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1 Introduction

Half-BPS surface operators in N = 4 super Yang-Mills theories were introduced in [1] as

solutions to Hitchin equations with isolated singularities on a two-dimensional sub-manifold

of the four dimensional space-time. They are two dimensional generalizations of ’t Hooft

operators that provide details about the phase structure of the gauge theory. In the context

of N = 2 theories they were introduced in [2, 3].

From the point of view of four dimensional gauge theories obtained by wrapping M5-

branes on Riemann surfaces with punctures [4, 5], there are co-dimension 2 as well as

co-dimension 4 surface defects. The former corresponds to the intersection of the original

M5 branes with another stack of M5-branes and describes surface operators as singularities

of the four dimensional fields on the two dimensional sub-manifold [6–8]. The latter cor-

responds to M2 branes with boundaries on the M5 branes. In this description the surface

operator is pointlike on the Riemann surface and the location labels the defect [9–14].

In this paper we study surface operators in N = 2 SQCD with gauge group SU(2)

and Nf = 4 fundamental flavours. The matter content of the theory ensures that it is

conformal in the limit that the flavour masses are zero. The low energy physics of the

gauge theory on the Coulomb branch in the presence of the defect is described by two

holomorphic functions, the prepotential and the twisted chiral superpotential. While the

prepotential describes the effective four dimensional theory in the absence of a defect, the

twisted chiral superpotential describes the effective theory on the defect. As a result, the

twisted chiral superpotential is the quantity of interest to us in this paper.

– 1 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
7

We follow two approaches to compute the twisted chiral superpotential. The instanton

moduli space in the background of a co-dimension 2 defect has been shown to be equivalent

to the instanton moduli space on a suitable orbifold [7, 8, 15–19]. In section 2 we use

results from this approach to compute instanton corrections from localization methods.

In section 3 we follow [9] where it was proposed that the twisted chiral superpotential is

obtained from the Seiberg-Witten data of the gauge theory. Although the proposal was for

co-dimension 4 surface defects, for the SU(2) theory the two defects lead to the same IR

behaviour as discussed in [20]. As a result we will not distinguish between the two in this

work. We compare results from the two approaches in the massless limit and obtain the

map between parameters. The map ensures that results from the two approaches match

when the masses are turned on.

In section 4 we come to the main topic of study in this paper. In [21–25], S-duality was

used to constrain the prepotential of N = 2? theories with classical and exceptional gauge

groups. The instanton expansion of the prepotential was resummed to a mass expansion

such that the expansion coefficients were expressed as linear combinations of (quasi-) mod-

ular forms of the duality group. This was then done for asymptotically conformal SQCD

with fundamental matter in [26, 27]. This program was later extended to the case of a

gauge theory with a surface defect in N = 2? SU(N) theory to constrain the twisted su-

perpotential [16]. In the present work we extend this one step further by using S-duality to

constrain the twisted superpotential of the SU(2) theory with Nf = 4 fundamental flavours.

The main difference from the N = 2? theory is that both the gauge coupling as well as

the continuous parameter that labels the surface defect get renormalized. This requires

the map that relates the bare and the renormalized variables. We then solve the modular

anomaly equation that the twisted chiral superpotential expressed in terms of renormalized

variables satisfies at each order in a mass expansion. Combining results from localization

we resum the instanton contributions at each order to specific linear combinations of elliptic

functions and (quasi-) modular forms.

We give some technical details on elliptic functions and modular forms in appendix A

and verify the map between the resummed and the bare variables in appendix B.

2 Surface operators as monodromy defects

In this section we study surface operators in N = 2 supersymmetric SQCD with gauge

group SU(2) and Nf = 4 fundamental flavours in four dimensions as monodromy defects [1].

In the SU(N) gauge theory, such defects are classified by non-trivial partitions ~n of N . For

the SU(2) theory, there is one monodromy defect that breaks the gauge group on the defect

to the Levi subgroup:

L = U(1)×U(1) (2.1)

The defect also breaks the flavour symmetry to [28]:

F = S[U(2)×U(2)] (2.2)
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The prepotential F and the twisted chiral superpotential W receive contributions from

classical, 1-loop, and instanton terms:

F = Fclass + F1loop + F inst

W =Wclass +W1loop +W inst (2.3)

The instanton contributions to F andW are obtained from the instanton partition function

Z inst as [9]

lim
εi→0

log(1 + Z inst[~n]) = −F
inst

ε1ε2
+
W inst

ε1
(2.4)

where ε1 and ε2 are the Omega-deformation parameters [29, 30]. In the presence of a

co-dimension 2 surface defect, Z inst is obtained by the orbifold procedure detailed in [6–

8, 15–19]. For the SU(2) theory with Nf = 4, Z inst is given by equations 8–9 of [28] with

M = 2 and ~n = [1, 1]:

Z inst[1, 1] =
∑
{d1,d2}

(−q1)d1
d1!

