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1 Introduction

Aspects of gravitational physics remain mysterious even today, a century after the dis-

covery of Einstein gravity. At extremely high energies — where the dynamics becomes

necessarily quantum — our understanding of gravity is certainly incomplete. There is also

the tantalizing possibility that there is more to learn about gravity in the infrared, and
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that the observed cosmic acceleration is the first hint of some new physics. Moreover, a

thorough understanding of black hole information remains elusive. In light of this, it is

worthwhile to broadly explore avenues toward decoding the gravitational sector.

In this paper, we explore an analogy between gravity and scalar field theories that

obey certain soft theorems. These soft scalars have scattering amplitudes that vanish like

a power law when one of the external momenta is taken to zero, generalizing the Adler

zero. It has recently been understood that this behavior completely fixes the S-matrix

of the scalar, under mild assumptions [1–8]. This can also be understood in terms of the

presence of symmetries which constrain scalar self-interactions [9–16]. This rigid structure

is reminiscent of the way in which gauge invariance fixes the self-interactions of the graviton,

along with its leading interactions with matter fields. We will see that this analogy goes

beyond the superficial level, and that many of the interesting structures discovered within

gravity have echoes in soft scalar theories, as summarized in table 1.

The application of scattering amplitude techniques to gravity brings certain features

to the fore that would otherwise be less obvious. Most famously, Weinberg used on-shell

gauge invariance to derive the universality of gravity’s coupling to matter — the equiv-

alence principle — from S-matrix factorization in the soft limit [17], and it has recently

been understood that there are a number of similar subleading soft theorems [18–20]. Ad-

ditionally, the fact that graviton self-interactions are completely fixed at lowest derivative

order by gauge invariance manifests from the S-matrix perspective as the on-shell recursive

constructibility of scattering amplitudes [21–25]. We will see that each of these features

has a precise soft scalar analogue.

In order to explore the analogous behaviors in soft scalar theories, we examine two

concrete examples: the Dirac-Born-Infeld (DBI) theory and the special galileon. Each

of these theories has a nonlinear shift symmetry that both fixes their structure [10, 13]

and protects the soft behavior of their amplitudes. To fully explore the analogy with

gravity, it will be important to couple these theories to additional matter fields. From

this perspective, the distinguishing feature of these theories is the existence of a shift-

covariant effective metric to which matter couples (see table 1 for the explicit expressions).

Under a shift symmetry transformation, this metric transforms by the Lie derivative along

some particular vector field. The fact that the effective metric is covariant (rather than

invariant) tightly constrains the possible interactions between these Goldstone fields and

matter, since the matter fields must also transform under the shift symmetries. We explore

various aspects of the coupled scalar-matter systems. In particular, we verify that coupling

to matter preserves the single-soft behavior for external scalar legs. As a byproduct, we

are able to explicitly construct a coupled special galileon-vector theory which was recently

conjectured to exist [6, 16].

Each of the interesting features of gravitational scattering amplitudes has an ana-

logue in the context of the DBI and special galileon theories. For example, we will see

that because of the rigid structure imposed by symmetry, these scalar field theories have

universal leading-order couplings to matter, which implies a precise analogue of the equiva-

lence principle. The derivation of this statement from the scattering viewpoint parallels the

derivation of Weinberg’s S-matrix equivalence principle and soft graviton theorem, with
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Einstein gravity DBI Special galileon

Lagrangian:
√
−gR −

√
1 + (∂φ)2 Lsgal

Structural symmetry: Diffeomorphisms Higher-dimensional boosts Quadratic shift symmetry

Metric: gµν ηµν + ∂µφ∂νφ ηµν − ∂µ∂ρφ∂ρ∂νφ
On-shell constraint: On-shell Ward identity Vanishing single soft theorem Vanishing single soft theorem

Soft factorization: Single soft theorem Double soft theorem Double soft theorem

Equivalence principle: S-matrix equiv. principle DBI equiv. principle Special galileon equiv. principle

Constructibility: BCFW recursion Soft recursion Soft recursion

Double copy: YM ⊗ YM YM ⊗ NLSM NLSM ⊗ NLSM

Table 1. Summary of the analogy between Einstein gravity, DBI theory, and the special galileon.

Many of the defining features of gravity from the scattering perspective have precise analogues

within the scalar theories. The Lagrangian of the special galileon, Lsgal, is defined in eq. (2.10).

Note that compared to the main text we have set α = Λ = 1. The acronym YM stands for

Yang-Mills, while NLSM stands for nonlinear sigma model.

double-soft factorization for the scalar playing the same role as single-soft factorization for

the graviton. From this factorized statement, the additional information that is analogous

to the on-shell Ward identity is the demand that the universal soft factor satisfies the

appropriate single-soft theorem. Similar to the subleading single soft theorems enjoyed by

gravity [18–20], the DBI and special galileon theories also satisfy subleading double soft

theorems [26–28]. We verify that these subleading double soft theorems continue to hold

in the presence of matter couplings, while the sub-subleading theorems are not universal.

The on-shell constructibility of tree-level gravity amplitudes is an important feature of

the theory. Recently it has been understood that soft scalar field theories can similarly be

recursively constructed — a program known as the soft bootstrap [4–7]. Here we explore

the extent to which DBI and the special galileon can continue to be constructed recursively

when coupled to matter fields. As an example, we find that it is possible to bootstrap all

amplitudes with a sufficient number of DBI or special galileon legs in theories of free matter

fields minimally coupled to the DBI scalar or special galileon.

Given the close analogy between the soft scalars and gravity, we also indulge in some

speculation about how gravity would work in a world where there was no graviton, but

instead one of the scalars mediated the gravitational force. In this hypothetical world there

would be some welcome features; for example, there is in a precise sense no cosmological

constant (CC) problem. Unfortunately, there are also some less realistic and unwelcome

features; for example, the Newtonian gravitational potential would fall off like ∼ r−11 for

the special galileon and like ∼ r−7 for the DBI scalar.

It is worth noting that many analogies and direct correspondences between grav-

ity and various scalar field theories have been considered before. See, for example,

refs. [2, 4, 26, 29–38]. Our focus is to emphasize the universal coupling of soft scalar field

theories to additional matter fields, particularly from the S-matrix point of view.

The broad outline of the paper is the following: we begin by describing in section 2

the construction of matter couplings consistent with the DBI and special galileon sym-

metries. In section 3 we verify that these couplings do not spoil the single soft behavior

of the Goldstone theories. We then derive a version of the equivalence principle for DBI
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and the special galileon in section 4. An output of this derivation is the universality of

the leading double soft theorems previously derived for pure scalar theories. We also show

that these equivalence principles are incompatible with massless higher-spin particles by

proving an analogue of the generalized Weinberg-Witten theorem. In section 5 we consider

the recursive construction of the S-matrix for theories involving additional matter fields

interacting with the DBI scalar or the special galileon, including massive fields with arbi-

trary integer spin. We consider some phenomenological aspects of these scalar gravitational

theories in section 6, although they are not realistic. We collect some technical results in

the appendices.

Conventions. We work in D spacetime dimensions with D ≥ 3 and use the mostly-

plus metric signature convention. In scattering amplitudes all momenta are defined to be

incoming and we always replace symmetric traceless polarization tensors with products

of null vectors, εµ1...µsi 7→ εµ1i . . . εµsi where εi · εi = 0. We denote dot products between

momenta by pab ≡ pa · pb.

2 Coupling to matter

To fully explore the analogy between gravity and certain scalar theories with enhanced

soft limits, it is essential to couple the scalar theories to matter fields while retaining their

shift symmetries. This is the analogue of coupling gravity to matter in a diffeomorphism-

invariant way. In this section, we review how — as for gravity — there is a metric built

from the relevant fields that transforms covariantly under the shift symmetries. This metric

can thus be used to couple to matter in a way that preserves the symmetries, provided

that we transform the matter fields in an appropriate way.

2.1 DBI theory

We first consider the DBI scalar field theory [39, 40]. This theory is described by the

action1

SDBI = −ΛD

α

∫
dDx

√
1 +

α

ΛD
(∂φ)2 , (2.1)

where we have introduced the energy scale Λ, which together with the dimensionless pa-

rameter α sets the scale of strong coupling. The strong coupling scale is the only free

parameter, but we have introduced α separately as it will sometimes be useful to count

factors of α and because its sign can be important. Expanding out the first few terms gives

SDBI =

∫
dDx

(
−1

2
(∂φ)2 +

α

8ΛD
(∂φ)4 − α2

16Λ2D
(∂φ)6 +

5α3

128Λ3D
(∂φ)8 + . . .

)
. (2.2)

The action (2.1) is invariant under two types of nonlinearly realized symmetries: one is a

shift by a constant c,

δφ = c, (2.3)

1There are possible higher-derivative terms compatible with the symmetries [10], but we focus on the

leading-order interactions.
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and the other acts as

δφ = bµ

(
xµ +

α

ΛD
φ∂µφ

)
, (2.4)

where bµ is a constant vector. The action also has an obvious Z2 symmetry under φ 7→ −φ.

The DBI action has an interpretation as the world-volume action of a D-dimensional

brane embedded in RD,1, where the nonlinearly realized symmetries (2.4) are the higher-

dimensional Lorentz transformations and the shift (2.3) is the higher-dimensional trans-

lation, all of which are spontaneously broken by the presence of the brane. The ambient

Minkowski metric can be pulled back to the brane, where it is given by [10, 41]

g̃µν = ηµν +
α

ΛD
∂µφ∂νφ, (2.5)

and the DBI action (2.1) can be written as the square root determinant of this induced

metric.

This geometric interpretation provides a natural way to couple the DBI scalar field φ

to additional matter fields. The induced metric (2.5) is strictly invariant under the shift

symmetry φ 7→ φ + c, while under the boost-like symmetry (2.4) it transforms by the Lie

derivative along the vector field vµ = αbµφ/ΛD [10, 41],2

δg̃µν = Lv g̃µν , with vµ =
α

ΛD
bµφ . (2.7)

If we couple to additional matter fields in a diffeomorphism-invariant way using this metric,

and also transform the matter fields by the Lie derivative along the direction vµ as part of

the action of the symmetry, then the theory will be invariant under the transformation.3

As a simple example, we can consider coupling the DBI scalar to an additional scalar

field χ with mass mχ as

Sχ =

∫
dDx

√
−g̃

(
−1

2
g̃µν∂µχ∂νχ−

m2
χ

2
χ2

)
. (2.8)

This action is invariant under the DBI symmetries, provided the matter fields transform as

δχ = Lvχ =
α

ΛD
φ bµ∂µχ (2.9)

under the boost symmetry (2.4) and do not transform under the shift symmetry. Note

that the determinant and inverse metric involve arbitrarily many even powers of φ, so the

action (2.8) involves an infinite number of interactions between the matter field and the

DBI scalar.
2Recall that the Lie derivative of any metric along a vector field vµ can be written as

Lvgµν = vα∂αgµν + gαν∂µv
α + gαµ∂νv

α. (2.6)

3The induced transformation properties of the matter fields can be understood in two equivalent ways.

