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1 Introduction

In this paper we are interested in theories living on M2-branes sitting at the tip of a Calabi-

Yau four-fold cone and the relation of their twisted compactifications on a Riemann surface

to AdS black holes physics. There are some interesting extremization problems that can

be formulated for such theories. The theory on M2-branes at a Calabi-Yau cone C(Y7),

where Y7 is a seven-dimensional Sasaki-Einstein manifold, is a three-dimensional N = 2
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superconformal field theory (SCFT) dual to AdS4 × Y7. In supersymmetric gauge theories

the R-symmetry current is not necessarily unique and mixes with the global symmetry cur-

rents. It is known that the exact R-symmetry of the three-dimensional theory is obtained

by extremizing the free energy on S3, FS3(∆a), as a function of the R-charges of fields and,

possibly, monopole operators [1]. The gravity dual of F -maximization is the volume mini-

mization principle discovered in [2, 3]. The equivalence of the two extremization principles

has been checked in many examples [4–10], although there is no general proof, since the

largeN limit of the S3 free energy is currently available only for a restricted class of theories.

On the other hand, twisted compactifications of M2-brane theories are IR dual to

AdS2 × Y9 backgrounds in M-theory, where Y9 is a fibration of Y7 over a Riemann surface

Σg, depending on a choice of magnetic fluxes na. These backgrounds can be interpreted as

the horizon of asymptotically AdS4×Y7 magnetically charged BPS black holes. An extrem-

ization principle for finding the entropy of magnetically charged black holes in AdS4×Y7 has

been proposed in [11, 12]. It involves extremizing the logarithm of the topologically twisted

index, i.e. I = logZΣg×S1 , the partition function of the three-dimensional SCFT on Σg×S1

with a A-twist along Σg [13]. This principle, dubbed I-extremization, has been success-

fully applied to the microscopic counting of the entropy of black holes in AdS4×S7 [11, 12]

and in many other situations [14–21].1 A gravity dual for I-extremization was recently

proposed in a series of interesting papers [41, 42]. It is the purpose of this paper to investi-

gate the relation between the two extremization principles. The analogous construction for

D3-branes at Calabi-Yau three-fold toric cones has been recently proved to be equivalent

to c-extremization for two-dimensional (0, 2) conformal field theories in full generality [41–

43]. We already proved in [43] that the construction in [41, 42] is equivalent off-shell to

I-extremization for the class of magnetically charged BPS black holes in AdS4 × S7 stud-

ied in [11, 12], where the dual field theory is ABJM [44]. In this paper, we extend this

observation in various directions.

We will compare the construction of [41, 42] with the field theory result in [14] which

shows that, for the very same theories for which we can compute the S3 free energy in the

large N limit, the I-functional can be written as

I(∆I , nI) = −1

2
(1− g)

(

2FS3(∆I) +
∑

I

(

nI

1− g
−∆I

)

∂FS3(∆I)

∂∆I

)

, (1.1)

where ∆I are the R-charges of a set of fields and monopoles, and nI the corresponding

magnetic fluxes (which can be set in relation to the magnetic charges na of the black hole).

If we choose an R-charge parameterization such that FS3(∆I) is homogeneous of degree

two, which is generally possible, (1.1) simplifies to

I(∆I , nI) = −1

2

∑

I

nI
∂FS3(∆I)

∂∆I
. (1.2)

As we will review in details, the R-charges ∆I and the fluxes nI parameterize the mixing

of R-symmetry with the abelian global symmetries of the theory. It will be important for

1See also [22–40] for related works in a similar context or other dimensions.
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us to distinguish between mesonic and baryonic symmetries. According to the holographic

dictionary, the first are associated with the isometries of the internal manifold Y7, while

the second come from the reduction of the M-theory form on non-trivial five-cycles in Y7.

For manifolds Y7 with no non-trivial five cycles, we will show that the construction

in [41, 42] is completely equivalent to the extremization of the I-functional given in (1.2),

and that this equivalence holds off-shell. This class of manifolds is somehow limited but

it contains Y7 = S7, whose dual is the ABJM theory [44], and the non-toric manifold

V 5,2 = SO(5)/SO(3), whose dual field theory has been found in [45]. For manifolds without

five-cycles we can turn on magnetic charges only for the mesonic symmetries associated

with the isometry of Y7. We will discuss in detail the V 5,2 example as a prototype of

this class of compactifications. In particular, we obtain a prediction for the entropy of

the general two-parameter family of asymptotically AdS4×V 5,2 black holes with arbitrary

magnetic charges under the Cartan subgroup of the internal isometry SO(5). It would be

interesting to find these solutions explicitly.

We then consider the general case of toric Calabi-Yau cones C(Y7), for which we can

use the master volume construction defined in [42]. In addition to the mesonic charges

associated to the three U(1) isometries of Y7, we can have a baryonic charge for every non-

trivial five-cycle Sα ⊂ Y7. Here the situation is more complicated. We want to compare

the former construction with the existing results for the large N limit of the topologically

twisted index, which only depend on a linear combination of the available magnetic charges,

corresponding to the mesonic directions only [14, 15]. Correspondingly, we identify a three-

parameter family of twisted compactifications, which we dub mesonic twist, where the

extremization is performed along the mesonic directions only. We will show that, for such

compactifications, the construction in [41, 42] is equivalent off-shell to the extremization of

the I-functional (1.2). This result is general and it can be proved for all toric Calabi-Yau

cones C(Y7) for which the equivalence between F -maximization and volume minimization

is valid. In particular, all the existing field theory computations to date have a counterpart

in the framework of [41, 42].

Our results for toric Calabi-Yau cones are restricted to a particular class of twisted

compactifications. This should be contrasted with the equivalence of the construction

in [41, 42] with c-extremization, which can be proved for an arbitrary toric Y7 and an

arbitrary choice of fluxes [43]. The reason for such restriction lies in our incomplete under-

standing of the large N limit of the S3 free energy and the topologically twisted index for

quivers with a holographic dual. It is known, for example, that the computation performed

in [5] and [14, 15] only works for quivers with vector-like matter fields.23 Moreover, there

are accidental flat directions at large N and the R-charges parameterizing the baryonic

symmetries disappear from the free energy functional FS3(∆I) [5]. Correspondingly, the

topologically twisted index (1.2) only depends on a combination of magnetic charges cor-

responding to the mesonic directions [14, 15]. It is not clear to us if this is just due to

our ignorance about more general saddle points in the large N limit or it is the signal of

2More precisely, the bi-fundamental fields must transform in a real representation of the gauge group

and the total number of fundamentals must be equal to the total number of anti-fundamentals.
3For an attempt to circumvent this problem see [8, 46, 47].
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something deeper. The construction in [41, 42] seems to work for a generic twist. This

does not necessarily guarantee that a corresponding supergravity solution really exists.4

Nevertheless, there are certainly examples of consistent supergravity solutions with only

baryonic charges [17, 48]. A field theory computation for such solutions is still missing.

In our analysis of the mesonic twist we uncover some general geometric relations on the

Sasakian volumes of cycles in Y7 that deserve attention in their own right and are discussed

in section 4.4 and demonstrated with examples in section 5.

The paper is organized as follows. In section 2 we discuss general features of three-

dimensional toric quivers and their twisted compactifications. We review the equivalence

between F -maximization and volume minimization, and the construction in [41, 42]. In

section 3 we show that the formalism [41, 42] for manifolds Y7 without five-cycles (theories

without baryonic symmetries) is equivalent off-shell to the I-extremization principle for

black holes in AdS4×Y7. We consider in details the example of V 5,2. In section 4, we focus

on the case of toric Y7. We discuss explicitly the case of the so-called universal twist [49]

and we define a three-parameter generalization, the mesonic twist, where again we can show

that the formalism [41, 42] is equivalent off-shell to I-extremization. For the convenience of

the reader, the technical aspects of the proof are deferred to appendix A. In section 4.4 we

discuss some geometrical aspects and the field theory interpretation underlying the mesonic

twist. In section 5 we present several examples based on quivers for toric Y7 that have been

discussed in the literature. We conclude with discussions and comments in section 6.

Note added. While we were writing this work, we became aware of [50] which has some

overlaps with the results presented here.

2 Extremization principles and their geometric duals

In this section we first review the construction of [2] for computing the volume of a toric

Sasaki-Einstein seven-manifold. We then discuss its relation to the R-symmetry and the

free energy of the holographic dual SCFT on a three-sphere, as shown in [4–6]. In the

second part of this section we give an overview of the geometric dual of the I-extremization

principle [11] obtained recently in [41, 42].

2.1 F -maximization from geometry

We are interested in gauge theories that are holographically dual to AdS4×Y7 backgrounds

in M-theory, where Y7 is a Sasaki-Einstein manifold. The holographic dictionary relates

the volume of the Sasaki-Einsten manifold to the S3 free energy of the dual CFT [4]

FS3 = N3/2

√

2π6

27Vol(Y7)
. (2.1)

Many N = 2 quivers describing such theories have been proposed in the literature. Most

of them are obtained by dimensionally reducing a parent four-dimensional quiver gauge

4Examples of possible obstructions are discussed in [41].

– 4 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
4

theory with bi-fundamentals and adjoints with an AdS5×Y5 dual, and then adding Chern-

Simons terms (whose levels sum to zero) and flavoring with fundamentals.

The value of FS3 and the exact R-symmetry of a three-dimensional N = 2 theory

can be found by extremizing the S3 free energy as a function of the R-charges ∆I of

the chiral elementary fields and monopoles [1]. This procedure is called F -maximization.

The R-charges ∆I parameterize the mixing of the R-symmetry with the abelian global

symmetries of the theory. We will distinguish between mesonic and baryonic symmetries.

For theories dual to AdS4 × Y7, mesonic symmetries are associated with the isometries of

Y7, which we take to be U(1)s, with s ≥ 1. We will be mostly interested in the toric case

where s = 4, but we will also consider non-toric examples. One of the mesonic symmetries

is the exact R-symmetry and the other s− 1 are global symmetries. In addition, we have a

baryonic symmetry for each non-trivial five-cycle Sα of Y7. They are holographically dual

to the gauge fields that we obtain by reducing the M-theory six-form potential on the five-

cycles Sα [51–53]. In supergravity language, the corresponding vector multiplets are called

Betti multiplets.5 In most of the known examples, the three-dimensional N = 2 theories

are quiver gauge theories that can have U(N)G or U(1)× SU(N)G gauge groups, where G

is the number of nodes, depending on the choice of quantization [44, 54].6 When the gauge

group is U(1)× SU(N)G we have baryonic operators obtained by wrapping M5-branes on

the five-cycles and this is the case we will be mostly interested in.7

The gravitational dual of F -maximization is the volume minimization found in [2, 3],

which works as follows. One can relax the Einstein condition on the metric and write

the volumes of a generic Sasaki manifold Y7(bi) and of its five-cycles Sα(bi) as functions

of the Reeb vector b = (b1, b2, . . . , bs). Supersymmetry requires b1 = 4. In general, the

cone C(Y7) is a Calabi-Yau three-fold. As shown in [2], the extremization of the function

VolS(Y7(bi)) reproduces the Reeb vector b̄ = (b̄1, b̄2, . . . , b̄s) and the volumes of the Sasaki-

Einstein manifold Y7. Remarkably, for a large class of examples, the volume functional

agrees off-shell with the S3 free energy [5, 6]

FS3(∆I) = N3/2

√

2π6

27VolS(Y7(bi))
, (2.2)

with a suitable parameterization of the R-charges ∆I(bi) of fields and monopoles. In order

to find the right parameterization, one considers all baryonic operators made with ele-

mentary fields and basic monopoles. These correspond to M5-branes wrapped on linear

combinations of the five-cycles and their dimension can be computed from the correspond-

5Notice that what we call baryonic not always reflects the field theory notion of baryonic symmetry for

the parent four-dimensional quiver. For example, the ABJM theory is dual to AdS4 × S7 and there are

no nontrivial five-cycles and therefore no baryonic symmetries in our sense. The baryonic symmetry of the

parent four-dimensional quiver, which is the well-known Klebanov-Witten theory [51], corresponds to an

isometry of S7 and it is a mesonic symmetry in our language.
6There are also quivers with orthogonal and symplectic gauge groups, see for example [55].
7The number of global symmetries is the same for both choices of gauge group, U(N)G or U(1) ×

SU(N)G [44, 54]. In the case of U(N)G, there are no baryons but we have instead monopole operators

obtained by wrapping M2-branes.
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ing volumes.8 In all known examples, the R-charges ∆I of fields and monopoles can be

computed as linear integer combinations of basic R-charges, corresponding to M5-branes

wrapped over U(1)s invariant five-cycles Sa and expressed in terms of the Sasaki vol-

umes [52, 53]

∆a(bi) ≡
2π

3b1

VolS(Sa(bi))

VolS(Y7(bi))
. (2.3)

In the toric case there are quite explicit expressions for these volumes, which are associated

with the vectors va, a = 1, . . . , d, of the toric diagram [2, 57]

VolS(Y7(bi)) =
π

3b1

d
∑

a=1

VolS(Sa(bi)) ,

VolS(Sa(bi)) = π3
ℓa−1
∑

k=2

(va, wk−1, wk, wk+1)(va, wk, w1, wℓa)

(va, b, wk, wk+1)(va, b, wk−1, wk)(va, b, w1, wℓa)
,

(2.4)

where wa, k = 1, . . . , ℓa, is a counterclockwise ordered sequence of vectors adjacent to va.

There is also an alternative way of computing the volumes using the Hilbert series, for

which we refer to [3, 8, 57]. This method can be used also for non-toric manifolds. We will

see an example in section 3.1.

Notice that, in the large N limit, the free energy FS3 only depends on a set of linear

combinations of the ∆I equal to the number of independent parameters bi and correspond-

ing to the mixing of the R-symmetry with the mesonic symmetries. Indeed, as shown in [5],

there are accidental flat directions at large N in FS3(∆I) and the R-charges parameterizing

the baryonic symmetries disappear from the free energy functional. This should be con-

trasted with the case of a-maximization and its relation to volume minimization [61], where

the baryonic symmetries explicitly enter in the trial a-charge. Extremizing FS3(∆I), we

can only predict the exact R-charges of the mesonic operators of the theory. However, when

the gauge group is U(1)× SU(N)G, consistency of the solution allows to derive constraints

expressing some of the remaining R-charges in terms of those appearing in FS3(∆I) [5].

This can be used to compute the exact R-charge of some baryonic operators in the theory.

We will see examples of such constraints in section 5.

2.2 I-extremization from geometry

We are actually interested in twisted compactifications of the three-dimensional N = 2

theories discussed in the previous section on a Riemann surface Σg of genus g. The holo-

graphic dual is an M-theory background AdS2×Y9, where topologically Y9 is a fibration of

Y7 over Σg, and can be interpreted as the horizon of magnetically charged BPS AdS4 black

holes. As in the original computation in [11, 12] for AdS4 × S7 black holes, the entropy of

magnetically charged BPS black holes should be obtained by extremizing the functional

I(∆I , nI) = logZΣg×S1(∆I , nI) , (2.5)

8Although there is no general prescription for arbitrary Y7, not even for toric manifolds, this can be done

in general for a large class of models including those in [56–60], using perfect matchings and the symplectic

quotient descriptions of Y7.
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where ZΣg×S1(∆I , nI) is the topologically twisted index [13], nI denote the magnetic charges

and ∆I are chemical potentials associated with elementary fields and monopoles. We refer

to this principle as I-extremization. A field theory computation, valid for a large class of

theories, shows that, in the large N limit, the I-functional can be parameterized in terms

of the R-charges of the fields and reads [14]

I(∆I , nI) = −1

2

∑

I

nI
∂FS3(∆I)

∂∆I
. (2.6)

This formula (2.6) is only valid for an R-charge parameterization that makes FS3(∆I) homo-

geneous.9 The same accidental symmetry that affects the largeN limit of the S3 free energy

appears in the computation of the topologically twisted index at large N , and, therefore,

the I-functional only depends on R-charges and fluxes along the mesonic directions [14].

