for fluctuations, we also consider the small parameter εg, to indicate

that we are working only to linear order in spatially varying fluctuations and make the

power counting more straightforward. Here we present the results of our analysis up to

O
(
ε2
)

for background and O(ε) for fluctuations. For background variables we have

i ˙̄ψs + i
3

2
Hsψ̄s − λ

|ψ̄s|2ψ̄s
8m2

+
9

16

|ψ̄s|2

MPl
2 ψ̄s + λ2 17|ψ̄s|4ψ̄s

768m5
+

9i

32MPl
2Hs|ψ̄s|2ψ̄s

+
3λ|ψ̄s|4ψ̄s
64m3MPl

2 +
27iλ2Hs|ψ̄s|4ψ̄s

1024m6
− 23λ3|ψ̄s|6ψ̄s

73728m8
+O

(
ε3
)
Hsψ̄s = 0 , (D.3)

3MPl
2H2

s = m|ψ̄s|2 + λ
|ψ̄s|4

16m2
+

3|ψ̄s|4

32MPl
2 −

95λ2|ψ̄s|6

9216m5
+O

(
ε3
)
m|ψ̄s|2 , (D.4)

as the effective Schrödinger and Friedmann equations, respectively. Note that the term

proportional to λ2 on the first line in eq. (D.3) has also been obtained in ref. [6] in Minkowski

spacetime. Likewise, for fluctuations we have

i ˙δψs +
3

2
iHsδψs +

∇2δψs
2ma2

s

−mψ̄sΦs −
λψ̄2

sδψ
∗
s

8m2
− λ|ψ̄s|2δψs

4m2
+

9|ψ̄s|2

8MPl
2 δψs −

7ψ̄2
s

8MPl
2 δψ

∗
s

+
∇4δψs
8m3a4

s

+ 2iHsψ̄sΦs −
λ|ψ̄s|2∇2δψs

8m4a2
s

− λψ̄2
s∇2δψ∗s

16m4a2
s

+
17λ2|ψ̄s|4δψs

256m4
+

17λ2|ψ̄s|2ψ̄2
sδψ

∗
s

384m4

+O
(
ε2
)
Hsδψ̄s = 0 , (D.5)

as the effective equation for δψs. The equation for Φs is the same as the non-interacting

case in eq. (3.38). The effective Poisson equation takes the form

∇2Φs

a2
s

=
m

2M2
P

(ψ̄∗sδψs + ψ̄sδψ
∗
s)

+
3i

4M2
P

Hs(ψ̄
∗
sδψs − ψ̄sδψ∗s)−

3

2
H2
sΦs +

λ|ψ̄s|2

16m2MPl
2 (ψ̄∗sδψs + ψ̄sδψ

∗
s)

+O
(
ε2
)
HsΦs = 0 .

(D.6)

We can find the effective fluid density and pressure by the similar procedure outlined in

section 4, which results in

ρeff = m|ψ̄s|2 + λ
|ψ̄s|4

16m2
+

3|ψ̄s|4

32MPl
2 −

95λ2|ψ̄s|6

9216m5
, peff = λ

|ψ̄s|4

16m2
+

3|ψ̄s|4

32MPl
2 −

95λ2|ψ̄s|6

4608m5
.

(D.7)
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The effective comoving overdensity can be read from eq. (D.6):

δeff =

(
δψs
ψ̄s

+
δψ∗s
ψ̄∗s

)
+ i

3Hs

2m

(
δψs
ψ̄s
− δψ∗s

ψ̄∗s

)
+
λ|ψ̄s|2

16m3

(
δψs
ψ̄s

+
δψ∗s
ψ̄∗s

)
− Φs . (D.8)

We then obtain a second-order differential equation for δeff from which one can read the

effective sound speed and the effective viscosity. Comparing with eq. (C.11) we obtain

c2
eff =

k2

4m2a2
s

+
λ|ψ̄s|2

8m3
− k4

8m4a4
s

+
5|ψ̄s|2

16mMPl
2 −

5k2λ|ψ̄s|2

32m2a2
− 23λ2|ψ̄s|4

384m6
, (D.9)

where the leading term proportional to λ is consistent with the results of refs. [9, 40]. And,

finally, the bulk viscosity coefficient reads

ζeff = − Hs

2m2
(ρeff + peff) . (D.10)

E Analyses in a multicomponent universe

Until now the scalar field was considered to be the only matter component in the universe.

