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1 Introduction

AdS/CFT correspondence (holography) serves as a bridge connecting gravity theories in

anti-de Sitter (AdS) spacetime and strong-coupled CFT living in the AdS boundary [1–3],

enabling us to exploit conformal field theories (CFT) with sparse spectrum [4] at strong

coupling without referring to any specific CFT theories. On the other hand, although
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directly studying strongly-coupled CFT is a hard task, recent developments of conformal

bootstrap make it achievable. Conformal bootstrap utilizes the conformal symmetry, cross-

ing symmetry, and sometimes other physical consistency conditions such as unitarity to

explore the properties of conformal dimensions and operator product expansion (OPE) co-

efficients in an effective way. In turn, the progress of strongly-coupled CFT can be expected

to shed light on some essential aspects of quantum gravity.

In parallel to numerical bootstrap which aims to precisely determine the allowed re-

gion of conformal dimensions and OPE coefficients for numerous specific models such as

Ising model (see [5] for a recent review), analytic bootstrap has been developed to probe

universality of CFT data in a certain parametric limit. By analyzing the singularities from

crossing symmetry near the light-cone limit, the universal spectrum and OPE coefficients of

large spin operators were studied extensively, e.g., [6–11]. This progress boosted the large

spin perturbation theory [12]. In particular, the universal data of large spin operators can

be asymptotically expanded in terms of the inverse powers of spin 1/J , and surprisingly,

this large spin expansion remains valid even down to finite spin J [13, 14]. This incredi-

ble validity can be explained by the analyticity in spin in CFT which was made manifest

by Caron-Huot Lorentzian inversion formula [15–17]. The Lorentzian inversion formula

encapsulates the large spin systematics and allows us to compute OPE coefficients and

anomalous dimensions more efficiently, even with finite spin [18, 19].

Naturally, Lorentzian inversion formula was applied to investigate quantum gravity

and AdS/CFT, for example, it allows us to study correlators up to loop level in super-

gravity [20, 21] and to understand the growth of extra dimension in AdS/CFT [22]. It

appears that only pure AdS without any heavy states are considered in the above ap-

plications. Undoubtedly, four-point functions with two heavy states, which are referred

to as the heavy-light four-point functions 〈OHOHOLOL〉, are interesting and important

aspects in CFT as well as in AdS/CFT. In fact, the heavy-light four-point functions are

relevant to various topics, e.g. information loss and black hole collapse [23–26], entangle-

ment entropy [27–31] and chaos [32], and they are well-studied in AdS3/CFT2 by enjoying

the Virasoro symmetry in CFT2. Roughly speaking, it was understood since [33] that the

Virasoro symmetry completely fixes the Virasoro blocks which contain the contributions

of an exchanged operator and its descendants. In particular, at large central charge limit

CT →∞, the heavy-light four-point function (the conformal dimension of the heavy opera-

tor is ∆H ∼ CT and the conformal dimension of the light operator is ∆L � CT ) is sensitive

to the Virasoro vacuum block which contains the identity 1 and all multi-stress-tensors Tn.

The explicit expression of the Virasoro vacuum block was first computed in [24]. How-

ever, the Virasoro symmetry is not available in d ≥ 3 CFT. It is thus necessary to study

heavy-light four-point functions in d ≥ 3 CFT using different techniques.

Owing to the crossing symmetry, it is simpler to investigate the channel OHOLO∆,J ×
O∆,JOLOH at first, where the double-twist operators [OHOL]n,J are exchanged. Holo-

graphically, the underlying exchanged operators in this channel were studied recently

in [38, 39] by using the bulk phase shift approach [34–37] or using the Hamiltonian pertur-

bation theory [11, 24]. In parallel, to search for the universality that is associated with the

OPE coefficients of multi-stress-tensor Tn in high dimensions, [40] proposed a holographic
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formalism to study the OPE coefficients of multi-stress-tensor, and those OPE coefficients

of the lowest-twist sectors exhibit universality by only depending on ∆H ,∆L and CT .

However, the CFT origin of this universality is not clear. By studying stress-tensor com-

mutation relation without holography, [41] shows that the Virasoso-like structure indeed

exists near the light-cone limit. Before long, the OPE coefficient of lowest-twist double-

stress-tensor was conjectured in [42] such that the crossing equation is satisfied provided

with the holographic results of double-twist operators [OHOL]n,J . It turns out that the

OPE coefficients of the lowest-twist double-stress-tensor conjectured in [42] precisely agrees

with one found from holography [43]. Recent progress was made in [44] where the OPE co-

efficients of the lowest-twist double-stress-tensor, the lowest-twist triple-stress-tensor, and

the OPE coefficients and anomalous dimensions of double-twist operators in d = 4 can all

be extracted by solving the crossing equation. Some results in d = 6 were also obtained up

to T 2 in [44]. Remarkably, it can be verified that the data associated with the double-twist

operators is consistent with predictions from holography [38, 39].

The results of [44] are exciting, but can still be improved, for example, the framework

of [44] relies on their ansatz of heavy-light four-point function near the light-cone limit.

Besides, some other questions can be raised. Although the framework of [44] provides a nice

way to compute the relevant OPE coefficients, it could not explain the universality of lowest-

twist multi-stress-tensors. Furthermore, the holographic results from bulk phase shift for

operators exchanged in OHOLO∆,J ×O∆,JOLOH are extracted from eikonal limit (Regge

limit [45]) and they are consistent with the data extracted near light-cone limit [44]. This

fact implies that there is an intersection of the eikonal region and the lowest-twist region.

Such a connection between universality in the eikonal region and the lowest-twist region was

also discussed in [43]. In this paper, we apply the Lorentzian inversion formula to heavy-

light four-point functions back and forth, and we surprisingly find that the Lorentzian

inversion formula can shed light on the above questions. Moreover, our results are in

precise agreement with those already existed in the literature.

The paper is organized as follows. In section 2, we briefly review the conformal blocks

and Lorentzian inversion formula. Both the notations used in this paper and preliminary

knowledge of heavy-light four-point function are attached in section 2.3. We also summarize

our main conclusions in section 2.3. In section 3, we show that heavy-light four-point

functions can indeed be bootstrapped by implementing the Lorentzian inversion formula

back and forth. In this sense, the resulting CFT data is shown to be universal. We comment

on the ∆L poles appear in the OPE coefficients of lowest-twist multi-stress-tensor and then

we propose an algorithm to manipulate heavy-light bootstrap to extract all universal data.

In section 4, we apply our algorithm to work on the examples in d = 4 up to triple-stress-

tensor T 3. In section 5, we have an attempt at heavy-light bootstrap in general dimension

up to double-stress-tensor T 2. In particular, an infinite series representation of lowest-twist

T 2 OPE coefficients is presented. In section 6, the paper is summarized and some future

directions are discussed. In appendix A, we collect some missing steps of the main text. In

appendix B, more examples of lowest-twist T 2 OPE coefficients are worked out, includes

d = 6, 8, 10 and a generic pattern.
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2 Generalities

In this section, we briefly review the necessary ingredients that will be used throughout this

paper, including conformal blocks, Lorentzian inversion formula, and heavy-light four-point

function.

2.1 Conformal blocks

A four-point function 〈O1O2O3O4〉 can be expanded in terms of conformal blocks

〈O1(0)O2(z, z̄)O3(1)O4(∞)〉 =
G(z, z̄)

(zz̄)
∆1+∆2

2

, G(z, z̄) =
∑

c∆,JG
a,b
∆,J(z, z̄) , (2.1)

where a = (∆2 −∆1)/2, b = (∆3 −∆4)/2 and c∆,J is the OPE coefficient. The conformal

block is the solution of the quadratic Casimir equation

C2G
a,b
∆,J(z, z̄) =

(
∆(∆− d) + J(J + d− 2)

)
Ga,b∆,J(z, z̄) , (2.2)

where

C2 = Dz +Dz̄ + 2(d− 2)
zz̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄) ,

Dz = 2(z2(1− z)∂2
z − (1 + a+ b)z2∂z − abz) . (2.3)

In d = 4, the closed form of conformal block for scalar four-point function 〈O1O2O3O4〉 is

known

Ga,b∆,J(z, z̄) =
zz̄

z − z̄
(ka,b∆+J(z)ka,b∆−J−2(z̄)− ka,b∆+J(z̄)ka,b∆−J−2(z)) , (2.4)

where ka,bβ (x) is SL(2,R) block and is given by

ka,bβ (x) = x
β
2 2F1

(
a+

β

2
, b+

β

2
, β, x

)
. (2.5)

The conformal block (2.4) is symmetric under (z → z̄, z̄ → z). However, in general dimen-

sions, the exact solutions are hard to come by.

Fortunately, conformal blocks admit series expansion in general dimensions, and the

properties of conformal blocks can be analyzed from its series expansion. The colinear

expansion around z → 0 is very useful for our purpose in this paper. The leading term is

Ga,b∆,J |z→0 = z
∆−J

2 ka,b∆+J(z̄) . (2.6)

Compare the leading term of conformal block (2.6) (specifying d = 4) with the exact

block in d = 4 (2.4), it is obvious that the terms with z
∆−J−2

2 are missing in the expan-

sion (2.6). (2.6) is referred to as power laws in [15], because it only contains the essential

terms with power z(∆−J)/2. Group theoretically, the full colinear expansion is expected to

take the form given by

Ga,b∆,J =
∑
n

n∑
m=−n

Ba,b
n,m z

τ
2

+nka,bβ+2m(z̄) , (2.7)

where we denote ∆ − J = τ and ∆ + J = β. The coefficients Ba,b
n,m can be obtained by

solving quadratic Casimir equation, see, e.g. [15] and appendix A.1.

– 4 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
6

2.2 Lorentzian inversion formula

Lorentzian inversion formula is a powerful formula to extract the OPE data associated

with s-channel of four-point function 〈O1O2O3O4〉 [15–17]. The formula is given by

c(∆, J) =
1 + (−1)J

4
κa,b∆+J

∫
dzdz̄ µa,b(z, z̄)Ga,bJ+d−1,∆−d+1(z, z̄)dDisc[G(z, z̄)] , (2.8)

where µa,b(z, z̄) is given by

µa,b(z, z̄) =

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
(
(1− z)(1− z̄)

)a+b

(zz̄)2
, (2.9)

and κa,b∆+J is

κa,bβ =
Γ(β2 − a)Γ(β2 + a)Γ(β2 − b)Γ(β2 + b)

2π2Γ(β − 1)Γ(β)
. (2.10)

Moreover, dDisc represents the double-discontinuity, which is defined by the expectation

value of “squared commutators”, and in practice it is given by

dDisc[G(z, z̄)] = cos(π(a+ b))G(z, z̄)− e−i(a+b)

2
G	(z, z̄)− ei(a+b)

2
G�(z, z̄) , (2.11)

where G	 and G� are two different analytic continuations for z̄ around 1. Notice that

in Lorentzian inversion formula (2.8), there is a conformal block with spin and conformal

dimension interchanged Ga,bJ+d−1,∆−d+1 which is referred to as the funny conformal block

(or the inverted conformal block). This funny conformal block is actually related to the

light-transform [17]. Notably, the formula is analytic in spin for J > 1 except for the factor

(−1)J . The factor (−1)J could be set to 1 in this paper since exchanged operators can only

have even spin. Practically, we should expand G(z, z̄) in terms of cross-channel conformal

blocks. Given a certain block with (∆, J), we should have

G(z, z̄) =
(zz̄)

∆1+∆2
2(

(1− z)(1− z̄)
)∆2+∆3

2

Gã,b̃∆,J(1− z̄, 1− z) , (2.12)

where ã = (∆3−∆2)/2 and b̃ = (∆4−∆1)/2. Then we could perform the inversion integral

to obtain c(∆, J).