The gravitational dual of I-extremization has been found in [41, 42]. The authors

of [41, 42] considered a class of off-shell backgrounds by imposing supersymmetry but

relaxing the equations of motion. More precisely, they considered M-theory backgrounds

of the form
ds211 = L2e−2B/3

(

ds2AdS2 + ds29
)

,

G = L3VolAdS2 ∧ F ,
(2.7)

where F is a closed two-form on Y9 and

ds29 = η2 + eBds2 . (2.8)

Here, η ≡ (dz + P )/b1, where ρ = dP is the transverse Ricci form, and ds2 is a Kähler

metric. The Reeb vector field associated with the R-symmetry reads

ξ = b1∂z =
s

∑

i=1

bi∂ϕi
, s ≥ 1 , (2.9)

where ∂ϕi
are real holomorphic vector fields generating the U(1)s action on Y7. When Y7

is toric, s = 4. Finally, the closed two-form F is given by

F = −b1J + d
(

e−Bη
)

, (2.10)

where J is the transverse Kähler form. Supersymmetry requires b1 = 1.

For the background of interest, the transverse Kähler cohomology class decomposes as

J = AVolΣg
+ ω , (2.11)

where ω is a transverse Kähler form on Y7 and A > 0 is a constant parameterizing the

Kähler class of Σg. We normalize
∫

Σg
VolΣg

= 1. The fibration of Y7 over Σg is specified by

s integer magnetic fluxes ni. We can introduce them through s U(1) gauge fields Ai on Σg

1

2π

∫

Σg

Fi = ni ∈ Z , i = 1, . . . , s , (2.12)

9For an arbitrary parameterization one can use (1.1). The expression (1.1) can be used also for

parameterizations of fluxes and R-charges, where a set of ∆I satisfies some linear constraint, provided that

the corresponding nI/(1− g) satisfy the same constraint. See [14, 15, 22, 43] for details.
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where Fi = dAi. Supersymmetry requires

n1 = 2− 2g , (2.13)

that we refer to as the twisting condition.

As shown in [41, 42], the on-shell background and the exact R-symmetry vector can

be found by extremizing the supersymmetric action

SSUSY(ξ; [J ]) =
1

6

∫

Y9

η ∧ ρ ∧ J3 , (2.14)

which is a function of the Reeb vector and the cohomology class of J , with the constraint

∫

Y9

η ∧ ρ2 ∧ J2 = 0 . (2.15)

The flux quantization conditions also require10

∫

Y7

η ∧ ρ ∧ J2 = 2N , (2.16)

where N is the total number of M2-branes and
∫

Sα×Σg

η ∧ ρ ∧ J2 = −2nαN , (2.17)

where nα is an integer, for all five-cycles Sα ⊂ Y7, and α = 1, . . . , dimH5(Y7,Z). The integer

numbers ni and nα are interpreted as the magnetic fluxes of the twisted compactification

on Σg. The nα are associated with the baryonic symmetries and the ni associated with the

mesonic ones. Finally, the R-charge of an operator obtained by wrapping a M5-branes on

a five-cycle Sα ⊂ Y7 is given by [41, 62]

R[Sα] = 2π

∫

Sα

η ∧ ω2 , (2.18)

where ω is the restriction of J to Y7. Since this is the R-charge of a baryonic operator,

R[Sα] is proportional to N .

As noticed in [41, 42] in the specific example of the magnetically charged AdS4 black

holes of [63], the on-shell value of SSUSY reproduces the entropy. This is also true for all

magnetically charged black holes in AdS4 × S7, as indirectly checked in [43] by comparing

with I-extremization. Since SSUSY is related to the holographic free energy of the horizon

solution, and the latter to the entropy by general arguments [17, 26, 27], we may expect

this to be true in general. If this is the case, the construction in [41, 42] gives an efficient

method to write the entropy of a class of black holes from few geometrical data, even

without knowing the explicit metric on Y7.

10Comparing with [41, 42], we set for simplicity L6 = (2πlP )
6 and Ma = −Nna.
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3 Theories with no baryonic symmetries

In this section we consider the case of manifolds Y7 with no non-trivial five-cycles and there-

fore dual field theories with no baryonic symmetries. Examples include Y7 = S7, whose dual

is the ABJM theory [44], and the non-toric V 5,2 = SO(5)/SO(3), whose dual field theory

has been found in [45].11 For the ABJM theory, we already checked in [43] that S(bi, na) is

equal off-shell to the I-functional (2.6). In this section we will check that this is also true for

the case of V 5,2 and, in general, for all manifolds Y7 with a U(1)s action and no five-cycles.

It is convenient to first rewrite the conditions of supersymmetry as follows [41, 42].

The supersymmetric action can be written as [42]

SSUSY =
A

2

∫

Y7

η ∧ ρ ∧ ω2 − π

3
b1∇

∫

Y7

η ∧ ω3 , (3.1)

where we defined the operator

∇ ≡
s

∑

i=1

ni∂bi . (3.2)

We can also write the constraints (2.15) and (2.16) as

N =
1

2

∫

Y7

η ∧ ρ ∧ ω2 ,

A

∫

Y7

η ∧ ρ2 ∧ ω = −πn1

∫

Y7

η ∧ ρ ∧ ω2 + πb1∇
∫

Y7

η ∧ ρ ∧ ω2 .

(3.3)

The derivation of (3.1) and (3.3) is given in [42] for toric Y5 but extends with little modi-

fications to seven dimensions and to the non-toric case.

We are interested in manifolds Y7 with no five-cycles. The supersymmetry condi-

tions (3.1) and (3.3) only depend on the cohomology classes of ω and ρ on the foliation

transverse to the Reeb vector action. Focusing, for simplicity, on the quasi regular case we

can take the quotient with respect to the Reeb action, and consider the base V = Y7/U(1).
12

The manifold V has only one two-cycle and, therefore, ω and ρ are proportional in coho-

mology

[ω] =
λ(b)

2b1
[ρ] , (3.4)

where λ(b) is a function to be found. Using (3.4) and the first equation in (3.3), we then

obtain

λ(b) = ±2b1

√

2N
∫

Y7
η ∧ ρ3

. (3.5)

Using the last equation in (3.3) we find

Aλ

2b1

∫

Y7

η ∧ ρ3 = −πn1λ
2

4b21

∫

Y7

η ∧ ρ3 + 2πb1∇N , (3.6)

11See [60] for an alternative model with fundamental chiral multiplets.
12For example, as a complex manifold, V can be identified with P

3 for Y7 = S7 and with the Grassmannian

Gr2(R
5) of two-planes in R

5, which admits a complex structure, for Y7 = V 5,2.
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and therefore, since ∇N = 0,

A = −πn1λ

2b1
. (3.7)

Now we are in a position to evaluate the functional (3.1). We may write, using the plus

sign in (3.5),

SSUSY =
Aλ2

8b21

∫

Y7

η ∧ ρ3 − πb1
24

∇
(

λ3

b31

∫

Y7

η ∧ ρ3
)

= −π(2N)3/2

3
√
b1

∇ b
3/2
1

√

∫

Y7
η ∧ ρ3

. (3.8)

We now notice that the expression

VolS(Y7) =
1

48b31

∫

Y7

η ∧ ρ3 , (3.9)

is formally identical to the volume of a Sasakian manifold Y7(bi) with Reeb vector b. Indeed,

this expression can be evaluated using a fixed point theorem which only depends on the

local complex geometry of C(Y7) near the fixed points [41]. Hence it formally coincides

with the expression for the Sasakian volume of Y7(bi) computed in [2, 3] and given in (2.4)

in the toric case. Form now on, we will understand the explicit dependence on bi in (2.4)

and just use the subscript S to indicate that the volumes are computed using the Sasaki

metric on Y7(bi).

We conclude that the entropy functional S(bi, ni) is given by

S(bi, ni) ≡ 8π2SSUSY = − 4√
b1
∇
√

2π6

27VolS(Y7)
N3/2 . (3.10)

Notice that, since the equations involve derivatives with respect to b1, we can set b1 = 1,

as required by supersymmetry, only at the end of the computation.

We are considering manifolds with no five-cycles. However, in analogy with the toric

case that we will discuss in the next section, we can consider the set Sa ⊂ Y7 of U(1)s

invariant submanifolds of dimension five and formally extend the quantization condition

to these cycles. We then also impose [42]

naN = −A

∫

Sa

η ∧ ρ ∧ ω + πb1∇
∫

Sa

η ∧ ω2 , (3.11)

where na are integers. Notice that, since there are no baryonic symmetries, the na must be

linear combinations of the mesonic fluxes ni. Using (3.5) and (3.7) we find

naN = 2πN

(

n1

∫

Sa
η ∧ ρ2

∫

Y7
η ∧ ρ3

+ b1∇
∫

Sa
η ∧ ρ2

∫

Y7
η ∧ ρ3

)

. (3.12)

Defining normalized R-charges (see (2.18))

∆a ≡ 2π

N

∫

Sa

η ∧ ω2 = 4π

∫

Sa
η ∧ ρ2

∫

Y7
η ∧ ρ3

, (3.13)
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we can therefore rewrite (3.12) as

na =
1

2
(n1∆a + b1∇∆a) =

1

2
∇(b1∆a) . (3.14)

In many quivers, including those for ABJM and V 5,2, the elementary fields can be associated

with linear combinations of invariant five-cycles Sa and their R-charges can be computed

using (3.13).

3.1 Example: the manifold V 5,2

The non-toric Sasaki manifold V 5,2 = SO(5)/SO(3) possesses an SO(5) × U(1)R ⊃ U(1)3

isometry, where U(1)R is identified with the R-symmetry on the SCFT side. The base V is

the Grassmannian Gr2(R
5), which admits a complex structure, and has only one two-cycle.

The dual gauge theory is given by the quiver [45]

N+k N−kB2

A1

B1

A2

φ1 φ2

(3.15)

with superpotential

W = Tr
[

φ3
1 + φ3

2 + φ1(A1B2 +A2B1) + φ2(B2A1 +B1A2)
]

. (3.16)

We will focus on the quiver with k = 1 which is dual to AdS4×V 5,2. The Calabi-Yau cone

C(V 5,2) is described by the equation

4
∑

ℓ=0

z2ℓ = 0 , (3.17)

which has a manifest SO(5) invariance. This arises as the solution to the F -term equation

for the adjoint fields

3φ2
1 +A1B2 +A2B1 = 0 , φ1 = −φ2 , (3.18)

using the variables

z0 ≡
√
3φ1 , z1 ≡

1

2
(A1 +B2) , z2 ≡ − i

2
(A1 −B2) ,

z3 ≡
1

2
(A2 +B1) , z4 ≡ − i

2
(A2 −B1) .

(3.19)

The R-charges of the adjoint fields are constrained by the superpotential to be ∆φi
= 2/3

while those of the bi-fundamental fields must satisfy

∆A1 +∆B2 = ∆A2 +∆B1 =
4

3
. (3.20)
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There are five obvious U(1)3 invariant divisors in C(V 5,2) that are obtained by setting

φ1 = 0, A1 = 0, A2 = 0, B1 = 0 and B2 = 0, respectively; and can be associated in a

one-to-one way to the fields. The restriction to V 5,2 gives five invariant five-cycles Sa.

The S3 free energy was derived in [5–7, 15] from localization and reads

FS3(∆a) =
4πN3/2

3

√

∆A1∆A2∆B1∆B2 . (3.21)

In order to compute the volume (3.9) we can use the Hilbert series method [3, 8, 57,

64].13 The Hilbert series is just the generating function of holomorphic functions on the

cone C(V 5,2), graded under U(1)3. We assign fugacities to the fields

φ1 → e−
ǫb1
4

∆φ1 ≡ t , A1 → e−
ǫb1
4

∆A1 ≡ t/y , A2 → e−
ǫb1
4

∆A2 ≡ t/x ,

B1 → e−
ǫb1
4

∆B1 ≡ tx , B2 → e−
ǫb1
4

∆B2 ≡ ty ,
(3.22)

where t corresponds to the R-symmetry, x and y are fugacities for the Cartan of SO(5),

and ǫ is just a rescaling parameter that we will send to zero at the end of the computation.

Since C(V 5,2) is a complete intersection, its Hilbert series is simply given by

H(t, x, y) =
1− t2

(1− t)(1− tx)(1− t/x)(1− ty)(1− t/y)
. (3.23)

The volume (3.9) of V 5,2 can be extracted as the coefficient of the leading pole in H(t, x, y)

when ǫ → 0 [3], i.e.

H(t, x, y) ∼ 48

π4

VolS(V
5,2)

ǫ4
, as ǫ → 0 . (3.24)

Hence, we obtain

VolS(V
5,2) =

π4

24

(

4

b1

)4 1

∆A1∆A2∆B1∆B2

. (3.25)

Comparing (3.21) with (3.25), we see that (2.2) is satisfied, when we set b1 = 4, as ap-

propriate for three-dimensional computations. We thus see that volume minimization is

equivalent to F -maximization off-shell.14

The action of the Reeb vector on the fields is the linearization of the U(1)R × SO(5)

action, namely (b1, b2, b3) ∼ log(t, x, y), and, therefore, from (3.22) we read

∆φ1 =
2

3
, ∆A1 =

2

3

b1 − b3
b1

, ∆A2 =
2

3

b1 − b2
b1

, ∆B1 =
2

3

b1 + b2
b1

, ∆B2 =
2

3

b1 + b3
b1

,

(3.26)

where we normalized the R-charges by requiring that ∆φ1 = 2/3. The same expression

can be derived by evaluating the volumes (3.13) as a limit of the Hilbert series for divisors,

using the method discussed in [57]. The volume (3.25) then reads

VolS(V
5,2) =

54π4

(b1 − b2)(b1 + b2)(b1 − b3)(b1 + b3)
. (3.27)

13We refer to these papers for more details on the method.
14The on-shell equivalence was proved in [5–7].
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From (3.14) we also find

n1 =
n1

3
, n2 =

n1 − n3

3
, n3 =

n1 − n2

3
, n4 =

n1 + n2

3
, n5 =

n1 + n3

3
, (3.28)

where we associate a = 1, 2, 3, 4, 5 to (φ1, A1, A2, B1, B2) in this order.

At this point it is straightforward to check that

S(bi, ni)
∣

∣

∣

b1=1
= −4∇

√

2π6

27VolS(V 5,2)
N3/2

∣

∣

∣

∣

b1=1

= −1

2

5
∑

a=1

na
∂FS3(∆a)

∂∆a
, (3.29)

where, this time, we set b1 = 1 at the end of the computation. To obtain the correct

normalization it is important to remember that, for black hole solutions, supersymmetry

requires b1 = 1, while, for volume minimization, we impose b1 = 4. We learn that the

construction in [41, 42] is equivalent off-shell to I-extremization

S(bi, ni) = I(∆a, na) . (3.30)

The same analysis can be applied to other Sasaki-Einsten manifolds Y7 without five-

cycles. In particular, it applies to some of the models recently discussed in [10]. We can

also provide a very general argument that applies to many different theories and it is based

on very few assumptions.

