
J
H
E
P
0
7
(
2
0
1
9
)
1
6
0

Published for SISSA by Springer

Received: May 30, 2019

Accepted: July 15, 2019

Published: July 26, 2019

Large N renormalization group flows in 3d N = 1

Chern-Simons-Matter theories

Ofer Aharony and Adar Sharon

Department of Particle Physics and Astrophysics, Weizmann Institute of Science,

Rehovot 7610001, Israel

E-mail: Ofer.Aharony@weizmann.ac.il, adar.sharon@weizmann.ac.il
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Nf = 1) or two (for Nf > 1) exactly marginal deformations in the superpotential. At

finite N these couplings acquire a beta function. We compute the beta function exactly

for λ = 0, at leading order in 1/N . For Nf = 1 we find four fixed points, one of which is

triply-degenerate. We show that at large N there are at most six fixed points for any λ,

and conjecture that there are exactly six, with three of them stable (including a point with

enhanced N = 2 supersymmetry). The strong-weak coupling dualities of N = 1 Chern-

Simons-matter theories map each of these fixed points to a dual one. We show that at large

N the phase structure near each of the three stable fixed points is different. For Nf > 1 we

analyze the fixed points at weak coupling, and we work out the action of the strong-weak

coupling duality on the marginal and relevant superpotential couplings at large N (which

was previously known only for Nf = 1). In addition, we compute in these theories the

2-point and 3-point functions of the lowest gauge-invariant singlet superfield at large N ,

for all values of λ and of the superpotential couplings, and use them to test the large N
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Simons-matter theories with extra Hubbard-Stratonovich type singlet fields, and suggest
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1 Introduction and summary

Gauge theories in 2 + 1 dimensions exhibit rich dynamics, and in many cases flow to

interesting fixed points, some of which appear in condensed matter applications. When

the theories are not parity-invariant, generically the low-energy physics may be described

as a Chern-Simons-matter theory. In recent years it was found that in many cases different

gauge theories flow to the same conformal Chern-Simons-matter (CS-matter) theory at

low energies, so that they are IR-dual. For theories with N = 2 supersymmetry (SUSY)

this duality [1–4] is similar to Seiberg dualities that were found in other dimensions, and

indeed the duality may be related to the 4d duality by compactification on a circle [3].

However, in 3d dualities of this type appear also with no supersymmetry, or with N = 1

supersymmetry.

In this paper we study the dynamics of 3d N = 1 supersymmetric CS-matter theories,

with U(N) and SU(N) gauge groups and with Nf matter superfields Φ in the fundamental

representation. The dynamics of these theories is more subtle than that of N = 0 CS-

fermion theories, or of N = 2 CS-matter theories, because they have classically marginal

deformations corresponding to W = ω|Φ|4 terms in their superpotential (there is one such

deformation for Nf = 1, and two for Nf > 1). They are similar in this respect to N = 0
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CS-scalar theories recently studied in [5], except that in the CS-scalar case, where there

is a classically marginal φ6 interaction, there is also a φ4 interaction which generically

dominates the renormalization group (RG) flow, so that two fine-tunings are required for

the φ6 interaction to be important in the IR; in our N = 1 theories only the mass needs

to be fine-tuned to zero.

When the Chern-Simons level is non-zero, the coupling ω is generated even if it is not

present at high energies, and its flow must be analyzed to understand the IR dynamics. For

weak gauge coupling (large CS level) there are non-trivial weakly coupled fixed points for

ω near the origin [6, 7], but nothing is known about the behavior when the gauge coupling

or the superpotential couplings are strong. In this paper we analyze the dynamics in the ’t

Hooft large N limit, of large N and large Chern-Simons level with a fixed ’t Hooft coupling

λ, where many computations can be explicitly performed (using methods developed in [8–

17]). We will see that there are several different fixed points for the marginal couplings at

finite large values of N .

In general, unlike higher supersymmetries, 3d N = 1 supersymmetry does not enable

any exact computations to be performed, and does not provide many constraints on the

dynamics. In particular the superpotential is not protected from quantum corrections.

The main constraint is that supersymmetric vacua always have zero energy density, so

that phase transitions between them are always of second order rather than first order.

In some special cases, the combination of N = 1 supersymmetry with extra symmetries

(in particular time-reversal invariance) may be used to show the existence of exact moduli

spaces of vacua [18, 19], and these will arise also in some of the theories that we will discuss.

See [15, 20–26] for some recent investigations of 3d N = 1 CS-matter theories.

Another motivation for studying 3dN = 1 CS-matter theories is that these theories can

appear at low energies on BPS domain walls of 4d N = 1 theories, such as supersymmetric

QCD [27, 28]. A priori it is not clear which value of the marginal superpotential couplings

arises in this context, but in some cases the phase structure near the IR fixed points of the

domain wall theory may be understood from 4d. As we will discuss, this may be enough

to determine which IR fixed point for the marginal couplings arises.

Various dualities have been suggested in the literature for nonabelian N = 1 CS-

matter theories with matter in the fundamental representation (see, for instance, [14, 21,

22, 25]). At large N their form is precisely known and they are supported by many

computations, at least for Nf = 1 [14, 15, 26]. However, at finite N the evidence for them

is mostly circumstantial (identifying symmetries, anomalies and phase structures), and

their formulation is not precise since the flow of the marginal couplings was not discussed.

For infinite N , these marginal couplings are actually exactly marginal, so there is a large

family of CFTs, and a non-trivial action of duality on this family. For Nf = 1 this was

analyzed in [14], and we generalize this analysis to Nf > 1 here. For finite N , in order to

specify a duality, one has to specify which fixed point of the marginal couplings it applies

to. For large values of N we will use our large N analysis of the beta function to classify

these fixed points, and to make precise conjectures about their duality relations.

In addition to the simplest CS-matter theories, it is natural to consider also theories

with additional singlet fields H coupled to |Φ|2 through W = H|Φ|2-type superpotentials;
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such descriptions are useful in particular for analyzing the limits where the |Φ|4 coupling

becomes large. We use the formalisms with extra singlet fields to argue that infinite values

for the coupling ω are actually at finite distance away, so that the space of couplings of

these theories is naturally compact (for Nf = 1 it is a circle, and for Nf > 1 a torus).

For infinite N the theories with additional singlets are manifestly equivalent to the original

CS-matter theories, but for finite N they are not, and we conjecture that, at least for large

N , they provide IR-dual descriptions of these theories.

In the first part of this paper we consider theories with a single matter superfield

(Nf = 1). These theories have a single classically marginal operator, for which we attempt

to calculate the beta function in the ’t Hooft large N limit. We begin in section 2 by

formulating our theories, and describing the general form of correlation functions in N = 1

superspace. In section 3 we compute this beta function at order 1/N for λ = 0, namely

in a large N W = ω|Φ|4 theory, and we show that it has four fixed points. For λ 6= 0

we could not compute the beta function exactly, but we discuss some of the steps towards

computing it in section 4, and we show in section 5 that there are (for large N) six fixed

points for small λ, and at most six fixed points for all values of λ. Using the duality and

some additional symmetry arguments, we then provide a conjecture for the qualitative form

of the fixed points of these theories for all λ (see figure 13). Our results are analogous to

the results recently found for the N = 0 CS-scalar theories (‘quasi-bosonic theories’) in [5].

The calculation of the beta function at order 1/N requires the two, three and four-

point functions of the operator J = Φ̄Φ at leading order in 1/N , as well as its anomalous

dimension (at order 1/N). We calculate the two and three-point functions explicitly at

large N , as a function of λ and of the marginal couplings (some of these results were

found independently by the authors of [29]). These are duality-invariant, providing further

evidence for the dualities. In addition, the three-point function allows us to conjecture (in

appendix C) a possible generalization of the results of Maldacena and Zhiboedov [30] to

3d N = 1 theories with almost-conserved high-spin symmetries; it would be interesting to

confirm this conjecture by directly generalizing their analysis to the N = 1 case.

We can relate our results to many ideas appearing in the literature; in particular, we

discuss their relation to previous statements about dualities in N = 1 CS-matter theories.

Our results provide further evidence for some conjectures of theories with emergent N = 2

SUSY (in particular, in the context of domain walls of 4d N = 1 Nf = 1 SQCD [28]).

In addition, we find a series of theories with a fixed point with emergent time-reversal

symmetry, where the fixed point theory has an exact moduli space even at finite N .

In section 6 we discuss theories with Nf > 1. We start by finding the duality trans-

formation at infinite N for these theories (which is a generalization of the duality trans-

formation found in [14] for the case Nf = 1). We then find the beta functions for the two

classically marginal operators for λ = 0 at order 1/N . We can generalize some of the fixed

points to finite but small λ as well, and the duality then gives some of the fixed points for

λ close to 1. Again we find examples of theories with emergent time-reversal symmetry,

some of which have an exact moduli space even at finite N .

There are various open questions left by our analysis. It would be interesting to

complete the computation of the beta function for λ 6= 0 at leading order in 1/N . As we
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discuss in the paper, one thing this requires is control of the 4-point function 〈JJJJ〉 away

from co-linear momenta, along the lines of recent investigations for non-supersymmetric

theories in [31]. It also requires computing some additional correlation function (beyond

the 2-point function), including at least one J , at subleading order in 1/N , which should

be possible (though technically complicated) by generalizing our analysis.

We discuss the phase structure of the fixed points that we find for Nf = 1 (using

known results from [26]), and it should be possible to understand it by similar methods

also for Nf > 1. It should be possible to study other large N theories, such as ones with

orthogonal, symplectic or product gauge groups, by similar methods, and to understand

their dynamics and fixed points.

Last but not least, it would be interesting to find methods to analyze the fixed points

away from the large N limit, but it is not clear at the moment how to do this. For Nf > 1,

some of the fixed points we discuss can be obtained by an RG flow starting from the

N = 2 theories with the same matter content, so the known N = 2 dualities (which are

well-established also for finite N) imply their validity.1 This is known to be true for large

enough N , and it would be nice to understand if it is true also for small N , or if the

fixed points and the flows between them are modified. For other fixed points, and for the

Nf = 1 case, it is not clear how to flow to the N = 1 fixed points from theories with higher

supersymmetry, and it would be interesting to study this.

1.1 Main results of this paper

This paper presents results which have implications to different areas of research, and since

it is quite long, we now summarize our main results.

• The main result of this paper is the analysis of the RG flows of 3d N = 1 CS-matter

theories in the ’t Hooft limit at leading order in 1/N . We compute the beta functions

of the marginal couplings exactly for λ = 0, in section 3 for Nf = 1, and in section 6

for Nf > 1, and use this to obtain the fixed points at small λ. For Nf = 1 we find

a bound on the number of fixed points for all λ, and present a conjecture for the

qualitative form of the RG flows at general λ in figure 13.

• For infinite N and Nf > 1 there is for each λ a family of CFTs labeled by two

exactly marginal superpotential terms. In section 6.1 we find how duality acts on

these families of CFTs, generalizing the Nf = 1 duality transformation found in [14].

• We compute the two and three-point correlation functions of the operator J = Φ̄Φ

at leading order in 1/N in the ’t Hooft limit, for all values of the marginal couplings.

The results are presented in section 4.2. The result for the three-point function

leads us to conjecture an extension of the results of Maldacena and Zhiboedov [30]

to supersymmetric three-point functions of approximately-conserved higher-spin cur-

rents. The extension (and a discussion of the evidence for this conjecture) appears

in appendix C.