The OPE coefficients are encoded in c(∆, J) by [15]

c∆,J = −Res∆=∆′c(∆
′, J) . (2.13)

This implies that c(∆′, J) has poles around physical operators

c(∆′, J) ∼
c∆,J

∆−∆′
. (2.14)

In fact, the integral over z in the Lorentzian inversion formula is responsible for creating

the poles above, and the integral over z̄ provides other factors that have nothing to do with
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the poles. To end this subsection, we would like to mention that for the integration over

z̄, the following formula from [15] would be useful throughout our calculation

Ia,bτ̂ (β) =

∫ 1

0

dz̄

z̄2
(1− z̄)a+bκa,bβ ka,bβ (z̄) dDisc

[(
1− z̄
z̄

) τ̂
2
−b

(z̄)−b

]

=
Γ(β2 − a)Γ(β2 + b)Γ(β2 −

τ̂
2 )

Γ(− τ̂
2 − a)Γ(− τ̂

2 + b)Γ(β − 1)Γ(β2 + τ̂
2 + 1)

. (2.15)

2.3 Heavy-light four-point function

Our interest is the heavy-light four-point function 〈OHOHOLOL〉 in both s-channel and

t-channel of large central charge CT CFT (CT ∼ N2) in higher dimension d > 2, where

the conformal dimension of heavy operator is comparable to large CT , i.e. ∆H ∼ O(CT ),

and the conformal dimension of light operator is ∆L � CT . To study such a four-point

function, we would like to choose a convenient conformal frame in s-channel

〈OH(∞)OH(1)OL(z, z̄)OL(0)〉 , (2.16)

where z, z̄ are cross ratios. We can then expand (2.16) in terms of the conformal blocks of

s and t-channel to establish the crossing equation. Since we are going to extract the OPE

data of both s and t-channel, we should clarify the notations used throughout this paper

in order to avoid the confusion.

Notations.

• We set the conformal frame (2.16) where the crossing equation is

(zz̄)∆L〈OHOHOLOL〉 = Gs(z, z̄) =
(zz̄)∆L

((1− z)(1− z̄))
∆H+∆L

2

Gt(1− z̄, 1− z) , (2.17)

Gs(z, z̄) =
∑

c∆,JG
0,0
∆,J(z, z̄) , Gt(1− z̄, 1− z) =

∑
c̃∆′,J ′G

a,b
∆′,J ′(1− z̄, 1− z) ,

where a = (∆2−∆1)/2, b = (∆3−∆4)/2. When we are using the Lorentzian inversion

formula to extract the OPE data of t-channel, we simply flip (z → 1− z̄, z̄ → 1− z)

in above (2.17).

• We would denote the s-channel as HHLL and the t-channel as HLLH.

Usually, in large CT CFT, the OPE coefficients should be expanded in terms of 1/CT .

A CFT with all data expanded up to the order O(1/C0
T = 1) is referred to as the generalized

free field theory. In generalized free field theory, operators that can be exchanged in HLLH

(let us assume ∆H ∼ ∆L � CT for the moment) are double-twist operators [OHOL]n′,J ′ [47]

[OHOL]n′,J ′ = OH �n′∂µ1 · · · ∂µJ′OL , ∆′ − J ′ = ∆H + ∆L + 2n′ , (2.18)

where n′ is an integer. For convenience, we use c̃n′,J ′ to denote the relevant OPE coefficients.

An infinite number of double-twist operators accumulate to give rise to the identity of

HHLL. The exact free OPE coefficients can be computed by using the Euclidean inversion

– 6 –
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formula in an elegant way by using the shadow representation, e.g., [46]. In fact, the free

OPE coefficients are well-known and were obtained in [47]

c̃free
n′,J ′ =

(
∆H + 1− d

2

)
n′

(
∆L + 1− d

2

)
n′

(
∆H

)
n′+J ′

(
∆L

)
n′+J ′

n′!J ′!
(
∆H + ∆L + n′ + 1− d

)
n′

(
∆H + ∆L + 2n′ + J ′ − 1

)
J ′

× 1(
∆H + ∆L + n′ + J ′ − d

2

)
n′

(
J ′ + d

2

)
n′

. (2.19)

It behaves like J ′∆L−1 at heavy-limit and large J ′ limit. Typically, up to the higher

order of large CT expansion, not only OPE coefficients will be corrected by 1/CnT with

n ≥ 1, but also double-twist operators will acquire anomalous dimensions up to 1/CnT with

n ≥ 1. From the holographic viewpoint, these corrected OPE coefficients and the appeared

anomalous dimensions come from tree-level exchange (n = 1) and loop effects of Witten

diagrams (n > 1). When an additional parametrically large conformal dimension ∆H ∼ CT
is available in the spectrum, the terms with a higher order of 1/CT have their chance to be

compensated by ∆H . Consequently, the corrections to the OPE coefficients and anomalous

dimensions may have contributions up to O(1) and should not be neglected. Instead, OPE

coefficients and anomalous dimensions of the double-twist operators exchanged in HLLH

could be expanded in terms of ∆H/CT . Follow the convention from [38, 39, 42, 44] and for

latter convenience, we introduce a parameter µ

µ =
4Γ(d+ 2)

(d− 1)2Γ(d2)2

∆H

CT
. (2.20)

Naturally, we can organize the double-twist OPE coefficients and anomalous dimensions

as follows

c̃n′,J ′(µ) = c̃free
n′,J ′

∑
k

µk c̃
(k)
n′,J ′ , γ̃n′,J ′(µ) = c̃free

n′,J ′

∑
k

µkγ̃
(k)
n′,J ′ . (2.21)

It is worth commenting that the expansion (2.21) is a natural organization: presumably,

we can start with full 1/CT expansion and collect those terms having enough power of ∆H

to reorganize the expansion by arranging µ order. For the data with O(µ) order, c̃
(1)
n′,J ′ and

γ̃
(1)
n′,J ′ are contributed by single-stress-tensor exchange in HHLL which is shaped by Ward

identity and is proportional to µ, namely

c∆=d,J=2 =
d2∆L∆H

4(d− 1)2CT
= µ

∆LΓ(d2 + 1)2

4Γ(d+ 2)
. (2.22)

Then c̃
(1)
n′,J ′ and γ̃

(1)
n′,J ′ at large n′ and J ′ could be extracted [38, 39] by using the impact

parameter representation at Regge limit [34–37]. According to the dimensional analysis,

O(µk) corrections to HLLH OPE coefficients and anomalous dimensions are contributed

by multi-stress-tensor T k in HHLL, however, we almost know nothing about T k OPE

coefficients beyond single-stress-tensor. Hence beyond O(µ), the expansion (2.21) can

only be calculated via holography, either by using bulk phase shift [38, 39] or Hamiltonian

perturbation theory [38]. Those holographic investigations are restricted to the limit where

– 7 –
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OPE coefficients and anomalous dimensions are lying in the large spin regime ∆H � J ′ � 1

(for bulk phase shift approach, the results are actually valid at n � 1 due to the Regge

limit). In addition, the holographic investigations also suggest [38, 39]

c̃
(k)
n′,J ′ , γ̃

(k)
n′,J ′ ∼

1

J ′k
d−2

2

. (2.23)

The obtained data at the large spin limit is universal since it turns out that the higher-

derivative terms in the gravity theory only contribute to sub-leading large spin. In this

paper, we will show the large spin behavior (2.21) is indeed valid by using the Lorentzian

inversion formula.

On the other hand, in HHLL, we expect the dominant exchanged operators are multi-

stress-tensors T k, for example

k = 1 , Tµν ,

k = 2 , Tµν �
n∂µ1 · · · ∂µJ−4Tρσ , · · ·

k = 3 , TµνTρσ �
n∂µ1 · · · ∂µJ−6Tαβ , · · ·

· · · . (2.24)

Analogous to the organization of HLLH data (2.23), the OPE coefficient of T k could be

organized by factorizing µ out as follows

c∆,J = µkc
(k)
n,J , ∆ = kd+ J − JT + 2n , J ≥ JT , JT ≤ 2k , (2.25)

where JT is the spin purely contributed by the stress-tensors. However, as we mentioned

previously, the OPE coefficients of multi-stress-tensors are beyond our knowledge, impeding

the understanding of O(µk) corrections to double-twist operators from pure CFT’s point

of view. The holographic formalism was recently proposed to probe the multi-stress-tensor

OPE coefficients in [40]. By treating heavy operator as a black hole, the heavy-light four-

point function can be analyzed as a two-point function on the black hole background, from

which the multi-stress-tensor OPE coefficients can be read off. The main conclusion of [40]

is that the lowest-twist multi-stress-tensor OPE coefficients are universal regardless of the

detail of the higher derivative gravities they consider. By solving the crossing equation near

the light-cone limit provided with the exponentiated ansatz of HHLL correlators that was

made in [44] successfully extracted the lowest-twist double-stress-tensor OPE coefficients as

well as some low-lying double-twist [OHOL]n′,J ′ data, where a precise agreement with holo-

graphic results [38, 39, 43] was observed. However, an insightful CFT understanding of this

universality is still lacking. In this paper, we would employ the Lorentzian inversion for-

mula to fill this gap to some extent. Considering that it was observed in [42, 43, 43, 44, 48]

that multi-stress-tensor OPE coefficients have integer ∆L poles in even dimension, we will

assume ∆L is neither an integer nor half-integer (see section 3.2) throughout this paper

except for section 3.2. The origin of such poles could be easily observed in our framework,

and we will leave the comments in section 3.2. As guidance for readers, we summarize the

main conclusion of this paper below provided with two assumptions

– 8 –
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Assumption.

a. OL belongs to a non-even-integer multiplet: additional light operators with conformal

dimension ∆̃L = ∆L + 2q (where q is an integer) are not available in the spectrum.

b. ∆L is not an integer and half-integer.

Main conclusion.

1. We can bootstrap heavy-light four-point function by implementing the Lorentzian

inversion formula back and forth.

2. The large spin limit of HLLH double-twist data is universal.

3. The lowest-twist multi-stress-tensor OPE coefficients exchanged in HHLL are univer-

sal.

