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5 Integrability of the DHKM model 24

6 Renormalization of the DHKM model 27

6.1 Generalities about the renormalization of the non-degenerate E-models 27

6.2 Generalities about the renormalization of the degenerate Ê-models 29
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1 Summary of the results

In this paper, we study the integrable σ-model which was recently proposed by Delduc,

Hoare, Kameyama and Magro (DHKM) as the generalisation of the Lukyanov model [72].

This DHKM model lives on the simple compact group target K and its action reads [18]

S(k) = κIWZ(k)−

−
1

2

∫

dτ

∮

tr
[

k
−1

∂+k
(

(1−κ(QL−QR)) (QL+QR)
−1+(PL+PR)

−1 (1+κ(PL−PR))
)

k
−1

∂−k
]

.

(1.1)

Here τ and σ are, respectively, the worldsheet time and (compact) space variable,
∮

stands

for the integral over the angle σ and the light-cone derivatives are defined as ∂± = ∂τ ±∂σ.

Furthermore, k = k(τ, σ) is a K-valued field, the standard Wess-Zumino term IWZ is

defined as

IWZ(k) = −
∫

d−1

∮

tr
(

dkk−1 ∧ [∂σkk
−1, dkk−1]

)

(1.2)
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and QL,R as well as PL,R are field-dependent R-linear operators on the Lie algebra K
constructed out of the field-independent R-linear operatorsMLL,MLR,MRL,MRR : K → K
as follows

QL := Adk−1

(

MLL + κ−MLR(MRR − κ)−1MRL

)−1 (
Adk +MLR(MRR − κ)−1

)

,

QR :=
(

MRR − κ−MRL(MLL + κ)−1MLR

)−1 (
1 +MRL(MLL + κ)−1Adk

)

,

PL :=
(

Adk−1 + (MRR + κ)−1MRL

) (

MLL − κ−MLR(MRR + κ)−1MRL

)−1
Adk,

PR :=
(

1 + Adk−1(MLL − κ)−1MLR

) (

MRR + κ−MRL(MLL − κ)−1MLR

)−1
. (1.3)

The operators MLL,MLR,MRL,MRR themselves are given by

MLL =
(

1 +ALR+
(

η2L − (1 + η2R)(1 + η2L + κ)(1 + η2L − κ)ωtÑ−1ω
)

(R2 + 1)
)

,

MRR =
(

1 +ARR+
(

η2R − (1 + η2L)(1 + η2R + κ)(1 + η2R − κ)ωN−1ωt
)

(R2 + 1)
)

,

MLR = (1 + η2L + κ)(1 + η2R + κ)N−1ωt(R2 + 1),

MRL = −(1 + η2L − κ)(1 + η2R − κ)Ñ−1ω(R2 + 1), (1.4)

where

N = 1 + (1 + η2L)(1 + η2R)ω
tω, Ñ = 1 + (1 + η2L)(1 + η2R)ωω

t, (1.5)

A2
L = η2L

(

1− κ2

1 + η2L

)

, A2
R = η2R

(

1− κ2

1 + η2R

)

. (1.6)

Moreover, R : K → K is the Yang-Baxter R-linear operator which annihilates the Cartan

subalgebra of K and it is defined as

RBα = Cα, RCα = −Bα, (1.7)

where Bα, Cα are given in terms of the step generators of KC as

Bα =
i√
2
(Eα + E−α), Cα =

1√
2
(Eα − E−α). (1.8)

Finally, the independent parameters characterizing the DHKM model are: the positive

integer κ, two real numbers ηL, ηR such that η2a ≥ κ2 − 1, a = L,R and one real r × r

matrix ω the entries of which are called TsT parameters. Here r is the dimension of the

Cartan torus of the group K and, in the formula above, ω : T → T is understood as the

R-linear operator acting on the Cartan subalgebra T ⊂ K.

Here is the list of the original results obtained in the present article:

1) We show that the presence of the TsT parameter matrix ω in the Lagrangian has no

impact neither on the first order Hamiltonian dynamics of the DHKMmodel nor on its

renormalizability, although it is true at the same time that this presence does influence

the target space geometry. Said in other words, we show that the models with

different TsT matrices ω1 6= ω2 are T-dual to each other (the T-duality in question

turns out to be the Poisson-Lie T-duality [59–61]) therefore for the understanding of

the Hamiltonian dynamics of the DHKM model and of its renormalizability it is fully

sufficient to consider the simplest case ω = 0.

– 2 –
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2) In the case ω = 0, we succeed to rewrite the DHKM action in the following com-

pact form

S(k) = κIWZ(k) + κ

∫

dτ

∮

tr k−1∂+k
α+ eρLRkeρRR

α− eρLRkeρRR
k−1∂−k. (1.9)

Here R is the Yang-Baxter operator, Rk stands for the operator Adk−1RAdk and

the parameters κ, α, ρL, ρR are related to the original DHKM parameters κ, ηL, ηR as

follows

κ = κ, α =
η2L + 1− κ

η2L + 1 + κ

η2R + 1− κ

η2R + 1 + κ
, tan

ρa
2

=
κη2a

Aa(1 + η2a)
, a = L,R.

(1.10)

Note, in particular, that the positivity of the left-hand-sides of eqs. (1.6) makes α to

belong to an open interval ]0, 1[ for κ > 1.

3) We show that the σ-model (1.9) remains classically integrable if we emancipate the

parameter α, that is, if we no longer consider the parameter α as the function of the

parameters κ, ηL, ηR. In what follows, we shall call the σ-model (1.9) the bi-Yang-

Baxter deformation of the WZW model1 if the parameter α is emancipated and it

belongs to the interval ]− 1, 1[. The bi-Yang-Baxter deformation of the WZW model

thus depends on four free parameters: the positive integer κ and three real numbers

α, ρL, ρR the absolute values of which take values respectively in the intervals [0, 1[,

]0, π[ and ]0, π[.

4) We introduce the parameter α and emancipate it in the way compatible with inte-

grability also in the presence of a nontrivial TsT matrix ω 6= 0.

5) We prove the renormalizability of the bi-YB-WZ model (1.9) by showing that the

RG flow concerns just the parameter α, while the parameters κ, ρL and ρR are

renormalization group invariants. We find the flow of α explicitly for every group

target K and show that for the special case of K = SU(2) the obtained flow coincides

with the RG flow of the Lukyanov model described in ref. [72].

6) All the results mentioned above are obtained by using the formalism of the so called E-
models [55, 56, 62] as well as of their degenerate variants called the dressing cosets [64].

In this paper, we introduce a new method how to obtain the degenerate E-models out

from the non-degenerate ones and we apply this method to prove that the bi-YB-WZ

model is in fact an appropriate dressing coset. It is the latter circumstance which

makes possible to prove its renormalizability effortlessly.

2 Introduction

Integrable deformations of nonlinear σ-models on group manifolds and on coset spaces

constitute presently a topic of intense research activity. The subject originated long time

1The reason for this terminology is the fact that in the case α = 0 we recover from (1.9) the standard

WZW model. In what follows, we shall say “the DHKM model” whenever the TsT matrix is switched on.

However, for the case of the vanishing TsT matrix we reserve the terminology “the bi-YB-WZ model”.

– 3 –
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ago in refs. [6, 15, 29], where several deformations of the principal chiral model on the

SU(2) target were constructed, and several other SU(2) results were subsequently obtained

in refs. [32, 47–49, 72, 78]. The study of the integrability of σ-models living on higher

dimensional group targets was initiated in refs. [52–54] by the present author, where we

introduced the so called η-deformations, induced in an appropriate way by solutions of

the (modified) Yang-Baxter equation on the Lie algebra of the target group. This η-

deformation algorithm, combined also with the coset construction of refs. [19, 20] and with

the alternative λ-deformation one [88], gave rise to various constructions of the deformed

integrable σ-models [12, 13, 18, 21–23, 26, 36–38, 49, 89, 91, 98], many of them exploitable in

quantum field theory [2, 4, 5, 8–10, 27, 30, 31, 70, 71] and in string theory via the AdS/CFT

correspondence [1, 7, 16, 19, 20, 24, 25, 28, 33, 39, 40, 43, 44, 74–76, 79, 80, 83, 84, 96, 97].

It turns out that the Hamiltonian dynamics of many integrable σ-models can be cast

in a very transparent way within the formalism of certain specific first order dynamical

systems referred to as the E-models [55, 56, 62]. The E-models are formulated in terms of

the current algebras of Drinfeld doubles and were originally introduced in the framework

of the Poisson-Lie T-duality [59–62]. However, they turn out to be useful in many respects

also in the integrability story, in particular in establishing the relation between the η and

λ deformations via the T-duality [46, 55, 56, 89].

Recently, Delduc, Hoare, Kameyama and Magro have found the multi-parametric inte-

grable σ-model (1.1) living on an arbitrary simple group manifoldK [18]. In their approach,

they succeeded to merge consistently several deformation procedures studied previously in

a separate way, like the (bi)-Yang-Baxter deformations [52–54], the addition of the WZW

term [21] or the introduction of the so-called TsT matrix [35, 73, 77, 81, 96, 97]. For

the special case of the group SU(2), their result fits into the framework of the Lukyanov

model [72].

We show in section 4 of the present paper that there exists an E-model description of

the DHKM σ-model (for the emancipated parameter α), however, there is a novel element

in the game comparing with the cases of the low number of deformation parameters treated

in [55–57]. Namely, the E-model underlying the DHKM σ-model turns out to be degenerate,

that is, it is the so called dressing coset in the sense of ref. [64].

Actually, we introduce in the present work a new method of constructing the dressing

cosets which is based on an appropriate isotropic gauging of the non-degenerate E-models.

This new approach is technically very friendly and it plays the key role in the understanding

of the structure of the DHKM model. We describe it in section 3.3, just after reviewing

the theory of the non-degenerate E-models in section 3.1 as well as the old theory of the

dressing cosets in section 3.2.

What is it good for to know that the first order Hamiltonian dynamics of a nonlinear σ-

model can be described in terms of a particular (degenerate) E-model? Well, the immediate

benefit of this knowledge is the fact that the σ-model underlied by the E-model is automati-

cally renormalizable [90, 92, 95]. This means, in particular, that the ultraviolet corrections

just let flow the parameters of the model without spoiling the form of the Lagrangian.

Moreover, the E-model formalism permits to determine the renormalization group flow by

a simple method introduced in refs. [85, 92]. Actually, we employ this method in section 6

– 4 –
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to establish the renormalizability of the bi-YB-WZ model, after proving in section 5 its

integrability. Finally, we devote section 6.4 to a detailed analysis of the case of K = SU(2)

where our results for the bi-YB-WZ RG flow are shown to match those of Lukyanov [72].

3 Dressing cosets

The dressing cosets construction [64] is the generalisation of the standard Poisson-Lie T-

duality [59–61] and it was originally invented to produce new T-dual pairs of σ-models.

While within the framework of the standard Poisson-Lie T-duality, the Hamiltonian dynam-

ics common to the mutually dual σ-models is that of an appropriate E-model [55, 56, 62],

in the dressing cosets case, the Hamiltonian dynamics is that of a degenerate Ê-model in

the sense of refs. [51, 64]. Although our concern in the present work is to deal with the

degenerate Ê-models, we review also the non-degenerate case for reasons which are not

merely pedagogical. In fact, in section 3.3 we introduce a new method how to obtain the

degenerate Ê-models (i.e. the dressing cosets) out from the non-degenerate ones. This new

method is rapid and efficient and it lies at the basis of the understanding of the integrability

and the renormalizability of the bi-YB-WZ model.

3.1 Non-degenerate E-models

Consider a Lie group D of even dimension 2d which is equipped with a bi-invariant

Lorentzian metric of the signature (d, d). This metric naturally induces a non-degenerate

symmetric ad-invariant bilinear form (., .)D on the Lie algebra D of D. A d-dimensional

subgroup K ⊂ D is called maximally isotropic if the restriction of the form (., .)D onto its

Lie algebra K identically vanishes. If D possesses a maximally isotropic subgroup K, the

couple (D,K) is called a Manin pair. If it possesses two (or more) maximally isotropic

subgroups K, K̃ which are not connected by an internal automorphism of D, then D is

called the Drinfeld double.

We now associate certain infinite-dimensional symplectic manifold LD to every Drin-

feld double D. The points of LD are loops in D, that is maps l : S1 → D from a circle

parametrized by the angle variable σ into the Drinfeld double D. For this reason, LD is

also known as the loop group of the Drinfeld double and it has itself the group structure

given by the pointwise multiplication of the loops in D. It makes therefore sense to speak

about the left-invariant Maurer-Cartan form l−1dl on the group LD and we can define the

symplectic form ωLD on LD by the formula

ωLD := −1

2

∮

(l−1dl, ∂σ(l
−1dl))D. (3.1)

The (non-degenerate) E-model is a dynamical system the phase space of which is the

symplectic manifold (LD,ωLD) and the Hamiltonian HE of which is given by the formula

HE =
1

2

∮

(∂σll
−1, E∂σll−1)D. (3.2)

Here E : D → D is a R-linear operator on the Lie algebra D of the double D. It has

three important properties: 1) it squares to the identity operator on D, i.e. E2 = Id; 2) it

– 5 –
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is self-adjoint with respect to the bilinear form (., .)D, i.e. (Ex, y)D = (x, Ey)D, x, y ∈ D;

3) the E-dependent symmetric bilinear form on D defined as (., E .)D is strictly positive

definite.

The knowledge of the symplectic form (3.1) and of the Hamiltonian (3.2) is sufficient

to construct the first-order action of the E-model [62]

SE(l) =
1

2

∫

dτ

∮

(∂τ ll
−1, ∂σll

−1)D+
1

4

∫

d−1

∮

(dll−1 ∧, [∂σll
−1, dll−1])D−

1

2

∫

dτ

∮

(∂σll
−1, E∂σll−1)D.

(3.3)

We note the presence of the WZ term in the action. Depending on the choice of the bilinear

form (., .)D, this term may require a discrete overall normalisation in order to define a

consistent quantum theory. We shall have more to say about this issue in section 4.