1The corresponding flow is much simpler than the ones connecting N = 2 dualities to N = 0 dualities [5,

14], since no fields need to acquire a mass. For Nf = 1 the deformations away from the N = 2 fixed point

are irrelevant, at least for large N , so there is no such flow.
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• Combining calculations in the large-N limit with finite-N results, we conjecture that

the CS-matter theories appearing in equation (5.29) all have exact moduli spaces at

a specific fixed point.

2 Background

2.1 Lagrangian and duality

In Euclidean space, the action for 2+1d N = 1 supersymmetric U(N) Chern-Simons the-

ory2 coupled to Nf fundamental matter fields is [7, 32]

S =

∫
d3xd2θ (LCS + Lmatter) . (2.1)

Our superspace conventions are summarized in appendix A. In terms of N = 1 superfields,

the Chern-Simons term for the gauge field is given by

LCS = − κ

2π
Tr

(
−1

4
DαΓβDβΓα − 1

6
DαΓβ{Γα,Γβ} −

1

24
{Γα,Γβ}{Γα,Γβ}

)
. (2.2)

In components, the action of the gauge field becomes

LCS = − κ

2π
εµνρTr

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
, (2.3)

while the gaugino is an auxiliary field with no kinetic term, which we can integrate out.

Our conventions for the Chern-Simons level are summarized in appendix A.

We now discuss the additional matter term Lmatter. We separate the discussion into

the cases Nf = 1 and Nf > 1.

2.1.1 One matter field (Nf = 1)

For Nf = 1, a single matter superfield Φa (a = 1, · · · , N) in the fundamental representation

of U(N), the most general renormalizable action takes the form (in superfield notation,

suppressing gauge indices)

Lmatter = −1

2

(
DαΦ̄ + iΦ̄Γα

)
(DαΦ− iΓαΦ) +m0Φ̄Φ +

πω

κ

(
Φ̄Φ
)2
. (2.4)

Note that
(
Φ̄Φ
)2

is classically marginal, and we chose a convenient normalization for its di-

mensionless coefficient ω. In components we find that Lmatter splits into three contributions

(after integrating out the auxiliary fields):

Lboson = Dµφ̄Dµφ+m2
0φ̄φ+

4πωm0

κ
(φ̄φ)2 +

4π2ω2

κ2
(φ̄φ)3, (2.5)

Lfermion = −ψ̄
(
i��D +m0

)
ψ, (2.6)

Lint = −2π(1 + ω)

κ
(φ̄φ)(ψ̄ψ)− 2πω

κ
(ψ̄φ)(ψ̄φ) +

π(1− ω)

κ

(
(φ̄ψ)(φ̄ψ) + h.c.

)
. (2.7)

2We work at large N , keeping only the leading order and sometimes the first subleading order in the

1/N expansion. Thus, all our results are also applicable to SU(N) gauge theories, and are independent of

the value of the level of the U(1) factor in U(N).
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We suppress gauge indices, and use brackets to denote gauge index contractions. For ω = 1

the Lagrangian has enhanced N = 2 SUSY.

In the ’t Hooft large N limit, of large N and κ with fixed ’t Hooft coupling λ = N
κ , ω is

exactly marginal so there are consistent QFTs (2.1) for every value of −1 ≤ λ ≤ 1 and ω.

These theories were conjectured to obey a duality under the following transformation [14]:

λ′ = λ− sign(λ), ω′ =
3− ω
1 + ω

, m′0 = − 2m0

1 + ω
. (2.8)

This transformation implies that the gauge-invariant singlet operator J = Φ̄aΦa transforms

under the duality as J ′ = −1+ω
2 J . Note that the value ω = 1 (where the theory has

enhanced N = 2 SUSY) is fixed under the duality. Note also that λ is parity-odd, while ω

is parity-even.

We will mainly be interested in theories with m0 = 0, and will be working in light-cone

gauge Γ− = 0. The N = 1 Lagrangian then becomes

LCS = − κ

8π
Tr
(
Γ−i∂−−Γ−

)
, (2.9)

Lmatter = −1

2
DαΦ̄DαΦ− i

2
Γ−
(
Φ̄D−Φ−D−Φ̄Φ

)
+
πωλ

N
(Φ̄Φ)2. (2.10)

For λ→ 0 the gauge fields decouple, but we can still keep the superpotential interacting

by taking λ→ 0 and ω →∞ while keeping ω̃ ≡ πωλ fixed. This gives the usual Φ4 theory

(in N = 1 superfield notation):

L = Φ̄aD2Φa +
ω̃

N
(Φ̄aΦa)

2. (2.11)

2.1.2 Many matter fields (Nf > 1)

We now have Nf superfields in the fundamental representation of U(N), Φia (i = 1, · · · , Nf ,

a = 1, · · · , N). The action is still of the form (2.1), with the same LCS as in (2.2). The

general matter Lagrangian Lmatter, assuming an SU(Nf ) global symmetry rotating the

matter superfields, is now:

Lmatter = − 1

2

(
DαΦ̄i + iΦ̄iΓα

)
(DαΦi − iΓαΦi) +m0(Φ̄iΦi)

+
πω0

κ

(
Φ̄iΦi

)2
+
πω1

κ

(
Φ̄iΦj

) (
Φ̄jΦi

)
, (2.12)

where we have again denoted gauge index contractions using brackets. Note the existence

of two classically marginal superpotential couplings (which coincide in the case Nf = 1 or

when the gauge group is U(1)). The theory has N = 2 SUSY for ω0 = 0, ω1 = 1.

The generalization of the duality transformation (2.8) to Nf > 1 has not yet appeared

in the literature. We propose a generalization in section 6.1, and give some evidence for

our proposal.

Again, we will be mostly interested in light-cone gauge with m0 = 0, so that the matter

Lagrangian becomes

Lmatter = − 1

2
DαΦ̄iDαΦi −

i

2
Γ−
(
Φ̄iD−Φi −D−Φ̄iΦi

)
+
πω0λ

N
(Φ̄iΦi)

2 +
πω1λ

N

(
Φ̄iΦj

) (
Φ̄jΦi

)
. (2.13)
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We can again take the limit λ→ 0, where the Lagrangian becomes a Φ4 theory:

L = Φ̄aiD2Φai +
ω̃0

N
(Φ̄aiΦai)

2 +
ω̃1

N
(Φ̄aiΦaj)(Φ̄

bjΦbi), (2.14)

where ω̃n ≡ πλωn for n = 0, 1 are kept fixed.

2.2 General form of N = 1 supersymmetric correlation functions

We review some results from [15], where the general form of an N = 1 supersymmetric

n-point correlation function was studied. Consider an n-point function of n scalar super-

fields Zi:

Γn(pi, θi) = 〈Z1(p1, θ1)Z2(p2, θ2) · · ·Zn(pn, θn)〉, (2.15)

with pi the momenta and θi the anticommuting superspace coordinates (note that momen-

tum conservation requires
∑

i p
µ
i = 0). SUSY imposes the following constraints:

n∑
i=1

Qpi,θiΓn(pi, θi) = 0, (2.16)

where Q are the supercharges

Qk,θα = i

(
∂

∂θα
− θβkαβ

)
. (2.17)

We now review the results for two and three-point functions.

For the 2-point function Γ2(p, θ1, θ2), the general form of the solution to (2.16) is

Γ2 = e−θ
α
1 pαβθ

β
2F2(X12, p), (2.18)

where we have defined Xij ≡ θi − θj . F2 can be expanded in superspace as

F2 = C1(pµ)− C2(pµ)(θ1 − θ2)2. (2.19)

Equivalently, we can write

Γ2(p, θ1, θ2) = (C1(pµ)D2 + C2(pµ))δ2(θ1 − θ2), (2.20)

which is the general form of a supersymmetric two-point function.

For the 3-point function Γ3(p, q,−p− q, θ1, θ2, θ3), a similar calculation gives

Γ3 = e
1
3
X·(p·X13+q·X23)F3(X13, X23, p, q), (2.21)

where we have defined X ≡
∑3

i=1 θi. The expansion of F now contains eight terms:

Γ3 = e
1
3
X·(p·X13+q·X23)

(
A− iB1X

+
13X

−
13 − iB2X

+
23X

−
23

+
(
X+

13, X
−
13

)
· B ·

(
X+

23

X−23

)
− CX+

13X
−
13X

+
23X

−
23

)
, (2.22)

with Bαβ a 2× 2 matrix.
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Given a 3-point function, we can isolate each of these terms. As an example, consider

a free theory of N fields Φa with a = 1, · · · , N . Defining J = Φ̄aΦa, the 3-point function

〈J(q)J(l)J(−l − q)〉 is:

A = 2
N

8|q||l||q + l|

B1 = B2 = 0

Bαβ = 2

(
N

3

(l − q)αβ
8|q||l||q + l|

−NIαβ
)

C = 2

(
−N

9

(l − q)2

8|q||l||q + l|
− N

8|l + q|
+

2N

3
(l − q) · I

)
,

(2.23)

where we defined [5]:

Iαβ =

∫
d3p

(2π)3

pαβ
p2(p− l)2(p+ q)2

=

lαβ
|l| −

qαβ
|q|

16|q + l|
|q|+ |l| − |q + l|
|q||l| − q · l

. (2.24)

3 The Beta function at λ = 0 for Nf = 1

As explained in section 2.1, at λ = 0 the Lagrangian of the theory reduces to that of Φ4

theory (with Φ a superfield):

L = Φ̄aD2Φa +
ω̃

N
(Φ̄aΦa)

2, (3.1)

with a = 1, · · · , N . In this section we find the β function for ω̃ and the γ functions for Φ

and J ≡ Φ̄aΦa at large N and at λ = 0 (to all orders in ω̃). At leading order for small ω̃,

this was calculated in [7], and we compare the results in this limit at the end of this section.

3.1 Classification of diagrams contributing to Φ4 at large N

In order to find the beta function, we must study the corrections to the Φ4 vertex in (3.1).

In this section we classify the diagrams which contribute to the 4-point function at leading

and subleading order in 1
N .

A general diagram for the 4-point function 〈Φ̄aΦaΦ̄
bΦb〉 includes two external index

lines and various internal index loops. Denote the number of vertices along the two external

index lines by v1 and v2, and the number of internal index loops with i vertices by ni
(i = 2, 3, . . .). Since we will be using dimensional regularization, we have taken n1 = 0

since single-vertex index loops will vanish.

In a diagram with V Φ4 vertices, each involving two index lines, we have

2V = v1 + v2 + 2n2 + 3n3 + 4n4 + · · · , (3.2)

and the power of N associated with this diagram is

∆ = n2 + n3 + n4 + · · · − V. (3.3)
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Figure 1. A chain.

Furthermore, we always have

v1, v2 ≥ 1. (3.4)

First, note that in terms of counting powers of N we can just shrink all 2-vertex index

loops to zero, since removing one such loop and one vertex does not change anything (they

have ∆ = 0). Conversely, in each 4-point vertex, we can insert in the middle any number of

index loops (a “chain”, which will be denoted by a red line, see figure 1) without changing

the power of N . So it is enough to classify diagrams with n2 = 0, and then blow up each

vertex into a chain with any number of index loops.

The leading diagram has V = 1, v1 = v2 = 1 with all others vanishing, and so has

∆ = −1. To get other diagrams with ∆ = −1 we must have

n3 + n4 + . . . = V − 1 = (v1 + v2)/2 + (3/2)n3 + 2n4 + . . .− 1, (3.5)

so

v1 + v2 + n3 + 2n4 + . . .− 2 = 0. (3.6)

The only solution is v1 +v2 = 2 and the others vanishing, giving the chains discussed above.

