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1 Introduction

The focus of the physics program at the LHC has recently shifted from direct searches

for new particles to precision studies of various Standard Model (SM) processes. Such

studies are indispensable since, despite the discovery of the Higgs boson in 2012 [1, 2] that

formally completed the SM of particle physics, there is a number of intriguing questions

that cannot be answered within this theory. Given the lack of direct evidence for new

particles in collider experiments, it becomes important to stress-test predictions of the SM

with an unprecedented precision, which becomes possible thanks to the upcoming high-

luminosity phase at the LHC. As a consequence, high-precision theoretical predictions for

many observables that can be studied in various SM processes at the LHC become necessary.

The perturbative description of hard scattering processes at the LHC has to overcome

two main obstacles. One is the computation of multi-scale virtual amplitudes, where loop

integrals over momenta of virtual particles need to be calculated. The other obstacle is

the appearance of infrared singularities during phase-space integration of real corrections

when one or more emissions become soft or collinear to other partons.

At next-to-leading order (NLO) in perturbative QCD, the treatment of infrared singu-

larities was tackled long time ago with two generic methods, slicing [3] and subtraction [4].

Since nowadays, both virtual and real corrections at NLO can be calculated in a fully au-

tomated way, the applicability of these methods is limited by computing power only. The

situation changes at the next-to-next-to-leading order (NNLO), where it is still being de-

bated how to extend the well-established NLO subtraction schemes [5–8] to the next order.

Currently, theoretical predictions with NNLO QCD accuracy exist for many LHC

processes. They were obtained using slicing methods that include qT - [9–12] and N -

jettiness [13–16] slicing; as well as subtraction schemes such as antenna subtraction [17–27],
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geometric subtraction [28], the STRIPPER framework [29–33], local analytic sector sub-

traction [34, 35], the CoLoRFull method [36–47] and other approaches, e.g. the projection-

to-Born method [48].

Despite the large number of available subtraction and slicing schemes, it is fair to say

that an optimal subtraction scheme, capable of dealing with complex processes, is yet to

be designed. A set of criteria that should be considered when attempting the construc-

tion of a subtraction scheme may include physical transparency, scalability and locality

as well as analyticity and efficiency. With these considerations in mind, the nested soft-

collinear subtraction scheme was introduced in ref. [49], building on the sector-improved

residue subtraction scheme [29–31]. There it was shown that subtractions applied to gauge-

invariant scattering amplitudes, rather than to individual Feynman diagrams, can be done

in a nested fashion, yielding a somewhat simpler description.

As the name suggests, subtraction schemes handle infrared singularities of real correc-

tions by designing suitable subtraction terms for soft and collinear divergences. Properly

constructed differences of real emission contributions and subtraction terms become in-

tegrable over the full phase-space in four dimensions. The subtraction terms, however,

still need to be integrated in d = 4 − 2ε dimensions where soft and collinear singularities

manifest themselves as 1/ε poles.

When the nested soft-collinear subtraction scheme is applied to massless partons, there

are two genuinely double-unresolved limits that need to be addressed. These are the double-

soft limit, where two emitted partons become soft, and the triple-collinear limit, where

momenta of three partons become collinear to each other. For both of these cases, integrals

over the phase space of unresolved partons, subject to specific energy constraints dictated

by the setup of the nested soft-collinear subtraction scheme, have been computed [50,

51]. These results facilitate an analytic and fully-differential description of colour-singlet

production [52], colour-singlet decay [53] and DIS-like processes [54]. We note that these

“dipole-like” building blocks should enable a fully-differential NNLO QCD description of

arbitrary processes.

The structure of IR singularities changes if massive quarks are involved in a partonic

process. Indeed, since there are no collinear singularities related to massive external legs,

only soft singularities need to be considered. They can be subtracted using appropriate soft

eikonal functions that have to be integrated over the unresolved phase space. The goal of

this article is to start exploring the subtraction terms that arise in NNLO QCD calculations

for processes involving massive quarks in the context of the nested soft-collinear subtraction

scheme. Specifically, we compute the integrated subtraction terms which are required to de-

scribe double-soft emissions off two radiators of the same mass in a back-to-back kinematics.

The remainder of this paper is organized as follows. In section 2, we describe the

nested soft-collinear subtraction scheme and the single- and the double-soft functions for

massive radiators. In section 3, we integrate the single-soft and the double-soft eikonal

functions over the respective unresolved phase space. We discuss results in section 4 and

conclude in section 5.
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2 Preliminary remarks

In this section, we specify a physical setup, describe the idea behind the nested soft-collinear

subtraction scheme and establish notations by writing down the factorisation formulae for

QCD amplitudes in the single-soft and the double-soft limits. We conclude the section by

defining sets of single- and double-soft emission integrals that need to be computed.

Our goal is to describe infrared (IR) singularities that arise in NNLO QCD calculations

for processes involving massive quarks. In this work, we focus on the IR singularities that

appear in the double-real contribution to the decay of a colour-singlet particle X to massive

quarks, i.e. a tree-level process

X −→ Q(pA) + Q̄(pB) + f(k1) + f̄(k2) . (2.1)

In eq. (2.1), Q stands for a massive quark while f and f̄ denote a pair of massless partons

(gluons or a quark-antiquark pair). Following ref. [49], we write the contribution of the

partonic process in eq. (2.1) to the decay rate as

〈dΓRR〉 = N
∫

[dk1][dk2]θ(E1 − E2) dLipsAB;12|M(A,B; 1, 2)|2 F(A,B; 1, 2)

=

〈
[dk1][dk2]FLM (A,B; 1, 2)

〉
. (2.2)

In eq. (2.2), N includes normalization and symmetry factors, dLipsAB;12 denotes the

Lorentz invariant phase-space measure of the massive quark system, including the energy-

momentum conserving δ-function, and F is the measurement function of an arbitrary

infrared-safe observable. All of these quantities are then absorbed into the function FLM
in eq. (2.2).