Every E-model (LD,ωLD, HE) on the Drinfeld double represents simultaneously the

Hamiltonian dynamics of two (or more) σ-models living on geometrically non-equivalent

targets. How it comes about? We show this first in a particular case of the so-called

perfect Drinfeld doubles. Recall that the Drinfeld double D is perfect if the topological

direct product K × K̃ of its maximally isotropic subgroups is diffeomorphic to D in a way

compatible with the multiplication law in D. This means that if Υ : D → K × K̃ is the

diffeomorphism and m : D×D → D is the group multiplication map then the composition

map m ◦ Υ is the identity map on D. In particular, every element l(σ) of the loop group

LD of the perfect Drinfeld double D can be unambiguously decomposed as the product of

one element k(σ) from the loop group LK and one element h̃(σ) from the loop group LK̃

as follows

l(σ) = k(σ)h̃(σ), k ∈ LK, h̃ ∈ LK̃. (3.4)

Inserting the decomposition (3.4) into (3.1) and into (3.2), we obtain easily

ωLD = d

(
∮

(∂σh̃h̃
−1, k−1dk)D

)

, (3.5)

HE(k, h̃) =
1

2

∮

(∂σkk
−1 + k∂σh̃h̃

−1k−1, E(∂σkk−1 + k∂σh̃h̃
−1k−1))D. (3.6)

The first order action (3.3) of the E-model (LD,ωLD, HE) in the parametrization k, h̃

is therefore given by the data (3.5) and (3.6):

SE =

∫

dτ

∮

(∂σh̃h̃
−1, k−1∂τk)D −

∫

dτHE(k, h̃). (3.7)

The dependence of SE on ∂σh̃h̃
−1 is quadratic, it is therefore easy to eliminate ∂σh̃h̃

−1

which gives the second order action of the so called Poisson-Lie σ-model:

SE(k) =
1

2

∫

dτ

∮

(

(E +Π(k))−1 ∂+kk
−1, ∂−kk

−1
)

D
. (3.8)

Here ∂± ≡ ∂τ ± ∂σ, the linear operator E : K̃ → K is such that its graph {x̃+ Ex̃, x̃ ∈ K̃}
coincides with the image of the operator Id+E and the k-dependent operator Π(k) : K̃ → K
can be explicitly expressed in terms of the structure of the Drinfeld double as follows

Π(k) = −JAdkJ̃Adk−1J̃ . (3.9)

– 6 –
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Here Adk stands for the adjoint action on D of the element k ∈ K ⊂ D and J , J̃ are

projectors; J projects to K with the kernel K̃ and J̃ projects to K̃ with the kernel K.

Recall also that the operator Π(k) : K̃ → K encodes the so called Poisson-Lie bracket

of two functions f1, f2 on the group K in the sense of the formula:

{f1, f2}K(k) = (∇Lf1,Π(k)∇Lf2)D. (3.10)

Here ∇L is K̃-valued differential operator acting on the functions on K as

(∇Lf, x)D(k) := (∇L
xf)(k) ≡

df(esxk)

ds

∣

∣

∣

∣

s=0

, x ∈ K. (3.11)

Of course, every element l(σ) of the loop group LD can be decomposed also in the

dual way as

l(σ) = k̃(σ)h(σ), k̃ ∈ LK̃, h ∈ LK. (3.12)

Inserting the decomposition (3.12) into (3.1) and into (3.2), and then repeating all the

procedure as before leads to the dual σ-model living on the target K̃:

S̃Ẽ(k̃) =
1

2

∫

dτ

∮
(

(

Ẽ + Π̃(k̃)
)−1

∂+k̃k̃
−1, ∂−k̃k̃

−1

)

D

, (3.13)

where

Π̃(k̃) = −J̃Adk̃JAdk̃−1J . (3.14)

Of course, the linear operator Ẽ : K → K̃ is again such that its graph {x + Ẽx, x ∈ K}
coincides with the image of the operator Id+E , which implies that the duality between the

models (3.8) and (3.13) holds under the condition, that the operator Ẽ is inverse of the

operator E.

If the Drinfeld double is not perfect, there exists a generalization of the T-duality

between the models (3.8) and (3.13), where the two σ-models live, respectively, on the

spaces of cosets D/K̃ and D/K [55, 56, 65, 66]. If we parametrize (possibly patch by

patch) the coset space D/K̃ by a section m ∈ D of the bundle D → D/K̃ and the coset

space D/K by a section m̃ ∈ D of the bundle D → D/K, then the decompositions l = mh̃

and l = m̃h generalize those (3.4) and (3.12) and lead respectively to the following dual

pair of σ-models with the WZW terms:

SE(m) =
1

4

∫

dτ

∮

(

(1−2Pm(E))m−1
∂+m,m

−1
∂−m

)

D
+
1

4

∫

d
−1

∮

(

m
−1

dm, [m−1
∂σm,m

−1
dm]

)

D
;

(3.15)

S̃E(m̃) =
1

4

∫

dτ

∮

((

1−2P̃m̃(E)
)

m̃
−1

∂+m̃, m̃
−1

∂−m̃
)

D
+
1

4

∫

d
−1

∮

(

m̃
−1

dm̃, [m̃−1
∂σm̃, m̃

−1
dm̃]

)

D
.

(3.16)

Here the projectors Pm(E) : D → D and P̃m̃(E) : D → D have the respective images K̃
and K and their respective kernels are given by the linear spaces (Id+Adm−1EAdm)K̃ and

(Id+Adm̃−1EAdm̃)K.

Of course, the Poisson-Lie T-duality relating the models (3.8) and (3.13), or, more

generally, relating the models (3.15) and (3.16), is the main result that we review in this

– 7 –
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section 3.1, but we add few more formulas about the E-models that will be useful in what

follows. First of all, the first order Hamiltonian equations of motions derived from the

formulas (3.1) and (3.2) can be written in two useful ways, either as

∂τ ll
−1 = E∂σll−1 (3.17)

or as

∂τ j = ∂σ(Ej) + [Ej, j], (3.18)

where

j(σ) := ∂σl(σ)l(σ)
−1. (3.19)

Moreover, the inversion of the symplectic form ωLD gives the standard current algebra

Poisson brackets for the LD-valued variable j(σ):

{jA(σ), jB(σ′)} = FAB
C jC(σ)δ(σ − σ′) +DAB∂σδ(σ − σ′). (3.20)

Here

jA(σ) := (j(σ), TA)D, [TA, TB] = FAB
CTC , DAB := (TA, TB)D (3.21)

and TA ∈ D is some basis of D.

3.2 Degenerate Ê-models

We start the exposition of the degenerate Ê-models from the end, that is, we first write to

what kind of T-duality they give rise to. To grasp the idea, it is sufficient to consider the

perfect Drinfeld doubles and the resulting dual pair of the “dressing cosets” σ-models is

then given by the actions

S
Ê
(k) =

1

2

∫

dτ

∮
(

(

Id + ÊΠ(k)
)−1

Ê∂+kk
−1, ∂−kk

−1

)

D

, (3.22)

S̃
Ê
(k̃) =

1

2

∫

dτ

∮
(

(

Ê + Π̃(k̃)
)−1

∂+k̃k̃
−1, ∂−k̃k̃

−1

)

D

. (3.23)

Well, if Ê : K → K̃ is an invertible operator then the dressing cosets models (3.22)

and (3.23) look identical to the models (3.8) and (3.13), so what is then new in the dressing

coset story? Is it just the circumstance that we release the condition that the operator Ê

be invertible? No, this is not the case. In fact, even if Ê is invertible, the dressing cosets

pair (3.22) and (3.23) may contain substantially different physics as the standard Poisson-

Lie T-dual pair (3.8) and (3.13). What happens is that in the construction of the standard

pair (3.8) and (3.13) from the E-model it follows automatically that the symmetric part
1
2(Ẽ + Ẽ∗) of the operator Ẽ : K → K̃ is also invertible (the symbol Ẽ∗ stands for the

adjoint of the operator Ẽ with respect to the bilinear form (., .)D.) In the dressing cosets

case, the operator 1
2(Ê+ Ê∗) need not be invertible and the T-duality of the models (3.22)

and (3.23) still holds (if some further invariance conditions on Ê are fulfilled). This is not

a trivial generalization of the standard Poisson-Lie T-duality, however, because the lack of

invertibility of the operator Ê or of its symmetric part 1
2(Ê+ Ê∗) has drastic consequences
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on the dynamics of the mutually dual σ-models (3.22) and (3.23). In fact, both models

develop a gauge symmetry with respect to some subgroup F of the Drinfeld double D and

the common dimension of their targets thus gets effectively diminished by the dimension

of the group F .

Let us now give a concrete example of the phenomenon that the common gauge sym-

metry of the dressing cosets leads to the diminution of the dimension of the targets of

the mutually dual dressings cosets σ-models. Consider thus the case where K is a simple

compact group and the group K̃ is the Lie algebra K with the (Abelian) group structure

given by the vector space addition. As the manifold, the perfect Drinfeld double D is the

topological direct product K ×K with the following multiplication law

(k1, κ1)(k2, κ2) = (k1k2, κ1 +Adk1κ2), k1, k2 ∈ K, κ1, κ2 ∈ K. (3.24)

Every element k of the group K is embedded in D as (k, 0) and every element κ of K̃ as

(e, κ), where e is the unit element of K. The bilinear form (., .)D is given by

((µ1, κ1), (µ2, κ2))D = (µ1, κ2)K + (µ2, κ1)K, µ1,2, κ1,2 ∈ K, (3.25)

where (., .)K is the standard Killing-Cartan form on the simple Lie algebra K.

For the linear operator Ê, we pick the orthogonal projector P⊥ on the subspace T ⊥ ⊂
K perpendicular to the Cartan subalgebra T ⊂ K, moreover, by using the formulas (3.9)

and (3.14), we find that the Poisson-Lie bivector Π(k) on K trivially vanishes while the

Poisson-Lie bivector on K̃ is given by the adjoint action of the Lie algebra. The actions of

the mutually dual σ-models (3.22) and (3.23) in this particular case thus become

S(k) =
1

2

∫

dτ

∮

(

P⊥∂+kk
−1, ∂−kk

−1
)

K
; (3.26)

S̃(κ) =
1

2

∫

dτ

∮
(

(

P⊥ − adκ

)−1
∂+κ, ∂−κ

)

K

. (3.27)

The σ-models (3.26) and (3.27) have both the gauge symmetry with the gauge group F

being the Cartan torus T ⊂ K (the Lie algebra of F is the Cartan subalgebra T ). The

element f(τ, σ) of the gauge group acts on the respective fields of the σ-models as

k → fk, κ → Adfκ. (3.28)

In the case of the group K = SU(2), the common dimension of the targets of the mod-

els (3.26) and (3.27) is two and the corresponding background geometries were obtained

also in the framework of the standard non-Abelian T-duality [3, 41, 42, 82] where the isom-

etry group does not act freely. Therefore the dressing cosets in general can be understood

as the Poisson-Lie generalizations of such models. Other examples of the dressing cosets

have been studied in [11, 14, 45, 46, 58, 85–87, 89, 93].

The first order dynamics of the dressing cosets was described in ref. [64] and we now

review that construction here. The phase space LDF of the mutually dual pair of the

dressing cosets is an appropriate symplectic reduction of the non-degenerate phase space

(LD,ωLD). More precisely, consider a subgroup F of D which is isotropic, which means
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that the restriction of the bilinear form (., .)D to the Lie algebra F vanishes. The set

of moment maps generating the left action of the loop group LF on the loop group LD

is expressed by the quantity (∂σll
−1,F)D. We set this quantity to 0 which gives the

presymplectic submanifold denoted by LDF . Said in other words, the (pre)phase space

LDF of the degenerate Ê-model is the space of the elements l(σ) of the loop group LD, for

which it holds for every σ

∂σll
−1 ∈ F⊥. (3.29)

Here the orthogonality symbol ⊥ is understood with respect to the non-degenerate bilinear

form (., .)D.

The (pre)symplectic form of the degenerate Ê-model is just the restriction to LDF of

the symplectic form

ωLD = −1

2

∮

(l−1dl, ∂σ(l
−1dl))D . (3.30)

The Hamiltonian of the degenerate Ê-model looks the same as in the case of the standard

Poisson-Lie T-duality

H
Ê
=

1

2

∮

(∂σll
−1, Ê∂σll−1)D, (3.31)

however, the linear operator Ê has now different properties as its counterpart E in the non-

degenerate case. Here are those properties: Ê : F⊥ → F⊥ must be self-adjoint, it must

commute with the adjoint action of F on F⊥ and its kernel must contain F . Moreover,

the bilinear form (., Ê .)F⊥ must be positive semi-definitive and the image of the operator

Ê2 − Id has to be contained in F .

If the double is perfect, we can decompose the elements l(σ) ∈ LDF either as l = kh̃ or

as l = k̃h and by eliminating respectively the fields h̃ and h, we obtain the σ-models (3.22)

and (3.23). The linear operator Ê is obtained via the relation

Im(Ê + Ê2)⊕F = {x+ Êx, x ∈ K}. (3.32)

After the fixing the gauge symmetry, the target spaces of the models (3.22) and (3.23)

become respectively the dressing cosets F\K and F\K̃. The left dressing action of an

element f ∈ F on an element k ∈ K is defined as the K-part of the D-product fk. Said in

other words, we decompose fk ∈ D as fkf h̃, fk ∈ K, f h̃ ∈ K̃ and the element fk ∈ K is

the result of the dressing action of f on k.

How all this procedure works in detail can be found in the original paper [64], but

the reader need not consult it. In fact, we shall present in the next section 3.3 a new

construction of the dressing cosets, which is arguably more straightforward than that of

ref. [64]. We do not know whether the new method permits to derive all dual pairs ob-

tainable by the old one, the new picture is however sufficiently general to underlie the

bi-YB-WZ model (1.9).