From the brane perspective, the higher-dimensional boost symmetries take us out of static gauge and require

a compensating world-volume reparametrization to restore the gauge. The brane matter fields transform

under this coordinate change by the Lie derivative along vµ [42]. Alternatively, this transformation of

matter fields can be understood from the coset construction [43].

– 5 –



J
H
E
P
0
7
(
2
0
2
0
)
0
5
6

Couplings to other forms of matter can be engineered essentially by following the

minimal-coupling prescription for gravity, using the metric g̃µν . We give additional exam-

ples below when we consider the special galileon.

2.2 Special galileon

Our other scalar theory of interest is the special galileon [1, 13, 31]. The special galileon

is a sum of all the galileon terms with even numbers of fields in D dimensions, with fixed

relative coefficients:4

Ssgal = −1

2

∫
dDx

bD+1
2 c∑

n=1

αn−1

(2n− 1)!Λ(D+2)(n−1)
(∂φ)2 LTD

2n−2, (2.10)

where as with DBI we have introduced an energy scale Λ and a dimensionless parameter α

that together set the scale of strong coupling. In eq. (2.10) the total derivative combinations

LTD
n are defined by

LTD
n ≡

∑
p

(−1)pηµ1p(ν1) · · · ηµnp(νn)Φµ1ν1 · · ·Φµnνn , (2.11)

with Φµν ≡ ∂µ∂νφ, and the sum runs over all permutations of the ν indices with (−1)p the

sign of the permutation. As an explicit example, the theory in D = 4 takes the form

S =

∫
d4x

(
−1

2
(∂φ)2 − α

12Λ6
(∂φ)2

[
(�φ)2 − (∂µ∂νφ)2

])
. (2.12)

In addition to the familiar shift symmetries enjoyed by the individual galileon terms [9],

δφ = c+ bµx
µ, (2.13)

the structure of the action is fixed by invariance under the higher-order shift symmetry [13]

δφ = sµν

(
xµxν − α

ΛD+2
∂µφ∂νφ

)
, (2.14)

where sµν is a traceless symmetric constant tensor. Lastly, like the DBI theory, the special

galileon also has a Z2 symmetry φ 7→ −φ.

As in the DBI theory, we can construct an effective metric from the special galileon

field

ḡµν = ηµν −
α

ΛD+2
∂µ∂αφ∂

α∂νφ, (2.15)

which transforms covariantly under the extended shift symmetry (2.14); under a shift it

transforms by the Lie derivative (2.6) along the following vector field:

δḡµν = Lv ḡµν , vµ = − 2α

ΛD+2
sµν∂νφ . (2.16)

4The precise admixture of galileon terms can be changed by so-called galileon duality field redefini-

tions [44, 45], so the more precise statement is that the special galileon admits a duality frame in which the

action takes the form in eq. (2.10).
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This effective metric can be understood as arising either from a geometric embedding [14],

or from the coset construction [15, 46, 47]. Note that — unlike the DBI case — the special

galileon itself (2.10) cannot be written in terms of this effective metric. Rather, it is a

Wess-Zumino term for the relevant symmetries [13, 15, 46].

The covariance of the metric (2.15) suggests a simple way to couple the special galileon

to matter fields. As in the DBI case, we let the matter fields transform under the special

galileon symmetry as the Lie derivative of the vector field vµ, defined in eq. (2.16), and

then couple them by forming diffeomorphism invariants from the metric (2.15), just as we

couple matter to the graviton in general relativity (GR). A few explicit examples of this

general procedure are as follows:

• Scalar: we can add to Ssgal a minimally coupled scalar field χ with mass mχ with

the action5

Sχ = −1

2

∫
dDx
√
−ḡ
(
ḡµν∂µχ∂νχ+m2

χχ
2
)
, (2.18)

where the metric ḡµν is given by (2.15) and the scalar field χ transforms under

the special galileon symmetry as the scalar Lie derivative along the vector field in

eq. (2.16),

δχ = Lvχ = − 2α

ΛD+2
sµν∂µφ∂νχ . (2.19)

As for the DBI theory, the action (2.18) involves an infinite number of interactions

between the matter field and the special galileon due to the determinant and inverse

metric.

• Vector: we can add to Ssgal a minimally coupled spin-1 particle Aµ with mass mA,

SA =

∫
dDx
√
−ḡ
(
−1

4
FµνF

µν −
m2
A

2
AµA

µ

)
, (2.20)

where Fµν ≡ ∂µAν − ∂νAµ and indices are raised and lowered with ḡµν . The vector

field transforms under the special galileon symmetry as

δAµ = LvAµ = − 2α

ΛD+2
sαβ (∂βφ∂αAµ + ∂β∂µφAα) , (2.21)

which is the same transformation found by different arguments in ref. [16]. We show

later that in the massless case, mA = 0, this theory is the conjectured vector-special

galileon theory whose S-matrix was partially constructed in ref. [6] through soft

bootstrap arguments. Again, note that the action (2.20) has interactions involving

arbitrarily many even powers of φ.

5The inverse metric ḡµν that appears in the action is given by [14]

ḡµν = ηµν +

∞∑
n=1

αn

Λ(D+2)n
Φµα(Φ2n−2)αβΦβν , (2.17)

where Φµν ≡ ∂µ∂νφ and (Φn)µν = Φµα1Φα1
α2
· · ·Φαn−1

ν . In this expression the Φ indices are raised and

lowered using the flat metric.
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• Spin-2: we can add a massive spin-2 particle Hµν with the following addition to the

action6

SH =

∫
dDx
√
−ḡ
(
− 1

2
∇̄λHµν∇̄λHµν + ∇̄µHνλ∇̄νHµλ − ∇̄µH∇̄νHµν +

1

2
∇̄µH∇̄µH

−
m2
H

2

(
HµνH

µν −H2
))

, (2.22)

where ∇̄ is the covariant derivative of ḡµν and indices are again raised and lowered

with ḡµν . The massive spin-2 field transforms as

δHµν =LvHµν (2.23)

=− 2α

ΛD+2
sσλ∂λφ∂σHµν−Hσν∂µ

(
2α

ΛD+2
sσλ∂λφ

)
−Hσµ∂ν

(
2α

ΛD+2
sσλ∂λφ

)
. (2.24)

In addition to the minimally coupled free fields described above, it is also possible to

add matter self-interactions and non-minimal terms containing the Riemann curvature of

ḡµν , e.g.,

∆Sχ =

∫
dDx
√
−ḡ
(
λn
n!
χn + λ(∂χ)2�χ+ ρχ2R(ḡ)

)
. (2.25)

In general, we can use the metrics g̃µν and ḡµν to couple the DBI scalar and the special

galileon to anything to which gravity can couple. Since diffeomorphism invariance is in-

compatible with higher-spin gauge symmetry in flat space, we expect that these scalars

cannot couple to massless spin-s particles with s ≥ 2 while preserving all the various shift

symmetries, as we discuss more below. However, there is no symmetry obstruction to

coupling DBI or the special galileon to massive particles of any spin, including massive

gravity [52]. Note also that we cannot couple two different special galileon fields [6, 16],

just as we cannot couple two gravitons [53]. There do exist multi-DBI theories [54], but in

this case there is still a unique covariant metric. There also exists a theory involving the

special galileon interacting with NLSM and biadjoint scalars that controls the single soft

limits of special galileon amplitudes [55].

3 Single soft limits

A crucial ingredient in the construction of gauge theory amplitudes is the requirement that

on-shell amplitudes are gauge invariant. Along with Lorentz invariance, this fixes a large

measure of the structure of the theory [56]. Most strikingly, these combined principles

completely fix the structure of on-shell three-particle amplitudes, which then form the

6Note that we have not included non-minimal couplings between the massive spin-2 particle and the

background curvature associated to the metric ḡµν . Such couplings are typically required to ensure that

the massive spin-2 particle propagates the correct number of degrees of freedom [48–51]. Since we are

considering everything in perturbation theory, these considerations will not be important to us — as a

consequence this coupling will not be ghost free, but this does not affect the perturbative computation of

the S-matrix. See appendix A for more discussion.
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seeds from which the theory can be recursively generated. In the context of the shift-

symmetric scalars we are studying, an analogous role is played by the single soft behavior

of the theories, since demanding a particular generalized Adler zero in the single soft limit

completely fixes the lowest-order interactions. We will later review how the full S-matrix

can be grown from this seed.

In order to fix notation, we first review the systematics of taking soft limits of scattering

amplitudes. Consider an N -point scattering amplitude, AN . We rescale one of the external

momenta, pa 7→ τpa, and then take the limit τ → 0. The scattering amplitude in this soft

limit takes the schematic form

AN ∼ τσ ( · · · ) + · · · . (3.1)

Here the parameter σ characterizes the softness of the amplitude, with larger positive values

indicating that the amplitude goes to zero more rapidly as we scale the external momentum

to zero. To make this unambiguous we use momentum conservation to eliminate other

momenta in favor of pa, thus maximizing σ.

Given this definition of the soft limit, we can ask for a classification of theories based

on the power of σ they display [1, 4–8] — one may think of this as a generalization of

the Adler zero condition. To get nontrivial results some restrictions must be placed on the

theories, otherwise we can get any soft behavior by including many derivatives. The natural

constraint is to limit the number of derivatives per field that appear in the action. With this

restriction, theories that have softer-than-expected behavior have enhanced symmetries,

which enforce cancellations between Feynman diagrams with different topologies in the

soft limit. This makes the study of soft limits nicely complementary to the parallel effort

to classify theories with extended shift symmetries [11–16].

In this section, we study the single soft limits of scattering amplitudes of DBI and the

special galileon. Our motivation is two-fold. First, we want to review how the Adler zero

condition constrains the structure of theses theories. Secondly, we want to verify explicitly

that the matter couplings introduced in section 2 preserve the enhanced Adler zero that

these theories have in isolation. In particular, since the matter interactions we consider

are constructed to preserve the DBI or special galileon symmetry, the resulting amplitudes

should have enhanced soft behavior when the DBI or special galileon legs are taken soft.

This only holds for all interactions if we impose that they preserve the Z2 symmetry, since

otherwise there can be higher-derivative cubic interactions that spoil the vanishing single

soft behavior [4, 47, 57].

3.1 DBI theory

We start by briefly considering soft limits of amplitudes in the pure DBI theory. The

quartic interaction in eq. (2.2) gives the amplitude

A(1φ, 2φ, 3φ, 4φ) =
α

ΛD
(
p2

12 + p2
13 + p2

14

)
. (3.2)

This amplitude trivially has σ = 2 soft behavior for each leg, which can be seen after using

conservation of momentum. There are many equivalent ways to write on-shell amplitudes

– 9 –
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using momentum conservation, but it will be convenient for our later considerations to

write this amplitude in the following form:

A(1φ, 2φ, 3φ, 4φ) = − 2α

ΛD
(
p13p23 − p2

12

)
, (3.3)

which has the terms ordered by their total degree in p1 and p2 while also being manifestly

symmetric under p1 ↔ p2. From now on we will always write quartic amplitudes and

vertices this way, since this manifests the relative importance of each term in the double

soft expansions that we consider later.

