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1 Introduction

Two dimensional integrable quantum field theories are hoped to be exactly soluble. The-

oretically, solvability allows us to find exact values for all physical observables including

the energy spectrum and correlation functions at any finite size. However, even in inte-

grable theories this very progressive task has not been completed yet. Integrability has

only offered us a systematic way to attack these problems so far.
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The first step of this systematic solution is to solve the theory in infinite volume by

completing the S-matrix and form factor (FF) bootstraps [1–4]. In infinite volume the

powerful crossing symmetry can be used to derive restrictive functional relations for the

scattering matrix and for the matrix elements of local operators, i.e. for form factors.

Having solved these functional relations the resulting S-matrix and FFs can be used to

describe all the finite size corrections systematically as follows.

At finite size, the leading corrections are polynomial in the inverse of the volume and

originate from finite volume momentum quantization [5, 6]. Periodicity of the wave function

requires that the scattering phase cancels the translational phase when a particle is moved

around the cylinder and scattered through all other particles. The leading exponential

corrections for bound states (called µ-terms) are related to the fact that in a finite volume

bound states can virtually decay into their constituents. The next exponential corrections

(F-terms) are caused by the polarization of the non-trivial finite volume vacuum [7]. Pairs

of virtual particles can appear from the vacuum. These travel around the world and scatter

on the physical particles, then annihilate each other or get absorbed by the operators, such

that this amplitude is described by the infinite volume form factor. There could be any

number of virtual particles, which can also scatter on themselves. Thus, for an exact

description all these virtual processes have to be quantified and summed up.

For the finite volume energy levels the momentum quantization is given by the so-

called Bethe-Yang equations [5, 6], which provide the polynomial corrections. Leading

exponential corrections for standing one-particle states were identified in [7] and were later

extended for a single moving particle in [8, 9]. The contribution of a single pair of virtual

particles was extended for multiparticle states in [10], while the similar contribution with

two pairs of virtual particles was analyzed for the vacuum in [11], and for multiparticle

states in [12]. Finally, all virtual processes are summed up by the Thermodynamic Bethe

Ansatz (TBA) equation, which was derived in the simplest case in [6]. This provides the

exact finite volume ground state energy. Excited states can be obtained by careful analytic

continuations [13, 14].

For finite volume form factors our understanding is much more restricted. As far as

polynomial corrections are concerned one merely has to take into account momentum quan-

tization and the corresponding change in the normalization of states, which was proved for

non-diagonal form factors in [15]. For diagonal form factors extra disconnected terms ap-

pear [16], which can be derived by carefully evaluating the diagonal limit of a non-diagonal

form factor [17]. The finite volume one-point functions can be expressed in terms of the

infinite volume connected form factors and the TBA pseudo energies [18, 19] in a way

summing up the contributions of virtual processes. This result has been extended by an-

alytic continuation for diagonal matrix elements in diagonally scattering theories [20–22].

The expansion of these formulae provides the leading exponential corrections for diago-

nal form factors. For non-diagonal form factors, however, even these leading exponential

corrections are not known in general. For the simplest non-diagonal form factor (vacuum-

one-particle state) the leading exponential µ-term corrections were obtained in [23], while

the F -term correction in [24]. The aim of the present paper is to extend these analy-

ses for generic non-diagonal matrix elements in diagonally scattering theories. Although

– 2 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
3

the F -term calculation was based on the form factor expansion of the torus two-point

function [24], this method is very difficult to generalize even considering the interesting

developments in [25, 26]. We thus focus on a formal and direct derivation of the cylinder

one-point function in the crossed channel. We test the conjectured results by comparing

them to the µ-term corrections and to numerical data obtained from the combination of

the Truncated Conformal Space Approach (TCSA) and mini-superspace approaches newly

developed for the sinh-Gordon theory and from TCSA in the Lee-Yang model.1

Our results provide the leading exponential corrections for form factors, which con-

tribute to the leading exponential correction to correlation functions, too. These results can

be relevant for various branches of physics including finite temperature and finite volume

correlation functions in statistical and solid state systems as well as in lattice gauge theo-

ries, where the size of the system is inherently finite and finite size effects are unavoidable.

Our results can be useful in the AdS/CFT correspondence, too, where the calculation of

correlation functions boils down to the calculation of finite volume form factors of nonlocal

operators [27] or, alternatively, it can be obtained by gluing hexagon [28] and octagon [29]

amplitudes. This gluing procedure is analogous to the calculation of finite size effects of

form factors and requires a regularization procedure [30]. Thus, our systematic method

which gives rise to a regulated form factor could be implemented there as well.

The paper is organized as follows: in section 2 we review the exact results for the

finite size corrections of the energy spectrum. We start this by describing the existing

excited state TBA equations for the sinh-Gordon and Lee-Yang models and expanding them

iteratively to second order. We extract the µ- and F -term corrections and demonstrate

how the µ-terms can be obtained from the F -terms by calculating appropriate residues.

Section 3 deals with the finite size corrections of non-diagonal form factors. We first review

the asymptotic results for polynomial corrections. Assuming the particles are bound states

the asymptotic results provide the µ-term corrections, which we derive in a compact form.

Afterwards, we provide a formal derivation of the F-term corrections, relating them to the

µ-terms subsequently. In section 4 we check numerically our formulas in the sinh-Gordon

and Lee-Yang models and conclude in section 5. Technical details are relegated to the

appendices.

2 Finite volume energy spectrum

In this section we recall how the TBA equations provide an exact description of the energy

spectrum. We focus on theories with diagonal scatterings.

In the simplest case the theory has a single particle with mass m. Multiparticle scat-

terings factorize into the product of two-particle scatterings, with S-matrix S(θ), which

satisfies unitarity and crossing symmetry

S(−θ) = S−1(θ) ; S(iπ − θ) = S(θ) (2.1)

1We note that very similar ideas appeared in an independent investigation by Konik, Mussardo et al.,

see also footnote 5 at the beginning of section 4.
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Here θ is the rapidity difference of the particles θ = θ1 − θ2. The simplest non-trivial

scattering matrix is

S(θ) =
sinh θ − i sin pπ

sinh θ + i sin pπ
(2.2)

For p > 0 there is no singularity in the physical strip =m(θ) ∈ [0, π] and the scattering

matrix corresponds to the sinh-Gordon theory. However, if p < 0 bound states have to be

introduced to explain the appearing poles. For p = −2
3 the scattering matrix

S(θ) =
sinh θ + i sin π

3

sinh θ − i sin π
3

(2.3)

satisfies the relation

S(θ + iu)S(θ − iu) = S(θ) ; u =
π

3
(2.4)

which, together with the bound state energy relation

m cosh θ = m cosh(θ + iu) +m cosh(θ − iu) (2.5)

implies that the bound state is the original particle itself. This theory is a consistent

scattering theory [31], called the scaling Lee-Yang model.

2.1 Sinh-Gordon finite size spectrum

The exact finite volume energy spectrum can be obtained by calculating the continuum

limit of an integrable lattice regularization [32]. A finite volume multiparticle state can

be described by the pseudo energy ε(θ|{θj}) and parameters {θ̄j}j=1,...,N satisfying the

non-linear integral equation

ε(θ|{θ}) = mL cosh θ+
∑
j

logS

(
θ − θj −

iπ

2

)
−
∫ ∞
−∞

dv

2π
φ(θ− v) log(1 + e−ε(v|{θ})) (2.6)

where φ(θ) = −i∂θ logS(θ) and the particles’ rapidities satisfy the quantization condition

Qk({θ̄}) = 2πnk ; Qk({θ}) = −iε
(
θk +

iπ

2
|{θ}

)
− π ; k = 1, . . . , N (2.7)

Here and from now on we abbreviate the set of rapidities {θj}j=1,...,N as {θ}. Given quan-

tization numbers nk, the rapidities {θ̄} and the pseudo energy ε(θ|{θ̄}) can be determined,

which provide the finite volume energy of the multiparticle state via

E{n}(L) = m
∑
j

cosh θ̄j −m
∫ ∞
−∞

dv

2π
cosh v log(1 + e−ε(v|{θ̄})) (2.8)

We note that both in (2.6) and (2.8) the terms with the sum can be absorbed into the

integral term by choosing a contour which goes around the singularities of the integrands

at v = θ̄j+i
π
2 . These zero of logarithm singularities are actually encoded in the quantization

conditions (2.7).
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2.1.1 Polynomial energy corrections

The TBA equations admit a systematic large volume expansion. At leading order, indicated

by a superscript (0), we drop the exponentially small integral terms and arrive at

ε(0)(θ|{θ}) = mL cosh θ +
∑
j

logS

(
θ − θj −

iπ

2

)
(2.9)

Asymptotic rapidities satisfy the Bethe-Yang equations

Q
(0)
k ({θ̄(0)}) = 2πnk ; Q

(0)
k ({θ}) = mL sinh θk − i

∑
j:j 6=k

logS(θk,j) (2.10)

where θk,j = θk − θj . This equation has a very transparent meaning. Periodicity of the

multiparticle wavefunction requires that, when moving particle k around the circle, the

acquired phase — consisting of the translational and the scattering phases — has to be a

multiple of 2π.

The energy at leading order is simply the sum of the one-particle energies

E
(0)
{n}(L) = m

∑
j

cosh θ̄
(0)
j (2.11)

incorporating all finite volume corrections, which are polynomial in the inverse of the

volume.

