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ABSTRACT: An important part of a CFT four-point function, the stress tensor sector, com-
prises the exchanges of the stress tensor and its composites. The OPE coefficients of these
multi-stress tensor operators and consequently, the complete stress tensor sector of four-
point functions in CFTs with a large central charge, can be determined by computing a
heavy-heavy-light-light correlator. We show how one can make substantial progress in this
direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator,
iteratively computing the OPE coefficients of multi-stress tensor operators with increasing
twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE
coefficients of multi-stress tensors with spin zero and two. We further show that in holo-
graphic CFTs one can use the phase shift computed in the dual gravitational theory to
reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors
with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion
formula and comment on its regime of applicability.
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1 Introduction and summary

1.1 Introduction

Conformal field theories (CFTs) are the harmonic oscillators of our times; besides being
significantly more amenable to analytic study compared to generic quantum field theories,
they also provide a non-perturbative definition of gravity in negatively curved spacetimes
via the AdS/CFT correspondence [1-3]. Their robust structure bears many important
consequences which have come to light in recent years due to the development of conformal
bootstrap techniques following [4-7]. This is especially pronounced in spacetime dimension
d > 2 which this article is focused upon.

Conformal symmetry imposes highly non-trivial constraints on the theory. Two- and
three-point correlation functions are fixed up to a handful of position-independent pa-
rameters [8]. Four- and higher-point functions [9-11] are determined as long as the CFT
spectrum of local operators and the respective OPE coefficients are known (for recent tech-
niques see the original works of [12, 13] and the modern approach developed in [14, 15]).

While computing four-point correlation functions is possible in principle, the amount
of necessary data makes it difficult in practice. Consistency principles, such as crossing
symmetry and unitarity, come to rescue. In fact, the idea of the conformal bootstrap
programme is to use these consistency conditions to place restrictions on the CFT data
(spectrum of operators and OPE coefficients) and, if possible, solve the theory completely.

One way to make use of crossing symmetry is to consider kinematic regimes which
enhance the contribution of a limited number of operators in a given channel, and are
typically reproduced by an infinite number of operators in another channel. A standard
example is the lightcone limit where the initially spacelike separation between two operators
is allowed to become null. Focusing on the lightcone limit of a four-point correlation
function allows one to deduce the existence of double-twist operators at large spin in any
CFT in dimensions d > 2 [16, 17].

A natural assumption when considering an arbitrary CFT is the existence of a stress
tensor. The two-point function of the stress-tensor depends on a single parameter, the
central charge C'r, which serves as a rough measure of the number of degrees of freedom
in the theory. In this paper, we will consider local CFTs with a large number of degrees of
freedom, a.k.a. large central charge Cp > 1.

Specifically, our goal herein is to study the contribution of the stress-tensor sector in
scalar CFT correlation functions, (O10;0202). What we mean here by the “stress-tensor
sector” is the set of operators composed out of stress-tensors and derivatives,! schematically
denoted by : T}, -+ ~TZ’M)_IVP_IE)Q”(‘i\1 «++Ox,Typv, - Such operators are present in large Cr
CFTs, but their contribution to a correlation function is of particular interest in CFTs
with holographic duals since it is related to the contribution of multiple gravitons in the
corresponding Witten diagrams.

We consider the four-point function (OgyOpOrOp) of two pairwise identical scalar
operators labeled as “light, L”, and “heavy, H”, depending on whether their conformal
dimension scales with the number of degrees of freedom, Ay o< O(Cr), or not, Az o< O(1).

IThe identity operator is considered as the first trivial entry of the stress-tensor sector.



The reason this correlator is well-suited to the exploration of the stress-tensor sector is
the presence of an additional parameter, u, proportional to the ratio of the conformal
dimension of the heavy operators with the central charge, p o< Ag/Cp. This parameter
naturally counts the number of stress-tensors in a composite multi-stress tensor operator.
To distinguish the contribution of such operators from the full HHLL correlator in what
follows we will denote it as G(z, 2), i.e.,

G(2,2) = (O (00)0r(1)OL(2,2)On(0)) (1.1)

Note that from G(z,z) in (1.1) one can read off the OPE coefficients of multi-stress tensor

multi-stress tensors

operators to leading order in 1/Cr but exact in Ay.

The HHLL correlator is interesting in its own right. In the limit of a large number of
degrees of freedom, it is related to the thermal two-point function (O;Opr); — as long as
the average energy of the canonical ensemble is roughly equal to the conformal dimension
of the heavy operator. When the CFT is additionally characterised by an infinite gap,
Agap — 00, in the spectrum of primary single-trace (non-composite) operators with spin
greater than two, the situation is even more interesting. In this case, the theory has
an equivalent description in terms of a classical, local gravitational theory in AdS [18].
Such a CFT is called holographic as a minimally defined realisation of the holographic
paradigm. When a holographic CF'T is considered at finite temperature, the appropriate
gravitational description is that of an asymptotically AdS black hole [19]. In this case, the
HHLL correlator, in a certain kinematical regime, is expected to describe the scattering of
a light particle by the black hole in the dual gravitational theory [20].

To study the stress tensor sector of the HHLL correlator we will employ crossing sym-
metry and the conformal bootstrap. Specifically, we consider the lightcone limit where the
separation between the two O operators is close to being null. In this limit, the domi-
nant contribution in the direct channel (T-channel, where the pairwise identical operators
approach each other) is coming from multi-stress tensor operators with low twist (where
the twist 7 is the difference between the conformal dimension A and the spin s of a given
operator, 7 = A — s). In the cross-channel (S-channel), an infinite number of double-twist
operators of the schematic form : Oy, ..., 9*"O; : with [ > 1 should be considered.

In [21], it was argued through a holographic calculation that the OPE coefficients of
minimal-twist multi-stress tensors are “universal” in the sense that they are completely
fixed in terms of just two CFT parameters: Ay and C—lT (see also [22]). In [23], a formula
for the OPE coefficients of the minimal twist double-stress tensors was written. In [24], it
was shown how one can, at least in principle, evaluate the contribution of the stress tensor
sector to all orders in p in arbitrary even number of spacetime dimensions d in the lightcone
limit. The strategy there was based on proposing an ansatz for G with a few undetermined
parameters and then fixing these parameters by means of the lightcone bootstrap. In the
process, one can extract the OPE coefficients of all multi-stress tensors with minimal twist.
A different approach based on the Lorentzian inversion formula [25, 26] for extracting the
minimal-twist double- and triple-stress tensor OPE coefficients was used in [27]? and also
appears to confirm the universality of the minimal-twist stress tensor sector.

20ne should exercise caution when using the Lorentzian inversion formula in the context of the HHLL
correlator as the Regge behaviour of the correlator has not been rigorously established.



In this paper, we investigate the stress tensor sector further by considering contri-
butions from multi-stress tensors with non-minimal twist. Our goal is to determine the
structure of the correlator to subleading orders in the lightcone limit and extract the rel-
evant OPE coefficients. Once more, we motivate an ansatz similar to the one successfully
describing the leading lightcone behavior of G(z, z) and show that most of the parameters
in the ansatz can be fixed using lightcone bootstrap. A few parameters are, however, left
undetermined and might depend on the details of the theory. They correspond to the OPE
coefficients of multi-stress tensors with spin s = 0,2. Our approach can be employed to
study the stress-tensor sector to arbitrary orders in p and (1 — z). In this paper, we com-
pleted this program for the O(u?) subleading, subsubleading and subsubsubleading terms
as well as the O(u3) subleading and subsubleading terms.

We also investigate a complementary approach to computing the OPE data of the
stress tensor sector using the Lorentzian inversion formula. As noted earlier, the validity
of the Lorentzian inversion formula for the HHLL correlator has not been rigorously es-
tablished. It is however natural to expect that it is applicable in the large-Cr and small-p
expansion, as long as a Regge bound is observed. Here we assume that the Regge behavior
of the correlator is given by o=* at O(y*) in the large-C7 limit, which is consistent with
the behaviour of the scattering phase shift from a black hole (or a massive star) computed
classically in AdS. We then find that whenever the Lorentzian inversion formula is applica-
ble, i.e., for operators of spin s > k + 1 at O(u"), OPE data extracted with both methods
are in perfect agreement. However, already at order O(u?), our ansatz combined with the
crossing symmetry or Lorentzian inversion formula is more powerful than the Lorentzian
inversion formula alone. For instance, while the former procedure allows us to determine
the OPE coeflicient of a triple-stress tensor with spin s = 4 and twist 7 = &, this is not
possible using solely the Lorentzian inversion formula.

Finally, we explore the possibility of obtaining the unknown OPE data from the gravi-
tational description of the CF'T. We use the phase shift calculation in the dual gravitational
theory. The scattering phase shift — acquired by a highly energetic particle travelling in
the background of the AdS black hole — was first computed in the Regge limit in Einstein
gravity in [20]. To explicitly see how the presence of higher derivative gravitational terms
affects the OPE data, we work in Einstein-Hilbert + Gauss-Bonnet gravity with small
Gauss-Bonnet coupling A\gp. To combine the gravitational results with those of the CFT
in the lightcone regime, we follow the approach first discussed in [23] and further developed
in [24], which involves an analytic continuation of the lightcone results around z = 0 and
an expansion around z = 1. Matching terms in the correlator obtained from the gravita-
tional calculation to those obtained from the CFT enables us to completely fix the stress
tensor sector of the HHLL correlator up to the OPE coefficients of the spin-0 multi-stress
tensors which are left undetermined. Non-universality is manifest by the presence of the
Gauss-Bonnet coupling in the expressions for the OPE coefficients.

1.2 Summary of results

In this paper, we show that the stress tensor sector of the HHLL correlator in d = 4 can
be written in terms of products of f,(z) functions defined as

fa(z) = (1 — 2)%Fi(a,a,2a,1 — 2). (1.2)



The stress tensor sector of the HHLL correlator can be expanded in powers of y and
then in powers of (1 — Z) as

zz:oo ko) (5 5) — 1 Nk _ 5\ -Aptktmg(hm)
G(2,2) kE_%ug (2,2) ((1_Z)<1_2))AL+ZZM(1 ) G (2),

k=1m=0
(1.3)

where we have explicitly separated the contribution of the identity operator.? We explain
how one can write G (2) for arbitrary k and m.

We write an ansatz for each G(*™)(z) with a few unknown coefficients and fix all, but
a handful of them, via lightcone bootstrap. The undetermined coefficients correspond to
the OPE coefficients of spin-0 and spin-2 exchanged operators. We further show that in
holographic CFTs one can use the phase shift computed in the dual gravitational theory to
reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors
with spin zero.

Operators of non-minimal twist give a subleading contribution in the lightcone limit,
1 — zZ <« 1, which can be expressed as a sum of products of the functions f,(z) (times an
appropriate power of (1 — z)). This form is similar to the contribution of minimal-twist
multi-stress tensor operators considered in [24]. While our method can be used to address
the contribution of operators of arbitrary twist, here we focus on determining the specific
contributions of operators with twist 7 = 6,8, 10, at O(u?) and 7 = 8,10, at O(u?).

At O(u), the only operator that contributes to the stress tensor sector of the correlator
is the stress tensor and its contribution is completely fixed by conformal symmetry. In d = 4
its exact (to all orders in Z) contribution is given by

1 Ap,

g(l)(z, Z) = [(1 _ Z)(l _ 2)]AL*1 120(2 — z)

(£:() - £:(3). (14)

At O(p?), the leading contribution in the lightcone limit, due to twist-four double-
stress tensors, was evaluated in [23]

1 A
(- 2)A <28800(AL - 2)> %

G0 (z) =

40

- (AL +1)fi(2)f5(2)|. (1.5)

(8- DAL= ) + DAL= 9RO +

We show that the subleading contribution in the lightcone limit, due to twist-four and
twist-six double-stress tensors, is given by

000 = s | () (st + e hIt2) + s ()5

+ (b1af1(2) fa(2) + c16f1(2) fo(2) + cas fa(2) f5(2) + csaf3(2) fa(2)) |, (1.6)

with coefficients an,, and ¢, given in (3.14). The coefficient by4 is non-universal and
generically depends on the details of the theory. It corresponds to the OPE coefficient of

3The contribution of the identity operator is denoted with k = 0.



twist-six double-stress tensor with spin s = 2
2
by = P, (1.7)
obtained holographically in [21] and here, via the gravitational phase-shift calculation
in (5.48).
The subsubleading contribution in the lightcone limit, due to twist-four, six and eight
double-stress tensor operators, is

G2 (z) = q —1Z)AL ( <Z(26iz—7)1; 11) (assf5 + azafofs + ar5f1fs)

+ (i : j) (biafifa + cr6f1fs + casfofe + caafafa) + (dizfifr + dasfofe

+dss f3f5 + daafi + e1sfifs +913f1f3))7 (1.8)

with coefficients d,,,, given in (3.19). By f, we mean f,(z) which we will use for brevity.
The coefficients ¢g13 and e15 are theory dependent and are related to the OPE coefficients
of twist-eight double-stress tensors with spin s = 0,2 by

913 = ng,?g),
ers = PlLy — 5o P, (1.9)
These coefficients were also obtained by a gravitational computation in [21]. Here we have
used the calculation of the phase shift in the dual gravitational theory to determine the
OPE coefficient of the spin-2 operator, P1((2),)27 in (5.51).
The subsubsubleading contribution in the lightcone limit, due to double-stress tensors
with twists 7 = 4,6, 8, 10, is given by

G = o _12>AL ( (Z((lg 13(1) Z—Z;B) : 25) (a5 + oafofat i)

T ((1 _12)2 T i s 1%) (biafifa+ cr6fife + cosfofs + csafsfa)

+ (112 + 2) (dyrfifr + dogfofe + dssfafs + daafr + e1sfifs + gisfifs+)

+ g13f3 + (has fifs + har fafr + has f3fe + has fafs + jicfife + i14f1f4))7

(1.10)

with Ay, given in (3.25). The non-universal coefficients here are i14 and jig which are
related to the OPE coeflicients of twist-ten double-stress tensor operators with spin s = 0, 2

; (2)
114 = P10,()a

‘ 2 2 @2
J16 = P1(2,)2 - @Pfo,)o- (1.11)



The OPE coefficient PS?Q is determined in (5.52) using the phase shift calculation in the
dual gravitational theory. Non-universality is manifest through dependence on the Gauss-
Bonnet coupling.