Note that, following the original formulation of the nested soft-collinear subtraction

scheme, we have introduced an energy ordering for the radiated partons k1 and k2, i.e. we

require E1 > E2 in eq. (2.2). We define the phase-space element of a massless parton as

[dki] =
dd−1ki

2Ei
θ(Emax − Ei) . (2.3)

In eq. (2.3), we introduced an energy cut-off Emax which is arbitrary but must be large

enough so that it does not change the value of the integral in eq. (2.2), see ref. [49] for

details. The need for such a cut-off parameter will become clear later when the double-soft

limit of eq. (2.2) is discussed. For now, we only note that Emax breaks Lorentz invariance

but leaves rotational invariance intact.

2.1 The nested soft-collinear subtraction scheme

Infrared divergences of QCD amplitudes can be regulated by introducing appropriate sub-

traction terms for all relevant kinematic configurations. Within the nested soft-collinear

subtraction scheme, such subtractions are constructed in an iterative manner, starting from

the double-soft limit.
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The double-soft limit describes kinematic configurations where energies of both emis-

sions in eq. (2.2), E1 and E2, vanish at a comparable rate. To describe this limit, we

introduce a double-soft projection operator SS. For a generic amplitude M involving mo-

menta k1 and k2, we consider the scaling E1 ∼ E2 ∼ λ and define

SS|M(k1, k2)|2 = lim
λ→0

λ4|M(λk1, λk2)|2 . (2.4)

We then split the double-real contribution in eq. (2.2) into double-soft regulated and un-

resolved parts, i.e.〈
[dk1][dk2]FLM (A,B; 1, 2)

〉
=

〈
[dk1][dk2](I − SS)FLM (A,B; 1, 2)

〉
+

〈
[dk1][dk2]SSFLM (A,B; 1, 2)

〉
.

(2.5)

The first term on the right-hand side is not divergent in the double-soft limit. This term still

contains singularities in the single-soft limit, where E2 → 0, and in the collinear limit, where

the two emitted partons become collinear to each other. Deriving a full subtraction would

require us to remove these singularities as well. However, since integrated subtraction

terms in these two limits can be obtained in a rather straightforward manner (see e.g.

ref. [55]), in this paper we focus on the second term on the right-hand side of eq. (2.5) and

its integration over the double-unresolved phase space. It reads〈
[dk1][dk2]SSFLM (A,B; 1, 2)

〉
= N

∫
[dk1][dk2]θ(E1 − E2) dLipsAB SS|M(A,B; 1, 2)|2 F(A,B) . (2.6)

We note that in the double-soft limit the momenta k1 and k2 completely decouple from

the hard matrix element, from the energy-momentum conserving δ-function and from the

measurement function F . This allows us to obtain integrals over the double-unresolved

phase space in a universal manner. After the decoupling from the energy-momentum con-

servation, integrals over dE1 and dE2 in eq. (2.6) are only limited by the cut-off parameter

Emax introduced in eq. (2.3).

As a consequence of the factorization in the double-soft limit, the reduced matrix

element describes the Born-like process

X −→ Q(pA) + Q̄(pB) (2.7)

and the momenta pA,B are back-to-back in the rest frame of the decaying particle X. In

this kinematic situation

pA + pB = pAB = E(1,+βn) + E(1,−βn) = (2E,0) , (2.8)

and the heavy-quark momenta are on the mass shell

p2
A = p2

B = m2 . (2.9)
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We note that the quark energy E is half the mass of the decaying particle, E = MX/2,

the vector n describes the direction of flight of the heavy quark in the rest frame of the

decaying colour singlet and

β =

√
1− m2

E2
. (2.10)

The threshold limit E = m implies β = 0.

2.2 Eikonal functions for single- and double-soft emissions

Soft factorization formulas for generic QCD tree-level amplitudes involving massless radi-

ators and up to two soft partons were studied, for example, in ref. [56]. This result was

extended to cover massive radiators in ref. [30] using the observation that eikonal currents

are identical for massive and massless emitters and that emitters’ masses become relevant

only when eikonal currents are squared.

We begin with the single-gluon emission. The limit of an amplitude that contains a

gluon with a soft momentum k reads

Ŝk|Mg({p}, k)|2 = −g2
s,b

n∑
i,j=1

Sij(k)|M(ij)({p})|2 , (2.11)

where {p} = {p1, p2, . . . , pn} and the sum runs over all n hard emitters. The operator Ŝk
extracts the leading asymptotic behaviour of the matrix element in the soft limit, Ek → 0.