The next order is ∆ = −2. At this order we must have

v1 + v2 + n3 + 2n4 = 4 (3.7)

(all the higher ni’s must clearly vanish). The possible solutions (up to exchanging the

external index lines) are:

(a) v1 = 1, v2 = 1, n4 = 1

(b) v1 = 1, v2 = 1, n3 = 2

(c) v1 = 1, v2 = 2, n3 = 1

(d) v1 = 2, v2 = 2

(e) v1 = 1, v2 = 3

So all of the diagrams that contribute at subleading order in N are of one of the types

(a)–(e), where we replace vertices with chains. We draw all of the possible diagrams in

figure 2.

3.2 Calculation of Beta and Gamma functions

We start with the calculation of a chain ∆Φ2Φ2 (figure 1), which is the leading order (in

1/N) contribution to the Φ4 vertex. The result at this order can be written as an effective

action term contributing to the 4-point function, of the form

1

N
(Φ̄aΦa)(p, θ1)

(
a0 + a1

D2

|p|

)
(Φ̄bΦb)(−p, θ2) (3.8)
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Type (a) Type (b)

Type (c)

Type (d) Type (e)

Figure 2. Diagrams contributing to the beta function at order 1/N .

Figure 3. The leading-order contribution to the gamma function of Φ.

(here we take the product of the superfields Φ̄a and Φa, which are at different points, and

denote its momentum by p and its fermionic superspace coordinate by θ1, and similarly for

the product of Φ̄b and Φb; the D2 operator acts on the latter superspace coordinate, and

there is no dependence on other combinations of momenta). Note that each index loop

adds a factor of N while each vertex adds a factor of 1
N , so that all of the diagrams in a

chain come with an overall factor of 1
N . The chain is given by summing the diagrams of

figure 1:

∆Φ2Φ2 ≡ 1

N

(
a0 + a1

D2

|p|

)
=

2ω̃

N

∞∑
n=0

(
ω̃
D2

4|p|

)n

=
1

N

2ω̃

1− ω̃ D2

4|p|
=

1

N

8ω̃

ω̃2 + 16

4|p|+ ω̃D2

|p|
,

(3.9)

so that

a0 =
32ω̃

ω̃2 + 16
, a1 =

8ω̃2

ω̃2 + 16
. (3.10)

Next we discuss the calculation of the diagrams (a)–(e), which are of subleading order

in 1/N . Since we are interested in the β function, we calculate only the logarithmically

diverging parts of these diagrams; these must take the same form as (3.8) above, since the

naive divergences must be canceled by the cutoff-dependence of the leading order terms.

The explicit calculation of these terms using dimensional regularization with d = 3 − ε

appears in appendix B. The results are summarized in table 1. Note that these are all of

order 1/N2.

We can now find βω̃ and γΦ. γΦ is obtained from the diagram in figure 3, which gives

the correction at order 1/N to the propagator 〈Φ̄aΦa〉. The contribution is

a1
N

∫
d3k

(2π)3
D2

|k|(p− k)2
=

a1D
2

2Nπ2ε
. (3.11)
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Type Result

(a) − a1
4π2ε

D2

|p|∆
2
Φ2Φ2

(b) − 1
32π2ε

(
a0 + a1

D2

|p|

)2
D2

|p|∆
2
Φ2Φ2

(c) − 1
N

1
4π2ε

(
a0 + a1

D2

|p|

)2
∆Φ2Φ2

(d) − 1
N2

2a1a0
π2ε

(e) − 1
N

3a1
π2ε

∆Φ2Φ2

Table 1. The logarithmically diverging parts of the diagrams of figure 2.

We thus find

γΦ =
1

N

a1

4π2
=

1

N

2ω̃2

π2(ω̃2 + 16)
. (3.12)

βω̃ is obtained from the Callan-Symanzik equation(
µ
∂

∂µ
+ βω̃

∂

∂ω̃
+ 4γΦ

)
O4 = 0, (3.13)

where O4 is the connected four-point function. Using the 1/N expansion we can write

this as (
βω̃

∂

∂ω̃
+ 4γΦ

)
∆Φ2Φ2 + ((a) + (b) + (c) + (d) + (e)) = 0, (3.14)

dropping the ε factor from the values of the diagrams given in the table above, where βω̃
and γΦ are given at leading order in 1/N . We find:

βω̃ = − 1

N

16ω̃3
(
ω̃2 − 48

)
π2 (ω̃2 + 16)2 . (3.15)

Note that equation (3.14) contains two terms, proportional to 1 and to D2/|p|, and both

of them vanish for this value, giving a consistency check for our computation. Also note

that the N = 2 point is at ω̃ = 0, and the beta function vanishes there as expected.

3.2.1 Additional correlators

We can actually use the same results to compute also additional correlation functions,

at leading and subleading order in 1/N . Specifically, define the operator J(x) =
1
N Φ̄a(x)Φa(x). There are three correlation functions we can study: the 4-point function〈
(Φ̄Φ)(Φ̄Φ)

〉
, the 3-point function

〈
J(Φ̄Φ)

〉
, and the 2-point function 〈JJ〉, which are all

given by (some of) the same diagrams that we computed in the previous subsection, replac-

ing if necessary two external Φ’s emanating from the same vertex (which gives an external

chain) by an insertion of J .
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Start with the leading order in 1/N . For all of these correlators we just have a gener-

alization of the chains discussed above:〈
(Φ̄Φ)(p)(Φ̄Φ)(−p)

〉
|1/N = ∆Φ2Φ2 (3.16)〈

J(p)(Φ̄Φ)(−p)
〉
|1/N = ∆JΦ2 =

1

2ω
∆Φ2Φ2 (3.17)

〈J(p)J(−p)〉 |1/N = ∆JJ =
D2

16ω|p|
∆Φ2Φ2 (3.18)

Note that all terms are of order 1/N . The first line is precisely the chain (3.9), while the

other two are chains with external Φ’s replaced by insertions of J . Each of these correlators

has a term going as 1 and another going as D2

|p| , and naively we can use the logarithmic

corrections to each of these correlators at order 1/N to independently compute the beta

function. However, in the 2-point correlator 〈J(p)J(−p)〉 = b0 + b1
D2

|p| , b0 is actually a

contact term (with a value depending on ω). At the next order in 1/N , as in a similar

discussion in [5], a part of this can remain a contact term, and a part of this can become the

2-point function of J at separate points (which becomes non-trivial in momentum space

once J has an anomalous dimension at order 1/N), and a priori it is not clear which part

remains a contact term and which part does not. Thus the b0 part of 〈JJ〉 cannot be used

in the following to find the β, γ functions, and so we only use the b1 part in the following.

Consider next the subleading order. Denote the contribution of the diagram types

above (without the external leg factors which gave some powers of ∆Φ2Φ2 in the table

above) by a, b, c, d, e. We find that the logarithmic terms at order 1/N are given by:

〈
(Φ̄Φ)(p)(Φ̄Φ(−p)

〉
|1/N2 = (a+ b)∆2

Φ2Φ2 + (c+ e)∆Φ2Φ2 + d (3.19)〈
J(p)(Φ̄Φ)(−p)

〉
|1/N2 = (a+ b)∆Φ2Φ2∆JΦ2 +

1

2
(c+ e)∆JΦ2 (3.20)

〈J(p)J(−p)〉 |1/N2 = (a+ b)∆2
JΦ2 , (3.21)

where the first line is just a rewriting of the results of the previous subsection.

Now we can calculate the beta and gamma functions. The RG equations for the

correlation functions above depend on βω, on γΦ (which we already know from other

considerations) and on the anomalous dimension of J , γJ = γΦ2 . We have 5 separate RG

equations (the 1 and D2/|p| terms from the first two correlators, and the D2/|p| term from

the second), with two unknowns, so we have an overconstrained system, and the inputs

must satisfy three constraints. Let us write

a+ b = O1 +O2
D2

|p|
(3.22)

c+ e =
1

N

(
O3 +O4

D2

|p|

)
(3.23)

d =
1

N2

(
O5 +O6

D2

|p|

)
(3.24)
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Note that all Oi’s are of order 1. Since we have three constraints, it is enough to calculate

three of the Oi’s to find the rest (along with the beta and gamma functions). In terms of

O1, O3, O5 we find:

O2 =
O3

8
(3.25)

O4 =
O5

4
(3.26)

O6 = 0 (3.27)

βω̃ = − 1

N

32ω̃(2ω̃O1 +O3) +O5

(
ω̃2 + 16

)
32

(3.28)

γJ = − 1

N

64ω̃O1 + 16O3 + ω̃O5

32
(3.29)

Note that both βω̃ and γJ are of order 1/N . Plugging in our results from section 3.2, we

find that our results for O2, O4 and O6 are consistent with these equations, and we obtain

the beta function (3.15), and

γJ = −
16ω̃2

(
ω̃2 − 16

)
π2 (ω̃2 + 16)2

1

N
. (3.30)

The discussion above explains some properties of the results from the direct calculation;

for instance, it explains why (e) does not have a term that is proportional to D2

|p| . If (e) had

such a term, it would appear in O4 with one factor of either a0 or a1 (since the (e)-type

diagrams have only one internal chain). However, we see that O4 = O5
4 . O5 comes from

the (d)-type diagrams, which have two internal chains, so that it only contain terms of the

form a2
0, a0a1 and a2

1. For generic a0 and a1 we cannot have that a term linear in ai will

be equal to a term quadratic in ai, and so the D2

|p| term in O4 must vanish.

3.2.2 Summary

To summarize, at leading order in 1/N we have:

βω̃ = −
16ω̃3

(
ω̃2 − 48

)
π2 (ω̃2 + 16)2

1

N
(3.31)

γJ = −
16ω̃2

(
ω̃2 − 16

)
π2 (ω̃2 + 16)2

1

N
(3.32)

γΦ =
2ω̃2

π2(ω̃2 + 16)

1

N
(3.33)

By expanding the results above in ω̃, one can compare the beta and gamma function

found at leading (two-loop) order in ω̃ in [7]. Due to the use of different conventions, we

find γΦ,us = 2γΦ,them, γJ,us = 4γJ,them and βus = 4βthem. These factors remain consistent

also in the Nf > 1 result, see section 6.2.

Our results exhibit attractive RG fixed points (where the superpotential is irrelevant

in the IR) at ω̃ = 0 and ω̃ = ∞, and repulsive RG fixed points (where the superpotential

is relevant in the IR) at ω̃ = ±
√

48. We postpone further discussion of the beta function,

and of the meaning of the fixed point at ω̃ =∞, until section 5.
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4 First steps towards the Beta function at λ 6= 0

We would like to compute the beta function for ω also for non-zero values of the CS

coupling. Unfortunately, we were not able to do this. For λ 6= 0, the correlation functions

of Φ’s are not gauge-invariant,3 so out of the correlators of the previous section, we can

only compute 〈JJ〉, which, as discussed above, gives us just a single equation for βω and

γJ . Moreover, we were not able to completely compute the 1/N correction to 〈JJ〉. In this

section we describe some contributions to this correction (and thus to the beta function)

explicitly. These contributions require computing correlation functions of two and three

J ’s, which we compute explicitly, and which are interesting in their own right. In addition,

our considerations will enable us to constrain the form of the beta function at leading order

in 1/N for all λ, limiting the number of its zeros, as we will discuss in the next section.

The main results of this section are the two and three-point correlation functions of

J = Φ̄Φ in the ’t Hooft limit. Readers interested in the RG flows can skip this section and

move on to section 5.