3.3 New method of producing the dressing cosets

One particular way how to obtain the degenerate Ê-model from non-degenerate one was

studied in [86, 87]. The idea described therein is to let a non-degenerate operator E

– 10 –
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depend on a parameter and study a (singular) limit in which E becomes an operator Ê
characterising the degenerate Ê-model. Here we develop another method, inspired by the

procedure of the isotropic gauging described in ref. [67], that is, we gauge in an isotropic

way a non-degenerate E-model to produce from it a degenerate Ê-model. The big advantage

of this procedure is its simplicity as well as the rapidity with which the resulting pair of

the dressing cosets σ-models is explicitely found. Let us show how it works.

Let (LD,ωLD, HE) be a non-degenerate E-model. Its first order action can be written

as in (3.3)

SE(l) =
1

2

∫

dτ

∮

(∂τ ll
−1, ∂σll

−1)D+
1

4

∫

d−1

∮

(dll−1 ∧, [∂σll
−1, dll−1])D−

1

2

∫

dτ

∮

(∂σll
−1, E∂σll−1)D.

(3.33)

Let F be an isotropic subgroup of D (the term “isotropic” means that the restriction of the

bilinear form (., .)D to the Lie algebra F vanishes) and let E be such that it commutes with

the adjoint action of F on D. The action (3.33) has then a global F -symmetry, where an

element f ∈ F acts on the loop l(σ) by the standard left multiplication fl(σ). This global

F -symmetry can be gauged2 by introducing an F-valued gauge field A ≡ Aτdτ + Aσdσ

The gauged action reads

SE(l, A) =
1

2

∫

dτ

∮

(∂τ ll
−1−2Aτ , ∂σll

−1)D+

+
1

4

∫

d−1

∮

(dll−1 ∧, [∂σll
−1, dll−1])D−

1

2

∫

dτ

∮

(∂σll
−1−Aσ, E(∂σll−1−Aσ))D.

(3.34)

It is gauge invariant with respect to the following action of the element f(σ, τ) of the gauge

group F

l → fl, A → fAf−1 + dff−1. (3.35)

To verify it, the F -invariance of the operator E is needed as well as the Polyakov-Wiegmann

formula

W (fl) = W (l) + 2d

∮

(

(f−1df, ∂σll
−1)D − (dll−1, f−1∂σf)D

)

, (3.36)

where the 2-form W (l) on LD is defined by

W (l) ≡
∮

(dll−1 ∧, [∂σll
−1, dll−1])D. (3.37)

The basic claim of the present section is the statement:

The isotropically gauged non-degenerate E-model (3.34) is the degenerate Ê-
model.

Of course, the statement is deliberately short in order to encapsulate the message

in the briefest terms, we have therefore explain it in more detail and also to state one

2Due to the fact that F is the isotropic subgroup the gauging is non-anomalous as it was thoroughly

explained in ref. [67].

– 11 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
6

more technical condition needed to be verified for the statement to hold. This condition is

actually that the restriction of the non-degenerate bilinear form (., E .)D to the subalgebra

F remains non-degenerate.

It is not difficult to see that the gauged E-model (3.34) is in fact a degenerate Ê-
model in a disguise. Indeed, the component Aτ play the role of the Lagrange multiplier

which restricts the phase space LD of the non-degenerate E-model to the (pre)phase space

LDF = {l ∈ LD, ∂σll
−1 ∈ F⊥} of the degenerate one. Furthermore, the field Aσ appears

quadratically in the action (3.34), it can be therefore easily integrated away yielding again

a quadratic Hamiltonian of the form
∮

(∂σll
−1, Ê(∂σll−1))D for some operator Ê . We have

to show then that this operator Ê has all the properties to define the degenerate Ê-model

as described in the previous section 3.2.

We perform the elimination of the field Aσ by a chain of shortcut arguments, avoiding

any “hardline” computation. We first remark that if it existed a non-vanishing x ∈ F such

that x = Ey for some y ∈ F , then we would have E(x ± y) = y ± x, and the expressions

(x±y, E(x±y))D would both vanish which would contradict the strict positive definiteness

of the bilinear form (., E .)D. We infer that the linear space EF has trivial (zero) intersection

with F and we can therefore set

V = F ⊕ EF . (3.38)

Let us now argue that the vector spaces V and V ⊥ also intersect trivially. Indeed, if

the intersection V ∩ V ⊥ contained a non-zero vector x + Ey, x, y ∈ F then every vector

z ∈ F ⊂ V would be orthogonal to x + Ey, hence to Ey which would be contradictory to

the fact that the restriction of the bilinear form (., E .)D to F be non-degenerate. It follows

that we can write the Lie algebra D as the direct sum V ⊥ ⊕ F ⊕ EF and represent every

element y ∈ D accordingly as

y = y0 + y1 + y2. (3.39)

The action (3.34) can be now rewritten as

SE(l, A) =
1

2

∫

dτ

∮

(∂τ ll
−1−2Aτ , ∂σll

−1)D+
1

4

∫

d
−1

∮

(dll−1 ∧, [∂σll
−1

, dll
−1])D

−
1

2

∫

dτ

∮

(

(∂σll
−1)0, E(∂σll

−1)0
)

D
−
1

2

∫

dτ

∮

((

(∂σll
−1)1−Aσ

)

, E
(

(∂σll
−1)1−Aσ

))

D
.

(3.40)

Note that the component (∂σll
−1)2 does not appear in the Hamiltonian part of the action

because it is killed by the Lagrange multiplier Aτ . Furthermore, the component (∂σll
−1)1

lies in F , it can be therefore absorbed into Aσ. Integrating away Aσ thus means simply

the omitting of the last term in eq. (3.40). At the end, we obtain the degenerate Ê-model

where the operator Ê : F⊥ → F⊥ is defined as

Ê(y0 + y1) := Ey0. (3.41)

It is easy to verify that Ê has all required properties to define the degenerate Ê-model. It

is self-adjoint because E is:

(x0 + x1, Ê(y0 + y1))D = (x0, Ey0)D = (Ex0, y0)D = (Ê(x0 + x1), y0 + y1)D, (3.42)
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its kernel evidently contains F and it commutes with adφ for every φ ∈ F because both V

and V ⊥ are adF invariant:

Ê [φ, x0 + x1] = E [φ, x0] = [φ, Ex0] = [φ, Ê(x0 + x1)]. (3.43)

Moreover, it holds

(Ê2 − Id)(x0 + x1) = E2x0 − x0 − x1 = −x1, (3.44)

therefore the image of the operator (Ê2− Id) is indeed contained in F . Finally, the bilinear

form (., Ê .)F⊥ is semi-positive definite because

(x0 + x1, Ê(y0 + y1))D = (x0, Ey0)D (3.45)

and the form (., E .)D is strictly positive definite.

What is it good for to know that the gauged non-degenerate E-model is in fact the

degenerate Ê-model? Well, in some important cases, like those studied in the context of

the integrable deformations, it is technically much easier to extract the actions of the dual

pair of σ-models from the gauged non-degenerate first order formalism rather than directly

from the degenerate one. We give now an example of this situation for the case when D is

the perfect double and F is a subalgebra of K.

Instead of eliminating the gauge field A from the gauged first order action (3.40), we

first decompose l as the product of one element k(σ) of the loop group LK and one element

h̃(σ) of the loop group LK̃ as in eq. (3.4)

l(σ) = k(σ)h̃(σ), k ∈ LK, h̃ ∈ LK̃. (3.46)

Inserting the decomposition (3.46) into (3.34), we obtain easily

SE(k, h̃, A) =

∫

dτ

∮

(∂σh̃h̃
−1, k−1(∂τkk

−1−Aτ )k)D

−1

2

∫

dτ

∮

(∂σkk
−1−Aσ+k∂σh̃h̃

−1k−1, E(∂σkk−1−Aσ+k∂σh̃h̃
−1k−1))D.

(3.47)

It is easy to preform the computation integrating away ∂σh̃h̃
−1 from SE(k, h̃, A), because

the only difference with respect to the similar computation leading from (3.7) to (3.8) is the

replacement of ∂τkk
−1 by ∂τkk

−1−Aτ and of ∂σkk
−1 by ∂σkk

−1−Aσ. The result is there-

fore the following gauged second order action of the standard Poisson-Lie σ-model (3.8):

SE(k,A) =
1

2

∫

dτ

∮

(

(E +Π(k))−1 (∂+kk
−1 −A+), ∂−kk

−1 −A−

)

D
. (3.48)

Here A± ≡ Aτ ±Aσ and, as before, the graph {x̃+Ex̃, x̃ ∈ K̃} of the operator E : K̃ → K
coincides with the image of the operator Id+E . The gauge symmetry k → fk and A →
fAf−1 + dff−1 of the action (3.48) is evident.

Remarkably, the integrating away the non-dynamical gauge fields A± from (3.48) gives

the dressing coset action (3.22)

S
Ê
(k) =

1

2

∫

dτ

∮
(

(

Id + ÊΠ(k)
)−1

Ê∂+kk
−1, ∂−kk

−1

)

D

. (3.49)
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We now perform in detail the calculation leading from (3.48) to (3.49) which will permit

us to identify the operator Ê : K → K̃ in terms of the operator E : K̃ → K. We start by

introducing an K̃-valued auxiliary 1-form field B ≡ Bτdτ + Bσdσ and by considering an

auxiliary action

SE(k,A,B) =
1

2

∫

dτ

∮

((E +Π(k))B+, B−)D +

∫

(

(dkk−1 −A) ∧, B
)

D
. (3.50)

The auxiliary action SE(k,A,B) is dynamically equivalent to the action SE(k,A) because

the integrating away the field B from the former yields the latter. Now the gauge field A

featuring in the action (3.50) plays the role of the Lagrange multiplier making to vanish

some components of the field B. Let us be more precise about that point.

Let Q̃ : K̃ → K̃ be the projector with the kernel EF ∩ K̃ and the image (F ⊕ V ⊥) ∩ K̃
and let Q : K → K be the projector with the kernel F ∩K and the image (EF ⊕ V ⊥) ∩K.

Integrating away the gauge field A from the auxiliary action (3.50) then gives

SE(k,B) =
1

2

∫

dτ

∮

(

Q (E +Π(k)) Q̃B+, Q̃B−

)

D
+

∫

(

dkk−1 ∧, Q̃B
)

D
. (3.51)

Finally, integrating away Q̃B from (3.51) yields the dressing coset action (3.49) where

Ê = (QEQ̃)−1Q. (3.52)

Let us now recover the dual dressing coset (3.23) from the gauged E-model (3.34). We

decompose l as the product of one element k̃(σ) of the loop group LK̃ and one element

h(σ) of the loop group LK as in eq. (3.12)

l(σ) = k̃(σ)h(σ), k̃ ∈ LK̃, h ∈ LK. (3.53)

Inserting the decomposition (3.53) into (3.34), we obtain

S̃E(k̃, h, A) =

∫

dτ

∮

(∂σhh
−1, k̃−1(∂τ k̃k̃

−1−Aτ )k̃)D−
∫

dτ

∮

(Aτ , ∂σk̃k̃
−1)D

−1

2

∫

dτ

∮

(∂σk̃k̃
−1−Aσ+k̃∂σhh

−1k̃−1, E(∂σk̃k̃−1−Aσ+k̃∂σhh
−1k̃−1))D.

(3.54)

We write Aσ as

Aσ = Adk̃JAdk̃−1Aσ + Π̃(k̃)Aσ, (3.55)

and introduce a K-valued field Λ

Λ := ∂σhh
−1 − JAdk̃−1Aσ. (3.56)

We can now rewrite (3.54) as

S̃E(k̃,Λ, A) =

∫

dτ

∮

(Λ, k−1(∂τ k̃k̃
−1−Π̃(k̃)Aτ )k̃)D−

∫

(A ∧, dk̃k̃−1)D+
1

2

∫

(A ∧, Π̃(k̃)A)D

−1

2

∫

dτ

∮

(∂σk̃k̃
−1−Π̃(k̃)Aσ+k̃Λk̃−1, E(∂σk̃k̃−1−Π̃(k̃)Aσ+k̃Λk̃−1))D.

(3.57)
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It is easy to perform the computation integrating away Λ from S̃E(k̃,Λ, A), because the

only difference with respect to the similar computation leading from (3.7) to (3.13) is

the replacement of ∂τ k̃k̃
−1 by ∂τ k̃k̃

−1 − Π̃(k̃)Aτ , of ∂σkk
−1 by ∂σkk

−1 − Π̃(k̃)Aσ and of

∂σhh
−1 by Λ. The result is therefore the following gauged second order action of the dual

Poisson-Lie σ-model (3.13):

S̃E(k̃, A) =
1

2

∫

dτ

∮
(

(

E−1 + Π̃(k̃)
)−1

(∂+k̃k̃
−1 − Π̃(k̃)A+), ∂−k̃k̃

−1 − Π̃(k̃)A−

)

D

+

+
1

2

∫

(A ∧, Π̃(k̃)A)D −
∫

(A ∧, dk̃k̃−1)D . (3.58)

Integrating away the gauge field A gives

S̃
Ê
(k̃) =

1

2

∫

dτ

∮
(

(

Ê + Π̃(k̃)
)−1

∂+k̃k̃
−1, ∂−k̃k̃

−1

)

D

, (3.59)

where the operator Ê is given by eq. (3.52).

We summarize: starting from the gauged non-degenerate E-model (3.34), we have pro-

duced the dressing coset pair (3.49) and (3.59), or equivalently, the pair (3.22) and (3.23).

For completeness, let us check that the operator Ê given by (3.52) indeed verifies the

relation (3.32), if the operator Ê is given by eq. (3.41). First of all we find that

Im(Ê + Ê2)⊕F = (1 + E)V ⊥ ⊕F . (3.60)

We have to show that

{x+ (QEQ̃)−1Qx, x ∈ K} = (1 + E)V ⊥ ⊕F , (3.61)

or, equivalently, to show that

{Qx+ (QEQ̃)−1Qx, x ∈ K} = (1 + E)V ⊥. (3.62)

The right-hand-side of (3.62) is equal to {Q̃x̃+EQ̃x̃, x ∈ K̃}, we have to show therefore that

{Qx+ (QEQ̃)−1Qx, x ∈ K} = {Q̃x̃+ EQ̃x̃, x ∈ K̃}. (3.63)

But this is evidently true since EQ̃x̃ ∈ V ⊥ ∩ K, hence EQ̃x̃ = (QEQ̃)x̃.