Using the results above, we also extract the OPE coefficients Pg)s of double-stress
tensors of given twist. For 7 = 6:

PO _ V2 10 (20 4 7)
LOF2LAF2E (0 4 4) (0 +5) (0 + 6) (20 + 1)(20 + 3)(2¢ + 5)T (20 + 1)
X AL

(AL =3)(AL —2)

where a1 ¢, b1y, c1¢, di e can be found in (3.17). For 7 = 8:

PO _ VTAL27HT (20 4 7)

12+2¢,4+2¢ S(AL — 4)(AL — 3)(AL — 2)(6 + 4) (E + 5)

ag e AT 4 by g A3 4 co g AT + do AL + e

(a1,6A% + b1 ¢AT + c10AL + di ), (1.12)

W 6)(+7)20+ 1)(20+3)(20 + 5)T (20 + B’ (113)
with ag ¢, ba g, 24, d2g and ey ¢ given in (3.22). Similarly for 7 = 10:
PO _ V2T (20 + 9)
WH2LAT2E 520 1+ 1)(20 + 3)(20 + 5)(20 + )T (20 + 1T)
AL(AL +1)(a3 AT 4 b3 e A3 + c30A7 + d3 1AL + e30) (1.14)

(L+5)l+6)L+T7)(0+8) (AL —5)(AL —4) (AL —3)(AL —2)’
with ag e, b3y, ¢34, d3g and ez, expressed in terms of Ay, in (3.28). Note that in all of
these formulas ¢ > 0 and, therefore, the OPE coeflicients of operators with spin s = 0, 2
are not included here. It appears that at O(u?), the OPE coefficients of all operators with
spin s > 4 are universal in the sense that they only depend on Ay and Cr. On the other
hand, the OPE coefficients of double-stress tensors with s = 0,2 are non-universal.

At O(p?), the leading contribution of twist-six triple-stress tensors in the lightcone
limit, was computed in [24]

GB3O(z) = O_IZ)AL(CLll?fl(Z)Qf?(Z) + a126 f1(2) f2(2) fo(2) + a135 f1(2) f3(2) f5(2)

+ agos f2(2)? f5(2) + asafo(z) f3(2) fa(2) + a333f3(z)3), (1.15)

where the coefficients a;;, can be found in (4.2).
The subleading contribution to the correlator is due to twist-eight and twist-six triple-
stress tensors

GV (z) = a —1Z)AL ( <§ — i) (a117f7 fz + aras 1 fafe + a13s fLfs fs + agas f3 f

+ asgafofafa + asssf3) + (buiefofi + cusfsfi + cuasfafsfr + cror fafrfi

+ coaafofi + casafifa+ cossfofsfs + 6226f22f6)> ; (1.16)



with b, and ¢ given in (B.1). Terms proportional to a;j; come from the subleading
contribution due to the minimal-twist triple-stress tensors in (1.15). Note that all of these
coefficients are non-universal, since they depend on by4 from the O(u?) result. Accordingly,
no OPE coefficients of non-minimal-twist triple-stress tensors are universal.

A similar story holds for the subsubleading contribution to the correlator at O(yu?).
This is due to multi-stress tensors with twist six, eight and ten and takes the following form

2
GOD(y = < (144,2 — 448z + 464

(1—2)5e 160(z — 1) ) (1177 fr + a126 f1 f2f6 + arss f1f3f5

1 3
+ 225 f3 f5 + agsafofsfa+ azssf3) + <1—z + 2> (buie fofT + cuisfsfi + cusfafsfi

+ crorfofrf1 + caaafofi + cazafifa+ coss fafafs + cao6f3 fo) + (duirfifr + ens fifs
+gu1ofifo+ qrasfifafs + giss fLfe + goanf3 fr + gasefofsfo + gaas fofafs + 9335 f3 S5

+9344f3ff)>7
(1.17)

with dy17 and g;j; in (C.1)—~(C.3) and e115 in (5.56).

We further explain how one can write an ansatz for the correlator at arbitrary order in
i and the lightcone expansion. All unknown coefficients in the ansatz, except those that
correspond to OPE coefficients of spin-0 and spin-2 operators, can be fixed by means of the
lightcone bootstrap. We further show that in holographic CFTs one can use the phase shift
computed in the dual gravitational theory to reduce the set of undetermined parameters
to the OPE coefficients of multi-stress tensors with spin zero. Our results for these OPE
coefficients precisely match those in [21] whenever available in the latter.

The OPE coefficients of multi-stress tensors can also be calculated using the Lorentzian
inversion formula as in [27]. In order to determine for which operators the formula can be
applied, one should consider the behavior of the correlation function in the Regge limit. The
Regge behavior of the correlator at O(u*) is 1/0*, implying that the Lorentzian inversion
formula can be used to extract the OPE coefficients of the operators with spin s > k + 1.
Accordingly, already at O(u?), fixing the relevant OPE coefficients by combining an ansatz
with the lightcone bootstrap allows one to determine more OPE data compared to those
obtained with the sole use of the Lorentzian inversion formula. We explicitly check that it
is not possible to extract the OPE coefficient of a triple-stress tensor with spin s =4 and
twist 7 = 8 using the Lorentzian inversion formula. Note, however, that this coeflicient is
completely determined in this article (where an ansatz is additionally employed).

1.3 Outline

This paper is organized as follows. In section 2, we set up the notation and review the
S- and T-channel expansions of the HHLL correlator. In section 3, we analyze the stress
tensor sector of the correlator at O(u?), where we compute the subleading, subsubleading



and subsubsubleading contributions in the lightcone expansion. We also compute the OPE
coeflicients of double-stress tensors with twist 7 = 6,8, 10 and spin s > 2. In section 4, we
analyze the stress tensor sector of the correlator at O(u?), where we explicitly calculate the
subleading and subsubleading contributions in the lightcone expansion. In section 5, we
investigate the Gauss-Bonnet dual gravitational theory and give additional evidence for the
universality of the OPE coefficients of minimal-twist multi-stress tensors using the phase
shift calculation. Furthermore, we calculate the OPE coefficients of double- and triple-
stress tensors with spin s = 2 (up to undetermined spin zero data). In section 6, we show
how one can use the Lorentzian inversion formula in order to extract the OPE coefficients of
double-stress tensors with twist 7 = 4,6. We discuss our results in section 7. Appendix A
contains certain relations that products of f, functions satisfy, while appendices B and C
contain explicit expressions for the coefficients which determine the correlator in subleading
and subsubleading lightcone order at O(u?). Several OPE coefficients of twist-eight triple-
stress tensors are listed in appendix D. Finally, in appendix E we clarify the relationship
between the scattering phase shift as defined in [20] and the deflection angle.

2 Review of near lightcone heavy-heavy-light-light correlator

In this section, we review the procedure for extracting information about the stress tensor
sector of a four-point correlation function between two pairwise identical scalars Og, Oy,
with scaling dimensions Ay o« O(Cr) and A < O(1), respectively, via the lightcone boot-
strap. We closely follow ref. [24]. Using conformal transformations to fix the positions of
three of the operators at 0, 1, x4 — 00, we define the stress tensor sector of the correlator by

G(z,2) = lim 2227 (0p(4)OL(1)OL (2, 2) O (0)) : (2.1)

T4—>00 multi-stress tensors

where (z, z) are the invariant cross-ratios given by

2.2
L1423
2 .2
AR

2Z =

2

X
(1—2)(1—z) =123
27513,

2
L34

(2.2)

2.1 T-channel expansion

The notion of the stress-tensor sector comes from expanding the correlator in the T-channel
defined as Or(z,2) x Or(1) = Ors:

1
0(2:9) = (= oy = o 2 Fore o= 1 -2, 23)

T,8

where s and 7 = A — s denote the spin and the twist of the exchanged primary operator

Ors. ngfl’LL) denotes the product of OPE coefficients

1 S
P éﬁf’u) = (-2) AOHOHO, s AOLOLO- (2.4)
and gg?go)(l — 2,1 — Z) the corresponding conformal block.



Consider the T-channel expansion (2.3) in d = 4. Conformal blocks in d = 4 are given
by (28]

0000 —21-29= 02D (e @rae), @)

with conformal spin, 8 = A + s, and
fa(2) = (1 = 2)%Fi(a,a,2a,1 - z). (2.6)

In the lightcone limit, defined by z — 1 and z fixed, the leading contribution to the
conformal blocks (2.5) comes from the first term in parenthesis in (2.5)

9001~ 21— 2) = (1= )5 (f5(2) + O((1 - 2))). (2.7)

From (2.7) it is clear that the operators with the lowest twist in the T-channel dominate the
correlator in the lightcone limit. In any unitary CFT in d = 4 the operator with the lowest
twist is the identity operator with twist 7 = 0. Another operator with low twist present
in any local CFT is the stress tensor operator with 7 = 2. In particular, the exchange of
the stress tensor is completely fixed since the product of the relevant OPE coefficients is
determined by Ward identities

(HH,LL) Ap
P = ps 2.
Tiww "120° (28)
where 160 A
H
= A 2.9
3 Cr (2.9)
The central charge Cr is defined via the two-point function of the stress tensor
Cr
<TMV(:’U)TPU(O)> = quu,pa(x)y (210)
d—17
where
1 1
I/u/,pcr(x) = B (Iﬂp(x)lvo(x) + Iug(x)IVp(x)) - &Uﬂvnpm
Tuly 2’7'['d/2
L =mw =257, Q1= (2.11)
& r(3)

Note that the only single-trace primaries with twist equal to or lower than that of the
stress tensor are scalars O with dimension 1 < Ap < 2, or conserved currents with twist
7 = 2. In a theory without supersymmetry there is no a priori reason for the contributions
of these operators, even if they exist, to be enhanced by a factor of A, so generically we
expect them to be subleading in C7 — oo limit.*

“Interestingly, in [29] it is conjectured that OPE coefficients A4y of operators ¢ with conformal dimen-
sion Ay < Agap and ¢ with conformal dimension Ay, such that Ay < Ay < CE0) scale as Mgy o %,
T

Note however that here we are working in different regime, as Ay o O(Cr).

~10 -



The stress tensor sector of the correlator (2.1) admits a perturbative expansion in p
given by

o
G(z.2) = utGW(z.2), (2.12)

k=0
where the cases k = 0 and k£ = 1 correspond to the exchange of the identity and the stress
tensor, respectively. For higher k we expect “multi-stress tensors” to contribute to G(z, z);

the minimal-twist multi-stress tensor primaries are of the schematic form

k
[T%] = Ty - Tpp v 1On1 - Oy Ty, © (2.13)

Tk,min,S

with twist 7 min and spin s given by

Tk,min = 2k,
s =2k + 2¢, (2.14)

with £ an integer. Since we are interested in the four-point function of pairwise identical
scalar operators, only multi-stress tensor operators with even spin give a nonvanishing
contribution. At O(u?), the contribution of these operators was explicitly calculated in [23].
Following that, it was shown in [24] how one can write the contributions of these operators
at arbitrary order in the p-expansion, in the lightcone limit (1—Zz) < 1, using an appropriate
ansatz and lightcone bootstrap. We briefly review this procedure here since the contribution
from non-minimal-twist operators is obtained in a similar manner.

At O(p*), there are infinitely many minimal-twist multi-stress tensors with twist 2k
according to (2.14) which are distinguished by their conformal spin § = A + s given by
f =6k + 4¢ with £ = 0,1,2,.... Inserting the leading behavior of the blocks (2.7) in (2.3)

one finds
B 1-— z
O T [ e M ) (215)

z—)l[(l—Z 1—2’

with
Pt (HH,LL)
Paw),s) = Tre), (2.16)

where A(() = #, T = 2k, s(¢) = 2k + 2¢ and conformal spin 8 = 6k + 4¢. Here =
zZ—r
means that only the leading contribution as z — 1 is kept. It was shown in [24] that the

infinite sum in (2.15) takes a particular form

k

Wy ) 1=2)" . o

g (z’z)zzl[(l - Z 1 — z AL ;% Zkfll . flk(z)7 pzjlzp - 3k’ (2'17)
ip B

with 4, being integers and a;,.; are coefficients that can be determined via lightcone
bootstrap. Furthermore, using an identity for the product of two f, functions (eq. (A.1)
in [23]) one can express the G¥)(z, ) in the form of (2.15) to read off the OPE coefficients
for the exchange of minimal-twist multi-stress tensors of arbitrary conformal spin.
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In this paper, we want to consider multi-stress tensors with non-minimal twist. These
operators are obtained by contracting indices in (2.13) either between the derivatives or
between the operators. At O (,uk') there exist operators [T’ k]Tk,m78 with twist

Thym = Th,min + 21, (2.18)

for any non-negative integer m. For m # 0, these operators provide subleading contribu-
tions to the correlator in the lightcone limit. To consider these subleading contributions it
is convenient to expand G¥)(z, ) from (2.12) as

GV (z,2) = 3 (1 z) dutkamglim (), (2.19)

m=0

where G(*™)(2) comes from operators of twists 7, and less.
For illustration, let us consider the case £k = 2 with m = 1. There exist two infinite
families of operators with twist 751 = 6 of the schematic form

. AT
06,221+2 ~ Tuna)\l R 8)\2le v,

0/6,2524»4 ~ T#Va)\l e a}\222 62Tp0’ - (220)

These two families share the same twist and spin for ¢; = f5 + 1. Hence, they are indis-
tinguishable for ¢; > 1 at order 1/Cyp in the large Cp expansion. A single operator stands
out; it corresponds to ¢ = 0 and is of the schematic form : 7),,7%, :. Note that : T,,, 7%, :
has minimal conformal spin # = 10, among the ones in (2.20), since Sy, = Br,+1 = 10+ 44y,
for /1 > 1.