(−q2)d2
d2!

∫ d1∏
σ=1

dχ1,σ

2πi

∫ d2∏
σ=1

dχ2,σ

2πi
z{d1,d2} , (2.5)

where q1 and q2 are the instanton counting parameters, d1 and d2 the number of ramified

instantons, ε̂2 ≡ ε2
2 , m1, . . . ,m4 the masses of fundamental flavours, and

z{d1,d2} =

d1∏
σ,τ=1

(χ1,σ − χ1,τ + δσ,τ )

(χ1,σ − χ1,τ + ε1)

d2∏
σ,τ=1

(χ2,σ − χ2,τ + δσ,τ )

(χ2,σ − χ2,τ + ε1)

×
d1∏
σ=1

d2∏
ρ=1

(χ1,σ − χ2,ρ + ε1 + ε̂2)

(χ1,σ − χ2,ρ + ε̂2)

d2∏
σ=1

d1∏
ρ=1

(χ2,σ − χ1,ρ + ε1 + ε̂2)

(χ2,σ − χ1,ρ + ε̂2)

×
d1∏
σ=1

(χ1,σ −m1)(χ1,σ −m2)(
a1 − χ1,σ + 1

2(ε1 + ε̂2)
) (
χ1,σ − a2 + 1

2(ε1 + ε̂2)
)

×
d2∏
σ=1

(χ2,σ −m3)(χ2,σ −m4)(
a2 − χ2,σ + 1

2(ε1 + ε̂2)
) (
χ2,σ − a1 + 1

2(ε1 + ε̂2)
) . (2.6)

Here a1 and a2 are the Coulomb vev’s and upon imposing the SU(2) constraint we have

a1 = −a2 = a. Since the integral in (2.5) is a contour integral, it requires us to prescribe a

contour of integration to pick the poles that contribute. The various allowed prescriptions

are captured by what is called the Jeffrey-Kirwan (JK) reference vector [31] and it was

shown in [28, 32, 33] that different contour prescriptions map to Seiberg dual descriptions

of surface operators as 2d/4d coupled systems. Our choice of contour is such that the

integral picks the poles in the upper half χ1,2 plane [17, 32]. We package the instanton

contributions to F and W as1

F inst =

∞∑
n=0

f instn , W inst =

∞∑
n=0

winst
n (2.7)

1When we package the entire prepotential or the twisted chiral superpotential as in (2.7) we use no

superscript.
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where f instn ∼ a2−n and winst
n ∼ a1−n. From (2.5) and (2.4) one obtains:

f inst2k+1 = 0, ∀ k ∈ Z≥0
winst
2k+1 = 0, ∀ k ∈ Z+ . (2.8)

The first few non-zero f instn up to 4 ramified instantons are:

f inst0 = a2
[
q1q2

2
+

13(q1q2)
2

64

]
f inst2 =

q1q2
2

∑
i<j

mimj +
(q1q2)

2

64

(∑
i

m2
i + 16

∑
i<j

mimj

)

f inst4 =
1

2a2

[
q1q2m1m2m3m4 +

(q1q2)
2

32

(
16m1m2m3m4 +

∑
i<j

m2
im

2
j

)]
. (2.9)

We now give the first few non-zero winst
n up to 4 ramified instantons:

winst
0 =a

[
q1
2

+
3q21
16

+
5q31
48

+
35q41
512

− (q1 → q2) +
q1q2
16

(
q1 +

q21
2
− (q1 → q2)