The single-eikonal function Sij(k) reads

Sij(k) =
(pi · pj)

(pi · k)(pj · k)
. (2.12)

The colour correlations in eq. (2.11) are encoded in the reduced matrix element1

|M(ij)({p})|2 = 〈M({p})|T i · T j |M({p})〉 . (2.13)

The double-soft function that describes emission of two gluons with momenta k1 and

k2 reads

SS|Mgg({p}, k1, k2)|2 = g4
s,b

{
1

2

n∑
i,j,k,l=1

Sij(k1)Skl(k2)|M{(ij),(kl)}({p})|2

− CA
n∑

i,j=1

Sij(k1, k2)|M(ij)({p})|2
}
, (2.14)

where the additional colour correlated matrix element is defined as

|M{(ij),(kl)}({p})|2 = 〈M(p1, . . . , pn)|{T i · T j ,T k · T l}|M(p1, . . . , pn)〉 , (2.15)

and the notation {·, ·} stands for an anticommutator in colour space. The first term on the

right-hand side of eq. (2.14) is the abelian contribution. It is simply a product of single-

eikonal factors defined in eq. (2.12). Due to its factorized form, it is particularly easy to

1To describe colour degrees of freedom we use colour-space notation from ref. [7].
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integrate this term over the soft-gluons phase space. The second, non-abelian contribution

is proportional to the colour factor CA. It is given by the function Sij(k1, k2) which reads

Sij(k1, k2) = S0
ij(k1, k2) +

[
m2
iSmij (k1, k2) +m2

jSmji (k1, k2)
]
, (2.16)

where we note that the term in square brackets explicitly depends on the squared masses

of the emitters m2
i and m2

j . Both S0
ij(k1, k2) and Smij (k1, k2) implicitly depend on the

masses. The first term in eq. (2.16), S0
ij(k1, k2), also appears in the factorization formula

for massless emitters [56]; it reads

S0
ij(k1, k2) =

(1− ε)
(k1 · k2)2

[(pi · k1)(pj · k2) + i↔ j]

(pi · k12)(pj · k12)

− (pi · pj)2

2(pi · k1)(pj · k2)(pi · k2)(pj · k1)

[
2− [(pi · k1)(pj · k2) + i↔ j]

(pi · k12)(pj · k12)

]
+

(pi · pj)
2(k1 · k2)

[
2

(pi · k1)(pj · k2)
+

2

(pj · k1)(pi · k2)
− 1

(pi · k12)(pj · k12)

×

(
4 +

[(pi · k1)(pj · k2) + i↔ j]2

(pi · k1)(pj · k2)(pi · k2)(pj · k1)

)]
. (2.17)

The other two contributions in eq. (2.16) are only relevant for massive hard emitters. The

function Smij (k1, k2) is given by [30]

Smij (k1, k2) = − 1

4(k1 · k2)(pi · k1)(pi · k2)
+

(pi · pj)(pj · k12)

2(pi · k1)(pj · k2)(pi · k2)(pj · k1)(pi · k12)

− 1

2(k1 · k2)(pi · k12)(pj · k12)

(
(pj · k1)2

(pi · k1)(pj · k2)
+

(pj · k2)2

(pi · k2)(pj · k1)

)
. (2.18)

Note that we use an abbreviation k12 = k1 + k2 in eqs. (2.17) and (2.18).

When a soft quark-antiquark pair is emitted, the soft limit of the matrix element is

described by

SS|Mqq̄({p}, k1, k2)|2 = g4
s,b TF

n∑
i,j=1

Iij(k1, k2)|M(ij)({p})|2 , (2.19)

where TF = 1/2. The soft function Iij(k1, k2) is given by

Iij(k1, k2) =
[(pi · k1) (pj · k2) + i↔ j]− (pi · pj) (k1 · k2)

(k1 · k2)2 (pi · k12) (pj · k12)
. (2.20)

As we already mentioned, in the soft limit the dependence on the soft gluon momenta

drops out from the matrix element as well as from the momentum conserving δ-function.

For this reason, the eikonal factors in eqs. (2.14) and (2.19) can be integrated over the

soft-gluons phase space, irrespective of matrix elements that describe the underlying hard

process.
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In the following, we explain how to do that in the case of two equal mass emitters

whose momenta pA and pB are back-to-back. To simplify notations, we introduce the

single-emission phase-space integral

Gij =

∫
[dk] Sij(k) , (2.21)

where ij ∈ {AA,AB,BA,BB} and the phase-space measure and eikonal functions are

defined in eqs. (2.3) and (2.12), respectively. For the double-emission phase-space integrals,

we distinguish between emissions of gluons and quarks and define

GGij =

∫
E2<E1

[dk1][dk2] Sij(k1, k2) ,

QQ̄ij =

∫
E2<E1

[dk1][dk2] Iij(k1, k2) ,

(2.22)

where, again, ij ∈ {AA,AB,BA,BB}. We note that in case of back-to-back kinematics,

integrated subtraction terms BB and AA, as well as BA and AB, are equal to each other.

Therefore, in what remains, we will only consider cases ij = AA and ij = AB.

The integrals in eqs. (2.21) and (2.22) fully describe the integrated soft subtraction

terms in the decay process of eq. (2.1) and are an important ingredient for more complex

processes, such as heavy-quark pair production. The computation of phase-space integrals

in eq. (2.22) is the main goal of this paper. We describe the details of the computation in

the following section. We note that a similar calculation was performed in ref. [57], however,

the unresolved phase space in that paper was subject to a slightly different constraint.

3 Phase-space integrals

In this section we present details of the calculation of the integrals defined in eqs. (2.21)

and (2.22). We start with the single-soft emission to clarify notation and then proceed to

the double-emission case. The results of the latter calculation are discussed in section 4.