4. This universality is valid from z → 0, z̄ → 1 to z → 0, z̄ → 0 with respect to HHLL

in the crossing equation (2.17).

3 Bootstrapping heavy-light: the algorithm

In this subsection, we present the generic algorithm for bootstrapping heavy-light four-

point functions. By bootstrapping heavy-light, we mean, ambitiously, we would like to

have a machine that both details of HHLL and HLLH can come out by following the

algorithm. The machine is the Lorentzian inversion formula. The idea is that we would

implement the Lorenztian inversion formula from one channel to another channel back and

forth to extract all universal CFT data, i.e. · · ·HHLL→ HLLH→ HHLL · · · . Typically, the

Lorentzian inversion formula is powerful to probe the universality of double-twist operators

at large spin limit, elegantly and systematically capturing the large spin perturbation

systematics [8–11], in which the asymptotic large spin expansion can be summed over to

give rise to the data with finite spin. More surprisingly, in this section, we will show that

for heavy-light four-point function where ∆H is comparable to CT charge, the Lorentzian

inversion formula provides us the strong evidence that the lowest-twist multi-stress-tensor

exchanged in HHLL is universal. In addition, using the Lorentzian inversion formula allows

us to have an algorithm computing the lowest-twist multi-stress-tensor OPE coefficients

and large spin HLLH double-twist data.

3.1 Lowest-twist multi-stress-tensor OPE

3.1.1 HLLH large spin behavior

In order to exhibit that Lorentzian inversion formula can encode the multi-stress-tensor

data, we would like to start with showing that a certain HHLL block with twist τ = ∆−J
makes contributions to the OPE and anomalous dimensions of the double-twist operators

[OHOL]n′,J ′ by 1/J ′τ/2 at the large J ′ limit. Since we are not restricting ourselves at the

leading-twist n′ = 0, we shall keep the expansion z → 0 up to all order for the HHLL funny
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conformal block in the Lorentzian inversion formula. In other words, we should use (2.7)

where we take ∆→ J ′+d−1, J → ∆′−d+1. Nevertheless, it is not necessary to know every

detail of the expansion (2.7), typically, the recursion coefficients Ba,b in (2.7) actually plays

no essential role in the intended parametric limit: it turns out that the recursion coefficients

contribute O(1). Generally, in Lorentzian inversion, we should consider following terms

κa,b(β′)

κa,b(β′ + 2m)
(1− z)a+b

(
1− z

z̄

)d−2
Ga,bJ ′+d−1,∆′−d+1

∣∣∣∣
n,m

∼ B̃a,b
n,m z

J′−∆′
2

+n+d−1ka,bβ′+2m(z̄) ,

(3.1)

where m takes integers ranging from −n to n, and B̃a,b
n,m is some linear combination of Ba,b.

It turns out the contribution from B̃ is a quantity at the order O(1) at the heavy and large

spin limit, hence B̃ plays no role for the large J ′ behavior and can be slipped off here for

simplicity. On the other hand, the HHLL conformal block with twist τ = ∆−J is given by

GHHLL ∼
(zz̄)

∆H+∆L
2

((1− z)(1− z̄))∆L
G0,0

∆,J(1− z̄, 1− z) . (3.2)

To extract large J ′ limit data, we can take the light-cone limit z̄ → 1 of HLLH, in which z

and z̄ dependence is factorized. Then we use (2.15) to integrate over z̄ to yield the following

function to be integrated over z

C(z, β′) = z
1
2

(2(n−1)+∆H+∆L−τ ′)
k0,0
β (1− z)

(1− z)∆L
I

(a,a)
τ−∆H−∆L

(β′ + 2m) . (3.3)

The z dependence in (3.3) will not introduce additional J ′ and ∆H dependent factors, and it

does nothing but tells us the underlying exchanged operators are double-twist [OHOL]n′,J ′ .

Hence, the large J ′ behavior is encoded in the remaining factor I
(a,a)
τ−∆H−∆L

(β′ + 2m) lying

in the double-twist operator trajectories. For our purpose, we are supposed to take both

the heavy and large J ′ limit. Taking the limit is a little bit subtle here. Precisely we should

consider ∆H � J ′ � 1. We parameterize ∆H ∼ J ′/ξ and take ξ → 0 such that we can

achieve such a limit and end up with

I
(a,a)
τ−∆H−∆L

(β′ + 2m) ∼ Γ(∆L + J ′ +m+ n)

Γ(− τ
2 + ∆L)Γ(− τ

2 + J ′ +m+ n+ 1)
→ J ′−

τ
2
−1+∆L

Γ(− τ
2 + ∆L)

. (3.4)

Recall that the free OPE coefficients go like J ′∆L−1, we immediately have

c̃τn′,J ′ and γ̃τn′,J ′ ∼ J ′−
τ
2 , (3.5)

for any twist n′, where the superscript τ denotes that it is contributed by twist τ confor-

mal block in the cross-channel. However, there is a gap in this rough proof, we skip the

large J ′ behavior of B̃a,b
n,m. By solving quadratic Casimir in appendix A.2, we find that for

double-twist operators the heavy and large J ′ limit of B̃a,b
n,m is

B̃a,b
n,n = (−1)n

(
d
2 − n

)
n

Γ(n+ 1)
, B̃a,b

n,m<n = 0 . (3.6)

Thus it does nothing to do with final large J ′ behavior of HLLH OPE and anomalous

dimension.
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3.1.2 Finding lowest-twist multi-stress-tensor

Next, we would like to show that knowing c̃
k′(d−2)
n′,J ′ and γ̃

k′(d−2)
n′,J ′ with 1 ≤ k′ ≤ k as HLLH

data allows us to find lowest-twist multi-stress-tensor T k+1 exchanged in HHLL from

Lorentzian inversion formula. The ingredient is the HHLL heavy block. We would like

to start with the HLLH heavy block with twist n′, which can be deduced from (2.7), i.e.,

Ga,b∆′,J ′(z, z̄) =
∑
n

m=n∑
m=−n

Ba,b
n,mz

1
2

(2(n′+n)+∆L+∆H+γ̃n′,J′ (µ))z̄
∆H+∆L+γ̃n′,J′ (µ)

2
+J ′+m+n′ . (3.7)

where ∆′ = ∆H +∆L+2n′+ γ̃n′,J ′(µ). Crossing (3.7) by taking (z → 1− z̄, z̄ → 1−z) leads

to the desired conformal block that will be used to construct G. Note we are restricted to

large J ′ limit where the summation over J ′ can be replaced by the integration over J ′, we

thus have

GHLLH =
(zz̄)∆L

((1− z)(1− z̄))
∆H+∆L

2

∑
n′

∫ ∞
0

dJ ′c̃n′,J ′(µ)Ga,b∆′,J ′(1− z̄, 1− z) . (3.8)

It is worth noting that (3.8) is only valid at the limit z → 0, since HLLH four-point function

evaluated at large J ′ limit by integrating over J ′ is only consistent with the limit z̄ → 1,

namely z → 0 after crossing. In other words, the large J ′ data of HLLH evaluated before

forces that we can only probe the lowest-twist data in HHLL.

Then as soon as we know c̃
k′(d−2)
n′,J ′ and γ̃

k′(d−2)
n′,J ′ we can know GHLLH up to the order

O(µ(k+1)(d−2)) by expanding (3.7) in terms of anomalous dimension γ̃n′,J ′(µ). Practically,

the expansion up to O(µ(k+1)(d−2)) is permitted, since dDisc only keeps terms with logm

where m ≥ 2, while the unknown information c̃
(k+1)(d−2)
n′,J ′ and γ̃

(k+1)(d−2)
n′,J ′ is attached to

linear log which will always be killed by dDisc. This is analogous to one-loop investigation

of supergravity correlator, in which the one-loop effect can be computed by squaring the

tree-level data due to the same reason here [20, 21]. At the order O(µ(k+1)(d−2)), it follows

from (3.5) that c̃
k′(d−2)
n′,J ′ and γ̃

k′(d−2)
n′,J ′ contributes to the large J ′ behavior by J ′−(k+1)(d−2)/2

via many possible combinations, for example,

γ̃
k(d−2)
n′,J ′ c̃

(d−2)
n′,J ′ , γ̃

(k−1)(d−2)
n′,J ′ γ̃

2(d−2)
n′,J ′ , γ̃

(k−1)(d−2)
n′,J ′ c̃

(d−2)
n′,J ′ , · · · . (3.9)

Note as for B̃a,b in (3.1), Ba,b is also of order O(1) at heavy and large J ′ limit and hence

does not contribute any J ′ dependence. Precisely, Ba,b is given by

Ba,b
n,−n =

(
d
2 − 1

)
n

Γ(n+ 1)
, Ba,b

n,m>−n = 0 , (3.10)

for which the detail is presented in appendix A.1. Then the integration over J ′ leads to

the relevant factor as follows

G ∼ z(k+1)(d−2)Γ
(

∆L − (k + 1)(d− 2)/2
)
. (3.11)

All other factors such as z̄ dependence, the summation over n′, and other ∆L dependent

coefficients are not relevant for our purpose since the pole that signals the exchanged
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operators is encoded in z dependence. We keep a Gamma function for later comments in

section 3.2. Then Lorentzian inversion formula provided with (3.11) now is

c(∆, J) =

∫ 1

0
dz z

1
2

(−2−τ+(k+1)(d−2))F , (3.12)

where F is some unknown but regular factors (except for some ∆L poles) independent of z.

It is obvious from (3.12) that it encodes the OPE coefficients of the lowest-twist multi-stress-

tensor τ = (k+1)(d−2) and we are allowed to compute them by using Lorentzian inversion

formula as soon as we know all c̃
k′(d−2)
n′,J ′ and γ̃

k′(d−2)
n′,J ′ with 1 ≤ k′ ≤ k in HLLH. However,

one may worry about the validity of the extracted OPE c(∆, J) for low J , since Lorentzian

inversion formula breaks down at low spin J < 2 [15]. Fortunately, c(∆, J) is actually

disallowed to have low spin J . Recall the conformal dimension of multi-stress-tensors (2.25),

it is thus clear that the lowest-twist case has JT = 2k, n = 0, implying J ≥ 2k.

It is worth noting that one has to be cautious of the procedure discussed in this

subsection. Typically, the double-twist operators [OHOL]n′,J ′ in HLLH are likely to mix

with other operators. For example, [OHOL]n′,J ′ would be mixing with [OHÕL]n′−1,J ′ where

the conformal dimension of ÕL is ∆̃L = ∆L+2: they share same conformal dimension, twist

and spin. In this way, the OPE coefficients c̃
(k)
n′,J ′ and anomalous dimensions γ̃

(k)
n′,J ′ should be

interpreted as the weighted average over degenerate operators. Under the weighted average,

it is apparent that, e.g. 〈γ̃k(d−2)
n′,J ′ c̃

(d−2)
n′,J ′ 〉 is not equal to 〈γ̃k(d−2)

n′,J ′ 〉〈c̃
(d−2)
n′,J ′ 〉. Hence the simple

combinations (3.9) are not reliable any more.1 Similar mixing problem appears in the efforts

on computing loop contribution of supergravity correlators, e.g. [20, 21, 49, 50]. Therefore,

an assumption should be made throughout this paper: there are no other light operators

having conformal dimension ∆̃L = ∆L + 2q where q is an integer. This is assumption a

listed in section 2.3, we shall call this assumption non-even-integer multiplet assumption.