The first nontrivial features occur at six points. At this order there are two distinct

contributions to scattering: there is an exchange contribution from the (∂φ)4 vertex and

there is a contact contribution from the (∂φ)6 vertex, as depicted in figure 1. Individually,

these contributions have σ = 1, but the leading-order pieces in the soft limit cancel against

each other so that the full amplitude has a σ = 2 soft limit. We can similarly calculate the

eight-point DBI amplitude to see that there are nontrivial cancellations between diagrams

to achieve the σ = 2 soft behavior of the total amplitude.

3.2 Special galileon

Now we consider pure special galileon amplitudes. The first interaction occurs at quartic

order and the corresponding on-shell four-point amplitude is

A(1φ, 2φ, 3φ, 4φ) = − 2α

ΛD+2
p12 p13 p23 . (3.4)

This amplitude trivially has σ = 3 soft behavior for each leg.

The first nontrivial case is again at six points. There are 10 exchange diagrams that

contribute to this amplitude, as depicted in figure 1. The sum of these exchange diagrams

has σ = 2 soft behavior,

lim
τ→0
Aexc.(1φ, 2φ, 3φ, 4φ, 5φ, 6φ) = τ2

(
2α

Λ2(D+2)
p12 p13 p

2
23 + · · ·

)
+ · · · , (3.5)

where we have only written a representative contribution to the soft limit, as the full

expression is rather lengthy. Note that here and in the rest of this section we take the soft

limit of the first leg. For D > 4, there is also a six-point contact vertex from the n = 3

term in eq. (2.10), as shown in figure 1, which has leading soft behavior

lim
τ→0
Acont.(1φ, 2φ, 3φ, 4φ, 5φ, 6φ) = τ2

(
− 2α

Λ2(D+2)
p12 p13 p

2
23 + · · ·

)
+ · · · . (3.6)

This precisely cancels the σ = 2 terms in eq. (3.5), so the total amplitude has σ = 3 soft

behavior. For D ≤ 4 the six-point term is a total derivative and the exchange diagram by

itself has enhanced soft behavior, since the τ2 terms in eq. (3.5) vanish due to a dimension-

dependent Gram identity.

We can similarly calculate the eight-point special galileon amplitude. This involves

exchange diagrams made from the sextic and quartic vertices, exchange diagrams made

from three quartic vertices, and a contact term that is non-vanishing in D > 6. The

different diagrams have nontrivial cancellations to achieve the σ = 3 soft behavior of the

total amplitude.
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Figure 1. Six-point diagrams for pure DBI/special galileon amplitudes. For DBI, the exchange and

contact contributions individually have σ = 1 soft behavior, but the full amplitude has σ = 2 soft

behavior due to nontrivial cancellations between diagrams. For the special galileon, each individual

contribution has σ = 2 soft behavior, but their combination has a σ = 3 soft limit.

3.3 Minimally coupled free matter

Having reviewed how amplitudes involving only Goldstone scalars have enhanced soft be-

havior, we now verify that this persists in the presence of interactions with matter fields.

This should of course be the case, because the interactions have been engineered to preserve

the shift symmetries responsible for the soft behavior. Nevertheless, the explicit scattering

computation provides a useful consistency check.

Consider free matter fields interacting with the DBI scalar or special galileon through

the minimal couplings introduced in section 2. Expanding the determinant and inverse

metrics appearing in the kinetic terms leads to an infinite number of vertices, each with

two matter fields and an even number of scalar fields. The lowest-order interaction occurs

through a four-point vertex, as depicted in figure 2. For spin-0, spin-1, and massive spin-2

particles, we get the following on-shell four-point amplitudes:

A(1φ, 2φ, 3χ, 4χ)=− 2α

Λ(D+2κ)
pκ12 p13 p23, (3.7)

A(1φ, 2φ, 3A, 4A)=− 2α

Λ(D+2κ)
pκ12

[
p13 p23 ε3 ·ε4 + (p13 ε3 ·p2 ε4 ·p1 + p23 ε3 ·p1 ε4 ·p2)

]
, (3.8)

A(1φ, 2φ, 3H , 4H)=− 2α

Λ(D+2κ)
pκ12ε3 ·ε4

[
p13 p23 ε3 ·ε4 + 2 (p13 ε3 ·p2 ε4 ·p1 + p23 ε3 ·p1 ε4 ·p2)

+ p12 (ε3 ·p2 ε4 ·p1 + ε3 ·p1 ε4 ·p2)
]
, (3.9)

where

κ =

{
0 for DBI,

1 for the special galileon.
(3.10)

In these amplitudes, the spin-0 and spin-1 particles can be either massive or massless. It

is easily checked that all of these have the desired σ = κ+ 2 soft behavior.

In the case of a massless spin-1 particle in four dimensions, the four-point ampli-

tude (3.8) with the special galileon precisely matches the amplitude found in ref. [6] using

a soft bootstrap approach. The presence of the same coupling constant in this amplitude

and the special galileon four-point amplitude was observed in ref. [6] and follows from the

special galileon version of the equivalence principle, which we discuss in section 4.

The first non-trivial cancellations again happen at six points. In this case there are

two amplitudes involving the minimally coupled matter fields. The first has two external

– 11 –



J
H
E
P
0
7
(
2
0
2
0
)
0
5
6

1 2

34

Figure 2. Quartic interaction between the DBI/special galileon (dashed line) and matter (solid

line).

Figure 3. Six-point diagrams with two external matter legs. The number of distinct permutations

of each diagram is (1, 6, 4).

matter fields and receives contributions from two types of exchange diagrams, as shown in

figure 3. In each of our examples the sum of the exchange diagrams alone has σ = κ + 1

soft behavior, e.g.,

lim
τ→0
Aexc.(1φ, 2φ, 3φ, 4φ, 5φ(s) , 6φ(s))

=
α2

Λ2(D+2κ)
×

{
τ
(
−2p12 p

2
23 (ε5 ·ε6)s + · · ·

)
+O(τ2), κ = 0,

τ2
(
2p14 p15 p

2
23 (ε5 ·ε6)s + · · ·

)
+O(τ3), κ = 1,

(3.11)

where φ(s) denotes the spin-s particle, i.e. φ(0) = χ, φ(1) = A, φ(2) = H. As before, by

expanding out the inverse metric and determinant in the kinetic terms we also get six-point

contact terms, which in the soft limit precisely cancel the σ = κ+1 terms in eq. (3.11). The

total amplitudes thus have σ = κ+ 2 soft behavior due to nontrivial cancellations between

the Feynman diagrams. The other six-point amplitudes are those with four external matter

fields, which are built from the four-point matter vertices with the exchange of a scalar. In

this case there are no contact terms and each exchange diagram individually has σ = κ+ 2

soft behavior.

We have also carried out a number of checks of the soft behavior at eight points

and verified that all cases have the expected σ = 2 + κ soft behavior. There are three

additional kinds of amplitudes to consider, those with two, four, or six external matter

legs. The amplitudes with two external matter legs are built from 336 exchange diagrams

(with seven different topologies) plus a contact term, and the amplitudes with four external

matter legs are made from 228 exchange diagrams (with four different topologies). Each of

these amplitudes involve nontrivial cancellations between diagrams to achieve the enhanced

σ = κ + 2 soft behavior. The remaining class of amplitudes has six external matter legs

and is built from 90 exchange diagrams of a single topology. In this case each diagram has

σ = 2 + κ soft behavior, so there are no cancellations between diagrams.
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1

2

a

3n+ 2

n+ 1 4

Figure 4. The (n+ 2)-point exchange diagrams in the χn theory, where a ∈ {3, . . . , n+ 2}. These

diagrams alone have σ = 2 soft behavior, but they combine with the (n+ 2)-point contact term in

eq. (3.12) so that the total amplitude has σ = 3 soft behavior.

3.4 Matter self interactions

The soft behavior of the amplitudes considered in the previous section is quite nontrivial

and requires intricate cancellations between a large number of diagrams. A reasonable

question is whether there is something special about the case that we considered, where

the matter sector is free and all the interactions come from mixing with the DBI or special

galileon. To investigate this, we consider here two examples where the matter fields have

self interactions.

Example 1. The first example we consider is where the matter field is a a massive scalar

with a χn interaction with n ≥ 3, as given in eq. (2.25). We consider just the special

galileon case for simplicity. Expanding the determinant in this interaction leads to the

vertices

Lχ ⊇
1

n!
λnχ

n − 1

2n!

αλn
ΛD+2

∂µ∂νφ∂µ∂νφχ
n. (3.12)

The n-point scalar vertex here is iλn and the (n+ 2)-point vertex is given by

V (1φ, 2φ, 3χ, . . . , (n+ 2)χ) = − iαλn
ΛD+2

p2
12. (3.13)

Consider the amplitude with two external galileon legs and n matter legs. By combin-

ing the quartic and n-point vertices we get the (n + 2)-point exchange diagrams depicted

in figure 4, which contribute to the amplitude as

Aexc.
n+2 (1φ2φ3χ . . . (n+ 2)χ)

∣∣∣
λn

= − αλn
ΛD+2

p12

n+2∑
a=3

p1a p2a

p12 + p1a + p2a
, (3.14)

where the notation |λn means that we only write the part of the amplitude proportional

to λn. In the soft limit this gives

lim
τ→0
Aexc.
n+2 (1φ2φ3χ . . . (n+ 2)χ)

∣∣∣
λn

= τ2 αλn
ΛD+2

p2
12 +O(τ3), (3.15)

which has σ = 2 soft behavior. This is precisely cancelled by the contribution from the

contact term (3.13), confirming that the part of this amplitude proportional to λn has

σ = 3 soft behavior, as required by the symmetry.
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Figure 5. Six-point diagrams with two external special galileons and four galileons. The number

of distinct permutations of each diagram is (12, 3, 6).