4.1 General considerations

In this subsection we present a general method of obtaining some constraints on the beta

function for the full theory (2.1), systematically for all orders in 1/N . We follow the method

described in [5]. Start with the N = 1 Lagrangian discussed in section 2.1:

LCS + (∇αΦ)2 +
πλω

N
(Φ̄Φ)2. (4.1)

We use the standard Hubbard-Stratonovich transformation to do large N computations;

first, we rewrite the Lagrangian using auxiliary fields Λ,Σ as:

L = LCS + (∇αΦ)2 +
πλω0

N
(Φ̄Φ)2 + Λ(Φ̄Φ−NΣ) + πλN(ω − ω0)Σ2, (4.2)

where we arbitrarily separated the superpotential into a term proportional to ω0 and an-

other proportional to (ω − ω0). This choice is arbitrary: we can work with any convenient

value of ω0, and the results cannot depend on it. Next, we integrate out the matter fields Φ

and the gauge fields; in their path integral Λ behaves as a source for the operator J = Φ̄Φ

(note that from here on we use this normalization for J , which differs from the one of the

previous section). This leaves us with an effective action for Λ,Σ:

L = −NΛΣ + πλN(ω − ω0)Σ2 +
1

2
ΛG2Λ +

1

3!
G3Λ3 +

1

4!
G4Λ4 + · · · , (4.3)

where the Gn are the n-point functions of J in the CS-matter theory with a superpo-

tential coefficient ω0. Here, the notation G3Λ3 is short-hand for three integrations over

superspace of

G3(x1, θ1, x2, θ2, x3, θ3)Λ(x1, θ1)Λ(x2, θ2)Λ(x3, θ3) (4.4)

and similarly for the other terms.

3It may be possible to extract information from such correlators by computing them in a specific gauge,

but since the gauge we use breaks Lorentz-invariance, non-Lorentz-invariant counter-terms may be needed,

and we do not discuss this here.
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Note that the Gn are of order N in the large N limit (though they are generally

corrected at higher orders in 1/N). If we keep only the term of order N , then N appears as

a coefficient in front of the full Lagrangian (4.3), and it does not appear anywhere else, so

the 1/N expansion is the same as a loop expansion with this Lagrangian (the higher order

terms in 1/N give corrections to this). For instance, we can now find the beta function

for ω by finding the 1-loop corrections to the Σ2 term. In other words, we must study

the 1-loop correction to the Σ propagator (together with corrections at order 1/N to the

tree-level result, from the higher order terms in G2). In order to find this to order 1/N ,

we need to know G2, G3 and G4 at leading order in 1/N (see figure 4), and G2 also at the

first subleading order, but we do not need to know any of the higher Gn, so we will not

write them from here on (they will be needed in order to obtain higher orders in 1/N).

Let us start by repeating the calculation of the beta function at λ = 0 using this

formalism. We rewrite the relevant terms in the Lagrangian (4.3) as

L =
1

2
ΛG2(ω̃0)Λ +

1

3!
G3(ω̃0)Λ3 +

1

4!
G4(ω̃0)Λ4 −NΛΣ +N(ω̃ − ω̃0)Σ2, (4.5)

and choose ω̃0 = 0, so that the correlators Gn are computed in the free field theory with

no superpotential. A direct calculation gives G2(ω̃0) = N
8
D2

|p| (with no corrections in 1/N).

Inverting the quadratic terms in the Lagrangian, one can then find the propagators for

Λ,Σ (denoted by ∆Λ,∆Σ) and the two-point function 〈ΛΣ〉 (denoted ∆ΛΣ). For instance,

we find

∆Λ =
1

N

(
32ω̃

ω̃2 + 16
+

8ω̃2

ω̃2 + 16

D2

|p|

)
, (4.6)

which is just the chain (3.9), and ∆Σ is by construction proportional to 〈JJ〉, since Σ =

J/N . We now find the beta function by finding the (diverging) quantum corrections to these

propagators. The 1-loop corrections to ∆Σ that we need to calculate appear in figure 4,

where the external lines are ∆ΛΣ propagators, and the internal lines are Λ propagators

(note that these are the same as the (a) and (b)-type diagrams defined in section 3, which

appear in figure 2). Using these diagrams, we can get an equation for βω̃ and γΣ = γJ from

the Callan-Symanzik equation4 for the two-point function 〈ΣΣ〉:(
βω̃

∂

∂ω̃
+ 2γΣ

)
∆Σ + ((a) + (b)) ∆2

ΛΣ = 0. (4.7)

This is manifestly the same as one of the equations we discussed in the previous section;

because the term proportional to δ(2)(θ1 − θ2) is a contact term, it gives us a single non-

trivial relation between βω̃ and γJ . If we denote

(a) + (b) = O1 +O2
D2

|p|
(4.8)

as above, we have

βω̃ =
γJN

(
ω̃2 + 16

)
+ 32O1ω̃ − 4O2

(
ω̃2 − 16

)
Nω̃

. (4.9)

4The Callan-Symanzik equation appearing here is obtained using a 1/N expansion of the full Callan-

Symanzik equation, see the discussion around (3.13).
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Figure 4. Diagrams contributing to the beta function of ω̃ at order 1/N .

Using the results of the computations of the previous section gives the following relation

between βω̃, γJ :

βω̃ =
π2γJN

(
ω̃2 + 16

)3
+ 256ω̃2

(
3ω̃2 − 16

)
π2Nω̃ (ω̃2 + 16)2

, (4.10)

in agreement with the direct calculation from section 3. We thus find that while this

method is not enough in order to find both βω̃ and γJ , one can still obtain a relation

between them; additional correlators are needed to separate the two.

In the rest of this section we perform the analysis for general λ, in the hopes of finding

a similar relation. For any λ we can obtain a relation between βω, γJ by calculating loop

corrections to the Σ2 term in (4.3). For general λ there is nothing special about the point

ω0 = 0 which is no longer free; in fact, it is convenient to use the value ω0 = 1, since then

the correlators Gn are computed in the theory with enhanced N = 2 supersymmetry. At

this value we know that J does not have an anomalous dimension, since it is in the same

N = 2 multiplet as the global symmetry current, and we also know that the beta function

for ω vanishes, and thus G2 does not have any logarithmic terms at any order in 1/N .

Thus, the beta function at order 1/N can be obtained from the same diagrams as before,

appearing in figure 4. We find the 2 and 3-point functions, G2 and G3, in the next section.

We then use them to calculate the (b)-type diagram. However, we will not be able to find

the result for the 4-point function G4 for general λ, and so we will not be able to calculate

the (a)-type diagram.

4.2 Correlation functions of J = Φ̄Φ

In this section we compute the two and three-point correlation functions of J = Φ̄Φ for

all λ and ω, at leading order in 1/N , generalizing the non-supersymmetric computations

of [10, 13]. We start by calculating the general four-point function
〈
Φ̄ΦΦ̄Φ

〉
for colinear

momenta (this was done for the N = 1 CS-matter theories in [15]). This result is then used

to find the vertex
〈
JΦ̄Φ

〉
for colinear momenta, which is then used to calculate 〈JJ〉 and

〈JJJ〉 for general momenta. We will use our results to suggest a possible generalization of

the results of Maldacena-Zhiboedov [30, 33].

In order to perform the various 3d integrals that appear in this section, we use the

standard formalism [10] in which we use a cutoff in the 1–2 plane and dimensional regular-

ization in the 3 direction. In particular, we define ps =
√
p21 + p22. For other conventions

see appendix A.
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Figure 5. The leading order four-point function.

4.2.1 Four-point function of Φ at large N

The four-point function of Φ in our theories was found, for some values of the momenta,

in [15] (in the light-cone gauge Γ− = 0; note that the result is not gauge-invariant). At

leading order in 1/N , the correction to the four-Φ vertex in the effective action appears

diagrammatically in figure 5. It can be viewed as coming from a four-point vertex in the

effective Lagrangian:

L4 =
1

2
V (θi, p, q, k)Φa(−p− q, θ1)Φ̄

a(p, θ2)Φ̄
b(k + q, θ3)Φb(−k, θ4). (4.11)

The authors of [15] found, for q in the x3 direction (q+ = q− = 0):

V = exp

(
1

4
X · (p ·X12 + q ·X13 + k ·X43)

)
F (X12,X13, X43, p, q, k),

F (X12,X13, X43, p, q, k)

= X+
12X

+
43

(
AX−

12X
−
43X

+
13X

−
13 +BX−

12X
−
43 + CX−

12X
+
13 +DX+

13X
−
43

)
,

(4.12)

with A,B,C,D functions of the momenta p, k, q, which can be computed from a Schwinger-

Dyson equation. Here, Xij = θi − θj and X =
∑4

i=1 θi. In this work we will only need

the expressions at the N = 2 point ω = 1. Defining T (x) = e
2iλ tan−1( 2

√
x2+m2

q3
)
, these are

given by:

A = −2iπ

κ

T (ks)

T (ps)
, B = 0, C = D =

2A

(k − p)−
. (4.13)

4.2.2 Computation of
〈
JΦ̄Φ

〉
We can now calculate

〈
JΦ̄Φ

〉
in the colinear limit. Explicitly, we consider a correlation

function of the form 〈
J(−q, θc)Φ̄(p+ q, θb)Φ(−p, θa)

〉
(4.14)

where we take q+ = q− = 0. Diagramatically,
〈
JΦ̄Φ

〉
is given by the diagrams shown

in figure 6. The first diagram is the contribution from the free theory, while the second

diagram includes all of the interaction terms.

The first diagram is simple, and it contributes

δ2(θa − θc)δ
2(θb − θc). (4.15)
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Figure 6. Diagrams contributing to 〈JΦ̄Φ〉. A cross denotes a J insertion, and the shaded area

corresponds to the general Φ 4-point function discussed in section 4.2.1.

Figure 7. Interacting contribution to 〈JΦ̄Φ〉.

In terms of the decomposition of a general three-point function described in equation (2.22),

this corresponds to C = 1 with all other coefficients vanishing.

A more detailed version of the second diagram appears in figure 7. This contributes:

〈
JΦ̄Φ

〉
= N

∫
d2θ3d

2θ4

∫
d3k

(2π)3
V (θb, θa, θ3, θ4, p, q, k)

D2δ(θc − θ3)

(k + q)2
D2δ(θ4 − θc)

k2
. (4.16)

We can now plug in the result (4.12) for the 4-point vertex V in terms of the θ’s, and also

replace D2
θ,kδ

2(θ − θ′) = e−θ·k·θ′ . This allows us to do the integrals.

Summing the two contributions, we find the general result (decomposing the 3-point

function according to the general form described in equation (2.22)):

A =0

B1 =B2 = −
ie

−2iλ tan−1
(

2ps
q3

)(
− (ω−1)e

iλ
(
2 tan−1

(
2ps
q3

)
+πsgn(q3)

)
+(ω+3)

(
e
2iλ tan−1

(
2ps
q3

)
− eiπλsgn(q3)

)
+ω−1

)
q3((ω − 1)(ω + 3) cos(πλsgn(q3))− ω(ω + 2)− 5)

B11 =
2eiπλsgn(q3)

(
1− e

−2iλ tan−1
(

2ps
q3

))
p−

(
(ω + 3)eiπλsgn(q3) − ω + 1

)
B12 = − B21 = iB1

B22 =0
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Figure 8. Diagrams contributing to 〈JJ〉.