3.2 A general argument

On general grounds, the entropy functional (3.10) coincides with the I-functional (2.6) for
all quivers with no baryonic symmetries where the off-shell equivalence of F -maximization

and volume minimization (2.2) is valid. Indeed, for any quiver gauge theory with superpo-

tential W =
∑

aWa, the R-charges of the fields must satisfy
∑

I∈Wa

∆I = 2 , (3.31)

for each superpotential monomial Wa, where the sum is restricted to the fields that appear

in Wa. Similarly, the fluxes are constrained to satisfy
∑

I∈Wa

nI = 2− 2g , (3.32)

for each superpotential term. This is just the twisting condition (2.13). In theories with no

baryonic symmetries, there is the same number of independent ∆I and nI as the number of

independent components of the Reeb vector. There must be then a linear relation among

the ∆I and the bi,

∆I =
s

∑

i=1

αIi
bi
b1

, (3.33)

that parameterizes the U(1)s action on the R-charges. By consistency, a similar linear

relation exists between the nI and the ni

nI =
s

∑

i=1

αIi
ni

2
, (3.34)
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where the normalization is determined by comparing (3.31) and (3.32), and recalling that

n1 = 2− 2g. These expressions generalize (3.26) and (3.28). We now assume that, for our

theory, F -maximization is equivalent to volume minimization, i.e.

FS3(∆I) = N3/2

√

2π6

27VolS(Y7)
, (3.35)

when substituting (3.33) and imposing b1 = 4. We also assume that there exists a param-

eterization of R-charges such that FS3(∆I) is a homogeneous function of degree two. This

is generally the case. We can then write

FS3(∆I) = 4

(

∑

I∈Wa

∆I

)2

f(∆I) , (3.36)

for some choice of a term Wa in the superpotential and a function f(∆I) homogeneous of

degree zero. Since VolS(Y7) is homogeneous of degree minus four in bi, we must also have

N3/2

√

2π6

27VolS(Y7)
= b21f

( s
∑

i=1

αIi
bi
b1

)

= b21f

( s
∑

i=1

αIibi

)

, (3.37)

for the same function f . Setting b1 = 4 and using (3.33) and (3.31) we find indeed (3.35).

It takes then a short computation to show that (3.36) and (3.37) imply

S(bi, ni)
∣

∣

∣

b1=1
= −4∇

√

2π6

27VolS(Y7)
N3/2

∣

∣

∣

∣

b1=1

= −1

2

s
∑

a=1

na
∂FS3(∆a)

∂∆a
= I(∆a, na) , (3.38)

using (3.34) and setting b1 = 1 after taking derivatives. This confirms the off-shell equiva-

lence of the entropy functional with the I-functional.
In quivers where the elementary fields can be associated with linear combinations of

invariant five-cycles Sa, their R-charge can be computed using (3.13). By consistency, the

result must reproduce (3.33). Formula (3.14) is then clearly consistent with (3.34).

4 Extremization for toric manifolds

In this section we consider the F -maximization and I-extremization principles in the case

of toric manifolds. We will first review the construction of [42] for the toric case. We

will then see that for the class of compactifications with a particular mesonic twist, the

construction in [42] is equivalent to I-extremization. We will also comment about the

general case.

Recall that the Sasaki-Einstein manifold Y7 is toric when it has isometry U(1)4. In this

case, the cone over Y7, C(Y7) is a toric Calabi-Yau four-fold, which can be characterized

in terms of combinatorial data associated with a toric diagram. Indeed, C(Y7) can be

described by a fan generated by d four-dimensional vectors va = (1, ~va). The toric diagram

is the three-dimensional polytope in R3 with vertices the integer points ~va. The toric four-

fold C(Y7) has exactly d U(1)4 invariant divisors Da, one for each vertex ~va. The restriction

to the base Y7 gives rise to U(1)
4-invariant five-cycles Sa, a = 1, . . . d. Since dimH5(Y7,Z) =

dimH2(Y7,Z) = d− 4, only d− 4 of these cycles are inequivalent in cohomology.
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4.1 The conditions of supersymmetry for toric manifolds

The off-shell family of supersymmetric backgrounds of [41, 42] can be parameterized by the

Reeb vector b = (b1, b2, b3, b4) with b1 = 1 and by the cohomology class of the transverse

Kähler form. In the toric case, this can be specified as follows [41, 42]. It is useful to restrict

to the quasi regular case where the quotient with respect to the Reeb action, V = Y7/U(1),

is a six-dimensional compact toric orbifold. The restriction of ω and ρ to V can be written

in cohomology as

[ω] = −2π
d

∑

a=1

λaca , [ρ] = 2π
d

∑

a=1

ca , (4.1)

where ca are the Poincaré duals of the restriction of the d toric divisors to V . The pa-

rameters λa parameterize the cohomology class of the transverse Kähler form J . Since

dimH2(V,Z) = d − 3, only d − 3 parameters λa are independent. The Sasaki case is

recovered for λa = −1/(2b1).

The master volume is then defined as the volume of the dual polytope associated with

the Kähler parameter λa [42]:

V =
1

6

∫

Y7

η ∧ ω3 =
(2π)4

|b| Vol ({y ∈ H(b) | (y − y0, va) ≥ λa , a = 1, . . . , 4}) , (4.2)

where H(b) is the hyperplane (y, b) = 1/2 and y0 = (1, 0, 0, 0)/(2b1). The master vol-

ume (4.2) is invariant under

λa → λa +
4

∑

i=1

li(b1v
i
a − bi) , ∀a = 1, . . . , d , (4.3)

and this leaves indeed d − 3 independent λa since l1 does not contribute (v1a = 1 , ∀a =

1, . . . , d).

The twisted compactification is specified by four mesonic fluxes ni and d− 4 baryonic

ones nα. They can be conveniently parameterized by d integer magnetic fluxes na, one for

each toric divisor. The supersymmetry and flux quantization conditions for the off-shell

background can be then written as [42]15

N = −
d

∑

a=1

∂V
∂λa

,

naN = − A

2π

d
∑

b=1

∂2V
∂λa∂λb

− b1

4
∑

i=1

ni
∂2V

∂λa∂bi
,

A

2π

d
∑

a,b=1

∂2V
∂λa∂λb

= n1

d
∑

a=1

∂V
∂λa

− b1

4
∑

i=1

ni

d
∑

a=1

∂2V
∂λa∂bi

.

(4.4)

Notice that ni and na are not independent. Consistency of the equations above requires

ni =
∑d

a=1 v
i
ana. In particular, the twisting condition (2.13) becomes

d
∑

a=1

na = 2− 2g . (4.5)

15In order to compare with [42] one must set L6 = (2πlP )
6, ∆a = Ra

N
and na = −Ma

N
.
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The total number of independent fluxes is d−1, corresponding to d−4 baryonic symmetries

and three mesonic ones. With ni =
∑d

a=1 v
i
ana, only d−2 equations in (4.4) are independent

and allow to determine the d− 3 independent λa and the area A as a function of na and bi.

Notice that, since the equations involve derivatives with respect to b1, we can set b1 = 1

only at the end of the computation.

One can also simplify SSUSY, and define the entropy functional [42]

S(bi, na) ≡ 8π2SSUSY = −8π2

(

A
d

∑

a=1

∂V
∂λa

+ 2πb1

4
∑

i=1

ni
∂V
∂bi

)∣

∣

∣

∣

λa(b,n), A(b,n)

. (4.6)

For future reference, we also define the on-shell value of the master volume (4.2):

Von-shell(bi, na) ≡ V
∣

∣

∣

λa(b,n), A(b,n)
. (4.7)

We can explicitly solve the conditions of supersymmetry for a certain class of twisted

compactifications. In order to simplify the exposition, we summarize the results and refer

to appendix A for the proof.

4.2 The universal twist

The simplest case of twisting is when we twist the theory only along the exact R-symmetry

of the theory, i.e.

ni =
bi
b1
n1 , ∀i = 1, . . . , 4 . (4.8)

Recall that n1 = 2−2g. This is the so-called universal twist [49]. According to the general

argument in [17], we expect that the entropy of the black holes is given by

SBH = (g− 1)FS3 . (4.9)

This formula indeed follows from the conditions of supersymmetry (4.4). The argument is

analogous to the similar one discussed in [42] in the context of c-extremization.

As shown in appendix A.2, there is a solution to the equations (4.4) where all the λa

are equal16

λa = − 1

2b1
λ , ∀a = 1, . . . , d . (4.10)

Consistency of the equations (4.4) then implies that

na =
n1

2

(

2π

3b1

VolS(Sa)

VolS(Y7)

)

≡ n1

2
∆a(bi) , (4.11)

where we introduced the set of basic R-charges (2.3). Notice that
∑d

a=1∆a(bi) = 2. Note

also that
∑d

a=1 na = n1 hence (4.5) is correctly satisfied.

The entropy functional (4.6) becomes

S(bi, na) = − 8n1

b
3/2
1

N3/2

√

2π6

27VolS(Y7)
, (4.12)

16We normalize in such a way that λ = 1 corresponds to the Sasaki case.
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where VolS(Y7) is the Sasaki volume (2.4). The volume functional VolS(Y7) is extremized at

bi/b1 = b̄i/b̄1, with b̄ = (4, b̄2, b̄3, b̄4) being the Reeb vector of the Calabi-Yau four-fold [2].

In our case supersymmetry requires b1 = 1 and we obtain bi = b̄i/4, and thus, using the

homogeneity of the volume function,

VolS(Y7)
∣

∣

b=b̄/4
= 44Vol(Y7) , (4.13)

where Vol(Y7) is the volume of the Sasaki-Einstein manifold. The entropy functional (4.12)

at the extremum is then given by

S(bi, na)
∣

∣

b=b̄/4
= −n1

2
N3/2

√

2π6

27Vol(Y7)
≡ (g− 1)FS3 , (4.14)

where we set b1 = 1 and used (2.2) and (4.5). This is in agreement with the results

in [14, 17]. Note also that

Von-shell =
1

64π3
FS3 . (4.15)

Finally notice that, since volume minimization is the dual of F -maximization, at the

extremum, the R-charges ∆(bi) becomes the exact R-charges of the fields of the three-

dimensional CFT.17 Therefore, the relation (4.11)

na = (1− g)∆a

∣

∣

b=b̄/4
, (4.16)

tells us that all the fluxes are proportional to the corresponding exact R-charges, hence

confirming that we are dealing with the universal twist. Since the fluxes na must be

integers, the universal twist is defined only for manifolds Y7 where the exact R-charges ∆a

are rational and for certain values of g. Examples of Sasaki-Einstein manifolds with known

duals admitting the universal twist are discussed in [17].

4.3 Mesonic twist

In this section we perform a particular topological twist that we dub mesonic twist. It

depends on three magnetic fluxes that we can take to be the ni (recall that n1 = 2− 2g).

It is characterized by the d− 4 conditions

d
∑

a=1

B(i)
a λa = 0 , ∀i = 1, . . . , d− 4 , (4.17)

on the Kähler parameters λa. Here B
(i)
a denotes the baryonic symmetries that can be

defined geometrically by the vector identity

d
∑

a=1

B(i)
a va = 0 , ∀i = 1, . . . , d− 4 . (4.18)

The condition (4.17) requires a particular choice for the fluxes na that are specific functions

of bi, ni and g, na = na(bi, ni, g). As for the universal twist, the quantization conditions

17More precisely, the R-charges of the fields are integer linear combinations of the ∆(bi).
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for the fluxes give constraints on the twisted compactification. In particular, the value of

bi at the extremum and g must be such that na(bi, ni, g) is an integer. The constraint here

is milder than for the universal twist, since the value of bi at the extremum can be tuned

by varying ni, but still it restricts the class of solutions.

To study the mesonic twist, it is convenient to use the freedom (4.3) to fix some of the

λa and work in the gauge

λ1 = λ2 = λ3 = 0 . (4.19)

Furthermore, we will prove in appendix A that there exists a solution to the set of equa-

tions (4.4), compatible with (4.17), such that

λa = −1

2

(v1, v2, v3, va)

(v1, v2, v3, b)
λ , ∀a = 1, . . . , d . (4.20)

Notice that (4.17) is satisfied as a consequence of (4.18).

As in [43] we define the normalized R-charges

∆a(bi, na) ≡
2π

N

∫

Sα

η ∧ ω2

∣

∣

∣

∣

λa(n,n), A(b,n)

= − 2

N

∂V
∂λa

∣

∣

∣

∣

λa(n,n), A(b,n)

, (4.21)

inspired by (2.18). As a consequence of the first equation in (4.4) they satisfy

d
∑

a=1

∆a(bi, na) = 2 . (4.22)

Quite remarkably, as shown in appendix A.3, the conditions of supersymmetry (4.4) imply

that the ∆a are actually independent of the fluxes na and are given by the Sasakian

parameterization (2.3)

∆a(bi) =
2π

3b1

VolS(Sa)

VolS(Y7)
, ∀a = 1, . . . , d , (4.23)

where the volumes are given in (2.4). They satisfy the useful identity

2
bk
b1

=
d

∑

a=1

vka∆a(bi) , ∀k = 1, . . . , 4 . (4.24)

The on-shell value of the master volume can be written as

Von-shell(bi) =
N3/2

4π3b
3/2
1

√

2π6

27VolS(Y7)
≡ 1

64π3
FS3(∆a) , (4.25)

where in the last step we set b1 = 1 and used the equivalence between volume minimization

and F -maximization, see (2.2). More precisely, since VolS(Y7) is a homogeneous function

of the bi of degree −4, and we can choose FS3(∆a) to be homogeneous of degree 2, we can

write

N3/2

√

2π6

27VolS(Y7)
= b21f

(

bi
b1

)

,

FS3(∆a) = 4

( d
∑

a=1

∆a

)2

f

( d
∑

a=1

via∆a

2

)

.

(4.26)
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for some function f . Setting b1 = 4, as appropriate for F -maximization, we find (2.2).

Setting b1 = 1, we find (4.25).

The entropy functional (4.6) is given by

S(bi, na) = − 4√
b1
∇
√

2π6

27VolS(Y7)
N3/2 , (4.27)

where we defined the operator

∇ ≡
4

∑

i=1

ni∂bi . (4.28)

Notice that, since ∇ explicitly takes a derivative with respect to b1, we can set b1 = 1 only

at the end of the computation.

On the other hand, the topologically twisted index of N = 2 theories in the large N

limit reads [14]

I(∆a, na) = −1

2

d
∑

a=1

na
∂FS3(∆a)

∂∆a
. (4.29)

It takes a short computation to show that (4.26) implies

S(bi, ni)
∣

∣

∣

b1=1
= −4∇

√

2π6

27VolS(Y7)
N3/2

∣

∣

∣

∣

b1=1

= −1

2

d
∑

a=1

na
∂FS3(∆a)

∂∆a
= I(∆a, na) , (4.30)

where we used ni =
∑d

a=1 v
i
ana. This confirms the off-shell equivalence of the entropy

functional with the I-functional.
As anticipated, the solution is only consistent if we impose the following constraints

on the fluxes

na =
1

2
∇(b1∆a) , ∀a = 1, . . . , d , (4.31)

leaving only the ni as independent fluxes. Notice that, as required by consistency,

d
∑

a=1

vana =
1

2

d
∑

a=1

∇(b1va∆a) = ∇b = n , (4.32)

where we used (4.24).

Note that (4.27) and (4.31) for the mesonic twist are formally identical to the expres-

sions that we found for theories with no baryonic symmetries, (3.10) and (3.14).

4.4 Interpreting the mesonic twist

The condition (4.17) and the constraints (4.31) have a nice geometrical interpretation.

The condition (4.17) is equivalent to requiring that the R-charges ∆(bi) are parameter-

ized in terms of the Sasaki volumes as in the three-dimensional F -maximization problem.