However, in a realistic situation, other components are present. As a step forward, we now

consider a perfect fluid component (with a constant equation of state) along with the scalar

field. This component can be another dark matter species in a matter-dominated universe

or radiation as is the case, e.g., around the time of recombination. At the background level

by energy conservation we have

ρ̇+ 3H(ρ+ p) = 0 . (E.1)

Note that we are assuming that the scalar field and the new fluid component are interacting

only gravitationally. The Schrödinger equation, eq. (2.20), is the same as before, and the

Friedmann equation now reads

3MPl
2H2 = m|ψ|2 + ρ . (E.2)

We are not making any assumption about the relative fraction of the energy densities.

However, we expect that by decreasing the share of the scalar field, the backreaction

effects of rapid oscillations will be suppressed. We, of course, still need to assume that

H � m, such that the scalar field is oscillating, so our formalism is applicable. We present

the results considering terms up to order n = 3 (inclusive) and hence up to O
(
ε2
)

in the

effective equations for the slow modes:

i ˙̄ψs + i
3

2
Hsψ̄s +

3

8mMPl
2

(
3

2
m|ψ̄s|2 + iρs

)
ψ̄s

+
9iHsψ̄s

32m2MPl
2

(
m|ψ̄s|2 + ρs + ps

)
+O

(
ε3
)
Hsψ̄s = 0 , (E.3)

where ρs and ps are the slow-mode parts of the density and pressure of the additional fluid.

The effective Friedmann equation reads

3MPl
2H2

s = m|ψ̄s|2 + ρs +
3|ψ̄s|2

16mMPl
2

(
1

2
m|ψ̄s|2 + ρs

)
+O

(
ε3
)
m|ψ̄s|2 . (E.4)
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The effective equation of energy conservation for ρs, at this order, is the same as eq. (E.1)

and does not get corrections, i.e. ρ̇s + 3Hs(ρs + ps) = 0.

We now proceed to consider fluctuations. The fluctuations for a perfect fluid are

characterized by δρ, δp and δu corresponding to fluctuations in energy density, pressure,

and the velocity potential. The relevant, exact equations are

i ˙δψ+[Dδψ−Jψ̄]+e2imt[D∗δψ∗−J∗ψ̄∗] = 0, (E.5)

δ̇ρ+3H(δρ+δp)+(ρ+p)

(
∇2δu

a2
−3Φ̇

)
= 0 , (E.6)

∂t((ρ+p)δu)+(ρ+p)(3Hδu+Φ)+δp= 0 , (E.7)

Φ̇+HΦ+
i

4MPl
2

(
ψ̄δψ∗− ψ̄∗δψ+e−2imtψ̄δψ−e2imtψ̄∗δψ∗

)
+

1

2MPl
2 (ρ+p)δu= 0 , (E.8)

2MPl
2∇2Φ

a2
=m(ψ̄δψ∗+ ψ̄∗δψ)+δρ+6MPl

2HΦ̇+
(m

2
(e−imtψ̄+eimtψ̄∗)2 +2ρ

)
Φ , (E.9)

where we have defined

J ≡ (m− 2iH)Φ− i(ρ+ p)δu

MPl
2 , (E.10)

and D is defined in eq. (2.24). We also need the relation δpc = c̃2
sδρc, in comoving gauge

δuc = 0, where c̃s is the speed of sound for the new component (not to be confused with

the sound speed deduced from the EFT for the scalar field), which can be written in

Newtonian gauge via a gauge transformation. Again following the same set of steps as in

section 3, we obtain the effective equations for slow-mode variables δψs, Φs, as well as δρs,

δps, and δus. Here we only work up to order n = 2 (which implies that in the effective

equations for the slow modes, we neglect terms at the order of ε2 and higher). At this

order, equations of energy and momentum conservation for the fluid remain unchanged,

i.e. eqs. (E.6) and (E.7) hold with all variables replaced by their slow-mode counterparts.