2.1.2 Leading exponential volume corrections

The leading exponential volume correction can be obtained by iterating the exact equations

once. At this order, denoted by superscript (1), we have

ε(1)(θ|{θ}) = mL cosh θ +
∑
i

logS

(
θ − θi −

iπ

2

)
−
∫ ∞
−∞

dv

2π
φ(θ − v)e−ε

(0)(v|{θ}) (2.12)

and the quantization conditions get modified as

Q
(1)
k ({θ̄(1)}) = 2πnk ; Q

(1)
k ({θ}) = Q

(0)
k ({θ}) + ∂kΦ({θ}) (2.13)

where ∂i ≡ ∂θi ≡ ∂
∂θi

and

Φ({θ}) =

∫ ∞
−∞

dv

2π

∏
j

S
(
v + i

π

2
− θj

)
e−mL cosh v (2.14)

The exponentially corrected energy is

E
(1)
{n}(L) = m

∑
i

cosh θ̄
(1)
i −m

∫ ∞
−∞

dv

2π
cosh v

∏
j

S
(
v + i

π

2
− θ̄(0)

j

)
e−mL cosh v (2.15)

which can be expressed also in terms of θ̄
(0)
i as in [10]. The integral terms in all formulae

above are called the F -term corrections.
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2.2 Scaling Lee-Yang finite size spectrum

The ground state TBA equation was derived in [6], and careful analytical continuation in

the volume leads to the TBA equations of excited states [13]. The same TBA equations

can be derived from a continuum limit of a lattice model as well [33]. The TBA equations

are formally the same as in the sinh-Gordon theory except that each particle with rapidity

θ̄j is represented as a bound state of two ‘elementary’ particles of rapidities θ̄j± = θ̄j± iūj .2

Thus, the pseudo energy equations are

ε(θ|{θ±}) = mL cosh θ +
∑
j,s=±

logS

(
θ − θjs −

iπ

2

)
−
∫ ∞
−∞

dv

2π
φ(θ − v) log(1 + e−ε(v|{θ±}))

(2.16)

where {θ±} is the shorthand for {θj±} and the quantization conditions are

Qk±({θ̄±}) = 2πnk± ; Qk±({θ±}) = −iε
(
θk± +

iπ

2
|{θ±}

)
− π ; k = 1, . . . , N

(2.17)

It is advantageous to introduce the symmetric and antisymmetric combinations of these

equations

Qk({θ±}) = Qk+({θ±})+Qk−({θ±}) ; Q̄k({θ±}) = Qk+({θ±})−Qk−({θ±}) (2.18)

The energy formula is also analogous to the sinh-Gordon theory:

E{n±}(L) = m
∑
js

cosh θ̄js −m
∫ ∞
−∞

dv

2π
cosh v log(1 + e−ε(v|{θ̄±})) (2.19)

2.2.1 Polynomial and µ-term energy corrections

Let us expand the equations as before by dropping the integral terms. We indicate this

order by a superscript (µ) on θ̄
(µ)
j± = θ̄

(µ)
j ± iū

(µ)
j as it contains both polynomially and

exponentially small volume corrections. Similarly to the sinh-Gordon case we assign the

superscript (0) for polynomial corrections only. The pseudo energy at this order is:

ε(0)(θ|{θ±}) = mL cosh θ +
∑
js

logS

(
θ − θjs −

iπ

2

)
(2.20)

while the BY equations read as Q
(0)
k±({θ̄(µ)

± }) = 2πnk± with

Q
(0)
k±({θ±}) = mL sinh(θk±)− i logS(θk±,k∓)− i

∑
j:j 6=k,s

logS(θk±,js) (2.21)

Focusing on the imaginary part of the equations we see that in the L→∞ limit the term

imL cosh θ̄
(µ)
j sin ū

(µ)
j goes to i∞. This can be compensated only by the bound state pole

of the scattering matrix

S(θ) = i
Γ2

θ − 2iu
+ S0 +O(θ − 2iu), Γ2 = −2

√
3 (2.22)

2Here both θ̄j and ūj are real parameters.
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which forces ūj to approach u in the large volume limit. Let us parametrize ū
(µ)
j as3

ū
(µ)
j = u+ δūj (2.23)

The relation S(2iū
(µ)
j ) = Γ2

2δūj
+ . . . together with (2.21) imply that δūj is actually expo-

nentially small in the volume. We can then expand the equations for large volume in δūj .

At leading order we set δūj to be zero, i.e. we keep only the polynomial corrections

and take θ̄
(0)
j± = θ̄

(0)
j ± iu. Using the fusion property of the scattering matrix one can

see that Q
(0)
k ({θ̄(0)

± }) = Q
(0)
k ({θ̄(0)}). The resulting formulas are exactly the same as the

sinh-Gordon equations (2.9)–(2.11) with quantization numbers nj = nj+ + nj−.

At the leading non-vanishing order in δūk the equation for Q̄
(0)
k ({θ̄}) determines δūk as

δūk = (−1)nk
Γ2

2
e−mL sinu cosh θ̄

(0)
k

∏
j:j 6=k

√√√√S(θ̄
(0)
k,j + iu)

S(θ̄
(0)
k,j − iu)

(2.24)

Clearly this expression is at least as small as e−µL with µ = m sinu and that is why we

only kept the polynomial corrections in the θs, using θ̄
(0)
j here. Alternatively, we could

determine δūk from the expansion of the two equations for Q
(0)
k±({θ±}). By introducing

δuk±({θ}) =
Γ2

2
e±imaL sinh(θk±iu)

∏
j:j 6=k

S(θk,j ± iu)±1 (2.25)

the solutions of the Bethe-Yang equations will be

δūk = δuk+({θ̄(0)}) = δuk−({θ̄(0)}) (2.26)

Using these quantities the Bethe-Yang equations for θ̄j at first order in δūj , i.e. at order

(µ), takes the form

Q
(µ)
j ({θ̄(µ)}) = 2πnj ; Q

(µ)
j ({θ}) = Q

(0)
j ({θ})+∂j

∑
k

(δuk+({θ})+δuk−({θ})) (2.27)

where we used that ∂jδuk±({θ}) = ±iδuj±({θ})∂jQ(0)
k±({θ ± iu}) (and the bound state

relations (2.4)–(2.5)).

Thus, dropping the integral terms in the TBA equations not only gives the polynomial

corrections, but also provides the leading exponential µ-term corrections. This can be seen

in the energy formula as well, which at leading order reads as

E
(µ)
{n}(L) = m

∑
j,s

cosh θ̄
(µ)
js = m

∑
j

cosh θ̄
(µ)
j − 2m sinu

∑
j

cosh θ̄
(0)
j δūj (2.28)

We note that here θ̄
(µ)
j also contains exponentially small corrections coming form the quan-

tization condition (2.27), which involves µ-terms.

3We could indicate the relevant order by using δū
(µ)
j instead of δūj , but since we do not go to higher

orders in δūj we drop its superscript.
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2.2.2 F-term energy correction

To iterate the integral equations once we use the leading order term in the integrand.

These formulas are completely equivalent to (2.12)–(2.15) except that each rapidity comes

in pairs, θj±. These equations contain both the O(e−mL) and O(e−(µ+m)L) corrections. In

the following we are only interested in the O(e−µL) and O(e−mL) corrections thus we put

δuj = 0 in the integrands. At this order, denoted by superscript (1), we have

ε(1)(θ|{θ}) = mL cosh θ +
∑
j

logS

(
θ − θj −

iπ

2

)
+
∑
j

φ

(
θ − iu− iπ

2
− θj

)
δuj−({θ})

−
∑
j

φ

(
θ + iu− iπ

2
− θj

)
δuj+({θ})

−
∫ ∞
−∞

dv

2π
φ(θ − v)

∏
j

S
(
v + i

π

2
− θj

)
e−mL cosh(v) (2.29)

Since the quantization condition Q̄k modifies δuk only at order O(e−(m+µ)L) we focus on

Qk. In addition to (2.27) we also get an integral term

Q
(1)
k ({θ̄}) = 2πnk± ; Q

(1)
k ({θ}) = Q

(0)
k ({θ})+∂k

∑
j

(δuj+({θ})+δuj−({θ}))+∂kΦ({θ})

(2.30)

where Φ({θ}) is the same as (2.14). The exponentially corrected energy also gets the

integral term

E
(1)
{n}(L) = m

∑
j

cosh θ̄
(1)
j − 2m sinu

∑
j

cosh θ̄
(0)
j δuj (2.31)

−m
∫ ∞
−∞

dθ

2π
cosh θ

∏
j

S
(
θ + i

π

2
− θ̄(0)

j

)
e−mL cosh θ

In all the formulas (2.29), (2.30), (2.31) terms containing δuj are the µ-terms, while

the integral terms are the F -terms. Note that the F -terms are universal in the sense that

they are the same for both theories once the corresponding S-matrix is used. It is also

very important for our further study to point out that in the Lee-Yang theory the two

corrections are not independent: the µ terms can be obtained as appropriate residues of

the F -terms. Indeed, the scattering matrix not only has a pole at θ = 2iu = i2π
3 but also

at θ = iπ − 2iu = iπ3 with opposite residue. This implies that e−ε
(0)(θ|{θ}) has poles at

θ = θj ± iπ6 with residues

Resθ=θj±iπ6 e
−ε(0)(θ|{θ}) = ±2iδuj∓({θ}) (2.32)

We can think of taking the real contour and deforming half of it onto the upper half-plane

and the other half to the lower half-plane. Then we can subtract the two residues, which

appear with opposite orientations. As a result we can recover the µ-terms from the F -terms

in all the formulas (2.29)–(2.31). Alternatively, we can choose the contours of integration

as shown in figure 1 and keep only the F -term integral, which is universal and is the same

for both theories.

– 8 –
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Figure 1. Integration contour, which contains both the F - and the µ-terms. The integrand is half

the F -term integrand both on the upper and on the lower contour.

3 Finite volume form factors

In this section we summarize the results for finite volume form factors. We start by review-

ing the definition of these quantities together with the available results for the polynomial

finite size corrections. We then derive the leading exponential µ- and F -term corrections

for general nondiagonal finite volume form factors. Technical details are presented in ap-

pendices A and B. In appendix C we also show how the µ-term correction can be obtained

from the F -term corrections.

Finite volume form factors are the matrix elements of local operators O(x, t) between

finite volume energy eigenstates, which can be labeled either by the quantization numbers

{ni} or by the corresponding rapidities {θ̄i}:

|θ̄1, . . . , θ̄N 〉L = |{θ̄}〉L ≡ |n1, . . . , nN 〉L = |{n}〉L (3.1)

These rapidities satisfy the exact quantization conditions (2.7) or the related equations for

the Lee-Yang theory (2.17).

Our aim is to express the finite volume form factors in terms of the scattering matrix

and the infinite volume elementary form factors defined by4

〈0|O(0, 0)|θ1, . . . , θN 〉 = FON (θ1, . . . , θN ) (3.2)

These infinite volume form factors satisfy the monodromy axioms:

FN (θ1, . . . , θN ) = FN (θ2, . . . , θN , θ1 − 2iπ) = S(θi,i+1)FN (θ1, . . . , θi+1, θi, . . . , θN ) (3.3)

which together with their known analytic properties allows one to find the relevant physical

solutions.