C =1 +
e
−iλ

(
2 tan−1

(
2ps
q3

)
+π

)

6((ω − 1)(ω + 3) cos(πλ)− ω(ω + 2)− 5)

×
[
2
(
−1 + e2iπλ

)
sgn(q3)

(
(ω − 1)e

2iλ tan−1
(

2ps
q3

)
− ω − 5

)
+ (ω − 1)(3ω + 7)

(
−e

2iλ
(
tan−1

(
2ps
q3

)
+π

))
− (ω − 1)(3ω + 7)e

2iλ tan−1
(

2ps
q3

)

+ 2(ω(3ω + 4) + 9)e
iλ
(
2 tan−1

(
2ps
q3

)
+π

)
− 4eiπλ((ω + 5) cos(πλ)− ω + 3)

]
(4.17)

In particular, we find a relatively simple expression at the N = 2 point ω = 1:

A = 0

B1 = B2 =
i
(
1− e

i
(
πλsgn(q3)−2λ tan−1

(
2ps
q3

)))
2q3

B11 = −−1 + e
−2iλ tan−1

(
2ps
q3

)

2p−

B12 = −B21 = iB1

B22 = 0

C =
1

6

(
e
−2iλ tan−1

(
2ps
q3

)
+ 3e

i
(
πλsgn(q3)−2λ tan−1

(
2ps
q3

))
+ 2

)

(4.18)

Due to the symmetry under exchanging the two Φ legs together with charge conjugation,

we expect B1 = B2 and
5 B12 = −B21, and this is manifest above. The result has the correct

limit as λ → 0 (which is C = 1, with all other terms vanishing).

4.2.3 Computation of 〈JJ〉

Next, we calculate the two-point function 〈J(q)J(−q)〉. The diagram we need to calculate

is shown in figure 8, which can be calculated using the results of the previous section.

Note that the results of the previous section only give us this two-point function when the

momentum q obeys q− = q+ = 0, but the general result can be immediately found using

Lorentz invariance. From the general form of the two-point function in equation (2.20), we

find that the contribution from this diagram should be of the form〈
J(q, θ)J(−q, θ′)

〉
=

(
A0(q) +A1(q)

D2

|q|

)
δ2(θ − θ′), (4.19)

5The precise relation is B12(−q, p + q,−p) = −B21(−q,−p, p + q), but since q+ = q− = 0 and since B1

depends only on ps, this reduces to the form above.
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Figure 9. Diagrammatic relation between 〈JJ〉ω0
and 〈JJ〉ω. Dashed blue lines correspond to

〈JJ〉ω0
, solid blue lines to 〈JJ〉ω, and black vertices to π(ω−ω0)

κ (along with the corresponding

symmetry factor). The “chain” ∆ω0
ω can be defined as 〈JJ〉ω

〈JJ〉ω0
.

so that there are only two unknown functions we must calculate, A0 and A1. We find

A0 =
N(ω + 1) sin2

(
πλ
2

)
πλ ((ω − 1)(ω + 3) cos(πλ)− ω(ω + 2)− 5)

A1 = − N sin(πλ)

πλ ((ω − 1)(ω + 3) cos(πλ)− ω(ω + 2)− 5)

(4.20)

We now perform some consistency checks on this result.

1. In the limit of λ → 0 with fixed ω̃ we reproduce the 2-point function of the previous

section.

2. A1 is duality invariant. Note that A0 is not duality invariant; however, it is a con-

tact term which vanishes at separated points, so this just indicates that the duality

transformation should be accompanied by adding an appropriate contact term (de-

pending on λ and ω) for this 2-point function. A similar contact term appears in

the 3-point function of scalar operators in the duality map between CS-fermion and

CS-critical-scalar theories [5, 13].

3. We can find 〈JJ〉ω for general ω by starting with 〈JJ〉ω=ω0 for any value of ω0, and

treating π(ω−ω0)
κ (Φ̄Φ)2 as a perturbation. In this case, we should have (at leading

order in 1/N)

〈JJ〉ω = 〈JJ〉ω0
∆ω0

ω (4.21)

where the “chain” ∆ω0
ω takes us from ω0 to ω, as shown in figure 9. Summing this

series, one finds

∆ω0
ω =

∞∑
n=0

(
2π(ω − ω0)

κ
〈JJ〉ω0

)n

=
1

1− 2π(ω−ω0)
κ 〈JJ〉ω0

. (4.22)

A direct calculation shows that (4.20) indeed satisfies (4.21) for all ω and ω0 (and

for any λ).

4. Finally, we can compare our result to the known results in CS-matter theories with

only bosons [10] or only fermions [13]. This is done by noticing that at ω = −1, the

term (φ2)(ψ2) which mixes fermions and bosons in the Lagrangian (2.7) vanishes.

In this case, the diagram in figure 8 contributing to the top component of 〈JJ〉 has
only fermions running in the loop, while the diagram contributing to the bottom

component only has bosons running in the loop. This means that the results for

the two-point functions of these components should agree with the fermion-only and

boson-only calculations. We have verified that this is indeed the case.
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Figure 10. Diagrams contributing to 〈JJJ〉.

4.2.4 Computation of 〈JJJ〉
Next we calculate the 3-point function 〈J(q)J(l)J(−q−l)〉ω, for which the relevant diagram

appears in figure 10. Using the 〈JΦ̄Φ〉 vertex calculated in section 4.2.2, one can calculate

〈JJJ〉ω for colinear momenta. However, it is not immediately obvious how to generalize

this result to any external momenta, since we do not know the most general form of the 3-

point function of superfields that is allowed by superconformal invariance. We now describe

the method we used to solve this issue.

Given the three-point function 〈JJJ〉ω0 for some ω0 (for instance, at the N = 2 point

ω0 = 1), one can find the 3-point function at any other ω by multiplying each external

leg by the chain (4.22). By performing this calculation for colinear momenta, we find

that there are 3 special values of ω (denoted ω
(i)
λ with i = 1, 2, 3) for which 〈JJJ〉

ω
(i)
λ

with colinear momenta is proportional to the free theory result (i.e. the result for λ = 0).

This fact should also be correct for general momenta,6 and so at these ω
(i)
λ the full result

for 〈JJJ〉
ω
(i)
λ

for general momenta is just the free result up to an overall factor. Then,

applying the chains (4.22) once again to this result, we can find 〈JJJ〉ω for general ω and

general momenta.

Explicitly, the ω
(i)
λ for which the three-point functions are proportional to the free

theory result are given by:

ω
(i)
λ = 1− 4

2 cos
(
π(λ−2i+2)

3

)
+ 1

(4.23)

6One might worry about the possibility of an additional structure which vanishes in the colinear limit but

not in general, but this cannot be the case here. We can show this by using the effective action formalism.

SUSY constrains the effective action giving the 3-point function of J ’s, when written in superspace, to have

eight possible terms that couple three J ’s (in agreement with the decomposition in section 2.2). These

terms come in two forms; terms whose bottom component has three scalars (JJJ , J(D2J)J , JJ(D2J) or

J(D2J)(D2J)) and terms whose bottom component has one scalar and two fermions (e.g. JDαJDβJ). For

three scalars there is only one possible structure, which we can see in the colinear limit. Similarly, for

scalar-fermion-fermion diagrams there are two possible structures [34] (an odd and an even one), and our

colinear results see two structures, so neither of them can vanish there. This leaves only the possibility of

contact terms, but these depend at most on a single momentum, so they cannot vanish in the colinear limit.

Thus, there cannot be any additional structures that vanish in the colinear limit of the 3-point function

but not in general.
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for i = 1, 2, 3. Focusing on the simplest one, ω
(1)
λ , we find:

〈JJJ〉
ω

(1)
λ

=
sin
(
πλ
3

)
+ sin

(
2πλ

3

)
πλ
(
1− 2 cos

(
πλ
3

))2 〈JJJ〉free (4.24)

Then, multiplying by the chains (4.22), one can find 〈JJJ〉ω for general ω. We will only ex-

plicitly write down the result at the N = 2 point, 〈JJJ〉ω=1. In terms of the decomposition

discussed in equation (2.22), we find:

A =
sin(2πλ)

2πλ
Afree

B1 = −2
N sin2(πλ)

πλ|l||l + q|

B2 = −2
N sin2(πλ)

πλ|q||l + q|

Bαβ =
sin(2πλ)

2πλ
Bfree
αβ + 2

N sin2(πλ)

16πλ

|l|+ |q| − |l + q|
|l||q||l + q| (|l||q| − l · q)

(q γ
α lγβ + Cαβ |l||q|)

C =
sin(2πλ)

2πλ
Cfree

(4.25)

As a consistency check, one finds that this has the correct limit when λ → 0. Also

note that symmetry under interchanging the q, l legs demands that B1(q, l) = B2(l, q)

and B12(q, l) = −B21(l, q), as is apparent in the terms above. We have also emphasized the

appearance of the free theory terms Afree,Bfree
1 , · · · , Cfree from section 2.2.

There are two more nontrivial checks we can do. The first is to check that the result

is duality invariant, which indeed it is (we have also checked this for the more general case

ω 6= 1, and the result remains duality invariant). Another check is to compare the top

and bottom components of our result to results in theories with only fermions [13] or only

bosons [10] at ω = −1, as was done for the two-point function in section 4.2.3. Again, we

find that the results agree.7

As a final comment, we note that there only appear two structures in our result (4.25)

at ω = 1: a “free” structure appearing in the terms whose coefficient is proportional to

sin(2πλ)/λ, and an “odd” structure appearing in the terms whose coefficient is propor-

tional to sin2(πλ)/λ. Surprisingly, this three-point function is composed of the same two

structures (with coefficients depending on ω and λ) for all other values of ω as well. We

discuss this further in the next section.

4.2.5 Discussion

Above we have calculated the two and three-point correlation functions of J = Φ̄aΦa for

an N = 1 CS-matter theory at leading order in 1/N (these are equations (4.20) and (4.25)

respectively). There are several important properties of these correlation functions that we

now discuss.

7The fermionic result agrees only up to an overall sign, which is due to a different convention than the

one used in [13].

– 22 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
0

First, all of the correlation functions above (at separated points) are duality-invariant

under the duality described in section 2.1. We consider this as further evidence for

these dualities.

Second, we emphasize that the three-point function becomes proportional to the free

result for some values of the couplings (denoted ω
(i)
λ ). This behavior can be traced back

to the fact that the three-point function is made up of only two structures with some

coefficients, and so it is reasonable that one can tune the couplings ω and λ so that the

coefficient of the “interacting” structure vanishes, leaving only the free structure. This fact

simplifies any calculation which requires the three-point function, since the three-point

function at any ω is related to the three-point function at ω
(i)
λ through the chains (4.22).

Next, we comment on the calculation of the four-point function, which we need in

order to obtain the full one-loop correction to the Σ propagator as discussed above. For

the Chern-Simons-fermion theory, this was computed in [31] (following [35]) for colinear

momenta, and in principle we can perform a similar computation also in our case. However,

apart from the added technical difficulties in this calculation, there is an additional difficulty

in inferring the result for general momenta from the result for colinear momenta, which

requires additional information. In the CS-fermion theory, the general result for the 4-

point function is determined by the inversion formula [36] (see also [37]), or by large spin

perturbation theory, up to a finite number of coefficients [31, 38], and [31] showed that the

colinear limit is enough to fix these coefficients. A similar analysis may be possible also

in our case, but the inversion analysis is much more complicated (the CS-fermion analysis

was simplified by the fact that all 3-point functions of two J ’s with other operators are

proportional to their value in the free theory, which is not true for our theories). We leave

this to future work.

Finally, our results for the 3-point functions above allow us to conjecture a possible

generalization of the results of Maldacena and Zhiboedov [30, 33] to N = 1 supersym-

metric theories. We review these results and our conjecture for the N = 1 generalization

in appendix C. We conjecture there that any three-point function of the approximately-

conserved higher spin superfields Js in these CS-matter theories is of the following form:

〈Js1Js2Js3〉 = αs1s2s3〈Js1Js2Js3〉free + βs1s2s3〈Js1Js2Js3〉odd (4.26)

where the first structure is the result in the free theory (λ = ω = 0) of a single matter

multiplet. Some constraints on the coefficients αs1s2s3 , βs1s2s3 are discussed in appendix C.