Let us now move on to the case kK = 2 and m = 2. Here, there are three infinite
families Og g, (’)gj s and (’)g s with conformal spin 8 +-4/;, 12 +4/9 and 16 4- 4¢3, respectively.
Schematically, these families can be represented as

Og.a0, ~: Ty, - - - 8A%1Taﬁ :
0/8,2Z2+2 ~ T,uaa)\l - 3)\21_,2 82TQV <y
OF g4~ TuOh, -+ Orgy (0%)°Tpo - - (2.21)
Notice once more that the infinite families are indistinguishable for conformal spin 5 > 16.
Here, operators with § = 8,12 stand out. The operator with § = 8 is of the schematic
form : T, 5T @B . For B = 12, there are two indistinguishable operators of the schematic
form : Tua62Ta,, cand : Taﬂa“ayTaﬁ .

The same holds for m > 3 (and 7 > 10) since there is no other independent way to
contract stress tensor indices. The discussion above generalizes straightforwardly to O(u*)
with k£ + 1 number of infinite families at high enough twist.

2.2 S-channel expansion
The correlator (2.1) can also be expanded in the S-channel defined as O (z, 2)xOg (0) = Oy o,
G(2,2) = (Zg)—%(AH-i-AL) Z P((QH,L’E{L)Q(A}}L’_AHL)(Z,2), (2.22)

T/s
OT/,S/
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where P(HL HL) denotes the product of OPE coefficients in the S-channel, Ay, = Ag —Ap,

(AHL’ AHL)(z, z) are the relevant conformal blocks. Operators contributing in the S-

and g
channel expansion are “heavy-light double-twist” operators [20, 30]° of the schematic form
[OuOLln, = Op(8%)"0y, ... 0,0y :, with conformal dimensions A = Ag+Ar+2n+1+7.

The conformal blocks for these heavy-light double-twist operators in d = 4 are given by

2\ 3 (AH+AL+2n4+7,1)
g(AHL,*AHL) (2,2) = (22)2 (21—0—1 — Zl+1> + 0O < > (2.23)
Ang

Ag+Ap+2n+,l z—

The anomalous dimensions and the product of OPE coefficients for heavy-light double-twist
operators admit an expansion in powers of u:

k)
%z—ZMk%Sl,

HL,HL HL,HL);MFT - HL,HL);(k
pItHt) = pLHMITS™ ke plHiL L)) (2.24)
k=0
where P(HL HLMET e the Mean Field Theory coefficients [31], which can be found by
matching with the exchange of the identity in the T-channel, and P(HL HL:O) 1. Explic-
itly, in d = 4 and for Ag > 1,
; Ap — Dn(Ar) 1
pHLHL)MFT _ (A n n o L 5 95
ml n!ll (14 2), Ay )’ (2:25)

where (a), is the Pochhammer symbol defined by (a),, = F%a(:;l)

We begin by briefly reviewing the calculation in the lightcone expansion, i.e. due to

the multi-stress tensors in the T-channel. Inserting the blocks (2.23) in the S-channel
expansion (2.22) one finds that

G(z2) = :(f’i) / dI P (o 2)30m (41 L), (2.26)
zZ—2z Jo '
n=0

where the sum was approximated by an integral over [. Expanding the OPE data in (2.26)
according to (2.24) and noting that

1 1 (o log(22) )’
(22)27m1 = Z ‘ﬁ < 5 , (2.27)
J=0

it follows that terms proportional to log’z at O(p*), with i = 2,3,...k, in (2.26) are
determined by OPE data at O(u*~'). These terms can therefore be matched with the
T-channel in order to fix the coefficients in the ansatz.

°In the lightcone limit of (01020201), with 01,02 both light, it was found in [16, 17] that the there
exists “light-light double-twist” operators [O102]n,; =: O1(8%)" 0y, - .. Oy, Oz : for I > 1. These are found by
matching with the identity exchange in the S-channel. The same is true for the heavy-heavy-light-light case.
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In [24], the leading contribution of the OPE data of heavy-light double-twist operators
as | — oo, together with the leading contribution of the conformal blocks as Z — 1, was used
to determine the minimal-twist contributions in the stress tensor sector of the T-channel.
This paper extends that analysis by considering subleading corrections in the lightcone
expansion and therefore probing non-minimal-twist contributions in the T-channel. In
particular, the S-channel OPE data have the following dependence on the spin [ as [ — co:

00 k,
) _ L
r)/n[ - lk lp ’
p=0
(L HL): (9] HL JHL);(k,p)
Py = Z : (2.28)

which is necessary in order to reproduce the correct power of (1 — z) as z — 1. This can
be seen by substituting the expansion of (2.25) in the large-/ limit

PpUHLHLIMFT _ A, ((AL 1),  (2n(AL—2)+Ar(AL —1)(Ar —1),
n,l -

WT(AL)L T (T (D)2

A
+o(;>> (2.29)

and (2.28) in (2.26) which result in integrals of the form

> _ o F(AL — m)
I AL —m—1 __
/0 diz' 1A = Clog (2.30)

where m is a positive integer. Expanding (2.30) for z — 1, the correct z-behavior of the
stress tensor sector in the T-channel is reproduced from the S-channel.

3 Double-stress tensors in four dimensions

In this section, we analyze the stress tensor sector of the HHLL correlator at O(u?) in
d = 4. The operators that contribute at this order in the T-channel are the double-stress
tensors. Here, we investigate the subleading contributions that are coming from families
of operators with nonminimal twist, specifically, 751 = 6, ™22 = 8 and 7 3 = 10, according
o (2.18).

The dominant contribution in the lightcone limit at O(u?) was calculated in [23]. Tt
comes from the operators with minimal twist 7 min = 4 and they are of the schematic

form : T),,0q, - .. Oay,Tho :- These operators have conformal dimension A = 8+ 2¢ and spin
s =4+ 2(. The result is [23]
1 A
(2,0) () — L
G = s <28800(AL - 2)> 8
) 15 40
(AL —4)(AL —3)f5(2) + 7(AL — 8) f2(2) fa(z) + 7(AL + 1) f1(2) f5(2) ],

(3.1)

where fo(2) = (1 — 2)%Fi(a,a,2a,1 — 2).
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3.1 Twist-six double-stress tensors

Twist-six double-stress tensors contribute at O(u?) and at subleading order in the lightcone

~AL+3 35 7 — 1. As shown in this section, this contribution again takes

expansion ~ (1—2)
a particular form with a few undetermined coefficients which, except for a single one, can
be fixed using lightcone bootstrap. The undetermined data is shown to correspond to
a single OPE coefficient due to the exchange of the twist-six and spin-two double-stress
tensor : T,/ T}, :.

We will now motivative an ansatz for the subleading contribution to the stress tensor
sector at O(u?). Let us focus first on corrections due to the leading lightcone contribution
of twist-four double-stress tensors. These corrections originate from subleading terms in
the lightcone expansion of the conformal blocks in (2.7). Note however that they are purely
kinematical and do not contain any new data. Explicitly, the subleading corrections to the

blocks of twist-four double-stress tensors are given by

94(1?;0)(1 —zl-2) ~ (1- z)? (1 +(1-2%) (2(31—_2)) +0((1- 2)2)> fg(z)
(1 5)**8 (1 +(1-2) (3 ; 2y 1_lz> +O((1- z)2>> fi(2).

(3.2)

Since we are interested in the subleading contribution, i.e. terms that behave as (1 — z)3
as Z — 1 in (3.2), only the first line in (3.2) needs to be considered. (Note that s > 4 for
minimal-twist double-stress tensors.)

Next, consider the contribution of twist-six double-stress tensors. Recall that the
form of the minimal-twist double-stress tensors’ contribution to (3.1) can be motivated by
decomposing products of the type f,(2)fs(z) in terms of the lightcone conformal blocks.
This decomposition is explicitly given by [23]:

fa(z)fb(z) = Zp(av b, g)fa—l—b—‘r%(z)a (3.3)
/=0
where
pla.b.0) = 274D (a+3) T (b+3) T (¢+3) D(a+OT(b+OT (a+b+0—3) T'(at+b+2() -

VAL (@)D (0L (0+1)T (a+6+3) T (b+043) T'(a+b+0)T (a+b+20—13)

Using the leading behavior of the conformal blocks (3.2) in the lightcone limit, it
was found that a 4+ b 4+ 2¢ should be identified with g = A;‘ 5. In order to reproduce
twist-six double-stress tensors of the form : TW(?ZOQ1 .+ 0ay,Tps : we should therefore

consider products f, fp with a+b = 7. Likewise, to take into account operators of the form
217,800, - - - GCmTﬁl, : we include products f, fp with a +b = 5.

From the arguments above, we make the following ansatz for the subleading correction
in the lightcone expansion due to double-stress tensors:

629 = sy | (5 ) (sl + anfa(2)a(2) + ans () o(2)

+ (b1af1(2) fa(2) 4 baz f2(2) f3(2) + c16f1(2) fo(2) + cas fa(2) f5(2) 4 caaf3(2) fa(2)) |, (3.5)
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where b;;, ¢;; are coefficients that will be determined using lightcone bootstrap and encode
the contribution from twist-six double-stress tensors. Once b;; and ¢;; are determined, one
can use the decomposition in (3.3) to read off the OPE coefficients of twist-six double-stress
tensors with any given spin. Moreover, a;; in (3.5) are coefficients that can be read off from
the minimal-twist contribution in (3.1) and do therefore not contain any new information.

We proceed with the S-channel calculation to fix the unknown coefficients in (3.5). Let
us first mention that the products of f,(z) functions in the second line of (3.5) are not
linearly independent as one can see from (A.1), so we set beg = 0. Moreover, the coefficients
a;; must be the same as in (3.1). We will momentarily keep them undetermined to have
an extra consistency check of our calculation.

In the S-channel we have double-twist operators of the form : Oxd?"d'O; : with
conformal dimension A = Ay +Ap +2n+41+7,;. The relevant anomalous dimensions v, ;
and OPE coefficients are given in (2.24) and (2.28) (k = 2 in this case). In the lightcone
limit, the dominant contribution comes from operators with large spin [, [ > n. The mean
field theory OPE coefficients are given by (2.29). The conformal blocks of these operators
in the limit 1 — 2 < 2 < 1 are

( _ Ag+Ap+v(n,l)
4 2
_ 2l (3.6)
zZ—Z

AnL,—A _
gfl’lHL HL)(Z, Z) ~

We first need to fix the OPE data at O(u). Coefficients %(Ll’p) and PP can be
determined for every p and n by matching the S-channel correlator with the correlator in
the T-channel at O(p). This is just the stress tensor block times its OPE coefficient and
it is known for arbitrary z and Z. As we saw earlier

1 Ap

(2 =260 (%) = gyt 1 () ~ () (3.7)

Expanding (3.7) near z — 1 leads to

S A== D= )> 35)

= A+ +2)

On the other hand, we expand the integrand of (2.26) up to the O(pu), integrate this
expansion over [, and then expand in the lightcone limit Z — 1 to obtain a result of
the form

(z—2)6W(z,2) = (1_21)AL—1 >

p=0

(Z rp(2)2"(1 — 2)P> : (3.9)

n=0

The functions 7, ,(2) can be explicitly calculated. Here 7, 0(2), ry1(2) and r,2(2) are
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given by
~ T(Ap+n-1) (1,0) (1,0)
’I“n’o(Z) - QF(AL)F(TL + 1) (2Pn + log(z)’yn ) )
AL +n-1)
2 P(lvo) P(lrl) —(A;r — 2 (170)

+1og(2) ) +411) ).

- (AL +n—1)
rn2(2) = 2(AL — 2)(AL — 3)D(AL)T(n+ 1)

rn1(z) =

<2(AL +n—1)PE0) 4 2(AL +n)PLY
1
+ 2P0 — (A = 3)(ALH? + 29Y) + log(2) (AL +n — 1)y

HAL+ D £ 402) ). (3.10)

Similarly, one can calculate any 7, ,(2) for arbitrary p. In each r, ,(2) the z-dependence
enters only through a single logarithmic term as in (3.10). In order to extract the OPE
data we match (3.8) and (3.9) and obtain the following relations

o _ Ap 3 1+ 2z(z+4)
7;),2 ro(z) = L (4(1 +2)+ 4(1_2)log(z)> ,
iznrmp(z) _ Ap (p—2)(p—1)(1 —=2) (3.11)

(I—z)2r dp(p+1)(p+2)

n=0

for p > 1. To solve these equations, we start from the first line, expand the right-hand side

in z — 0 limit and match term by term on both sides. From terms with log(z) we extract

(1,0)

the v, 7 and from terms without log(z), we extract the P7(11’0). We move on to p =1 case,

where we again expand the right-hand side of the second line in (3.11) in z — 0 limit.
Using 7,(11’0) and PT(ZI’O), we extract 7,(11’1) and Pr(ll’l). Straightforwardly, one can continue
this process and extract OPE data for any value of p.