Example 2. As another example, consider the coupling of the special galileon to a cubic

galileon, i.e., the interaction λ(∂χ)2�χ with coupling λ, where mχ = 0 and indices are

contracted using ḡµν , as in eq. (2.25). Expanding the metric gives the cubic and quintic

interactions,

Lχ ⊇
αλ

ΛD+2

[
(∂χ)2

(
1

2
∂α∂βφ∂α∂βφ∂

µ − ∂µ∂αφ∂α∂νφ∂ν − ∂µ∂νφ∂ν�φ
)

− ∂νχ�χ∂µ∂αφ∂α∂νφ
]
∂µχ+ λ(∂χ)2�χ, (3.16)

where the quintic interactions receive contributions from the connection of the effective

metric. The cubic vertex and the quintic vertex with all but the fifth leg on-shell are

given by

V (1χ, 2χ, 3χ) = 2iλ (p12 p33 + p13 p22 + p23 p11) , (3.17)

V (1φ, 2φ, 3χ, 4χ, 5χ) = − 2iαλ

ΛD+2
p12

[
2 (p13 p23 p45 + p14 p24 p35 + p15 p25 p34)

+ p55 (p14p23 + p13p24 − p12p34)
]
. (3.18)

Consider the six-point amplitude with two external special galileon legs and four reg-

ular galileon legs (the five-point amplitude vanishes identically). This amplitude recieves

contributions from 15 exchange diagrams built from the minimal coupling quartic vertex

and two cubic vertices (with two different topologies) and from six exchange diagrams built

from the cubic and quintic vertices, as shown in figure 5. The leading single soft behavior

of the first set of these exchange diagrams is

lim
τ→0
Aexc. 1

6 (1φ2φ3χ4χ5χ6χ)
∣∣∣
λ

= τ2 αλ2

ΛD+2

(
−24p12 p16 p

2
23 p24 + . . .

)
+O(τ3), (3.19)

and the leading single soft behavior of the second set of exchange diagrams is

lim
τ→0
Aexc. 2

6 (1φ2φ3χ4χ5χ6χ)
∣∣∣
λ

= τ2 αλ2

ΛD+2

(
24p12 p16 p

2
23 p24 + . . .

)
+O(τ3). (3.20)

These precisely cancel at order τ2, so the total amplitude has σ = 3 single soft behavior

on the first leg. This demonstrates how higher-derivative matter interactions can give the

expected soft behavior through nontrivial cancellations between diagrams.
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4 Soft scalar equivalence principles

Gravity is universal. This universality can, in a sense, be thought of as a defining property of

GR. Indeed, it was taking the equivalence principle seriously that led Einstein to construct

GR. The apparatus of S-matrix theory provides an interesting twist to the logic — from this

viewpoint the equivalence principle is an output, following from simultaneously demanding

locality and Lorentz invariance for massless spin-2 particles. In this section, we will show

how the soft scalar EFTs have a precise analogue of the equivalence principle, deepening

their analogy with gravity.

It is worth first briefly reviewing how the gravitational equivalence principle manifests

in the S-matrix approach. A bosonic spin-s particle, φ
(s)
µ1...µs , which is coupled to the

graviton, hµν , or which couples to any particle that couples to gravity, must interact with

gravity through the following on-shell cubic vertex

V
(
1h, 2φ(s) , 3φ(s)

)
= − 2i

M
D−2
2

Pl

(ε1 · p2) (ε1 · p3) (ε2 · ε3)s +O(p1) , (4.1)

where the coupling is universal and set by the reduced Planck mass, MPl, and where

any other contributions to this vertex are at least linear in the graviton momentum p1.

This is the S-matrix equivalence principle. Weinberg proved this using purely on-shell

arguments by imposing the on-shell Ward identity on scattering amplitudes with a soft

graviton leg [17]. This result relies on the technical assumption that the set of graviton

cubic interactions contains the cubic vertex of GR, in addition to the usual assumptions of

Lorentz invariance and locality. In the Lagrangian approach, this part of the vertex arises

from minimally coupling a particle’s kinetic term to the metric, so we refer to it as the

minimal coupling vertex.

Both DBI scalars and the special galileon obey an interesting analogue of the equiva-

lence principle. One might suspect that something like this should be true because there

is a covariant effective metric that all matter fields can couple to in a way that preserves

the shift symmetry. In this section, we put this Lagrangian intuition on-shell by deriving

the DBI and special galileon versions of the S-matrix equivalence principle. We assume as

part of their definition that these theories have a Z2 symmetry under φ 7→ −φ.

4.1 DBI equivalence principle

The statement we will derive is quite similar to the usual gravitational equivalence principle.

Any particle that is coupled to a DBI scalar — or any particle that couples to a particle

that couples to a DBI scalar — must interact with the DBI scalar through an on-shell

quartic vertex with the following form:

V
(
1φ, 2φ, 3φ(s) , 4φ(s)

)
= −2iα

ΛD
p13 p23 (ε3 · ε4)s +O(ξ3), (4.2)

where the universal coupling α is the DBI coupling and ξ counts the total combined power

of p1 and p2. This leading interaction arises in the Lagrangian approach from minimally

coupling a particle’s kinetic term to the DBI metric, so we refer to it as the minimal

coupling vertex.

– 15 –



J
H
E
P
0
7
(
2
0
2
0
)
0
5
6

N + 1

N + 2

a 1
2

N − 1
N

Figure 6. The leading diagrams in the double soft limit of AN+2. The dashed lines are the soft

scalar legs and the solid lines denote arbitrary external particles.

On-shell proof. We now show from the on-shell perspective why such couplings must be

universal. The derivation parallels the derivation of the gravitational S-matrix equivalence

principle [17]. In Weinberg’s derivation, there are two crucial components: the universality

of the leading interactions in the single soft limit and the on-shell Ward identity. We will

see that the analogue of the single soft limit of the graviton is the double soft limit of DBI

scalars and the analogue of the on-shell Ward identity is the vanishing single soft theorem.

To begin, consider a general N -point amplitude, AN , with N > 2 and where the ath

particle has spin sa, mass ma, and a polarization tensor ε
(a)
µ1...µsa . It will sometimes be help-

ful to strip off the polarization of the ath particle and define AN = ε
(a)
µ1...µsaA

µ1...µsa
N,a (pa),

where the dependence of the amplitude on the other momenta is suppressed. We then

attach to AN two DBI legs with momenta pN+1 and pN+2 and denote the resulting am-

plitude by AN+2. After scaling pN+1 → ξpN+1 and pN+2 → ξpN+2, we want to find the

leading part of AN+2 in the limit ξ → 0, i.e., the double soft limit.7 Note that to make

this procedure unambiguous we use momentum conservation to maximize the smallest ex-

ponent of ξ appearing in the double soft limit of AN+2, i.e. the double soft degree of AN+2.

This can be achieved, for example, by eliminating all occurrences of any one momentum

that is not taken soft plus one additional contraction not involving the soft momenta.

The leading contributions to the double soft limit come from exchange diagrams where

the two scalar legs meet at a quartic vertex on an external line of AN , as shown in figure 6.

Only these diagrams can contribute pole terms in the double soft limit. Any other exchange

diagrams will give subleading contributions in the double soft limit and can thus be ignored.

Contact diagrams can also be ignored since they do not contribute at leading order in the

double soft limit, as we explain more fully below.

Moreover, we only need to consider quartic vertices that have the required DBI single

soft behavior and the minimal double soft degree for the first two legs. It turns out that

there is a unique such vertex, as we explain in appendix B, which has double soft degree

two and takes the form of the minimal coupling vertex (4.2),

V
(
1φ, 2φ, 3φ(sa) , 4φ(sa)

)
= −2iαa

ΛD
p13 p23 (ε3 · ε4)sa , (4.3)

7One can consider other double soft limits, where the different legs are taken soft at different rates, but

we do not need these.
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where αa is the coupling constant for the ath particle in the amplitude AN , which a priori

can take any value. If particle a is itself a DBI scalar, then from eq. (3.3) we have that

αa = α.

We can now calculate the leading contribution to the double soft limit of AN+2 by

summing over the diagrams of the type shown in figure 6 using the quartic vertices (4.3),

lim
ξ→0
AN+2 =− lim

ξ→0
2ξ2

N∑
a=1

αa
ΛD

pN+1 ·pa pN+2 ·pa ε(a)
λ1...λsa

Πλ1...λsaµ1...µsa (p̃a)

p̃2
a +m2

a

Aµ1...µsaN,a (p̃a)

+O(ξ2), (4.4)

where we have defined the shifted momentum p̃a ≡ pa+ξpN+1 +ξpN+2 and Πν1...νsa ,µ1...µsa

is the numerator of the propagator for particle a. The factors of ξ in the propagator

denominator mean that there are O(ξ) contributions to eq. (4.4). We can simplify this

expression using the completeness relation for the on-shell propagator,

Πν1...νsa ,µ1...µsa =
∑
`

ε∗(`)ν1...νsa ε
(`)
µ1...µsa

+ . . . , (4.5)

where ` runs over the polarization states of the intermediate particle and the ellipsis denotes

gauge-dependent longitudinal terms that are present for massless particles but that drop out

in eq. (4.4) because they contract with the polarization and the gauge invariant amplitude.

This gives

lim
ξ→0
AN+2 = −ξ

N∑
a=1

αa
ΛD

pN+1 ·pa pN+2 ·pa
(pN+1 + pN+2)·pa

AN +O(ξ2). (4.6)

Equation (4.6) follows from general principles — essentially just S-matrix factorization

along with the input that the interaction takes the form (4.3). To make further progress,

we now add nontrivial input from the DBI theory, namely that it has enhanced single soft

behavior. We demand that AN+2 has σ = 2 single soft behavior on the DBI legs, which

we impose by scaling pN+1 to zero faster than pN+2 in the formula (4.6). Importantly,

this condition must hold order-by-order in the double soft parameter ξ. Rescaling pN+1 →
τpN+1 and then taking τ to zero gives

lim
τ→0

lim
ξ→0
AN+2 = − τ ξ

ΛD
AN pN+1 ·

(
N∑
a=1

αapa

)
+O(τ2, ξ) +O(ξ2). (4.7)

The first term is O(τ) and must therefore vanish or cancel against other terms for the

amplitude to have σ = 2 single soft behavior. A local contact term cannot contribute at

O(ξ) since these must be invariant under pN+1 ↔ pN+2 and so only contribute even powers

of ξ in the double soft limit when N > 2. There can also be no O(ξ0) contact terms since

these would be inconsistent with the required single soft behavior. It is then clear that the

only way to have the desired single soft behavior is if the couplings αa are all equal, since

then the leading term is proportional to pN+1·pN+2AN by momentum conservation, which

is O(ξ2) and can cancel against other terms.8 Moreover, the universal coupling must be

8This is a necessary but not sufficient condition for the total amplitude to have the requisite soft behavior,

which is completely parallel to the gravitational S-matrix equivalence principle, which is a necessary but

not sufficient conditions for the full amplitude to be gauge invariant.
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equal to α, the DBI self-coupling, since we can consider the case when AN has an external

DBI scalar.

We thus conclude that all particles must either couple to the DBI scalar through

the minimal coupling quartic vertex with the same universal coupling constant or else

completely decouple.

4.2 Special galileon equivalence principle

The DBI S-matrix equivalence principle derived above also has a special galileon analogue.

In this case the statement is that particles must couple to the special galileon through the

following on-shell quartic vertex:

V
(
1φ, 2φ, 3φ(s) , 4φ(s)

)
= − 2iα

ΛD+2
p12 p13 p23 (ε3 · ε4)s +O(ξ5) , (4.8)

where the universal coupling is given by α and where ξ again counts the total combined

power of p1 and p2, or else they must completely decouple from anything that couples to

the special galileon. This vertex follows from minimal coupling of the matter kinetic term

with the covariant metric (2.15), so we refer to this as the minimal coupling vertex. In

addition to non-minimal interactions involving curvature tensors of the metric, there are

invariant interactions that can be built from the other covariant building blocks of the

coset construction [46, 47], but these do not modify the vertex (4.8).