3.1 Single-emission integrals

We start with a brief discussion of single-emission integrals. The first integral reads

GAB =

∫
[dk]

(pA ·pB)

(pA ·k)(pB ·k)

=
(1 + β2)

2

∫ Emax

0

dE

E1+2ε

∫
dΩ

(d−1)
k

(1− βn · nk)(1 + βn · nk)
, (3.1)

where we have parametrised the gluon four momentum as k = E(1,nk). Further, we choose

the reference frame in such a way that the z-axis points in the n direction. This yields

(1± βn · nk) = (1± β cos θ) and, after introducing η = (1− cos θ)/2, we obtain

GAB = −(1 + β2)E−2ε
max

4ε
× Ω(d−2)

∫ 1

0
dη

(
[4η(1− η)]−ε

[1− β(1− 2η)]
+

[4η(1− η)]−ε

[1 + β(1− 2η)]

)
, (3.2)
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where Ω(n) = 2πn/2/Γ (n/2) denotes the surface of a unit sphere embedded in n dimen-

sions. The integral in eq. (3.2) can be written as a hypergeometric function of the type

2F1 [{a, b}, {2b}; z], which further simplifies to [58]

2F1 [{a, b}, {2b}; z] = (1− z/2)−a 2F1

[
{a/2 + 1/2, a/2}, {b+ 1/2}; z2/(2− z)2

]
. (3.3)

We find

GAB = −(1 + β2)E−2ε
max

4ε
× Ω(d−1) × 2F1

[
{1, 1/2}, {3/2− ε};β2

]
. (3.4)

The second integral, for a self-correlated emission, reads

GAA =

∫
[dk]

m2

(pA ·k)2

= −E
−2ε
max

4ε
× Ω(d−1) ×

(
1− 2ε+ 2ε 2F1

[
{1, 1/2}, {3/2− ε};β2

])
. (3.5)

Note that the hypergeometric function which appears in eqs. (3.4) and (3.5) features an

expansion in powers of ε in terms of classical polylogarithms with arguments that involve

square roots of β. In order to simplify the expansion, we again rewrite the hypergeometric

function [58] and find

2F1

[
{1, 1/2}, {3/2− ε};β2

]
=

1− 2ε

2εβ

(
2β

1 + β

)2ε

×

×
{(

1− β
1 + β

)−ε Γ (1− 2ε) Γ (1 + ε)

Γ (1− ε)
− 2F1

[
{ε, 2ε}, {1 + ε}; 1− β

1 + β

]}
. (3.6)

Using HypExp [59], the hypergeometric function in eq. (3.6) can be expanded as

2F1

[
{ε, 2ε}, {1 + ε}; 1− β

1 + β

]
= 1 + 2ε2 Li2

(
1− β
1 + β

)
+ ε3

[
4ζ3 +

2π2

3
ln

(
2β

1 + β

)
− 2 ln

(
1− β
1 + β

)
ln2

(
2β

1 + β

)
− 4 ln

(
2β

1 + β

)
Li2

(
1− β
1 + β

)
− 2 Li3

(
1− β
1 + β

)
− 4 Li3

(
2β

1 + β

)]
+O

(
ε4
)
. (3.7)

The results shown in eqs. (3.4) and (3.5) were derived earlier in the literature [60, 61].

3.2 Double-emission integrals

We now turn to the calculation of the double-soft subtraction terms. We need to compute

the four functions GGAA, GGAB, QQ̄AA and QQ̄AB in eq. (2.22). To this end we employ

reverse unitarity [62] that has been previously used for the computation of other integrated

subtraction terms [50, 51].

Computational setup. The integration measure for the two energy-ordered emissions

in eq. (2.22) reads

[dk1][dk2]
∣∣∣
E2<E1

=
dd−1k1

2E1

dd−1k2

2E2
θ(Emax − E1) θ(E1 − E2) . (3.8)
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Note that all integrands, Sij(k1, k2) and Iij(k1, k2), are homogeneous under uniform rescal-

ing of E1 and E2. For this reason we parametrise the energies as

E1 = Emax · x , E2 = Emax · x · z , (3.9)

and integrate over x to obtain

GGij = −E
−4ε
max

16ε

∫ 1

0
dz z1−2ε

∫
dΩ

(d−1)
12 Sij(n1, z · n2) , (3.10)

QQ̄ij = −E
−4ε
max

16ε

∫ 1

0
dz z1−2ε

∫
dΩ

(d−1)
12 Iij(n1, z · n2) , (3.11)

where ni = (1,ni), and the angular integration measure reads dΩ
(d−1)
12 = dΩ

(d−1)
1 dΩ

(d−1)
2 .

It remains to carry out angular and z integrations in eqs. (3.10) and (3.11). However,

the gluon emission case exhibits an additional singularity in the strongly-ordered limit,

where the gluon with momentum k2 is much softer than the gluon with momentum k1.

Such behaviour results in a logarithmic divergence in the z integration at z = 0, which

prevents us from a naive Taylor expansion of the integrand in ε. The problem can be

ameliorated by using endpoint subtraction at z = 0. To accomplish this, we extract the

divergent part using the following formula

Ss.o.
ij (n1, n2) = z−2 lim

z→0

[
z2Sij(n1, z · n2)

]
. (3.12)

We note that it is beneficial to perform such a subtraction at the level of the full integrand

since the resulting expression fully accounts for gauge properties of QCD amplitudes and,

in variance to individual integrals, does not exhibit unphysical singularities.