By proceeding with this calculation to high enough values and p one can notice that

there is a simple expression for 'y,(ll’p ) given by

A = (1 (AL = DAL+ 30 - 30 - Bun) (3.12)

for all p > 0 and n > 0. Note that for p = 0 this expression agrees with the one in [27].
)

There is no similar expression for PT(Ll’p so we list results for first p-s:

3 3Arn
(AL —1)AL — 2L ,

P(l,O) _

»Y =
1
Py(LLl) =3(n—1)n— EAL (Ar (AL +6n—6)+6(n—4)n+5),

n

1
P12 — g(AL(AL(A% +8nAp + 6n(3n — 1) — 13) + 2(n(3n(2n — 5) — 25) + 6))

—12n(2n* +n — 3)),
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1
P13 — —(180n(n(3 — (n — 3)n) 4+ 5) — 234) AL + 3n(n® + n? — 2)

120
1
+ ﬁA%(—AL(AL (11AL 4 90n — 20) + 90n(3n — 1) + 55)
4 90(3 — 4n)n® + 280). (3.13)

After the calculation of the OPE data at O(u), one can fix the coefficients in the
ansatz (3.5) by expanding the integrand of (2.26) up to O(u?) and then integrating the
obtained expression over [. The result of the integration is expanded near z — 1 and we
collect the term that behaves as (1 — 2)22+3. It depends on z, n and OPE data P,&’“”’)
and %(f’p ) for k = 1,2 and p = 0,1, but we are interested only in the part of this term that
contains log®(z). This part only depends on OPE data at O(u), so it will be completely
determined. We collect terms that behave as (1 — )" 3 log?(2)2™. By expanding the

ansatz (3.5) near z — 0 we can collect terms that behave as log®(z)z™

and by matching
these to the ones calculated through S-channel, we obtain a system of linear equations for
the coefficients in the ansatz. This system will be over-determined by taking m to be large

enough. Solving it for m < 20, we obtain

(AL —4)(AL —3)AL

9557 TT8800(AL —2)

(A8

217 13440(AL — 2)°

o AuAp

Y7 5040(A, — 2)°

L2, A (AL (AL (83— TAL) + 158) + 108)

07 396 3193344 (AL — 3) (AL — 2) ’
1 Ap (AL (AL (AL +19) — 146) — 108)

c25 = ——=bus ;
12 1451520 (A, — 3) (AL, — 2)
AL —4)Ap (11 (AL —4) AL —2

ey = Br DAL (1 (AL —4) Ar — 27) (3.14)

2419200 (AL, — 3) (AL — 2)

As expected, the coefficients a,,, are identical to those in (3.1). We are left with one
undetermined coefficient. This is perhaps not surprising since we know from [21] that the
OPE coefficients of the subleading twist multi-stress tensor operators are not universal.
This non-universality is introduced in our correlator through coefficient b14. One can check
that after inserting (3.14) to (3.5) the term that multiplies the unknown coefficient b14
corresponds to the lightcone limit of the conformal block of the operator with dimension
A = 8 and spin s = 2. We thus conclude that b14 is the OPE coefficient of : T},,T%, :,

by =Py, (3.15)

Now, using (3.3) we can write the T-channel OPE coefficients for the remaining double-
stress tensor operators with twist 751 = 6 and conformal spin A+ s > 14. Explicitly, these
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are found to be given by
P(2) B \/77.2—46—17F(2£+ 7)
LOF2LAF2E (0 4 4) (0 +5) (0 + 6) (20 + 1)(20 + 3)(2¢ + 5)T (20 + 1)

X AL (
(AL =3)(AL —2)

a1, 0D} + b1 A + 1AL+ dyy), (3.16)
where

aje = (L+2)(20+9)(€(20+13) +9),

bie = 144 — 20(20 + 13)(£(20 4 13) + 12),

c10 = 0(20 + 13)(€(2¢ + 13) + 33) + 558,

di ¢ = 216. (3.17)

Here £ > 0 and Pg’l is the sum of OPE coefficients of all operators with conformal dimension
A and spin s. There is no way to distinguish operators with the same quantum numbers
A and s at this level in the large C expansion. This type of degeneracy occurs for each
conformal spin greater than 10 for twist 757 = 6. Also, perfect agreement between (3.16)
and all the OPE coefficients of double-stress tensor operators of twist 71 = 6 and spin
s > 2 calculated in [21] is observed. Note that PS(,Q2) can not be found from (3.16) by setting
¢ = —1, this would not agree with the result in [21]. In section 6 we rederive (3.16) using

the Lorentzian inversion formula.

3.2 Twist-eight double-stress tensors

We follow the same logic as in the previous section in order to write the subsubleading part
of the stress tensor sector of the HHLL correlator in the lightcone limit at O(x?). This part
scales as (1 — 2)72L%4, Here, we include contributions coming from operators with twist
722 = 8. These operators can be grouped in three families and they are schematically writ-
ten as : TW(OQ)QOQ1 e OapTpo : with A =124 20 and s =4 + 2/, : Tuﬁa%’m ...8a2ZTBl, :
with A =10+ 2¢ and s = 2 + 2/ and finally : T3,0,, ... 8042£T6’y : with A = 8 + 2/ and
s = 2{. Subtleties with regard to the contributions of the different families are discussed
in section 2.1.

Once more, we need to include the contributions of lower twist operators, i.e. by
expanding their conformal blocks as zZ — 1 up to order (1 — 2)* and collect the additional

z dependence. Accordingly, we write the following ansatz

1 22 —17 11
G2 (z) = TEeE ( <Z( 6Z(z _)1;; ) (assf3 + azafofa + arsfifs)

+ G:i) (brafifa+ crefife + cos fafo + caafsfa)

+ (dirfifr + dosfofs + dasfafs + daafi + e1sfifs + eanfofs + essf3

+ g13f1/3 +922f22)>, (3.18)
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where f, means f,(z). Coefficients a,,, and ¢, are already calculated, while b4 is un-
determined from the bootstrap. The linear dependence between certain products of f,(2)
functions (for more details see appendix A, in particular (A.2)) allows us to set three
coefficients to zero, e.g., goo = 0, e33 = 0 and ezq = 0.

To fix the unknown coefficients in (3.18) we match terms that behave as (1—z) =22 +4m
-log? z from the S-channel calculation of the correlator to terms with the same behavior
in (3.18) for small z. For the S-channel calculation, we need the OPE data at O(u) up
to p = 2, given by (3.12) and (3.13). We obtain an over-constrained system of linear
equations, whose solution is

C9e1s Sgiz Ap(Ap(Ar (AL (232 — 17AL) 4 1009) + 1908) + 1008)

143 " 4004 115315200 (Az — 4) (Az — 3) (A7 — 2) ’
dyo = €15 B0 AL(AL((Ar —7T) Ay (11A; — 179) + 3636) + 2736)
12 " 1386 119750400 (Az — 4) (Az — 3) (Az — 2)
o9, AL(AL((AL—T)Ap (37AL — 13) +1332) + 3312)
180 108864000 (A; — 4) (A; — 3) (Ag — 2) !
du = (AL —6) AL (AL +2) (3.19)

9408000 (A7 — 2)

The undetermined coefficients g13 and e15 are related to the T-channel OPE coefficients
Pé?o) and P1((2),)2 by the following relations

g13 = Pg(,zo),
5 p2)

— . 2
252 8,0 (3 O)

2
€15 = P1(0,)2 -

Here PS(?O) is the T-channel OPE coefficient of the operator of the schematic form : T;, T of

while Pl(g?Q is related to the OPE coefficients of the operators : Ty30,,0,, T : and :
T MaﬁzT @, : which have the same quantum numbers A and s and are thus indistinguishable
at this order in large C expansion. After inserting (3.20) and (3.19) into (3.18) one can
check that both PB(?()) and PI(S?Z will be multiplied by the relevant lightcone conformal blocks.
2)

Exactly as in the previous section, we can now extract the OPE coefficients Pé ¢ for
operators with twist 70 =8 and A =12+ 2(, s =4 + 2/, for £ > 0,5
P(z) _ \/EALQ_4€_19P(2E + 7)
12+2¢,4+2¢ S(AL - 4)(AL - 3)(AL — 2)(€ + 4) (E + 5)
az e A} 4 by gAY 4 co g AT + do AL + ey (3.21)

X
(0+6)(£+T7)(20+1)(20+ 3)(20 + 5) (20 + L)

SFor each A = 12+ 2¢ and s = 4 + 2¢ with £ > 0 there is a triple degeneracy, because all three families
of operators with twist 72 2 = 8 will be mixed.
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where

ag.e = £(20 4 15)(£(20 + 15)(£(20 + 15) + 59) + 1084) + 6012,

by = 14004 — 20(2¢ + 15)(£(2€ + 15)(£(20 4 15) + 32) — 131),

Co = L(20 + 15)(£(2€ + 15)(£(2¢ 4 15) 4 113) 4 4594) + 60984,

dy e = 216(11£(2¢ + 15) + 302),

€20 = 864(£(2( + 15) + 34). (3.22)

It is quite remarkable that these OPE coeflicients are fixed purely by the bootstrap.

3.3 Twist-ten double-stress tensors

Now we want to go one step further and analyze the subsubsubleading contribution to
the stress tensor sector of the HHLL correlator. This contribution scales as (1 — z)~42+5
in the lightcone limit. We have to take in to account the double-stress tensor operators
of twist 723 = 10 in order to calculate this contribution. These operators can again be
grouped in three families of the schematic form : T, W(82)38a1 e Oay Tpo + with A = 14420
and s = 4 + 20, : T,,5(0%)%00, - . - Oy, TP, : with A = 124 2¢ and s = 2 + 2{ and finally
: Ty 00y - - - Oap, TP+ with A =104 2¢ and s = 2/.

In order to include contributions from lower twist operators we have to expand their
conformal blocks up to (1 — 2)° for Z — 1. The ansatz takes the following form

+ <(1 _lz)2 T : 190> (b1af1fa + cr6f1f6 + casfofs + csafsfa)

+ (11 + 3) (di7fLfz + das fafs + dss f3f5 + daa [T + exsfifs + gisf1f3)

— g13f3 + (h1sfifs + har fafr + h3e f3fo + has fafs + jief1fe + Jesfofs

+ Jsafsfa+irafifa +i23f2f3)>7 (3.23)

with Amn, Jmn and imy,, coefficients that we need to determine, and with b4, e15 and g3
undetermined from the bootstrap. The term g13f3(2) in the next-to-last line of the previous
equation has its origin in the correction to the conformal block of operator : TaﬁTQB This
operator has 8 = 7o = 8 which implies that both lines in the following expansion of the
conformal block

3 1
g5 (1—21-2) = (1 -2’ <1+(1—2) <2+1

) +0((1- 2)2)) fa(2)

)ro-2m) he) 62

—(1-2)° <1+(1—z)<
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contribute. The contribution from the first line of (3.24) is included in the third line
of (3.23), while we had to explicitly add the contribution from the second line. Using (A.1)
and (A.3) we set i23 = 0, j34 = 0 and ja5 = 0.

From the S-channel calculation, we collect the terms in the correlator which behave
as (1 — 2)722H2log?(2)2™ and are fixed in terms of OPE data at O(u) for p < 3. By
expanding (3.23) near z — 0 we obtain terms with the same behavior as linear functions
of unknown coefficients and by matching them with the terms from the S-channel, we
determine the unknown coefficients. These are

_ 49 4915 Ap (AptD) (Ap (Ar (Ag (4TAL—T721)-5182)~15204) ~ 13680)

his

T 38610 ' 780 4942080000 (A, —5) (AL —4) (AL —3) (AL—2) ’
o Siig  j1s AL (AL+1) (AL (AL (AL (8AL*229)+1097)+7224)+10080)
T 1404 12 1383782400 (AL —5) (AL—4) (AL—3) (AL—2) ’
hag — _E Ag (AL—i-l) (AL (AL (AL (34AL—137)—1829)+5712)+23040)’
180 2661120000 (AL —5) (Ap—4) (AL—3) (AL—2)
has = (AL—6) Ap (Ap+1) (Ar+2) (3.25)

62720000 (A,—3) (Ap—2)

Our approach does not allow us to determine the coefficients ji6 and 714. These are related
to the T-channel OPE coefficients of operators with twist 75 3 = 10 and minimal conformal

spin by
114 = Pfg,)o,
. 2 2 2
Ji6 = P1(2,)2 - @Pl(o,)o- (3.26)

Notice that, despite the fact that the h,,, depend on the undetermined OPE data, we are
able to extract all the OPE coefficients of double-stress tensors with twist 753 = 10 and
conformal spin A + s > 18. Explicitly, they are given by:

9 \/7?2746722F(2£ 4 9)

(2)
P =
HEZLATE T 5 (20 4+ 1) (20 + 3) (20 4 5) (20 + T)T (20 + &)

AL(AL + 1)(&3,KA% + bg’gA% + Cg’gA% + d37gAL + 6375)

5+ 6+ 7+ 8)(DL-B) AL -1, -3, —) &0
where
ase = (20 + 17)(0(20 + 17)(£(2€ + 17) + 70) + 1513) + 9756,
byg = 38232 — 2(0 — 1)0(20 + 17)(2€ + 19)(£(20 + 17) + 44),
C3.0 = 196164 + £(17 + 20(11647 + £(17 + 20)(196 + £(17 + 20)))),
ds.p = 504(647 + 190(17 + 20)),
e — 4320(53 + £(17 + 20)). (3.28)

We expect that a similar picture is true for all subleading twist double-stress tensor
operators. At O(x?), the ansatz for G™)(z) will naturally include products of the type
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fa(2) fo(2), such that a + b = 6 + m, together with fi(z)f3+m(2) and f1(2)fi+m(z). The
coeflicients of the latter two will be left undetermined from the lightcone bootstrap at every
order in the lightcone expansion. Such coefficients will be related to the non-universal OPE
coefficients of double-stress tensors with spin s = 0, 2 for a given twist. On the other hand,
the coefficients of the products fo(2)fs(z), with a +b = 6 + m, once determined, will
allow us to extract the OPE coefficients of all double-stress tensors with conformal spin
B > 12+ 2m. We expect them to be universal, despite the fact that the coefficients of the
products fu(2)fp(2), with a +b = 6 + m, will be plagued by the ambiguities present in the
determination of the OPE coefficients of operators spin s = 0,2 — just as herein.