4 DHKM model as the degenerate Ê-model

The main concern of the present section is to show that the DHKM σ-model (1.1) can be

extracted from an appropriate isotropically gauged non-degenerate E-model (3.34) by the

procedure described in section 3.3 (after eq. (3.46)). Said in other words, for an appropriate

choice of the Drinfeld double D, of the non-degenerate operator E , of the gauge group F

and of the maximally isotropic subgroup K̃Ω ⊂ D, the DHKM σ-model is the dressing

coset [64] living on the double coset target F\D/K̃Ω.
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We start with the description of the relevant Drinfeld double D which is the direct

product KC×KC, where KC denotes the complexification of the simple compact group K.

The invariant bilinear form (., .)D on the Lie algebra D = KC⊕KC is given by the formula

(

zL⊕zR, z
′
L⊕z′R

)

D
:=

4κ

sin (ρL)
ℑ tr

(

eiρLzLz
′
L

)

+
4κ

sin (ρR)
ℑ tr

(

e−iρRzRz
′
R

)

, za, z
′
a ∈ KC, a = L,R.

(4.1)

Here the symbol ℑ means taking the imaginary part of a complex number, κ is a positive

integer and the absolute values of the real parameters ρL, ρR range in the open interval

]0, π[. The positive integer choice of κ guarantees the required 2π ambiguity of the WZ

term of the associated E-model action which is needed for the consistent quantization. We

note in this respect that the bilinear form (4.1) can be rewritten as

(

zL⊕zR, z
′
L⊕z′R

)

D
:= 4κ cot (ρL)ℑ tr

(

zLz
′
L

)

+4κ cot (ρR)ℑ tr
(

zRz
′
R

)

+4κℜ tr
(

zLz
′
L

)

−4κℜ tr
(

zRz
′
R

)

.

(4.2)

The first part on the right-hand-side, containing ℑ tr, leads to the cohomologically trivial

part of the WZ three-form on the Drinfeld double KC × KC and it does not require the

discrete normalization. However, the ℜ tr part contributes to the WZ three-form in a coho-

mologically non-trivial way and it must be therefore appropriately discretely normalized.

The next step is to specify the non-degenerate operator E : D → D. It is given by the

formula

E(zL ⊕ zR) = i

(

1− µ2
L

2µL
zL + e−iρL

1 + µ2
L

2µL
z∗L

)

⊕ i

(

1− µ2
R

2µR
zR + eiρR

1 + µ2
R

2µR
z∗R

)

, (4.3)

where z∗ stands for the Hermitian conjugation and µL, µR are real parameters having,

respectively, the same signs as the parameters ρL, ρR.

We note that the operator E given by eq. (4.3) is the direct some of two copies of the E-
operators used for the construction of the Yang-Baxter σ-model with the WZW term [57].

It is straightforward to check that the operator E defined by eq. (4.3) verifies all three

properties needed to define the non-degenerate E-model, namely, it squares to the identity,

it is self-adjoint with respect to the bilinear form (4.1) and the bilinear form (., E .)D on D
is strictly positive definite.

The first order action SE(l) of the non-degenerate E-model defined by the data (D, E)
is given by the general expression (3.3). In order to recover the σ-model (1.1) out of it,

we have to gauge it isotropically in the sense of section 3.3, that is, to produce the gauge

invariant first order action SE(l, A) given by eq. (3.34). For the gauge group F ⊂ D, we

choose the diagonal embedding of the simple compact group K into D = KC ×KC. The

elements of F have therefore the form (f, f) ∈ D, f ∈ K and the elements of the Lie

algebra F have the form x ⊕ x ∈ D, x ∈ K. The gauge group F is isotropic because it is

easy to check that it holds

(x⊕ x, y ⊕ y)D = 0, ∀x, y ∈ K. (4.4)

The operator E given by eq. (4.3) commutes with the adjoint action of the Lie group F

on D because it holds (Adfz)
∗ = Adf (z

∗) for f ∈ K, z ∈ KC. To fit into the general
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gauging procedure of section 3.3, the last thing to check is that the restriction of the non-

degenerate bilinear form (., E .)D onto the subalgebra F remains non-degenerate. But this

is true because this restriction is given by the formula3

(x⊕ x, E(y ⊕ y))F = −2κ
(

µL cot
ρL
2

+ µ−1
L tan

ρL
2

+ µR cot
ρR
2

+ µ−1
R tan

ρR
2

)

tr(xy).

(4.5)

We claim that the ingredients D, E and F underlie the dressing coset coinciding with

the DHKM σ-model (1.1) with the emancipated parameter α. But if so, why D, E and F do

not depend on the TsT parameters? It turns out that the r2 TsT parameters are not visible

at the first order formalism but they appear in the process of the extraction of the second

order σ-model from the gauged action (3.34). Speaking more precisely, it is the choice of

the maximally isotropic subgroup K̃Ω of D which depends on the TsT matrix Ω and this

choice is needed to trigger the procedure starting by eq. (3.46) and permitting to extract

from the first order action (3.34) the second order σ-model living on the target F\D/K̃Ω.

Recall at the same time that here we are touching the very core of the Poisson-Lie T-duality

story: every (degenerate) E-model gives rise to as many geometrically non-equivalent σ-

models as is the number of maximally isotropic subgroups of the Drinfeld double D which

are not related by an inner automorphism. At the same time, all those geometrically

inequivalent σ-models are dynamically equivalent as the Hamiltonian systems possibly up

to the dynamics of a finite number of zero modes determined by the string boundary

conditions (for more details see ref. [63]). In our particular case, a class of maximally

isotropic subgroups is parametrized by the TsT matrix Ω : T → T . Changing of the value

of the matrix Ω from one to another is thus the Poisson-Lie T-duality transformation; the

first order Hamiltonian dynamics of the σ-models remains independent of the choice of Ω

(up to the finite number of degrees of freedom), however, their target space geometries do

depend on the choice of Ω.

Now we describe in detail the maximally isotropic subgroup K̃Ω ⊂ D. First of all, it

has the form of the semidirect product AΩ⋉(N×N), where N is the nilpotent subgroup of

KC appearing in the Iwasawa decomposition KC = KAN and AΩ is certain Ω-dependent

r-dimensional isotropic subgroup of the group AC ×AC. Actually, the maximally isotropic

subgroup K̃Ω is fully determined by its Lie algebra K̃Ω which can be conveniently described

in terms of the Yang-Baxter operator R as the following half-dimensional subspace of the

double D = KC ⊕KC

K̃Ω =

{

e−
iρL
2

(

(R−i)uL+
8κ

sin ρR
Ωt(R2+1)uR

)

⊕e
iρR
2

(

(R−i)uR−
8κ

sin ρL
Ω(R2+1)uL

)

;uL, uR ∈ K
}

.

(4.6)

Recall that Ω : T → T is arbitrary and Ωt stands for the transposition with respect to the

bilinear form on the Cartan subalgebra T defined by the trace. It is the matter of a simple

check that the restriction of the bilinear form (., .)D on K̃Ω vanishes.

3Note that the trace tr on the compact Lie algebra is negative definite, moreover, in order to obtain a

consistent quantum theory, we normalize it in such a way that the ambiguity in the WZ term in (1.9) is a

multiple of 2π.

– 17 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
6

It is perhaps interesting to make a small digression and to represent the Lie algebra

structure of K̃Ω as an alternative commutator [., .]R,ρ,Ω on the vector space K ⊕K

[uL⊕uR, vL⊕vR]R,ρ,Ω =

=
(

sin
(ρL

2

)

R+cos
ρL
2

)

(

[uL, vL]R+
8κ

sin ρR
[Ωt(R2+1)uR, vL]−

8κ

sin ρR
[Ωt(R2+1)vR, uL]

)

⊕

⊕
(

− sin
(ρR

2

)

R+cos
ρR
2

)

(

[uR, vR]R−
8κ

sin ρL
[Ω(R2+1)uL, vR]+

8κ

sin ρL
[Ω(R2+1)vL, uR]

)

.

(4.7)

Here the notation [., .]R means

[u, v]R := [Ru, v] + [u,Rv]. (4.8)

Note that for Ω = 0, the Lie algebra K̃Ω becomes the direct sum of two Lie algebras

KR,ρL ⊕KR,ρR characterized by the commutators

[u, v]R,ρL =
(

sin
(ρL

2

)

R+cos
ρL
2

)

[u, v]R, [u, v]R,ρR =
(

− sin
(ρR

2

)

R+cos
ρR
2

)

[u, v]R, u, v ∈ K.

(4.9)

Consider now the first order action (3.34) of the isotropically gauged E-model:

SE(l, A) =
1

2

∫

dτ

∮

(∂τ ll
−1−2Aτ , ∂σll

−1)D+

+
1

4

∫

d−1

∮

(dll−1 ∧, [∂σll
−1, dll−1])D−

1

2

∫

dτ

∮

(∂σll
−1−Aσ, E(∂σll−1−Aσ))D.

(4.10)

Following the general procedure described in section 3.3, we write the field l ∈ KC×KC as

l = mh̃Ω, (4.11)

where m is K × K-valued field and h̃Ω takes values in K̃Ω. It is easy to see that the

decomposition (4.11) is global for whatever Ω. Inserting it into the action (4.10), we

obtain4

SE(m, h̃, A) =
1

2

∫

dτ

∮

(∂τmm−1, ∂σmm−1)D+
1

4

∫

d−1

∮

(dmm−1 ∧, [∂σmm−1, dmm−1])D

+

∫

dτ

∮

(∂σh̃Ωh̃
−1
Ω ,m−1(∂τmm−1−Aτ )m)D−

∫

dt

∮

(Aτ , ∂σmm−1)D+

+
1

2

∫

dτ

∮

(∂σmm−1−Aσ+m∂σh̃Ωh̃
−1
Ω m−1, E(∂σmm−1−Aσ+m∂σh̃Ωh̃

−1
Ω m−1))D.

(4.12)

4Note the presence of three more terms in the action (4.12) which are absent in eq. (3.47). This is

because in (3.47) we have considered the field k taking values in the maximally isotropic subgroup which

is not the case for our field m.
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We wish to integrate away the field ∂σh̃Ωh̃
−1
Ω . In the case of absence of the gauge

field A, the result would be given by the general formula (3.15). In the presence of A, the

formula (3.15) has to be modified accordingly:

SE(m,A)) = +
1

4

∫

dτ

∮

(

(1−2PΩ,m(E)) (m−1∂+m−m−1A+m),m−1∂−m−m−1A−m
)

D
+

+
1

4

∫

d−1

∮

(

m−1dm, [m−1∂σm,m−1dm]
)

D
+
1

4

∫

dτ

∮

(A+, ∂−mm−1)D−
1

4

∫

dτ

∮

(A−, ∂+mm−1)D,

(4.13)

where PΩ,m(E) : D → D is the projection with the image K̃Ω and the kernel (Id +

Adm−1EAdm)K̃Ω.

It remains to determine explicitly the projection PΩ,m(E). We first note that there is

no dependence of m since the operator Adm commutes with the operator E defined by the

formula (4.3); therefore PΩ,m(E) ≡ PΩ. Then we find that the kernel (Id + E)K̃Ω is the

half-dimensional subspace of D which can be parametrized by the elements sL ⊕ sR of the

Lie algebra K ⊕K via

(Id + E)K̃Ω = e−i
ρL
2 (1 + iµL)sL ⊕ ei

ρR
2 (1 + iµR)sR.

We have to calculate the action of the projection PΩ on the elements xL ⊕ xR of the Lie

algebra K ⊕K; it is determined from the unambiguous decomposition

xL⊕xR = e−i
ρL
2 (1−iµL)sL⊕ei

ρR
2 (1−iµR)sR+

+e−
iρL
2

(

(R−i)uL+
8κ

sin ρR
Ωt(R2+1)uR

)

⊕e
iρR
2

(

(R−i)uR−
8κ

sin ρL
Ω(R2+1)uL

)

.

(4.14)

Said differently: given xL ⊕ xR, we have to find sL, sR, uL, uR ∈ K (they are given unam-

biguously) such that the relation (4.14) holds. Then we have

PΩ(xL⊕xR) = e−
iρL
2

(

(R−i)uL+
8κ

sin ρR
Ωt(R2+1)uR

)

⊕e
iρR
2

(

(R−i)uR−
8κ

sin ρL
Ω(R2+1)uL

)

.

(4.15)

We find straightforwardly

uL = 8κµL sin ρL
sin

(

ρR

2

)

−µR cos
(

ρR

2

)

sin ρL sin ρR+64µLµRκ2ΩtΩ
Ωt(R2+1)xR+

+
(

sin
(ρL

2

)

+µL cos
(ρL

2

))

(

1

1−µLR
R2− sin ρL sin ρR

sin ρL sin ρR+64µLµRκ2ΩtΩ
(R2+1)

)

xL;

(4.16)

uR = 8κµR sin ρR
sin

(

ρL

2

)

+µL cos
(

ρL

2

)

sin ρL sin ρR+64µLµRκ2ΩtΩ
Ω(R2+1)xL+

+
(

− sin
(ρR

2

)

+µR cos
(ρR

2

))

(

1

1−µRR
R2− sin ρL sin ρR

sin ρL sin ρR+64µLµRκ2ΩtΩ
(R2+1)

)

xR.

(4.17)
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By inserting xL :=∂+kLk
−1
L +kLA+k

−1
L and xR :=∂+kRk

−1
R +kRA+k

−1
R into eqs. (4.16),

(4.17) and in the left-hand-side of eq. (4.15), then by substituting the result into the right-

hand-side of eq. (4.15), we proceed to the straightforward evaluation of the action (4.13).