On-shell proof. We can prove the special galileon equivalence principle in a similar way

to the DBI case. Since many of the algebraic manipulations are similar, we will be more

telegraphic in this derivation. The essential ingredients are again the special galileon double

soft limit and the vanishing single soft theorem.

Consider adding two additional special galileon legs with momenta pN+1 and pN+2 to

an N -point amplitude AN = ε
(a)
µ1...µsaA

µ1...µsa
N,a (pa), rescaling pN+1 → ξpN+1 and pN+2 →

ξpN+2, and taking the double soft limit ξ → 0. The leading diagrams in this limit are again

the exchange diagrams depicted in figure 6. The minimal double soft degree of a quartic

vertex with the required σ = 3 single soft behavior is four. An example of such a vertex is

that with the structure of the minimal coupling vertex,

V
(
1φ, 2φ, 3φ(sa) , 4φ(sa)

)
= − 2iαa

ΛD+2
p12 p13 p23 (ε3 · ε4)sa , (4.9)

where αa is the coupling constant for the ath particle in the amplitude AN . This coupling

is α if particle a is itself a special galileon. Unlike in the DBI argument, there are multiple

vertices with the same double soft degree as the minimal coupling vertex, so these all

contribute at the same order in the double soft limit. It turns out that these other vertices

must be absent to be consistent with the σ = 3 single soft behavior, as we explain in detail

in appendix B, so we again only have to consider the vertex (4.9).

We can now calculate the leading contribution to the double soft limit of AN+2 by

summing over the diagrams in figure 6 using the quartic vertex (4.9). Following the same

steps as for DBI gives

lim
ξ→0
AN+2 = −ξ3 pN+1 ·pN+2

N∑
a=1

αa
ΛD+2

pN+1 ·pa pN+2 ·pa
(pN+1 + pN+2)·pa

AN +O(ξ4). (4.10)
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We now demand that AN+2 has σ = 3 single soft behavior. Rescaling pN+1 → τpN+1 and

then taking τ to zero gives

lim
τ→0

lim
ξ→0
AN+2 = − τ2ξ3

ΛD+2
pN+1 ·pN+2AN pN+1 ·

(
N∑
a=1

αapa

)
+O(τ3, ξ3) +O(ξ4). (4.11)

The first term is O(τ2) and must therefore vanish or cancel against other terms for AN+2

to have σ = 3 single soft behavior. Contact terms cannot cancel this term since they have

an even double soft degree for N > 2. The only way to achieve this is if the coupling

constants are all equal, since then the leading term is proportional to (pN+1 ·pN+2)2AN
by momentum conservation, which is of order ξ4 and can thus cancel against other terms.

Moreover, we must have αa = α, the special galileon self coupling, since AN can have an

external special galileon leg.

This implies that all particles must couple to the special galileon through the minimal

coupling quartic vertex with coupling constant α or else completely decouple. Note that

this argument does not go through for a generic galileon theory, since these only have σ = 2

single soft behavior, which does not constrain the couplings αa.

4.3 No massless higher-spin interactions

Now that we have derived the DBI and special galileon equivalence principles, we can

utilize them to prove some further interesting facts. For example, it is not possible to

consistently couple these scalars to gravity or massless higher-spin particles, since their

equivalence principles are inconsistent with higher-spin gauge invariance. This echoes the

fact that when s > 2, the gravitational minimal coupling vertex (4.1) is incompatible with

the higher-spin gauge invariance that would be required for a massless spin-s particle,

implying that gravity cannot couple to massless higher-spin fields in flat space [58–62].

Consider the minimal coupling quartic vertices (4.2) and (4.8) between the soft scalars

and a massless spin-s particle. Under a gauge variation of the spin-s field, where we shift

ε3 7→ ε3 + εp3, these vertices change at linear order in ε by

δV
(
1φ, 2φ, 3φ(s) , 4φ(s)

)
= − 2iα

ΛD+1
s pκ12 p13 p23(ε4 · p3)(ε3 · ε4)s−1 +O(ξ2κ+3), (4.12)

where κ = 0 for the DBI scalar, κ = 1 for the special galileon, and ξ again counts the

total power of p1 and p2. This must be cancelled by the gauge variation of other terms

if the spin-s particle is massless. Any additional terms must have 2κ + 4 derivatives

if their gauge variations are to help cancel (4.12), since the gauge variation of a vertex

preserves the number of derivatives when all particles are massless. A direct check of all

possibilities shows that no vertices with the requisite properties exist except when s = 1,

as we now describe. This is the soft scalar analogue of the generalized Weinberg-Witten

theorem [59–61].

We begin by enumerating all possible on-shell quartic vertices with 2κ+ 4 derivatives

and which vanish in the soft limit with σ ≥ κ+ 2. The result is a sum of terms of the form

pr1212 pr1313 (ε3 ·ε4)n34(ε3 ·p1)m31(ε3 ·p2)m32(ε4 ·p1)m41(ε4 ·p2)m42 , (4.13)
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where the exponents are non-negative integers satisfying the linear system of equations

n34 +m31 +m32 = s, (4.14a)

n34 +m41 +m42 = s, (4.14b)

m31 +m41 + r12 + r13 ≥ κ+ 2, (4.14c)

m32 +m42 + r12 + r13 ≥ κ+ 2, (4.14d)

m31 +m32 +m41 +m42 + 2r12 + 2r13 = 2κ+ 4. (4.14e)

These conditions ensure that the two particles have the same spin and that the vertex has

2κ+ 4 derivatives and is consistent with having σ = κ+ 2 soft behavior.

It is straightforward to explicitly find all solutions to these equations for each spin

and to further impose that they are the on-shell part of a vertex with the correct particle

interchange symmetries. This leaves a (4κ+ 6)-parameter family of vertices for each s > 2

(there can be fewer for s ≤ 2), including the minimal coupling vertex.

Imposing the on-shell Ward identity for the higher-spin leg, we find that there are no

gauge invariant vertices amongst these general families for s ≥ 2. For s = 1, there are

unique gauge-invariant completions of the minimal coupling vertices,

V
(
1φ, 2φ, 3A, 4A

)
= − 2iα

ΛD+2κ
pκ12

[
p13 p23 ε3 ·ε4 + (p13 ε3 ·p2 ε4 ·p1 + p23 ε3 ·p1 ε4 ·p2)

]
, (4.15)

which are the full on-shell vertices for a photon minimally coupled to a DBI scalar or

special galileon. The absence of solutions for s ≥ 2, combined with the equivalence prin-

ciples, shows that the DBI scalar and the special galileon, like gravity, cannot couple to

massless higher-spin fields, including gravity. A possible loophole is if the higher-spin in-

teractions take a noncovariant form, as for the light-cone vertices used in some proposed

four-dimensional flat space higher-spin theories [63–66] (see also refs. [67, 68]). Another

possible loophole is for parity-odd theories in D ≤ 5, which we have not considered here.

4.4 Double soft theorems

A byproduct of the proofs of the soft scalar equivalence principles is that the leading double

soft limits of DBI and special galileon matter amplitudes have a universal factorized form,

lim
ξ→0
AN+2 = −ξ2κ+1 α

ΛD+2κ
(pN+1 ·pN+2)κAN

N∑
a=1

pN+1 ·pa pN+2 ·pa
(pN+1 + pN+2)·pa

+O(ξ2κ+2). (4.16)

These are the analogues of Weinberg’s soft graviton theorem [17, 69] and are well-known

for the pure scalar theories [26–28],9 but here we see that they hold also in the presence of

matter.

For the graviton, the leading soft theorem is just the beginning of the story, and the

graviton satisfies also a subleading soft theorem [18–20].10 Similarly, there are universal

9The analogy with the graviton soft theorem was already pointed out in ref. [26].
10There are also interesting connections between soft theorems, asymptotic symmetries, and memory

effects, as reviewed in ref. [70]. Scalar analogues of these relations have been studied in, e.g., refs. [71–73].

It would be interesting to further explore these connections for the theories considered here.
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subleading terms in the double soft expansions of the pure scalar theories [26–28], so it is

interesting to explore whether or not these continue to hold in the presence of matter. Here

we briefly review these subleading results and discuss how they generalize to amplitudes

involving matter fields.

DBI and special galileon double soft theorems. We begin by reviewing the state-

ments of the double soft theorems for the DBI scalar and special galileon, which were

originally discovered in ref. [26]. If we scale pN+1 → ξpN+1 and pN+2 → ξpN+2 in an

(N + 2)-point amplitude AN+2 with all DBI legs (κ = 0) or all special galileon legs (κ = 1)

and take ξ → 0, the amplitude factorizes into a series of soft factors times the N -point

amplitude obtained by removing the two soft legs [26]:

lim
ξ→0
AN+2 =

α

ΛD+2κ
ξ2κ(pN+1 ·pN+2)κ

2∑
j=0

S(j)AN +O(ξ2κ+4), (4.17)

where the various soft factors are given by

S(0) =
ξ

4

N∑
a=1

(
(pN+1 ·pa − pN+2 ·pa)2

(pN+1 + pN+2)·pa + ξpN+1 ·pN+2
+ (pN+1 + pN+2)·pa + ξpN+1 ·pN+2

)
,

(4.18)

S(1) =
ξ2

2

N∑
a=1

(pN+1 − pN+2)·pa
(pN+1 + pN+2)·pa + ξpN+1 ·pN+2

pN+1,µ pN+2,νJ
µν
a , (4.19)

S(2) =
ξ3

2

N∑
a=1

1

(pN+1 + pN+2)·pa + ξpN+1 ·pN+2

×
(

(pN+1,µ pN+2,νJ
µν
a )2 +

(
3

2
− 2κ

)
(pN+1 ·pN+2)2

)
. (4.20)

Each soft factor S(j) has an expansion in small ξ starting at O(ξj+1). The operator Jµνa
appearing in these formulas is the spin-0 angular momentum operator,

Jµνa ≡ pµa
∂

∂pνa
− pνa

∂

∂pµa
. (4.21)

Double soft theorems with matter. Since we are able to couple soft scalars to matter

fields, we can check whether the double soft theorems are satisfied in this more general

case. We saw in the proof of the equivalence principles that there is a universal leading

term in the double soft expansion given by eq. (4.16), which is indeed equivalent to the

leading part of eq. (4.17). As anticipated, this is the special galileon analogue of Weinberg’s

universal pole formula [17, 69].