4 Triple-stress tensors in four dimensions

In this section, we consider the stress tensor sector of the HHLL correlator at O(u?) in
d = 4. The operators which contribute in the T-channel are triple-stress tensors. Since we
are interested in the lightcone limit 1 — zZ <« 1, we consider contributions of operators with
low twist. Triple-stress tensors with minimal twist can be written in the schematic form
T TpoOay - - - Oy, Trye . These operators have twist 73 min = 6 and their contribution to

the HHLL correlator in the lightcone limit was found in [24]:

1
GBI () = ———— <a117f1(z)2f7(2) + a126 f1(2) f2(2) f6(2)
=25
+ a5 f1(2) f3(2) f5(2) + az25 f2(2)° f5(2) + agsafo(2) f3(2) fa(2) + a333f3(2)3),
(4.1)
where the coefficients a;;; are
a . 5AL(AL+1)(AL+2)
T 768768(AL — 2)(AL — 3)°
_ B5AL(BA} — 57TAL — 50)
4126 = 6386688(Ar, — 2)(Ar — 3)
Ap(2A2 —11AL —9)
ai3s = ’
1209600(A7 — 3)
o AL(TA} —51AL = T0)
227 79903040(A L, — 2)(AL — 3)’
- AL(AL — 4)(3A2L —17AL + 4)
9254 = TTUR38400(AL, — 2)(AL — 3)
Ap(Ap —4)(A3 —16A2 +51A, +24
a333 = L(AL — (A L L ) (4.2)

10368000(Ar — 2)(AL — 3)
4.1 Twist-eight triple-stress tensors

We now consider the subleading contributions at O(u?®) coming from triple-stress tensor
operators with twist 7317 = 8. There are two families of such operators, these can be
schematically written as : 7}, 7,000, - - - Oay, T % : with A = 12 4 2/ and spin s = 4 + 2/
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and : TMVTpJ(?Q@al oo Oagy Thye » with A = 14 420 and spin s = 6 + 2¢. The conformal spins
of these families are § = 16 + 4¢ and § = 20 + 4/, respectively, so we expect products of
three fo(2) functions such that their indices add up to 8 and 10. The contribution to the
correlator of these operators scales as (1 — 2)"2£+4 for z — 1. This implies that one needs
to include the contribution from the minimal twist triple-stress tensor operators (due to
corrections to their conformal blocks).

Our ansatz takes the form

GV (z) = i —1Z)AL ( <f — z> (1177 f7 + aras 1 fofe + arss fLfs fs + asas f3 f

+ agsafofsfa+ asssf3) + (brisfo £ + bizafsfafi + biasfofsfr + bass fofs
+ boga fa fa + crisfsf? + cras fafsfr + cize fafof1 + crorfofrfi + coaafofi

+ c33af3 fa + cass fofsfs +0226f22f6)>7 (4.3)

where aji; are given in (4.2). The linear dependence between products of three f, functions,
with explicit relations given in appendix A, allows us to set the following coefficients to zero

bias = b134 = bags = ba33 = c136 = 0. (4.4)

To fix the coeflicients b116 and cji; we perform an S-channel calculation up to O(u?).

At 10g2(2)2™ when

The relevant terms now scale as (1 — z) =22 4 log3(2)2™ and (1 — %)
z—1land z — 0.

We fix the S-channel OPE data at O(u?) using the results of the previous section,
specifically egs. (3.5), (3.18) and (3.23). Since the OPE coefficients of double-stress oper-

ators of spin 0 and 2 are left undetermined, the S-channel OPE data is fixed in terms of
(2,0) (2,0)

these. Concretely, v~ and P, are completely determined since the leading-twist OPE
coefficients are known and universal, while 7,(12’1) and P,gQ’l) depend on b4, ’yﬁbm) and PT(L2’2)

depend on b14, ¢g13 and ej5 and so on.”

We were able to fix all the unknown coefficients in the ansatz (4.3) using bootstrap.
Crucially, there are no spin s = 0,2 operators that contribute at this level. Here, we list
two of the coefficients while all others can be found in appendix B.

AL (AL +3) (AL (AL (AL (1001A, + 387) — 4326) + 13828) + 5040)

buis =~ 10378368000 (AL, — 4) (AL — 3) (AL — 2)
bia (Ap (143A[ + 427) + 540)
17160 (Af, — 4) ’
) 7(AL + 3) (604800014 (A3 —5AL +6) + A (—21A% + 229A7 + 414A [, + 284))
118 = .

856627200 (A3 — 9A? + 26A [, — 24)
(4.5)

"Explicit expressions for the S-channel OPE data are too cumbersome to quote here.
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Notice that they depend on by4. This is because the anomalous dimensions at O(u?), 7&2’2)

depend on it. Moreover, no OPE coefficient of triple-stress tensors with twist 731 = 10 is
universal since all of them depend on b14. These OPE coefficients can be written in the
form of a finite sum, similarly to what happens for the OPE coefficients of leading twist
triple-stress tensor, given in [24]. We define i1(r, ¢) and i2(r, q) as

7;1(717 Q) = bllﬁp(lalar)p<2r+2767q)7 (46)
and
7:2(7‘, Q) = 6118p(17 17 T)p(27“ + 27 87 q) + 0127p(17 27 T)p(27“ + 37 77 Q)
+ 014517(17 47 T)p(zr + 57 57 Q) + 022613(2, 27 T')p(27’ + 47 67 q)
+ 0235p(27 31 T)p(27" + 51 5a Q) + 0244]9(27 47 T)p(27a + 67 47 Q)
+ ¢334p(3, 3, 7)p(2r + 6,4, ), (4.7)

where p(a, b, ¢) are given by (3.4). The OPE coefficients can be written as

041 ¢
3 . .
P1(4)+21z,6+21z:le(r>€+1—7“)+zﬁ2(7“vﬁ—7“), (4.8)
r=0 r=0

for k > 0, while PS’)4 = 141(0,0) = b116. We give the explicit expressions for some OPE
coefficients in appendix D.

4.2 Twist-ten triple-stress tensors

Here, we consider the contribution of triple-stress tensor operators of twist 732 = 10. These

operators can be divided in three families of the schematic form : T}, Tag0y, - - - Oup, (02)?Tho

with conformal dimension A = 16 + 2¢ and spin s = 6 + 2/, : T,,T,,30,, - ..8u2£82T5p :

with A = 14 + 20 and s = 4 + 2¢ and finally : T,,,T,80,, - - . a,mTaﬂ :with A =12+ 2/

and s = 2 4+ 2£. One can see that in the last family an operator of spin s = 2 is included.
An appropriate ansatz in this case is

g(372) (Za 2) =

) (a117fi fr + arz6 fr fofo + arss fLfsfs

1 14422 — 4482 + 464
(1—2)Ac 160(z — 1)

1 3
+ agos f3 f5 + azsafofsfa+ assaf3) + (1—2 + 2) (buisfof7 + crisfsfi + cras fafs fi
+ cro7fofrfi + conafofi + c33af3 fa+ cassfofsfs + ca26f3 fo) + (durfifr + ensfifs

+ griofifo + qrasfifafs + guss fLf2 + gaor f3 fr + gase fafsfo + goas fofafs + 9335 fafs

+ 9344f3ff)>,

(4.9)

where f, = fa(2) and we have included only the linearly independent products of these
functions.
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The lightcone bootstrap fixes all coefficients except ej15. One can check that this is
exactly the OPE coefficient Pl(;)Q of the spin-2 operator : T),,7; VgTO‘ﬁ : with A = 12 and
spin s = 2

ens = Pla). (4.10)

All other coefficients can be found in appendix B. Notice that all coefficients depend on
b14, g13 and e;5 because the S-channel OPE data at (’)(/ﬂ) depend on them.

Again, we write the OPE coefficients for all triple-stress tensor operators with twist
732 = 10 and 3 > 18 in the form of a finite sum. We define ji(r,q), j2(r, ¢) and j3(r, q) as

J1 (T, q) = 6115]3(1 )p(27“ + 2,5, q) (4.11)
j2(T7 Q) = d117p( ) 1> ’l“)p(QT‘ + 2> 77 Q) (4'12)

and

Js(r,q) = g119p(1, 1, ")p(2r + 2,9, q) + g128p(1,2,7)p(2r + 3,8,q)
+ 9155p(1, 5, 7)p(2r + 6,5, q) + g227p(2, 2 T)p(27“ +4,7,9)
+ g236p(2,3,7)p(2r + 5,6, q) + g245p(2,4,7)p(2r + 6,5, q)
+ g3350(3,3,7)p(2r + 6,5, q) + 9344p(3 4,7)p(2r +7,4,q), (4.13)

where p(a, b, ?) is given by (3.4). The OPE coefficients can now be written as

0+2 0+1 ¢
P1(22|—2€,6+2é = Zjl(r,ﬂ +2—7r)+ ij(r,f +1—-7r)+ Zj(nﬂ -r), (4.14)
r=0 r=0 r=0
for £ > 0, while
P, = 51(0,1) + j1(1,0) + 52(0,0). (4.15)

Finally, we conclude that the stress tensor sector of the HHLL correlator to all orders
in p and in the lightcone expansion will take a similar form in terms of products of f,
functions. Omne should be able to completely fix the coefficients, except for terms that
correspond to the OPE coefficients of multi-stress tensor operators with spin s = 0,2,
using the lightcone bootstrap.

5 Holographic phase shift and multi-stress tensors

In this section, we demonstrate how to calculate the T-channel OPE coeflicients of spin-2
operators (up to undetermined spin-0 data) which are left undetermined after the lightcone
bootstrap, using a gravitational calculation of the scattering phase shift. We are interested
in the scattering phase shift — or eikonal phase — resulting from the eikonal resummation
of graviton exchanges when a fast particle is scattered by a black hole.® Seeking to explore
the universality properties of the undetermined OPE coefficients of the previous section,
we perform the calculation in Gauss-Bonnet gravity extending the results of [20] to this
case. We argue that the phase shift in the large impact parameter limit is independent of

8For CFT approach to the Regge scattering of scalar particles in pure AdS see [32-38].
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higher-derivative corrections to the dual gravitational lagrangian. This is consistent with
the universality of the minimal-twist multi-stress tensor sector in the dual CFT. On the
other hand, we observe that the subleading OPE data of spin-2 multi-stress tensors depend
explicitly on the Gauss-Bonnet coupling Agp.

The computation involves performing an inverse Fourier transform of the exponential
of the phase shift in the large impact parameter expansion, to obtain the HHLL correlator
in position space.” This is done following the approach of [39]. Comparison with the
expressions for the HHLL correlator in the lightcone limit requires analytically continuing
the results of sections 3 and 4 and taking the limit z — 1. Identifying terms in the HHLL
four-point function with the same large impact parameter and z — 1 behavior allows us to
extract the spin-2 OPE coefficients of the double- and triple-stress tensor operators (up to
undetermined spin zero data).

5.1 Universality of the phase shift in the large impact parameter limit

In this subsection, we consider Gauss-Bonnet gravity in (d + 1)-dimensions and argue
that the phase shift obtained by a highly energetic particle traveling in a spherical AdS-
Schwarzschild background is independent of the Gauss-Bonnet coupling Agp in the large
impact parameter limit.

The action of Gauss-Bonnet gravity in (d + 1)-dimensional spacetime is

1 d(d—1 A y ,
5= irg | 7V (R - S+ T2y s A Rg)) |
(5.1)

where the coupling parameter Aqp is measured in units of the cosmological constant ¢:

AaB = Agpf?, with Agp being a dimensionless coefficient. The AdS-Schwarzschild black
hole metric which is a solution of the Gauss-Bonnet theory is given by [40, 41]:

d 2
ds? = —r3 o f(r)dt® + % +r2d03_ (5.2)
where
Fr) =14+ i (12 (5.3)
with 167G M T
- T [
. (d—1)Qq_140-2 a ri:ig 1 —4\aB (54
and
1 1/2
TAdS = <2(1 1- 4)\GB)> (5.5)

where Q41 is the surface area of a (d — 1)-dimensional unit sphere embedded in d-
dimensional Euclidean space. The metric is normalized such that the speed of light is

9Recall that the exponential of the phase shift corresponds to the Regge limit of HHLL four-point
function in momentum space [20].
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equal to 1 at the boundary (i.e. gu/gsp — 1 as 7 — o00) and all dimensionful param-
eters are measured in units of ¢. The product (¢rpqs) is the radius of the asymptotic
Anti-de Sitter space.

The two conserved charges along the geodesics, pt and p?, are

dt
Pl =riasf(r )d)\
do
¢ _ 2707
PP =1t (5.6)

where A denotes an affine parameter. Null geodesics are described by the following equation,

dr »\2 t\2
<d>\> + (12)7«3 Fr) = ;7(%;8 (5:7)

similarly to Einstein gravity.
A light particle, starting from the boundary, traversing the bulk and reemerging on
the boundary experiences a time delay and a path deflection given by:

At:2/ dr
0

raasf(r)y/1— TAde()

0 dr
A¢ = 2arads — :
o p24/1 — 042%#]0(7’)
(5.8)
where o = p¢/pt and rg the impact parameter determined by %‘T(/\):m =0, i.e.,
2 T%&dS

70
Defining the phase shift as 6 = —p - Az = p'At — p?A¢, we find that
5ol /OO dr \/1 —a2r/2*dsf(r). (5.10)
TAdS Jro f(7) r?

Just as in [20], we are interested in expanding the phase shift order by order in u. It

is easy to see that in terms of CFT data p can be expressed as

4 T(d+2) Ay
M@= T(d/2)? Cr

(5.11)

which is consistent with (2.9). Here Cr is the central charge of the dual conformal the-
ory [42]:

R I'(d+2)

Cr = 2d—1)T (d/2)3G(TAdS£) /1 - 4)0aB, (5.12)

and AH = METAds.
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In order to calculate the phase shift, we introduce a new variable y, given by y = ¢.