)]
winst
1 =− m1 +m2

2

(
q1 +

q21
2

+
q31
3

+
q41
4

)
− (m1,2 → m3,4, q1 → q2)

winst
2 =

1

a

[(
m2

1 +m2
2

)
16

(
q21 + q31 +

15

16
q41 − q21q2 +

q21q
2
2

8
− q31q2

2

)
−
(
m1,2 → m3,4, q1 ↔ q2

)
+
m1m2

2

(
q1 +

q21
2

+
3q31
8

+
5q41
16
− q1q2

2
− q1q

2
2

8
− q1q

3
2

16
− 3

16
q21q

2
2 −

q31q2
16

)
−
(
m1,2 → m3,4, q1 ↔ q2

)]
winst
4 =− 1

16a3

[
1

32

(
m4

1 +m4
2

)
q41 −

(
m4

3 +m4
4

)
q42 +

m1m2m3m4

2

(
q31q2 − q1q32

)
+
(
m3

1m2 +m1m
3
2

)(q31
3
− q31q2

2
+
q41
2

)
− (m1,2 → m3,4, q1 ↔ q2)

+m2
1m

2
2

(
q21 + q31 +

9

8
q41 − q21q2 +

q21q
2
2

4
− q31q2

2

)
− (m1,2 → m3,4, q1 ↔ q2)

+
(
m2

1 +m2
2

)
m3m4

(
q21q2 −

q21q
2
2

2
+
q31q2

2

)
− (m1,2 ↔ m3,4, q1 ↔ q2)

]
(2.10)

where we have used (→,↔) to denote terms that are obtained by performing the switch

indicated by the arrows on the immediately preceding terms. In order to confirm the above

results for the twisted superpotential obtained via localization, we will now compute the

same from the Seiberg-Witten (SW) data of the gauge theory.

3 Superpotential from Seiberg-Witten data

In this section we follow the proposal in [9] according to which the twisted chiral super-

potential can be computed from the SW data. This helps us obtain the map that relates
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the gauge theory parameters to the instanton counting parameters and thereby verify the

results from localization obtained in the previous section. According to the proposal in [9]

the twisted superpotential is given by the integral of the SW differential λ along an open

path on the SW curve:

W(x0) =

∫ x0

λ , (3.1)

where x0 is the continuous parameter that labels the surface operator, and is given by the

location of the defect on the Riemann surface.

Let us now recall a few salient features of the SW solution of the SU(2) theory with

Nf = 4 flavours. We will work with the Gaiotto form of the curve as λ is easily extracted

from there. The Gaiotto form of the curve is [5]

x2 = φ2(t) , (3.2)

where φ2(t)dt
2 is a quadratic differential. The SW differential is readily given by [5]

λ = x dt =
√
φ2(t)dt . (3.3)

Let us first analyse the case when the masses of the flavours are set to zero. In this limit,

the Gaiotto curve is such that φ2(t) takes the form [34]

φ2(t) =
q0(q0 − 1)

t(t− q0)(t− 1)

∂f0
∂q0

. (3.4)

where q0 = eπiτ0 , such that τ0 = θ
π + 8πi

g2
is the bare complexified gauge coupling and f0

is the prepotential in the massless limit. After adding the classical and the 1 loop terms

to the instanton contribution obtained via the SW analysis (see [34] for example) which

matches the localization results obtained in the previous section we have:

f0 = a2 log q0 − a2 log 16 + f inst0

= a2
(

log q0 − log 16 +
q0
2

+
13q20
64

)
. (3.5)

We substitute for the SW differential from (3.3), (3.4) and (3.5), and perform the integral

in (3.1) to obtain:

w0 = a log x0 + a

[
x0
2

+
3x20
16

+
5x30
48

+
35x40
512

−
(
x0 →

q0
x0

)
+
q0
16

(
x0 +

x20
2
−
(
x0 →

q0
x0

))]
. (3.6)

By comparing winst
0 from (2.10) and w0 obtained from the curve (3.6), we obtain the

following map between the instanton counting parameters (q1, q2) and the gauge theory

parameters (q0, x0):

q1 = x0, q2 =
q0
x0
. (3.7)

Note that in f instn in (2.9) q1 and q2 always appear as the combination q1q2 and powers

thereof, thus ensuring that the prepotential depends only on q0 and is independent of x0.
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We will now consider the case when all the masses are turned on. The Gaiotto form

of the SW curve is still x2 = φ2(t), where [34]:

φ2(t) =
q0(q0 − 1)

t(t− 1)(t− q0)
∂F
∂q0

+
q0(m1 +m2)(m3 +m4)