By explicit checks of many examples, we find that also the subleading O(ξ2κ+2) part

of eq. (4.17) continues to hold in the presence of matter, where the angular momentum

operator for spinning particles is given by

Jµνa ≡ pµa
∂

∂pνa
− pνa

∂

∂pµa
+ εµa

∂

∂ενa
− ενa

∂

∂εµa
. (4.22)
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We have checked this up to eight points for amplitudes involving soft scalars and matter

fields with spin up to two. At sub-subleading order, i.e. O(ξ2κ+3), we find that the double

soft theorem is no longer universal and depends on the matter fields and their interactions.

This is consistent with the expectation that only the leading and subleading double soft

terms are universal [26], as for the single soft terms in gravity [18, 74].

For gravity, in addition to the universal leading soft interaction (4.1), there is a uni-

versal subleading soft interaction,

V
(
1h, 2φ(s) , 3φ(s)

)
=

2i

M
D−2
2

d

(ε1 · p2)2(ε2 · ε3)s

+
2si

M
D−2
2

d

(ε1 · p2) (ε1 ·ε2 ε3 ·p1 + ε1 ·ε3 ε2 ·p3) (ε2 · ε3)s−1+O(p2
1) . (4.23)

This can be understood from the Lagrangian point of view by noting that nonuniver-

sal terms come from nonminimal interactions involving the Ricci curvature, which are

quadratic in the graviton momentum. By inspection of several examples, we can see that

there should also be a universal subleading double soft interaction for the DBI scalar and

special galileon coupled to matter,

V
(

1φ, 2φ, 3φ(s) , 4φ(s)
)

=− 2iα

ΛD+2κ
pκ12 p13 p23 (ε3 · ε4)s − 2siα

ΛD+2κ
pκ12

(
p13 ε3 ·p2 ε4 ·p1

+ p23 ε3 ·p1 ε4 ·p2

)
(ε3 · ε4)s−1 +O(ξ2κ+4) , (4.24)

where ξ counts the total combined power of p1 and p2. We emphasize that although this

subleading interaction is present in all of the examples we considered, we have not proven

that it, or the subleading double soft theorem, is universal.

5 Soft recursion

In this section we explore yet another interesting similarity between soft scalars and grav-

ity. Scattering amplitudes in Einstein gravity famously satisfy recursion relations, which

can be used to build the higher-point S-matrix from knowledge of on-shell processes at

lower points. The most well-known of these relations are the celebrated BCFW recursion

relations [21, 22]. These recursive constructions can, in a sense, be thought of as a direct

definition of the S-matrix of the theory, without recourse to some underlying Lagrangian

description, at least at tree level.

It has recently been understood that scalar field theories that vanish sufficiently quickly

in the single soft limit can also obey recursion relations.11 This soft recursion was initially

developed in ref. [2] and was subsequently applied and developed in, e.g., refs. [3–7]. It is

therefore interesting to understand how the soft behavior of certain DBI or special galileon

plus matter amplitudes allows them to be constructed recursively. We begin by briefly

reviewing how soft recursion works for the amplitudes of interest in this paper.

11There can also exist recursion relations for theories with nonvanishing soft theorems [3, 57].
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5.1 Review of soft recursion relations

Consider an N -point amplitude AN where the ath particle has spin sa, momentum pa, a

soft exponent σa,
12 and a symmetric traceless polarization tensor ε

µ1...µsa
a . Recall that for

each polarization tensor we make the following replacement in the amplitude without any

loss of generality:

εµ1...µsaa 7→ εµ1a . . . εµsaa , (5.1)

where εµa is a null vector. We now perform a complex deformation of the momenta that

rescales the first N − r momenta and shifts the rest,

pa 7→ pa(1− caz), a = 1, . . . , N − r, (5.2a)

pa 7→ pa + zqa, a = N − r + 1, . . . , N, (5.2b)

where z is a complex deformation parameter, ca are constants, and qa are constant D-

vectors. This is referred to as an “all-but-r-line soft shift”. We take the first N − r

particles to be massless, so the on-shell conditions impose the constraints

N−r∑
a=1

capa =

N∑
a=N−r+1

qa, (5.3a)

qa · qa = qa · pa = qa · εa = 0, for a = N − r + 1, . . . , N. (5.3b)

In total there are N − r+Dr shift variables ca and qa subject to D+ 3r−nr,0 constraints,

where nr,0 is the number of spin-0 particles in the last r legs . To nontrivially probe the

soft kinematics, we require a solution to the constraints (5.3) that is not just an overall

rescaling or shift of the momenta; this removes two one-parameter families of solutions, so

overall we need

N − r +Dr − 2 ≥ D + 3r − nr,0 (5.4)

in order to have enough freedom to construct a nontrivial momentum shift.

After shifting the momenta, the amplitude becomes a function of z, AN (z). Using

Cauchy’s theorem we can write the original amplitude as the contour integral

AN (0) =

∮
γ

AN (z)

zF (z)
, (5.5)

where γ is a small contour encircling the origin and F (z) is defined as

F (z) =

N−r∏
a=1

(1− caz)σa+sa . (5.6)

This denominator of the integrand is chosen such that any would-be poles at z = c−1
a are

exactly cancelled by zeros of the numerator because z → c−1
a corresponds to a soft limit of

the amplitude, and we have assumed that the amplitude has the requisite soft behavior to

cancel these poles.

12We define σa for massless spin-sa particles so that the amplitude scales as O(pσa+sa) in the soft limit.
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It is then possible to write the amplitude as minus the sum over the residues of the

other singularities of the integrand, assuming that there is no boundary term at z = ∞.

These singularities correspond to factorization channels of the amplitude, so we can write

AN (0) = −
∑

channels I,
particlesψI

Res
z=zI±

 AL(z)AR(z)

z
(
PI(z)2 +m2

ψI

)
F (z)

 , (5.7)

where the sum runs over all possible factorization channels I where a particle goes on-shell

and all possible particles ψI that can be exchanged in this channel. The factorized ampli-

tudes AL(z) and AR(z) are lower-point amplitudes into which AN (z) factorizes on a partic-

ular channel, and PI(z) is the deformation of the sum of momenta PI =
∑

a∈I pa that add

up to zero on the factorization channel. Finally, zI± are the two roots of PI(z)2 +m2
ψI

=0.

Evaluating the residues leads to the following recursive expression for the amplitude.

AN (0) =
∑

channels I,
particlesψI

AL(zI+)AR(zI+)(
P 2
I +m2

ψI

)
(1− zI+/zI−)F (zI+)

+
(
zI+ ↔ zI−

)
. (5.8)

In order for the recursion relation (5.8) to be valid we have to ensure that the integrand

of (5.5) goes to zero sufficiently fast as |z| → ∞. This will be the case if for large z the

factors of z in F (z) exceed the factors of z coming from the explicit momenta appearing

in the amplitude. The general criteria for this to occur for massless amplitudes in four

dimensions is given in ref. [6].

5.2 All-line soft shift for massless matter amplitudes

Having reviewed the general formalism of soft recursion, we now apply it to some of the

soft scalar plus matter theories discussed in this paper.

We start with the case where all fields are massless, so we can use the all-line soft shift

given by (5.2) with r = 0. If the matter fields have vanishing soft behavior, which is the

case for photons or derivatively coupled scalars, then the recursion relation based on this

shift has greater applicability (in certain dimensions) than the r > 0 shifts, but it has the

disadvantage of working only in dimensions below some upper bound. In particular, by

eq. (5.4) this momentum shift is possible when

N ≥ D + 2. (5.9)

As an example, consider the case of a free massless scalar or a free photon minimally

coupled to the DBI scalar or special galileon. For an N -point amplitude with Nφ DBI legs

(κ = 0) or Nφ special galileon legs (κ = 1), we can choose the denominator function (5.6) as

F (z) =

Nφ∏
a=1

(1− caz)κ+2
N∏

a=Nφ+1

(1− caz) , (5.10)
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which grows like zN+Nφ(κ+1) at large z. The N -point amplitudes for minimally coupled

massless free fields grow like pN for DBI and p2N−2 for the special galileon, so the absence

of a boundary term in the integrand of eq. (5.5) requires that

Nφ > 0 for DBI, (5.11)

Nφ ≥
N

2
for the special galileon. (5.12)

That is, at least half of the external legs must be special galileons for the recursion rela-

tion (5.8) to be valid in the special galileon theory, but we only need a nonzero number of

DBI legs for the all-line soft recursion in the DBI theory. For example, in D = 4 we can

recursively construct the six-point amplitudes with two external photons or two external

massless scalars in both the DBI and special galileon theories, but only in DBI can we

recursively construct the six-point amplitudes with four external photons or four external

massless scalars. We have explicitly checked that the amplitudes so constructed agree with

the expressions computed directly in section 3.3.

We can understand the special galileon bound (5.12) from the Lagrangian perspective

by considering non-minimal interactions, which are schematically of the form

∆Lχ ∼ ∇2kRNφ/2(∂χ)N−Nφ , ∆LA ∼ ∇2kRNφ/2FN−Nφ . (5.13)

At N points these produce contact amplitudes that have the same p2N−2 momentum scaling

as the minimal coupling interactions precisely when

Nφ <
N

2
. (5.14)

So in these cases the soft behavior does not uniquely fix the amplitude, which explains why

recursion is not possible. We can similary understand the DBI bound (5.11) by noting that

contact terms can never match the DBI amplitudes for Nφ > 0.

5.3 All-but-r-line soft shift

Since DBI and the special galileon have exceptional soft behavior, we can also construct

amplitudes involving general matter fields using the all-but-r-line soft shift [4, 5] discussed

in section 5.1. The recursion relations resulting from this shift are valid when the inequal-

ity (5.4) is satisfied. This momentum shift is especially suitable when some of the external

particles are massive and it works in all dimensions above some lower bound when r ≥ 2.

To see how this works, consider an N -point amplitude where the first Nφ fields are

DBI scalars or special galileons and perform an Nφ-line soft shift on these external legs,

with the denominator function

F (z) =

Nφ∏
a=1

(1− caz)κ+2 , (5.15)
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which grows like zNφ(κ+2) at infinity. For minimally coupled free fields, the absence of a

boundary term requires that

Nφ >
N

2
for DBI, (5.16)

Nφ >
2N − 2

3
for the special galileon. (5.17)

For example, for D ≥ 4 we can recursively construct the six-point amplitudes with two

massive matter fields and four DBI or special galileon legs. We have explicitly checked

this in D = 4 with matter fields of spin up to two. Note that this recursion also works for

general massive higher-spin fields coupled to the DBI scalar or special galileon.

This momentum shift also allows us to recursively build certain amplitudes from min-

imally coupled matter with self interactions. For example, consider the (n + 2)-point

amplitude with two special galileons and n scalars χ in the χn scalar theory considered in

section 3.4. By eq. (5.4), the all-but-n-line soft shift is valid for

D ≥ 2n

n− 1
. (5.18)

When n is even, this amplitude is not constructible, due to the contributions from interac-

tions connected to the kinetic term. However, for odd n the interactions connected to the

kinetic term do not contribute and the amplitude grows like p4, so there is no boundary

term in (5.5) when we take

F (z) = (1− c1z)3 (1− c2z)3 . (5.19)

We can thus use recursion to construct these amplitudes for odd n in three or more dimen-

sions, which we have explicitly verified for several values of n and D.