Note that an emission of a soft quark-antiquark pair does not exhibit the z → 0

singularity and, for this reason, does not require additional subtraction.

To perform angular integrals in eqs. (3.10) and (3.11) we proceed as follows. In the

spirit of reverse unitarity [62], we rewrite δ-functions through cut propagators. To this

end, we first rewrite the angular integration measures for both emissions as

dΩ
(d−1)
i = 4 ddki δ

+
(
k2
i

)
δ
(
(ki ·pAB)− ξi p2

AB/2
) (
p2
AB/4

)ε
ξ−1+2ε
i , i = 1, 2 , (3.13)

with ξ1 = 1 and ξ2 = z. By applying Cutkosky rules [63] backwards, we define cut loop

integrals

EGGij (z, β, ε) =

∫
ddk1 ddk2 Sij (k1, k2)

[k2
1]c[k2

2]c[k1 · pAB − 2E2]c[k2 · pAB − 2E2z]c
,

EGG,s.o.ij (z, β, ε) =

∫
ddk1 ddk2 Ss.o.

ij (k1, k2)

[k2
1]c[k2

2]c[k1 · pAB − 2E2]c[k2 · pAB − 2E2z]c
,

EQQ̄ij (z, β, ε) =

∫
ddk1 ddk2 Iij (k1, k2)

[k2
1]c[k2

2]c[k1 · pAB − 2E2]c[k2 · pAB − 2E2z]c
.

(3.14)
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We note that the variable z appears only in one of the cut propagators and plays the role

of an internal mass. We use the definitions of eq. (3.14) in eqs. (3.10) and (3.11) and write

GGij = −1

ε

(
Emax

E

)−4ε [ ∫ 1

0
dz
(
EGGij (z, β, ε)− EGG,s.o.ij (z, β, ε)

)
+

∫ 1

0
dz EGG,s.o.ij (z, β, ε)

]
, (3.15)

QQ̄ij = −1

ε

(
Emax

E

)−4ε ∫ 1

0
dz EQQ̄ij (z, β, ε) . (3.16)

After mapping angular integrals onto ordinary loop integrals with cut propagators, we

employ standard techniques of loop calculations to compute the integrals that appear in

eqs. (3.15) and (3.16).

IBP reduction. We apply integration-by-parts (IBP) techniques [64] to the integrands

of eqs. (3.15) and (3.16) to express them in terms of a few master integrals. The integrands

consist of two-loop cut integrals

T a1,a2,a3(α1, α2, α3) =
(
E2
)−d+4+

3∑
i=1

αi
∫

ddk1 ddk2

DcutD
α1
a1 D

α2
a2 D

α3
a3

≡

〈
3∏
i=1

1

Dαi
ai

〉
, (3.17)

where the propagators to be cut are given by

Dcut = [k2
1]c [k2

2]c [k1 · pAB − 2E2]c [k2 · pAB − 2E2z]c , (3.18)

and the three ordinary propagators Dai per topology T a1,a2,a3 are drawn from a set

D1,...,7 = {(pA ·k1), (pB ·k1), (pA ·k2), (pB ·k2), (k1 ·k2), (pA ·k12), (pB ·k12)} . (3.19)

The variables αi in eq. (3.17) refer to powers of propagators in integrals in a certain

topology T a1,a2,a3 . The prefactor in eq. (3.17) was chosen to render integrals dimensionless.

To express all integrals in eq. (3.14) through these topologies, we use the following list of

linear relations between propagators

D1 +D3 = D6 , D2 +D4 = D7 ,

D1 +D2 = 2E2 , D3 +D4 = 2E2 z ,
(3.20)

where the last two equations follow from the cut constraints.

We use Reduze2 [65] to express integrals shown in eq. (3.14) through master integrals.

We write

EXXij (z, β, ε) = RXXij (z, β, ε) · I(z, β, ε) , (3.21)

where RXXij (z, β, ε) are vectors of reduction coefficients and I(z, β, ε) stands for a vector

constructed out of thirteen master integrals grouped into five topologies. The first integral

is the phase-space volume

I1 = 〈1〉 = z1−2ε

(
Ω(d−1)

)2
16

, (3.22)
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and the remaining twelve integrals are given by

I2,...,4 =

{〈
1

D3

〉
,

〈
1

D2D3

〉
,

〈
1

D2D3D5

〉}
⊂ T 2,3,5 ,

I5,...,9 =

{〈
D2

D6

〉
,

〈
D5

D6

〉
,

〈
1

D6

〉
,

〈
1

D2D6

〉
,

〈
1

D2D5D6

〉}
⊂ T 2,5,6 ,

I10 =

{〈
1

D2D7

〉}
⊂ T 2,5,7 ,

I11,12 =

{〈
1

D4D6

〉
,

〈
1

D4D5D6

〉}
⊂ T 4,5,6 ,

I13 =

{〈
1

D4D7

〉}
⊂ T 4,5,7 .

(3.23)

We note that the gluon emission contribution EGGij (z, β, ε) requires the full set of master

integrals. On the other hand, the strongly ordered contribution EGG,s.o.ij (z, β, ε) requires

master integrals I1,...,4 and the quark-emission contribution EQQ̄ij (z, β, ε) only depends on

integrals I1,5,...,7.