The equation for δψs at this order becomes

i ˙δψs + i
3

2
Hsδψs +

∇2δψs
2ma2

s

−mψ̄sΦs +
3

8mMPl
2 (3m|ψ̄s|2 + ρs)δψs (E.11)

− 7

16

ψ̄2
s

MPl
2 δψ

∗
s +
∇4δψs
8m3a4

s

+

(
i(ρs + ps)δus

MPl
2 − δρs

8mMPl
2 + 2iHsΦs

)
ψ̄s +O

(
ε2
)
Hsδψ̄s = 0 ,

and for Φs with only a few changes

Φ̇s +HsΦs +
i

4MPl
2 (ψ̄sδψ

∗
s − ψ̄∗sδψs) +

3Hs

8mMPl
2 (ψ̄sδψ

∗
s + ψ̄∗sδψs)

+
i

8mMPl
2

∇2

2ma2
s

(ψ̄sδψ
∗
s − ψ̄∗sδψs) +

1

2MPl
2 (ρs + ps)δus +O

(
ε2
)
HsΦs = 0 ,

(E.12)

and

∇2Φs

a2
s

=
1

2MPl
2 (mψ̄∗sδψs+mψ̄sδψ

∗
s+δρs)

+
3i

4MPl
2Hs(ψ̄

∗
sδψs−ψ̄sδψ∗s)−

m|ψ̄s|2

2MPl
2 Φs−

3Hs(ρs+ps)

2MPl
2 δus+O

(
ε2
)
HsΦs .

(E.13)

– 39 –



J
H
E
P
0
7
(
2
0
2
0
)
0
5
9

As for the effective fluid description, it is rather tricky to derive the corresponding sound

speed and viscosity in the case of a multicomponent universe, as the definition of the density

contrast for the individual components is ambiguous (partly because we are dealing with

two systems that are not well separated and indeed coupled through gravity). We will

leave this analyses for a future work and only present here the effective energy density and

the effective pressure for the background evolution:

ρeff = m|ψ̄s|2 +
3|ψ̄s|2

16mMPl
2

(
1

2
m|ψ̄s|2 + ρs

)
, (E.14)

and

peff =
9|ψ̄s|4

32MPl
2 +

3|ψ̄s|2

8mMPl
2 (ps + ρs) . (E.15)

F Nonlocal field redefinition and the sound speed at arbitrary scale

In ref. [6] a nonlocal field redefinition is introduced, which yielded a dramatic simplification

when deriving an EFT in Minkowski spacetime. In this appendix, we use the same field

redefinition — still in Minkowski spacetime — to derive a sound speed for the fluctuations,

which we expect to hold for arbitrary momentum. We show that this leads to a sound

speed, consistent with eq. (4.11) in low-momentum limit, thereby confirming our results,

including the coefficient of the subdominant term. Further, this sound speed converges

to cs ' 1 in the relativistic regime, as expected. We also add to the analysis of ref. [6]

by deriving the nonlocal operator (rather than simply postulating it), by requiring the

resulting theory to have certain properties. We will see that these requirements do not fix

the field redefinition uniquely, but they do suggest that the redefinition proposed in ref. [6]

is the simplest possibility. Taking some steps more generally to also include the case of

an unperturbed FLRW background, we will see that a similar set of requirements fail in

an FLRW universe to give sufficiently simple relations, which justifies our approach in this

paper of returning to a local field redefinition.

We start from the Lagrangian in terms of φ and χ given in eq. (2.10) and consider a

more general field redefinition to introduce the ψ field. Note that φ and χ are both real

fields, therefore a general field redefinition may take the following form:

φ =
1√
2m

[O1 ψ +O∗1 ψ
∗] , χ = −i

√
m

2
[O2 ψ −O∗2 ψ∗] , (F.1)

in which O1 and O2 can be considered as arbitrary operators which can depend explicitly

on time, space, time derivatives, and spatial derivatives. We restrict these general functions

by the following considerations. First, we do not want to introduce any extra, non-physical

degrees of freedom, so we assume that O1 and O2 are independent of the time-derivative

operator. This avoids higher-order time derivatives in the resulting equations of motion.