6 “Gravitational” phenomenology

Given that soft scalars share so many features with gravity, it is amusing to ponder what

a world with a DBI or special galileon as the graviton would be like.13 In this section we

indulge this curiosity by deriving the effective gravitational force felt between objects and

by exploring some cosmological aspects of the theories.

6.1 Effective gravitational force

The fact that DBI and the special galileon couple universally to matter suggests that they

should mediate a universal long-range force between matter sources. The long-range ∼ r−1

potentials mediated by Einstein gravity arise from tree level diagrams with cubic couplings

between one massless graviton and two matter particles. However both DBI and the special

galileon are Z2 invariant, so there are no three-point couplings between these scalars and

two matter particles. The long-range potentials therefore arise at one loop, from a diagram

13Needless to say, we are not advocating that this is how gravity actually behaves.
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of the type depicted in figure 7. We will restrict to deriving the potential between scalar

sources, for simplicity.14

Let A(s, t) be the amplitude for elastic scattering of two scalars, of mass m1 and m2.

Let ~pi, ~pf be the initial and final spatial momentum of particle 1 in the center of mass frame,

and ~q = ~pf − ~pi the momentum transfer. We have ~p 2
i = ~p 2

f ≡ ~p 2, and the Mandelstam

variables can be written in terms of ~p 2 and ~q 2: t = −~q 2, s = (m1 +m2)2 +O(~p 2). Let

A(~q ) ≡ lim
~p2→0

A(s, t) = A((m1 +m2)2,−~q 2). (6.1)

This is the low-energy limit of the amplitude at fixed momentum transfer. The static

interaction potential is then given by the Fourier transform

V (r) = − 1

4m1m2

∫
d3q

(2π)3
e−i~q·~rA(~q ) . (6.2)

Terms in the amplitude which are analytic in ~q 2, i.e. analytic in t, Fourier transform

into delta functions and derivatives of delta functions and so do not contribute to the long-

range potential. Therefore only the parts of the amplitude that are non-analytic in t are

of interest in computing the potential.

Gravity. It is useful to quickly review how the potential in Einstein gravity arises from

this on-shell perspective. The long-range gravitational potential between two sources comes

from the non-analytic part of the four-point scattering amplitude, which is dominated by

the tree-level exchange of virtual gravitons.

Scalar sources interact with gravity through the standard minimal coupling interactions

Sχ = −1

2

∫
d4x
√
−g
(
gµν∂µχ∂νχ+m2

χχ
2
)
. (6.3)

The tree amplitude for scattering two scalars with masses m1 and m2 has only a t-channel

diagram and is given by

= − 1

M2
Plt

(
s(s+ t)− (m2

1 +m2
2)(2s+ t) +m4

1 +m4
2

)
. (6.4)

Up to analytic terms in ~q 2, the amplitude (6.1) is given by

A(~q ) =
2m2

1m
2
2

M2
p ~q

2
, (6.5)

and the Fourier transform (6.2) to obtain the potential yields the familiar expression for

the Newtonian potential between two massive objects,

V (r) = − m1m2

8πM2
Plr

= −Gm1m2

r
. (6.6)

14Not much generality is lost in the assumption, as the Newtonian potential is not sensitive at leading

order to the internal structure of the sources.
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Figure 7. Loop diagram leading to a potential between two scalar sources χ and ψ, arising from

either DBI or the special galileon.

DBI. We are now ready to turn to the soft scalar cases of interest. In these cases there is

no tree-level contribution to the amplitude and the leading long-range force will first arise

at the one loop level. We first consider the case of a DBI scalar coupled to matter fields

through the minimal coupling as in eq. (2.8). This is the same as the gravitational minimal

coupling but with the metric replaced by the effective DBI metric (2.5). The leading-order

contribution to the classical potential arises from the diagram in figure 7. One-loop forces

of this type have also been studied in refs. [75–77].

Computing the t-channel scattering amplitude at one loop, we obtain

A(t)(1χ, 2ψ, 3χ, 4ψ)=−α
2t2 log(−t)
3840π2Λ8

(
s2+t2+st+(t−2s)(m2

1+m2
2)+m4

1+m4
2+4m2

1m
2
2

)
+· · · ,
(6.7)

where we have not shown terms analytic in t, which includes the scale of the logarithm and

the UV divergences from the loop, since these do not do give rise to long-range forces. Up

to analytic terms in ~q 2, the amplitude (6.1) is given by

A(~q ) = −α
2m2

1m
2
2

640π2Λ8
~q 4 log

(
~q 2
)

+
α2
(
m2

1 +m1m2 +m2
2

)
1920π2Λ8

~q 6 log
(
~q 2
)
− α2

3840π2Λ8
~q 8 log

(
~q 2
)
.

(6.8)

Now we can take the Fourier transform as in eq. (6.2) to get the potential. The Fourier

integrals can be performed using the method outlined in the appendix of ref. [78], which

yields the result

V (r) = − 3α2m1m2

128π3Λ8r7
−

21α2
(
m2

1 +m1m2 +m2
2

)
64π3Λ8m1m2r9

− 189α2

16π3Λ8m1m2r11
. (6.9)

Notice that this potential decays very rapidly with distance, like ∼ 1/r7, and is universally

attractive like gravity. Note also that since the UV divergences and RG scale of the loop

do not contribute to the potential, this is a well defined and calculable quantity in the

effective field theory, independent of any UV structure or completion.

Special galileon. We can repeat the same calculation for the special galileon, where

scalar sources couple as in eq. (2.18). We again need to compute the t-channel scattering

amplitude between unequal mass scalars at one loop. The result up to terms analytic in t is

A(t)(1χ, 2ψ, 3χ, 4ψ)=− t
4α2 log(−t)
15360π2Λ12

(
s2+t2+st+(t−2s)(m2

1+m2
2)+m4

1+m4
2+4m2

1m
2
2

)
+· · · .
(6.10)
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We can extract the non-relativistic potential felt by the scalars by taking the low-energy

limit, so that the amplitude takes the form

A(~q ) = − α2m2
1m

2
2

2560π2Λ12
~q 8 log

(
~q 2
)

+
α2
(
m2

1 +m1m2 +m2
2

)
7680π2Λ12

~q 10 log
(
~q 2
)

− α2

15360π2Λ12
~q 12 log

(
~q 2
)
, (6.11)

up to terms analytic in ~q 2. Fourier transforming, we get the potential

V (r) = −567α2m1m2

32π3Λ12r11
−

10395α2
(
m2

1 +m1m2 +m2
2

)
16π3Λ12m1m2r13

− 405405α2

8π3Λ12m1m2r15
. (6.12)

This potential falls off with distance very quickly, like ∼ 1/r11, even faster than the DBI

potential in eq. (6.9), so gravity in a special galileon world is very weak.

6.2 Cosmology

The coarse features of cosmology in models where a soft scalar plays the role of the graviton

are rather interesting. For example, in both the DBI and the special galileon theories there

is no CC problem.15 The analogue of the CC is a term that contains a tadpole L ∼ φ. For

DBI, this tadpole by itself is the full Lagrangian, since it is invariant under the relevant

symmetries. For the special galileon, there are in addition compensating galileon terms

of odd order which make the action invariant [13]. In both cases, these terms cannot be

written directly in terms of invariants of the coset construction and so they are Wess-

Zumino terms for the relevant symmetries.16 They are therefore not renormalized either

by self-loops, or by loops of heavy fields, so long as we couple to matter in a way that

respects the symmetries [80, 81].

Another interesting feature of the special galileon models is that they display a version

of degravitation [82–84], albeit a version that is too efficient. The special galileon possesses

a solution where the field profile is of the form φ ∼ x2, which leads matter fields coupled to

the galileon to experience an effective de Sitter geometry if they couple as ∼ φT . However,

in the special galileon theory, matter fields couple to the effective metric (2.15), which

remains flat. Additionally, the galileon itself sees a flat metric; even though a tadpole term

is not induced radiatively, it has no effect on the dynamics even if it is present — which is

a kind of degravitation.

Despite the fact that these theories are not realistic as models of gravity, perhaps there

is some lesson to learn for the study of real gravity. In particular, we have seen that these

models do not suffer from a CC problem, and display a version of degravitation. Given

that these models share many features with gravity, understanding the precise mechanisms

for these features could possibly be helpful for the study of gravity itself.

15This is a major difference between the models we consider and some of the previous scalar field analogues

for gravity [29, 30, 33]. A motivation for considering these previous models was to shed light on the CC

problem. Models based on the conformal dilaton have a precise analogue of the CC problem, essentially

because the potential in the theory is not radiatively stable in the presence of matter couplings.
16The DBI tadpole can be interpreted geometrically as the volume enclosed by a brane in higher dimen-

sions [41, 79].
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7 Conclusions

Scalar field theories with enhanced soft limits have many interesting properties. In this

paper we have explored how these theories behave when coupled to matter. We have seen

that the shift symmetries of DBI theory and the special galileon constrain their interactions

with matter in a way that is quite similar to the constraints imposed by diffeomorphism

invariance when coupling matter to Einstein gravity. In particular, we have shown that

there are analogues of the S-matrix equivalence principle, whereby all matter couples to

the DBI scalar or special galileon through a particular quartic vertex with a universal

coupling, which can be proven using purely on-shell arguments. These scalar equivalence

principles lead to universal double soft theorems that are analogues of Weinberg’s soft

theorem and, when combined with analogues of the generalized Weinberg-Witten theorem,

forbid interactions with massless higher-spin particles. We have also seen that soft recursion

relations apply to certain amplitudes involving DBI or special galileon legs plus general

external matter fields (including massive higher-spin fields), allowing them to be recursively

constructed from lower-point amplitudes.

There are additional aspects to the analogy between gravitation and soft scalar effec-

tive field theories that we have not touched on, such as the existence of a Cachazo-He-Yuan

(CHY) representation [31] and the double copy. Another related connection is the transmu-

tation procedure studied in refs. [35–38]. In this procedure, special galileon amplitudes are

produced by applying certain operators to amplitudes of “extended gravity”. It would be

interesting to try derive the matter couplings considered here by transmuting gravitational

matter interactions. Such a procedure might also shed light on possible UV completions

of the special galileon. While positivity constraints show that the galileons in isolation

are marginally inconsistent with the existence of an analytic and Lorentz-invariant UV

completion [85, 86], adding new modes can alter this conclusion [87–90]. By analogy with

gravity, it may be necessary to include an infinite tower of massive higher-spin states to

UV complete the special galileon, and such a theory might be obtained by transmuting

string theory amplitudes. Another question we did not explore in this paper is whether

the enhanced soft behavior of scattering amplitudes survives at loop level. Based on the

analogy with gravity, our expectation is that the single soft theorems, the soft equivalence

principles, and the leading double soft theorems will continue to hold at loop level unless

there are anomalies, which might occur when coupling to chiral matter.
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A Degree of freedom counting

Thought of as effective field theories defined around flat space, the DBI-matter and special

galileon-matter interactions we have constructed in section 2 and explored in the rest of

the paper certainly propagate the correct degrees of freedom in perturbation theory, by

construction. However, we can additionally ask whether there are extra ghostly degrees of

freedom if we trust the classical theories nonlinearly or whether they continue to propagate

just the naive degrees of freedom.