Indeed, we set m = (k−1
L , k−1

R ), we change the sign of A and we find that the action (4.13)

becomes

S[kL, kR, A] = −
∫

dτ

∮

∑

a,b=L,R

tr
(

(∂+kak
−1
a − kaAa+k

−1
a )Mab(∂−kbk

−1
b − kbAb−k

−1
b )

)

+

+ κ (IWZ(kL)− IWZ(kR))

− κ

∫

dτ

∮

tr
(

A−(k
−1
L ∂+kL − k−1

R ∂+kR)−A+(k
−1
L ∂−kL − k−1

R ∂−kR)
)

,

(4.18)

where A = AL = AR, A± = Aτ ± Aσ are the light cone components of A = Aτdτ + Aσdσ

and the quantities Mab, a, b = L,R are given by

MLL=
2µLκ

sinρL(1+µ2
L)

(

1+
(

µ
2
L cos2

ρL

2
−sin2 ρL

2

)

(

R

µL

+

(

1−64
1+µ2

L

µL sinρL sinρR
κ
2
µRΩ

tÑ−1Ω

)

(R2+1)

))

,

MRR=
2µRκ

sinρR(1+µ2
R)

(

1+
(

µ
2
R cos2

ρR

2
−sin2 ρR

2

)

(

R

µR

+

(

1−64
1+µ2

R

µR sinρL sinρR
κ
2
µLΩN

−1Ωt

)

(R2+1)

))

,

MLR=−
(

sin
(ρL

2

)

+µL cos
(ρL

2

))(

sin
(ρR

2

)

+µR cos
(ρR

2

)) 16κ2

sinρL sinρR
N−1Ωt(R2+1);

MRL=
(

sin
(ρR

2

)

−µR cos
(ρR

2

))(

sin
(ρL

2

)

−µL cos
(ρL

2

)) 16κ2

sinρL sinρR
Ñ−1Ω(R2+1) (4.19)

with

N = 1 +
64µLµRκ

2

sin ρL sin ρR
ΩtΩ, Ñ = 1 +

64µLµRκ
2

sin ρL sin ρR
ΩΩt. (4.20)

It is straightforward to verify that the quantities Mab, a, b = L,R given by eqs. (4.19)

coincide with those defined in eqs. (1.4), (1.5) and (1.6) if we make the following identifi-

cations

2κ

sin ρL
=

1+µ2
L

µL

,
2κ

sin ρR
=

1+µ2
R

µR

, (4.21)

Ω = −
1

4
cos

(ρL

2

)

cos
(ρR

2

)

ω, η
2
a = µ

2
a cos

2 ρa

2
−sin2 ρa

2
, Aa = µa cos

2 ρa

2
−µ

−1
a sin2 ρa

2
, a = L,R.

(4.22)

Assuming those identifications and integrating away A± from (4.18), we recover the orig-

inal DHKM model (1.1) with k = kLk
−1
R . If we do not constrain the parameters by the

identifications (4.21) and (4.22), then the integrating away of A± gives the version of the

DHKM model with the emancipated parameter α. In particular, for the vanishing TsT

matrix, we obtain the bi-YB-WZ model (1.9) with the emancipated parameter α. The

reader may ask now: but where we see in the E-model construction the parameter α? Or,

said more precisely, how α is related to the E-model parameters µL, µR, ρL, ρR and κ?

To answer these questions, we have to perform a detailed account of the number and

of the range of the independent parameters featuring in the dressing coset action (1.1). If
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the identifications (4.21) and (4.22) are imposed, then the resulting dressing coset (1.1) is

characterized by 3 + r2 parameters κ, ηL, ηR and the TsT matrix ω. Recall that κ must

be an integer in order that the WZW term ambiguity be the multiple of 2π and must

be positive in order that the Hamiltonian of the model be positive. To insure also the

integrability, the authors of [18] have shown that it must further hold

1 + η2a ≥ κ2, a = L,R. (4.23)

If the identifications (4.21) and (4.22) are not imposed, we have seemingly 5 + r2

free parameters: the same positive integer κ as before, the TsT matrix Ω and the real

parameters µL, µR, ρL, ρR. Why do we say “seemingly”? Because one of those 5 + r2

parameters turns out to be superfluous5 and there are in reality just 4+r2 free parameters:

κ, Ω, ρL, ρR, and the sought parameter α ∈]− 1, 1[ given by

α =
µR − tan

(

ρR
2

)

µR + tan
(

ρR
2

) .
µL − tan

(

ρL
2

)

µL + tan
(

ρL
2

) . (4.24)

Said in other words, it turns out that in the resulting σ-model action (1.1) extracted from

the E-model data D, E , F the parameters µL and µR appear only in the combination (4.24)

(this combination can assume any value from the interval ]− 1, 1[).

We provide two ways of proving the fact that if we change µL and µR in such a way that

α does not change then we obtain from those changed E-model data the same dressing coset

σ-model as from the unchanged ones. The first way uses the result obtained in ref. [64],

where it is stated that the Lagrangian of the dressing cosets σ-models depends only on the

parameters characterizing the subspace V ⊥
+ ⊕ F of the double D (cf. section 3.3 for the

notation). In our particular case (4.1), (4.3), we find

V ⊥
+ ⊕F =

{

u−α cos (ρR)−cos (ρL)

2 sin (ρR) sin (ρL)
v−i

1

sin (ρR)
v ⊕ u+

α cos (ρR)−cos (ρL)

2 sin (ρR) sin (ρL)
v+i

α

sin (ρL)
v; u, v ∈ K

}

.

(4.25)

The second method is more straightforward and it amounts to the substitution of the

formulas (4.19) into eqs. (1.3) and then into (1.1). This tedious calculation permits to

extract the formula (4.24) from the explicit form of the obtained σ-model Lagrangians. In

particular, for the case of the vanishing TsT matrix Ω, the second order action (1.1) of the

dressing coset (4.18), (4.19) becomes simply the action (1.9)

Sbi-YB-WZ(k) = κIWZ(k) + κ

∫

dτ

∮

tr k−1∂+k
α+ eρLRkeρRR

α− eρLRkeρRR
k−1∂−k. (4.26)

Recall that R is the Yang-Baxter operator and Rk stands for the operator Adk−1RAdk. As

we already said in section 1, the action (4.26) may be interpreted as the result of the bi-

Yang-Baxter deformation of the WZW model, because the case α = 0 corresponds exactly

to the WZW model with the level κ.

5The suspicion that the superfluity of one of the parameters takes place was brought into our mind by

the numerical analysis of Gleb Kotousov [68], who kindly accepted our request to run the SU(2) case on

the computer.
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Let us say more about the ranges of the original DHKM parameters κ, ηL, ηR and of

the dressing coset ones κ, ρL, ρR and α. We remark, in particular, that the middle formula

of the identification (4.22) implies the inequalities

|µa| ≥
∣

∣

∣
tan

ρa
2

∣

∣

∣
, q = L,R, (4.27)

because otherwise the quantities η2L and η2R would be negative. We observe also, that if

the inequalities (4.27) are satisfied then the required inequalities (4.23) hold true as they

should. Thus we conclude that in the regime |µa| ≥
∣

∣tan ρa
2

∣

∣ we can reach the original

DHKM parametrization by imposing the identifications (4.21) and (4.22). In this case, we

find easily that it holds

α =
η2L + 1− κ

η2L + 1 + κ

η2R + 1− κ

η2R + 1 + κ
, tan

ρa
2

=
κη2a

Aa(1 + η2a)
, a = L,R. (4.28)

Moreover, combining eqs. (4.21) and (4.24), we observe that after the identifications (4.21)

and (4.22) are imposed the parameter α is no longer free because it can be expressed just

in terms of κ, ρL and ρR. By the way, the inequalities |µa| ≥
∣

∣tan ρa
2

∣

∣ imply also that α

is non-negative. Is there something wrong with the values of |µa| smaller than
∣

∣tan ρa
2

∣

∣?

No, there is not. From the point of view of our degenerate Ê-model construction those

values are perfectly legitimate and, as we are going to show in the next section, they

are also compatible with the integrability. Actually, the strictly negative values of α are

reached when |µL| <
∣

∣tan ρL
2

∣

∣ and, simultaneously, |µR| >
∣

∣tan ρR
2

∣

∣ or vice versa. If either

µL = tan ρL
2 or µR = tan ρR

2 , then α = 0.

Coming back to the case where we do not impose the DHKM identifications (4.21)

and (4.22), we observe that α is a free parameter independent on κ, ρL and ρR and that

it takes values in the interval ] − 1, 1[. Note however that once the identifications (4.21)

and (4.22) are applied, α cannot be negative. What happens however in the region α ≤ 0?

Is it so different than the region α ≥ 0? We conjecture that the dynamics of the dressing

coset (1.1) where the DHKM identifications (4.21) and (4.22) are not applied does not

change much when we flip the sign of α because the regions α ≥ 0 and α ≤ 0 are probably

related by some new Poisson-Lie T-duality. The point is that our Drinfeld double D may

have more maximally isotropic subgroups than those described by eq. (4.6), and this fact

would lead to a richer T-duality pattern than just that which amounts to the changing

of the TsT matrix. We would make the present paper too voluminous if we wanted to

give here the full account of the all Poisson-Lie T-dualities of the DHKM model (although

it is the task which should be accomplished in the future), nevertheless we give here an

indication why we believe that the regions α ≥ 0 and α ≤ 0 are related by some new

Poisson-Lie T-duality. It is because it is true in the limiting case ρL → 0.

Taking the limit ρL → 0 at the E-model level is a subtle exercise because of the

singularity of the bilinear form (., .)D given by eq. (4.1), however, this limit can be easily

considered for the second order action (4.26); we obtain simply

SYB−WZ(k) = κIWZ(k) + κ

∫

dτ

∮

tr k−1∂+k
α+ eρRR

α− eρRR
k−1∂−k. (4.29)
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As already the notation indicates, the σ-model (4.29) turns out to be nothing but the so

called YB-WZ model introduced in ref. [21]. To see it, we rewrite (4.29) as

SYB−WZ(k) = κIWZ(k) + κ

∫

dτ

∮

tr k−1∂+k(a+ bR+ cR2)k−1∂−k, (4.30)

where

a =
α+ 1

α− 1
, b =

2α sin ρR
1− 2α cos ρR + α2

, c =
α+ 1

α− 1
+

1− α2

1− 2α cos ρR + α2
. (4.31)

It can be checked easily, that it holds

b2 =
c

a
(a2 − ac− 1), (4.32)

therefore our σ-model (4.29) coincides with the YB-WZ model as described in ref. [27].

Moreover, it was shown it [27], that the model (4.30) supplemented by the constraint (4.32)

is Poisson-Lie T-dual to the model

S̃YB−WZ(k) = κIWZ(k) + κ

∫

dτ

∮

tr k−1∂+k(ã+ b̃R+ c̃R2)k−1∂−k, (4.33)

where

ã =
1

a
, b̃ = −b, c̃ = −b2

c
(4.34)

and

b̃2 =
c̃

ã
(ã2 − ãc̃− 1). (4.35)

Rewriting the T-dual σ-model (4.33) back into our form as

S̃YB-WZ(k) = κIWZ(k) + κ

∫

dτ

∮

tr k−1∂+k
α̃+ eρ̃RR

α− eρ̃RR
k−1∂−k, (4.36)

we find that the T-duality transformation (4.34) gets translated into

α̃ = −α,
1 + α̃

1− α̃
tan

ρ̃R
2

=
1 + α

1− α
tan

ρR
2
. (4.37)

Said in other words, the T-duality indeed exchanges the regions α ≥ 0 and α ≤ 0.

What happens if the value of α in the bi-YB-WZ action (4.26) approaches the borders

of the interval ] − 1, 1[? Consider e.g. the case α → 1. This is a singular limit but it may

give rise to a nontrival structure if we let at the same time κ, ρL and ρR tend to zero. More

precisely, we set

ρL = 2κbL, ρR = 2κbR, α = e−2κa, a > 0 (4.38)

and then consider the limit κ → 0 in the action (4.26). In this way we obtain the bi-Yang-

Baxter deformation of the principal chiral model [53, 54]:

Sbi−YB(k) = −
∫

dτ

∮

dσ tr

(

k−1∂+k
1

a+ bRR+ bLRk
k−1∂−k

)

. (4.39)
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5 Integrability of the DHKM model

The purpose of the present section is to prove the integrability of the DHKM model (4.18),

(4.19) in the case when the DHKM identifications (4.21) and (4.22) are not imposed. Said

in other words, our concern is to study the integrability if the parameter α is emancipated.

For that, we shall work directly in the E-model formalism. Our strategy of proof will

consist in representing the field equations of the model in terms of two K-valued currents

J = Jτdτ + Jσdσ and B = Bτdτ +Bσdσ as follows

∂+B− − ∂−B+ + [B+, B−] + ξ2[J+, J−] = 0, (5.1)

∂+J− + [B+, J−] = 0, ∂−J+ + [B−, J+] = 0. (5.2)

Here B± = Bτ ± Bσ and J± = Jτ ± Jσ. As shown in section 2.1.3 of refs. [22, 23], the

system of the equations (5.1) and (5.2) admits the following Lax pair with the spectral

parameter z

L±(z) = −B± − ξz±1J±. (5.3)

Indeed, it is straightforward to check that the zero curvature condition

∂+L−(z)− ∂−L+(z)− [L+(z),L−(z)] = 0 (5.4)

is equivalent to the system (5.1) and (5.2).