2t(t− 1)(t− q0)
− (q0 − 1)(m2

3 +m2
4)

2t(t− 1)(t− q0)

− m2
3 +m2

4 + 2m1m2

2t(t− 1)
+

(m3 −m4)
2

4t2
+

(m3 +m4)
2

4(t− q0)2
+

(m1 +m2)
2

4(t− 1)2
. (3.8)

The twisted superpotential when the masses are turned on is obtained exactly as in the

massless case by performing the integral in (3.1). One can easily check that the instanton

contributions to W obtained via localization in the previous section matches the results

from the SW data after the masses are turned on, provided one uses the map (3.7) between

parameters. We have checked that the match holds up to w8 to 8 ramified instantons.

Now that we have matched W obtained via localization and from the SW data we

will shift gears and turn our attention to utilizing the S-duality symmetry of the theory to

resum the instanton contributions.

4 Resumming the twisted chiral superpotential

As mentioned in the Introduction, a lot of progress has been made in resumming the

instanton contribution to the prepotential of a large class of theories into (quasi-) modular

forms of their respective S-duality groups [21–27]. This was then extended to the case of

the twisted chiral superpotential of N = 2? SU(N) theory in the presence of a surface

defect in [16]. There it was shown that W satisfies a modular anomaly equation, and that

the instanton expansion of W at each order in a mass expansion can be resummed into

elliptic functions and (quasi-) modular forms. Since the SU(2) theory with Nf = 4 also

has an S-duality symmetry we will now attempt to do the same in this theory.

4.1 Resummation variables

Unlike in the N = 2? theory, the gauge coupling and the continuous parameter that

describes the surface defect are renormalized in asymptotically conformal SQCD theories.

In the theory of interest to us this is already clear from the expressions for F and W in

the massless limit in (3.5) and (3.6) respectively. We would like to resum the terms on the

r.h.s. of these equations to simple expressions in terms of the renormalized counterparts q

and x of q0 and x0 respectively. The q0 vs q relation has appeared in several references and

is given by [11, 21, 27, 35]:

q0 =
e3 − e2
e1 − e2

(q) =
θ42(q)

θ43(q)
(4.1)

where ei ≡ ℘(ωi) denote the Weierstraß ℘ function evaluated at the half periods and θi
are the Jacobi θ functions. We refer the reader to appendix A for details on Jacobi theta

functions and the Weierstraß ℘ function. The first few terms that appear in the expansion

of (4.1) are:

q0 = 16q(1− 8q + 44q2 − 192q3 + . . .) (4.2)

– 6 –
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One can now check that f̃0 which is the prepotential in the massless limit (3.5) when

expressed in terms of q takes the expected form:

f̃0 = a2 log q . (4.3)

Note that here and henceforth we use the tilde symbol to denote quantities expressed in

terms of the renormalized variables (q, x).

For the parameter x0, following the analysis in [11] we have the following map to the

resummed variable x:

x0 =
℘(z + w1| τ)− e2

e1 − e2
(4.4)

where τ and z are such that

q = exp(πiτ), x = exp(2πiz) . (4.5)

A similar map was also used in the recent paper [36]. We verify this map in appendix B

using the SW analysis in the massless limit. Note that the q0 vs q map in (4.1) is a special

case of (4.4) for z = w2. The first few terms that appear in the expansion of (4.4) are:

x0 = 4(x− 2x2 + 3x3 − 4x4) + 8q(1− 4x+ 8x2 − 12x3) + 4q2
(

1

x
− 12

)
+ . . . (4.6)

With the above expansions for q0 and x0 one can check that up to purely q0 dependent

terms, w̃0(q, x) which is the twisted superpotential in the massless limit (3.6) takes the

expected form:

w̃0 = a log x . (4.7)

In the next section where we resum the instanton contributions to W we will find it more

convenient to work with the log x derivative of W̃ whose expansion is:

x
∂W̃
∂x
≡ W̃ ′ =

∞∑
n=0

w̃′n (4.8)

where w̃′n ∼ a1−n. Clearly from (4.7) we have:

w̃′0 = a . (4.9)

The next few non-zero w̃′n obtained by substituting the expansions for q0 and x0 from (4.2)

and (4.6) in (2.10) are:

w̃′1 = − 2(m1 +m2)

(
x+ x3 − q2

x

)
− 2(m3 +m4)