3.1.3 The universality

Now, as assumption a in section 2.3 is made, we are ready to show the main conclusions

of this paper listed in section 2.3. The assumption b restricting ∆L to non-integer and

non-half-integer could actually be quickly observed from the factor of (3.11), we would

comment on this assumption in more detail in section 3.2 momentarily.

We are ready to analyze the universality associated with heavy-light four-point func-

tion. The input is OPE coefficient of single stress-tensor that is completely fixed by Ward

identity (2.22). For convenience, we present it here again

c∆=d,J=2 =
d2∆L∆H

4(d− 1)2CT
= µ

∆LΓ(d2 + 1)2

4Γ(d+ 2)
. (3.13)

Remarks are necessary here. This coefficient is exact: it does not require a heavy limit of

∆H . On the other hand, this coefficient is universal in the sense that it only depends on

∆L, ∆H , and CT . Immediately, one can use (3.13) to calculate the OPE coefficients and

anomalous dimensions of the double-twist operators with large spin limit at the order O(µ)

1We would like to thank Simon Caron-Huot for pointing this out to us.
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via using Lorentzian inversion formula. Since (3.13) is universal, and the Lorentzian in-

version formula will not introduce additional theory dependent parameters, it immediately

follows that O(µ) HLLH data at large spin limit are universal. Then as discussed previ-

ously, we can keep going: use O(µ) HLLH large spin data to extract the OPE coefficients

of the lowest-twist double-stress-tensor T 2 which are universal because of the universality

of O(µ) HLLH large spin data. In the next, we could input double-stress-tensor OPE and

extract O(µ2) HLLH large spin data. Furthermore, O(µ2) HLLH large spin data could be

used to extract triple-stress-tensor T 3 OPE. We can employ Lorentzian inversion formula

back and forth to do this iteratively, in principle all lowest-twist multi-stress-tensor OPE

and large spin double-twist data could be bootstrapped by following the present procedure.

Typically, since our input is nothing else but universal data (3.13), all the relevant coeffi-

cients extracted by going through this procedure, i.e., lowest-twist multi-stress-tensor and

large spin double-twist data, are universal. Beyond lowest-twist multi-stress-tensor and

large spin limit of double-twist data, our analysis expects no universality. It would also be

essential to comment on the range of this universality. From our analysis, the universality

is guaranteed to be valid for z → 0 with z̄ kept arbitrary with respect to the crossing

equation (2.17). Thus there are no constraints for z̄ by our construction. We are allowed

to take z̄ → 1 to reach the light-cone limit.2 On the other hand, analytically continuing

z̄ to another sheet and then taking z̄ → 0 (i.e., take (1 − z̄)e−2πi → 1) is also permitted:

this procedure is expected to give us the correct correlator in the large impact regime of

the Regge limit. In this way, we could say this universality holds at both the light-cone

limit and the large impact regime of the Regge limit. This explains why the results of

double-twist data obtained from bulk phase shift in eikonal or Regge limit are consistent

with results extracted near the light-cone limit by taking J � n [43, 44].

3.2 Comments on ∆L poles

Before we finally propose the algorithm for bootstrapping heavy-light four-point function,

we would like to have a subsection commenting on the ∆L poles and explaining why the

assumption b in section 2.3 is necessary. The holographic calculations in even dimen-

sions [40, 48] implies that the multi-stress-tensor would be suffering from poles 1/(∆L−n)

where n is an integer. This phenomenon can also be observed from recent CFT investiga-

tions [42, 44]. Typically, it shows a pattern, for examples, double-stress-tensor OPE has

poles 1/(∆L − 2) in d = 4 and 1/((∆L − 3)(∆L − 4)) in d = 6. The origin of these poles is

clear in our framework, precisely, it comes from (3.11) as the by-product of the lowest-twist

multi-stress-tensor T k+1 trajectory. Let us write down the relevant factor here again

P (∆L) = Γ
(

∆L − (k + 1)(d− 2)/2
)
. (3.14)

Now the pattern of such poles is clear:

1. In even dimensions, all multi-stress-tensor OPE coefficients suffer from integer ∆L

poles.

2In some literatures, the limit z̄ → 1, z → 0 is referred to as the double-light-cone limit.
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2. In general dimensions, for an even number of stress-tensors, e.g., T 2, T 4, · · · , the

corresponding OPE coefficients have some integer poles.

3. In odd dimensions, for an odd number of stress-tensors, e.g., T 3, T 5, · · · , the corre-

sponding OPE coefficients have some half-integer poles.

As discussed in [40], the existence of these poles is the result of the fact that HHLL

double-twist operators [OLOL]n,J are not distinguishable from some of the multi-stress-

tensor operators for certain ∆L. Separately, OPE coefficients associated with multi-stress-

tensor and double-twist operators in HHLL have same ∆L poles. When the value of ∆L

approaches those poles, relevant multi-stress-tensor and double-twist operators share the

same conformal blocks where the divergence in ∆L will be identically canceled [40, 43,

48]. Typically, the holographic technique developed in [40] is not able to read off HHLL

double-twist [OLOL]n,J OPE coefficients. In order to obtain HHLL double-twist data, we

are required to relate the data of near-boundary expansion to the data of near-horizon

expansion where the near-horizon regularity shall be well-imposed [40, 48]. Moreover, the

holographic techniques are no longer able to determine the mixed OPE coefficients [40, 48].

We hope our framework could resolve this situation: we expect that we can distin-

guishably extract both multi-stress-tensor OPE and HHLL double-twist OPE with poles

attached, and clearly observe they merge to eliminate the relevant pole whenever ∆L is

approaching that pole. Unfortunately, this problem remains unclear till now: Standardly,

individual crossed conformal block in G contributes ( only consider leading-term in the

limit z → 0)

c(∆, J) ∼
∫
z

1
2

(−2−τ+2∆L)(· · · ) , (3.15)

where · · · represents those z-independent factors, resulting in lowest-twist of HHLL double-

twist trajectory [OLOL]n=0,J . Thus using the Lorentzian inversion formula without the

heavy and large spin limit should standardly lead to the answer of HHLL double-twist

OPE coefficients. However, as soon as the heavy limit and large spin limit are both taken,

the resulting HLLH correlator would have curious power law of z (3.12) where HHLL

double-twist signals got lost but multi-stress-tensor appears.

Nevertheless, we have to overcome this obstacle for the purpose of going to specific

CFT, for examples, d = 4,N = 4 super-conformal Yang-Mills theory, in which half-BPS

operators all have integer conformal dimensions. From the holographic point of view,

sphere reductions from type IIB string theory or M theory are more likely to give rise to

integer ∆L in even dimensions [48, 51]. The heavy-light bootstrap with integer or half-

integer ∆L thus deserves future investigations [52]. On the other hand, it turns out that

when ∆L approaches a certain pole, the relevant operators acquire anomalous dimension

for which the product of this anomalous dimension and the relevant OPE coefficient could

be determined by taking the Residue at that pole of relevant multi-stress-tensor OPE

coefficient [48]. We can also understand, from the viewpoint of the Lorentzian inversion

formula, that this anomalous dimension should emerge. Note the relevant term in dDisc

is z∆L−pΓ(∆L − p), where p is the upper bound of involved poles, by expanding around a
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certain pole p− p′, it becomes

z∆L−pΓ(∆L − p) ∼
(−1)1+p′zp

′

Γ(1 + p′)

(
1

(p− p′ −∆L)
+ log z + · · ·

)
, (3.16)

where · · · denotes other irrelevant terms and the divergence term should be expected to

be canceled by another set of operators. log z implies that the corresponding multi-stress-

tensor or HHLL double-twist (now they mix with each other) acquire anomalous dimension.

We hope our framework could also inspire the understanding of this anomalous dimension

and verify the Residue relation proposed in [48] in the future [52].

3.3 The algorithm

In this subsection, with assumptions listed in section 2.3 in hands, we would explicitly

propose the algorithm to bootstrap heavy-light four-point function below.

1. Start with the single-stress-tensor conformal block of HHLL, Lorentzian-invert to

extract O(µ) HLLH data (OPE coefficients and anomalous dimension of double-twist

operators [OHOL]n,J) in the heavy and large spin limit).

2. Take advantage of O(µ) HLLH data to evaluate O(µ2) colinear (z → 0) four-point

function by summing over twists n and integrating over spin.

3. Lorentzian-invert O(µ2) colinear four-point function to obtain O(µ2) HHLL OPE

data which encodes lowest-twist double-stress-tensor OPE coefficients, read off

double-stress-tensor OPE coefficients.

4. Input lowest-twist double-stress-tensor conformal block of HHLL, Lorentzian-invert

to extract O(µ2) HLLH data in the heavy and large spin limit.

5. Recursively repeat 1 to 4 to extract more and more O(µorder) HLLH data and lowest-

twist T order OPE coefficients of HHLL.

4 Examples in four dimension up to T 3

In this section, we follow the algorithm introduced in the previous section to solve the

heavy-light four-point function in four dimension up to T 3 as an explicit example.

4.1 O(µ) double-twist

In d = 4, the closed form of conformal block is known as (2.4) which simplifies things a lot.