Coming back to the general dressing coset story described in section 3.3, it is easy to

work out the field equations of the isotropically gauged E-model (3.34). They read

∂τ ll
−1 −Aτ = E(∂σll−1 −Aσ); (5.5)

(∂σll
−1 −Aσ)2 = 0; (5.6)

(

∂τ ll
−1 −Aτ

)

2
= 0, (5.7)

where we recall that every element y of the Drinfeld double Lie algebra D can be unam-

biguously written as

y = y0 + y1 + y2, y0 ∈ V ⊥ = (F ⊕ EF)⊥, y1 ∈ F , y2 ∈ EF . (5.8)

In what follows, we shall need a refinement of the decomposition (5.8) which is obtained

by decomposing further y0 as

y0 = y+ + y−, (5.9)

where

Ey± = ±y±. (5.10)

We write also

y± ∈ V ⊥
± , V ⊥

± = (1± E)V ⊥. (5.11)

With this notation, the equations of motion (5.5), (5.6) and (5.7) can be rewritten as

(∂±ll
−1)2 = 0, (∂±ll

−1)1 = A±, (∂±ll
−1)∓ = 0. (5.12)

– 24 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
6

Indeed, the relations (∂±ll
−1)2 = 0 are the direct consequences of the equations (5.6)

and (5.7), because Aτ , Aσ ∈ F . Furthermore, the fact that ∂σll
−1−Aσ ⊂ F⊥ = V ⊥⊕F and,

simultaneously, E(∂σll−1 − Aσ) ⊂ F⊥ means that ∂σll
−1 − Aσ ⊂ V ⊥, or, said differently,

that (∂σll
−1)1 = Aσ. This is true because EV ⊥ = V ⊥ and F ∩ EF = {0} so that a

non-vanishing component (∂σll
−1 − Aσ)1 would imply the non-vanishing component of

(E(∂σll−1 −Aσ))2. Similarly, using the fact that the operator E squares to the identity we

can rewrite eq. (5.5) as

E(∂τ ll−1 −Aτ ) = ∂σll
−1 −Aσ (5.13)

and then the changing the roles of σ and τ in the previous chain of arguments leads to the

conclusion that (∂τ ll
−1)1 = Aτ . In this way, we have proved that (∂±ll

−1)1 = A±. Finally,

knowing that (∂±ll
−1)2 = 0 and (∂±ll

−1)1 = A± permits to rewrite eq. (5.5) as

(∂τ ll
−1)0 = E(∂σll−1)0, (5.14)

or, equivalently, as

E(∂τ ll−1)0 = (∂σll
−1)0. (5.15)

Adding and substracting eqs. (5.14) and (5.15) gives (∂±ll
−1)∓ = 0.

We now specify the equations of motions (5.12) for the gauged E-model constructed

in section 4, which underlies the (4 + r2)-parametric DHKM model (4.18), (4.19) with the

identifications (4.21) and (4.22) not imposed. Recall that the Drinfeld double D is in this

case the direct product KC × KC, the invariant bilinear form (., .)D on the Lie algebra

D = KC ⊕KC is given by the formula

(

zL⊕zR, z
′
L⊕z′R

)

D
:=

4κ

sin (ρL)
ℑ tr

(

eiρLzLz
′
L

)

+
4κ

sin (ρR)
ℑ tr

(

e−iρRzRz
′
R

)

, za, z
′
a ∈ KC, a = L,R,

(5.16)

the isotropic subalgebra F consists of the elements (x ⊕ x), x ∈ K and the eponymous

self-adjoint operator E : D → D commuting with the adjoint action of F is given by the

formula

E(zL ⊕ zR) = i

(

1− µ2
L

2µL
zL + e−iρL

1 + µ2
L

2µL
z∗L

)

⊕ i

(

1− µ2
R

2µR
zR + eiρR

1 + µ2
R

2µR
z∗R

)

. (5.17)

We want to describe the subspaces V ⊥
± ⊂ D corresponding to those data. We note that

V ⊥
± ⊂ (Id ± E)D, where the half-dimensional subspaces (Id ± E)D can be conveniently

parametrized in terms of the elements u±L,R of the Lie algebra K as

(Id± E)D =
{

ei(∓mL−
1

2
ρL)u±L ⊕ ei(∓mR+ 1

2
ρR)u±R, u±L,R ∈ K

}

, (5.18)

where we have traded the parameters µL,R for mL,R according to the formulas

µa = tan (ma), a = L,R. (5.19)

Note that the subspaces V ⊥
± are formed by the vectors in (Id ± E)D perpendicular to F

which gives

V ⊥
± =

{

ei(∓mL−
1

2
ρL) sin

(

±mR + ρR
2

)

sin (ρR)
J± ⊕ ei(∓mR+ 1

2
ρR) sin

(

∓mL + ρL
2

)

sin (ρL)
J±, J± ∈ K

}

.

(5.20)
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The equations of motions (5.12) are then solved by

∂+ll
−1 = e−i(mL+

1

2
ρL) sin

(

mR + ρR
2

)

sin (ρR)
J+ ⊕ e−i(mR− 1

2
ρR) sin

(

−mL + ρL
2

)

sin (ρL)
J+ +A+ ⊕A+,

(5.21)

∂−ll
−1 = ei(mL−

1

2
ρL) sin

(

−mR + ρR
2

)

sin (ρR)
J− ⊕ ei(mR+ 1

2
ρR) sin

(

mL + ρL
2

)

sin (ρL)
J− +A− ⊕A−,

(5.22)

where the K-valued fields J±, A± must be such that the Bianchi identity be verified:

∂−(∂+ll
−1)− ∂+(∂−ll

−1) + [∂+ll
−1, ∂−ll

−1] = 0. (5.23)

Inserting the expressions (5.21), (5.22) into the left-hand-side of (5.23), we obtain
(

∂−(∂+ll
−1)−∂+(∂−ll

−1)+[∂+ll
−1, ∂−ll

−1]
)

2
= 0; (5.24)

(

∂−(∂+ll
−1)−∂+(∂−ll

−1)+[∂+ll
−1, ∂−ll

−1]
)

1
=

= (∂−A+−∂+A−+[A+, A−]+β[J+, J−])⊕(∂−A+−∂+A−+[A+, A−]+β[J+, J−]) ; (5.25)
(

∂−(∂+ll
−1)−∂+(∂−ll

−1)+[∂+ll
−1, ∂−ll

−1]
)

+
=

= e−i(mL+
1

2
ρL)SL

+ (∂−J+−[A−+α+J−, J+])⊕e−i(mR− 1

2
ρR)SR

+ (∂−J+−[A−+α+J−, J+]) ;

(5.26)
(

∂−(∂+ll
−1)−∂+(∂−ll

−1)+[∂+ll
−1, ∂−ll

−1]
)

−
=

= ei(mL−
1

2
ρL)SL

− (−∂+J−+[A++α−J+, J−])⊕ei(mR+ 1

2
ρR)SR

− (−∂+J−+[A++α−J+, J−]) ;

(5.27)

where

α± = ± 1

α− α−1

(

SR
±

SL
±

− SL
±

SR
±

)

, β = SL
+S

L
− − cos (mL)

cos
(

ρL
2

) (SL
+α+ + SL

−α−) (5.28)

SL
± :=

sin
(

±mR + ρR
2

)

sin (ρR)
, SR

± :=
sin

(

∓mL + ρL
2

)

sin (ρL)
, α =

SL
−S

R
+

SL
+S

R
−

.

(5.29)

Note that the parameter α is the same as the one featuring in eq. (4.24).

The equation (5.23) together with eqs. (5.24), (5.25), (5.26) and (5.27) then imply the

validity of the following system of equations

∂−J+ − [A− + α+J−, J+] = 0, ∂+J− − [A+ + α−J+, J−] = 0; (5.30)

∂−A+ − ∂+A− + [A+, A−] + β[J+, J−] = 0. (5.31)

The system (5.30) and (5.31) admits the Lax pair (5.3) with spectral parameter because it

is equivalent to the system (5.1) and (5.2) upon the identification

B± = −A± − α∓J±, ξ2 = α+α− + β. (5.32)

The dressing coset (4.18), (4.19) is therefore integrable also in the case when the DHKM

identifications (4.21) and (4.22) are not imposed.
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6 Renormalization of the DHKM model

6.1 Generalities about the renormalization of the non-degenerate E-models

The fact that a given σ-model has the first order dynamics which can be expressed in terms

of a non-degenerate E-model is very useful for the study of its ultraviolet properties, because

such model is automatically renormalizable. Indeed, it was established in [90, 92, 95], that

the renormalization group flow respects the structure of the E-model, just flowing from one

epynomous operator E to another. This flow is described by an elegant formula derived

in [92] (and used in an different context already in [34, 94]):

dEAB

ds
= (EACEBF − ηACηBF )

(

EKDEHE − ηKDηHE
)

f C
KH f F

DE . (6.1)

Here s is the RG flow parameter and the capital Latin indices refer to the choice of a basis

TA of the Lie algebra D:

EAB := (TA, ETB)D, ηAB := (TA, TB)D, [TA, TB] = f C
AB TC . (6.2)

The indices are lowered and raised with the help of the tensor ηAB and its inverse.

Up to an irrelevant normalization constant, the flow formula (6.1) can be cast in the

basis-independent way [51]:

dE
ds

= P+[[P+,P−]]P− + P−[[P+,P−]]P+, (6.3)

where the projections P± are defined as

P± =
1

2
(1± E), (6.4)

and the bracket [[., .]] : S2D × S2D → S2D is defined on the symmetric product S2D as

[[A,B]] := [A′, B′]⊗ [A′′, B′′]. (6.5)

Here we use the Sweedler notation A = A′⊗A′′, B = B′⊗B′′ and we view the self-adjoint

operators P± as the elements of S2D in the sense of the formula

P±x := P ′
±(P ′′

±, x)D, x ∈ D. (6.6)

We give now an equivalent description of the RG flow of the operator E in terms of

the flow of the half-dimensional subspaces E± ⊂ D constituted by the eigenvectors of E
corresponding to the eigenvalue ±1. The formula (6.3) is then equivalent to the following

infinitesimal changes of the vector spaces E±:

E± + δE± =

{

v± +
δs

2
S±v±, v± ∈ E±

}

, (6.7)

where the operators S± : E± → E∓ are given by the formulas

S± := ±P∓[[P+,P−]]P±. (6.8)
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The advantage to work with the operators S± is technical, because the following simple

formulas can be straightforwardly derived for their matrix elements [85]:

(v∓,S±v±)D = ∓ tr(P±adv±P∓adv∓P±), v± ∈ E±. (6.9)

Let us illustrate how the formula (6.9) accounts for the renormalization of the Yang-Baxter

σ-model [52], the action of which reads

SYB(k) = −
∫

dτ

∮

dσ tr

(

k−1∂+k
1

a+ bR
k−1∂−k

)

. (6.10)

Here a > 0 and b ≥ 0 are real parameters, tr is negative definite and R is the Yang-Baxter

operator.

The E-model underlying the Yang-Baxter σ-model was first constructed in [52]. The

Drinfeld double D is the complexification KC of the simple compact Lie group K, the

invariant bilinear form (., .)D on the Lie algebra D is given by the formula

(z, w)D =
2

b
ℑ tr(zw), z, w ∈ KC (6.11)

and the operator E reads

Ez =
i

2

((

a

b
− b

a

)

z +

(

b

a
+

a

b

)

z∗
)

. (6.12)

If x± ∈ K then

P±x± =
1

2

(

1∓ i
b

a

)

x±. (6.13)

Picking u ∈ K, we find easily

P+adP+x+
P−adP

−
x
−

P+u =
1

4

(

1+
b2

a2

)

P+adP+x+
P−[x−, u] =

1

16

(

1+
b2

a2

)2

P+[x+, [x−, u]],

(6.14)

hence

tr
(

P+adP+x+
P−adP−x−P+

)

=
1

16

(

1 +
b2

a2

)2

tr
(

adx+
adx−

)

≡ cK
16

(

1 +
b2

a2

)2

tr(x+x−).

(6.15)

Note that cK is the double of the dual Coxeter number (for example, CK = 4 for su(2)).

At the same time, we have for the RG flow

δ

(

b

a

)

=
b(P−x−, ix+)D

tr(x+x−)
δ

(

b

a

)

= −2b(P−x−, δ(P+x+))D
tr(x+x−)

= −b(P−x−,S+(P+x+))D
tr(x+x−)

δs =

=
b tr

(

P+adP+x+
P−adP−x−P+

)

tr(x+x−)
δs =

bcK
16

(

1 +
b2

a2

)2

δs.

The match of this formula with the RG flow of the Yang-Baxter σ-model obtained in

the literature is perfect (cf. eq. (4.9) of ref. [89] with the identification of the parametres:

ζ = 0, t = a, tη = b). Note also, that b does not flow, being the kinematical parameter

characterizing the inner product (., .)D; the flow of the parameter a is therefore

ȧ = − cK
16a2

(a2 + b2)2. (6.16)
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6.2 Generalities about the renormalization of the degenerate Ê-models

The automatic renormalizability of the degenerate Ê-models (the dressing cosets) was es-

tablished in [85]. As explained in section 3.2, the degenerate Ê-model is characterized by

the R-linear self-adjoint operator Ê : F⊥ → F⊥, that commutes with the adjoint action of

the isotropic subalgebra F on F⊥ and verifies few other properties, that is, its kernel must

contain F , the image of the operator Ê2−Id has to be contained in F and the bilinear form

(., Ê .)F⊥ has to be positive semi-definite. The description of the RG flow of the operator

Ê is done in [85] in terms of the flow of the subspaces Ê± ⊂ D defined as

Ê± = Im(Ê2 ± Ê). (6.17)

It is fully sufficient to consider just the flow of the subspace Ê+ which is

Ê+ + δÊ+ =

{

v̂+ +
δs

2
Ŝ+v̂+, v̂+ ∈ Ê+

}

, (6.18)

where the operator Ŝ+ : Ê+ → Ê− is characterized by its matrix elements

(v̂−, Ŝ+v+)D = − tr(P̂+adv̂+P̂⊥
+adv̂−P̂+), v̂± ∈ Ê±. (6.19)

We denote P̂± the orthogonal projections on the subspaces Ê± and P̂⊥
+ = IdD − P̂+. Note

that P̂⊥
+ does not project on the subspace Ê−! Only in the case F = {0}, that is in the non-

degenerate case, the projections P̂⊥
+ and P̂− get equal, the non-degenerate formula (6.9) is

then the special case of the general formula (6.19).