Using this variable (5.10) can be written as:

t 1 2 9 1/2
5:2“0/ dy (1—a2rAdS2yf <r°>> . (5.13)
TAdS Jo y2f (%3) To Yy

Expanding the phase shift

§="> uks®, (5.14)
k=0

and solving (5.9) perturbatively in p reads

. ; bS—d n b3—2d <b2(3 _ 2d) 4 4>\GB> 2 + O( 3) (5 15)
0 2&;3“ grd 2 NaEoveryAs we)- :

Generically, we get an expansion of the form
(0.9]
ro = b+2ak,uk, (5.16)
k=1

where the ag, which depend on b, in the large impact parameter limit (b — oo) behave as

k(d—2)
ap o b (A5 (=2 517
b

10

Notice that there is no explicit Agp dependence in the leading term,'” since the metric (5.2)

approaches the one in pure GR.
To study the leading behavior of the phase shift for large impact parameters it is
convenient to define a function g(x) as

o) = s, (5.18)

with f given by (5.3), and denote the integrand of (5.13) by h <g <%0>>, with

h(z) = %\/ 1— a2z, (5.19)

a0 (52) [0 ()

In practice, to calculate the phase shift in the large impact parameter limit, we first expand

to express (5.13) as

the integrand of (5.20) in powers of u, perform the integration with respect to y, and then
expand the result in powers of b. The b-dependence of 5% is therefore fixed before the
integration and the integral just determines the overall numerical factor (assuming that it
is convergent).

1OExcep‘c the overall dependence on raqs.

~ 99 —



We can immediately see that g (%) depends on p explicitly and implicitly through
ro(p) in (5.15). In order to make this clear we write g (%O,u) instead of just g (%’)
Defining ("™ (g, 0) as

o (L) = 2y ()
Yy’ orgoum” \ 'y’

allows us to write the following expansion for h (g (%0, u)):

: (5.21)
ToZb,}LZO

B (g (ro/y,)) = h(g(b/y,0)) + 1t (9(b/y,0)) (9" (b/y,0) + arg" " (b/y.0))
g 0/.0)) (49D 0/9.0) + a1 0 0/2.0))

2 g 0/2.00) (6 5/1.0) + 259 (/.0

+2a19 (b/y, 0) + aZg*O (b/y, 0)) + 0@, (5.22)

where ay, are the coefficients appearing in (5.16). It is clear that at each order in the
p-expansion we will have a sum of products composed from derivatives of h(z) and sums
of the form

Z Ay Oy - - - akpg(p’”_zﬁ;l ki)(b/y, 0). (5.23)
{ki: f: kign}
i=1

Notice first that g(b/y,0), g™ (b/y,0) and g™V (b/y,0) do not depend on Agp as can
be seen from (5.18). The same is true for h(™(g(b/y,0)) for any n as follows from (5.19).
On the contrary, g™ (b/y,0) with n > 2 depend explicitly on Agp. It is then evident that
any dependence on A\gp will come from terms like the ones in parenthesis in (5.22) which
are of the type (5.23). We will now show that all the terms in such sums which contain
AGB, are subleading in the large impact parameter limit.

Recall that ay oc b'~#4=2) for k > 1. Using (5.18) one can check that g(™™ (b/y,0) o
b= for n > 0 and g(™9(b/y,0) o< b=""2. We thus need to spearately consider two
cases: products of the form ay, ay, . .. akpg(p7"_q) (b/y,0), with ¢ = >°* | k; and ¢ < n and
products of the form ag, ag, . .. akpg(p’o) (b/y,0) for which ¢ = n.

The former behave as

Ay Ay - - - akpg(p’"_@(b/y, 0) x bndli—Qq' (5.24)
Clearly, the leading behavior in the large impact parameter regime corresponds in this case
to ¢ = n — 1, recall, however, that g(p’l) does not depend on Agg. The behavior of the

latter terms is 1

Ay kg - - - akpg(p@) (b/y, 0) X W, (525)

which is again independent of Agg. The conclusion is that the leading behavior in the large
impact parameter regime comes from terms containing g (b/y,0) and g®1 (b/y,0) that
do not contain Agp.
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One can extend these considerations straightforwardly to any gravitational theory that
contains a spherical black hole with a metric given by

d2

2 _ 27 2
ds” = A e e

+r2dQ3_ (5.26)

where the functions f(r) and h(r) admit an expansion of the following form in the large
limit:

_1—2]0”‘1:1—@—&—...

ynd rd — p2d

- o find ho  hq

h(r):1—zrm:1—7d—@—..., (5.27)
n=0

for some constants fnd and iLnd (these are the spherical black hole metrics considered in
egs. (5.1) and (5.10) in [21]).

5.2 Spin-2 multi-stress tensor OPE data from the gravitational phase shift

The gravitational phase shift in a black hole background is related to the lightcone HHLL
four-point function discussed extensively in this article. In the following, we will exploit
the precise relationship between the two to extract the OPE data of multi-stress tensor
operators of spin-2 in the dual conformal field theory (modulo spin zero data). While the
explicit procedure can be worked out for arbitrary multi-stress tensors, we will herein focus
on double and triple-stress tensor operators, which control the O(u?) and O(u?) lightcone
behavior of the HHLL correlation function.

5.2.1 The phase shift in Gauss-Bonnet gravity to O(u3)

In this section, we focus on the gravity side and determine the phase shift order by order
in u up to O(u3) relevant for this article. Starting from O(u%) we consider the following
expression
J1 =
5O = 2hpt rags V1 — a2 &5 dy. (5.28)
b= +r Adsy
Evaluating this integral and using the following notation p* = pt + p®, —p? = ptp~
leads to
60 = mp~. (5.29)

This is of course none other but the “phase shift” in pure AdS space.
At O(p) the result is the same as in [20], where Einstein gravity was considered,

b \'"/d-1 d—1 3 d—1 d r2
5(1>:,/_p2< ) ( )B[Q ]2F1<12,2+1,—2§S>. (5.30)

TAdS 2

At this order, the phase shift depends only on the single graviton exchange, which is
unaffected by the higher derivative terms in the gravitational action. According to the
holographic dictionary, the exchange of a single graviton is related to the exchange of a
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single stress tensor in the T-channel. The corresponding OPE coefficient is fixed by the
Ward identity, so it does not depend on the details of the theory.

We now consider the phase shift at higher orders in u. For convenience herein all
results are presented in d = 4. At O(u?), using the technique presented in the previous
subsection, we find that:

T 7‘2 5 TAdS 5 7“3
5@ = 2. /2|5 14 Ads 1| _2 9O TAds
sV |7 raas Ty 2 b 4 b3
N ACB 4 b 14 Ads _ 1| —oTAas 173as  17Aas
TIQXdSV 1—4\gB T'AdS b2 b 2 b3 4 b
(5.31)
In the lightcone limit (b — oo) this reduces to
52 o 357 —P?rias 357V =P s 4B 4 (5.32)
boo 12800 102467 r2 ov/1—4hgp

We explicitly see that the leading contribution does not depend on Agg, while the sublead-
ing does.
Let us denote 581—2{ to be equal to (5.31) when A\gp = 0,

mias VR o (1 2.4, —TAdS> (5.33)

(2)
0GR = 12805 2’ b2

which is the pure Einstein gravity result for the phase shift at O(u?). Then §®) can be

written as
5@ _ 5@ (1 n 4\aB > _ Tny/—p*AcB (TAds)5 (5.34)
GR 57‘/2de\/ 1-— 4>\GB 321"%(15 vV 1-— 4)\GB
The phase shift at O(u?) is given by
: 122 1672
53 =58 <1 + B —oB )
7TAdSV 1-— 4)\GB 21rAdS(1 — 4/\@]3)
L J (rAdS) ( 495mA\GB 55TAL R )
b 5127«Ad8\/1 —4XcB 128rj§ds(1 —4\cB)
tv-op ( b ) 256rfgds(1—4AGB)’ (5.35)
where

3 231r] LT r3
o8 = A /e 2F1 (1,55, —265 ). (5.36)

1607 72’

By expanding (5.35) in the large impact parameter limit, one again explicitly sees that the
leading term does not depend on Agg.
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5.2.2 Inverse Fourier transform of the phase shift at O(u?)

To make contact with the position space HHLL correlation function, one needs to perform
a Fourier transform of the phase shift. According to [20], the HHLL four-point function in
the Regge limit \/—p? > 1 is given by

~ d .
G(x) = / (gﬂf)’d P B(p), (5.37)

where G(x) = (O (21)OL(22)OL(23) O (24))Regge 1imit and B(p) = By(p)e®. The factor
By(p) reproduces the disconnected correlator and it is given by

[SI[o8

Bo(p) = C(AL)O(P)O(—p*)e™ " (—p?)>E 2, (5.38)

with normalization
9d-+1-2Ap 1+

C(AL) = FaOT (e Tr D) (5.39)
We expand the integrand of (5.37) in powers of p using (5.14), explicitly
B(p) = Bo(p) (1 + pio™ 4 2 (i5(2) - ;5@2)
i (¢5<3> 5@ _ é5<1>3> + o(ﬁ*)) . (5.40)
This generates an expansion for G(z) from (5.37) as
6(w) = Y160 o) (5.1
k=0

Let us start by studying the correlator at O(u?). The imaginary part of the correlator in the
Regge limit at this order comes from i6(?) in (5.40) while the real part comes from —%5(1)2.
Consider first the imaginary part. To perform the inverse Fourier transform it is

convenient to first expand 82 as follows:

5 15 5A
0@ = 7%/ —p? <2H5,3(L) + ( - < ) 7 5(L)

4 T%&dSV 1—4\gB

16AcB )
+(5- Mo3(L) +... |. 5.42
(o~ s ) ot ) o4
In (5.42) b/raqs = sinh(L) and
TIET(A — 1) d d—2
Ha_pgq(z) = ——— L ~(A-Dz g <—1,A—1,A—, —2w>, 5.43
A-1:d 1() 2F(A—%)€ 2H1 | 5 € ( )

the three-dimensional hyperbolic space propagator of a massive particle with mass square
equal to (A — 1)2. The dots in (5.42) stand for terms with hyperbolic space propagators
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with A > 10. We can now perform the inverse Fourier transform of (5.42) with the help
of egs. (3.23) in [20] and (3.4) in [39].

The term which contains II5 3(L) includes (after the inverse Fourier transform) the
contribution of double-stress tensors with minimal twist 7 = 4. As we have already shown
it does not depend on Agp, which we can also explicitly see in (5.42). The next term,
that contains II7 3(L), includes the contribution from the double-stress tensor operators of
twist 751 = 6. We can use this term to fix the coefficient b4 which was left undetermined
in (3.5). Similar reasoning applies to all the higher-order terms in the large impact pa-
rameter expansion of (5.42). Namely, the term proportional to IIa,,413(L) is related to
double-stress tensor operators of twist 7 = 2m.

Performing the inverse Fourier transform following [39] leads to

. dp 2i
- @) _ P ipx 5(2) _
tIm (g (0', p)) / (2ﬂ)46 Bo(p)l5 F(AL)F(AL _ 1)0.2AL+1

X (aln5,3(p)r(AL — OT(AL +2) + biTlr5(p)T(AL — 3)T(AL + 3)

+ el 3(p)T(AL — HT(AL +4) + .. ) I (5.44)
_ 352 _ 2 (15 5AgB _ 2 _ 16AgB
where ay = F7%, by = Tm <4 Tidsm) and ¢ = 7w (5 ridsm>' The

ellipses outside the parenthesis in (5.44) denote contributions due to double-trace operators
in the T-channel that are not important for studying the stress tensor sector. The position
space coordinates o and p are defined as

z=1—o0€’, z=1—oe”. (5.45)

after the analytic continuation z — ze~2". Once more, notice that the dominant contribu-
tion in the large impact parameter regime, p — oo, comes from the factor Il 3(p) in (5.44)
which exactly matches the imaginary part of the correlator (3.1) in [20].

5.2.3 Comparison with the HHLL correlation function in the lightcone limit
at O(p?)

A few simple steps are required before we can finally relate (5.44) with the results of
section 3 and determine the OPE coefficients of the spin-2 double-stress tensor operators.
As explained in [20], one has to analytically continue g2V g22) and g23) (defined in

2™ and expand the result in the vicinity of

section 2) around the origin by taking z — ze~
0 — 0. The relevant term, which corresponds to the imaginary part of the correlator (3.5)

as o0 — 0, reads:

—7p

ilm ((Ue_p)?’_ALg@’l)(l — 0’6'0)> = Tim—

Ap (AL (AL (123 —TAL) + 78) — 12)
16(A; —3) (A —2) > (546)
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Comparing this with the subleading term of (5.44) as p — oo, i.e.,

35ime” AL (Ar +1) (8Aas + Az (4hep — 5vI — DAapriqg))
402841 /T — ANgpr3 4g (A2 — 5A7 +6)

+..., (5.47)

itm (G2 (0,p)) oo = —

with the ellipses again denoting double-trace operators, allows one to obtain the following
expression for the unknown parameter byy4:

b, P(2) _ A (AL (AL (TAL —23) +22) + 12)
1T e 201600 (AL, — 3) (AL — 2)
B AGBAL (AL—i-l) (AL—I-Q)
2520v/1 — 4A\gpr3 4 (AL — 3) (AL —2)

Note that this precisely matches the OPE coefficient of the double trace operator of con-

(5.48)

formal dimension A = 8 and s = 2 calculated in [21] from gravity by other means. As
expected, the OPE coefficient in (5.48) explicitly depends on Agp.