(
q x− q

x

)
w̃′2 =

1

a

[
2(m2

1 +m2
2)(x

2 + 2x4) +
2q2

x2
(m2

3 +m2
4)

+ 2m1m2

(
x+ 3x3 +

q2

x

)
+ 2m3m4

( q
x

+ q x
)]

– 7 –
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w̃′4 = − 1

a3

[
2(m4

1 +m4
2)x

4 + 4m1m2(m
2
1 +m2

2)x
3 + 2m2

1m
2
2(x

2 + 8x4) + 2m2
3m

2
4

q2

x2

+ 4m3m4(m
2
1 +m2

2)q x+ 4m1m2(m
2
3 +m2

4)
q2

x
+ 16m1m2m3m4 q x

2

]
(4.10)

The above expressions will be useful in the next sub-section when we resum w̃′n to linear

combinations of elliptic functions and (quasi-) modular forms.

4.2 Modular anomaly equation for the twisted superpotential

It is well known from [37] that the SU(2) theory with Nf = 4 enjoys an S-duality symmetry

under which the renormalized gauge coupling τ transforms as

τ → −1

τ
. (4.11)

It was shown in [1] (see also [16]) that under this duality the variable z that is related to

the continuous parameter x that labels the defect as in (4.5) transforms as

z → −z
τ
. (4.12)

The action of S-duality on the Coulomb vev a is such that

S(a) := aD =
1

2πi

∂F
∂a

= τ

(
a+

δ

12

∂f

∂a

)
(4.13)

where δ = 6
πiτ and f = F1 loop +F inst. The anomalous terms on the r.h.s. arise solely from

the dependence of the prepotential on the second Eisenstein series E2 [21]. From the form

of w̃′0 in (4.9), we see that it transforms exactly as in (4.13).

Motivated by the transformation of W̃ ′
class

we propose that, as in [16], W̃ ′ transforms

under S-duality with weight one. The w̃′n in (4.8) then obey a modular anomaly equation,

the derivation of which proceeds exactly as in the case of the N = 2? theory in [16]. The

anomaly equation is:

∂w̃′n
∂E2

+
1

12

n−1∑
l=0

(
∂w̃′`
∂a

)(
∂f̃n−`
∂a

)
= 0 (4.14)

Since w̃1 and w̃′1 are independent of a, they do not contribute to the IR dynamics and we

start our analysis at n = 2. For n = 2 the equation takes the form:

∂w̃′2
∂E2

+
1

12

(
∂w̃′0
∂a

)(
∂f̃2
∂a

)
= 0 (4.15)

The prepotential for this theory was resummed in [21] and in particular:

f̃2 = 2R log
( a

Λ

)
. (4.16)

where

R =
1

2

4∑
f=1

m2
f . (4.17)

– 8 –
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We substitute for w̃′0 from (4.9) and f̃2 from (4.16) and solve (4.15) to obtain,

w̃′2 = −E2R

6a
+

1

a
(modular term) (4.18)

Since the modular terms that one must add to (4.18) must have weight two, one arrives at

the following ansatz for w̃′2:

w̃′2 = −E2R

6a
+

1

a

3∑
A=0

cA ℘(z + ωA) (4.19)

The coefficients cA are fixed by comparing the expansion of the r.h.s. of the above equation

with the first few terms in the localization result for the same expressed in terms of (q, x)

in (4.10). This leads to:

w̃′2 = − 1

6a

3∑
A=0

M2
A (E2 + 12℘̂(z + ωA)) (4.20)

where MA are the following mass combinations:

M0 = −(m1 +m2)

2
, M1 =

(m1 −m2)

2
, M2 =

(m3 +m4)

2
, M3 =

(m3 −m4)

2
, (4.21)

which appear as residues of the quadratic differential in the SW data. From the resummed

result for w′2 in (4.20), one can see that under the combined action of S-duality on the

gauge coupling and the triality transformation on the masses of the fundamental flavours,

the a independent part transforms as a quasi-modular form of weight two.