Second, we want both sides of the above equations to be 3-scalars so that the final La-

grangian is a 3-scalar. (In an FLRW universe, the time diffeomorphism is broken, so we do

not require the Lagrangian to be a 4-scalar.) This means that, in the absence of any other

degrees of freedom or preferred direction, the arbitrary functions O1 and O2 only depend
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on spatial derivatives via ∇i∇i, where ∇i is the covariant derivative on spatial hypersur-

faces. Third, we require that in the zero-momentum limit we recover the traditional field

transformation. By comparing eqs. (F.1) and (2.11), this yields

O1(∇i∇i,x, t)→ e−imt +O
(
∇2/m2

)
for ∇2/m2 → 0. (F.2)

This ensures that we obtain the Schrödinger equation in the same limit. Finally, we want

the ψ field to be a 3-scalar, and to transform under spatial rotations in the standard way,

which restricts the spatial dependence of O1 and O2. We simply assume that O1 and O2

retain no dependence on x. With these requirements, the arbitrary functions O1 and O2

take the forms O1 = O1(∇i∇i, t) and O2 = O2(∇i∇i, t), with the additional restriction of

eq. (F.2) for O1. Note that with these restrictions, O1 and O2 commute in an unperturbed

FLRW universe.

To further restrict the forms of O1 and O2, we consider the Lagrangian in terms of ψ

and ψ∗. Plugging the definitions of eq. (F.1) into the Lagrangian of eq. (2.10), assuming

an unperturbed FLRW spacetime — that is, neglecting backreaction of the field on the

spacetime geometry — and performing some integrations by parts we obtain

L =
ia3

2

(
ψ̇Γ1ψ

∗ − ψ̇∗Γ∗1ψ
)

+ ψΓ2ψ + ψ∗Γ∗2ψ
∗ + ψ∗Γ3ψ , (F.3)

where we have assumed that O1 and O2 can be expressed as infinite series in powers of ∇2,

so that spatial integrations by parts do not introduce minus signs. We have also defined

Γ1 ≡ O1O
∗
2, (F.4)

Γ2 ≡
1

4
ma3

[
O2

2 −O2
1P2 +

3iH

m
O1O2 +

i

m
(O1Ȯ2 −O2Ȯ1)

]
, (F.5)

Γ3 ≡ −
1

2
ma3

[
|O2|2 + |O1|2P2 +

i

m
(O2Ȯ1

∗ −O∗2Ȯ1)

]
, (F.6)

and

P ≡
√

1− ∇2

m2a2
. (F.7)

From eq. (F.3) we see that nonzero Γ2 breaks U(1) symmetry, which in turn causes non-

trivial mode couplings, making the derivation of an EFT complicated. It would thus be

plausible to eliminate Γ2 by a suitable choice of O1 and O2. Let us define

Q ≡ O1O
−1
2 . (F.8)

Then we can write

Γ2 =
1

4
ma3O2

2

[
1−Q2P2 +

3iH

m
Q− i

m
Q̇
]
. (F.9)

Before considering an FLRW background, let us first consider the Minkowski case with

a(t) = 1 and H(t) = 0. In this case we can find a solution for Γ2 = 0 if we assume that Q
is real (or pure imaginary), which results in two equations,

1−Q2P2 = 0 , and, Q̇ = 0 , (F.10)
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which have a simultaneous simple solution,

Q = P−1 for Minkowski . (F.11)

Note that by setting a(t) = 1, P becomes independent of time. Continuing with the

Minkowski case, we can demand that ψ be canonically normalized, which requires Γ1 = 1,

which in turn requires O∗1 = O−1
2 . Then we have

|O1| = |O2|−1 = P−1/2 . (F.12)