Form factors have pole singularities, with either kinematical or dynamical origin. The

kinematical pole is related to disconnected diagrams and appear whenever an outgoing

particle coincides with an incoming one. At the level of the elementary form factor this

4Infinite volume form factors are normalized as 〈θ|θ
′
〉 = 2πδ(θ − θ

′
).

– 9 –
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implies that

FN+2

(
θ+ iπ+

ε

2
,θ− ε

2
,{θ}

)
=
i

ε

1−
∏
j

S(θ−θj)

FN ({θ})+F rN+2(θ+ iπ,θ,{θ})+O(ε)

(3.4)

where we introduced a specific symmetric evaluation, since the O(1) piece defined this way,

that we call the regulated form factor, will be relevant in the further discussions. The

notation {θ} abbreviates the ordered set {θ1, . . . , θN}.
Dynamical pole singularities are only present for theories in which the scattering matrix

has a bound state pole. They relate the form factors of elementary particles to those of

bound states. For the Lee-Yang model they read as

FN+2

(
θ + iu+

ε

2
, θ − iu− ε

2
, {θ}

)
=
iΓ

ε
FN+1(θ, {θ}) + F bN+1(θ, {θ}) +O(ε) (3.5)

where the symmetrically evaluated O(1) piece will be used later on. In particular, we will

need the expansion

F2N

(
θ1 + iu+

ε1
2
, θ1 − iu−

ε1
2
, . . . , θN + iu+

εN
2
, θN − iu−

εN
2

)
(3.6)

=
∏
j

(
iΓ

εj

){
FN ({θ})− iΓ−1

∑
k

εkF
b
N,k({θ}) +O(ε2)

}

In diagonally scattering theories with a single species the form factors take the form

FON (θ1, . . . , θN ) = HON
∏
i<j

f(θi,j)

xi + xj
PON (x1, . . . , xN ) ; xi = eθi (3.7)

where f(θ) is the minimal two particle form factor, which satisfies f(θ) = S(θ)f(−θ) =

f(2iπ − θ) and has the right dynamical pole. In the sinh-Gordon theory it does not have

any singularity in the physical strip:

f(θ) = exp

{
−4

∫ ∞
0

dx

x

sinh(xp2 ) sinh(x2 (1− p)) sinh(x2 )

sinh2(x)
cos
(x
π

(iπ − θ)
)}

(3.8)

while in the Lee-Yang theory it can be obtained by an analytic continuation of this:

f(θ) =
cosh θ − 1

cosh θ + 1
2

exp

{
4

∫ ∞
0

dx

x

sinh(x2 ) sinh(x3 ) sinh(x6 )

sinh2(x)
cos
(x
π

(iπ − θ)
)}

(3.9)

3.1 Polynomial finite volume corrections

Let us analyze the following finite volume form factor

〈ϑ̄1, . . . , ϑ̄M |O|θ̄1, . . . , θ̄N 〉L ≡ 〈{ϑ̄}|O|{θ̄}〉L (3.10)

As far as polynomial corrections are concerned the rapidities {θ̄i} satisfy the Bethe-Yang

equations (2.10) and there are analogous equations for ϑs with quantization numbers mk.

As it was shown in [15] the polynomial finite volume corrections of form factors solely come

– 10 –
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from the normalization change of the finite volume states. These states are normalized

to Kronecker delta functions, while infinite volume states are normalized to Dirac delta

functions. Additionally, the phase of finite volume states is usually chosen such that it is

symmetric for the exchanges of rapidities, as opposed to the phase of infinite volume states,

which pick up the scattering matrix whenever two neighboring particles are exchanged (3.3).

Thus, the finite volume form factor at order (0) is

〈{m}|O|{n}〉L =
FN+M ({ϑ̄(0) + iπ}, {θ̄(0)})√∏

i<j S(ϑ̄
(0)
j,i )ρ

(0)
M ({ϑ̄(0)})

∏
i<j S(θ̄

(0)
i,j )ρ

(0)
N ({θ̄(0)})

(3.11)

where the density of states ρ
(0)
N ({θ̄(0)}) is defined as the determinant of the matrix

∂iQ
(0)
j ({θ}):

ρ
(0)
N ({θ}) = det

∣∣∣∂jQ(0)
i ({θ})

∣∣∣ (3.12)

which is the Jacobian for changing the variables from {n} to {θ̄(0)} via Q
(0)
k (θ̄

(0)
j ) = 2πnk.

This form for the polynomial finite size corrections is correct only if the matrix element

is non-diagonal, i.e. if the quantum numbers {n} and {m} are not exactly the same.

For diagonal form factors a more complicated formula is valid including disconnected

terms [16], which can be obtained from the non-diagonal form factor by taking an ap-

propriate limit [17]. Expression (3.11) contains all polynomial corrections in the inverse of

the volume and is valid for any theory with a single particle type, in particular, for both

the sinh-Gordon and the scaling Lee-Yang models.

3.2 Leading exponential corrections: the µ-term

In this subsection we calculate the µ-terms for finite volume form factors in the scaling

Lee-Yang model. This is analogous to the order (µ) calculation of the energy in sub-

subsection 2.2.1. As we have shown there the results at this order can be obtained by

taking the order (0) correction with the additional requirement that each particle is a

bound state represented by its constituents. Expanding the bound states’ equations to the

leading exponential order provided the µ-terms for the energy. Based on this observation

Pozsgay suggested in [23] that the µ-terms for form factors can be calculated by taking the

form (3.11) with the additional assumption that each particle with rapidity θ̄j is represented

as a bound state of particles with rapidities θ̄j±. He also carried out this calculation for

the simplest one-particle form factor 〈0|O|θ〉L and checked the results numerically with the

TCSA method. In the following we calculate the µ-term correction for a generic N -particle

state based on this idea.

We start with the order (0) form factor in which only incoming particles are present,

composed from the constituents θj±:

〈0|O|{θ±}〉L =
F2N (θ1+, θ1−, . . . θN+, θN−)√∏

k

S(θk+,k−)ρ2N ({θ±})
∏

i<j,r,s
S(θir,js)

(3.13)

We evaluate this expression at θj± = θ̄
(µ)
j± = θ̄

(µ)
j ± i(u+ δūj) and expand to leading order

in δūj . Since at the leading order both the numerator and the denominator is proportional

– 11 –
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to
∏
k δū

−1
k we multiply them with the factor

(∏
k

2δūk
Γ

)
. This ensures that the numerator

has the expansion starting with the form factor FN ({θ̄(µ)}):∏
k

(
2δūk

Γ

)
F2N ({θ̄(µ)

± }) = FN ({θ̄(µ)}) +
∑
k

(
2δūk

Γ

)
F bN,k({θ̄(0)}) +O(δū2) (3.14)

where we used the quantity introduced in (3.6). The calculation of the denominator can

be done in two steeps. The detailed derivation is relegated to appendix A and we provide

an outline here. In the first step we derive that

∏
k

(
2δūk

Γ

)2

S(2i(u+ δūk))ρ2N ({θ̄(µ)
± }) = ρ

(µ)
N ({θ̄(µ)})

(
1 +

∑
k

∂kQ
(0)
k ({θ̄(0)})δūk

)
(3.15)

where we introduced the density of states ρ
(µ)
N ({θ}) corresponding to the quantization

Q
(µ)
k ({θ̄(µ)}) = 2πnj as

ρ
(µ)
N ({θ}) = det

[
∂iQ

(µ)
j ({θ})

]
= det

[
∂iQ

(0)
j ({θ}) + ∂i∂j

∑
k

(δuk+({θ}) + δuk−({θ}))

]
(3.16)

In the second step one uses that∏
i<j

S(θi+,j+)S(θi+,j−)S(θi−,j+)S(θi−,j−)

=
∏
i<j

S(θ̄
(µ)
i,j )

(
1 + ∂̄iQ

(0)
j ({θ±})δūi − ∂iQ̄(0)

j ({θ±})δūj
)

(3.17)

where ∂̄j = ∂j+ − ∂j−. By collecting all factors the finite volume form factor including the

µ-term order can be found and it takes the form

〈0|O|{n}〉L =
FN ({θ̄(µ)}) + δ(µ)FN ({θ̄(0)})√∏

k<j

S(θ̄
(µ)
k,j )ρ

(µ)
N ({θ̄(µ)})

(3.18)

where

δ(µ)FN ({θ̄(µ)}) =
∑
k

{
2

Γ
F bN,k({θ̄(0)})− 1

2
∂kQ

(0)
k ({θ̄(0)})FN ({θ̄(0)})

}
δūk (3.19)

+
1

2

∑
j<k

[
φ−(θ̄

(0)
j,k ) (δūj + δūk)

]
FN ({θ̄(0)})

with the notation φ−(θ) = φ(θ + 2iu)− φ(θ − 2iu) used.

In case of both incoming and outgoing particles the form factor takes the form

〈{m}|O|{n}〉L= (3.20)

FN+M ({ϑ̄(µ)+iπ},{θ̄(µ)})+δ
(µ)
u FN+M ({ϑ̄(0)+iπ},{θ̄(0)})+δ

(µ)∗
v FN+M ({ϑ̄(0)+iπ},{θ̄(0)})√∏

k<j

S(ϑ̄
(µ)
j,k )ρ

(µ)
M ({ϑ̄(µ)})

∏
k<j

S(θ̄
(µ)
k,j )ρ

(µ)
N ({θ̄(µ)})

– 12 –
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Figure 2. On the left: graphical representation of a finite volume form factor with incoming state

|θ1, . . . , θN 〉 and outgoing state |ϑ1, . . . , ϑM 〉. Particles’ trajectories are schematically drawn as solid

lines and the operator O is represented as a circle. On the right: the same form factor is represented

after double Wick rotation in the thermal channel, i.e. when the Euclidean time is finite and space

is infinite.

where ϑ̄j± = ϑ̄j ± iv̄j . The quantity δ
(µ)
u FN+M ({ϑ̄(0) + iπ}, {θ̄(0)}) can be ob-

tained from δ(µ)FN ({θ̄(0)}) by replacing FN ({θ̄(0)}) with FN+M ({ϑ̄(0) + iπ}, {θ̄(0)}) and

δ
(µ)
v FN+M ({ϑ̄(0)+ iπ}, {θ̄(0)}) from δ

(µ)
u FN+M ({ϑ̄(0)+ iπ}, {θ̄(0)}) by replacing u with v, re-

spectively. The quantity δ(µ)∗FN ({θ̄(µ)}) can be obtained from δ(µ)FN ({θ̄(µ)}) by changing

the sign of the second line in (3.19), which for real form factors means complex conjugation.