We performed a similar analysis of (4.14) at the next two levels. This required the

following resummed expressions for the prepotential at n = 4, 6 [21]:

f̃4 = −R
2E2

6
+ T1θ

4
4 − T2θ42

f̃6 = −
R3
(
5E2

2 + E4

)
180a4

− NE4

5a4

+
RT1θ

4
4

(
2E2 + 2θ42 + θ44

)
6a4

−
RT2θ

4
2

(
2E2 − 2θ44 − θ42

)
6a4

(4.22)

where

T1 =
1

12

4∑
f<f ′=1

m2
fm

2
f ′ −

1

24

4∑
f=1

m4
f

T2 = − 1

24

4∑
f<f ′=1

m2
fm

2
f ′ +

1

48

4∑
f=1

m4
f −

1

2
m1m2m3m4

N =
3

16

4∑
f<f ′<f ′′=1

m2
fm

2
f ′m

2
f ′′ −

1

96

4∑
f 6=f ′=1

m2
fm

4
f ′ +

1

96

4∑
f=1

m6
f . (4.23)
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Here R, Ti, and N are the first few mass invariants that transform under the triality

action as:

R→ R, T1 ↔ T2, N → N . (4.24)

Solving the modular anomaly equation (4.14) at n = 4, 6 we obtained the following re-

summed results for w̃′4 and w̃′6:

w̃′4 = − 1

72a3

(
3∑

A=0

M4
A

(
2E2

2 − E4 + 24E2℘̂(z + ωA) + 144℘̂(z + ωA)2
)

+ 2
∑
A<B

M2
AM

2
B

(
2E2

2 − E4 + 12E2℘̂(z + ωA) + 12E2℘̂(z + wB)

+ 144℘̂(z + ωA)℘̂(z + ωB)
)

− 12T1θ
4
4(E2 − 2θ42 − θ44) + 12T2θ

4
2(E2 + θ42 + 2θ44)

)

w̃′6 = − 1

432a5

(
3∑

A=0

M2
A (E2 + 12℘̂ (z + ωA))

)

×

(
3∑

B=0

M4
B

(
2E2

2 − E4 + 24E2℘̂(z + ωB) + 144℘̂(z + ωB)2
)

+ 2
∑
B<C

M2
BM

2
C

(
2E2

2 − E4 + 12E2℘̂(z + ωB) + 12E2℘̂(z + wC)

+ 144℘̂(z + ωB)℘̂(z + ωC)
)

− 12T1θ
4
4(E2 − 2θ42 − θ44) + 12T2θ

4
2(E2 + θ42 + 2θ44)

)

− R3

720a5
(5E3

2 − E2E4 − 2E6)−
N

15a5
(E2E4 − E6) +

R

12a5
(T1θ

4
4 − T2θ42)(E2

2 − E4)

(4.25)

Note that as in the case of w̃′2, under the combined action of S-duality and triality, w̃′4 and

w̃′6 transform as expected. The above resummed results have been matched with explicit

results from localization expressed in terms of the renormalized variables (q, x) up to 8

ramified instantons.

5 Summary

In this paper, we considered surface defects in SU(2) theory with four fundamental flavours

and studied the twisted chiral superpotential as an expansion in the masses. We matched

the results for the superpotential obtained from localization methods and from the Seiberg-

Witten data. The coefficients in the mass expansion satisfy a modular anomaly equation

that allows one to solve for them in an iterative manner in terms of (quasi-) modular and

elliptic functions. A key input here is the explicit localization results that are crucial to

fix the purely modular and elliptic contributions. While such an equation was known for
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the N = 2? theory, the main difference now is that the variables in terms of which the

resummation is done are not the bare couplings but the renormalized ones. This required

us to write down the map that relates the bare and the renormalized variables. The map

is verified using the Seiberg-Witten analysis in appendix B.

In [9] it was shown that for the SU(2) Nf = 4 theory the instanton partition function in

the presence of the defect is reproduced by a 4-point spherical conformal block in Liouville

CFT with the insertion of a degenerate primary. This was studied in great detail in [11]

and we have checked up to n = 6 that our resummed results for w̃′n match the results one

would obtain following the CFT analysis in [11].
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A Useful formulas for modular forms and elliptic functions

The Jacobi θ-functions are

θ1(z|τ) =
∞∑

n=−∞
q(n−

1
2)

2

(−x)n−
1
2

θ2(z|τ) =

∞∑
n=−∞

q(n−
1
2)

2

xn−
1
2

θ3(z|τ) =
∞∑

n=−∞
qn

2
xn

θ4(z|τ) =

∞∑
n=−∞

qn
2
(−x)n (A.1)

where x = e2πiz and q = eπiτ . At z = 0, θ2, θ3 and θ4 give the following expansions

θ2(0|τ) ≡ θ2(q) = 2q1/4(1 + q2 + q6 + . . .)