Considering the nonrelativistic limit in eq. (F.2), a simple choice turns out to be

O1 = O∗2
−1 = P−1/2e−imt . (F.13)

This reduces the general field redefinition to the nonlocal field redefinition introduced in

ref. [6]. The Lagrangian then takes the form

L =
i

2

(
ψ̇ψ∗ − ψ̇∗ψ

)
−mψ∗(P − 1)ψ for Minkowski , (F.14)

which has an explicit U(1) symmetry. Note that the U(1) symmetry will be broken in the

presence of a self-interaction, indicating the violation of particle-number conservation. Note

also that there is no oscillatory factor in this free theory, which is a major simplification,

since mode coupling does not occur. This simplification, however, does not extend to the

case of a self-interacting theory.

Returning to an FLRW background, we need to solve a differential equation for Q
by requiring the terms in the brackets of eq. (F.9) to vanish, if we insist that Γ2 = 0.

However, we were unable to find a simple solution for that equation, and even requiring

Γ2 to be rather simple does not seem to simplify the derivation of an EFT. We therefore

reverted to the local field redefinition, as introduced in section 2 (see, however, ref. [16] for

a generalization of the nonlocal operator to the case of curved geometry).

The nonlocal field redefinition of eqs. (F.1) and (F.13) in a Minkowski background

enables us to derive the sound speed for density fluctuations, applicable for a wide range

of momenta. To see this, first note that the equation of motion in this case is given by

iψ̇ = m(P − 1)ψ. (F.15)

In the low-momentum limit, we may expand the nonlocal operator P to obtain the

Schrödinger equation. However, eq. (F.15) is exact (in Minkowski spacetime) and holds for

arbitrary momentum. The Hamiltonian density in terms of the original field φ is given by

H =
1

2
φ̇2 +

1

2
(∇φ)2 +

1

2
m2φ2 (F.16)

which, in terms of ψ, yields the Hamiltonian (representing the total energy of the system):

H =

∫
d3x [mψ∗Pψ] =

∫
d3x

[
m|P1/2ψ|2

]
, (F.17)
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where in the second equality we have performed an integration by parts. This implies that

the energy density of the system can be written as ρ = m|P1/2ψ|2. Inverting this relation

suggests the relation ψ = P−1/2
(√

ρ/meiθ
)

, where θ is an arbitrary, but real, function of

time and space. We assume that our Minkowski spacetime is filled with a homogeneous

and isotropic condensate of particles, and then study small fluctuations around it (note

also that we are ignoring the gravitational effects). Using the equation of motion for ψ,

eq. (F.15), at the background level we have

˙̄ρ = 0, ˙̄θ = 0. (F.18)

For small fluctuations, we find

δ̇ = 2m(P − 1)δθ , δ̇θ = −m
2

(P − 1)δ, (F.19)

where δ = δρ/ρ̄. This yields

δ̈ +m2(P − 1)2δ = 0. (F.20)

Identifying this equation with the equation governing the propagation of a (massless) fluc-

tuation with a nontrivial sound speed, namely

δ̈ − c2
s∇2δ = 0, (F.21)

and going to Fourier space, we conclude that the sound speed must take the form

c2
s =

m2

k2

(√
1 +

k2

m2
− 1

)2

. (F.22)

As emphasized above, we expect this relation to hold for arbitrary momentum

(in Minkowski spacetime). In the small-momentum limit we obtain

c2
s =

k2

4m2
− k4

8m4
+ . . . , for k � m, (F.23)

consistent with eq. (4.11). Meanwhile, in the large-momentum limit, eq. (F.22) yields

cs → 1, consistent with the speed of propagation of relativistic field fluctuations.