3.3 F-term correction for form factors

In appendix B we give a formal derivation for the F -term of the form factors’ finite size

correction. Here we just summarize our method. In the sinh-Gordon theory this is the

leading exponential correction and in the Lee-Yang theory it is intimately related to the

previously calculated µ-term correction. We parametrize the form factor as

〈{m}|O|{n}〉L =
FN+M ({ϑ̄(1) + iπ}, {θ̄(1)}) + δ(F )FN+M ({ϑ̄(0) + iπ}, {θ̄(0)})√∏

i<j S(ϑ̄
(1)
j,i )ρ

(1)
M ({ϑ̄(1)})

∏
i<j S(θ̄

(1)
i,j )ρ

(1)
N ({θ̄(1)})

(3.21)

The denominator is simply related to the normalization of states originating from the

Bethe-Yang equation (2.13). The numerator is represented graphically on the left part of

figure 2. Exchanging the role of Euclidean space and time leads to the picture on the right

of figure 2, where we have to calculate a normalized trace:

Tr(e−LHON,M )√
TrN (e−LH)TrM (e−LH)

(3.22)

In this channel ON,M is not a local operator as moving a particle with rapidity v around

it picks up the phase
∏

j S(v − θj − iπ
2 )

∏
k S(ϑk + iπ2 − v). This is the reason why we

cannot apply a finite volume regularization as the system cannot be made periodic: the

past/future or the left/right asymptotics are different. Particularly, in case of diagonal form

factors, there is no monodromy and we could impose a periodic boundary condition in a

– 13 –
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finite volume. Clearly the normalization in this case would be the excited state partition

function: ZN = TrN (e−LH). A particle with rapidity θ act in this channel as a defect

operator with transmission factor T (v) = S( iπ2 + θ − v).

In evaluating the trace we insert two complete systems of states

Tr(e−LHON,M ) =
∑
ν,µ

〈ν|ON,M |µ〉〈µ|ν〉e−EνL (3.23)

and keep only the vacuum and one-particle states for µ and ν with rapidities u and v.

Infinite volume states are normalized as 〈u|v〉 = 2πδ(u− v) and the matrix element of the

defect operator ON,M can be expressed in terms of the infinite volume form factor as

〈v|ON,M |u〉 = FN+M+2

(
v + iπ − iε,

{
ϑ+

iπ

2

}
, u,

{
θ − iπ

2

})
+ (3.24)

+2πδ(v − u)
∏
j

S

(
iπ

2
+ ϑj − u

)
FN+M

({
ϑ+

iπ

2

}
,

{
θ − iπ

2

})
Therefore, we are faced with the square of the δ-function. Using our experience from

evaluating the finite temperature 2-point function [24] we regulate the δ-function as

2πδ(u− v) =
i

u− v + iε
− i

u− v − iε
(3.25)

For the 2-point function this regularization was equivalent to finite volume regulariza-

tions [24]. Then, we shift the v contour from the real line to above iε. Taking the ε → 0

limit, in the shifted integral no contribution will survive thus we merely pick up the residue

term at v = u+ iε. For the excited state partition function this results in

TrN (e−LH) = 1 +

∫
du

2π

1

ε

∏
j

S

(
iπ

2
+ θj − u

)
e−mL coshu +O(ε) (3.26)

Note that there is no O(1) term. This is consistent with the usual evaluation of the partition

function: if we calculated the contribution via finite volume regularization we would get

mR coshu instead of 1
ε . By repeating the same steps for the numerator we can check that

the singular 1
ε terms cancel with the square rooted product of the excited state partition

functions and we find that the O(1) piece is:

δ(F )FN+M ({ϑ+ iπ}, {θ}) =

∫
du

2π
F rN+M+2

(
u+ iπ,

{
ϑ+

iπ

2

}
, u,

{
θ − iπ

2

})
e−mL coshu

(3.27)

where the previously introduced regulated form factor appears. In appendix C we show

that taking an appropriate residue of this F -term, the µ-term (3.19) can be obtained.

4 Numerical comparison

In this section we check our results numerically by using the TCSA method in the sinh-

Gordon5 and scaling Lee-Yang models. The TCSA method was first implemented for the

5Note that very similar ideas to the present numerical method were investigated independently by

Robert Konik, Giuseppe Mussardo and collaborators, as mentioned in a talk of Mussardo presented at the
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Lee-Yang model by Yurov and Zamolodchikov [34]. Recently there has been a renewed

interest in implementing it for the relevant perturbations of the noncompact free boson,

see e.g. [35, 36] and [37].

Both in the sinh-Gordon and scaling Lee-Yang models we compare the analytical and

TCSA results for the finite size energy spectrum then extract the finite volume matrix

elements. After having checked the polynomial corrections we check the F -term corrections

in the sinh-Gordon model and the µ- and F - term corrections in the scaling Lee-Yang model.

4.1 Sinh-Gordon theory

The sinh-Gordon theory can be defined as

S =

∫
dt

∫ L

0
dx
{g

2
(∂µϕ)2 − 2µ cosh(bϕ)

}
(4.1)

When quantizing the theory we need to choose a scheme, which separates the free part and

the perturbation. The free part can be either the free massless or massive boson and then

the perturbing operator should be normal ordered w.r.t. the chosen free theory.

4.1.1 Conformal scheme

In the conformal scheme the free part is simply the kinetic term and the field has the

following mode expansion

ϕ(x, t) = ϕ0 +
π0

gL
t+

i√
4πg

∑
n 6=0

1

n
(ane

ikn(x−t) + āne
−ikn(x+t)); kn =

2πn

L
(4.2)

where the nonzero commutators for the oscillators are [an, am] = nδn+m and [ān, ām] =

nδn+m. The zero mode is the free motion on the line with [ϕ0, π0] = i. The Hilbert space is

the superposition of the quantum mechanical zero mode with a continuous spectrum and

the Fock space of left- and right-moving particles:

H = {a−n1 . . . a−nk ā−m1 . . . ā−mj |0〉 ⊗Ψ(ϕ0)} (4.3)

The free Hamiltonian is then

H0 =
2π

L

(
L0 + L̄0 −

1

12

)
+

π2
0

2gL
; L0 =

∑
n>0

a−nan (4.4)

This theory has conformal invariance. When the perturbing operators : e±bϕ : are normal

ordered w.r.t. this theory, they are primary fields of dimension h = h̄ = −b2 (8πg)−1. The

mass-gap relation [38]

−
πµΓ

(
1 + b2

8πg

)
Γ
(
− b2

8πg

) =

[
m

4
√
π

Γ

(
1− p

2

)
Γ
(

1 +
p

2

)] 2
1−p

= (mκ)
2

1−p (4.5)

IHES workshop “Hamiltonian methods in strongly coupled Quantum Field Theory”, 8-12 January 2018,

https://www.youtube.com/watch?v=pyDXNlXu-2w. More recently, a collaboration started between one of

the present authors (M.L.) and the aforementioned team, leading to further progress regarding the proper

numerical treatment of sinh-Gordon theory at stronger couplings. In the present article we focus on the

evaluation of finite volume form factors at relatively small couplings, while more general numerical results

will be published elsewhere. We thank Gábor Takács for pointing our attention towards the IHES talk.

– 15 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
3

connects the perturbation parameter of the Lagrangian µ to the mass, m, of the sinh-

Gordon scattering particle, while the scattering parameter p is related to b as p = b2

8πg+b2
.

In order to use the TCSA method, a discrete spectrum needs to be truncated at a given

energy cut such that the full Hamiltonian can be diagonalized on the truncated space. To

ensure this we separate the zero mode into a mini-Hilbert space with Hamiltonian

Hmini =
1

4πg
π2

0 + µ

(
L

2π

)2+ b2

4πg

2π(ebϕ0 + e−bϕ0)

where the volume-dependent coefficient comes from the conformal mapping of the Hamil-

tonian between the cylinder and the plane

H =
2π

L

(
L0 + L̄0 −

1

12
+Hmini (4.6)

+ µ

(
L

2π

)2+ b2

4πg

2πδP

{
ebϕ0(: ebϕ̂ : −1) + e−bϕ0(: e−bϕ̂ : −1)

})

Here δP projects to matrix elements which do not change the momentum P = 2π
L (L0− L̄0)

and ϕ̂ = ϕ(0, 0) − ϕ0. Technically, we solve numerically the mini-Hilbert space problem

first. This can be done either in the basis of plane waves in a box or using the eigenvectors of

the harmonic oscillator. For small volumes even the Liouville reflection factor can be used

to get an approximation of the spectrum [39, 40]. We found that using 100 unperturbed

vectors we got a reliable spectrum up to 5 digits in the range we were interested in. We

kept 6-8 vectors from this zero mode space and calculated the matrix elements of e±bϕ0 . By

taking the tensor product with the Fock spaces and truncating in the energy with only the

zero mode perturbation added we obtained a finite Hilbert space. We then diagonalized

the full Hamiltonian and calculated the eigenvalues and eigenvectors. These provided the

finite size spectrum and finite volume form factors.

4.1.2 Massive boson scheme

Alternatively, one can start by perturbing the free boson of mass M . The free massive

boson on the cylinder can be considered as a perturbation of the massless one, i.e.

H
(M)
0 = H0 + g

M2

2

L∫
0

: ϕ (x, 0)2 : dx (4.7)

This operator can be diagonalized by solving the zero mode harmonic oscillator and ap-

plying a Bogoliubov transformation to the finite momentum oscillators. Technical details

are relegated to appendix D. As a result the field operator (4.2) is expressed in terms of

the new massive creation operators dn as

ϕ (x, 0) = ϕ0 +
∑
n 6=0

1√
2Lωng

(
dne

iknx + d†ne
−iknx

)
; ωn =

√
M2 + k2

n (4.8)
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while the Hamiltonian (4.7) becomes

H
(M)
0 =

∑
m∈Z

ωmd
†
mdm + Ẽ′0 (4.9)

These operators satisfy [d†m, dn] = δn,m and the vacuum energy contribution Ẽ′0 appears due

to the difference between the normal ordering with respect to the mode operators an or dn.