θ3(0|τ) ≡ θ3(q) = 1 + 2q + 2q4 + 2q9 + . . .

θ4(0|τ) ≡ θ4(q) = 1− 2q + 2q4 − 2q9 + . . . (A.2)

Under τ → τ ′ = − 1
τ these transform as follows:

θ42 → −τ2θ44, θ43 = −τ2θ43, θ44 = −τ2θ42 (A.3)

The expansions to the first few orders of the first three Eisenstein series are given by

E2 = 1− 24q2 − 72q4 + . . .

E4 = 1 + 240q2 + 2160q4 + . . .

E6 = 1− 504q2 − 16632q4 + . . . (A.4)
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While E4(τ) and E6(τ) transform as modular forms with weight 4 and 6 respectively, E2(τ)

is quasi-modular of degree 2. Under τ → τ ′ = − 1
τ we have the following transformations:

E2(τ
′) = τ2E2(τ) +

6

iπ
τ

E4(τ
′) = τ4E4(τ)

E6(τ
′) = τ6E6(τ) (A.5)

The Weierstraß ℘-function is defined as

℘(z|τ) = − ∂2

∂z2
log θ1(z|τ)− π2

3
E2(τ) . (A.6)

In many of our formulas the following rescaled ℘-function appears:

℘̂(z|τ) :=
℘(z, τ)

4π2
= x

∂

∂x

(
x
∂

∂x
log θ1(z|τ)

)
− 1

12
E2(τ) . (A.7)

Under S duality, this transforms as

℘̂(z|τ)→ τ2 ℘̂(z|τ) . (A.8)

A few terms that appear in the expansion of ℘̂(z|τ) are as follows:

℘̂(z|τ) = − 1

12
− (x+ 2x2 + 3x3 + 4x4) + q2

(
2− 1

x

)
+ . . . (A.9)

There are also the ℘ functions with arguments shifted by half-periods z → z + ωi, where

ω1 =
1

2
, ω2 =

τ

2
, ω3 =

τ + 1

2
(A.10)

On x these correspond to the following transformations respectively,

x→ −x, x→ qx, x→ −qx (A.11)

The expansions for ℘̂ (z + ωi|q) are easily obtained by performing (A.11) in (A.9). The

expression for ℘̂ function evaluated at the half-periods ωi (A.10) are denoted as êi and

they satisfy the following relations:

ê1 − ê2 =
θ43
4

ê3 − ê2 =
θ42
4

ê1 − ê3 =
θ44
4

(A.12)
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B Verifying the resummation map

Let us now verify that (4.4) is indeed the correct map that relates the bare and the renor-

malized variables. We start by expressing the twisted superpotential in the massless limit

as the integral of the SW differential as described in section 3. We substitute (3.3) and (3.4)

in (3.1) to get:

w0 =

∫ x0
√
q0(q0 − 1)

∂f0
∂q0

dt√
t(t− q0)(t− 1)

(B.1)

We notice that when expressed in terms of q using (4.1) or its expansion in (4.2) we have

the following:

q0
∂f0
∂q0

=
a2

θ44
,

q0 − 1 =
e3 − e1
e1 − e2

(q) = −θ
4
4(q)

θ43(q)
. (B.2)

We substitute this in (B.1) to get the following expression for w0:

w0 =
ia

θ23

∫ x0 dt√
t(t− q0)(t− 1)

(B.3)

Let us now look at w0 expressed in terms of the renormalized variables, i.e. w̃0 in (4.7) and

perform some simple manipulations:

w̃0 = 2πia

∫ z

dz = 2πia

∫ x0 dx0
dx0
dz

= 2πia π2θ43

∫ x0 dx0
℘′

. (B.4)

In the final equality we have used the map (4.4). The Weierstraß ℘-function satisfies the

differential equation:

℘′2 = 4(℘− e1)(℘− e2)(℘− e3) (B.5)

which can be expressed as

℘′ = 2π3θ63
√
x0(x0 − q0)(x0 − 1) (B.6)

using (4.4) and (A.12). We substitute the above in (B.4) and obtain (B.3) which was

arrived at using only the well established q0 vs q map in (4.1). This confirms the x0 vs x

map in (4.4).
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