4.3 Beta function for λ 6= 0

We now return to the calculation of the beta function. We use the method described in

section 4.1, for which we are required to find G2, G3, G4. Using our result for 〈JJ〉, at

leading order in 1/N we find

G2(ω0 = 1) =
N

8πλ

(
(cos(πλ)− 1) + sin(πλ)

D2

|q|

)
. (4.27)
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(a) (b) (c)

Figure 11. Simplifying the (b)-type diagram.

This allows us to calculate the Σ propagator:

∆Σ =
1

πλN((ω − 1)(ω + 3) cos(πλ)− ω(ω + 2)− 5)

(
(ω + 1) sin2

(
πλ

2

)
− sin (πλ)

D2

|p|

)
.

(4.28)

Note that this reduces to the result for the chain (3.9) in the limit λ → 0 (when rewriting

the result in terms of ω̃ = πωλ).

We need to calculate the two diagrams in figure 4. We can calculate the (b)-type

diagram (which requires only G3 that we computed above), but not the (a)-type diagram

(which requires G4, the J four-point function, which we do not have).

4.3.1 (b)-type diagram

As discussed in section 4.2.4, For any two values of the coupling ω1, ω2, we can relate the

corresponding three-point functions by multiplying their external legs by the chains (4.22).

Schematically, we write

〈JJJ〉ω1 = 〈JJJ〉ω2

(
∆ω2

ω1

)3
. (4.29)

Furthermore, we found that for specific values of ω = ω
(i)
λ given in (4.23), the three-point

function 〈JJJ〉 is proportional to the free theory result 〈JJJ〉free. We thus find that any

three-point function is proportional to the free result, up to multiplication by external legs:

〈JJJ〉ω = C
(
ω
(i)
λ

)
〈JJJ〉free

(
∆

ω
(i)
λ

ω

)3

. (4.30)

The exact value for one such proportionality constant C
(
ω
(i)
λ

)
is given in (4.24), and we

will be using this value from now on. We can now easily calculate the (b)-type diagram,

which appears in figure 11(a). Using the identity (4.30), we can rewrite this diagram as in

figure 11(b). Finally, defining

∆′
Λ =

(
∆ωλ

ω0=1

)2
∆Λ (4.31)

we find that this is equivalent to the diagram in figure 11(c). However, note that this

final diagram is precisely the same as the (b)-type diagram in the λ = 0 case appearing in

figure 2, apart from the fact that we have different values for a0, a1 on the internal “chain”

(which can be read off from (4.31)).

– 24 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
0

We thus find that this diagram is almost identical to the one we calculated for the

λ = 0 theory in section 3.2. In the λ = 0 theory, the result was (ignoring external leg

factors of ∆Φ2Φ2):

(b)λ=0 = − 1

32π2ε

(
a0 + a1

D2

|p|

)2
D2

|p|
. (4.32)

The result for general λ should be identical, up to the following changes:

• a0, a1 of (3.9) must be changed to the corresponding values coming from ∆′Λ.

• The three-point function is not equal to the free value, but only proportional to it,

with proportionality constant
sin(πλ3 )+sin( 2πλ

3 )
πλ(1−2 cos(πλ3 ))

2 . We must multiply each three-point

function by this proportionality constant.

• We must multiply the external legs by ∆ωλ
ω0=1.

In summary, we find for the logarithmically diverging parts:

(b) =

(
sin
(
πλ
3

)
+ sin

(
2πλ

3

)
πλ
(
1− 2 cos

(
πλ
3

))2
)2(

− 1

32π2ε

(
∆′Λ
)2 D2

|p|

)(
∆ωλ
ω0=1

)2
. (4.33)

As a consistency check, this has the correct λ→ 0 limit and is duality-invariant.

4.4 Summary

Putting together the (a) and (b)-type diagrams, we can solve the Callan-Symanzik equation:(
βω

∂

∂ω
+ 2γJ

)
∆Σ + ((a) + (b))∆2

ΛΣ = 0 (4.34)

The (b) contribution appears in equation (4.33), ∆Σ appears in equation (4.28), and we

are missing the (a) contribution. As discussed above, only the D2

|p| term in the equation

above is physical, meaning that even if we compute this contribution, we also need γJ at

order 1/N in order to find βω at this order.

5 Qualitative behavior of Nf = 1 fixed points for λ 6= 0

In the previous section we did not manage to find the explicit solution for the beta function

for all λ. However, in this section we will show that our results above (with some additional

arguments) are enough in order to conjecture the qualitative behavior of the fixed points

for all λ. We start by showing that the beta function must have at most 6 roots for all

values of λ. We then discuss all of the exact results one can obtain by combining the

results of section 3, the duality (2.8) and general considerations from the symmetries of

the theories. We then conjecture the qualitative form of the fixed points for general λ.

Finally, we discuss some interesting consequences of these results.
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5.1 Upper bound on number of fixed points

We now use the calculation outlined in section 4.1 to show that there are at most 6 fixed

points for all values of λ. This is done by showing that the beta function must be of

the form

βω =
P6(ω, λ)

NQ(ω, λ)2
, (5.1)

where

Q(ω, λ) = (ω − 1)(ω + 3) cos(πλ)− ω(ω + 2)− 5. (5.2)

Note that Q(ω, λ) ≤ 0, and it vanishes only for λ = 1 and ω = −1; our discussion below is

relevant away from this value. Here and in the rest of this section, Pn(ω, λ) stands for an

arbitrary n-th order polynomial in ω, and not any specific polynomial.

First, we show that some combination of βω and γJ is of the form (5.1). In equa-

tion (4.34) we have found a Callan-Symanzik equation which relates βω, γJ :(
βω

∂

∂ω
+ 2γJ

)
∆Σ + ((a) + (b))∆2

ΛΣ = 0, (5.3)

where (a),(b) appear in figure 4. We can obtain most of the ω dependence of this expression

from the discussion above. We start by writing the propagators explicitly:

∆ΛΣ =
2(ω + 3− (ω − 1) cos(πλ))− 2(ω − 1) sin(πλ)D

2

|p|

NQ(ω, λ)
(5.4)

∆Σ =
(ω + 1) sin2

(
πλ
2

)
+ sin(πλ)D

2

|p|

NQ(ω, λ)
(5.5)

∆Λ = −
4πλ(ω − 1)((ω − 1) cos(πλ)− ω − 3) + 4πλ(ω − 1)2 sin(πλ)D

2

|p|

NQ(ω, λ)
(5.6)

Now, note that the (a)-type diagram has a single ∆Λ propagator (4.28), which gives its

full ω-dependence, while the (b)-type diagram has two such propagators. In total, we find

that the D2

|p| component of the Callan-Symanzik equation (5.3) reduces to(
βω

∂

∂ω
+ 2γJ

)
sin(πλ)

Q(ω, λ)
+

P6(ω, λ)

NQ(ω, λ)4
= 0, (5.7)

which can be simplified to

βω(ω + 1)f(λ) + 2Q(ω, λ)γJ +
P6(ω, λ)

NQ(ω, λ)2
= 0, (5.8)

and so we have found one combination of βω and γJ which is of the form (5.1).

In order to constrain βω on its own, we need one more such combination. In analogy to

the non-SUSY version of these CS-matter theories, the N = 1 CS-matter theories contain

an infinite tower of approximately-conserved higher-spin superfields Js (by which we mean

that their twists differ from 1 by terms of order 1
N ). Let us consider the Callan-Symanzik

equation for the three-point function 〈JJ1J1〉, where J1 is the approximately-conserved
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(a) O3 (b) O4
(c) O5

Figure 12. Diagrammatic expressions for O3,O4,O5. Each external leg can be either a J or a J1,

with a ∆ΛΣ connected to the J leg.

superfield whose lowest component has spin one (see [39] for a precise definition). An

argument similar to the one made around equation (4.22) shows that at leading order in

1/N we can calculate 〈JJ1J1〉ω by calculating 〈JJ1J1〉ω=1 and then multiplying by a single

chain. Schematically we write

〈JJ1J1〉ω = 〈JJ1J1〉ω=1∆
ω=1
ω . (5.9)

This chain is just ∆ω=1
ω = ∆Σ(ω)

∆Σ(ω=1) , which means that we have the entire ω-dependence of

this three-point function:

〈JJ1J1〉ω = g(λ, θi)∆Σ(ω, λ), (5.10)

where we have emphasized the fact that the function g depends on the superspace coor-

dinates. We can now write a Callan-Symanzik equation for this three-point function at

order8 1/N : (
βω

∂

∂ω
+ γJ

)
〈JJ1J1〉+ (O3 +O4 +O5)∆ΛΣ = 0, (5.11)

where the 1-loop contributions to O3,O4,O5 appear in figure 12. These diagrams are

written as we would compute them using an effective action similar to the one of section 4.1,

with sources also for J1 and not just for Σ ∝ J . Again, using the ω-dependence of the

various propagators (and focusing on any contribution to the 3-point function which at

leading order in 1/N depends only on the D2

|p| component of ∆Σ in (5.10)), this Callan-

Symanzik equation reduces to

βω(ω + 1)f(λ) + γJQ(ω, λ) +
P7(ω, λ)

NQ(ω, λ)2
= 0, (5.12)

and so we have another independent combination of βω and γJ which is similar to the

form (5.1).

Comparing the ω-dependence of equations (5.8), (5.12) we find that we must have

βω(ω + 1) =
P7(ω, λ)

NQ(ω, λ)2
, (5.13)

or

βω =
P7(ω, λ)

N(ω + 1)Q(ω, λ)2
. (5.14)

8Note that J1 is conserved and so its anomalous dimension vanishes.
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As a final step, we will show that the factor of (ω+1) in the denominator must cancel with

the numerator. Note that if P7 does not have a root at ω = −1 for generic λ, then for generic

λ’s our expression (5.14) has a pole at ω = −1. However, the duality transformation (2.8)

relates ω = −1 and ω =∞, and the beta function (5.14) for the dual coupling has no pole

at ω =∞; since Q is quadratic in ω, the right-hand side of (5.14) grows at most as ω2 for

large ω, so the beta function for 1/ω grows at most as a constant. We thus find that in

order for the result (5.14) to be duality invariant, the numerator must always have a root

at ω = −1. We can then write

βω =
P6(ω, λ)

NQ(ω, λ)2
(5.15)

which agrees with the desired result (5.1). In particular, we learn that the beta function has

at most six roots for every λ (for large enough N , when we can ignore higher contributions

in 1/N).

5.2 Exact results and conjecture

We now outline our conjecture for the qualitative behavior of the fixed points. In section 3,

we found six fixed points for λ = 0, at

ω̃c = 0, 0, 0,
√

48,−
√

48,∞. (5.16)

We would now like to expand this result as much as possible. We start by finding the fixed

points in terms of the coupling ω in the N = 1 Lagrangian (2.10). Perturbation theory

and parity considerations will then give us the behavior of the fixed points at leading order

in λ. Then, using the duality, we manage to find the fixed points at strong coupling, for

1− λ� 1. We know that the N = 2 point ω = 1 is always a fixed point. Finally, we find

that the point (λ = 1
2 , ω = −3) has an emergent time-reversal symmetry which forces it

to be a fixed point. These facts allow us to give a conjecture for the behavior of the fixed

points for general λ.