Let us now illustrate how the formula (6.9) accounts for the renormalization of the bi-

Yang-Baxter deformation of the principal chiral model introduced in [53, 54]. The action

of this σ-model reads

Sbi−YB(k) = −
∫

dτ

∮

dσ tr

(

k−1∂+k
1

a+ bRR+ bLRk
k−1∂−k

)

, (6.20)

where a > 0, bL ≥ 0 and bR ≥ 0 are real parameters, tr is negative definite, R is the

Yang-Baxter operator and Rk stands for the operator Adk−1RAdk. The RG flow of the

parameters a, bL, bR has been found previously in ref. [89] and it reads

ḃR = ḃL = 0, ȧ = − cK
16a2

(a2 + (bL − bR)
2)(a2 + (bL + bR)

2). (6.21)

Thus our aim is to recover the flow (6.21) from the formula (6.19).

Let us first interpret the σ-model action (6.20) as the dressing coset. The relevant

Drinfeld double D turns out to be the direct product KC×KC, the invariant bilinear form

(., .)D on the Lie algebra D = KC ⊕KC is given by the formula

(

zL ⊕ zR, z
′
L ⊕ z′R

)

D
:=

2

bL
ℑ tr

(

zLz
′
L

)

+
2

bR
ℑ tr

(

zRz
′
R

)

, za, z
′
a ∈ KC, a = L,R (6.22)

and the operator E : D → D reads

E(zL ⊕ zR) = i

(

1− µ2
L

2µL
zL +

1 + µ2
L

2µL
z∗L

)

⊕ i

(

1− µ2
R

2µR
zR +

1 + µ2
R

2µR
z∗R

)

. (6.23)
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Moreover, the sign of µL must be the same as the sign of bL and the same thing must be

true for µR and bR.

Choosing F = K ⊕ K, we follow the procedure described in section 3.3 and obtain

the σ-model (6.20) out from the gauged E-model action (3.34). The identification of the

parameters is as follows

a =
bL
µL

+
bR
µR

. (6.24)

Following the general construction of section 3.3, we identify the subspaces Ê± with the

subspaces (Id + E)V ⊥, that is

Ê± =

{∓bL
2µL

(1∓ iµL)v± ⊕ ±bR
2µR

(1∓ iµR)v±; v± ∈ K
}

. (6.25)

Accordingly, it is convenient to parametrize the elements of Ê± in terms of the Lie algebra

K by constructing the following bijective maps q± : K → Ê±:

q±(x) :=
∓bL
2µL

(1∓ iµL)x⊕ ±bR
2µR

(1∓ iµR)x. (6.26)

Now we pick x±, u ∈ K and we find

P̂+adq+(x+)P̂⊥
+adq−(x−)P̂+q+(u)

= −1

4
P̂+adq+(x+)P̂⊥

+

(

b2L(1+µ2
L)

µ2
L

[x−, u]⊕
b2R(1+µ2

R)

µ2
R

[x−, u]

)

= −1

4
P̂+adq+(x+)

(

bLbR
aµLµR

(a+µLbL+µRbR) ([x−, u]⊕[x−, u])+

(

b2L−b2R
a

+
bL
µL

− bR
µR

)

q−([x−, u])

)

=

= − bLbR
4aµLµR

(a+µLbL+µRbR) q+([x+, [x−, u]])−
1

4

(

b2L−b2R
a

+
bL
µL

− bR
µR

)

P̂+[q+(x+), q−([x−, u])] =

= −1

4

(

bLbR
aµLµR

(a+µLbL+µRbR)+
1

4

(

b2L−b2R
a

+
bL
µL

− bR
µR

)2
)

q+([x+, [x−, u]]) =

= − 1

16a2
(a2+(bL−bR)

2)(a2+(bL+bR)
2) q+([x+, [x−, u]]).

We infer that

tr
(

P̂+adq+(x+)P̂⊥
+adq−(x−)P̂+

)

= − cK
16a2

(a2+(bL−bR)
2)(a2+(bL+bR)

2) tr(x+x−). (6.27)

At the same time, we have for the RG-flow

δa =

(

q−(x−), δ
(

bL
µL

)

x+⊕−δ
(

bR
µR

)

x+

)

D

tr(x−x+)
= −(q−(x−), 2δq+(x+))D

tr(x+x−)
= −

(

q−(x−), Ŝ+q+(x+)
)

D

tr(x+x−)
δs =

=
tr(P̂+adq+(x+)P̂⊥

+adq−(x−)P̂+)

tr(x+x−)
δs = − bLK

16a2
(a2+(bR−bL)

2)(a2+(bR+bL)
2)δs.

This formula matches perfectly the RG flow (6.21) of the bi-Yang-Baxter deformation of

the principal chiral model as obtained in the literature (cf. eq. (4.9) of ref. [89] with the

identification of the parametres: t = a, tζ = bL and tη = bR).
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6.3 Renormalizability of the bi-YB-WZ model

Now we are coming up to the true concern of the present section which is to establish the

renormalization group flow of the bi-YB-WZ model. Thanks to the formula (6.19), we can

do that working directly in the first order E-model formalism. The great advantage of this

first order approach resides in the fact that it tells us immediately which parameters do

not flow. Indeed, all parameters that characterize the structure of the Drinfeld double are

RG invariant; in the present context, this statement concerns the parameters κ, ρL and

ρR which enter in the definition (4.1) of the bilinear form (., .)D. Moreover, the parame-

ters featuring in the σ-model action which characterize the embedding of the maximally

isotropic subgroup in the double are not present in the first order E-model data and they

therefore neither flow nor they influence the flow of the E-model parameters. In particular,

the TsT matrix appearing in (4.6) can be safely set to zero without any lack of generality.

The only parameters which can flow are thus those which characterize the operator

E , or, speaking more precisely, those characterizing the subspace V ⊥
+ ⊕ F in the notation

of section 3.3. In the DHKM context, a quick glance at the formula (4.25) makes us to

conclude that the sole parameter which can flow is α. This is a nontrivial statement!

Indeed, considering the bi-YB-WZ action

Sbi-YB-WZ(k) = κIWZ(k) + κ

∫

dτ

∮

tr k−1∂+k
α+ eρLRkeρRR

α− eρLRkeρRR
k−1∂−k, (6.28)

would we see easily without the E-model insight that the action (6.28) is written in a RG

friendly way, that is, only the parameter α can flow and all other parameters κ, ρL and ρR
are RG invariant? Of course, this qualitative insight is not enough for us and we are now

going to determine the flow of α quantitatively.

We start by recalling the DHKM E-model set up introduced in section 4. The Drinfeld

double D is the direct product KC × KC, the invariant bilinear form (., .)D on the Lie

algebra D = KC ⊕KC is given by the formula

(

zL⊕zR, z
′
L⊕z′R

)

D
:=

4κ

sin (ρL)
ℑ tr

(

eiρLzLz
′
L

)

+
4κ

sin (ρR)
ℑ tr

(

e−iρRzRz
′
R

)

, za, z
′
a ∈ KC, a = L,R

(6.29)

and the non-degenerate operator E : D → D is given by

E(zL ⊕ zR) = i

(

1− µ2
L

2µL
zL + e−iρL

1 + µ2
L

2µL
z∗L

)

⊕ i

(

1− µ2
R

2µR
zR + eiρR

1 + µ2
R

2µR
z∗R

)

. (6.30)

Choosing F = (K ⊕ K)diag, performing the isotropic gauging following the recipe of sec-

tion 3.3 and considering the case ω = 0, we arrive at the σ-model action (6.28) with

α =
µR − tan

(

ρR
2

)

µR + tan
(

ρR
2

) .
µL − tan

(

ρL
2

)

µL + tan
(

ρL
2

) . (6.31)

The subspaces Ê± needed for the RG calculations are nothing but the subspaces V ⊥
±

identified explicitely in eq. (5.20)

Ê± =

{

ei(∓mL−
1

2
ρL) sin

(

±mR + ρR
2

)

sin (ρR)
J± ⊕ ei(∓mR+ 1

2
ρR) sin

(

∓mL + ρL
2

)

sin (ρL)
J±, J± ∈ K

}

.

(6.32)
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Here

µa = tan (ma), a = L,R. (6.33)

As in the previous subsection, it is convenient to introduce certain bijective maps q± : K →
Ê±. The following choice is the most convenient one

q+(x) =

(

cot

(

mL +
1

2
ρL

)

− i

)

x⊕
(

cot

(

−mR +
1

2
ρR

)

+ i

)

sin (ρR)

sin (ρL)
αx. (6.34)

q−(x) =

(

cot

(

mL − 1

2
ρL

)

+ i

)

sin (ρL)

sin (ρR)
αx⊕

(

cot

(

−mR − 1

2
ρR

)

− i

)

x. (6.35)

Now we pick x±, u ∈ K, we evoke the definitions (5.28), (5.29) of the quantities α, α±,

β, SL,R
± and we calculate the matrix elements of the flow operator Ŝ+:

P̂+adq+(x+)P̂⊥
+adq−(x−)P̂+q+(u) =

=
1

sin ρL
P̂+adq+(x+)

( −α2β

sin ρR(SL
−S

R
+)

2
([x−, u]⊕[x−, u])+

αα−

SL
−S

R
+

q−[x−, u]

)

=

= − α2(β+α+α−)

sin ρL sin ρR(SL
−S

R
+)

2
q+([x+, [x−, u]]) =

−α

(

cot

(

mL+
1

2
ρL

)

−i− αα−

sin ρLSL
−S

R
+

)(

sin ρL
sin ρR

(

cot

(

−mL+
1

2
ρL

)

−i

)

− α+

sin ρRSL
−S

R
+

)

q+([x+, [x−, u]]) =

=
α sin ρL
sin ρR

∣

∣

∣

∣

cot

(

mL+
1

2
ρL

)

−i− αα−

sin ρLSL
−S

R
+

∣

∣

∣

∣

2

q+([x+, [x−, u]]) =

=
α
(

(α−1)2+4α sin2 ρL−ρR
2

) (

(α−1)2+4α sin2 ρL+ρR
2

)

sin ρL sin ρR(α2−1)2
q+([x+, [x−, u]]).

(6.36)

In the course of this calculation, the following trigonometric identities were particularly

useful

cot

(

∓mL +
1

2
ρL

)

sin ρL =
SR
∓

SR
±

+ cos ρL,
1

Sa
+S

a
−

− Sa
+

Sa
−

− Sa
−

Sa
+

= 2 cos ρa, a = R,L.

(6.37)

We infer from (6.36) that

tr
(

P̂+adq+(x+)P̂⊥
+adq−(x−)P̂+

)

tr(x+x−)
= cK

α
(

(α−1)2+4α sin2 ρL−ρR
2

) (

(α−1)2+4α sin2 ρL+ρR
2

)

sin ρL sin ρR(α2−1)2
,

(6.38)

therefore it holds for the RG variation

(q−(x−), δ(q+(x+)))D
tr(x+x−)

=

(

q−(x−), Ŝ+(q+(x+))
)

D

2 tr(x+x−)
δs = − tr(P̂+adq+(x+)P̂⊥

+adq
−
(x

−
)P̂+)

2 tr(x+x−)
δs =

= −cK
α
(

(α−1)2+4α sin2 ρL−ρR

2

) (

(α−1)2+4α sin2 ρL+ρR

2

)

2 sin ρL sin ρR(α2−1)2
δs. (6.39)
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Now we use the identities

cot

(

mL +
1

2
ρL

)

sin ρL + α cot

(

mR − 1

2
ρR

)

sin ρR = cos ρL − α cos ρR, (6.40)

α cot

(

mL − 1

2
ρL

)

sin ρL + cot

(

mR +
1

2
ρR

)

sin ρR = cos ρR − α cos ρL, (6.41)

to write

q+(x+) =

(

cos ρL − α cos ρR
2 sin ρL

x+ − ix+ ⊕−cos ρL − α cos ρR
2 sin ρL

x+ + i
sin ρR
sin ρL

αx+

)

+ φ+(x+),

(6.42)

q−(x−) =

(

cos ρR − α cos ρL
2 sin ρR

x− + i
sin ρL
sin ρR

αx− ⊕−cos ρR − α cos ρL
2 sin ρR

x− − ix−

)

+ φ−(x−).

(6.43)

where φ±(x±) are certain quantities belonging to F that we do not need to know explicitely

for our purposes; we need however the obvious fact that δφ+(x+) belongs to F .

Thanks to (6.42), we obtain

(q−(x−), δq+(x+))D
tr(x+x−)

= δα

(

q−(x−),−1
2 cos ρR x+⊕1

2 cos ρR x++i sin ρR x+
)

D

sin ρL tr(x+x−)
=

= δα

(

1
2(cos ρR−α cos ρL)x−+iα sin ρLx−⊕−1

2(cos ρR−α cos ρL)x−−i sin ρRx−,−1
2 cos ρR x+⊕1

2 cos ρR x++i sin ρR x+
)

D

sin ρR sin ρL tr(x+x−)

(6.44)

therefore
(q−(x−), δq+(x+))D

tr(x+x−)
= − 4κδα

sin ρR sin ρL
. (6.45)

Putting together eqs. (6.39) and (6.45), we obtain the RG flow of the parameter α:

dα

ds
= cK

α
(

(α− 1)2 + 4α sin2 ρL−ρR
2

) (

(α− 1)2 + 4α sin2 ρL+ρR
2

)

8κ(α2 − 1)2
. (6.46)

If we use the alternative set of parameters given by (cf. eq. (4.38))

κ = κ, ρL = 2κbL, ρR = 2κbR, α = e−2κa, (6.47)

the flow formula (6.46) gets rewritten as

da

ds
= −cK

(

{a}2κ + [bL − bR]
2
κ

) (

{a}2κ + [bL + bR]
2
κ

)

16{a}22κ
, (6.48)

where we have borrowed the notation from the “q-deformed literature”:

{x}κ :=
sinh (κx)

κ
, [x]κ :=

sin (κx)

κ
. (6.49)

– 33 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
6

The flow formula (6.48) lends itself perfectly to the study of the limit κ → 0 which was

performed at the end of section 4 to show that the bi-Yang-Baxter deformation of the

WZW model tends to the bi-Yang-Baxter deformation of the principal chiral model. Does

the flow formula (6.48) of the former deformation go in this limit to the flow formula (6.21)

of the latter? Yes, it does because it obviously holds

lim
κ→0

{x}κ = x, lim
κ→0

[x]κ = x. (6.50)

There are two more special cases, where our flow formulae (6.46) or (6.48) can be

compared with the results already obtained in the literature. First one corresponds to the

single Yang-Baxter deformation where ρL = 0 and ρR 6= 0. Upon the transformation (4.31),

an easy calculation shows that the flow (6.46) matches exactly the flow of the YB-WZ model

as obtained in ref. [27]. The second special case is the Lukyanov flow [72] which should

coincide with our flow (6.46) for the choice K = SU(2). To verify this is technically more

involved, because it is necessary to introduce coordinates on the group manifold, and we

devote an entire next subsection to this task.