When considering the sinh-Gordon model as a perturbation of the massive boson (e.g.

to make a Feynman graph expansion), one may first define the Hamiltonian in infinite

volume

H(L→∞) = H
(M,L→∞)
0 +

gM2

b2

∞∫
−∞

: cosh (bϕ (x)) :M,∞ dx− gM2

2

∞∫
−∞

: ϕ2 (x) :M,∞ dx

H
(M,L→∞)
0 =

∞∫
−∞

√
M2 + k2d†kdkdk (4.10)

Here ::M,∞ means normal ordering with respect to the modes dk in infinite volume. We

first connect the bare parameter M to the bare coupling µ in the conformal plus zero mode

scheme. As a first step, H(L→∞) is connected to the Hamiltonian on the cylinder. This

is achieved by requiring that the perturbation has the same behavior in the UV, i.e. the

Hamiltonian density expressed in terms of bare fields takes the same form for all volumes:

H = H
(M)
0 +

gM2

b2

L∫
0

: cosh (bϕ (x)) :M,∞ dx− gM2

2

L∫
0

: ϕ2 (x) :M,∞ dx+ Ẽ0 (4.11)

By introducing a UV momentum cutoff in appendix D we show that

: ebϕ(0,0) :M,∞= e
b2

2g
ρ(ML)

: ebϕ(0,0) :M,L ; ρ (x) =

∞∫
−∞

du

2π

1

ex coshu − 1
(4.12)

Note that, similarly to Landau-Ginsburg theories, and as opposed to the sine-Gordon the-

ory, the coefficient diverges in the limit L→ 0. Now, we bring the zero mode exponentials

out of normal ordering and obtain the relation

µ =
gM

2+ b2

4πg

2b2

(
eγE

2

) b2

4πg

(4.13)

together with the vacuum energy contribution

Ẽ0 = −M
4

+

1∫
0

du

 u

tanh
(
MLu

2

) − 1

2 (1 + u)2 tanh
(

ML
2
√

1−u2

)
 (4.14)

Following the same line of thought, the normalization of vertex operators can be related in

the massive and massless schemes as well, as:

〈eaϕ〉 ≡
(
L

2π

) a2

4πg 〈
0
∣∣∣: eaϕ(z=1,z̄=1) :0

∣∣∣0〉 = e
−a

2γE
4gπ

(
2

M

) a2

4gπ 〈
0
∣∣∣: eaϕ(0) :M,∞

∣∣∣0〉 (4.15)
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Figure 3. Theoretical low-lying energy spectrum of sinh-Gordon model at b = 1. The vacuum

energy density is subtracted. Left: states in the sector of overall momentum 0 (from the bottom

up: |vac〉, |0〉 , |00〉 and |000〉). Right: states of overall momentum 1 · 2πL−1 (from the bottom

up: |1〉, |01〉 and |001〉). Note that we label the states by the corresponding bosonic Bethe Ansatz

quantization numbers. Bethe-Yang lines are drawn with blue curves. The leading Lüscher correction

is depicted by orange curves. The exact TBA result is shown with red curves.

where |0〉 denotes the interacting ground state.

We applied Hamiltonian truncation in this scheme, too. The zero mode problem is

again treated separately, similarly to [41] and [42]. Comparing the results obtained from

the massive scheme to the results in the massless scheme provided a tool to estimate the

numerical error of our approach. Results are presented in the next subsection.

4.1.3 Numerical checks

For the numerical checks, we fixed g = 1, such that bself-dual =
√

8π. The UV coupling

was fixed to µ = 0.2. The mini Hilbert space was chosen to be diagonalized on the

particle in a rigid box basis with 800 states per parity sector. It was sufficient to keep

only the 6 states of lowest energy out of these [41, 42]. In the Fock subspace, a conformal

cutoff at chiral levels up to 9 (in the finite momentum sector, 9 and 10) was used. The

dominant cutoff dependence of the results came from this chiral cutoff. This means that the

actual computations involved matrices of up to about 12000 dimensions. Since the overall

momentum is conserved as well as there is a parity Z2 symmetry present, it suffices to search

the lowest lying eigenpairs of the appropriate sub-Hamiltonians restricted to the different

symmetry sectors. The above cutoff should be understood separately in each subsector.

The strategy of the computations was to diagonalize the Hamiltonian (4.6) or (4.10)

for a number of volumes, and then plot the volume dependence of the results. A typical

spectrum can be seen on figure 3.

Finite volume energies. In order to compare the TCSA energies to those obtained by

solving the integral equation (2.6)–(2.8), it is important to keep in mind that the latter is

renormalized fixing both the infinite volume energy and energy density to 0. This scheme

can be connected to the numerics obtained by TCSA by subtracting the (exactly known)
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Figure 4. Volume dependence of the ground state energy in sinh-Gordon model: comparison of

TCSA data with BY, Lüscher and TBA predictions for b = 1 (left) and b = 2 (right). On these

plots, the TBA predictions are subtracted from each data set. TCSA measurement points are shown

with red and brown dots, corresponding to different chiral cutoffs (from bottom up: 9, 8, 7 and 6).

The difference between the BY lines and TBA (blue) and between BY+leading Lüscher and TBA

(orange) are also indicated. For b = 1, TCSA results agree with TBA data to a remarkable precision

(the difference is negligible, as well as the cutoff dependence thereof). For b = 2 truncation errors

become more significant.

vacuum energy density of the sinh-Gordon model

E0 =
m2

8 sinπp
, p =

b2

b2 + 8πg
(4.16)

We note that the TCSA numerics produce reliable results at b = 1 for both the

energy levels and the finite volume form factors. For stronger couplings, e.g. b = 2, the

truncation errors become more significant, see figure 4. Experience suggests the general

rule of thumb, using the massive oscillator basis (keeping the same excitation content of

the basis) is equivalent to increasing the chiral cutoff of the massless TCSA basis by one.

Therefore, for the present work, we mostly consider the case b = 1.

To make the results more transparent, we chose to depict the difference of the quantities

of interest from some reference data. In figures 4–5, the results obtained by numerically

solving the TBA system (2.6)–(2.8) are subtracted from each other data sets (in the case of

the TCSA points, the energy density (4.16) is also taken into account). Note that we label

the states by the corresponding Bethe Ansatz quantization numbers. The Bethe-Yang lines

are calculated via (2.9)–(2.11), while the exponential corrections follow from (2.12)–(2.15).

From these plots it is clear that in the volume range 1-3 the numerical results can

be trusted and that adding the leading exponential correction to the Bethe-Yang results

considerably improved the precision. We expect similar behaviors for finite volume form

factors.

Finite volume form factors. In order to check our results in subsection (3.3) we analyze

the finite size form factors of the elementary field and the exponential operators Ok =:

ekbϕ :. For both cases the infinite volume form factors have the form (3.7) with

POkn = det
i,j
|[i− j + k]σ2i−j | ; [k] =

sin kπp

sinπp
(4.17)
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Figure 5. Volume dependence of the energy of some relevant low-lying states in sinh-Gordon model

at b = 1. Again, TBA data are subtracted from each data set. TCSA data is shown by red dots.

The difference between the BY lines and TBA (blue) and between BY+leading Lüscher and TBA

(orange) are also indicated. Once again, we see reassuring agreement between the TBA and TCSA

data (the difference being close to 0, as shown.)

where the case k = 0 corresponds to the elementary field and we used the basis of symmetric

polynomials defined by
n∏
i=1

(z + xi) =

n∑
k=0

σkz
n−k (4.18)

The normalization for the elementary field is given by Hϕ
2n+1 =

√
Z(b)

2

(
4 sinπp
f(iπ)

)n
, where

Z (b) is the wavefunction renormalization constant [43]

Z (b) =
8π2p2g

b2 sin (πp) f (iπ)
(4.19)

– 20 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
3

<vac|ϕ|0>

<0|ϕ|00>

<1|ϕ|01>

1.0 1.5 2.0 2.5 3.0
0.000

0.005

0.010

0.015

mL

<vac|ϕ|1>

<0|ϕ|01>

1.0 1.5 2.0 2.5 3.0
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

mL

<vac|ϕ|000>

1.0 1.5 2.0 2.5 3.0

-0.00025

-0.00020

-0.00015

-0.00010

-0.00005

0.00000

mL

<vac|ϕ|001>

<1|ϕ|00>

1.0 1.5 2.0 2.5 3.0
-0.00010

-0.00008

-0.00006

-0.00004

-0.00002

0.00000

mL

Figure 6. Theoretical predictions in sinh-Gordon model for various finite volume form factors of the

field φ, as compared to numerical TCSA data (the latter is subtracted from each data set) at b = 1.

Polynomial (Pozsgay-Takács) results are depicted by dashed curves, while the results containing the

first exponential corrections, conjectured by the present article, are shown by continuous curves.

In the plots regarding the finite volume form factors (figures 6 and 7), the numerical

TCSA data is subtracted. Then the “error” of the polynomial (3.11) approximation (more

precisely, its difference from TCSA numerics), as calculated from (3.7) and (3.11), is shown

by dashed lines. Solid curves depict the results of the present paper ((3.21), (3.27)).

The normalization for the exponentials is given by Hk
n = 〈Ok〉

(
4 sinπp
f(iπ)

)n
2
, where 〈Ok〉

is given by the Lukyanov-Zamolodchikov formula [44]:

〈Ok〉 = m
− k

2b2

4πg

Γ
(

1−p
2

)
Γ
(
1 + p

2

)
4
√
π

−
k2b2

4πg

(4.20)

× exp

∞∫
0

dt

t

− sinh2
(
kb2t
4πg

)
2 sinh

(
b2t
8πg

)
sinh t cosh

[(
1 + b2

8πg

)
t
] +

k2b2

4πg
e−2t


On figure 8 we also present some additional checks for the operators e1.5bϕ and e2bϕ.