Since the conformal block (2.4) is explicitly invariant under interchanging z and z̄, making

it possible just to use half of it, thus we only need to evaluate

c(∆′, J ′) =

∫ 1

0
dzdz̄

(z − z̄)

(zz̄)3
((1− z)(1− z̄))a+bka,bβ′ (z̄)ka,b2−τ ′(z)dDisc[GT (z, z̄)] , (4.1)
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where G(z, z̄) is single-stress-tensor conformal block, which in d = 4 is specifically given by

(still evaluate a half of (2.4))

GT (z, z̄) = −
∆L(z − 1)−1−∆L(z̄ − 1)1−∆L(zz̄)

∆H+∆L
2

(
3(1− z2) + (z2 + 4z + 1) log z

)
40(z − z̄)

,

(4.2)

where the parameter µ in single-stress-tensor OPE (2.22) is slipped off such that we can

organize HLLH data exactly following (2.21) in section 2.3: we use Lorentzian inversion

formula to directly extract c̃
(k)
n′,J ′ and γ̃

(k)
n′,J ′ . (4.2) should be automatically separated into

two parts, one is free of log and one contains log z. The former would be evaluated to

contribute to the O(µ) corrections to the HLLH double-twist OPE coefficients, and the

latter reflects that the HLLH double-twist operators acquire anomalous dimension at the

order O(µ). Let us first consider the part without log. We can apply the formula (2.15) to

work out the integration over z̄ to obtain the following integral over z

c̃(1)(∆′, J ′) =
3∆L

4

∫
dz z

1
2

(∆H+∆L−6)(1− z)−∆2(1 + z)ka,b4−τ ′(z) . (4.3)

To evaluate such an integral, we can expand the hypergeometric function in terms of the

series of z → 0 where each term can be integrated over z and then we can sum over the

result of each term to have a nice answer. Taking both the heavy limit ξ → 0 and large

spin limit J ′ →∞ yields

c̃(1)(∆′, J ′) =
3∆L

(
2Γ(1− n′)Γ(1−∆L) + Γ(−n′)Γ(2−∆L)

)
4Γ(2− n′ −∆L)Γ(−1 + ∆L)

J ′−2+∆L , (4.4)

in which we set τ ′ = ∆H + ∆L + 2n′. Note the free OPE coefficients (2.19) with heavy and

large spin limit specializing in d = 4 are

c̃free
n′,J ′ =

Γ(∆L + n′ − 1)

Γ(n′ + 1)Γ(∆L)Γ(∆L − 1)
J ′∆L−1 . (4.5)

Then taking the Residue at a given twist, i.e., integer n′ and dividing it by free OPE

coefficients (4.5) leads to

c̃
(1)
n′,J ′ = −3∆L(∆L + 2n′ − 1)

4J ′
. (4.6)

This result exactly agrees with examples of low-lying n′ obtained in [38, 44].

The computation for log part is similar but more involved. Notably, in previous work

on computing anomalous dimension via using the Lorentzian inversion formula, it is not

necessary to do the integration over z. In most cases, one could just evaluate the integral

over z̄, and the remaining z-dependent integrand will be exactly the same as z-dependent

integrand associated with OPE data up to an overall log z. Therefore, by definition, the

anomalous dimension can be easily worked out by ignoring the z-dependent part and pro-

jecting everything onto double-twist trajectories. However, in our case, there is a discrep-

ancy between z-dependence of log part and OPE part, which is manifest in (4.2). The trick

here is simply ignoring the overall log z and integrating the remaining factor over z

− 1

4

∫
dz z

1
2

(∆H+∆L−4)(1− z)−2−∆2(1 + 4z + z2)ka,b4−τ ′(z) . (4.7)
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This integral does a job to make the double-twist trajectories visible. The limits ξ →
0, J ′ →∞ should be taken, we thus find

c̃
(1)
log(∆′,J ′) =

1

4Γ(2−n′−∆L)Γ(∆L−1)Γ(∆L)
(∆L(∆L+6n′−1)Γ(−n′)Γ(1−∆L)Γ(∆L)

−6(−1)n
′
Γ(2−n′)Γ(2−n′−∆L)Γ(∆L+n′−1)) . (4.8)

Subsequently, we should take the Residue to specify the value at the double-twist trajec-

tories and then divide the resulting expression by free OPE coefficients to end up with

anomalous dimension. We end up with the anomalous dimension as follows

γ̃
(1)
n′,J ′ = −

∆2
L + (6n′ − 1)∆L + 6n′(n′ − 1)

2J ′
. (4.9)

It is matching with those examples obtained in [44].

4.2 Lowest-twist double-stress-tensor

Now we are ready to bootstrap the lowest-twist double-stress-tensor with (4.6) and (4.9)

in hands. From (2.4), the full HLLH block in d = 4 with bare double-twist operators at

the heavy-limit is given by

gn′,J ′ =
(zz̄)n

′+
∆H+∆L

2

z̄ − z
(−zJ ′−1 + z̄J

′+1) . (4.10)

As a warm-up exercise, we would present the HLLH four-point function at O(µ) order. We

would present the individual contribution from the twist n′, and then we are supposed to

sum over n′. For a certain twist n′ and J ′, we have

GHLLH,s,(1)
n′,J ′ (z, z̄) = c̃free

n′,J ′(c̃
(1)
n′,J ′ +

γ̃
(1)
n′,J ′

2
(log z + log z̄))gn′,J ′ , (4.11)

where the superscript denotes that it is HLLH at order O(µ). Substituting (4.5), (4.6)

and (4.9) into above, integrating over J ′ from 0 to∞ and summing over all twists n′ yields

(We also need to take z̄ → 1 limit in the end such that the resulting correlator is consistent

with large J ′ limit)

GHLLH,s,(1)(z, z̄) = −∆L

4
(1−z)−2−∆L(1− z̄)1−∆L(3(1−z2)+(z2 +4z+1) log z)(zz̄)

∆H+∆L
2 ,

(4.12)

which is obviously consistent with the HHLL single-stress-tensor block (4.2). This is the

double-check of this approach.

Then we move to the HLLH four-point function at the order O(µ2), specifically, what

we are looking at is

GHLLH,s,(2)
n′,J ′ (z, z̄) =

c̃free
n′,J ′

2

(
c̃

(1)
n′,J ′ γ̃

(1)
n′,J ′ +

(γ̃
(1)
n′,J ′)

2

4
(log z+ log z̄)

)
(log z+ log z̄

)
gn′,J ′ , (4.13)

where we ignore the terms contributed by c̃
(2)
n′,J ′ and γ̃

(2)
n′,J ′ since these contributions will be

killed by dDisc. In fact, even c̃
(1)
n′,J ′ is useless for the purpose of using Lorentzian inversion
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formula: it gives us linear log that becomes trivial under dDisc. Integrating over J ′,

summing over n′ and turning to cross-channel, we thus have (for simplicity, we only keep

log2(1− z̄) that survives under dDisc)

G(2)
HLLH =

∆L

32(∆L − 2)

z2

z̄4

(
∆L(∆L − 1)z̄4 − 12∆L(∆L + 2)z̄3 + 12(4∆L + 3)(∆L + 2)z̄2

−36(∆L + 2)(∆L + 1)(2z̄ − 1)
)

log2(1− z̄) . (4.14)

The pole ∆L − 2 in T 2 OPE observed in [40] already appears here. Then we just need to

work out the Lorentzian inversion formula (2.8) with considering the leading z → 0 term

c(∆, J) = −
∫
dzdz̄ z−

τ+2
2 k0,0

β (z̄) dDisc[G(2)
HLLH ] . (4.15)

Nevertheless, it is worth noting that we should not apply (2.15) anymore, since now no

z̄ → 1 limit is assumed. In other words, what we are interested in is finite J result. The

following formula would be useful∫ 1

0
dz̄ z̄α 2F1(β, β, 2β, z̄) =

1

α+ 1
3F2(α+ 1, β, β;α+ 2, 2β; 1) . (4.16)

The trick to do the integral is that we would expand the hypergeometric function in terms

of an infinite series which makes the integral doable, and then sum over the infinite series

back to an exact result. Meanwhile, the integral over z is not necessarily to be done, since

we know it will give rise to the pole ∆ − J − 4, we only need to slip off z and assign the

value ∆ = J + 4 to the rest. After some algebra, we have

c
(2)
0,J =

2−5−2J√π∆LΓ(J+1)

(∆L−2)(J−1)(J−3)(J+6)(J+4)(J+2)Γ(J+ 3
2)

(
a

(2)
0 +a

(2)
1 ∆L+a

(2)
2 ∆2

L

)
, (4.17)

a
(2)
0 = 288, a

(2)
1 =−(J4+6J3−37J2−138J+72), a

(2)
2 =(J−2)J(J+3)(J+5).

One can straightforwardly verify that (4.17) is exactly same as the holographic result in [43]

and also as conjectured in [42].

4.3 O(µ2) double-twist and lowest-twist T 3

Going further to work on O(µ2) raises up a practical problem. Typically, there are an

infinite number of lowest-twist double-stress-tensors with different spin J , and one has to

sum over them for the purpose of using Lorentzian inversion formula. This would be a hard-

core task, and [42, 44] have done this by taking advantage of a complicated hypergeometric

identity. In fact, the summed block exhibits a nice pattern at limit z → 0 with respect

to (2.17). Based on this nice pattern, [44] proposed an ansatz to write down all multi-

stress-tensor blocks. With the help of that ansatz, [44] succeeded at obtaining HLLH data

and HHLL T 3 OPE coefficients that are partly overlapped with this section. The summed

lowest-twist double-stress-tensor four-point function is given by (after crossing) [42, 44]

GT 2 =
∆L

28800(∆L−2)

(
(∆L−4)(∆L−3)(k0,0

6 (1−z))2 +
15

7
(∆L−8)k0,0

4 (1−z)k0,0
8 (1−z)

+
40

7
(∆L+1)k0,0

2 (1−z)k0,0
10 (1−z)

)
. (4.18)
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Then exactly as we did in (4.1) and in previous subsections, we should work out the integral,

take the heavy and large spin limit, and then we should take the corresponding Residue.

We thus find the corrections to the double-twist OPE coefficients

c̃
(2)
n′,J ′ =

1

96J ′2
(
27∆4

L + 4(27n′ − 43)∆3
L + 3(36n′2 − 208n′ + 39)∆2

L

−4(129n′2 + 27n′ − 7)∆L − 624n′(n′ − 1)
)
, (4.19)

and the corrections to the double-twist anomalous dimensions

γ̃
(2)
n′,J ′ = −

4∆3
L + 3(14n′ − 1)∆2

L + (102n′2 − 66n′ − 1)∆L + 34(2n′ − 1)n′(n′ − 1)

8J ′2
, (4.20)

which agree with results obtained by using Hamiltonian perturbation theory [38]. The

low-lying examples n′ = 0, 1, 2, 3 of (4.20) also exactly match with those obtained in [44].

Then we would like to attempt at solving T 3 OPE coefficients. Expanding the HLLH

heavy block associated with twist n′ and spin J ′ up to O(µ3) leads to (ignoring linear log

term)

GHLLH,s,(3)
n′,J ′ =

c̃free
n′,J ′

8

(
γ̃

(1)
n′,J ′(c̃

(1)
n′,J ′+2γ̃

(2)
n′,J ′)+

1

6
(γ̃

(1)
n′,J ′)

3(log z+log z̄)

)
(log z+log z̄)2 . (4.21)

By substituting the known data (4.6), (4.9), (4.19) and (4.20) into above, we are allowed

to integrate over J ′ and sum over n′ to obtain G(3)
HLLH . Although the expression of G(3)

HLLH

is too cumbersome and complicated to be presented here, it is for sure that log3(1− z̄) is

involved. After doing the double-discontinuity, we are still left with log(1− z̄). In this way,

at the order T 3, we have to face with following integral∫ 1

0
dz̄ z̄α 2F1(β, β, 2β, z̄) log(1− z̄) . (4.22)

Unfortunately, at least to our knowledge, this integral (4.22) does not have a closed form

answer,3 while we can only have an infinite series representation for it∫ 1

0
dz̄ z̄α 2F1(β, β, 2β, z̄) log(1− z̄) = −

∞∑
k=0

22β−1Γ(β + 1
2)2Γ(k + β)2(γ + ψ(α+ k + 2))

√
π(α+ k + 1)Γ(k + 1)Γ(β)Γ(2β + k)

.