6.4 Comparison with the Lukyanov flow

Lukyanov model is a non-linear σ-model living on the target of the group SU(2). It was

introduced in ref. [72] and, in the case of the vanishing TsT parameter, its target space

geometry is characterized by the following metric G and the Kalb-Ramond field B:

G =
(κ+P )(κ+P−1)

g2
dz2

(1−z2)(1−κ2z2)
+

1

g2
1

1−κ2z2+κQ(1−z2)
×

×
[

(1−κ
2z2+κP (1−z2))dv2+(1−κ

2z2+κP−1(1−z2))dw2−2(1−κ
2)zdwdv

]

, (6.51)

B =
1

g2

√

(κ+P )(κ+P−1)

(κ+Q)(κ+Q−1)

(1−κ
2)z

1−κ2z2+κQ(1−z2)
dv∧dw. (6.52)

Here z, v, w are appropriate coordinates on the group SU(2) which will be specified in what

follows and κ, P,Q, g are real free parameters of the model restricted by Lukyanov to the

values g > 0, κ ∈]0, 1[, P > 0 and Q > 0 (actually, P and Q were respectively denoted

in [72] as p2 and h2/κ and B given by (6.52) differs from Lukyanov’s one by an inessential

total derivative).

The RG flow of the parameters was found in [72] and it is given by

Ṗ = 0, Q̇ = 0, κ̇ = − g2κ(1−κ
2)

(κ+P )(κ+P−1)
, ġ =

g3(1−κ
2)2

4(κ+P )2(κ+P−1)2

(

1− (κ+P )(κ+P−1)

(κ+Q)(κ+Q−1)

)

.

(6.53)

Our goal in this subsection is to compare the Lukyanov target space data (6.51)

and (6.52) with those extracted from the general bi-YB-WZ action (6.28) for the spe-

cial case of the group K = SU(2). We do find the perfect match both of the target space

geometry and of the RG flow provided we carefully adjust the ranges of the Lukyanov

parameters and of the bi-YB-WZ ones. We make this adjusting at the very end of the

present section.
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We now write the bi-YB-WZ action

Sbi-YB-WZ(k) = κIWZ(k) + κ

∫

dτ

∮

tr k−1∂+k
α+ eρLRkeρRR

α− eρLRkeρRR
k−1∂−k (6.54)

in the standard coordinates on the SU(2) group manifold

k =

(

eiφ 0

0 e−iφ

)(

cos θ i sin θ

i sin θ cos θ

)(

eiψ 0

0 e−iψ

)

. (6.55)

We find first

k−1∂±k =

(

i(∂±ψ + cos (2θ)∂±φ) e−2iψ(i∂±θ − sin (2θ)∂±φ)

e2iψ(i∂±θ + sin (2θ)∂±φ) −i(∂±ψ + cos (2θ)∂±φ)

)

. (6.56)

The Yang-Baxter operator R acts on the elements of the Lie algebra K = su(2) as

R

(

iz y+ix

−y+ix −iz

)

=

(

0 x−iy

−x−iy 0

)

=
1

2

[(

−i 0

0 i

)

,

(

iz y+ix

−y+ix −iz

)]

, x, y, z ∈ R,

(6.57)

we thus infer that

eρRR

(

iz y + ix

−y + ix −iz

)

=

(

e−i
ρR
2 0

0 ei
ρR
2

)(

iz y + ix

−y + ix −iz

)(

ei
ρR
2 0

0 e−i
ρR
2

)

. (6.58)

Define elements T ∈ SU(2) and χ± ∈ su(2) as follows

T :=

(

cos θ −i sin θ

−i sin θ cos θ

)(

e−i
ρL
2 0

0 ei
ρL
2

)(

cos θ i sin θ

i sin θ cos θ

)(

e−i
ρR
2 0

0 ei
ρR
2

)

, (6.59)

χ± :=

(

i(∂±ψ + cos (2θ)∂±φ) i∂±θ − sin (2θ)∂±φ

i∂±θ + sin (2θ)∂±φ −i(∂±ψ + cos (2θ)∂±φ)

)

. (6.60)

Then the action (6.54) can be rewritten as

Sbi-YB-WZ(k) = κIWZ(k) + κ

∫

dτ

∮

dσ trχ+
α+AdT
α−AdT

χ−. (6.61)

We associate to the element T ∈ SU(2) an angle ξ ∈ [0, π] and an element t ∈ su(2) as

follows

ξ = arccos

(

1

2
trT

)

, t =
T − (cos ξ)1

sin ξ
. (6.62)

Here 1 is the unit matrix and we note that the singular values ξ = 0, π are avoided because

of the non-vanishing parameters ρL, ρR. Note also that it holds

cos ξ = cos
ρL
2

cos
ρR
2

− sin
ρL
2

sin
ρR
2

cos 2θ. (6.63)

As T varies with θ, the element t sweeps a hyperplane in su(2); indeed, we can check

easily that it holds

tr(rt) = 0 (6.64)
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where r is the following θ-independent element of su(2):

r =

(

0 iei
ρR
2

ie−i
ρR
2 0

)

. (6.65)

The crucial fact needed to evaluate the action (6.61) is the validity of the following identities

AdT t = t, AdT (rt± ir) = e∓i2ξ(rt± ir), (6.66)

tr t2 = −2, tr r2 = −2, tr(rt)2 = −2, tr tr = 0, tr r(rt) = 0, tr t(rt) = 0. (6.67)

We then infer from (6.66) and (6.67)

χ± = −1

2
tr(tχ±)t−

1

2
tr(rχ±)r −

1

2
tr(rtχ±)rt =

= −1

2
tr(tχ±)t−

1

4
tr((rt+ ir)χ±)(rt− ir)− 1

4
tr((rt− ir)χ±)(rt+ ir) (6.68)

and, subsequently,

α+AdT
α−AdT

χ− = −1

2

α+1

α−1
tr(tχ−)t−

1

4

α+e−i2ξ

α−e−i2ξ
tr((rt−ir)χ−)(rt+ir)−1

4

α+ei2ξ

α−ei2ξ
tr((rt+ir)χ−)(rt−ir).

(6.69)

Putting all together, we find

Sbi-YB-WZ(k) = κIWZ(k)−
κ

2

α+ 1

α− 1

∫

dτ

∮

dσ tr(tχ+) tr(tχ−)

− κ

4

∫

dτ

∮

dσ

(

α+ ei2ξ

α− ei2ξ
tr((rt+ ir)χ−) tr((rt− ir)χ+)

+
α+ e−i2ξ

α− e−i2ξ
tr((rt− ir)χ−) tr((rt+ ir)χ+)

)

=

= κIWZ(k)−
κ

2

∫

dτ

∮

dσ

(

α+ 1

α− 1
tr(tχ+) tr(tχ−)

+
α2 − 1

α2 + 1− 2α cos 2ξ
(tr(rχ+) tr(rχ−) + tr(rtχ+) tr(rtχ−))

)

+ κ

∫

dτ

∮

dσ
α sin 2ξ

α2 + 1− 2α cos 2ξ
(tr(rtχ+) tr(rχ−)− tr(rχ+) tr(rtχ−)) .

(6.70)

We find easily

tr(rχ±) = −2 cos
ρR
2
∂±θ−2 sin

ρR
2

sin 2θ ∂±φ, (6.71)

tr(rtχ±) =
2

sin ξ

((

cos
ρL
2
−cos

ρR
2

cos ξ
)

∂±θ+sin
ρL
2

sin 2θ ∂±ψ−sin
ρR
2

sin 2θ cos ξ ∂±φ
)

,

(6.72)
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tr(tχ±) = −2 sin 2θ

sin ξ
sin

ρL
2

sin
ρR
2
∂±θ+

+
2

sin ξ

(

sin
ρL
2

cos
ρR
2
+sin

ρR
2

cos
ρL
2

cos 2θ
)

∂±φ

+
2

sin ξ

(

sin
ρR
2

cos
ρL
2
+sin

ρL
2

cos
ρR
2

cos 2θ
)

∂±ψ. (6.73)

Combining eqs. (6.70), (6.71), (6.72) and (6.73), we then find the following background

metric ds2 and the Kalb-Ramond field B

1

2κ

1−α

1+α
ds2 = dθ2+dψ2+dφ2+2 cos 2θdψdφ− 4α sin2 2θ

(α−1)2+4α sin2 ξ

(

dψ̃2+dφ̃2−2 cos ξdψ̃dφ̃
)

,

(6.74)

B = κ cos 2θdψ∧dφ+ 4κα sin2 2θ

(α−1)2+4α sin2 ξ
cos ξdψ̃∧dφ̃. (6.75)

where

dψ̃ = sin
ρL
2

(

dψ +
cot ρL

2

sin 2θ
dθ

)

, dφ̃ = sin
ρR
2

(

dφ+
cot ρR

2

sin 2θ
dθ

)

. (6.76)

Now we trade the parameters κ, α, ρL and ρR for the parameters g, κ, P and Q as

follows6

g2 =
1

2k
.
1− α

1 + α
, P = − tan ρL

2

tan ρR
2

, Q = tan
ρL
2

tan
ρR
2
; (6.77)

κ =

√

(α− 1)2 + 4α sin2 ρL+ρR
2 −

√

(α− 1)2 + 4α sin2 ρL−ρR
2

√

(α− 1)2 + 4α sin2 ρL+ρR
2 +

√

(α− 1)2 + 4α sin2 ρL−ρR
2

, (6.78)

and, at the same time, we change the coordinates on the target K = SU(2) according to

the formulas

z =
cos 2θ + κ

1 + κ cos 2θ
,

v = ψ +
1

4
tan

ρR
2

ln
(

1 + κ
2 + 2κ cos 2θ

)

, w = −φ− 1

4
tan

ρL
2

ln
(

1 + κ
2 + 2κ cos 2θ

)

.

(6.79)

With these changements of the parameters and of the coordinates on the target, the met-

ric (6.74) becomes exactly the Lukyanov metric (6.51) and the Kalb-Ramond field (6.75)

becomes, up to a total derivative, the Kalb-Ramond field (6.52). The calculation prov-

ing this fact is tedious but straightforward and it is simplified by the repeated use of the

6For completeness, we list also the reciprocal transformation of the parameters:

κ =
1

2g2

√

(κ+P )(κ+P−1)

(κ+Q)(κ+Q−1)
, tan2 ρL

2
= −QP, tan2 ρR

2
= −QP

−1
, α =

√

(κ+Q)(κ+Q−1)−
√

(κ+P )(κ+P−1)
√

(κ+Q)(κ+Q−1)+
√

(κ+P )(κ+P−1)
.
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following formula (valid for α 6= 0, κ 6= 0)

(1− κ)2

4κ
=

(1−α)2

4α + sin2 ρL−ρR
2

sin ρL sin ρR
. (6.80)

Moreover, it can be checked directly that the transformation of the parameters (6.77), (6.78)

transforms the bi-YB-WZ flow (6.46) into the Lukyanov flow (6.53) (note that cK = 4 for

su(2), the parameters κ, ρL, ρR do not flow and the Lukyanov RG time of ref. [72] runs in

the opposite direction with respects to the conventions of sections 6.2 and 6.3 commonly

used in the Poisson-Lie literature).

It remains to discuss the issue of the possible ranges of the Lukyanov parameters g,

κ, P and Q and of the bi-YB-WZ parameters α, κ, ρL and ρR. In the Lukyanov paper,

all parameters are positive or non-negative, more precisely, he considered the case g > 0,

P > 0, Q > 0 and 0 ≤ κ < 1. Looking at eq. (6.77), we observe that this choice is out of

reach7 of the bi-YB-WZ model where P has necessarily the opposite sign with respect to

Q. On the other hand, the Lukyanov geometry (6.51) and (6.52) makes perfect sense (in

particular the metric remains positive definite) for a wider range of the parameters than

he considered in ref. [72]. This extended consistent range is given by

g > 0, κ ∈]− 1, 1[, P 6= 0, Q 6= 0, 1 + κP±1 > 0, 1 + κQ±1 > 0. (6.81)

The bi-YB-WZ model for SU(2) turns out to match the extended range Lukyanov model

without any need of analytical continuation. Indeed, for all admissible values of the bi-

YB-WZ parameters, i.e. κ ∈ N, −1 < α < 1, 0 < |ρL| < π and 0 < |ρR| < π, a

careful analysis shows that the Lukyanov parameters g,κ, P,Q given by the ranges of the

functions (6.77), (6.78) always respect the extended range conditions (6.81).

7 Outlook

The present work solves two from the open problems listed in the outlook of ref. [18],

namely, it provides the E-model formulation of the DHKM model and, also, it settles

the issue of the renormalizability. We believe, that the E-model insight should be helpful

also for tackling the remaining open question from the list, which is the status of the

Hamiltonian integrability of the model.

The dressing coset structure of the DHKM model indicates the occurrence of a rich T-

duality story which should go well beyond the simple T-duality corresponding to the chang-

ing of the TsT parameters. In particular, the example of the Poisson-Lie T-duality (4.34)

occurring in the YB-WZ model should generalize to the bi-YB-WZ context. How it happens

precisely remains to be worked out.

7However, if we permitted imaginary values of ρL and ρR then by an appropriate analytic continuations

of the target space coordinates we would reach the Lukyanov model within the range of the parameters

that he considered.
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