Differential equations. Having obtained a set of master integrals we employ the method

of differential equations [66–68] to compute them. To this end, we derive a closed system of

first order partial differential equations for the master integrals I as functions of variables

β and z. We then cast the differential equations into the ε-homogeneous form [69] by

changing the basis of master integrals

I = T̂canJ . (3.24)

Here T̂can is the transformation that brings master integrals into their so-called canonical

basis J . In general, finding a canonical basis or, equivalently, constructing a transformation

T̂can is a complicated task. In our case, we accomplish this by using the algorithmic

approach suitable for multi-scale problems proposed in ref. [70] and implemented in the

CANONICA package [71] for Mathematica. This transformation can also found using the

approach of ref. [72] implemented in a private Mathematica tool Libra.2 In this case, a

sequential application of the algorithm of ref. [72] is required.

In the canonical basis J , differential equations take the ε-homogeneous form

∂xJ = ε M̂x J , (3.25)

with x ∈ {z, β}. The matrices M̂z and M̂β feature simple poles and can be written as

M̂x =
∑
xi∈Ax

m̂xi

x− xi
. (3.26)

2We wish to thank Roman Lee for giving us access to the Libra package.
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In eq. (3.26), the residue matrices m̂xi are composed of rational numbers and the poles xi
are drawn from the two alphabets

Az =

{
0, −1,

−2

1± β
, −(1± β)

2
, −1− β

1 + β
, −1 + β

1− β

}
, (3.27)

Aβ =

{
0, ±1, ±(1 + 2z), ±1 + z

1− z
, ±2 + z

z

}
. (3.28)

Thanks to the ε-homogeneous form of the differential equations in eq. (3.25), the ε

expansion of the functions J(z, β) can be obtained by recursive integration of the right-

hand side. Since matrices M̂x contain only simple poles, the result can be expressed in

terms of linear combinations of Goncharov Polylogarithms (GPLs) [73] that depend on z

and β and constants of integration. Note that, since we are interested in a final integration

over the variable z in eqs. (3.15) and (3.16), it is beneficial to write master integrals in

such a way that z appears only as an argument of the GPLs. For this reason, at each order

in ε, we first integrate the system of differential equations with respect to z. A constant

of integration in this case is an unspecified function of β. To determine this function,

we substitute the solution into the differential equations in β, and explicitly check that

the resulting differential equations are z independent. After integration over β, all master

integrals are expressed in terms of GPLs, G({~z0}; z) and G({~β0};β), where the elements

of ~z0 are drawn from the alphabet Az, cf. eq. (3.27), and elements in ~β0 belong to the

z-independent part of the alphabet Aβ in eq. (3.28), i.e. Ãβ = {0,−1,+1}.
This concludes the computation of master integrals up to constants of integration.

These constants are determined by calculating suitable boundary conditions as we discuss

in the next section.

Boundary conditions. We find it suitable to determine constants of integration by com-

puting master integrals in the threshold limit β → 0. This limit is particularly convenient,

since many of the integrals simplify. This happens because in that limit the dependencies

of all scalar products on quark momenta disappear. For example

pA · (k1 + k2) = E2[(1 + z)− βn(n1 + zn2)]
β→0−−−→ E2(1 + z) . (3.29)

By inspecting master integrals in eq. (3.23), we observe that

lim
β→0

I(z, β, ε) = F (z, ε) +O(β) . (3.30)

Moreover, we find that all entries, except for the first diagonal element of the canonical

transformation matrix T̂−1
can are suppressed as O(β) and therefore vanish in the threshold

limit. The transformation matrix in the threshold limit reads

lim
β→0

T̂−1
can =

 1/z 0 · · ·
0 0 · · ·
...

...
. . .

 . (3.31)

This means that to fix all integration constants we only need the phase-space master

integral I1, which is straightforward to compute, cf. eq. (3.22).
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After fixing all the integration constants using boundary conditions, we transform

master integrals J into the original basis I. We check the resulting expressions numerically

for several values of β and z.

Integration over z. Having computed the required master integrals, we obtain the

integrands in eqs. (3.15) and (3.16) and perform the integration over z. The masters

integrals I of eqs. (3.22) and (3.23) allow us to express the functions EXXij (z, β, ε) in terms

of rational functions of z, β and GPLs of z and β with z-independent letters. Such a

representation enables the final z integration in eqs. (3.15) and (3.16) in a straightforward

manner. We note that after obtaining the primitive, the z → 0 limit features spurious

1/zn poles and needs to be taken with care. We use PolyLogTools [74] to expand all

GPLs around z = 0 up to the order required to cancel these 1/zn poles and facilitate

z-integration over the interval 0 < z < 1. We report results for the functions GGAA, GGAB,

QQ̄AA and QQ̄AB in the next section.

4 Results

In this section, we present some results for the integrated double-soft subtraction terms,

cf. eq. (2.22). We write

GGij =
E−4ε

max

16

(
Ω(d−1)

)2
× fggij (β, ε) ,

QQ̄ij =
E−4ε

max

16

(
Ω(d−1)

)2
× f qq̄ij (β, ε) ,

(4.1)

with Ω(n) defined after eq. (3.2). Four results for functions fgg,qq̄ij (β, ε) can be found in the

supplementary material provided with this submission. They are expressed through GPLs

of β up to weight four, with integer letters drawn from the alphabet

A = {0,±1,±3} . (4.2)

We use a private implementation of the super-shuffle identities described in ref. [75] to

translate the expressions obtained from the integration over z, cf. section 3.2, into such a

fibration basis. We note that all GPLs appearing in eq. (4.1) are manifestly real in the

physical region β ∈ [0, 1]. For a numerical evaluation of GPLs one can resort to publicly

available programs [76, 77]. The functions fgg,qq̄ij (β, ε) were checked numerically using an

adaptation of the numerical routine from ref. [55].