(4.23)

Thus we are hindered from having lowest-twist T 3 OPE coefficients with symbolic J depen-

dence. Nevertheless, for specific J , the integral is easy to evaluate, and we could steadily

have many low-lying examples for lowest-twist T 3 OPE coefficients. We present some

examples with low-lying J = 6, 8, 10, 12, 14

c
(3)
0,6 =

∆L(1001∆4
L + 3575∆3

L + 7310∆2
L + 7500∆L + 3024)

10378368000(∆L − 3)(∆L − 2)
,

c
(3)
0,8 =

∆L(3003∆4
L + 6032∆3

L + 9029∆2
L + 7148∆L + 2688)

613476864000(∆L − 3)(∆L − 2)
,

c
(3)
0,10 =

∆L(2431∆4
L + 3077∆3

L + 3742∆2
L + 2216∆L + 888)

9468531072000(∆L − 3)(∆L − 2)
,

3We thank Junyu Liu, Wei Li and Jian-Dong Zhang for discussions on this integral.
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c
(3)
0,12 =

∆L(46865039∆4
L + 38644366∆3

L + 41210477∆2
L + 15350374∆L + 8351544)

3400149507955200000(∆L − 3)(∆L − 2)
,

c
(3)
0,14 =

∆L(4892481∆4
L + 2593025∆3

L + 2625560∆2
L + 245300∆L + 477744)

6497406470370816000(∆L − 3)(∆L − 2)
. (4.24)

The first three examples J = 6, 8, 10 are verified to be the same as those in [44].

Before ending this section, we would like to comment on what we have learned about

the heavy-light bootstrap algorithm from d = 4 examples. Even though the algorithm is

clear and, in principle, it is expected to provide us universal parts of HLLH data and HHLL

multi-stress-tensor OPE coefficients up to any high order, some technical issues are imped-

ing our effort on going to higher order. The most important technical issue is that higher

order cross-channel four-point functions G needed in Lorentzian inversion formula requires

us to sum over twists n′ and spins J for manipulation. In general, higher order calculations

come with higher powers of log(1 − z̄) in the integral, making the symbolic J formula for

Tn OPE coefficients impossible, not mention summing over them. Fortunately, the ansatz

of HHLL four-point function proposed in [44] can release our pressure on summing over

all possible J in lowest-twist multi-stress-tensor blocks to pick up required HHLL four-

point function GTn . Typically, GTn takes the form of the ansatz proposed in [44], where

the undetermined coefficients could be fixed by drawing references from some low-lying J

OPE coefficients of Tn. Thus the HHLL ansatz proposed in [44] is undoubtedly important

for improving our algorithm, which could largely promote efficiency. When it comes to

summing over twists n′, no difficulty appears in examples d = 4. However, we will see that

this issue is inevitable in the next section. Some other issues exist, and for the moment,

we are not aware of the resolution. For example, we will see in the next section that in

general dimension, even O(µ) order double-twist OPE coefficients can not be solved!

5 O(µ2) bootstrap in general dimension

In this section, we would employ our algorithm to push on O(µ2) heavy-light bootstrap in

general dimensions. The main results are as follows:

1. We find a series representation of O(µ) order HLLH double-twist OPE coefficients in

general dimensions. Nicely, O(µ) order HLLH double-twist anomalous dimension is

found with a closed form as 3F2 function.

2. For the lowest-twist double-stress-tensor OPE coefficient in general dimensions, an

infinite series representation is provided.

5.1 A warm-up: free double-twist OPE

As a warm-up, we would like to reproduce the double-twist free OPE coefficients in this

subsection. The key ingredient is HLLH funny block in general dimensions, which is an

infinite series with relevant terms given by (3.1). For each term, we could take advantage

of the nice formula (2.15) to integrate over z̄ and take the interested limit ξ → 0 followed
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by J ′ → ∞. We would like to recap the fact that only B̃n,n survives at heavy-limit as

in (3.6). Then we find

c(∆′, J ′)|n = B̃n,n
Γ(n− n′ + 1)Γ(1−∆L)

(n− n′)Γ(1 + n− n′ −∆L)Γ(∆L)
J ′∆L−1 , (5.1)

where we assume ∆′− J ′ = ∆H + ∆L + 2n′ and B̃n,n can be found in (3.6). We are happy

that the summation over n is not hard, we find

c(∆′, J ′) =

∞∑
n=0

c(∆′, J ′)|n = −
Γ(1− n′)Γ(d2 −∆L)

n′ Γ(d2 − n′ −∆L)Γ(∆L)
J ′∆L−1 . (5.2)

By taking the Residue at integer n′, it is straightforward to find

c̃free
n′,J ′ =

(∆L − d
2 + 1)n′

Γ(n′ + 1)Γ(∆L)
J ′∆L−1 , (5.3)

which can be verified to be consistent with heavy and large J ′ limit of (2.19). In addi-

tion, (5.3) would come back to (4.5) as soon as d = 4 is specified.

5.2 O(µ) double-twist

Now we turn to compute the O(µ) correction to HLLH data. The essential ingredient is

the form of GT . Since we are only interested in large J ′ limit, we could just use the colinear

block (2.6) in the cross-channel, we thus have

GT = ((1− z)(1− z̄))∆L(1− z̄)
d−2

2 (zz̄)
∆H+∆L

2 k0,0
d+2(1− z) . (5.4)

The next step is to address k0,0
d+2(1− z). The strategy is to expand the function k0,0

d+2(1− z)

in terms of an infinite series around z → 0 where each term can be integrated easily. In

the end, we would like to sum the integrated series back to one single expression. Notice

that the involved hypergeometric function is 2F1(β, β, 2β, 1− z) where β = (d+ 2)/2, thus

we should have following series expansion

2F1(β, β, 2β, 1− z) =

∞∑
k=0

Γ(2β)(β)2
k

(
2(ψk+1 − ψk+β)− log z

)
(k!)2Γ(β)2

zk . (5.5)

As expected, we have log free part and log part responsible for OPE and anomalous dimen-

sions respectively. Then we would like to obtain anomalous dimensions at first by following

the strategy demonstrated in section 4. For each k and n in the heavy and large spin limit,

we find

c̃
(1)
log(∆′,J ′)|n,k =

(−1)n+1∆LΓ(d2 +k+1)2Γ(k+n−n′)Γ(d2−∆L+2)J ′∆L− d2

d2Γ(d2)Γ(k+1)2Γ(d2−n)Γ(n+1)Γ(d2 +k+n−n′−∆L)Γ(∆L− d
2 +1)

.

(5.6)

Fortunately, it is not difficult to sum over n and k in (5.6)

c̃
(1)
log(∆′, J ′) =

∞∑
n,k=0

c̃
(1)
log(∆′, J ′)|n,k (5.7)

= − ∆LΓ(−n′)Γ(d−∆L + 1)J ′∆L− d2

4Γ(d−∆L + n′ + 1)Γ(∆L − d
2 + 1)

3F2

(
d

2
+ 1,

d

2
+ 1,−n′; 1, 1, d− n′ −∆L + 1; 1

)
.
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Taking the Residue at double-twist trajectories and dividing the resulting expression by

free OPE (5.3) steadily gives rise to

γ̃
(1)
n′,J ′ = −

(−1)n
′
Γ(∆L + 1)Γ(d−∆L + 1) 3F2

(
d
2 + 1, d2 + 1,−n′; 1, d− n−∆L + 1; 1

)
2J ′

d−2
2 Γ(d− n−∆L + 1)Γ(−d

2 + n+ ∆L + 1)
,

(5.8)

which is precisely what [38] obtained by using holographic technique of Hamiltonian per-

turbation theory.

For log free part, follow similar analysis, we find

c̃(1)(∆′, J ′)|n,k = −2c̃
(1)
log(∆′, J ′)

(
ψk+1 − ψk+(d+2)/2

)
. (5.9)

The difficulty thus arises. To our knowledge, we can only do the summation over n in (5.9).

When it comes to k, polygamma functions are involved such that the summation is hard to

carry out. Nevertheless, we could take the parametric limit and take the projection onto

the double-twist family for each k, in which a truncation in the summation over k becomes

manifest kmax = n′. We end up with

c̃
(1)
n′,J ′ c̃

free
n′,J ′ =

n′∑
k=0

(−1)n
′−k+1∆LΓ(d2 + k + 1)2Γ(d−∆L + 1)

(
ψk+1 − ψk+(d+2)/2

)
J ′∆L−d/2

2Γ(d2 + 1)2Γ(k + 1)Γ(n′ − k + 1)Γ(d+ k − n′ −∆L + 1)Γ(∆L − d
2 + 1)

.

(5.10)

The simplest case would be the leading-twist n′ = 0, in general dimensions, we have

c̃
(1)
0,J ′ = −

Γ(∆L + 1)(γ + ψ(d+2)/2)

2Γ(∆L − d
2 + 1)

1

J ′
d−2

2

. (5.11)

When d is even, it is not hard to implement the summation. Particularly, specializing d = 4

in (5.10) gives back to (4.6). Some other low-lying examples which are simple enough to

present here are d = 6, 8

d = 6 , c̃
(1)
n′,J ′ = −∆L(60n′(n′ + ∆L − 2)) + 11(∆L − 1)(∆L − 2)

12J ′2
, (5.12)

d = 8 , c̃
(1)
n′,J ′ = −

5∆L(∆L + 2n′ − 3)
(
5∆2

L + (42n′ − 15)∆L + 2(21n′2 − 63n′ + 5)
)

24J ′3
.

5.3 An infinite series of lowest-twist T 2

In this section, we would like to see whether we can have access to something on T 2 OPE in

general dimension. Although we do not even have a closed form for O(µ) double-twist OPE

coefficients, it is not necessary to include the O(µ) double-twist OPE in the correlator as

discussed in section 4: they are suppressed by double-discontinuity. Now we need the full

heavy-block (3.7) with summing over n in order to implement Lorentzian inversion formula.

Thanks to the heavy and large spin limit such that we have (3.10), we thus find the

HLLH four-point function with bare double-twist operators is

gn′,J ′(z, z̄) =
z

∆H+∆L
2

+n′ z̄
∆H+∆L+d

2
+n′+J ′−1

(z̄ − z)
d−2

2

, (5.13)
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which gives us the relevant term in (4.10) when specifying d = 4.4 Subsequently we will

have exactly (4.13) without the contribution from c̃
(1)
n′,J ′ (since it is irrelevant). However,

we immediately encounter a problem. Following the algorithm, we are required to sum

over twists n′. Unfortunately, considering that the anomalous dimension in general dimen-

sion (5.8) is a generalized hypergeometric function and we have no idea how do we simplify

such a generalized hypergeometric function, we are not likely to accomplish the summation.