We start by finding the fixed points in terms of ω instead of ω̃. Using the definition

ω̃ = πλω and our results for the fixed points ω̃c (5.16), we immediately find three fixed

points at ωc =
√

48
πλ ,−

√
48
πλ ,∞ for small λ. The fixed points at ω̃ = 0 require a little more

work, and cannot be found just from our results here; but they can be found from a 2-loop

computation at small ω̃ and λ, that was performed in [7]. They found three fixed points at

small λ and ω̃, which in our normalizations are at ωc = −1,−1
3 , 1. We can identify these

with the three fixed points at ω̃ = 0 that we saw for λ = 0. To summarize, we find six

fixed points for small λ, at

ωc = −
√

48

πλ
, −1, −1

3
, 1,

√
48

πλ
, ∞ (5.17)

We are assuming λ > 0 without loss of generality, and in general the fixed points depend

only on |λ| by parity. The fixed points at ωc = 1, ωc = −1 and ωc = ∞ are attractive in

the IR, and the other three are repulsive.

Next, let us discuss the meaning of the fixed point at ω = ∞. We can rewrite the

superpotential of our CS-matter theory W = πλω
N |Φ|

4 by introducing an auxiliary superfield
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H and taking

W = H|Φ|2 − N

4πλω
H2, (5.18)

since integrating out H leads back to the original theory. This suggests that also if we

couple our CS-matter theory with ω = 0 to an extra dynamical superfield H with the

superpotential (5.18), then at low energies it would flow to our CS-matter theory with

the parameter ω, perhaps with small corrections coming from the dynamics of H (which

are suppressed by 1/N); H is generically very massive and can be integrated out. So we

can describe our theories either in the original language, or in this new language, and

in the new language the natural coupling is 1/ω rather than ω. This suggests that the

theories with ω � 0 and ω � 0 are in fact similar, so that the space of couplings ω is

actually topologically a circle rather than a line; for large |ω| we should use the alternative

parameterization (5.18) of the space of theories in terms of 1/ω. The large ω behavior of

the beta function is consistent with having at most six fixed points on this circle for large

N , where one of these may be at infinity (as we found for λ = 0).

For λ = 0 we can write the new parameter as 1/ω̃, and in the language of (5.18) we see

that if we assign odd parity to H then the coupling 1/ω̃ breaks parity, so its beta function

has to vanish at ω̃ =∞, consistent with what we found above. For λ 6= 0 we have no parity

symmetry, so it seems that there is nothing special about the point ω =∞, and the fixed

point there can move to a finite value of 1/ω.

Next, let’s discuss how our results (5.17) would change when we slightly increase λ.

Note that since βω is invariant under parity, the points −1,−1/3, 1 can only be corrected

at order O(λ2). Similarly, the points ±
√

48
πλ can only be corrected at order O(λ). Also note

that the fixed point at ω = 1 has N = 2 SUSY, and so it is exact to all orders in λ since

the coupling is not renormalized. Perfoming a similar analysis also near ω = ∞, we can

write the full set of fixed points for small λ as:

ωc = −
√

48

πλ
+O(λ), −1 +O(λ2), −1

3
+O(λ2), 1,

√
48

λ
+O(λ), O(1/λ2). (5.19)

We can now use the duality (2.8) to learn about the behavior near λ = 1. The duality

maps9 the six fixed points at λ = 0 to six fixed points at λ = 1:

ωc = −1, −1, −1, 1, 5, ∞. (5.20)

For λ close to 1, their leading order behavior can be read off from the behavior of the

corresponding point for λ close to zero. We do not have a direct argument explaining why

one of the fixed points for λ = 1 is at ω =∞ (in the language of the previous section, the

existence of a fixed point at infinity depends on whether the ω6 term in P6(ω, λ), which

can only come from the diagram of figure 12(a), is present or not).

Next, let us show that there must be a fixed point at (ω, λ) = (−3, 1/2). First, note

that at λ = 1/2, which maps into itself by a duality transformation followed by a parity

(time-reversal) transformation, the duality must map the set of zeros of the beta function

9More precisely, starting from λ > 0 we use a combination of a duality transformation and a parity

transformation to go to λ→ 1.
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Figure 13. Qualitative RG flows of the N = 1 Nf = 1 CS-matter theories at large N . The

solid lines (and the point (−3, 1
2 )) represent exact results that follow from a direct analysis of

the β function for small λ. The dashed lines are the conjectured behavior for all λ. There is an

additional fixed point at ω =∞ for λ close to zero and close to one, whose behavior for general λ

cannot be found using our analysis. The results for negative λ can be obtained by using a parity

transformation λ → −λ, under which the set of roots of the beta function is invariant. Note that

we draw λ as a continuous variable, even though for finite N it is discrete.

into itself. Since there is a zero at ω = 1, which is a fixed point of the duality, we learn

that there must be at least one more root that sits at a fixed point of the duality. Thus,

at λ = 1/2 there must be at least another root either at ω = 1 or ω = −3. Let us show

that at least one additional root appears at ω = −3 by studying the behavior of the point

at (ω, λ) = (−3, 1/2) under time reversal. In addition to the usual definition of the time

reversal transformation T , we can define another time reversal transformation T ′, which is

defined as

T ′ = T ◦D (5.21)

where T is the standard time reversal transformation, and D is the action of the dual-

ity (2.8). It is easy to see that at the point (ω, λ) = (−3, 1/2), T ′ is an emergent symmetry

(this is also true at the self-dual N = 2 point (ω, λ) = (1, 1/2)). If we deform the theory

at (ω, λ) = (−3, 1/2) by a small deformation δω, we find T ′ : δω → −δω, so that it breaks

the T ′ symmetry. We conclude that we cannot generate a |Φ|4 term in the superpotential

along the RG flow that starts at this point, since this would break the symmetry T ′. This

is thus a fixed point of the RG flow.

We present our exact results for the RG flows discussed above using solid lines in

figure 13. Using these results, we conjecture a qualitative picture of the RG flows points

for general λ using dashed lines in figure 13, for large values of N . While this conjecture

is the simplest way in which we can connect the RG flows at small λ with those at λ

close to one, it can fail in a number of ways. However, since we have shown that for large

N there are at most six roots for the beta function, there cannot be additional pairs of

roots which appear for 0 < λ < 1 without some other pair annihilating. In the simplest

conjecture there are three stable fixed points for all values of λ. One of these is the N = 2

point which maps to itself under the duality, and the two other stable fixed points are

exchanged by the duality. Similarly there are three unstable fixed points (which have two
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ω = 1 ω = −1
3 ω = −1

Oω 2 Oω −2
3 Oω 1

Oγ 2 a1Oα + a2Oβ + a3Oγ +Oh 2
9(
√

3 + 1) Oh 3

Oh 6 b1Oα + b2Oβ + b3Oγ +Oh −2
9(
√

3− 1) −1
2Oβ + 2Oγ 1

6

−Oα +Oβ 2
3 Oh −4

3 −14Oα + 7Oβ + 14Oβ +Oh −1
2

Table 2. Eigenvectors and eigenvalues of the RG flows at each of the fixed points ω = 1,− 1
3 ,−1.

N = 1-preserving relevant operators) for all λ, one which maps to itself under the duality

(and which includes the point (ω, λ) = (−3, 1/2)) and two which are exchanged by it.

Finally, we can discuss deformations of these fixed points which don’t preserve N = 1

SUSY. For λ close to zero, these deformations were studied in [7] for the three fixed points

close to the origin (ω = −1,−1
3 , 1). We will follow the notation of this paper. There are

four classically marginal operators:

Oα = (ψ̄ψ)(φ̄φ),

Oβ = (ψ̄φ)(φ̄ψ),

Oγ =
1

4

(
(ψ̄φ)(ψ∗φ) + (ψ̄∗φ̄)(ψφ̄)

)
,

Oh = −2π

κ
(φ̄φ)3. (5.22)

In particular, the combination

Oω = 2Oα + 2Oβ + 4Oγ + ωOh (5.23)

preserves N = 1 SUSY (at large N). The RG flow eigenvectors and their anomalous

dimensions at the three fixed points appear in table 2. All anomalous dimensions in the

table come with an additional factor of (2π)2λ2

N , and

a1 = −
2
(
29
√

3− 27
)

7
√

3 + 15
a2 = −

4
(√

3 + 30
)

7
√

3 + 15
a3 =

4
(
31
√

3 + 33
)

7
√

3 + 15
(5.24)

b1 = −
2
(
29
√

3 + 27
)

7
√

3− 15
b2 = −

4
(√

3− 30
)

7
√

3− 15
b3 =

4
(
31
√

3− 33
)

7
√

3− 15
(5.25)

The first row for each fixed point is the direction in which N = 1 SUSY is preserved, and

which appears in figure 13. As emphasized in [7], the N = 2 fixed point is stable also to

all non-SUSY deformations, but the other ones are not.

5.3 Phase diagram

The theories we discuss all have at least one N = 1-preserving relevant deformation —

a mass term W = µ|Φ|2 — and for the three stable fixed points described above, we

conjecture that this is the only N = 1-preserving relevant deformation. Turning it on,

– 31 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
0

Phase Fermion Boson Low Energy Theory

(+,+) +ve mass UnHiggsed SU(N)κ
(−,+) −ve UnHiggsed SU(N)κ−1

(+,−) +ve Higgsed SU(N − 1)κ
(−,−) −ve Higgsed SU(N − 1)κ−1

Table 3. Low-energy Phases of SU(N)k with one fundamental matter field.

Figure 14. Superimposing the phase diagram on the RG flow diagram.

with either sign for µ, the theory develops a mass gap and flows to a pure CS theory in

the IR; the point µ = 0 is generally a point of a second order phase transition between

the µ < 0 and µ > 0 phases (we study theories which do not break supersymmetry, so

the vacuum energy is always zero and all phase transitions are second order). Starting

from an SU(N)κ CS-matter theory, there are four phases that can naturally appear. In

our conventions, integrating out the massive matter field leads to an SU(N)κ or SU(N)κ−1

pure CS theory at low energies, depending on the sign of µ. Classically these are the only

options for µω > 0, but for µω < 0 there are also classical Higgsed vacua where Φ obtains

an expectation value, and the low-energy CS theory is SU(N − 1)κ or SU(N − 1)κ−1. So

classically there is one type of SUSY vacuum for µω > 0, and two types for µω < 0.

Quantum mechanically this picture is modified as λ is turned on, with boundaries between

phases at values of ω that depend on λ. The precise phase structure at infinite N (for a more

general theory with arbitrary scalar and fermion couplings, not necessarily supersymmetric)

was found in [26], by analyzing the effective potential; we use their notation for the phases,

described in table 3. As in the classical analysis, there is always one sign of µ leading to a

single SUSY vacuum, and another leading to vacua in two different phases, but the identity

of the phases changes as ω and λ are varied.

The result for the phase diagram, for 0 ≤ λ ≤ 1, appears superimposed on the result

for the roots of the beta function in figure 14. The red lines represent lines (found in [26])

across which the phase structure jumps. In between any two red lines, we write down the

phases when µ is positive and negative using the notation in table 3. For example, for ω

close to 1, we find that for positive mass the only vacuum is SU(N)κ, while for negative

mass there are two vacua: SU(N − 1)κ and SU(N)κ−1.
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We see that in the simplest assumption for the evolution of the fixed points, each of

the three stable fixed points — the one at ω = 1, the one near ω = −1, and the one

near ω = ∞ — has a different phase structure close to it. Note that in figure 14 it seems

that the phase structure jumps across ω = ∞, but in fact, as discussed above, near this

point it is better to think of the theory by adding another singlet superfield and using the

superpotential (5.18). In this language, near ω =∞ the operator |Φ|2 is set to zero by the

equation of motion, so it is better to describe the mass deformation by adding

W = µ̂H ≡ Nµ

2πλω
H, (5.26)

which gives the same action upon integrating out H. In terms of this more appropriate

parameterization by µ̂, the phase structure is continuous as we cross ω = ∞, with (+,+)

and (−,+) phases for µ̂ > 0, and a (+,−) phase for µ̂ < 0, consistent with our picture

of the space of couplings as a circle. For non-zero values of λ, this circle is divided into

three regions with different phases, and we find one large N stable fixed point in each of

these phases.