As shown on all of the plots including the theoretically predicted leading exponential

correction improved the data the same way as the similar corrections improved the energy

spectrum. This is a very strong support for our conjectured F -term formulae. Let us see

the analogous results for the scaling Lee-Yang theory.
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Figure 7. Theoretical predictions in sinh-Gordon model for various finite volume form factors of

the primary operator ebϕ, as compared to numerical TCSA data (the latter is subtracted from each

data set) at b = 1. Polynomial (Pozsgay-Takács) results are depicted by dashed curves, while the

results containing the first exponential corrections, conjectured by the present article, are shown by

continuous curves.
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Figure 8. Additional checks to some form factors of e1.5bϕ and e2bϕ in sinh-Gordon model. Poly-

nomial (Pozsgay-Takács) results are depicted by dashed curves, while the results containing the

first exponential corrections, conjectured by the present article, are shown by continuous curves.

Again, the TCSA results are subtracted from each data set.
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Figure 9. Low lying finite size energy spectrum of the scaling Lee-Yang model obtained from TCSA

with the ground state energy density subtracted. Continuous lines are the results of the Bethe-Yang

equations with the various quantization numbers, while discrete data originates from TCSA.

4.2 Scaling Lee-Yang theory

The scaling Lee-Yang theory is the only relevant perturbation of the conformal Lee-Yang

model:

S = SLY + λ

∫
d2zΦ(z, z̄) (4.21)

The conformal Lee-Yang model is the simplest non-unitary minimal model with central

charge c = −22
5 . There are two highest weight representations: one corresponds to the

identity operator and the other one to the perturbing field Φ(z, z̄) with dimension (−1
5 ,−

1
5).

The Hamiltonian can be written on the plane as

H =
2π

L

(
L0 + L̄0 −

c

12

)
+ λ

(
L

2π

)2+2/5

2πδPΦ(0, 0) (4.22)

The parameter λ is related to the mass of the scattering particles as

m =
2

19
5
√
π(Γ(3

5)Γ(4
5)λ)

5
12

5
5
16 Γ(2

3)Γ(5
6)

(4.23)

The conformal Hilbert space is generated by acting with the negative Virasoro modes

on the highest weight states. On this space L0 and L̄0 act diagonally and the matrix

elements of Φ(0, 0) can be calculated exactly. Similarly to the analysis of the sinh-Gordon

model, we truncate the Hilbert space and diagonalize H on this space to obtain the energy

spectrum and the form factors of the perturbing operator. The ground state energy density

in the TCSA and the TBA formulation are different. To relate the TCSA to the TBA results

the ground state energy density

ε = − m2

4
√

3
(4.24)
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Figure 10. Exponential finite size energy correction for the state labeled by the quantum numbers

{2, 0,−2}. “F1” is the F-term correction, while “µ1” is the leading µ-term correction. “µ” contains

all the µ-term corrections summed up, while “µ+ F1” adds the F -term correction to this.

has to be subtracted. The finite size spectrum obtained by the TCSA method after the

subtraction looks like in figure 9.

In order to visualize the various finite size corrections we subtract the numerical TCSA

data from the theoretical curves as shown on figure 10. In the domain investigated we

compared the TCSA data to the exact TBA result and found that it’s precision was 10−5.

Thus there is no visual difference in subtracting TCSA compared to the exact results.

For the form factors we do not know the exact results, therefore we can only subtract

the TCSA data and this is the reason why we followed this approach here. The Bethe-

Yang correction (2.10) contains the polynomial volume corrections. The F1 term is the

leading F -term correction (2.15), while µ1 is the leading µ-term correction (2.28). The µ

correction sums up all the µ-terms by solving (2.21) for the constituents. Then we combine

these µ-terms corrections with the leading F -term corrections.

Neither the F -term nor the µ-term correction gives a good approximation for volumes

7− 13, however their sum is very close to result of the numerics. The best approximation

arises from combining the summed up µ-term correction with the leading F -term correction.

The best results are demonstrated on figure 11. These suggest that we understand the

finite size correction of the energy levels very well, thus we now turn to the investigation

of finite volume form factors.

The infinite volume form factors of the perturbing operators are given by (3.7) with

〈Φ〉 =
3

9
10 Γ(1

3)
36
5

(2π)
14
5 5

1
4 Γ(1

5)Γ(2
5)

; Hn =

(
Γ√
f(iπ)

)n
(4.25)

and with P1 = 1, P2 = σ1 and for n > 2

Pn(x1, . . . , xn) = σ1σn−1 det
ij
|σ3i−2j+1| (4.26)

where we used the basis of symmetric polynomials.
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Figure 11. Demonstration of the polynomial and exponential volume corrections for the energy.

Dashed lines are the difference between the Bethe-Yang energies and TCSA data and solid lines are

the difference of the best µ+ F approximation and the TCSA data. The energy cut is 16.
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Figure 12. Left: cut dependence of the TCSA data. The difference of the TCSA and the BY data

at different cuts is marked by dots with various colours and the difference between the µ+F1 and BY

data is represented with a solid line. Right: volume corrections of the form factor 〈vac|Φ|{1,−1}〉.
Every line shows the absolute value of the difference between the given theoretical curve and the

TCSA data.

Similarly to the energy spectrum we subtract the TCSA data from the various theoret-

ical curves. Such a result is displayed on figure 12. The BY curves are the result of (3.11),

the leading µ-term correction denoted as µ1 is given by (3.20) and the leading F -term cor-

rection, F1, by (3.27). Plugging the solution of (2.21) into the asymptotic formula (3.13)

the form factor µ-terms can be summed up. This correction is denoted by µ. Finally,

adding the leading F -term to the µ-terms leads to the best approximations.

On figure 13 we demonstrate the BY and the best µ+F1 corrections for various states.

In summary, the data presented gives a strong evidence for the correctness of our

exponential finite size corrections.

5 Conclusion

In this paper we presented the leading exponentially small volume corrections for non-

diagonal form factors in diagonally scattering theories. In theories with bound states the
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Figure 13. Representative figures for the polynomial and exponential corrections. Dashed lines

are the absolute values of the difference between the BY and TCSA data, while solid lines are the

same for the best available exponential corrections. For the 〈vac|Φ|vac〉 diagonal matrix element we

show the F-term only. For 〈vac|Φ|{0}〉, 〈vac|Φ|{n,−n}〉 the best available correction is “µ + F1”,

while for 〈{0}|Φ|{n,−n}〉, 〈vac|Φ|{2, 0,−2}〉, 〈{m,−m}|Φ|{n,−n}〉; n,m = 1, 2, 3: best available

correction is “µ1 + F1”.

leading correction is the µ-term, which we derived using the asymptotic finite volume form

factor and the assumption that particles are composed of their constituents. The F -term

is universal in the sense that it is present in theories both with and without bound states,

providing the next and leading exponential correction, respectively. We derived the F -term

formally and tested the results in various ways.

We showed that by taking appropriate residues of the integral for the rapidities of the

virtual particles we can completely recover the µ-term correction. We checked that taking

the diagonal limit of the form factors, by sending one rapidity to infinity based on [17]

reproduced the diagonal result of [22]. By developing numerical methods to “measure”

the finite volume form factors we tested the finite size corrections in the sinh-Gordon and

Lee-Yang models, where we found convincing confirmation of our formulae.

Figure 14 visualizes the physical picture behind the F -term: first a virtual particle-anti-

particle pair appears from the finite volume vacuum, then one of them travels around the

world and finally both are absorbed by the operator. Since the infinite volume form factor

with a particle-anti-particle pair is singular we had to regulate the appearing amplitude.

Our complicated derivation and checks resulted in the proper definition of this regulated

form factor. We found that we had to subtract the kinematical singularity of the form
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Figure 14. Graphical representation of the form factor F -term Lüscher correction. A virtual

particle pair appears from the vacuum and after travelling around the world is absorbed by the

operator.

factor in a symmetric way (B.14). This regulated form factor has very nice properties. Its

phase is the same as the original form factor’s for which we are calculating the correction.

Its singularities on the upper and lower half planes are related to each other, in such a

way that the µ-term corrections are correctly reproduced when the residues are taken. In

the simplest non-trivial (vacuum-one-particle) form factor it is real and reproduces our

previous results [24], which we derived using a finite volume analogue of the LSZ reduction

formula of the two-point function.

We approached the problem of calculating the partition function and evaluating the

asymptotic form factor for bound states through systematic large volume expansions.

Clearly this method can be used at higher orders and the resulting finite size form fac-

tors give the building blocks of the finite size or finite temperature correlation functions.

These can be used in statistical physical or solid state systems as well as in the AdS/CFT

duality. Although the expansion can be useful for practical applications, for obtaining

exact results the series has to be summed up. In this respect the integral equation derived

recently for diagonal form factors in the sinh-Gordon theory can be useful [45].
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A Derivation of the form factors’ µ-term correction

In this appendix we calculate the µ-term correction for form factors in the scaling Lee-Yang

model. We start with the order (0) form factor

〈0|O|{θ±}〉L =
F2N (θ1+, θ1−, . . . θN+, θN−)√∏

k

S(θk+,k−)ρ2N ({θ±})
∏

i<j,s,k

S(θis,jk)
(A.1)

evaluated at θj± = θ̄
(µ)
j± = θ̄

(µ)
j ± i(u+δūj). Our aim is to expand this expression at leading

order in δūj . We first multiply both the numerator and the denominator by
(∏

k
2δūk

Γ

)
in

order to ensure that the expansion of the numerator starts with the form factor FN ({θ̄(µ)}):∏
k

(
2δūk

Γ

)
F2N ({θ̄(µ)

± }) = FN ({θ̄(µ)}) +
∑
k

(
2δūk

Γ

)
F bN,k({θ̄(0)}) + . . . (A.2)

In evaluating the denominator we first combine the rows and columns of ρ2N to obtain the

derivatives of Q and Q̄ with respect to ∂ and ∂̄ as:

ρ2N ({θ±}) = det

{
∂ (Q1+, Q1−, . . . , QN+, QN−)

∂ (θ1+, θ1−, . . . , θN+, θN−)

}
=

1

4N

∣∣∣∣∣
[
∂̄Q̄
] [
∂̄Q
][

∂Q̄
]

[∂Q]