Since (4.23) only depends on the Reeb vector components bi, there are d − 4 constraints

among the ∆(bi). In all the examples that we have checked, these constraints can be writ-

ten as cubic polynomials in the ∆a. Moreover, they can be compactly written in terms
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of derivatives of a single auxiliary quartic polynomial.18 In all known examples, there

exist indeed a quartic polynomial a3d(∆) that identically coincides with FS3(∆a)
2 on the

locus parameterized by (4.23) [8, 65]. We have checked that the d − 4 constraints among

R-charges can be written as

d
∑

a=1

B(i)
a

∂a3d(∆)

∂∆a
= 0 , ∀i = 1, . . . , d− 4 . (4.33)

Furthermore, we have checked that the constraints (4.31) among fluxes can be written as

d
∑

a,b=1

B(i)
a nb

∂2a3d(∆)

∂∆a∂∆b
= 0 , ∀i = 1, . . . , d− 4 , (4.34)

which is quadratic in ∆a. The last statement is equivalent to say that the flux con-

straints (4.31) can be obtained by applying the operator
∑d

a=1 na∂∆a to the R-charge

constraints.

There is also some interesting field theory interpretation for some of R-charge con-

straints (4.33). In the available computation for the large N limit of the S3 free energy [5]

and the topologically twisted index of N = 2 quivers [14], they arise when one imposes that

the theory has gauge group U(1)×SU(N)G. The free energy and the index are the same for

U(N) and SU(N) groups and, as already discussed, depend only on a linear combination of

the ∆a parameterizing the mesonic directions. However, for SU(N) gauge groups one has

to impose that the distribution of eigenvalues of the matrix model is traceless. This gives

some constraints among the ∆a that allows to fix some of R-charges of baryonic operators,

as already mentioned at the end of section 2.1. In all known examples, the SU(N) con-

straints — when nontrivial — coincide with a subset of the R-charge constraints (4.33).19

We will see explicit examples in section 5.

Finally, we notice that there is a similar story for flows from four-dimensional N = 1

CFTs to (0, 2) two-dimensional CFTs induced by twisted compactifications on Σg. In this

case, volume minimization [2, 3] is the dual of a-maximization [66] and the construction

in [41, 42] is the dual of c-extremization [49, 67]. A general solution to the equations

in [41, 42] for arbitrary fluxes na has been provided in [43] together with a general formula

for ∆a(na, bi). This solution automatically satisfies

d
∑

a=1

B(i)
a

∂c2d(∆)

∂∆a
=

d
∑

a,b=1

B(i)
a nb

∂2a4d(∆)

∂∆a∂∆b
= 0 , ∀i = 1, . . . , d− 3 , (4.35)

where c2d(∆) is the two-dimensional trial right-moving central charge, and a4d(∆) is the

four-dimensional trial a central charge. Physically, this condition guarantees that the two-

dimensional central charge is extremized with respect to the baryonic directions. Moreover,

18We thank Francesco Sala and Yuji Tachikawa for useful discussions on this point and collaboration on

a related project.
19Since not all baryonic symmetries are realized as ungaugings of U(N) gauge groups, not all con-

straints (4.33) arise in this way. It would be very interesting to find the field theory interpretation of

the remaining constraints.
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using the explicit solution in [43], it is not difficult to show that

d
∑

a=1

B(i)
a λa = − 1

(3π)3N

d
∑

a=1

B(i)
a

∂a4d(∆)

∂∆a
, ∀i = 1, . . . , d− 3 . (4.36)

Also in four dimensions, we can restrict to the mesonic twist, defined again by the condition
∑

aB
(i)
a λa = 0. This condition, using (4.36), then becomes

d
∑

a=1

B(i)
a

∂a4d(∆)

∂∆a
= 0 , ∀i = 1, . . . , d− 3 , (4.37)

and (4.35) becomes a condition that expresses the baryonic fluxes in terms of the mesonic

ones, na = na(bi, ni), as in the three-dimensional case. The conditions (4.37) and (4.35)

are the analogue of (4.33) and (4.34). Notice that (4.37) can be interpreted as the extrem-

ization of the four-dimensional a central charge with respect to the baryonic directions.

As such, it enters as a decoupling condition for the baryonic symmetries in the proof of

the equivalence between volume minimization and a-maximization [61]. We see that, in

the four-dimensional context, the mesonic twist corresponds to enforce the decoupling of

baryonic symmetries before flowing from four to two dimensions. This explains the name

and it was our original motivation for studying it.

We expect that, similarly to the case of c-extremization discussed in [43], one can find

a general solution to the equations (4.4) such that it reduces to the mesonic twist when

further imposing the decoupling condition (4.17). Unfortunately, solving (4.4) in general is

hard because the equations are quadratic in λa. It would be very interesting to see if the

quartic function a3d(∆) plays some role in the general solution, as its counterpart a4d(∆)

does for c-extremization [43].

5 Toric examples

In this section we consider some examples of the general construction presented in sec-

tion 4.3. We thus perform a mesonic twist of the three-dimensional N = 2 theories. We

will use the results in [5, 6, 57, 59] to which we refer for more details on the parameterization

of R-charges and the large N limit of S3 free energy.

5.1 The C × C geometry

Our first example is a flavored ABJM theory (with Chern-Simons levels set to zero), whose

quiver is depicted below [59, 68]

N N

1

B2

A1

B1

A2

q1q̃1

(5.1)
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where a circular node denotes a U(N) gauge group and the square node denotes a U(1)

flavor symmetry. There are bi-fundamental chiral multiplets between the two gauge groups

labeled by (Ai, Bi), i = 1, 2; fundamental and anti-fundamental chiral multiplets labeled

by (q1, q̃1). The theory has the superpotential

W = Tr (A1B1A2B2 −A1B2A2B1 + q1A1q̃1) . (5.2)

The moduli space of the quiver gauge theory (5.1) can be characterized in terms of the

fields Ai, Bi and two monopole operators T1 and T2 satisfying T1T2 = A1 [59]. The

mesonic spectrum is generated by the gauge invariant operators x1 = T1B1, x2 = A2B2,

x3 = T1B2, x4 = A2B1, x5 = T2 [59], subject to the relation x1x2 = x3x4. Hence, the

dual geometry is C×C (C the conifold). Denote the R-charges of the chiral bi-fundamental

fields (A1, A2, B1, B2) and the monopoles (T1, T2) by (∆A1 ,∆A2 ,∆B1 ,∆B2) and (∆T1 ,∆T2),

respectively. We also define the bare monopole R-charges ∆m1 and ∆m2 associated with

the topological symmetries [5], satisfying

∆T1 −∆T2 = 2∆m , ∆m = ∆m1 +∆m2 . (5.3)

That the superpotential (5.2) has R-charge two, imposes the following constraint on the

R-charges

∆A1 +∆A2 +∆B1 +∆B2 = 2 . (5.4)

We also introduce the magnetic fluxes (nA1 , nA2 , nB1 , nB2) and (nm1 , nm2). Supersymmetry

imposes the constraint

nA1 + nA2 + nB1 + nB2 = 2− 2g . (5.5)

The dual geometry C × C is specified by the vectors

~v1 = (0, 0, 0) , ~v2 = (1, 0, 0) , ~v3 = (0, 1, 0) , ~v4 = (0, 0, 1) , ~v5 = (1, 1, 0) . (5.6)

Its toric diagram is shown below

b2

b3

b4

v1

v2

v3

v4

v5

(5.7)

We associate R-charges ∆a and fluxes na, a = 1, . . . , 5, to the five vertices va of the

toric diagram (5.7). They are related to the R-charges and fluxes of the chiral fields and
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monopoles by [5, 59]20

∆A1 = ∆1 +∆4 , ∆A2 = ∆5 , ∆B1 = ∆2 , ∆B2 = ∆3 , ∆m =
1

2
(∆1 −∆4) ,

nA1 = n1 + n4 , nA2 = n5 , nB1 = n2 , nB2 = n3 , nm =
1

2
(n1 − n4) ,

(5.8)

where nm = nm1 + nm2 . The S3 free energy of this theory was computed in [5, (6.9)] and

it reads21

FS3(∆a) =
4π

√
2N3/2

3

√

(∆1 +∆2)(∆1 +∆3)∆4(∆2 +∆5)(∆3 +∆5)

∆1 +∆2 +∆3 +∆5
, (5.9)

In the SU(N)× SU(N)×U(1) theory one has to impose the additional constraint

∆1∆5 −∆2∆3 = 0 , (5.10)

as discussed in [5]. This arises due the tracelessness condition on the eigenvalues distribu-

tion. Remarkably, this constraint is equivalent to

5
∑

a=1

Ba
∂a3d(∆a)

∂∆a
= 0 , (5.11)

where a3d(∆a) is given by

a3d(∆a) ≡
1

24

5
∑

a,b,c,e=1

|det(va, vb, vc, ve)|∆a∆b∆c∆e

= (∆1∆2∆3 +∆1∆3∆5 +∆2∆3∆5 +∆1∆2∆5)∆4 ,

(5.12)

and the baryonic symmetry, characterized by (4.18), reads

B1 = 1 , B2 = −1 , B3 = −1 , B4 = 0 , B5 = 1 . (5.13)

Since FS3(∆a) is homogeneous of degree two, the topologically twisted index of this theory

is simply given by (2.6), i.e.

I(∆a, na) = −π
√
2N3/2

3

√

(∆1 +∆2)(∆1 +∆3)∆4(∆2 +∆5)(∆3 +∆5)

∆1 +∆2 +∆3 +∆5

×
[

n4

∆4
+

(

1

∆1 +∆3
− 1

∆1 +∆2 +∆3 +∆5
+

1

∆1 +∆2

)

n1

+

(

1

∆2 +∆5
− 1

∆1 +∆2 +∆3 +∆5
+

1

∆1 +∆2

)

n2

+

(

1

∆3 +∆5
− 1

∆1 +∆2 +∆3 +∆5
+

1

∆1 +∆3

)

n3

+

(

1

∆3 +∆5
− 1

∆1 +∆2 +∆3 +∆5
+

1

∆2 +∆5

)

n5

]

.

(5.14)

20The ∆a can be associated to a parameterization in terms of GLSM fields. See in particular [59, (6.21)].
21We correct a typo there.
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The dual polytope associated with the Kähler parameters λa is given by

III
II

I

V

IV

VI

(5.15)

whose vertices can be found by solving for every distinct triple va, vb, vc the equations

(y − y0, va) = λa , (y − y0, vb) = λb , (y − y0, vc) = λc , (y − y0, b) = 0 . (5.16)

They are related to the facets of the toric diagram (5.7) by

I = (321) , II = (431) , III = (412) ,

IV = (345) , V = (254) , V I = (352) .
(5.17)

Note, that the facet (3521) in (5.7) corresponds to a pyramid in R4 — this is a singularity

on the facet — and we resolved it by blowing up the surface, i.e. we write it as (321) +

(352). The master volume (4.2) is then easily computed by splitting the dual polytope into

tetrahedra and adding the corresponding volumes. It reads

V = −8π4(b1 − b2 − b3 − b4)
2λ3

1

3b2b3b4
− 8π4

(

b22 − b3b2 − b3(b1 − b3 − b4)
)

λ3
2

3b3(b1 − b2 − b4)b4

− 8π4
(

b22 − b1b2 − (b3 − b4)b2 + b23
)

λ3
3

3b2(b1 − b3 − b4)b4
− 8π4b24(b1 − b4)λ

3
4

3b2b3(b1 − b2 − b4)(b1 − b3 − b4)

+
8π4(b1 − b2 − b3 − b4)

2λ3
5

3(b1 − b2 − b4)(b1 − b3 − b4)b4
− 8π4b4λ

2
4λ5

(b1 − b2 − b4)(b1 − b3 − b4)

− 8π4(b1 − b2 − b3 − b4)

(

λ2

b3b4
+

λ3

b2b4
+

λ4

b2b3

)

λ2
1

+ 8π4

(

λ3

b4
− (b2 − b3)λ4

b3(b1 − b2 − b4)
− (b1 − b3 − b4)λ5

(b1 − b2 − b4)b4

)

λ2
2

− 8π4

(

b2λ
2
2

b3b4
+

(

2λ3

b4
+

2λ4

b3

)

λ2 +
2λ3λ4

b2
+

b4λ
2
4

b2b3
+

b3λ
2
3

b2b4

)

λ1

+
8π4(b1 − b2 − b3 − b4)λ4λ

2
5

(b1 − b3 − b4)(b1 − b2 − b4)
− 8π4

b1 − b3 − b4

(

(b1 − b2 − b4)λ5

b4
− (b2 − b3)λ4

b2

)

λ2
3

+ 8π4

(

λ2
3

b4
− 2λ5λ3

b4
− b4λ

2
4

b3(b1 − b2 − b4)
+

(b1 − b2 − b3 − b4)λ
2
5

(b1 − b2 − b4)b4
− 2λ4λ5

b1 − b2 − b4

)

λ2

− 8π4

b1 − b3 − b4

(

b4λ
2
4

b2
+ 2λ5λ4 −

(b1 − b2 − b3 − b4)λ
2
5

b4

)

λ3 . (5.18)
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From now on, we work in the gauge (4.19), i.e. λ1 = λ2 = λ3 = 0. Using (4.4) and (4.20),

we may fix the remaining λa as

λ4 = −
√
N

2
√
2π2

√

b2b3(b1 − b2 − b4)(b1 − b3 − b4)

b1(b1 − b4)b4
, λ5 = 0 . (5.19)

Notice that
∑

aBaλa = 0, as it is required by the mesonic twist. The last equation in (4.4)

is easily solved for A. Plugging the solutions for A and λa back into (5.18) we obtain

Von-shell =
N3/2

6
√
2π2b1

√

b2b3b4(b1 − b2 − b4)(b1 − b3 − b4)

b1(b1 − b4)
. (5.20)

For the entropy functional (4.6) we find that

S(bi,na)=−2
√
2πN3/2

3

√

b2b3b4(b1−b2−b4)(b1−b3−b4)

b1(b1−b4)
(5.21)

×
(

n4

b4
+

(

(b1−b4)
2+2b2b3

)

n1

(b1−b4)(b1−b2−b4)(b1−b3−b4)
+

(

b21−(b3+2b4)b1−2b2b3+b4(b3+b4)
)

n2

b2(b1−b4)(b1−b3−b4)

+

(

b21−(b2+2b4)b1+b24+b2(b4−2b3)
)

n3

b3(b1−b4)(b1−b2−b4)
+
(2b2b3+b1(b2+b3)−(b2+b3)b4)n5

b2b3(b1−b4)

)

.

Using the expression (4.21) for the R-charges, we also obtain

∆1 =
2(b1 − b2 − b4)(b1 − b3 − b4)

b1(b1 − b4)
, ∆2 =

2b2
b1

(

1− b3
b1 − b4

)

,

∆3 =
2b3
b1

(

1− b2
b1 − b4

)

, ∆4 =
2b4
b1

, ∆5 =
2b2b3

b1(b1 − b4)
.