Nevertheless, we could keep n′ and apply Lorentzian inversion formula to each term with

n′. Although the involved process is very complicated and it is not appropriate to write all

of them down, we manage to have a final answer for lowest-twist T 2 OPE contributed by

each twist n′ by following the standard steps as shown in previous sections. Hence, we end

up with an infinite series representation for lowest-twist double-stress OPE coefficients

c
(2)
0,J =

∑
n′

H(∆L,J)3F2

(
d
2 +1, d2 +1,−n′;1,d−∆L−n′+1;1

)2

Γ(d−∆L−n′−1)2Γ(∆L− d
2 +n′+1)Γ(∆L+J− d

2 +n′−1)
(5.14)

×3F2

(
d+J−2,d+J−2,∆L+J+

d

2
−2;2(J+d−2),∆L+J+

d

2
+n′−1;1

)
,

where H(∆L, J) is given by

H(∆L, J) =
162−d−Jπ2∆L(d−∆L)(d−∆L − 1)Γ(∆L + 1)

Γ(d+ J − 5
2)Γ(d+ J − 3

2)Γ(∆L − d
2 + 1) sin(π∆L)

×
Γ(J + d− 2)2Γ(d−∆L + 1)Γ(∆L + J + d

2 − 2)

Γ(d+ J − 5
2)Γ(d+ J − 3

2)Γ(∆L − d
2 + 1) sin(π∆L)

. (5.15)

However, it is rather difficult to start with the infinite series (5.15) and try to work out ex-

amples with specific dimensions because of the existence of the generalized hypergeometric

function. Instead, one should start with anomalous dimensions (5.8). We find, for even

dimension, (5.8) could be reduced to be a nice finite series, making the summation over

n′ manageable in the process of obtaining G(2)
HLLH . After that, the lowest-twist T 2 OPE

coefficients with symbolic J can be steadily extracted by following the standard integra-

tion technique. We present some low-lying examples d = 6, 8, 10 in appendix B. It should

be commented that it seems even dimension is special, while odd dimensions are harder

to handle. This is consistent with the holographic treatment of multi-stress-tensor OPE

in [40, 48] where only even dimension case could be truncated to finite series such that the

framework is applicable.

6 Conclusion and future directions

In this paper, we studied heavy-light four-point functions by implementing Lorentzian

inversion formula back and forth. Focusing on non-degenerate scalar fields and assuming

4The reason that another part in (4.10) is missing in (5.13) is: (5.13) is deduced from (2.7) which is

actually the pure power law block where another nonessential power series of z does not exist. On the other

hand, (4.10) is deduced from the full d = 4 conformal block (2.4). In other words, a half of block is enough

for our purpose.

– 23 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
6

∆L is not an integer and half-integer, we generally show (but not a serious proof) that

Lorentzian inversion formula can probe the universality of lowest-twist multi-stress-tensor

exchanged in HHLL, and large spin OPE coefficients and anomalous dimensions of double-

twist operators exchanged in HLLH. This universality holds within the region z → 0 with

respect to the crossing equation (2.17). Moreover, an algorithm for computing these data

was proposed. In this way, we could state that we can bootstrap heavy-light four-point

functions. By applying the algorithm, examples of d = 4 up to triple-stress-tensor T 3

were presented where the results are consistent with results in previous literature. In

addition, we also bootstrapped heavy-light four-point function up to O(µ2) (T 2) order in

general dimensions: we obtain O(µ2) double-twist anomalous dimension in HLLH, series

representations of O(µ2) double-twist OPE coefficients in HLLH and series representations

of lowest-twist double-stress-tensor OPE coefficients in HHLL.

Although now we can claim that the universality of lowest-twist multi-stress-tensor

in heavy-light four-point function is understood by Lorentzian inversion formula to some

extent, many related valuable questions are still far from clear. We would like to point out

some important future directions

• The efficiency of our algorithm is somehow limited. [44] suggests that the first few

twists n′ of double-twist HLLH data and some low-lying spin J of lowest-twist multi-

stress-tensor OPE are enough to maintain the cycle of crossing back and forth and

extract more data. It is thus important to investigate the minimum number of twists

n′ and spin J that is sufficient to maintain the algorithm, which could enhance the

efficiency and allow us to go to higher orders.

• It is clear from Lorentzian inversion formula that lowest-twist multi-stress-tensor

OPE coefficients are suffering from some ∆L poles. These poles are expected to be

canceled by relevant double-twist operators [OLOL]n,J in HHLL and anomalous di-

mensions would appear when ∆L approaches the poles. Further understanding of

this cancelation and inherent anomalous dimensions, alongwith extracting OPE of

[OLOL]n,J is worthy and necessary whenever specific CFTs or supergravities are con-

sidered. This understanding, in turn, should shed light on the holographic technique

of relating near boundary data to near horizon regularity [40, 48].

• To touch specific CFTs or supergravities, it is also necessary to get rid of the non-even-

integer multiplet assumption. It is thus very important and interesting to include

other light operators, forming a class of light operators where double-twist operators

are mixed. In this situation, there should be extra index such that the double-

twist OPE coefficients and anomalous dimensions in HLLH are matrixes, and an

appropriate diagonal basis is required.

• Our results achieve a precise agreement with [44], verifying the exponential ansatz in

some sense. We wish, similar to Virasoro block in d = 2, we could somehow directly

solve the universal heavy-light conformal block of HHLL which is supposed to be

exponentiated. This might be possible by using 6j symbol [53].
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A Details of Ba,b
n,m and B̃a,b

n,m

This appendix is devoted to collect the skipped details in the main text about Ba,b
n,m and

B̃a,b
n,m in the heavy and large spin limit (3.10) and (3.6).

A.1 Ba,b
n,m

At First, we would like to keep track of full Ba,b
n,m without any limits taken. The logic is

simple, we just throw (2.7) into quadratic Casimir equation (2.2) and (2.3), and organize the

resulting equation as a recursion equation. We will frequently use two derivative identities

for ka,bβ (z̄). The first one is

∂2
z̄k

a,b
β =

(
4abz̄ + β(β − 2)

)
ka,bβ + 4(a+ b+ 1)z̄2∂z̄k

a,b
β

4z̄2(z̄ − 1)
, (A.1)

which connects second derivative with first derivative without shifting β. The second

identity relates first derivative of ka,bβ to ka,bβ with β shifted by −2, 0, 2, namely

∂z̄k
a,b
β =

β

2(1− z̄)
ka,bβ−2 −

β(β − 2)(a+ b)− 4ab

2(z̄ − 1)β(β − 2)
ka,bβ +

(β2 − 4a2)(β2 − 4b2)(β − 2)

32(z̄ − 1)(β − 1)β2(β + 1)
ka,bβ+2 .

(A.2)

Then we do series expansion with respect to z and take advantage of (A.1) and (A.2) such

that all derivatives are removed, as results, the Casimir equation becomes

n∑
m=−n

(AnmBa,b
n,mk

a,b
β+2m + Bn−1B

a,b
n−1,mk

a,b
β+2m) +

n∑
p=1

p∑
m=−n+p

1

z̄p−1

(
1

z
C1,0
n−pk

a,b
β+2m (A.3)

+C2,−1
m ka,bβ+2(m−1) + C2,0

m ka,bβ+2m + C2,1
m ka,bβ+2(m+1)

)
Ba,b
n−p,m = 0 ,

where all A,B, C are given by

Anm = 2
(
m2 +m(β−1)+n(n+τ−d+1)

)
, C1,0

n =−2(d−2)n,

Bn = −1

2
(2a+2n+τ)(2b+2n+τ) , C2,−1

m = (d−2)(2m+β−τ) ,

C2,0
m =

(d−2)
(
2a(β+2m−2)(β+2m)+4ab(τ−2)+(β+2m−2)(β+2m)(2b+τ+4n)

)
2(β+2m−2)(β+2m)

,

C2,1
m = −

(d−2)
(
(2m+β)2−4a2

)(
(2m+β)2−4b2

)
(β+τ+2m−2)

16(β+2m+1)(β+2m)2(β+2m−1)
. (A.4)
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In addition, another important identity is necessary [15]

ka,bβ
z̄

= ka,bβ−2 +

(
1

2
− 2ab

β(β − 2)

)
ka,bβ +

(a2 − 1
4β

2)(b2 − 1
4β

2)

β2(β2 − 1)
ka,bβ+2 . (A.5)

Using this identity (A.5) to remove all extra 1/z̄, the equation (A.3) boils down to a

recursion relation that could be solved for Ba,b
n,m given boundary condition Ba,b

0,m = δ0m.

Take n = 1 as examples, we find

Ba,b
1,−1 =

(d− 2)(β − τ)

2(β − τ + d− 4)
,

Ba,b
1,0 =

1

2

(
a+ b+

2ab(4 + 2β − β2 + d(τ − 2)− 2τ)

(β − 2)β(d− 2− τ)

)
,

Ba,b
1,1 =

(d− 2)(β2 − 4a2)(β2 − 4b2)(β + τ − 2)

32(β − 1)β2(β + 1)(β + τ − d+ 2)
. (A.6)

The formula (3.10) would come out when we solve Ba,b
n,m order by order and take the relevant

limits. However, this approach is not convincing enough in the sense that we could not

find a well-organized closed formula as a solution to the full recursion (A.3) .

In fact, we can restrict ourselves to bare double-twist trajectories and take the heavy-

limit at the very beginning. Surprisingly, as result, the infinite recursion equation would

be self-consistently truncated to be a finite and simple one. Taking the heavy-limit re-

duces (2.7) to (3.7) with vanishing γ(µ), i.e.,

Ga,b∆′,J ′(z, z̄) =
∑
n

m=n∑
m=−n

Ba,b
n,mz

1
2

(2(n′+n)+∆L+∆H)z̄
∆H+∆L

2
+J ′+m+n′ . (A.7)

Subsequently, the quadratic Casimir equation becomes a simple recursion equation

Ba,b
n,m = − 1

A0,0
nm

(
A0,−1
m−1B

a,b
n,m−1 +A1,0

n−1,mB
a,b
n−1,m +A1,1

n−1,m+1B
a,b
n−1,m+1

+A2,1
n−2B

a,b
n−2,m+1

)
, (A.8)

where A’s are

A0,0
nm = −2

(
m2 +m(β − 1) + n(τ − d+ n+ 1)

)
, A0,−1

m =
1

2
(2m+ 2a+ β) ,

A1,0
nm = −1

2

(
2(m− n) + β − τ

)(
2(m+ n+ 2a− d+ 2) + β + τ

)
,

A1,1
nm = 2(m2 + n2) + 2m(β − d+ 1)− (d− 2)(β − τ) + 2n(τ − 1) ,

A2,1
n = −1

2
(2n+ 2a+ τ)2 . (A.9)

We should emphasize that we have already specified b = a = 1/2(∆L − ∆H) in above

recursion (A.8), and in particular τ = ∆H + ∆L + 2n′ where n′ is an arbitrary twist. Then

we can take heavy and large spin limit for A in the recursion equation (A.8). We find for

n > m > −n

A1,1
n−1,m+1

A0,0
n,m

= −1 ,
A0,−1
m−1

A0,0
n,m

=
A1,0
n−1,m

A0,0
n,m

=
A2,1
n−2

A0,0
n,m

= 0 , for n > m > −n . (A.10)
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For m = n, all allowed terms are zero, it is thus clear from (A.10) that all Ba,b
n,m>−n = 0.