While functions fggAA and fggAB, that describe the emission of two soft gluons, feature

1/ε3 poles, the functions f qq̄AA and f qq̄AB, related to quark pair emissions, start only at 1/ε2.

This happens because the latter case does not exhibit a strongly ordered soft divergence,

cf. eq. (3.16). The expressions for 1/ε poles of the functions fgg,qq̄ij (β, ε) consist only of

harmonic polylogarithms (HPLs) [78] of β up to weight three. We rewrite them in terms
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of independent classical polylogarithms [79] and find

fggAA(β,ε) =− 1

8ε3
+

1

ε2
1

4β

{
ln(xβ)+β

}
+

1

ε

1

4β

{
2β−3ln(xβ)−8β ln(2)

−2
[
Li2

(
y−β

)
+Li2 (β)−Li2 (−β)

]
+y−β ln2 (xβ)

− ln2
(
y−β

)
+ζ2

}
+O

(
ε0
)
, (4.3)

fggAB(β,ε) =
1

ε3
1

8β

{
3β+2zβ ln(xβ)

}
− 1

ε2
1

24β2

{
32β2 +β

(
31+13β2

)
ln(xβ)

+12zββ [Li2 (β)−Li2 (−β)]+3z2
β ln2 (xβ)

}
− 1

ε

1

72β2

{
104β2 +27z2

βζ3−120β2 ln(2)

+36z2
β

(
Li3 (xβ)−Li3

(
y−β

)
−Li3

(
y+
β

))
+72βzβ (Li3 (β)−Li3 (−β))

+2β
(
62β2−25

)
ln(xβ)−12β

(
4β2 +13

)
(Li2 (β)−Li2 (−β))

+6β
(
β2−2

)(
ζ2−2Li2

(
y−β

)
− ln2

(
y−β

))
−18z2

β ln(xβ)(Li2 (β)−Li2 (−β))

−3
(
24+2β+9β2−β3 +12β4

)
ln2 (xβ)

−132βzβ ln(2) ln(xβ)−18ζ2z
2
β

(
3ln(xβ)−2ln(y−β )

)
+18z2

β ln(β) ln2 (xβ)+6zβ
(
3+2β+3β2

)
ln3 (xβ)

+6z2
β

(
3ln(xβ) ln2

(
y−β

)
−2ln3

(
y−β

)
−6ln2 (xβ) ln(y−β )

)}
+O

(
ε0
)
,

(4.4)

f qq̄AA(β,ε) =− 1

4ε2
+

1

ε

1

4β

{
6β−4β ln(2)+ln(xβ)

}
+O

(
ε0
)
, (4.5)

f qq̄AB(β,ε) =
1

ε2
1

12β

{
zβ ln(xβ)−β

}
+

1

ε

1

72β

{
34β−

(
37β2 +43

)
ln(xβ)

−24zβ

(
Li2

(
y−β

)
+Li2 (β)−Li2 (−β)

)
−24β ln(2)

+6zβ

(
ln2 (xβ)−2ln2

(
y−β

)
+4ln(2) ln(xβ)+2ζ2

)}
+O

(
ε0
)
, (4.6)

where we used the abbreviations

xβ =
1− β
1 + β

, y±β =
1± β

2
, zβ = 1 + β2 . (4.7)

Even though expressions for the finite parts of the functions fgg,qq̄ij (β, ε) are rather long,

they simplify in certain limits. In what follows, we present the expansions in the threshold

limit, β → 0, and the high-energy limit, β → 1.

We begin with the threshold limit, where the energies of the emitting quarks are close

to their masses, i.e. E ≈ m, which implies β � 1. We perform a Taylor expansion in small
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β and find

fggAA(β ≈ 0, ε) = − 1

8ε3
− 1

4ε2
+

1− 2 ln(2)

ε
+ 2

(
2 ln(2)− 1− π2

6

)
+ β2

[
− 1

6ε2
− 4

9ε
+

(
1

27
− 8

3
ln(2)

)]
+O

(
β4
)
, (4.8)

fggAB(β ≈ 0, ε) = − 1

8ε3
− 1

4ε2
+

1− 2 ln(2)

ε
+ 2

(
2 ln(2)− 1− π2

6

)
+ β2

[
− 2

3ε3
− 1

2ε2
+

1

ε

(
1− 44

9
ln(2)

)
+

(
104

27
ln(2)− 1

3
− 22

27
π2

)]
+O

(
β4
)
, (4.9)

f qq̄AA(β ≈ 0, ε) = − 1

4ε2
+

1− ln(2)

ε
+

(
4 ln(2)− 3

2
− π2

6

)
+ β2

[
− 1

6ε
+

(
13

18
− 4

3
ln(2)

)]
+O

(
β4
)
, (4.10)

f qq̄AB(β ≈ 0, ε) = − 1

4ε2
+

1− ln(2)

ε
+

(
4 ln(2)− 3

2
− π2

6

)
+ β2

[
− 2

9ε2
+

1

ε

(
25

54
− 8

9
ln(2)

)
+

(
23

162
− 4

27
π2 +

44

27
ln(2)

)]
+O

(
β4
)
. (4.11)

Note that the leading terms in eqs. (4.8)–(4.11) are equal for emitters in a back-to-back

kinematics (AB) and self-correlated emissions (AA), i.e.

fgg,qq̄AA (β, ε) = fgg,qq̄AB (β, ε) +O
(
β2
)
. (4.12)

This is the case, since in the threshold limit, β = 0, the spatial parts of momenta pA and

pB vanish.