Let us now go one step further and fix P1(2),)2 contributing to G2 (z) through (3.20).
Analytically continuing (3.18) and taking the limit o — 0, yields

(2)

, o 49 me %

iIm ((o—e PYA-ALG(22)(] _ Je/’)> = io0 T (7200001914 + 11404800 ;(;2

L AL(Ap (A (A (6327 — 362A1) + 749) + 12888) + 12285) (5.49)
T(AL—4) (AL —3) (AL —2) ' .

For reasons that will be explained later, we only consider here the imaginary part of the
subsubleading term in the correlator. To extract the OPE data we need to compare (5.49)
with the subsubleading contribution in the large impact parameter limit of (5.44), which is

3 7 me % [10AL (AL+1)
. 2 — L L
iIm <g( )(0-7 P)) le—90 = ZZUQALH ( Ap—2

B TAL (Ar+1) (AL+2) (16)\GB+AL (12/\@3—5\/1—4/\(;137“%618))
VvV 1—4)\GBTidS (AL—4) (AL—3) (AL—Q) '

(5.50)

Substituting (5.48) in (5.49) and matching to (5.50) enables us to determine the OPE
coefficient Pl(g,)w

Ap (AL (AL (AL (187AL — 552) + 901) + 1012) + 912)
79833600 (AL — 4) (AL — 3) (AL — 2)
B AgBAL (AL +1) (AL +2) (AL +3)
12474y/1 — 4hgprigg (AL —4) (AL — 3) (AL —2)

This precisely matches the one calculated in [21].

2
Pl(O,)Q =

(5.51)
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Similarly, one can match the CFT expression for Im ((Ue*p)5*ALg(2’3)(l — oe’))
in (3.23), to its gravitational counterpart Im (9(2) (2)) |e-110, by expanding (5.42) and (5.44)
up to O(e~11P). This allows one to additionally determine Pl(;)Q in (3.26)

Ap (AL +1) (AL (AL (AL (6721A7 — 15603) + 46474) + 100828) + 143760)
44396352000 (Af, — 5) (AL —4) (AL —3) (AL — 2)

B 5)\GBAL(AL+1) (AL+2) (AL+3) (AL+4)
453024y/1 — 4AAgpr3 4 (AL — 5) (AL — 4) (AL = 3) (AL —2)

2
P1(2,)2 =

(5.52)

Notice that we did not use the real part of G2 (o,p), which comes from the term
—%6(1)2 in (5.40) and behaves as 0 ~222=2 for ¢ — 0. This term matches the corresponding
term with the same o behavior in the correlator. It does not give us any new information,
because it is independent of the OPE coefficients of operators with spin s = 0, 2.

5.2.4 Extracting OPE data from the gravitational phase shift at O(u?)

Let us now consider the O(x?) terms in the correlator. Focusing on the gravity side, we
start by performing an inverse Fourier transform. (5.40) instructs us to consider three
terms 03, §(1§2) and i(6(1))3, which give rise to terms that behave as o= 2AL~1 52812

—2AL-3 respectively. Performing the relevant computations, we observe that 6§

and o
and i(6(1))? do not provide additional information because the corresponding terms in the
correlators are already fixed by bootstrap (these terms simply give us an extra consistency
check). Focusing on the inverse Fourier transform of i6®), we expand (5.35) in terms of

the hyperbolic space propagators, II,, 3(L),

5@ = \/p2 (CLQH773(L) + boTlg5(L) + callyy 3(L) + . .. ) (5.53)
where
1155
ag = ———7",
8
3AaB
by = 23172 (— + 2) ,
Tids‘/l —4A\gB
23172 ( 32045 120\gB )
co = — +35), (5.54)
8 rias(l—4xa)  r34sv1— 4GB

which leads to

21
(AL)F(AL—l)UQAL—H

iIm (5(3) (o, p))

d*p
= P By(p)io®) =
o / i B)ib® =

xGmﬂnﬂpﬂXAL—3HXAL+3}HQH&ﬂpﬂXAL—4HXAL+4)
+eolli 3(p) T (AL—B)(AL+5)+. .. ) +double traces,  (5.55)

The leading and subleading contributions in the large impact parameter limit p — oo

come from II7 3(p) and Ilg3(p) and behave as ;’2727;?1 and gﬁi;gfl, respectively. They are
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precisely matched by the relevant terms in (4.1) in the vicinity of ¢ — 0 after analytic
continuation [39]. This is another sanity check of the procedure described herein, since
these terms do not incorporate contributions from spin-2 operators.

To extract further OPE data, we proceed to match the subsubleading correction
of (5.55) in the large impact parameter limit to the term in (4.9) which behaves as ~ Z’;‘Z_Llii .

This allows us to determine the coefficient e;15 = P1(3,)2 in (4.9) which corresponds to the

OPE coefficient of the triple-stress tensors of spin s = 2 with conformal dimension A = 12:

117A9 — 439A7 + 407AT + 859A% + 202A7 + 696A 1,
172972800(Ar — 2)(Ar — 3) (AL — 4)(AL — 5)
_ Acp(143A% — 231A7 — 3597A7 — 9489A7 — 11186A7 — 4920A )
4324320073 4sv'1 — 4AgB(AL — 2)(AL — 3) (AL — 4)(AL — 5)
+ AGBAL(AL + 1)(AL 4+ 2)(AL +3)(AL +4)
2402474 45 (1 — 4hgB) (AL — 2)(AL — 3)(AL — 4)(AL — 5)

-5
+ 150 1320

€115 = —

(5.56)

Notice that e15 is not completely determined by the above procedure since the spin-0 OPE
data, Pg(i)), is not fixed. Summarising, we conclude that we are able to fix all coefficients
in the ansatz except those that correspond to the OPE coefficients of operators of spin-0.
However, using the expression for Ps(?o) found in [21] one finds

P _ 1001A7 — 6864A% + 12615A% — 3980A1 — 6156A% — 11736A7 — 1440A
122 = 3459456000(Ar — 2)(Ar — 3)(AL — 4) (AL —5)
 AcB(143A% — 206A7 — 1631A7 — 3622A7 — 3540A7 — 1200Ap)
2882880073 15v/'1 — 4Ag(AL — 2)(AL — 3)(AL — 4)(AL — 5)
)\%;BAL(AL + 1) (AL +2)(Ar 4+ 3)(AL +4)
240247} 45 (1 — 4hgB) (AL — 2)(AL — 3)(AL — 4)(AL —5)’

(5.57)

6 Lorentzian inversion formula

It was recently shown in [27] that one can obtain the OPE coefficients of minimal twist
double and triple-stress tensors using the Lorentzian inversion formula. Here, we review
this method and show how it can be generalized to extract the OPE coefficients of twist-
six double-stress tensors. In principle, it can also be generalized to multi-stress tensors of
arbitrarily high twist.

6.1 Twist-four double-stress tensors

Consider the correlation function

() "ALG(w, ®) = (O5(00) O (1) O (w, ) OL(0)). (6.1)
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The Lorentzian inversion formula is given by [25, 26]

—T

=)

_ 1
C(T,ﬂ) = 14_(21)2’%5/ dwdwu(ozo)(w,w)
0
x g*0 (w, w)dDisc[G(w, )] (6.2)
gfr+2(d71),ﬁ;rde+1 ’ b :
where
100 (4, ) = M (6.3)
’ (ww)d
r
" (BN - 1) o4
(0,0)

where 7 = A —sand 8 = A+ 5. Here gr 3 is a conformal block given with A — s+d—1
and s - A —d+ 1 and in d = 4 is given by (2.5). Moreover, dDisc denotes the double-
discontinuity of G(w,w) in (6.1), which is equal to the correlator of a double commutator,
and it is given by

dDisc[G (w, @)] = G(w, @) — %Go(w,u‘;) - %GO(w,w) | (6.5)

Here G° and G© correspond to the same correlator analytically continued in two different
ways around w = 1, namely (1 —w) — (1 — w)e™?>™. The OPE data, P,
11

48 g+, Can be
2 72
extracted from ¢(r, 8) via

Pﬂ B—1! — _ReSTZT/C(T75)7 (66)

2 7 2

where 7/ and 3 denote the twist and conformal spin of operators in the physical spectrum
of the theory exchanged in the channel O x Op = Oy — O x Op.

We would like to apply the Lorentzian inversion formula to the HHLL correlator to
extract the OPE data of the double-stress tensors. To this end, we will use information of
the correlator from the channel where OOy, merge. The function G(z, Z) can be obtained
from G(z, z) via

G(w,w) = (ww)>LG(1 —w,1 — ). (6.7)

To apply the Lorentzian inversion formula we first need to calculate G(z,Zz) using
the S-channel operator product expansion (2.22). First, let us start with the leading
contribution of G(z,%) in the lightcone limit z — 1 at O(u?). These give the leading
contributions when w — 0 in G(w,w). After the integration with respect to w in (6.2),
these contributions fix the position of the pole and residue of ¢(7, /) that corresponds
to lowest-twist double-stress tensors. Subleading contributions in z — 1 (or w — 0) only
create new poles, without changing the residue of existing ones, therefore, they do not affect
the OPE coefficients of lowest-twist operators. The leading contribution in the (1 — z)-
expansion comes from the leading contribution of the 1/l-expansion of the S-channel OPE

11n principle there is an extra term in this relation when 7 —d =0,1,2, ... [25], however, it vanishes in
the cases considered.
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data. Only the term proportional to logQ(z) contributes to the double-discontinuity and
we denote it by G 2) (z, 5)‘log2 () The number in the superscript denotes the power of p in
which we are working. Substituting in to (2.26) equations (2.24), (2.29), (2.27) and (2.28),
we find that

JUAL=3 (1 _ S+ T Ap—1)
2)(, % = log?(2z ) ( i B
GP(2,2) g2 () = log ZZ/O dlz (z—2C(n+ 1L (AL, —1)T(AL)

((77(370))2 +0 (;)) . (6.8)

In the lightcone limit, the dominant contribution to this expression comes from operators

with large spin [ > 1, we can, therefore, approximate the sum over [ by an integral. Note
that only O(u) OPE data, i.e., %(11’0), appears in (6.8). Using (3.12) we evaluate (6.8) and
collect the leading term as z — 1,

(1—2)27AL(1 — 2)~Ar—4

(2) > _ 2
g (z7z)|10g2(z) _log (Z) 39 (AL _2) X

Ap (AL ((z(z +4) + 1)2AL + 2(2(54 — (2 — 28)z) + 28) — 1) + 72z2) +0 ((1 _ Z)3 AL) .
(6.9)

With the help of (6.7) one obtains

Apw?log?(1 — w)

@) (w. @ -
G (w7w)|log2(1—w) T 32uwt(AL —2)
(AL (w—6)w + 6)*AL — w(w(w(w + 24) — 132) + 216) + 108) + 72(w — 1)?) + O(w?),
(6.10)
which agrees with (4.12) in [27]. Now, it is easy to see that
dDisc[G® (w, w)] = ﬂx
isc w, W _8w4(AL—2)
(AL (((w = 6)w + 6)*Ap, — w(w(w(w + 24) — 132) + 216) + 108) + 72(w — 1)?) + O(w*).
(6.11)
To compute the integral (6.2) we substitute
00 (1p,0) = —— + O (= 6.12
©0) (w,@) = @*% (51— w) + O(w)) (6.13)
977+2(d 1), 78 —d+1 W)= g ’ :

valid in the lightcone limit w — 0 (or Z — 1), and set (—1)624 = 1 since only even-spin
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operators contribute. Combining the above we arrive at the following expression for ¢(7, )

ﬁQiﬁJFlALF (g)
(T—)(B—10)(B—6)(B—2)BB+4)

384 (AL — 7) AL + 4608 (B—2)BAL((B—2)8(AL —1) — 56A L, + 200)
(B+8) (AL —2)T (3(8-1)) (B+8) (AL —=2)T (3(8-1)) ’

C()(T,ﬂ) = —

(6.14)

where the subscript denotes that this result is obtained in the leading order of the lightcone
expansion. The OPE coefficients of the minimal-twist double-stress tensors are given by

PP, = —Resr_sco(r, B), (6.15)
2
where § = 1244/, £ > 0, and are in precise agreement with (1.6) in [23] and (4.15) in [27].

6.2 Twist-six double-stress tensors

Here we use the same method to obtain the OPE coefficients of double-stress tensors with
twist 791 = 6. We first need to compute the subleading contribution in the lightcone limit
to eqs. (6.11), (6.12) and (6.13). Specifically, the integration measure
(0,0) () oy L 2 2
o (w, w) +0(w?), (6.16)

T w2t wdwd
and the conformal block,

f3(1—w) (1 +w (1 - i + i}) + O(w2)> , (6.17)

(0,0)
—74+2(d—1), 72 —d+1

3—

[V

g (w,w) =w

were obtained from the explicit expressions given in (6.3) and (2.5).

To evaluate the subleading term in dDisc[G® (w,®)] we reconsider the S-channel
computation. Similarly to the case of leading twist, only the part of the correlator
with log?(z) contributes to the discontinuity. However, we now have to include the
subleading corrections in the 1/l-expansion of the S-channel OPE data. With the help
of (2.26), (2.24), (2.27), (2.28) and (2.29) one finds that

log?(2%) > L T(AL—14n) [
16(z — )T (AL (AL — 1) T;)(zz) T(n+1) /0 di

2
A6 (zl'H - Zl'H) (2(l —2n)+ AL (AL +2n—1)) (l’y,(ll’o) + %(Ll’l)> +0 (ZAL_7) :
(6.18)

2 _
g( )(Z’ Z) ‘logQ(z) -

To proceed, one evaluates (6.18) using (3.12) and collects the leading and subleading con-
tributions as Z — 1, which behave as (1 — 2)*>72% and (1 — 2)372L respectively. Us-
ing (6.7) it is then simple to obtain G(Q)(w,u_))‘logg(l_w) up to O(w?) and evaluate its
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double-discontinuity:

B 7T2’LD2AL
Swd (A —3) (AL —2)
— 504w’ A + 252wA L + 216w — 432w + 216w + 4w’ A2 — 12w A% + 120w3A%

dDisc|G? (w, w)] =

( —3uwPAL — T20 A + 324uBA L

— 36wA; — w A} + 12w A} — 48w A} + 2w A} + w(—144A L + 612wA L + 216w?