(5.22)

Let us emphasize again that in the case of the mesonic twist the R-charges are independent

of the magnetic charges and coincide with the Sasakian parameterization (2.3). Notice

that the R-charges (5.22) automatically satisfy (5.10). Finally, the second equation in (4.4)

imposes the following constraint on the magnetic fluxes

0 = ∆5n1 −∆3n2 −∆2n3 +∆1n5 =
5

∑

a=1

na
∂

∂∆a
(∆1∆5 −∆2∆3) . (5.23)

Notice that the constraint on fluxes can be obtained by applying the operator
∑d

a=1 na∂∆a

to the R-charge constraint (5.10). This constraint is also equivalent to (4.34). This will

be true for all other examples in this paper. It is easy to see that, using (5.22) and (5.23),

and setting b1 = 1,

S(bi, na) = I(∆a, na)

∣

∣

∣

∣

∆a(bi)

= −1

2

5
∑

a=1

na
∂FS3(∆a)

∂∆a

∣

∣

∣

∣

∆a(bi)

= −2
√
2πN3/2

3

5
∑

a=1

na
∂
√

a3d(∆a)

∂∆a

∣

∣

∣

∣

∆a(bi)

.

(5.24)
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We thus proved the off-shell equivalence of the I-extremization principle and its geometric

dual. It is also interesting to observe that

Von-shell(bi) =
1

64π3
FS3(∆a)

∣

∣

∣

∣

∆a(bi)

=
N3/2

24
√
2π2

√

a3d(∆a)

∣

∣

∣

∣

∆a(bi)

. (5.25)

5.2 The cone over Q1,1,1

Our second example is a gauge theory described by the quiver [59, 68]

N N

1

1

B2

A1

B1

A2

q1q̃1
q2q̃2

(5.26)

where the notation is understood as before. The theory has the superpotential

W = Tr (A1B1A2B2 −A1B2A2B1 + q1A1q̃1 + q2A2q̃2) . (5.27)

The manifold in this case is Y7 = Q1,1,1 that is defined by the coset

SU(2)× SU(2)× SU(2)

U(1)×U(1)
. (5.28)

The cone C(Q1,1,1) determines a polytope with six vertices

~v1 = (1, 0, 0) , ~v2 = (0, 1, 0) , ~v3 = (0, 0, 1) ,

~v4 = (1, 0, 1) , ~v5 = (1, 1, 0) , ~v6 = (0, 1, 1) .
(5.29)

The toric diagram is depicted below

b2

b3

b4

v1

v2

v3

v4

v5

v6

(5.30)

Since dimH2(Q
1,1,1,Z) = 2, there are two baryonic symmetries U(1)B1 × U(1)B2 that are

characterized by (4.18). They are given by

B
(1)
1 = 1 , B

(1)
2 = −1 , B

(1)
3 = 0 , B

(1)
4 = −1 , B

(1)
5 = 0 , B

(1)
6 = 1 ,

B
(2)
1 = 0 , B

(2)
2 = −1 , B

(2)
3 = 1 , B

(2)
4 = −1 , B

(2)
5 = 1 , B

(2)
6 = 0 .

(5.31)
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Thus, the symmetries of the model is SU(2)3 ×U(1)R ×U(1)B1 ×U(1)B2 , where SU(2)3 ×
U(1)R are the isometries of Q1,1,1 (mesonic symmetries). The moduli space of the quiver

gauge theory (5.26) can be characterized in terms of the fields Ai, Bi and two monopole

operators T1 and T2 satisfying T1T2 = A1A2 [59]. The mesonic spectrum is generated by

the gauge invariants BiAj and BiTj , transforming as (2,2,2) of SU(2)3. Using [59, (6.28)],

and assigning R-charges ∆Ti
to the monopoles, we find the relation between the chiral

fields R-charges ∆I and the basic R-charges ∆a associated with toric geometry

∆B1 = ∆1 , ∆B2 = ∆6 , ∆T1 = ∆3 +∆4 ,

∆A1 = ∆2 +∆3 , ∆A2 = ∆4 +∆5 , ∆T2 = ∆2 +∆5 .
(5.32)

The dual polytope associated with the Kähler parameters λa is given by

I

II
III

IV

V VI

VIIVIII

(5.33)

whose vertices correspond to the facets of the toric diagram (5.30) as follows

I = (645) , II = (634) , III = (431) , IV = (415) ,

V = (251) , V I = (265) , V II = (623) , V III = (132) .
(5.34)

The master volume can be easily computed from (5.33). Since the resulting expression is

too long we report it in the appendix — see (B.1). As before we work in the gauge (4.19).

Using (4.4) and (4.20) we may fix λa and A. Their explicit expressions are quite long and

we shall not present them here. Employing the parameterization (4.21) for the R-charges,

we obtain

∆1=
2b2(b1−b3)(b1−b4)(b3+b4)(2b1−b2−b3−b4)

b1(2(b3b4+b2(b3+b4))b21−((b3+b4)b22+(b23+6b4b3+b24)b2+b3b4(b3+b4))b1+2b2b3b4(b2+b3+b4))
,

∆2=
2(b1−b2)b3(b1−b4)(2b1−b2−b3−b4)(b2+b4)

b1(2(b3b4+b2(b3+b4))b21−((b3+b4)b22+(b23+6b4b3+b24)b2+b3b4(b3+b4))b1+2b2b3b4(b2+b3+b4))
,

∆3=
2(b1−b2)(b1−b3)(b2+b3)b4(2b1−b2−b3−b4)

b1(2(b3b4+b2(b3+b4))b21−((b3+b4)b22+(b23+6b4b3+b24)b2+b3b4(b3+b4))b1+2b2b3b4(b2+b3+b4))
,

∆4=−
2b2(b1−b3)b4(2b1−b2−b4)(b1−b2−b3−b4)

b1(2(b3b4+b2(b3+b4))b21−((b3+b4)b22+(b23+6b4b3+b24)b2+b3b4(b3+b4))b1+2b2b3b4(b2+b3+b4))
,

∆5=−
2b2b3(2b1−b2−b3)(b1−b4)(b1−b2−b3−b4)

b1(2(b3b4+b2(b3+b4))b21−((b3+b4)b22+(b23+6b4b3+b24)b2+b3b4(b3+b4))b1+2b2b3b4(b2+b3+b4))

∆6=−
2(b1−b2)b3(2b1−b3−b4)(b1−b2−b3−b4)b4

b1(2(b3b4+b2(b3+b4))b21−((b3+b4)b22+(b23+6b4b3+b24)b2+b3b4(b3+b4))b1+2b2b3b4(b2+b3+b4))
.

(5.35)

Notice that the R-charges (5.35) are independent of the fluxes and they satisfy

6
∑

a=1

B(i)
a

∂a3d(∆a)

∂∆a
= 0 for i = 1, 2 , (5.36)
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with [8]

a3d(∆a) ≡
1

24

6
∑

a,b,c,e=1

|det(va, vb, vc, ve)|∆a∆b∆c∆e

+
1

2
(∆2∆4 +∆3∆5 +∆1∆6)

2 − (∆2∆4)
2 − (∆3∆5)

2 − (∆1∆6)
2 .

(5.37)

Explicitly, we only write one of the two constraints that we will use later on, i.e.

∆5 +
(∆1∆6 −∆2∆4)(∆1 +∆2 + 2∆3 +∆4 +∆6)

2(∆1∆6 −∆2∆4) + ∆3(∆1 −∆2 −∆4 +∆6)
= 0 . (5.38)

The associated constraint on the magnetic fluxes follows from the second equation in (4.4)

and it can be written as

0 =
6

∑

a=1

na
∂

∂∆a
[l.h.s. of (5.38)]

= −
(

∆2
6 + 2∆1∆6 +∆2∆6 + 2∆3∆6 +∆4∆6 + 2∆5∆6 −∆2∆4 +∆3∆5

)

n1

+
(

∆2
4 +∆1∆4 + 2∆2∆4 + 2∆3∆4 + 2∆5∆4 +∆6∆4 +∆3∆5 −∆1∆6

)

n2

+ (2∆2∆4 +∆5∆4 −∆1∆5 +∆2∆5 − 2∆1∆6 −∆5∆6) n3

+
(

∆2
2 +∆1∆2 + 2∆3∆2 + 2∆4∆2 + 2∆5∆2 +∆6∆2 +∆3∆5 −∆1∆6

)

n4

− (∆1∆3 −∆2∆3 −∆4∆3 +∆6∆3 − 2∆2∆4 + 2∆1∆6) n5

−
(

∆2
1 +∆2∆1 + 2∆3∆1 +∆4∆1 + 2∆5∆1 + 2∆6∆1 −∆2∆4 +∆3∆5

)

n6 .

(5.39)

To compare with the results in [5, 15], using the symmetries of the quiver (5.26), we restrict

∆1 = ∆6 ≡ 1−∆ , ∆2 = ∆5 ≡
1

2
(∆−∆m) , ∆3 = ∆4 ≡

1

2
(∆ +∆m) , (5.40)

n1 = n6 ≡ (1− g)(1− n) , n2 = n5 ≡
1− g

2
(n− nm) , n3 = n4 ≡

1− g

2
(n+ nm) ,

where we defined
∆T1 −∆T2 = 2∆m , ∆m = ∆m1 +∆m2 ,

nT1 − nT2 = 2nm , nm = nm1 + nm2 .
(5.41)

Hence, the constraint (5.38) becomes

∆ =
2

3−∆2
m

. (5.42)

The decoupling condition (5.39) is also simplified to

2∆(3−∆mnm) +
(

3−∆2
m

)

n− 6 = 0 . (5.43)

The S3 free energy of this theory was computed in [5, (6.15)] and it is given by

FS3(∆m) =
4πN3/2

3

|1−∆2
m|

√

3−∆2
m

, (5.44)
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together with constraint (5.42), that exists in the SU(N) × SU(N) × U(1) theory, see [5,

(6.16)]. The topologically twisted index was also computed in [15, (5.47)] and it reads

I(∆m, nm) =
2π(1− g)N3/2

3 (3−∆2
m)3/2

(

∆m(5−∆2
m)nm −∆4

m + 3∆2
m − 6

)

. (5.45)

It is easy to evaluate the entropy functional (4.6); using (5.35), (5.40), (5.43) and setting

b1 = 1, we find that

S(bi, na) = I(∆m, nm)
∣

∣

∣

∆m(bi)
. (5.46)

It is also interesting to observe that

Von-shell(bi) =
1

64π3
FS3(∆m)

∣

∣

∣

∣

∆m(bi)

=
N3/2

24
√
2π2

√

a3d(∆m)

∣

∣

∣

∣

∆m(bi)

. (5.47)

Finally, extremizing the index (5.45) with respect to ∆m we obtain

nm = −∆3
m

(

∆2
m − 9

)

15 + ∆2
m

. (5.48)

Using (5.42) and (5.43), we also find that

n =
2

9− 3∆2
m

+
200

3 (15 + ∆2
m)

− 4 . (5.49)

As can be seen from the above equations, one can find many twisted compactifications

where the quantization conditions on the fluxes (n, nm) are fulfilled. In particular, it is

enough to have a rational value for ∆m at the extremum since then (n, nm) are also rational.

We then see from (5.40) that we can make all the na integer by taking the genus g large

enough.

5.3 Flavoring N = 8 SYM

We consider the flavored N = 8 super Yang-Mills whose quiver description is given by [59]

N r1

r2

r3

q(1)

q̃(1)

q(2) q̃(2)

q(3) q̃(3)

φ1,2,3

(5.50)
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where the loop around the circular node denotes the adjoint chiral multiplets φi, i = 1, 2, 3,

and the rest of the notation is understood as before. The theory has the superpotential

W = Tr

(

φ1 [φ2, φ3] +

r1
∑

j=1

q
(1)
j φ1q̃

(1)
j +

r2
∑

j=1

q
(2)
j φ2q̃

(2)
j +

r3
∑

j=1

q
(3)
j φ3q̃

(3)
j

)

. (5.51)

The quantum corrected moduli space of vacua is a toric Calabi-Yau cone, parameterized

by the complex coordinates φi and the monopole operators T1, T2 fulfilling the constraint

T1T2 = φr1
1 φr2

2 φr3
3 . (5.52)

We assign R-charges (∆φi
,∆

q
(i)
j

,∆
q̃
(i)
j

) to (φi, q
(i)
j , q̃

(i)
j ), and (∆T1 ,∆T2) to the monopoles

(T1, T2), respectively. We also define the bare monopole R-charge

∆T1 −∆T2 = 2∆m . (5.53)

The superpotential (5.51) and (5.52) impose the constraints

3
∑

i=1

∆φi
= 2 , ∆T1 +∆T2 =

3
∑

i=1

ri∆φi
, ∆

q
(i)
j

+∆
q̃
(i)
j

+∆φi
= 2 . (5.54)

Similar constraints exist on the fluxes. The toric cone is determined by the vectors

~v1 = (0, 0, 0) , ~v2 = (0, 1, 0) , ~v3 = (1, 0, 0) ,

~v4 = (0, 0, r1) , ~v5 = (0, 1, r2) , ~v6 = (1, 0, r3) .
(5.55)

The toric diagram is shown below.

b2

b3

b4

v1 v2

v3

v4

v5

v6

(5.56)

The baryonic symmetries are characterized by (4.18). They read

B
(1)
1 =

r3
r1

, B
(1)
2 = 0 , B

(1)
3 = −1 , B

(1)
4 = −r3

r1
, B

(1)
5 = 0 , B

(1)
6 = 1 ,

B
(2)
1 =

r2
r1

, B
(2)
2 = −1 , B

(2)
3 = 0 , B

(2)
4 = −r2

r1
, B

(2)
5 = 1 , B

(2)
6 = 0 .

(5.57)
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The dual polytope associated with the Kähler parameters λa is given by

I

II
III

IV

V VI

VIIVIII

(5.58)

whose vertices correspond to the facets of the toric diagram (5.56) as follows

I = (645) , II = (634) , III = (431) , IV = (415) ,

V = (251) , V I = (265) , V II = (623) , V III = (132) .
(5.59)

It is now easy to compute the master volume, whose explicit expression is given in (B.2).

We work in the gauge (4.19). Then, the remaining λa and A can be found, using the

ansatz (4.20), and solving (4.4) explicitly. In particular,

λi+3 = −λri
2b4

, for i = 1, 2, 3 ,

λ =

√
N√
2π2

√

b2b3b4(b1 − b2 − b3) (b1r1 − b3(r1 − r2)− b2(r1 − r3)− b4)

b1 (b1r1 − b3(r1 − r2)− b2(r1 − r3))
.

(5.60)

Notice that the above solution satisfies (4.17). Plugging these expressions into (B.2), we

find that

Von-shell =
N3/2

6
√
2π2b1

√

b2b3(b1 − b2 − b3)b4 (b1r1 − b3(r1 − r2)− b2(r1 − r3)− b4)

b1 (b1r1 − b3(r1 − r2)− b2(r1 − r3))
. (5.61)

For the entropy functional (4.6) we obtain

S(bi, na) = −2
√
2πN3/2

3

√

b2b3b4(b1 − b2 − b3) (b1r1 − b3(r1 − r2)− b2(r1 − r3)− b4)

b1 (b1r1 − b3(r1 − r2)− b2(r1 − r3))

×
(

((b1 − b2 − b3)r1 − 2b4)n1
(b1 − b2 − b3)(b1r1 − b3(r1 − r2)− b2(r1 − r3)− b4)

+
(b1r1 − b3(r1 − 2r2)− b2(r1 − r3))n2

b3(b1r1 − b3(r1 − r2)− b2(r1 − r3)− b4)
+

(b1r1 − b3(r1 − r2)− b2(r1 − 2r3))n3
b2(b1r1 − b3(r1 − r2)− b2(r1 − r3)− b4)

+
(b1r1 − b3(r1 − r2)− b2(r1 − r3)− 2b4)n4

(b1 − b2 − b3)b4

)

. (5.62)

We assign the R-charge ∆a and the flux na, a = 1, . . . , 6, to each vertex of the toric

diagram (5.56). Recall that supersymmetry requires

6
∑

a=1

∆a = 2 ,
6

∑

a=1

na = 2− 2g . (5.63)
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The R-charges associated to the vertices of the toric diagram are mapped to those of the

chiral fields and the monopoles by [5, (7.10)]

∆φ1 = ∆1 +∆4 , ∆φ2 = ∆2 +∆5 , ∆φ3 = ∆3 +∆6 ,

∆T1 =
3

∑

i=1

ri∆i , ∆T2 =
3

∑

i=1

ri∆i+3 .
(5.64)

Using the parameterization (4.21) for the R-charges, we also find

∆1 =
2

b1

(

b1 − b2 − b3 −
(b1 − b2 − b3)b4

b1r1 − b3(r1 − r2)− b2(r1 − r3)

)

,

∆2 =
2b3
b1

(

1− b4
b1r1 − b3(r1 − r2)− b2(r1 − r3)

)

,

∆3 =
2b2
b1

(

1− b4
b1r1 − b3(r1 − r2)− b2(r1 − r3)

)

,

∆4 =
2(b1 − b2 − b3)b4

b1 (b1r1 − b3(r1 − r2)− b2(r1 − r3))
,

∆5 =
2b3b4

b1 (b1r1 − b3(r1 − r2)− b2(r1 − r3))
,

∆6 =
2b2b4

b1 (b1r1 − b3(r1 − r2)− b2(r1 − r3))
.