∣∣∣∣∣
=

1

4N
det
[
∂̄Q̄
]

det
{

[∂Q]−
[
∂Q̄
] [
∂̄Q̄
]−1 [

∂̄Q
]}

(A.3)

where
[
∂̄Q̄
]
ij

=
[
∂̄Q̄
]
ji

= ∂̄iQ̄
(0)
j ({θ±}) with ∂̄i = ∂i+ − ∂i−. Similarly

[
∂̄Q
]
ij

=
[
∂Q̄
]
ji

=

∂̄iQ
(0)
j ({θ±}) and [∂Q]ij = [∂Q]ji = ∂iQ

(0)
j ({θ±}). Up to the next-to-leading order we can

use that(
2δūk

Γ

)2

S(θk+,k−) = φ(2i(u+δūk))
−1+O((δū)3) = 2δūk+

(
2δūk

Γ

)2

S0+O((δū)3) (A.4)

thus there are poles of type δū−1
k in the diagonal elements of [∂̄Q̄] originating from

∂̄jQ̄
(0)
j ({θ±}) = 4φ(2i(u+ δūj)) + ∂jQ

(0)
j ({θ±}) (A.5)

Expanding up to next-to-leading order gives(∏
k

1

4φ(2i(u+ δūk))

)
·

· det {diag[{4φ(2i(u+ δūk))}] + [∂Q]} det
{

[∂Q]−
[
∂Q̄
] [
∂̄Q̄
]−1 [

∂̄Q
]}

(A.6)

=

(
1 +

∑
k

1

2
∂kQ

(0)
k ({θ})δūk

)
det

{
∂iQ

(0)
j ({θ±})−

∑
k

1

2

[
∂Q̄
]
ik

[
∂̄Q
]
kj
δūk

}

where we used that at leading order
[
∂̄Q̄
]−1

= diag
(
δū1
2 , . . . , δūn2

)
. It is natural to in-

troduce the density of states corresponding to the quantization of order (µ): ρ
(µ)
N ({θ}) as
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in (3.16). Evaluating now expression (A.6) at the solutions one can show that

∏
k

(
2δūk

Γ

)2

S(2i(u+δūk))ρ2N ({θ̄(0)
± }) = ρ

(µ)
N ({θ̄(µ)})

(
1 +

∑
k

∂kQ
(0)
k ({θ̄(0)})δūk

)
(A.7)

where we also used that

det [∂Q]

{
1− 1

2

∑
k

∂kQ
(0)
k ({θ})δūk

}
= det

{
[∂Q]ij −

1

2

∑
k

[∂Q]ik [∂Q]kj δūk

}
(A.8)

Finally, we expand the product of scattering matrices as

S(θi+,j+)S(θi+,j−)S(θi−,j+)S(θi−,j−)

= S(θi,j)
(

1 + ∂̄iQ
(0)
j ({θ±})δui({θ})− ∂iQ̄(0)

j ({θ±})δuj({θ})
)

(A.9)

Collecting all factors the µ-term of the finite volume form factor can be parametrized as

〈0|O|{n}〉L =
FN ({θ̄(µ)}) + δ(µ)FN ({θ̄(µ)})√∏

k<j

S(θ̄
(µ)
k,j )ρ

(µ)
N ({θ̄(µ)})

(A.10)

where the µ-term correction takes the form

δ(µ)FN ({θ̄(µ)}) =
∑
k

{
2

Γ
F bN,k({θ̄(0)})− 1

2
∂kQ

(0)
k ({θ̄(0)})FN ({θ̄(0)})

}
δūk

+
1

2

∑
k

∑
j<k

[
φ−(θ̄

(0)
j,k ) (δūj + δūk)

]
FN ({θ̄(0)}) (A.11)

where we introduced φ−(θ) = φ(θ + 2iu)− φ(θ − 2iu).

B Formal derivation of the form factors’ F -term correction

In this appendix we give a formal derivation of the leading exponential correction of the

non-diagonal form factor. We work in a theory without bound states and focus on the

F-term correction only. As we explained in the main text we have to evaluate the following

expression
Tr(e−LHON,M )√

TrN (e−LH)TrM (e−LH)
(B.1)

where the normalization is related to the excited state partition function

ZN = TrN (e−LH) (B.2)

which can be represented graphically as shown on figure 15.

In the general non-diagonal case, i.e. in formula (B.1) on the left half space we have

the defect operator of the outgoing state and on the right half that of the incoming excited

state. These half spaces are taken into account by the square roots in the normalization.
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Figure 15. Graphical representation of the excited state partition function. A physical particle

with rapidity θj serves as a defect operator with transmission factor T (u) = S( iπ2 + θj − u).

This normalization factor is also understood as the removal of the operator in the trace,

with keeping the incoming and outgoing particle lines.

In the analysis of thermal two-point function we showed for small particle numbers that

infinite and finite volume normalizations can be equivalent if the δ-function is regularized

properly [24]. By following the same steps we introduce two complete systems of states to

evaluate the trace:

Tr(e−LHON,M ) =
∑
ν,µ

〈ν|ON,M |µ〉〈µ|ν〉e−EνL (B.3)

In the following we evaluate the leading 1-particle contribution. For the numerator we have

Tr(e−LHON,M ) = FN+M +

∫
du

2π

∫
dv

2π
〈v|ON,M |u〉〈u|v〉e−mL cosh v (B.4)

while for the normalization factor we obtain

TrN (e−LH) = 1 +

∫
du

2π

∫
dv

2π
〈u|v〉

∏
j

S

(
iπ

2
+ θj − v

)
〈v|u〉e−mL cosh v (B.5)

Since infinite volume states are normalized to Dirac delta functions 〈u|v〉 = 2πδ(u− v) we

have to calculate the square of the δ-function. This is an ambiguous quantity, but based

on experience from the evaluation of the 2-point function we regulate the δ-function as

2πδ(u− v) =
i

u− v + iε
− i

u− v − iε
(B.6)

Then we shift the v contour from the real line above iε. On the shifted integral the ε → 0

limit can be taken, such that due to the previous δ-function no contribution will survive.

Thus we only need the residue term at v = u+ iε. Calculating the residue for the partition

function we obtain:

TrN (e−LH) = 1 +

∫
du

2π

1

ε

∏
j

S

(
iπ

2
+ θj − u

)
e−mL coshu +O(ε) (B.7)

in which there is no O(1) term. This is consistent with the usual evaluation of the partition

function based on finite volume regularization where mR coshu appears, instead of 1
ε .

Let us focus on the form factor contribution. The matrix element 〈v|On,m|u〉 can be

represented graphically as on figure 16.
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Figure 16. Graphical representation of the matrix element 〈v|On,m|u〉, which is the matrix element

of the non-local operator On,m.

Using the crossing properties of the form factors 〈v|ON,M |u〉 can be written as

〈v|ON,M |u〉 = FN+M+2

(
v + iπ − iε,

{
ϑ+

iπ

2

}
, u,

{
θ − iπ

2

})
(B.8)

+2πδ(v − u)
∏
j

S

(
iπ

2
+ ϑj − u

)
FN+M

({
ϑ+

iπ

2

}
,

{
θ − iπ

2

})

Alternatively, using the permutation property of the infinite volume form factors we can

write

〈v|ON,M |u〉 =
∏
j

S

(
iπ

2
+ ϑj − u

)
FN+M+2

(
v + iπ − iε, u,

{
ϑ+

iπ

2

}
,

{
θ − iπ

2

})

+2πδ(v − u)
∏
j

S

(
iπ

2
+ ϑj − u

)
FN+M

({
ϑ+

iπ

2

}
,

{
θ − iπ

2

})
(B.9)

Separating the singular part of the form factor as

FN+M+2

(
v + iπ, u,

{
ϑ+

iπ

2

}
,

{
θ − iπ

2

})
=

i

v − u

(
1−

∏
k S(

iπ
2 + θk − u)∏

j S(
iπ
2 + ϑj − u)

)
FN+M

({
ϑ+

iπ

2

}
,

{
θ − iπ

2

})
+ F c

N+M+2

(
v + iπ, u,

{
ϑ+

iπ

2

}
,

{
θ − iπ

2

})
(B.10)

and introducing the connected part of the form factor, such that combining this with the

δ-term we obtain:

〈v|ON,M |u〉 =
∏
j

S

(
iπ

2
+ϑj−u

)
F c
N+M+2

(
v+iπ,u,

{
ϑ+

iπ

2

}
,

{
θ− iπ

2

})
(B.11)

+

(
i
∏

jS(
iπ
2 +ϑj−u)

v−u+iε
−
i
∏

kS(
iπ
2 +θk−u)

v−u−iε

)
FN+M

({
ϑ+

iπ

2

}
,

{
θ− iπ

2

})
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Plugging this expression back to eq. (B.4) and evaluating the v integral the same way we

did for the partition functions we obtain the singular term

FN+M ({ϑ+ iπ
2 },{θ−

iπ
2 })

2ε

∫
du

2π

∏
j

S

(
iπ

2
+ϑj−u

)
+
∏
k

S

(
iπ

2
+θk−u

)e−mLcoshu

(B.12)

This only cancels the singular term coming from the
√
ZNZM normalizations. The O(1)

term gives the finite size correction

∫
du

2π

∏
j

S

(
iπ

2
+ ϑj − u

)
F cN+M+2

(
u+ iπ, u,

{
ϑ+

iπ

2

}
,

{
θ − iπ

2

})

−
FN+M ({ϑ+ iπ

2 }, {θ −
iπ
2 })

2
imL sinhu

×

∏
j

S

(
iπ

2
+ ϑj − u

)
−
∏
k

S

(
iπ

2
+ θk − u

) e−mL coshu (B.13)

which after integration by parts gives the regulated expression

F rN+M+2

(
u+ iπ,

{
ϑ+

iπ

2

}
,u,

{
θ− iπ

2

})
= lim
ε→0

{
FN+M+2

(
u+ iπ+

ε

2
,

{
ϑ+

iπ

2

}
,u− ε

2
,

{
θ− iπ

2

})
(B.14)

− i
ε

(∏
j

S

(
ϑj +

iπ

2
−u
)
−
∏
j

S

(
θk+

iπ

2
−u
))

FN+M

({
ϑ+

iπ

2

}
,

{
θ− iπ

2

})}

equivalent to (3.27).