Then we just need to figure out the recursion equation provided with m = −n. Typically,

when m = −n, only the third term in the right hand side of (A.8) makes sense, and it is

evaluated to be (−d+ 4−2n)/(2n). Then the recursion equation is largely simplified to be

Ba,b
n,−n =

d− 4 + 2n

2n
Ba,b
n−1,1−n , (A.11)

which is easy to be solved by

Ba,b
n,−n =

(
d
2 − 1

)
n

Γ(n+ 1)
. (A.12)

However, this shall not be the end of story. The reduced block that needs to be solved (A.7)

suffers from ambiguity of m. To be precise, for example, relevant z̄m−1 in (A.7) could either

be ka,bβ+2m/z̄ or ka,bβ+2(m−1). Fortunately, this ambiguity is of no significance here, because we

could always use (A.5) to state ka,bβ+2m/z̄ and ka,bβ+2(m−1) is equivalent provided with the co-

efficients in (A.5) is vanishing in the heavy-limit. Till now, the proof of (3.10) is completed.

A.2 B̃a,b
n,m

Now we turn to draw (3.6) for B̃a,b
n,m. We have to remind that this subsection is not a

serious proof, but should be served as a strong evidence that (3.6) is correct. In fact, as

soon as we solve Ba,b
n,m in (2.7) from (A.3), we could multiply (2.7) by the overall factor

κa,b(β′)/κa,b(β′+2m)(1−z)a+b(1−z/z̄)d−2, then we re-expand it with respect to z, organize

resulting expansion as (3.1) by using (A.5) and turning (∆→ J+d−1, J → ∆−d+1). As

the consequence, the coefficients B̃a,b
n,m could be read off [15]. Take the heavy and large spin

limit, we can observe that (3.6) is valid. As in previous subsection on Ba,b
n,m, this approach

is not satisfactory since we are not allowed to solve (3.6) in an apparent way.

A better way is to take the heavy-limit in the first place. One should note we have a

factor κa,b(β′)/κa,b(β′+2m) attached to each m which is a little bit annoying and unnatural.

For now, we simply do not consider this factor and aim to solve auxiliary coefficients B̂a,b
n,m

in

Ga,bJ+d−1,∆−d+1 =
∑
n

n∑
m=−n

B̂a,b
n,m(1− z)−a−b

(
1− z

z̄

)2−d
z−

τ
2

+d+n−1z̄
β
2

+m . (A.13)

The resulting recursion equation is infinite but neat

B̂a,b
n,m = − 1

Ã0,0
n,m

(
Ã0,−1
m−1B̂

a,b
n,m−1 + B̃1,0

n−1,mB̂
a,b
n−1,m + B̃1,−1

n−1,m+1B̂
a,b
n−1,m+1

+
n∑
p=2

(C̃1,p
n−p,m+p−1B̂

a,b
n−p,m+p−1 + C̃2,p

n−p,m+pB̂
a,b
n−p,m+p)

)
, (A.14)

where the coefficients are given by

Ã0,0
n,m = 2(m2+m(β−1)+n(n−τ+d−1)), Ã0,−1

m =−1

2
(2a+2m+β)(2b+2m+β),

B̃1,0
n,m =

1

2

(
4d(m−n)−4n2+4b(d+n)+2dβ−4(β+2m+2d+b−3)+2(d−b)τ
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+τ(4n−τ)−4a(b+τ−n−d+1)
)
,

B̃1,−1
n,m = −(d−2)(β+τ+2m−2n−6), C̃1,p

n,m=(d−2)
(
β+τ+2(m−n+a+b−2p)

)
,

C̃2,p
n,m = −(d−2)

(
β+τ+2(m−n−2p−1)

)
. (A.15)

Then we take the heavy and large spin limit for these coefficients within double-twist

trajectories. For n > m > −n, first three terms in the right hand side of (A.14) tend to

zero. Furthermore, for m = n, only the first term in the right hand side of (A.14) makes

sense, although it is not zero and actually diverges, it expresses B̂a,b
n,n in terms of B̂a,b

n,n−1<n

which is zero, indicating that all B̂a,b
n,m>−n = 0. Again we are left with B̂a,b

n,−n, for which

the recursion equation reduces to

B̂a,b
n,−n +

d− 2

2n

n∑
p=1

B̂a,b
n−p,−n+p = 0 , (A.16)

which is easily solved by

B̂a,b
n,−n = (−1)n

(
d
2 − n

)
n

Γ(n+ 1)
. (A.17)

Then we would like to recover the factor κa,b(β′)/κa,b(β′+ 2m) and translate B̂ to B̃. One

may naively multiply κa,b(β′)/κa,b(β′ − 2n), which, however, identically vanishes in the

heavy and large spin limits. This subtlety arises because of the ambiguity of z̄m exactly

the same as in previous subsection. Now we are not lucky enough to make ka,bβ+2m/z̄ and

ka,bβ+2(m−1) equivalent, since the factor κa,b(β′)/κa,b(β′ + 2m) is different for each of them.

It is possible for us to have the nontrivial result if5

Ga,bJ+d−1,∆−d+1|n = B̂a,b
n,−n(1− z)−a−b

(
1− z

z̄

)2−d
z−

τ
2

+d+n−1
ka,bβ
z̄n

. (A.18)

We then should apply (A.5) n times to remove all additional 1/z̄ factor, and mul-

tiplying each term with corresponding κa,b(β′)/κa,b(β′ + 2m) factor. Note the factor

κa,b(β′)/κa,b(β′ + 2m) goes like ξ−2m, while coefficients for second and third term in the

right hand side of (A.5) behave as ξ and ξ2 respectively, we finally find the only surviving

term is B̂a,b
n,−nk

a,b
β+2n, thus

B̃a,b
n,n = B̂a,b

n,−n , B̃a,b
n,m<n = 0 , (A.19)

which is precisely (3.6).

B More examples for double-stress-tensor

In this subsection, we present some low-lying examples d = 6, 8, 10 for lowest-twist double-

stress-tensor OPE coefficients. Actually, from our algorithm of bootstrapping heavy-light

5Actually, a more general possibility should be an arbitrary linear combination
∑n
q=0 cqk

a,b
β−2(n−q)/z̄

q

with
∑
q cq = 1. However, only cn will come into the final answer while all other ci’s are redundancies.

Thus it is natural to shut them down while keep cn = 1.
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four-point function, it is not difficult to work out more even dimensional examples. Typ-

ically, we find that lowest-twist double-stress-tensor OPE coefficients in even dimensions

follow the pattern as

c
(2)
0,J =

22−3d−2J√π∆LΓ
(
∆L − d+ 2

)
Γ
(
J−3

2

)
Γ
(
J+d−2

2

)
Γ(J + d− 3)

Γ
(
∆L − d

2 + 1
)
Γ
(
J+d−3

2

)
Γ
(
J+2d

2

)
Γ
(
J + d− 5

2

) d
2∑
i=0

a
(2)
i ∆i

L ,

a
(2)
d/2 =

Γ(J+d−2
2 )Γ(J+2d−1

2 )

Γ(J−2
2 )Γ(J+d−1

2 )
, a

(2)
0 = const , a

(2)
i 6=0∧d/2 =

p=d∑
p=0

b
(2)
ip J

p . (B.1)

However we do not find patterns governing the constant a
(2)
0 and other b

(2)
ip . We then just

list other a
(2)
i or b

(2)
ip in various dimension below.

d= 6.

a
(2)
0 = 86400 , b

(2)
10 = 51840 , b

(2)
11 = 45864 , b

(2)
12 =−1288 , b

(2)
13 =−1554 , b

(2)
14 = 134 ,

b
(2)
15 = 42 , b

(2)
16 = 2 , b

(2)
20 =−8640 , b

(2)
21 = 5796 , b

(2)
22 = 9060 , b

(2)
23 = 1323 ,

b
(2)
24 =−273 , b

(2)
25 =−63 , b

(2)
26 =−3 .

(B.2)

d= 8.

a
(2)
0 = 67737600 , b

(2)
10 = 82252800 , b

(2)
11 = 24783264 , b

(2)
12 =−2374984 , b

(2)
13 = 63624 ,

b
(2)
14 = 120746 , b

(2)
15 =−9504 , b

(2)
16 =−3676 , b

(2)
17 =−264 , b

(2)
18 =−6 ,

b
(2)
20 = 12700800 , b

(2)
21 = 21699216 , b

(2)
22 = 4826804 , b

(2)
23 =−785444 , b

(2)
24 =−171101 ,

b
(2)
25 = 26224 , b

(2)
26 = 7006 , b

(2)
27 = 484 , b

(2)
28 = 11 , b

(2)
30 =−1814400 ,

b
(2)
31 = 231264 , b

(2)
32 = 1878616 , b

(2)
33 = 710424 , b

(2)
34 = 29146 , b

(2)
35 =−22704 ,

b
(2)
36 =−4076 , b

(2)
37 =−264 , b

(2)
38 =−6 .

(B.3)

– 29 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
6

d=10.

a
(2)
0 =109734912000, b

(2)
10 =176795136000, b

(2)
11 =29162885760, b

(2)
12 =−1932683616,

b
(2)
13 =245131200, b

(2)
14 =−28845960, b

(2)
15 =−15354360, b

(2)
16 =1926792,

b
(2)
17 =615600, b

(2)
18 =50760, b

(2)
19 =1800, b

(2)
1,10 =24,

b
(2)
20 =71937331200, b

(2)
21 =41655168000, b

(2)
22 =1983391200, b

(2)
23 =−723441000,

b
(2)
24 =146322800, b

(2)
25 =26696250, b

(2)
26 =−5549250, b

(2)
27 =−1363500,

b
(2)
28 =−107100, b

(2)
29 =−3750, b

(2)
2,10 =−50, b

(2)
30 =4267468800,

b
(2)
31 =11649074400, b

(2)
32 =4893789960, b

(2)
33 =146590500, b

(2)
34 =−176081150,

b
(2)
35 =−9161775, b

(2)
36 =5702655, b

(2)
37 =1046250, b

(2)
38 =76500,

b
(2)
39 =2625, b

(2)
3,10 =35, b

(2)
40 =−609638400, b

(2)
41 =−134438400,

b
(2)
42 =568117440, b

(2)
43 =332499000, b

(2)
44 =53675800, b

(2)
45 =−4186350,

b
(2)
46 =−2455530, b

(2)
47 =−337500, b

(2)
48 =−22500, b

(2)
49 =−750,

b
(2)
4,10 =−10.

(B.4)

The case d = 6 was obtained recently in [44], which is exactly the same as ours.
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