(5.65)

The R-charges satisfy

∆1∆5 −∆2∆4 = 0 , ∆1∆6 −∆3∆4 = 0 . (5.66)

These constraints are equivalent to

6
∑

a=1

B(i)
a

∂a3d(∆a)

∂∆a
= 0 , for i = 1, 2 , (5.67)

where a3d(∆a) is given by

a3d(∆a) ≡
1

24

6
∑

a,b,c,e=1

|det(va, vb, vc, ve)|∆a∆b∆c∆e

= r1∆1∆4(∆2 +∆5)(∆3 +∆6)

+ r2∆2∆5(∆1 +∆4)(∆3 +∆6)

+ r3∆3∆6(∆1 +∆4)(∆2 +∆5) .

(5.68)

Finally, the second equation in (4.4) imposes the following constraints on the fluxes

0 =
6

∑

a=1

na
∂

∂∆a
(∆1∆5 −∆2∆4) = ∆1n5 −∆2n4 −∆4n2 +∆5n1 ,

0 =
6

∑

a=1

na
∂

∂∆a
(∆1∆6 −∆3∆4) = ∆1n6 −∆3n4 −∆4n3 +∆6n1 .

(5.69)
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These constraints can also be obtained from (4.34). The S3 free energy of this theory was

computed in [5, (4.10)] and it can be written as

FS3(∆a) =
4π

√
2N3/2

3

√

√

√

√

(

∑3
i=1 ri∆i

)(

∑3
i=1 ri∆i+3

)

∏3
i=1(∆i +∆i+3)

∑3
i=1 ri(∆i +∆i+3)

. (5.70)

The topologically twisted index was also computed in [15, (5.56)] and it is given by

I(∆a, na) = −1

2

6
∑

a=1

na
∂FS3(∆a)

∂∆a
. (5.71)

It is easy to see that, using (5.65) and (5.69), and setting b1 = 1,

S(bi, na) = I(∆a, na)

∣

∣

∣

∣

∆a(bi)

= −2
√
2πN3/2

3

6
∑

a=1

na
∂
√

a3d(∆a)

∂∆a

∣

∣

∣

∣

∆a(bi)

,

Von-shell(bi) =
1

64π3
FS3(∆a)

∣

∣

∣

∣

∆a(bi)

=
N3/2

24
√
2π2

√

a3d(∆a)

∣

∣

∣

∣

∆a(bi)

.

(5.72)

5.4 The SPP theory

We now consider the quiver gauge theory [57]

Nk1

Nk3
Nk2

A1

A2

B1

B2

C1

C2

φ

(5.73)

describing the dynamics of N M2-branes at a fibration over the suspended pinch point

(SPP) singularity [69]. In the following, we choose Chern-Simons levels (k1, k2, k3) =

(2,−1,−1). The superpotential reads

W = Tr [φ (A1A2 − C1C2)−A2A1B1B2 + C2C1B2B1] . (5.74)

Therefore, the R-charges of the chiral fields must satisfy

∆φ +
2

∑

i=1

∆Ai
= 2 , ∆φ +

2
∑

i=1

∆Ci
= 2 ,

2
∑

i=1

(∆Ai
+∆Bi

) = 2 . (5.75)

We also introduce the magnetic fluxes (nφ, nAi
, nBi

, nCi
) for the chiral fields (φ,Ai, Bi, Ci),

respectively. They satisfy

nφ +
2

∑

i=1

nAi
= 2− 2g , nφ +

2
∑

i=1

nCi
= 2− 2g ,

2
∑

i=1

(nAi
+ nBi

) = 2− 2g . (5.76)
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The toric cone is determined by the vectors

~v1 = (0, 0, 0) , ~v2 = (1,−1, 0) , ~v3 = (2, 0, 0) ,

~v4 = (1, 1, 0) , ~v5 = (0, 0, 1) , ~v6 = (1, 0, 1) .
(5.77)

The toric diagram is depicted below.

b2

b3

b4

v1

v2

v3

v4

v5

v6

(5.78)

The baryonic symmetries are characterized by (4.18) and they are given by

B
(1)
1 = 1 , B

(1)
2 = 0 , B

(1)
3 = −1 , B

(1)
4 = 0 , B

(1)
5 = −2 , B

(1)
6 = 2 ,

B
(2)
1 = −1 , B

(2)
2 = 1 , B

(2)
3 = −1 , B

(2)
4 = 1 , B

(2)
5 = 0 , B

(2)
6 = 0 .

(5.79)

The dual polytope associated with the Kähler parameters λa, a = 1, . . . , 6 is given by

I

II
III

IV

V VI

VIIVIII

(5.80)

whose vertices correspond to the facets of the toric diagram (5.78) as follows

I = (645) , II = (634) , III = (431) , IV = (415) ,

V = (251) , V I = (265) , V II = (623) , V III = (132) .
(5.81)

The master volume is then easily computed and its explicit form can be found in (B.3). As

before we work in the gauge (4.19). Using (4.4) and (4.20) we may fix λa and A. We will

not report the long resulting expressions here. We assign the R-charge ∆a and the flux na,

to each vertex of the toric diagram (5.78). Supersymmetry then requires

6
∑

a=1

∆a = 2 ,
6

∑

a=1

na = 2− 2g . (5.82)
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The R-charges associated to the vertices of the toric diagram are mapped to those of the

chiral fields by [57]

∆A1 = ∆1 +∆2 , ∆A2 = ∆3 +∆4 , ∆C1 = ∆1 +∆4 ,

∆C2 = ∆3 +∆2 , ∆B1 = ∆5 , ∆B2 = ∆6 .
(5.83)

Employing the parameterization (4.21) for the R-charges, we obtain

∆1 =
2 (b1 − b3 − b4) (2b1 − b2 − b3 − b4) (b1 + b3 − b4) (2b1 − b2 + b3 − b4)

b1
(

4b31 − 8b4b21 +
(

b4 (2b2 + 5b4)− 4b23
)

b1 − b4
(

b22 + b4b2 − 3b23 + b24
)) ,

∆2 =
(b2 − b3) (2 (b1 + b3)− b4) (b1 − b3 − b4) (2b1 − b2 − b3 − b4)

b1
(

4b31 − 4b23b1 − b34 − (b2 − 5b1) b24 −
(

8b21 − 2b2b1 + b22 − 3b23
)

b4
) ,

∆3 =
2
(

b22 − b23
)

(

(b1 − b4)
2 − b23

)

b1
(

4b31 − 8b4b21 +
(

b4 (2b2 + 5b4)− 4b23
)

b1 − b4
(

b22 + b4b2 − 3b23 + b24
)) ,

∆4 =
(b2 + b3) (b1 + b3 − b4) (2b1 − b2 + b3 − b4) (2b1 − 2b3 − b4)

b1
(

4b31 − 4b23b1 − b34 − (b2 − 5b1) b24 −
(

8b21 − 2b2b1 + b22 − 3b23
)

b4
) ,

∆5 =
2 (b1 + b2 − b4) b4 (2b1 − b2 + b3 − b4) (2b1 − b2 − b3 − b4)

b1
(

4b31 − 4b23b1 − b34 − (b2 − 5b1) b24 −
(

8b21 − 2b2b1 + b22 − 3b23
)

b4
) ,

∆6 =
2
(

b22 − b23
)

b4 (3b1 − b2 − 2b4)

b1
(

4b31 − 8b4b21 +
(

b4 (2b2 + 5b4)− 4b23
)

b1 − b4
(

b22 + b4b2 − 3b23 + b24
)) ,

(5.84)

that are independent of the magnetic fluxes (as we are dealing with the mesonic twist). To

compare with the results in [6, 14], using the symmetries of the quiver (5.73), we restrict

∆1 = ∆3 ≡
2(1−∆)2

4− 3∆
, ∆2 = ∆4 ≡

(2−∆)(1−∆)

4− 3∆
, ∆5 = ∆6 ≡ ∆ , (5.85)

n1 = n3 ≡ (1− g)(1− n)− n4 , n2 = n4 , n5 = n6 ≡ (1− g)n .

This is the consequence of choosing the Reeb vector b = (1, 1 − ∆/2, 0,∆). The second

equation in (4.4) also imposes the constraint

(1− g)(∆(12− 5∆) + (∆(3∆− 8) + 6)n− 8) + (4− 3∆)2n4 = 0 . (5.86)

The S3 free energy of this theory was computed in [6, (5.20)] and it is given by

FS3(∆) =
8πN3/2

3
(2−∆)(1−∆)

√

∆

4− 3∆
. (5.87)

The topologically twisted index was also computed in [14, (B.19)] and it reads

I(∆, n) = − 4π(1− g)N3/2

3
√
∆(4− 3∆)3/2

(

7∆3 − 18∆2 + 12∆−
(

6∆3 − 19∆2 + 18∆− 4
)

n
)

. (5.88)

It is easy to evaluate the entropy functional (4.6); using (5.84), (5.85), (5.86), and setting

b1 = 1, we find that

S(bi, na) = I(∆, n)
∣

∣

∣

∆(bi)
. (5.89)
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Notice also that

Von-shell(bi) =
1

64π3
FS3(∆)

∣

∣

∣

∣

∆(bi)

=
N3/2

24
√
2π2

√

a3d(∆)

∣

∣

∣

∣

∆(bi)

, (5.90)

where [8]

a3d(∆a) ≡
1

24

6
∑

a,b,c,e=1

|det(va, vb, vc, ve)|∆a∆b∆c∆e −
1

2
(∆3∆5 −∆1∆6)

2 . (5.91)

Once again the constraints on the R-charges and the fluxes can be written as in (4.33)

and (4.34), respectively.

5.5 The cone over M1,1,1

Consider the cone over the Y7 = M1,1,1, i.e. C(M1,1,1). The gauge theory dual to AdS4 ×
M1,1,1 has a chiral quiver (in a four-dimensional sense) [58], and thus the large N limit of

its partition functions on S3 and Σg × S1 are not known [5, 14]. However, it is interesting

to evaluate the entropy functional (4.6) for M1,1,1 and provide a prediction for the large

N topologically twisted index of the dual gauge theory.

The C(M1,1,1) determines a polytope with six vertices

~v1 = (−1, 0, 0) , ~v2 = (0,−1, 0) , ~v3 = (1, 1, 0) ,

~v4 = (0, 0,−3) , ~v5 = (0, 0, 3) , ~v6 = (0, 0, 0) ,
(5.92)

where ~v6 is an internal point. The toric diagram is shown below.

b2

b3

b4

v1

v2

v3

v4

v5

v6

(5.93)

The baryonic symmetry is characterized by (4.18) and it is given by

B1 = −2 , B2 = −2 , B3 = −2 , B4 = 3 , B5 = 3 . (5.94)
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The dual polytope associated with the Kähler parameters λa is given by

II
III

I

V

VI

IV

(5.95)

whose vertices correspond to the facets of the toric diagram (5.93) as follows

I = (124) , II = (234) , III = (134) ,

IV = (135) , V = (235) , V I = (125) .
(5.96)

Having determined the dual polytope (5.95) it is now straightforward to compute the

master volume, whose explicit expression can be found in (B.4). As before we work in the

gauge (4.19). Using the first equation in (4.4) and (4.20) we can fix the remaining λa as

λ4 = −λ5 =
3λ

2b4
, (5.97)

where

λ =

√
N

18
√
3π2

√

(9(b1 + b2 − 2b3)2 − b24)(9(b1 − 2b2 + b3)2 − b24)(9(b1 + b2 + b3)2 − b24)

b1
(

27
(

b21 − b22 + b3b2 − b23
)

+ b24
) .

(5.98)

The last equation of (4.4) can also be solved for A. Substituting these expressions into (B.4)

we obtain

Von-shell =
N3/2

108
√
3π2b1

(5.99)

×
√

(9(b1 + b2 − 2b3)2 − b24)(9(b1 − 2b2 + b3)2 − b24)(9(b1 + b2 + b3)2 − b24)

b1
(

27
(

b21 − b22 + b3b2 − b23
)

+ b24
) .

For the entropy functional (4.6) we find that

S(bi, na) = −2π
√
3N3/2

×
√

b1
(

9(b1 + b2 − 2b3)2 − b24
) (

9(b1 − 2b2 + b3)2 − b24
) (

9(b1 + b2 + b3)2 − b24
)

27
(

b21 − b22 − b23 + b2b3
)

+ b24

×
(

(b2 − b3)n2

b1
(

9(b1 + b2 − 2b3)2 − b24
) +

b2n3

b1
(

9(b1 + b2 + b3)2 − b24
) (5.100)

+
2
(

2b24 − 3(4b1 − 2b2 + b3)b4 + 27
(

2b21 − 2b2b1 − b22 − b23 + (b1 + b2)b3
))

n4

27b1(3(b1 + b2 − 2b3)− b4)(3(b1 − 2b2 + b3)− b4)(3(b1 + b2 + b3)− b4)

+
2
(

2b24 + 3(4b1 − 2b2 + b3)b4 + 27
(

2b21 − 2b2b1 − b22 − b23 + (b1 + b2)b3
))

n5

27b1(3(b1 + b2 − 2b3) + b4)(3(b1 − 2b2 + b3) + b4)(3(b1 + b2 + b3) + b4)

)

.
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As usual, we associate the R-charge ∆a and the flux na to the vertex va, a = 1, . . . , 5, of

the toric diagram (5.93) [57]. They satisfy

5
∑

a=1

∆a = 2 ,
5

∑

a=1

na = 2− 2g . (5.101)

Note that we did not include the internal point v6. Using the parameterization (4.21) for

the R-charges, we also obtain

∆1 =
2(2(b1 + b2)− b3)(3(b1 − 2b2 + b3)− b4)(3(b1 − 2b2 + b3) + b4)

3b1
(

27b21 + b24 − 27
(

b22 − b3b2 + b23
)) ,

∆2 =
2(2b1 − b2 + 2b3)(3(b1 + b2 − 2b3)− b4)(3(b1 + b2 − 2b3) + b4)

3b1
(

27b21 + b24 − 27
(

b22 − b3b2 + b23
)) ,

∆3 =
2(2b1 − b2 − b3)(3(b1 + b2 + b3)− b4)(3(b1 + b2 + b3) + b4)

3b1
(

27b21 + b24 − 27
(

b22 − b3b2 + b23
)) ,

∆4 =
(3(b1 + b2 − 2b3)− b4)(3(b1 − 2b2 + b3)− b4)(3(b1 + b2 + b3)− b4)

3b1
(

27b21 + b24 − 27
(

b22 − b3b2 + b23
)) ,

∆5 =
(3(b1 + b2 − 2b3) + b4)(3(b1 − 2b2 + b3) + b4)(3(b1 + b2 + b3) + b4)

3b1
(

27b21 + b24 − 27
(

b22 − b3b2 + b23
)) .