For DBI it is straightforward to see that the minimally coupled scalar and vector

theories have second-order equations of motion and so do not propagate extra degrees of

freedom nonlinearly. For the special galileon this is not the case. In this appendix we show

that in the simplest case of a minimally coupled free massless scalar, the theory has an

extra ghost degree of freedom. We expect that this will be the case for more general matter

interactions as well.

Consider the Lagrangian defined by eq. (2.18) with mχ = 0 and further truncate to

mini superspace where the fields involved depend only on time,

L =
1

2
φ̇2 +

1

2

χ̇2√
1− αφ̈2/ΛD+2

. (A.1)

From the perspective of diagnosing an extra degree of freedom this truncation is acceptable,

because if we find extra modes here they will also be present when allowing for generic field

configurations involving gradients. The equations of motion for this system are given by

d

dt

[
χ̇

(1− αφ̈2/ΛD+2)1/2

]
= 0, (A.2)

d2

dt2

[
αχ̇2φ̈/ΛD+2

(1− αφ̈2/ΛD+2)3/2

]
− 2φ̈ = 0. (A.3)

The first of these implies that

χ̇

(1− αφ̈2/ΛD+2)1/2
= c1, (A.4)

where c1 is a constant. Substituting this back into eq. (A.3) gives a fourth-order equation

for φ,

d2

dt2

[
αc2

1φ̈/Λ
D+2

(1− αφ̈2/ΛD+2)1/2

]
− 2φ̈ = 0. (A.5)

Since this is a fourth order equation, the solution involves four integration constants. The

solution to this can then be substituted into (A.4), which becomes a first order equation

for χ, which can then be solved for χ bringing in one more integration constant.

In total we need six independent constants to determine the dynamics, which means

that there are six phase space degrees of freedom. Correspondingly there are three physical

degrees of freedom, which is one more than in the linearized theory.17 Note that from the

17This is in contrast to the toy examples studied in ref. [91], which have higher-order equations but are

structured such that the number of degrees of freedom is still that of a second-order system.
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effective field theory point of view this ghostly degree of freedom does not represent an

irremediable sickness but merely signals the breakdown of the effective theory around

the cutoff.

B Ruling out other quartic vertices

In this appendix, we justify our restriction to quartic vertices of the minimal coupling form

when finding the leading contributions to the double soft limits in sections 4.1 and 4.2.

The essential reason is that other quartic vertices are either subleading in the double soft

limit or — if they contribute at the same order in the double soft limit — cannot be made

consistent with the required single soft behavior of higher-point amplitudes. Showing this

explicitly requires a careful examination of the possible quartic vertices that contribute at

leading order in the double soft limit.

Consider a general on-shell quartic vertex between two DBI scalars or two special

galileon scalars and two other particles with spins s and s′. The other particles may be

non-identical, but we can assume that they have the same mass, since otherwise there is

no pole in the double soft limit. We also assume that s ≤ s′ without loss of generality. The

most general on-shell parity-even quartic vertex is then a sum of terms of the form

pr1212 p
r13
13 (ε3 ·ε4)n34(ε3 ·p1)m31(ε3 ·p2)m32(ε4 ·p1)m41(ε4 ·p2)m42 , (B.1)

where the exponents are non-negative integers satisfying the linear system of equations

n34 +m31 +m32 = s, (B.2a)

n34 +m41 +m42 = s′, (B.2b)

m31 +m41 + r12 + r13 ≥ κ+ 2, (B.2c)

m32 +m42 + r12 + r13 ≥ κ+ 2. (B.2d)

The first two conditions ensure that the last two particles have the correct spin and the

last two conditions ensure that the vertex has at least σ = κ + 2 soft behavior on the

scalar legs, where κ = 0 for the DBI scalar and κ = 1 for the special galileon. Since the

two scalar legs are identical, the vertex should also be symmetric under interchanging p1

and p2 up to on-shell vanishing terms. Note that there can also exist parity-odd quartic

vertices with two scalar legs for D ≤ 5, but here we will restrict to interactions that exist

in every dimension.

With these restrictions, we want the vertices with the minimal possible double soft

degree,

σ̃ ≡ m31 +m41 +m32 +m42 + 2r12 + r13. (B.3)

Solving the linear system (B.2) and imposing the interchange symmetry condition shows

that the lowest possible double soft degree is σ̃ = 2κ + 2. Moreover, for the DBI scalar

there is a unique vertex with the minimal double soft degree σ̃ = 2, namely the vertex (4.3)

of the minimal coupling form.
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For the special galileon, in addition to the vertex of the minimal coupling form (4.9),

there are four other vertices with σ̃ = 4, which have s′− s ranging from zero to two. These

additional vertices can be written as

V1 = p2
13p

2
23(ε3 ·ε4)s, (B.4)

V2 = p13p23(ε3 ·ε4)s−1 ((ε3 ·p2)(ε4 ·p1) + (ε3 ·p1)(ε4 ·p2)) , (B.5)

V3 =
(
p3

23ε4 ·p1 + p3
13ε4 ·p2

)
(ε3 ·ε4)s, (B.6)

V4 = p13p23(ε4 ·p1)(ε4 ·p2)(ε3 ·ε4)s, (B.7)

where V1 and V2 have s′ = s, V3 has s′ = s + 1, and V4 has s′ = s + 2. If these vertices

were present then they would contribute at leading order in the double soft limit of AN+2

and hence could spoil the special galileon equivalence principle and the universality of the

leading double soft theorem. However, we will show that if these extra vertices were present

then they would lead to a violation of the σ = 3 single soft behavior.

Suppose, for example, that the ath particle with spin sa interacts with the special

galileon through the first two vertices with real coefficients βa and γa,

δV(1)
a = 2iβap

2
13 p

2
23 (ε3·ε4)sa +2iγa p13 p23 (ε3·ε4)sa−1

(
(ε3·p2)(ε4·p1)+(ε3·p1)(ε4·p2)

)
. (B.8)

Taking the double and single soft limits of AN+2 in the same way as in section 4.2 leads

to the following extra contributions:

lim
τ→0

lim
ξ→0
A(a)
N+2

∣∣∣
βa, γa

= τ2ξ3 γa pN+1 ·pa
(
pν1N+1p

λ1
N+2 + pλ1N+1p

ν1
N+2

)
× ε(a)

λ1
ν2...νsaΠν1...νsa ,µ1...µsa (pa)Aµ1...µsaN,a (pa)

+ τ2ξ3βa (pN+1 ·pa)2 pN+2 ·paAN +O(τ3, ξ3) +O(ξ4) , (B.9)

where A(a)
N+2 denotes the contribution to AN+2 from the diagram depicted in figure 6. The

σ = 3 single soft behavior requires eliminating the extra O(τ2) terms and this is only

possible if we set βa = γa = 0.

We could try to avoid setting γa = 0 by exploiting the same loophole used by the

minimal coupling vertices, i.e., by setting γa = γ and summing over a. However, this

cannot work in this case since the terms multiplying γa are generically completely different

functions of the kinematic variables for each a — in particular, if sa = 0 these terms vanish

since the vertex does not exist for scalars. Contact terms also cannot help for the same

reason as above, namely that they only contribute even powers of ξ. Another way we could

try to avoid this conclusion is by having the ath particle interact through vertices of the

same form with the special galileon and another particle of the same mass and spin that

couples identically to everything else up to signs, since then there would be two similar

sets of contributions to eq. (B.9) that could be made to cancel one another. However, for

real couplings this could only work if the internal particle has a ghostly kinetic term, so

this loophole does not work in a unitary theory.

Similar arguments can be used to rule out the two spin-changing vertices, V3 and

V4. Suppose, for example, that the ath particle has spin sa and interacts with the special
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galileon and with particles of spin sa + 1 and sa + 2 through the last two vertices,

δV(2)
a = 2iβa

(
p3

23 ε4 ·p1 + p3
13 ε4 ·p2

)
(ε3 ·ε4)sa , (B.10)

δV(3)
a = 2iγa p13 p23(ε4 ·p1)(ε4 ·p2)(ε3 ·ε4)sa , (B.11)

where βa and γa are again real coupling constants (unrelated to the earlier ones). These

vertices contribute to AN+2 through the diagrams in figure 6 by exchanging the particles

of higher spin. The extra leading contributions after taking the consecutive soft limits are

lim
τ→0

lim
ξ→0
A(a)
N+2

∣∣∣
βa, γa

= τ2ξ3γa pN+1 ·paεν1...νsa(a) p
νsa+1

N+1 p
νsa+2

N+2 Πν1...νsa+2,µ1...µsa+2(pa)Ã
µ1...µsa+2

N,a (pa)

+ τ2ξ3βa (pN+2 ·pa)2 ε
ν1...νsa
(a) p

νsa+1

N+1 Πν1...νsa+1,µ1...µsa+1(pa)Ã
µ1...µsa+1

N,a (pa)

+O(τ3, ξ3) +O(ξ4) , (B.12)

where Ãµ1...µsa±nN,a is the amplitude related to Aµ1...µsaN,a by replacing the ath leg with the

spin-(sa ± n) particle. If the particles of higher spin are also present as external legs in

AN , then the same vertex gives additional contributions to the amplitude. For example, if

the a′th external leg is the spin-(sa + 2) particle then we get

lim
τ→0

lim
ξ→0
A(a′)
N+2

∣∣∣
γa

= τ2ξ3γa pN+1 ·pa′ ε
ν1...νsa+2

(a′) pN+1,νsa+1pN+2,νsa+2Πν1...νsa ,µ1...µsa (pa′)Ã
µ1...µsa
N,a′ (pa′)

+O(τ3, ξ3) +O(ξ4) . (B.13)

In order for these extra contributions to not spoil the σ = 3 soft behavior we must again

set βa = γa = 0. The trick of setting γa = γ and summing over a again cannot work since

the accompanying terms depend differently on the kinematics for different legs. This is

the same reason why we cannot have cancellations between the different cubic vertices for

generic choices of kinematics. Like before, adding multiple particles with the same mass

and spin does not help unless they have ghostly kinetic terms.

Finally, note that for all equivalence principle arguments there is an additional step re-

quired to show that the two matter particles are identical, since everything up to this point

goes through for distinct particles with the same mass and spin that couple symmetrically

through the minimal coupling vertex. The resolution is that if all of these particles have

healthy kinetic terms, then we can always diagonalize the interactions using the SO(n) sym-

metry of their kinetic terms. This then completes the proofs of the soft scalar equivalence

principles.
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