C Relation between µ- and F -terms

In this appendix we show that, similarly to the Bethe-Yang equations and energy formulas,

the µ-term form factor corrections can be obtained by taking appropriate residues of the

F -term corrections. Due to the additive structure of the correction (3.20) we analyze the

form factor only containing incoming particles. We start with the F -term formula

〈0|O|{nj}〉L =
FN ({θ̄(1)}) + δ(F )FN ({θ̄(1)})√∏

i<j S(θ̄
(1)
i,j )ρ

(1)
N ({θ̄(1)})

+ . . . (C.1)

where the F -term correction contains the regulated form factor

δ(F )FN ({θ}) =

∫
dvF rN+2

(
v + iπ, v,

{
θ − iπ

2

})
e−mL cosh v (C.2)

As we already observed in the case of the energy correction, by summing half the residues

at v = θk + iu − iπ
2 and subtracting half the residues at the complex conjugate points
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v = θk − iu + iπ
2 in each F -term integral, the µ-term expressions can be obtained. In

the particular case of the Bethe-Yang equation, Q
(µ)
k ({θ}) can be obtained from Q

(1)
k ({θ})

using this method. This implies that at order (µ) the solutions θ̄
(1)
j will be replaced by the

solutions θ̄
(µ)
j and ρ

(1)
N ({θ̄(1)}) by ρ

(µ)
N ({θ̄(µ)}), respectively. Thus, we only need to show

that the residue of δ(F )FN ({θ̄(1)}) will reproduce δ(µ)FN ({θ̄(µ)}).
Instead of the symmetric definition (B.14) of the regulated form factor we can use

alternative formulations depending on how we take the limit. We introduce two connected

form factors (F c, F c̄) as:

F rN+2(v + iπ, v, {θ}) = F
c/c̄
N+2(v + iπ, v, {θ})± i

2
∂v

∏
j

S(v − θj)

F ({θ}) (C.3)

The definition

FαN+2(v + iπ, v, {θ}) ≡ lim
ε→0

{
FN+2(v + iπ + ε

(
1 + α

2

)
, v − ε

(
1− α

2

)
, {θ})

− i

ε

(
1−

∏
j

S(v − θj)
)
FN ({θ})

}
(C.4)

summarizes the various subtracted form factors, which can be obtained as: c↔ α = 1, r ↔
α = 0, c̄↔ α = −1. These alternative choices are simpler to deal with, since F c̄N+2 contains

only a simple pole at v = θk + iu− iπ
2 (the same is true for F cN+2 at v = θk− iu+ iπ

2 ), while

the derivative term in (C.3) gives always a second order pole. The distribution of the poles

in the direct evaluation of F rN+2 from eq. (B.14) is less clear. We focus on the residue at

v = θk + iu− iπ
2 as the other one is related to this by complex conjugation and investigate

the singularity structure of FN+2(v+iπ, v−ε, {θ− iπ
2 }) near the pole v = θk+iu− iπ

2 +iδ, i.e.

in δ. Using the monodromy axioms we can move the virtual particles to sandwich θk − iπ
2 :

FN+2

(
v + iπ, v − ε,

{
θ − iπ

2

})
= (C.5)

=
∏
j:j<k

S

(
iπ

2
+ v − θj − ε

) ∏
j:j>k

S

(
iπ

2
+ v − θj

)
FN+2

(
. . . , v − ε, θk −

iπ

2
, v − iπ, . . .

)

Let us define θ̂k± ≡ θk ± iu + iδ. These arguments, having shifted by iπ2 , take the form

(. . . , θ̂k+ − ε, θk, θ̂k+ − iπ, . . . ). For scalar operators an overall −iπ2 shift in the arguments

of the form factors has no effect. Then we use the dynamical pole axiom in the second

and third of these arguments; after that we repeat the same in θ̂k+ − ε, θ̂k−, too:

FN+2(. . . , θ̂k+ − ε, θk, θ̂k+ − iπ, . . .)

=
iΓ

−iδ
FN+1(. . . , θ̂k+ − ε, θ̂k−, . . .) +O(δ0) (C.6)

=
iΓ

−iδ

[
iΓ

−ε
FN (. . . , θk, . . .) + F̂ bN,k+(. . . , θk, . . .) +O(ε)

]
+O(δ0). (C.7)
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Since we explicitly subtracted the ε−1 singularity in the first and third arguments (due to

the definition of F c̄N+2) the term proportional to (εδ)−1 disappears in the ε → 0 limit. So

the remaining singularity is a simple δ−1 pole proportional to F̂ bN,k+({θ}), where F̂ bN,k±
and F bN,k (see (3.6)) are analogous to F c/c̄ and F r regarding the type of subtraction of

the dynamical singularity. Notice that the prefactor in (C.5) contains O(ε) terms, and

their product with (εδ)−1 contributes to the residue of δ−1 in F c̄N+2 as well. The second,

derivative term in (C.3) gives a δ−2 pole. The sum of these (after reordering, up to O(δ0))

can be expressed in terms of S-matrices as (θ̂k+,j ≡ θ̂k+ − θj)

F rN+2

(
v + iπ, v,

{
θ − iπ

2

})
|v=θ̂k+− iπ2

= − i
2
S′(θ̂k+,k)

∏
j 6=k

S(θ̂k+,j)FN ({θ}) +
∏
j

S(θ̂k+,j)Γ
−1F̂ bN,k+({θ}) (C.8)

+
i

2


 ∏
j:j<k

S(θ̂k+,j)

′ ∏
j:j≥k

S(θ̂k+,j)−
∏
j:j≤k

S(θ̂k+,j)

 ∏
j:j>k

S(θ̂k+,j)

′
FN ({θ})

where, by taking the residues, the first term gives i
2∂kδuk+, the second δuk+, and in the

second line we get −1
2

∑
j<k i∂jδuk+ + 1

2

∑
j>k i∂jδuk+. We can repeat the same steps for

the complex conjugate pole at v = θk − iu + iπ
2 , starting from F cN+2. In the end we can

take half the difference of the two contributions (see figure 1):

δ(µ)FN ({θ}) =
1

2

∑
k,±
±iResv→θk∓( iπ

2
−iu)

{
F rN+2

(
v+ iπ,v,

{
θj−

iπ

2

})
e−mLcoshv

}
(C.9)

=
∑
k,±

{
Γ−1F̂ bN,k±({θ})δuk±∓

i

2
FN ({θ})

(
−∂k+

∑
j:j<k

∂j−
∑
j:j>k

∂j

)
δuk±

}

Using that ∂juk± = ±i∂jQ(0)
k±({θ±})δuj± we evaluate the expression at the leading order

solution θj = θ̄
(0)
j to obtain

δ(µ)FN ({θ̄(0)}) =
∑
k

{
2

Γ
F bN,k({θ̄(0)})− 1

2
∂kQ

(0)
k ({θ̄(0)})FN ({θ̄(0)})

}
δūk

+
1

2

∑
j<k

[
φ−(θ̄

(0)
j,k ) (δūj + δūk)

]
FN ({θ̄(0)}) (C.10)

where we exploited that F̂ bN,k+({θ}) + F̂ bN,k−({θ}) = 2F bN,k({θ}). This is exactly the same

form as what we obtained earlier (3.19).

D Relating the massive boson scheme to the massless one

In this appendix we relate the two alternative descriptions of the sinh-Gordon theory based

on the perturbation of the massless and the massive free boson theories. First we consider
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the free massive boson on the cylinder as a perturbation of the massless one as in eq. (4.6).

Let us introduce a new set of creation operators αn as

an =

−i
√
nαn n > 0

i
√
|n|α†|n| n < 0

; ān =

−i
√
nα−n n > 0

i
√
|n|α†−|n| n < 0

(D.1)

We perform a Bogoliubov transformation, which acts on the massless Fock states with a

unitary operator

U = exp

{
−
∑
m>0

χm

(
αmα−m − α†mα

†
−m

)}
; e2χn =

|kn|
ωn

(D.2)

The creation operators transform according to

Uα†nU
† = d†n; αn = coshχndn + sinhχnd

†
−n (D.3)

We would like to emphasize that obtaining the massive vacuum by acting U on the mass-

less ground state indicates that the massive basis is significantly different from the mass-

less one (from the truncated space point of view). The field operator (4.2) is expressed

in terms of the new massive creation operators dn as in eq. (4.8). Finally, introducing

ϕ0 = (2MLg)−1/2
(
d0 + d†0

)
, the Hamiltonian (4.7) becomes the free massive boson Hamil-

tonian (4.9). The vacuum energy contribution Ẽ′0 appears due to the difference between

normal ordering with respect to the mode operators αn and dn.

Considering the sinh-Gordon model as a perturbation of the massive boson the normal

ordering is chosen at infinite volume (4.10), i.e. ::M,∞ means normal ordering with respect

to the modes dk in infinite volume. Our goal is to connect the bare parameter M to the

bare coupling µ in the conformal plus zero mode scheme. As a first step, H(L→∞) needs

to be connected to the Hamiltonian on the cylinder. This is achieved by requiring that

the perturbation has the same behavior in the UV for both, i.e. the Hamiltonian density

expressed in terms of bare fields takes the same form for all volumes (4.11). Let us assume

that we have temporarily introduced an UV momentum cutoff Λ. We use the BCH formula

eX+Y = e−
1
2

[X,Y ]eXeY , if [X, [X,Y ]] = [Y, [X,Y ]] = 0 (D.4)

to relate

ebϕ(0,0) = e
b2

2
[ϕ+,ϕ−]

(Λ)
M,L : ebϕ(0,0) :M,L= e

b2

2
[ϕ+,ϕ−]

(Λ)
M,∞ : ebϕ(0,0) :M,∞ (D.5)

In the relation between the two normal ordered quantities the limit Λ → ∞ can be taken

leading to (4.12). Note that the coefficient diverges in the limit L → 0. Then, we bring

the zero mode exponentials out of normal ordering

: ebϕ0 :M,L= e
− b2

4gLM ebϕ0

and (keeping in mind an UV cutoff again) we can obtain (ϕ̃ = ϕ− ϕ0)

: ebϕ̃(x) :M,L= e
b2

4gL

∑
q 6=0

(
1

|kq |−
1
ωq

)
: ebϕ̃(x) :0,L (D.6)
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where the sum in the exponent has an integral representation

1

L

∑
q 6=0

(
1

|kq|
− 1

ωq

)
=

1

ML
+

1

π
ln
ML

4π
− 2ρ (ML) +

γE
π

(D.7)

Comparing (4.11) with (4.6) we arrive at the relations (4.13) and (4.14).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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[23] B. Pozsgay, Lüscher’s µ-term and finite volume bootstrap principle for scattering states and

form factors, Nucl. Phys. B 802 (2008) 435 [arXiv:0803.4445] [INSPIRE].
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