(5.102)

Notice that the R-charges (5.102) are independent of the fluxes and they fulfill the following

relation

3∆1(9∆2∆3 − 4∆4∆5)− 4∆4∆5 (3(∆2 +∆3) + 2(∆4 +∆5)) = 0 . (5.103)

This constraint can be obtained by looking at

5
∑

a=1

Ba
∂a3d(∆a)

∂∆a
= 0 , (5.104)

where a3d(∆a) is given by [8]

a3d(∆a) ≡
1

24

5
∑

a,b,c,e=1

|det(va, vb, vc, ve)|∆a∆b∆c∆e −
8

3
(∆4∆5)

2 (5.105)

= ∆1 (9∆2∆3∆4 + 6(∆2 +∆3)∆5∆4 + 9∆2∆3∆5) +
2

3
∆4∆5(9∆2∆3 − 4∆4∆5) .

The second equation in (4.4) also imposes the following constraint on the magnetic fluxes

0=
5

∑

a=1

na
∂

∂∆a
[3∆1(9∆2∆3−4∆4∆5)−4∆4∆5 (3(∆2+∆3)+2(∆4+∆5))]

= 3(4∆4∆5−9∆2∆3)n1+3(4∆4∆5−9∆1∆3)n2+3(4∆4∆5−9∆1∆2)n3 (5.106)

+4∆5 (3∆1+3∆2+3∆3+4∆4+2∆5)n4+4∆4 (3∆1+3∆2+3∆3+2∆4+4∆5)n5 .
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This is equivalent to (4.34). Finally, defining the quantity,

F(∆a) ≡ N3/2

√

2π6

27VolS(M1,1,1)
(5.107)

=
4πN3/2

3
√
3

√

√

√

√

∏3
i=1

∏5
j=4(3∆i + 2∆j)

9
∑3

i<j ∆i∆j + 6(∆4 +∆5)
∑3

i=1∆i + 4
(

∆2
4 +∆4∆5 +∆2

5

) ,

we may rewrite (5.100) as

S(bi, na) = −1

2

5
∑

a=1

na
∂F(∆a)

∂∆a

∣

∣

∣

∣

∆a(bi)

= −2
√
2πN3/2

3

5
∑

a=1

na
∂
√

a3d(∆a)

∂∆a

∣

∣

∣

∣

∆a(bi)

. (5.108)

Also, observe that

Von-shell(bi) =
1

64π3
F(∆a)

∣

∣

∣

∣

∆a(bi)

=
N3/2

24
√
2π2

√

a3d(∆a)

∣

∣

∣

∣

∆a(bi)

. (5.109)

6 Discussion and conclusions

In this paper we investigated the relation between I-extremization and its gravitational

dual, recently proposed in [41, 42], and, we provided many examples and a large class of

twisted compactifications where the two extremizations agree off-shell. Our analysis also

raises many questions and open problems.

In particular, as noticed in [14, 15, 17], baryonic symmetries disappear in the large

N limit of the topologically twisted index for known three-dimensional quiver gauge theo-

ries with holographic duals and N3/2 scaling. In order to match the existing field theory

computation with the formalism of [41, 42], we restricted to a particular class of twisted

compactifications, characterized by the absence of a twist in the baryonic directions. How-

ever, there certainly exist AdS2 solutions with baryonic fluxes [17, 48, 70]. It would be

very interesting to understand if there is a way to introduce baryonic charges in the large

N limit considered in [14, 15, 17] or to find more general saddle points and compare the

result with the construction of [41, 42].

Other obvious questions concern the interpretation of the cubic constraints (4.33).

Notice that the constraints are a consequence of the Sasakian parameterization (2.3).

Therefore they already show up in the three-dimensional aspects of the physics and in

the discussion about the equivalence between F -maximization and volume minimization.

From the physical point of view, FS3 is only function of the mesonic directions, and its

extremization leads to a prediction for the R-charges of the mesonic operators of the theory,

corresponding to the KK modes of the compactification. The d−4 constraints (4.33) allow

to determine the on-shell value of all the R-charges ∆a and lead to a prediction for the R-

charges and dimensions of the baryonic operators also, since these are usually obtained by

wrapping M5-branes on certain linear combinations of the cycles Sα. As we saw in various

examples, some of the constraints arise in the large N limit of QFT partition functions

when we impose that the theory has gauge group SU(N) and the distribution of eigenvalues

– 39 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
4

is traceless. However, not all baryonic symmetries for the known quivers are related to a

U(1) subgroup of a U(N) gauge symmetry. Some of them appear as symmetries rotating

the flavors. In all these cases, a field theory interpretation is still missing.

Similarly, the role of the quartic polynomial a3d(∆) is still unclear both from the

geometrical and physical point of view. It is a quartic polynomial with the property that,

when restricted to the Sasakian parameterization (2.3), it coincides with F 2
S3 as a function

of bi. It has been originally found by analyzing examples in [8, 65] but a general formula

is still lacking. It is known to be of the form [8, 65]

a3d(∆a) =
1

24

d
∑

a,b,c,e=1

|det(va, vb, vc, ve)|∆a∆b∆c∆e + quartic corrections , (6.1)

where the correction terms are related to internal lines in the toric diagram. Without the

corrections terms, this expression would be the analogue of the well-known expression for

the trial a central charge of the quiver associated to D3-branes at Calabi-Yau toric three-

folds [71]. In this paper, we further noticed that, quite remarkably, the constraints among

R-charges can be written in terms of a3d(∆) using (4.33). It would be interesting to find

a direct geometric interpretation for a3d(∆). Even from the physical point of view, the

analogy of a3d(∆) with the four-dimensional trial central charge a4d(∆) is quite intriguing.

As its four-dimensional analogue [61], a3d(∆) is automatically extremized with respect to

the baryonic symmetries and it coincides off-shell with the inverse of the volume functional

— which is also F 2
S3(∆a) — when imposing the Sasakian parameterization (2.3). Therefore,

F -maximization is also equivalent to the extremization of a3d(∆) with respect to all the

directions, including the baryonic ones. It would be interesting to see if there is a field

theory interpretation of this observation.

Similar questions arise for the twisted compactifications of the three-dimensional the-

ories on Σg. In particular, it would be nice to find a purely field theory interpretation of

the constraints (4.31), or equivalently (4.34). It would be also interesting to see if a3d(∆)

plays some role in the solution to the equations in [41, 42] for a generic choice of fluxes. In

particular, in all our examples for the mesonic twist it is true that

I(na,∆a) = −2
√
2πN3/2

3

d
∑

a=1

na
∂
√

a3d(∆a)

∂∆a
. (6.2)

It would be interesting to see if there is a similar expression for an arbitrary twist.
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A Simplifying the supersymmetry conditions for toric manifolds

In this appendix we discuss some geometrical aspects of the toric manifolds Y7 considered

in the main text and we prove the results presented in sections 4.2 and 4.3.

A.1 Master and Sasaki volumes

The cone over a Sasaki manifold Y7(bi), C(Y7(bi)), is a Kähler manifold but it is not in

general Calabi-Yau. Considering the Reeb vector

ξ = b1∂z =
4

∑

i=1

bi∂ϕi
, (A.1)

and the dual one-form η, iξη = 1, for a Sasaki manifold we have dη = 2ωS, where ωS

is the Kähler form transverse to the Reeb foliation. For a Sasaki manifold, we also have

ρ = 2b1ωS, where ρ is the Ricci two-form on Y7(bi). The volumes of Y7(bi) and of its cycles

Sa(bi) are given by the explicit formulae [2, 57]

VolS(Y7) =

∫

Y7

η ∧ ω3
S

6
=

π

3b1

d
∑

a=1

VolS(Sa) ,

VolS(Sa) =

∫

Sa

η ∧ ω2
S

2
= π3

ℓa−1
∑

k=2

(va, wk−1, wk, wk+1)(va, wk, w1, wℓa)

(va, b, wk, wk+1)(va, b, wk−1, wk)(va, b, w1, wℓa)
,

(A.2)

where wa, k = 1, . . . , ℓa, is a counterclockwise ordered sequence of vectors adjacent to va.

For the backgrounds in [41, 42],22 it is still true that dη = ρ/b1 but now the restriction

of ρ and ω to Y7 are no more proportional. However, it is still true that

1

(2b1)3

∫

Y7

η ∧ ρ3

6
= VolS(Y7) ,

1

(2b1)2

∫

Sa

η ∧ ρ2

2
= VolS(Sa) ,

(A.3)

where the subscript S indicates us that the volume are computed for the Sasaki metric on

Y7(bi). Indeed, the integrals in (A.3) can be computed using the Duistermaat-Heckman

localization formula using a resolution of the complex cone C(Y7) and dη = ρ/b1 [3, 41].

Since we can use a fixed point formula for evaluating the integrals, the result coincides with

the formulae given in [2, 3].

Consider now the master volume (4.2). Using the expression (4.1) for ω, we see that

V is a cubic form in λa

V =
1

6

∫

Y7

η ∧ ω3 =
1

6

d
∑

a,b,c=1

Jabcλaλbλc , (A.4)

22We use the same symbols, η, ω and ρ for the forms on the fibration Y9, and their restriction to the

manifold Y7.
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where

Jabc = −(2π)3
∫

Y7

η ∧ ca ∧ cb ∧ cc . (A.5)

For λa = −1/(2b1), the metric becomes Sasaki and the master volume coincides with

VolS(Y7). More generally, using the expression (4.1) for ρ, we also see that the Sasakian

volumes (A.3) are related to the intersection numbers by23

VolS(Y7) = − 1

48b31

d
∑

a,b,c=1

Jabc , VolS(Sa) = − 1

16πb21

d
∑

b,c=1

Jabc . (A.6)

A.2 Supersymmetry conditions: universal twist

The universal twist is defined by

ni =
bi
b1
n1 , ∀i = 1, . . . , 4 . (A.7)

where n1 = 2− 2g. We can solve (4.4) by taking all the λa equal

λa = − 1

2b1
λ , ∀a = 1, . . . , d . (A.8)

Using (A.4) and (A.6) we find

V = − λ3

6(2b1)3

d
∑

a,b,c=1

Jabc = λ3VolS(Y7) , (A.9)

∂V
∂λa

=
λ2

2(2b1)2

d
∑

b,c=1

Jabc = −2πλ2VolS(Sa) ,
d

∑

a=1

∂V
∂λa

= −6b1λ
2VolS(Y7) ,

d
∑

b=1

∂2V
∂λa∂λb

= − λ

2b1

d
∑

b,c=1

Jabc = 8πb1λVolS(Sa) ,

d
∑

a,b=1

∂2V
∂λa∂λb

= 24b21λVolS(Y7) .

Note that V , VolS(Y7), and VolS(Sa) are homogeneous functions of bi of degree −1, −4,

and −3, respectively. The set of equations (4.4) can then be rewritten as

N = 6b1λ
2VolS(Y7) ,

naN = −2(2Ab1 + πn1λ)λVolS(Sa) ,

A = −πn1

b1
λ ,

(A.10)

where we used (A.7) and
∑4

i=1 bi∂biV = −V . Let us emphasize that the above set of

equations depends on the choice of the Reeb vector through VolS(Y7) and VolS(Sa). We

thus obtain

λ = ±
√

N

6b1VolS(Y7)
, A = −πn1

b1
λ ,

na =
n1

2

(

2π

3b1

VolS(Sa)

VolS(Y7)

)

≡ n1

2
∆a ,

(A.11)

23We used
∫

Y7

η ∧ ca ∧ ρ2 =
∫

Sa

η ∧ ρ2.

– 42 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
4

where we introduced the set of basic R-charges (2.3). Notice that
∑d

a=1∆a(bi) = 2.

Note also that
∑d

a=1 na = n1 hence (4.5) is correctly satisfied. Evaluating the entropy

functional (4.6) and using the plus sign in (A.11), we find

S(bi, na) = − 8n1

b
3/2
1

N3/2

√

2π6

27VolS(Y7)
, (A.12)

thus reproducing (4.12).

A.3 Supersymmetry conditions: mesonic twist

The mesonic twist is characterized by the condition

d
∑

a=1

B(i)
a λa = 0 , ∀i = 1, . . . , d− 4 , (A.13)

where B
(i)
a are baryonic symmetries satisfying (4.18). We can use the invariance (4.3) to

choose the gauge

λ1 = λ2 = λ3 = 0 . (A.14)

We now prove that there exists a solution to the set of equations (4.4), compatible

with (A.13), such that

λa = −1

2

(v1, v2, v3, va)

(v1, v2, v3, b)
λ , ∀a = 1, . . . , d . (A.15)

We will use repeatedly the identity [42]

d
∑

b=1

Jabcv
b
i =

bi
b1

d
∑

b=1

Jabc . (A.16)

Hence, for the R-charges (4.21) we find

∆a(bi, na) = − 1

N

d
∑

b,c=1

Jabcλbλc = − λ2

4Nb21

d
∑

b,c=1

Jabc . (A.17)

Imposing
∑d

a=1∆a = 2 and using (A.6), we fix the value of the Kähler parameter λ

λ2 = − 8Nb21
∑

a,b,c Jabc
=

N

6b1VolS(Y7)
, (A.18)

which depends on the choice of the Reeb vector through VolS(Y7). Furthermore, we discover

that the ∆a are actually independent of the fluxes na and are given by

∆a(bi) =
2
∑

b,c Jabc
∑

a,b,c Jabc
=

2π

3b1

VolS(Sa)

VolS(Y7)
. (A.19)
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We can also evaluate the on-shell value of the master volume (see (4.7)). It reads

Von-shell(bi) = − λ3

48b31

d
∑

a,b,c=1

Jabc =
N3/2

4π3b
3/2
1

√

2π6

27Vol(Y7(bi))
, (A.20)

thus reproducing (4.25). From (A.16), we can also derive the useful identity

2
bk
b1

=
d

∑

a=1

vka∆a(bi) , ∀k = 1, . . . , 4 , (A.21)

which is actually the simplest way of comparing the two sides of (2.2).

Let us now move and solve the equations (4.4). We already used the first equation in

order to find λ. The other equations can be written as

naN = − A

2π

d
∑

b,c=1

Jabcλc −
b1
2

d
∑

b,c=1

∇Jabcλbλc ,

A

2π

d
∑

a,b,c=1

Jabcλc = −Nn1 −
b1
2

d
∑

a,b,c=1

∇Jabcλbλc ,

(A.22)

where we introduced the operator ∇ ≡ ∑4
i=1 ni∂bi . We can write

d
∑

c=1

∇Jabcλc = − λ

2b1

[

d
∑

c=1

∇Jabc +
d

∑

c=1

Jabc

(

(v1, v2, v3, n)

(v1, v2, v3, b)
− n1

b1

)

]

, (A.23)

where we used the identity [42]

d
∑

a=1

vka∇Jabc =
bk
b1

d
∑

a=1

∇Jabc +

(

nk

b1
− n1bk

(b1)2

) d
∑

a=1

Jabc , ∀k = 1, . . . , 4 , (A.24)

that follows from (A.16). Thus, we solve the second equation in (A.22) for A

A = −πλ

2

(

3n1

b1
−

∑

a,b,c∇Jabc
∑

a,b,c Jabc
− 2

(v1, v2, v3, n)

(v1, v2, v3, b)

)

, (A.25)

where we used (A.18). Using (A.18) and (A.25) we can now evaluate the entropy func-

tional (4.6). It reads

S(bi, na) = 8π2

(

NA− πb1
3

d
∑

a,b,c=1

∇Jabcλaλbλc

)

= −16
√
2π3

3
√
b1

N3/2∇ b
3/2
1

√

−∑

a,b,c Jabc
.