—432w? + 216w — w’ A — 52wt Ap + 324w Ap — T44w? AL + 540wAT — 216A7

— 72A3 +wPA? — 18w A2 + 156w A% — 456w A7 + 144wA3 — 2w A3 + 24w AY

- 96w2A%)) +O(at). (6.19)
Substituting (6.16), (6.17) and (6.19) in (6.2) and integrating leads to an analytic expression

for ¢(7, ). The relevant part of this expression — the one with non-zero residue at 7 = 6
— turns out to be:

24_5\/%1“ <§) Ap
(B —12)(8 = 8)(8 —4)(T — 10)(7 = 8)(T — 6)(7 — 4)
y ( BIAL —AB3A L — 6882A, — 960BA2 + 1448A, — 14976A2
(B+2)(8+6)(8+10)T (52 (AL —3) (AL - 2)
N BAA3 —2B1A2 — 4B3AY +8B3A7 — 1168%A + 47252A%
(8+2)(8+6)(3+10)T (551) (AL - 3) (AL —2)
2408A3 + 2304A3 + 195844, + 13824 > .
(5+2)(8+6)(3+10)T (531) (AL —3) (A, —2) ’

61(7—75) = -

(6.20)

where the ellipsis stands for the terms with zero residue at 7 = 6 and 1 in the subscript
denotes that this expression is obtained in the subleading order of the lightcone expansion.

It is now straightforward to read off the OPE coefficients of double-stress tensors with
twist 751 = 6 from

(2) _
P§+3,§—3 = —Res;=¢c1(7, B). (6.21)
For f = 14 + 4¢ (3.16) is reproduced. It is already stated in section 3 that this formula
does not reproduce the right OPE coefficient Ps(,zz) for £ = —1. Thus, we explicitly see

that the Lorentzian inversion formula does not allow us to obtain the OPE data of spin-2
double-stress tensors with twist 7 = 6.

In general, to determine for which operators at O(u*) the Lorentzian inversion formula
can be applied, one has to consider the behavior of the correlator in the Regge limit. At
O(pF) the correlator in the Regge limit behaves like 1/0?227* Therefore, the Lorentzian
inversion formula correctly produces the OPE coefficients of multi-stress tensor operators
with spin s > k + 1. Accordingly, already at order O(u?), fixing the OPE coefficients by
combining an ansatz for the correlator with the crossing symmetry (or Lorentzian inversion
formula) appears more powerful than the Lorentzian inversion formula alone. Namely, we
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were able to fix the OPE coefficients of spin-4 operators and the one with twist 7 = 8 is
given by (D.1), while using the Lorentzian inversion formula one can only fix the OPE
coefficients of operators with spin s > 4.

7 Discussion

In this paper, we consider the stress tensor sector of a four-point function of pairwise
identical scalars in a class of CF'Ts with a large central charge. It is completely determined
by the OPE coefficients of multi-stress tensor operators, which can be read off the result
for a heavy-heavy-light-light correlator. The stress tensor sector of the HHLL correlator is
naturally expanded perturbatively in u ~ %—g, where Aj is the scaling dimension of the
heavy operator. The power of u counts the number of stress tensors within the exchanged
multi-stress tensor operators. By further expanding the HHLL stress tensor sector in the
lightcone limit, the multi-stress tensor operators can be organized into sectors of different
twists. Similarly to the minimal-twist sector, combining an appropriate ansatz with the
lightcone bootstrap, we show that the contribution from the non-minimal twist multi-stress
tensors is almost completely determined. Unlike the minimal twist case, a few coefficients
are not fixed by the bootstrap — these correspond to the OPE coefficients of multi-stress
tensors with spin s = 0, 2.

An extra check is provided by applying the Lorentzian OPE inversion formula (see [27]
for an earlier application of the inversion formula in this context). It gives the same results
but has less predictive power than the ansatz.

The OPE coefficients for double-stress tensors are particularly simple and we provide
closed-form expressions for those with twist 7 = 4, 6,8, 10 and any spin greater than 2. All
of these OPE coefficients are completely fixed by the bootstrap. This is related to their
independence of the higher-derivative terms in the dual bulk gravitational Lagrangian.
The OPE coefficients for double-stress tensors with spin s = 0,2 are not fixed by the
bootstrap and do depend on such higher derivative terms. It is interesting that at the level
of double-stress tensors, only the OPE coefficients with spin s = 0,2 are not fixed by the
bootstrap (non-universal). On the other hand, all non-minimal twist triple-stress tensor
OPE coefficients are non-universal.!?

Assuming a holographic dual, we show that the OPE coefficients for spin-2 multi-stress
tensors can be determined by studying the large impact parameter regime of the Regge
limit, following [20, 30, 39] (modulo the spin zero OPE data). This is done explicitly in
Einstein Hilbert4+Gauss-Bonnet gravity. Some of these OPE coefficients are known [21]
and agree with our results.

It would be interesting if one could compute the spin zero and spin two multi stress
tensor OPE coefficients with CF'T techniques. Perhaps the conglomeration approach first
discussed in [31] or the more recent work [45, 46] will be useful in this direction.

The regime of applicability of the ansatz (and the exact meaning of universality) used
in this paper remains unsettled (the ansatz seems to work in holographic CFTs, but does it

12Here we use universality and “fixed by the bootstrap” terms interchangeably. However, it remains to be
determined what is the universality class and whether it the same as the set of unitary holographic theories.
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also apply for other CFTs with a large central charge?). This question appears already in
the leading twist case studied in [24]. To address this issue, it would be interesting to inves-
tigate the OPE coefficients of multi-stress tensors in CFTs with a large central charge, but
not necessarily holographic. A related question is the existence of an infinite-dimensional
algebra responsible for the form of the near-lightcone correlator. In two dimensions the
relevant algebra is simply the Virasoro algebra. The Virasoro vacuum block has been
computed in several ways [47-53]. Recently an algebraic way of reproducing the near light-
cone contribution of the stress tensor was discussed in [54] — it would be interesting to
investigate this further.

Returning to holographic theories, one interesting question would be to understand
the critical behavior of geodesics in the vicinity of the circular light orbit, recently studied
in [55], from the CFT point of view. This corresponds to the situation where the deflection
angle is very large. The deflection angle ¢ in asymptotically flat Schwarzschild geometries
is supposed to be related to the eikonal phase § via

. P 100
2s1n§ =~ (7.1)
where E is the incoming particle energy and b is the impact parameter (see e.g. [56] for
a recent discussion). This agrees with eq. (E.1) for small deflection angles, but deviations
might occur for large deflection angles. It would be interesting to investigate this further.
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A Linear relations between products of f,(z) functions

Here we list some linear relations between products of the f,(z) functions used in the

main text.
FLEE) + 12 SV i(2) = s Pl () = o)) =0,
(A.1)
T BE) = SRR+ S ) — e () = SRR + o) fo(2) =0,
25 73() — 2511(2)(z) — 15 13(2) — 55 1) + () Fo(2) =0,
PR = S AEG) - 2R + () =0,
(A.2)
B0 ) 3(2) — ot Fa(2) () + ol () — ol () 1u(2) — Sk () fo(2) = O,
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7007 39611 7007 4719

PV 1(2) + ST ) 1)+ S () f3(2) — STy (2)fa(z) — o a2) o (2)
22112 folz) = 0,
(A.3)
I+ e i () + A () + o () () o)
R () — oo 2P N(E) — e i () (2) — A () fol2) =0,
(A.4)
) 297 9
—fo(2)f1(2)" + fs(2) fa(2) 1(2) = goe fa(2) f5(2) fu(2) + 5 fo(2) f(2) fu(2)
b P — e P2 a(2) + e P fa(2) F5(2) — o Fo(2) () =0,
(A.5)
AP + T D FEVAE) — o i@ i) + e () a2
R a(2) — e P2 (2) + e B2 ()5 ) — s £2(2)2 o) =0,
(A.6)
s 9 297 )
—f6(2)f1(2)” + mfz(z)ﬁ(z)fl(z) - Mﬁ(z)fs(z)fl(z) + f2(2) f3(2)
b PV = e FalVa(2) + i (o) fo(2) o2) — s Fola)P o) = 0,
(A7)
ool + oz 12 F2(2) + 1o fo(2)f5(2) l2) — Tom So(2)2(2)
S R AEBE) + () fs() o) = 0.
(A.8)

B Coefficients in G (z)

Here we list the coefficients in GG (2):

AL (AL+3) (AL (AL (Ap (1001AL+387)—4326)+13828)+5040)

buis = 10378368000 (A, —4) (A, —3) (AL —2)
bis (AL (143A[,+427)+540)
17160 (A,—4) ’
_ T(AL+3) (604800014 (A7 —BAL+6)+A7 (—21A7 +229A7 +414A1,+284))
s = 856627200 (A3 —9A2 +26A,—24) ’
rry DL (AL(AL (AL (Ar (14A1-15)+6040) ~36125) ~75814)~49620)

2306304000 (A7 —4) (A, —3) (AL—2)

~ 3bia (AL (2AL+3)+135)
11440 (A —4) ’
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e — Ap (Ar (Ar (AL ((32680—1183A ) A, —183605)+34900)+570808)+436440)
47040000000 (AL —4) (AL—3) (AL—2)
3b1a (AL (257A[—2227)+510)
700000 (A —4) ’
s — Ap (Ar (Ar (AL ((40020—1337A L) AL —274845)+96350)+2323212)+1910160)
71850240000 (A —4) (Ap—3) (AL—2)
bia (AL (22A1,—267)+960)
39600 (A —4) ’
e — bis ((10283—1153A1) AL —5790)  Ap (51463A7 —846480A7 +1320405A% )
900000 (A —4) 1632960000000 (A3 —9A? +-26A,—24)
Ap (22381100A% —46886088A [, —46446840)
1632960000000 (A% —9A% +26A 1, —24)
ey — Ap (AL (AL (Ar (Ar (1337A1,—32145)+160095)+19525)—266712) —182160)
70560000000 (A, —4) (AL—3) (AL—2)
914 (A (T1—-11A7)+270)
175000 (A —4) ’
s — Ap (AL (AL (AL (AL (509A,—1515)+83415)—808325)+823116)+902880)
90720000000 (A, —4) (AL—3) (AL—2)
bia (Ar (11AL—T71)—270)
18750 (A —4) '

)

(B.1)

C Coefficients in G3?)(z)

Here we list the coefficients in G(32)(z):
_g13 (7AL (128 — 77AL) + 6720) n 49b14 (AL (AL (170 — llAL) + 981) + 1620)
1o = 16409250 (Af, — 5) 16409250 (Af, — 5) (AL — 4)
196e115  539AT — 15386A8 + 54215A3% + 951510A7 + 2911426A3
49725 472586400000 (Ar — 5) (AL —4) (AL —3) (AL —2)
98e15 (A +4) N 3737076 A% + 1779120A
16575 (A —5) 472586400000 (Az, — 5) (Ar —4) (Ar — 3) (A —2)’
_ Tgi3 (AL (4AL —469) +930)  Thig (Ap (2247 — 64A +4197) + 11745)
128 = 12355200 (Az, — 5) 6177600 (A, — 5) (AL — 4)
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9155 = 2756250 (AL — 5) 231525000 (AL, — 5)
3146e115  bia (12063A7 — 88048A7 — 131165A, + 196110)
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340200 1047816000 (A — 5) (AL — 4)
_ 9324749A7 — 433851406A% + 5233472135A% — 21967190310A7
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5315625 17860500000 (AL, — 5)
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9001692000000000 (Af, — 5) (AL — 4) (AL — 3) (AL —2)’

9227 =

9236 =

(C.1)

g245 =
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D OPE coefficients of twist-eight triple-stress tensors

Here we list a few OPE coefficients of twist-eight triple-stress tensors which are found
using (4.8):

P (AL (143A [ +427)+540)

(3)
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12,4 17160 (A —4)
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Assuming Einstein-Hilbert + Gauss-Bonnet gravity in the bulk, the OPE coefficient
PS%) was derived in (5.48) and can be inserted in (D.1)—(D.4).

E Derivation of the deflection angle from the phase shift

Here we simply show that the bulk phase shift, defined as § = p’(At) — p?(A¢) in [20] is
consistent with the standard equation relating the eikonal phase and the scattering angle

a6
b —p" A¢ (E.1)

obtained with the use of the stationary phase approximation for small scattering angles.
Our discussion is focused on asymptotically flat space. In this case, the formulas in classical
gravity which provide the deflection angle and the time delay are:

At:2/ _dr
70 f 17%

& dr
A¢:2b/ S
0 7’2 ll_bfo

They can be obtained from eq. (2.9) in [20] with the substitution %f = b (and the appropri-

(E.2)

ate definition of the blackening factor f(r)). Note that the equation for the turning point
of the geodesic, rg, reduces in Schwarzchild geometry to:

b2
~ 12f(ro)

Defining the bulk phase shift via § = pt(At) — p?(A¢), leads to

1 =0 (E.3)

¢ @ t ¢ [0 dr v f
6 =p'(At) — p°(Ag) = p' (At — bAg) =2p 7 1=-3 (E.4)
To
Differentiating the bulk phase shift with respect to the impact parameter yields:

LB gy, (5)

/ . /L —2p' =
0 7"2 1— bfo f(r()) T(%

where to arrive at the last equality we used the equation satisfied by the turning point rg.

00
Z — _opt
b po

Hence,

106
Agp = —?% . (E.6)

Finally note that assuming the classical relation J = py = b pt, the deflection angle can

also be computed through
06

Ap=——.
¢ oJ

(E.7)
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