G Gauge transformation

In this appendix we investigate gauge transformations for fluctuations in our EFT. We

mostly follow the conventions of ref. [37]. The most general perturbed FLRW metric,

considering only scalar perturbations, may be written

ds2 = −(1 + E) dt2 + 2a(t)∂iF dt dxi + a(t)2[(1 +A)δij + ∂i∂jB] dxi dxj . (G.1)

For a general coordinate transformation of the form xµ → xµ+δxµ, the metric fluctuations

transform as

∆E = 2δ̇t , ∆F =
1

a

(
2Hδx− ˙δx− δt

)
, ∆A = 2Hδt , ∆B = − 2

a2
δx , (G.2)

– 43 –



J
H
E
P
0
7
(
2
0
2
0
)
0
5
9

where we have defined δx0 = δt and δxi = ∂iδx. The scalar field φ also transforms as

∆δφ = ˙̄φδt. However, we need a gauge transformation for δψ. From eq. (2.6) it is evident

that δψ is not a scalar under general coordinate transformations. We have

∆δψ = ψ′(x)− ψ(x) = ψ′(x′)− ψ(x) + ˙̄ψδt , (G.3)

where we have defined x′µ = xµ + δxµ. As a precaution, note that in this appendix we use

the prime to denote the variables in the new gauge, not to be confused with the rescaled

time derivative in section 3. In the new coordinates we can write

φ̇′(x′) =
∂φ′(x′)

∂x′0
=
∂xµ

∂x′0
∂φ(x)

∂xµ
= φ̇(x) + ˙̄φδ̇t . (G.4)

As a result, from eq. (2.6) which defines ψ we can show that

ψ′(x′)− ψ(x) = −im ψ̄ δt+
i√
2m

eimt ˙̄φ δ̇t . (G.5)

Thus the gauge transformation for δψ is

∆δψ =
(

˙̄ψ − imψ̄
)
δt+

1

2

(
ψ̄ − e2imtψ̄∗

)
δ̇t . (G.6)

We can deduce the gauge transformation for each mode from these equations. To achieve

this, we expand the coordinate transformation into different modes,

δt =
∑
ν

δtνe
imt , δx =

∑
ν

δxνe
imt . (G.7)

Note that since, at this stage, δt and δx are arbitrary functions it is not necessarily the case

that the slow modes (with ν = 0) will dominate over the others. However, we will restrict

ourselves to transformations for which such a hierarchy exists, as otherwise the gauge trans-

formation may spoil the EFT construction for fluctuations. This is as a result of the fact

that the field redefinition (2.11) breaks the general covariance and ψ is not a scalar under

general coordinate transformations. Substituting into the gauge transformation equations

of eq. (G.2), we find

∆Eν = 2
(

˙δtν + iνmδtν

)
, ∆Aν = 2Hα δtν−α , ∆Bν = −2rα δxν−α , (G.8)

∆Fν = 2qαHβ δxν−α−β − qα[ ˙δxν−α + i(ν − α)mδxν−α]− qαδtν−α , (G.9)

where we have defined for simplicity q ≡ 1/a(t). Similarly, from eq. (G.6), for δψ we find

∆δψν = δtα

[
˙̄ψν−α + im

(
ν − α

2
− 1
)
ψ̄ν−α − im

α

2
ψ̄∗α+2−ν

]
+

1

2
δ̇tα
(
ψ̄ν−α − ψ̄∗α+2−ν

)
.

(G.10)

We can use these relations to find the equations governing the dynamics of fluctuations in

a new gauge.
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G.1 Time-averaged comoving gauge

In this paper, we have done our analyses mainly in the Newtonian gauge, defined by the

line element in eq. (2.18). But the results of the previous section allow one to transform

our EFT to other gauges. This procedure avoids tedious, from scratch, derivation of an

EFT in a different gauge. As an example, one can consider the time-averaged comoving

gauge, which is sometimes found convenient to work with. See, e.g., refs. [22, 23], in which

the derivation of the sound speed to leading order has been done in such a gauge. In our

formalism, defining the time-averaged comoving gauge is fairly straightforward: We require

to have δueff = 0 in the new gauge. Note that this is different from the standard comoving

gauge in which δu = −δφ/φ̇ = 0. To find the relevant gauge transformation, x′µ = xµ+δxµ,

we focus on the slow mode of the temporal part, i.e. we set δt = δts and δx = 0. By using

the standard gauge transformation for the velocity potential ∆δueff = −δt and eq. (4.8) for