In the high-energy limit, the energies of the emitting quarks are much larger than their

masses, E � m, which implies β ≈ 1. Expanding in (1− β), we find

fggAA(β≈ 1, ε) =− 1

8ε3
+

1− ln(2)

4ε2
+

1

2ε

(
1− π

2

6
− 5

2
ln(2)− 1

2
ln2 (2)

)
+

(
21

2
ln(2)−3− π

2

6
ln(2)− π

2

24
− 1

6
ln3 (2)− 7

4
ln2 (2)− ζ3

2

)
+ln(1−β)

[
1

4ε2
+

1

ε

(
1

2
ln(2)− 3

4

)
+

(
π2

6
− 1

2
+3ln(2)+

1

2
ln2 (2)

)]
− ln2 (1−β)

[
1

4ε
+

(
1

2
ln(2)− 3

4

)]
+

1

6
ln3 (1−β)+O(1−β) , (4.13)

fggAB(β≈ 1, ε) =
1

ε3

(
3

8
− 1

2
ln(2)

)
+

1

ε2

(
11

6
ln(2)− 4

3
− π

2

4
− 1

2
ln2 (2)

)
+

1

ε

(
13π2

18
−3ζ3−

13

9
− 1

3
ln3 (2)− 11

6
ln2 (2)+

97

36
ln(2)− 5π2

12
ln(2)

)
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+

(
6Li4

(
1

2

)
+

7ζ3

3
+

5ζ3

2
ln(2)+

1787

108
+

179π2

108
− 13π4

48
+

1

12
ln4 (2)

+
11

9
ln3 (2)+

881

36
ln2 (2)− 2π2

3
ln2 (2)− 2059

54
ln(2)− 13π2

18
ln(2)

)
+ln(1−β)

[
1

2ε3
+

1

ε2

(
ln(2)− 11

6

)
+

1

ε

(
ln2 (2)+

5π2

12
− 37

36

)
+

(
11ζ3

4
+

491

27
− 10π2

9
+

2

3
ln3 (2)− 163

6
ln(2)+

5π2

6
ln(2)

)]
+ln2 (1−β)

[
− 1

2ε2
− 1

ε

(
ln(2)− 11

6

)
−
(

ln2 (2)+
5π2

12
− 37

36

)]
+ln3 (1−β)

[
1

3ε
+

(
2

3
ln(2)− 11

9

)]
− 1

6
ln4 (1−β)+O(1−β) , (4.14)

f qq̄AA(β≈ 1, ε) =− 1

4ε2
+

1

ε

(
3

2
− 5

4
ln(2)

)
+

(
43

4
ln(2)− 7

4
ln2 (2)−6− 5π2

24

)
+ln(1−β)

[
1

4ε
+

(
3ln(2)− 11

4

)]
− 1

4
ln2 (1−β)+O(1−β) , (4.15)

f qq̄AB(β≈ 1, ε) =− 1

ε2

(
1

12
+

1

6
ln(2)

)
+

1

ε

(
17

36
− π

2

9
− 5

6
ln2 (2)+

7

9
ln(2)

)
+

(
77π2

108
− 13ζ3

6
− 161

54
− 1

9
ln3 (2)+

44

9
ln2 (2)+

31

27
ln(2)− 5π2

9
ln(2)

)
+ln(1−β)

[
1

6ε2
+

1

ε

(
ln(2)− 10

9

)
+

(
139

54
+

2π2

9
+ln2 (2)− 17

3
ln(2)

)]
− ln2 (1−β)

[
1

6ε
+

(
ln(2)− 10

9

)]
+

1

9
ln3 (1−β)+O(1−β) . (4.16)

Note that these expressions contain logarithms of the form lnn (1− β), which are divergent

in the β → 1 limit. These logarithms are related to quasi-collinear divergences that appear

once the mass of the emitter, which screens the actual collinear divergences, becomes small

compared to the overall energy. In the massless calculation [50], all ln(1−β) terms manifest

themselves as additional poles in 1/ε.

5 Conclusions

In this paper, we presented analytic results for the integrated double-soft subtraction terms

that are needed in the context of the nested soft-collinear subtraction scheme [49] to de-

scribe production of two equal-mass back-to-back partons. Integration over the phase space

of unresolved radiation, subject to constraints dictated by the subtraction scheme, was

performed using reverse unitarity [62] that allowed us to map phase-space integrals onto

conventional loop integrals with cut propagators, and apply standard IBP techniques for

the reduction of the integrands to master integrals. These master integrals were computed

by solving a corresponding system of differential equations in an ε-homogeneous form.

The resulting subtraction terms provide an essential ingredient for NNLO calculations

featuring massive partons. We note that it is possible to obtain these integrated subtraction
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terms numerically, as it was done, for example, in refs. [30, 55]. Nevertheless, it is usually

beneficial to have analytic results available. The results presented in this article provide

all integrated double-soft subtraction terms required for a description of colour-singlet

decays into massive fermions. For the case of heavy-quark pair production, it is also

necessary to consider integrated subtraction terms with one massless and one massive

parton which are not necessarily in a back-to-back kinematics. We leave this problem for

future investigations.
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