(A.26)

Using (A.6), we can finally write

S(bi, na) = − 4√
b1
∇
√

2π6

27VolS(Y7)
N3/2 , (A.27)

thus reproducing (4.27).

– 44 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
4

Now let us go back and see what constraints the mesonic twist imposes on the fluxes

(as the equations (A.22) depend on both mesonic and baryonic fluxes). Consider the first

equation in (A.22). Using (A.16), (A.18), (A.23), and (A.25), we find that

naN = n1N

∑

b,c Jabc
∑

a,b,c Jabc
+ b1N∇

∑

b,c Jabc
∑

a,b,c Jabc
. (A.28)

Using (A.19) we then obtain

na =
n1

2
∆a +

b1
2
∇∆a =

1

2
∇(b1∆a) , ∀a = 1, . . . , d , (A.29)

thus reproducing (4.31). Notice that, as required by consistency,

d
∑

a=1

vana =
1

2

d
∑

a=1

∇(b1va∆a) = ∇b = n , (A.30)

where we used (A.21).

B Explicit expressions of master volumes

In this appendix we collect the expressions for the master volume (4.2) of the toric examples

discussed in section 5.

The cone over Q1,1,1.

VQ1,1,1 =
8π4(b3+b4)(b1−b3−b4)

2λ3
1

3(b1−b2)b3b4(b1−b2−b3−b4)
+

8π4(b2+b4)(b1−b2−b4)
2λ3

2

3b2(b1−b3)b4(b1−b2−b3−b4)

+
8π4(b2+b3)(b1−b2−b3)

2λ3
3

3b2b3(b1−b4)(b1−b2−b3−b4)
−

8π4(2b1−b2−b4)(b1−b2−b4)
2λ3

4

3(b1−b2)b3(b1−b4)(2b1−b2−b3−b4)

−
8π4(2b1−b2−b3)(b1−b2−b3)

2λ3
5

3(b1−b2)(b1−b3)b4(2b1−b2−b3−b4)
−

8π4(2b1−b3−b4)(b1−b3−b4)
2λ3

6

3b2(b1−b3)(b1−b4)(2b1−b2−b3−b4)

+8π4(b1−b3−b4)

(

λ2

b4(b1−b2−b3−b4)
+

λ3

b3(b1−b2−b3−b4)
−

λ4

(b1−b2)b3
−

λ5

(b1−b2)b4

)

λ2
1

−

(

8π4(b1−b2−b3)λ4

b3(b1−b4)
+

8π4(b1−b2−b3)λ6

b2(b1−b4)

)

λ2
3

+

(

8π4(b1−b2−b4)λ3

b2(b1−b2−b3−b4)
−

8π4(b1−b2−b4)λ5

(b1−b3)b4
−

8π4(b1−b2−b4)λ6

b2(b1−b3)

)

λ2
2

+

(

8π4(b1−b2−b4)λ5

(b1−b2)(2b1−b2−b3−b4)
+

8π4(b1−b2−b4)λ6

(b1−b4)(2b1−b2−b3−b4)

)

λ2
4

+

(

8π4(b1−b2−b4)λ
2
2

b4(b1−b2−b3−b4)
+

(

16π4λ3

b1−b2−b3−b4
−

16π4λ5

b4

)

λ2+
8π4(b1−b2−b3)λ

2
3

b3(b1−b2−b3−b4)

+
8π4(b1−b2−b4)λ

2
4

(b1−b2)b3
+

8π4(b1−b2−b3)λ
2
5

(b1−b2)b4
−

16π4λ4λ5

b1−b2
−

16π4λ3λ4

b3

)

λ1

+8π4

(

(b1−b2−b3)λ
2
3

b2(b1−b2−b3−b4)
−

2λ6λ3

b2
+

(b1−b2−b3)λ
2
5

(b1−b3)b4
+

(b1−b3−b4)λ
2
6

b2(b1−b3)
−

2λ5λ6

b1−b3

)

λ2

+8π4

(

(b1−b2−b4)λ
2
4

b3(b1−b4)
−

2λ6λ4

b1−b4
+

(b1−b3−b4)λ
2
6

b2(b1−b4)

)

λ3

+
8π4

2b1−b2−b3−b4

(

(b1−b2−b3)λ
2
5

b1−b2
−2λ6λ5+

(b1−b3−b4)λ
2
6

b1−b4

)

λ4

+
8π4(b1−b3−b4)λ5λ

2
6

(b1−b3)(2b1−b2−b3−b4)
+

8π4(b1−b2−b3)λ
2
5λ6

(b1−b3)(2b1−b2−b3−b4)
. (B.1)
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Flavoring N =8 SYM.

VN=8 SYM =
8π4

(

b3b4r2−((b1−b2−b3)r1−b4)
2)λ3

1

3b2b3b4r21
−

8π4
(

(b3r2−b4)
2−b2b4r3

)

λ3
2

3b2(b1−b2−b3)b4r22

+
8π4

(

b4 ((b1−b2−b3)r1+2b2r3)−b22r
2
3−b24

)

λ3
3

3(b1−b2−b3)b3b4r23

+
8π4

(

(b3r2−b4)
2−b2r3 ((b1−b2−b3)r1−b3r2+b4)

)

λ3
4

3b2b3r21 (−b1r1+b3(r1−r2)+b2(r1−r3)+b4)

−
8π4λ3

5

3(b1−b2−b3)

(

r3
r22

−
b4
b2r22

+

(

b3
b1r1−b3(r1−r2)−b2(r1−r3)−b4

+
1

r2

)

b3
b2

)

+
8π4 ((b4−(b1−b2−b3)r1)(b4−b3r2−(b1−b2−b3)r1)−b2b3r2r3)λ

3
6

3(b1−b2−b3)b3r23 (b4−b1r1+b3(r1−r2)+b2(r1−r3))

−8π4

(

(b1−b2−b3)λ2

b2b4
−

(b4−(b1−b2−b3)r1)λ3

b3b4r1
−

(b4−(b1−b2−b3)r1−b3r2)λ4

b2b3r21
+

λ5

b2r1

)

λ2
1

−8π4

(

(b3r2−b4)λ
2
2

b2b4r2
+2

(

λ3

b4
+

λ5

b2r2

)

λ2−
(b3r2−b4)λ

2
4

b2b3r21
−

λ2
5

b2r2
+

b2λ
2
3

b3b4
+

2λ4λ5

b2r1
+

2λ3λ4

b3r1

)

λ1

−
8π4

b1−b2−b3

(

b3λ3

b4
−

(b4−b3r2−b2r3)λ5

b2r22
−

λ6

r2

)

λ2
2

+8π4

(

λ4

b3r3
+

(b4−(b1−b2−b3)r1−b2r3)λ6

(b1−b2−b3)b3r23

)

λ2
3

+
8π4

(b4−b1r1+b3(r1−r2)+b2(r1−r3))

(

(b4−b3r2−b2r3)λ5

b2r1
+

(b1−b2−b3)λ6

b3

)

λ2
4

−
8π4

b1−b2−b3

(

λ2
3

(

b2
b4

−
1

r3

)

+
λ2
5 (b4−b2r3)

b2r22
+

2λ6λ3

r3
+

2λ5λ6

r2
−

λ2
6

r3

)

λ2

+8π4

(

λ2
4

b3r1
−

2λ6λ4

b3r3
−

(b4−(b1−b2−b3)r1)λ
2
6

(b1−b2−b3)b3r23

)

λ3

+
8π4λ4

b4−b1r1+b3(r1−r2)+b2(r1−r3)

(

b3λ
2
5

b2
+2λ6λ5+

b2λ
2
6

b3

)

+
8π4λ2

6λ4

b3r3

+
8π4b2λ5λ

2
6

(b1−b2−b3)(b4−b1r1+b3(r1−r2)+b2(r1−r3))

+
8π4 (b4−(b1−b2−b3)r1−b2r3)λ

2
5λ6

(b1−b2−b3)r2 (b4−b1r1+b3(r1−r2)−b2(r1−r3))
. (B.2)

The SPP theory.

VSPP =−
4π4

(

b23+(2b1−b2−2b4)(2b1−3b2−2b4)
)

λ3
1

3(b22−b23)b4
−

16π4(b1−b2)λ
2
5λ6

(b1−b4)2−b23
−

16π4(b1−b2−b4)λ5λ
2
6

b23−(b1−b4)2

−
8π4b23 (2(b1+b3)−b4)λ

3
2

3(b2+b3)(b1+b3−b4)b4(2b1−b2+b3−b4)
+

4π4
(

(4b1−3b2−b4)(b2−b4)−b23
)

λ3
3

3(2b1−b2+b3−b4)b4(2b1−b2−b3−b4)

−
8π4b23 (2b1−2b3−b4)λ

3
4

3(b2−b3)b4(b1−b3−b4)(2b1−b2−b3−sb4)
−

16π4
(

(b2−b4)(b
2
2−b23+b24)−b1(b

2
2−b23−b24)

)

λ3
5

3(b2−b3)(b2+b3)(b1+b3−b4)(b1−b3−b4)

+
16π4

(

4b34+6(b2−2b1)b
2
4+2(6b21−7b2b1+2b22−b23)b4−(b1−b2)

(

(b2−2b1)
2−b23

))

λ3
6

3(b1−b3−b4)(b1+b3−b4)(2b1−b2+b3−b4)(2b1−b2−b3−b4)

−4π4λ2
1

(

(2b1−b2+b3−2b4)λ2

(b2+b3)b4
−

λ3

b4
+

(2b1−b2−b3−2b4)λ4

(b2−b3)b4
+

4(b1−b2−b4)λ5

b22−b23

)

+8π4λ2
2

(

b3λ3

(2b1−b2+b3−b4)b4
+

b3λ5

(b2+b3)(b1+b3−b4)
+

b3λ6

(b1+b3−b4)(2b1−b2+b3−b4)

)

−4π4λ2
3

(

(b2−b3−b4)λ4

b4(2b1−b2−b3−b4)
−

4(b1−b2)λ6

(2b1−b2+b3−b4)(2b1−b2−b3−b4)

)
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−8π4λ2
4

(

b3λ5

(b2−b3)(b1−b3−b4)
+

b3λ6

(b1−b3−b4)(2b1−b2−b3−b4)

)

+4π4λ1

(

2b3λ
2
2

(b2+b3)b4
−2λ2

(

λ3

b4
+

2λ5

b2+b3

)

+
λ2
3

b4
−

2b3λ
2
4

(b2−b3)b4
−

4λ4λ5

b2−b3
−

4b4λ
2
5

b22−b23
−

2λ3λ4

b4

)

+4π4λ2

(

−
(b2+b3−b4)λ

2
3

(2b1−b2+b3−b4)b4
−

4λ6λ3

2b1−b2+b3−b4
+

2(b2+b3−b4)λ
2
5

(b2+b3)(b1+b3−b4)

+
2(2b1−b2+b3−2b4)λ

2
6

(b1+b3−b4)(2b1−b2+b3−b4)
−

4λ5λ6

b1+b3−b4

)

−
8π4λ3

2b1−b2−b3−b4

(

b3λ
2
4

b4
+2λ6λ4+

2b4λ
2
6

(2b1−b2+b3−b4)

)

+
8π4λ4

b1−b3−b4

(

(b2−b3−b4)λ
2
5

b2−b3
−2λ6λ5+

(2b1−b2−b3−2b4)λ
2
6

2b1−b2−b3−b4

)

. (B.3)

The cone over M1,1,1.

VM1,1,1 =
16π4

(

(b3−2b2)b
2
4+9(b1−2b2+b3)

(

−b23−(b1+2b2)b3+2b2(b1+b2)
))

λ3
1

(3(b1+b2−2b3)−b4)(3(b1+b2+b3)−b4)(3(b1+b2−2b3)+b4)(3(b1+b2+b3)+b4)

+
16π4

(

(b2−2b3)b
2
4−9(b1+b2−2b3)

(

−2b23+2(b2−b1)b3+b2(b1+b2)
))

λ3
2

(9(b1−2b2+b3)2−b24)(9(b1+b2+b3)2−b24)

+
16π4

(

(b2+b3)b
2
4−9(b1+b2+b3)

(

b22−4b3b2+b23+b1(b2+b3)
))

λ3
3

(9(b1+b2−2b3)2−b24)(9(b1−2b2+b3)2−b24)

−
24π4b24λ

3
4

(3(b1+b2−2b3)+b4)(3(b1−2b2+b3)+b4)(3(b1+b2+b3)+b4)

−
24π4b24λ

3
5

(3(b1+b2−2b3)−b4)(3(b1−2b2+b3)−b4)(3(b1+b2+b3)−b4)

+

(

48π4b2λ2

9(b1+b2+b3)2−b24
+

48π4(b2−b3)λ3

9(b1+b2−2b3)2−b24
+

8π4 (b4−3(b1−2b2+b3))λ5

(3(b1+b2−2b3)−b4)(3(b1+b2+b3)−b4)

−
8π4 (3(b1−2b2+b3)+b4)λ4

(3(b1+b2−2b3)+b4)(3(b1+b2+b3)+b4)

)

λ2
1

+8π4

(

6(b3−b2)λ3

9(b1−2b2+b3)2−b24
+

(b4−3(b1+b2−2b3))λ5

(3(b1−2b2+b3)−b4)(3(b1+b2+b3)−b4)

−
(3(b1+b2−2b3)+b4)λ4

(3(b1−2b2+b3)+b4)(3(b1+b2+b3)+b4)

)

λ2
2

+8π4

(

(b4−3(b1+b2+b3))λ5

(3(b1+b2−2b3)−b4)(3(b1−2b2+b3)−b4)
−

(3(b1+b2+b3)+b4)λ4

(3(b1+b2−2b3)+b4)(3(b1−2b2+b3)+b4)

)

λ2
3

+8π4

(

6b3λ
2
2

9(b1+b2+b3)2−b24
−2

(

λ4

3(b1+b2+b3)+b4
+

λ5

3(b1+b2+b3)−b4

)

λ2

+
3b4λ

2
4

(3(b1+b2−2b3)+b4)(3(b1+b2+b3)+b4)
+2

(

λ5

b4−3(b1+b2−2b3)
−

λ4

3(b1+b2−2b3)+b4

)

λ3

−
3b4λ

2
5

(3(b1+b2−2b3)−b4)(3(b1+b2+b3)−b4)
−

6b3λ
2
3

9(b1+b2−2b3)2−b24

)

λ1

−8π4

(

6b2λ
2
3

9(b1−2b2+b3)2−b24
−2

(

λ5

b4−3(b1−2b2+b3)
−

λ4

3(b1−2b2+b3)+b4

)

λ3

−
3b4λ

2
4

(3(b1−2b2+b3)+b4)(3(b1+b2+b3)+b4)
+

3b4λ
2
5

(3(b1−2b2+b3)−b4)(3(b1+b2+b3)−b4)

)

λ2 (B.4)

+24π4b4

(

λ2
4

(3(b1+b2−2b3)+b4)(3(b1−2b2+b3)+b4)
−

λ2
5

(3(b1+b2−2b3)−b4)(3(b1−2b2+b3)−b4)

)

λ3 .
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