δueff in the Newtonian gauge, we find that the appropriate transformation has to take the

following form:

δts =
1

2mi

(
δψs
ψ̄s
− δψ∗s

ψ̄∗s

)
+

3Hs

4m2

(
δψs
ψ̄s

+
δψ∗s
ψ̄∗s

)
+

1

2mi

∇2

4m2a2
s

(
δψs
ψ̄s
− δψ∗s

ψ̄∗s

)
, (G.11)

which leads to δu′eff = 0 in the new gauge. Further, by using the standard transformation

of density and pressure fluctuations and their explicit expression in Newtonian gauge,

eqs. (4.7) and (4.9), one can obtain their form in the new gauge and show that δρ′ = ρeffδeff

and δp′eff = c2
effδρ

′
eff where δeff is gauge invariant and c2

eff is given by eq. (4.11).

As a consistency check, we will try to confirm these results by applying the gauge

transformation to the EFT in terms of δψs and then obtain the equivalent fluid description,

which we will see matches the above results. In the new gauge, as in appendix C, we write

the metric as

ds2 = −(1 + 2N) dt2 + 2a(t)∂iσ dt dxi + a(t)2(1 + 2R)δij dxi dxj , (G.12)

where we can find the slow-mode parts of the new metric components in terms of the old

variables as

Ns = Φs + δ̇ts , σs = −δts
as

, Rs = −Φs +Hsδts , (G.13)

and for the field fluctuations we have

δψ′s =
ψ̄s
2

[(
δψs
ψ̄s

+
δψ∗s
ψ̄∗s

)
−
(

3iHs

m
+

k2

2m2a2
s

)
δψ∗s
ψ̄∗s
− Φs

]
, (G.14)

where we have used the gauge transformation in eq. (G.10) and the explicit form of δts in

eq. (G.11). By inverting eqs. (G.13) and (G.14) we can write the old variables in terms of

new ones as

δψs = δψ′s − imasψ̄sσs +
k2

4m2a2
s

δψ′s −
1

2
ψ̄sRs − 2asHsψ̄sσs , (G.15)

Φs = −Rs − asHsσs . (G.16)
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Then, by using the effective equations (3.37), (3.38) and (3.39) we obtain the equations in

the new gauge, which read

∂t(δψ
′
s)−imψ̄s

(
Ns+Rs−

5

2
asHsσs

)
+
Hsk

2

2m2a2
s

δψ′s−Hsψ̄s

(
3

2
Ns+

11

4
Rs+

155

16
asHsσs

)
= 0 ,

(G.17)

∇2Rs
a2
s

+
Hs∇2σs
a2
s

+
1

MPl
2

(
mψ̄∗sδψ

′
s+

3iHs

2
ψ̄∗sδψ

′
s+

ψ̄∗sk
2δψ′s

4ma2
s

+
i|ψ̄s|2k2σs

4as

)
= 0 , (G.18)

Ṙs =HsNs , σ̇s+2Hsσs+
1

as
(Ns+Rs) = 0 . (G.19)

These are the effective equations in the new gauge. Comparing eq. (G.18) with eq. (C.18)

for an imperfect fluid, we can identify the effective density fluctuation in this gauge as

δρ′eff = ρeff

[
2
δψ′s
ψ̄s

+
3iHsδψ

′
s

mψ̄s
+

k2δψ′s
2m2a2

sψ̄s
+
ik2σs
2mas

]
. (G.20)

As expected, this coincides with the definition δρ′eff = ρeffδeff when we re-express the gauge

invariant comoving overdensity in eq. (4.6) in terms of variables in the new gauge. By

further investigation and using the Euler equation in comoving gauge given in eq. (C.19),

we can obtain the effective sound speed and coefficient of bulk viscosity which, not sur-

prisingly, coincide with what we have already obtained in Newtonian gauge. This confirms

the consistency of our results and, as a working example, shows the way that one can

obtain the EFT and the fluid description in other gauges, making use of our results in the

Newtonian gauge.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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