5.4 Discussion of dualities and exact moduli spaces

Let us summarize our results. For large but finite N , we find six fixed points for small

and large λ. We find that for any λ there are at most six fixed points, and we conjecture

that there are exactly six fixed points for all λ (see figure 13). There is a duality between

the six fixed points with λ and those with λ′ = λ− sign(λ), which at leading order in 1/N

relates them according to equation (2.8). From each of the three unstable fixed points we

can flow to the two adjacent stable fixed points, so the duality between the unstable fixed

points implies the duality between the stable ones. In addition, we can describe each theory

both in the original CS-matter language, and in the language of adding an extra singlet

superfield as in (5.18). For large N the two descriptions clearly flow to the same fixed

points, and we conjecture that also for finite N there is a duality between them, namely

the CS-matter theories with some range of values of ω in the UV flow to the same fixed

points as the H|Φ|2 theories with some range of values of the H2 superpotential in the UV

(and with the same gauge group and level). All in all, each fixed point thus has four dual

descriptions (with λ or with λ′, and with or without the singlet H).

At finite N the precise values of ωc will be corrected, but we conjecture that, at least

for large enough N , the number of fixed points and the dualities between them persist. At

finite N we have several different dualities, whose precise form may be found by demanding

level-rank duality of the low-energy theories resulting after mass deformations: a fixed point

of the SU(N)k+N−1
2

theory maps to one of the U(k)−N− k−1
2
,−N+ 1

2
theory, a fixed point of

the U(N)k+N−1
2
,k− 1

2
theory maps to one of the SU(k)−N− k−1

2
theory, and a fixed point

of the U(N)k+N−1
2
,k− 1

2
±N theory maps to one of the U(k)−N− k−1

2
,−N+ 1

2
∓k theory. As N

decreases, some of the fixed points may disappear or others may appear, and the various

dualities may or may not persist for small N ; it would be interesting to study down to

which value of N the various fixed points and the dualities between them survive.
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The dualities of the stable fixed points have already appeared in the literature before,

but here we clarify which UV theories flow to the corresponding fixed points, and add the

duality between the unstable fixed points as well.

The duality of the N = 2 point at ω = 1 is a special case of U(N) and SU(N) N = 2

dualities discussed in [2–4], and is believed to hold for all values of N and k. The N = 2

fixed point ω = 1 is attractive for λ close to 0 or 1, and it was shown to be attractive

for finite N and large k as well in [7]. It is thus reasonable to assume that this point is

attractive for all N and k. This is in agreement with comments appearing in [25, 28].

It is natural to assume that also the large N phase structure that we discussed near

this point persists for finite values of N and k. Note that, at least for large N , the phase

structure that appears at the N = 2 point is unique to this fixed point — all other fixed

points have a different phase diagram. This phase structure was shown to appear for the

theories studied in [25, 28], and in particular for domain walls of four dimensional N = 1

Nf = 1 SQCD. This is evidence for the fact that the theories studied in these papers do

indeed flow to the N = 2 fixed point, and so it is evidence for the various patterns of SUSY

enhancement discussed in these papers.

The authors of [22] proposed the following duality (and related SU − U and U − U
dualities) for the case Nf = 1:

U(k)N+ k
2
− 1

2
,N− 1

2
+ Φ

W = −1

4
(Φ̄Φ)2

←→
SU(N)−k−N

2
+ 1

2
+ Φ̃

W = H( ¯̃ΦΦ̃)− 1

3
H3

(5.27)

The operator H3 was added on the right-hand side in order to make the classical phase

structure match on the two sides of the duality as one deforms by a mass µ; this was also

the reason for the choice of sign of the superpotential on the left-hand side (its precise

value plays no role). We recognize that the superpotential on the right-hand side, without

the H3 term (which is irrelevant in the IR anyway) is the same as the one we used in (5.18)

to obtain a different description of our CS-matter theories, which is more convenient near

ω = ∞. Thus, we interpret this duality as a finite N version of the duality we found

connecting the IR-stable fixed point that we found near ω = −1, with the fixed point close

to ω =∞,

U(k)N+ k
2
− 1

2
,N− 1

2
+ Φ

ω ∼ −1

←→
SU(N)−k−N

2
+ 1

2
+ Φ̃

ω ∼ ∞
(5.28)

There is a large range of values of ω which flows to each of these fixed points, either in

its original description or in the one with the extra singlet field H (where it is natural to

flow to the large ω fixed point if one starts with no H2 term in the superpotential at high

energies). All theories in this range are conjectured to be IR-dual. Note that the phases

appearing for these two fixed points in figure 14 exactly match the phases required in the

proposed duality (5.27), without the need to consider the extra H3 term in W (which can

be added in the UV, but does not affect the IR).

– 34 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
0

Finally, we discuss exact moduli spaces. We argued above that the theories with

(ω, λ) = (−3, 1/2) are self-dual at large N , and that this leads to an emergent time-

reversal symmetry, which is a combination of time-reversal with a duality transformation.

Under this emergent time-reversal symmetry the operator |Φ|2 maps to itself, but the

superpotential has to be odd, so this prevents any superpotential from being generated,

so that there must be an exact moduli space. The corresponding theories for finite values

of N and k were already discussed in [25]; in particular they mentioned the emergent

time-reversal symmetry of the theories

U(N) 3
2
N− 1

2
Nf ,2N− 1

2
Nf

+Nf Φ

U(N) 3
2
N− 1

2
Nf ,− 1

2
Nf

+Nf Φ
(5.29)

for all values of N,Nf ; for Nf = 1 these are special cases of the dualities we wrote above,

with k = N . One can ask whether they all have an exact moduli space. Indeed, the

simplest examples of the theories in (5.29) (given by N = Nf = 1) have been found to

have moduli spaces.10 For all values of N it is natural to assume that the theories (5.29)

discussed in [25] are the finite N versions of the large N (ω, λ) = (−3, 1/2) fixed points,

with the same action of the emergent time-reversal symmetry on |Φ|2. This implies that

all these theories, at the corresponding fixed point, have an exact moduli space. Since our

arguments depend on the emergent time-reversal symmetry, we do not expect an exact

moduli space in the corresponding Yang-Mills-Chern-Simons theories, which flow to these

fixed points; it is just a property of the fixed point conformal field theories. Note that

according to our discussion we expect these fixed points to be unstable, namely to have

two relevant operators, a |Φ|2 and a (|Φ|2)2 superpotential (at least for large enough N).

We will perform a similar analysis in the next section for the case Nf > 1, and we will

find a similar result, where there exists a fixed point with an exact moduli space in the

large-N limit.

6 Theories with Nf > 1

In this section we consider the general theory of section 2.1.2 with Nf > 1. We start

by generalizing the duality transformation (2.8). We then calculate the β and γ func-

tions at λ = 0, generalizing our Nf = 1 computation. We manage to map only some of

the fixed points to their value at strong coupling. We discuss various generalizations of

some phenomena that appeared for Nf = 1, like exact moduli spaces and the behavior at

infinite ωi.

6.1 Duality

We start by generalizing the large N duality transformation (2.8) to the case Nf > 1; the

action of the duality on λ is the same for all Nf � N , but we need to understand how the

10The theory U(1)1/2 + Φ is dual to a free matter multiplet and so has a moduli space [21]. The theory

U(1)3/2 + Φ is dual to U(1)0 + Φ2 where Φ2 has charge 2 under the gauge symmetry, and this was also

shown to have a moduli space [18].
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duality acts on the superpotential couplings. Consider the theory given in (2.13), with an

additional mass term which is not necessarily SU(Nf )-invariant, namely

WΦ = m0,ij(Φ̄iΦj) +
πω0

κ

(
Φ̄iΦi

)2
+
πω1

κ

(
Φ̄iΦj

) (
Φ̄jΦi

)
, (6.1)

with i, j = 1, · · · , Nf . Let us rewrite this in a simpler form. Define Jij ≡ Φ̄iΦj , and

decompose Jij into its trace and adjoint parts:

J = Jkk, Jij = Jij −
δij
Nf
J , (6.2)

with Tr(Jij) = 0. Similarly, define

M0 = Tr(m0,ij), M0,ij = m0,ij −
δij
Nf

M0, (6.3)

so that Tr(M0,ij) = 0. It is easy to show that the Lagrangian (6.1) can be rewritten as

WΦ = M ij
0 Jij +

M0

Nf
J +

1

Nf

πλ

N
ω2J 2 +

πλ

N
ω1J 2

ij (6.4)

where we have defined ω2 ≡ Nfω0 + ω1.

We propose that the generalization of the duality (2.8) to Nf > 1 is given by

M ′0,ij = −2M0,ij

1 + ω1
, M ′0 = − 2M0

1 + ω2
, ω′1 =

3− ω1

1 + ω1
, ω′2 =

3− ω2

1 + ω2
. (6.5)

This can be thought of as two copies of the Nf = 1 transformation (2.8), one for the

flavor-singlet and one for the flavor-adjoint sector, where ω1, ω2 transform independently.

Equation (6.5) implies that under the duality J ′ij = −1+ω1
2 Jij , J

′ = −1+ω2
2 J . For com-

pleteness we write the transformation of ω0 as well:

ω′0 = − 4ω0

(1 + ω1)(1 + ω2)
. (6.6)

As an initial consistency check, this transformation is consistent with the fact that ω1 =

1, ω0 = 0 has N = 2 SUSY and so is a self-dual point.11

We now perform two independent calculations which test this proposal: the zero-

temperature pole masses in the unHiggsed phase (obtained from the gap equations) and

the two and three-point correlation functions of Jij and J .

11The full set of self-dual points are

(ω1, ω2) = (1, 1), (1,−3), (−3, 1), (−3,−3), (6.7)

or equivalently

(ω1, ω0) = (1, 0),

(
1,− 4

Nf

)
,

(
−3,

4

Nf

)
, (−3, 0). (6.8)
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6.1.1 Gap equations in unHiggsed phase

Using an immediate generalization of the mass gap calculation performed in [15], we can

find the physical masses of the mass-deformed theory for the case Nf > 1. As a reminder,

in [15] the mass gap equations were found by solving the Schwinger-Dyson equation for the

propagator of Φ assuming no Higgsing, with the result

m =
2m0

λsign(m)(ω1 − 1) + 2
. (6.9)

Under the duality the physical mass transforms as

m′ = −m (6.10)

as expected.

We repeat the calculation for the case Nf > 1 in appendix D. The result, when the

mass matrix M0,ij is diagonal, is

mij =
2M0,ij

λsign(mij)(ω1 − 1) + 2
+

2
Nf
M0δij

λsign(mij)(ω2 − 1) + 2
. (6.11)

As an immediate generalization of the Nf = 1 result (6.9), we find that under the proposed

duality transformation (6.5) we have m′ij = −mij as expected.

6.1.2 Correlation functions of J ,Jij

The two and three-point correlation functions of J for the case Nf = 1 appear in section 4.2.

These were found by using the general four-point function of Φ’s, see [15]. Thus, in order to

find the result for J and Jij , we must generalize the calculation of the four-point function.

Luckily, if the interactions are written as in (6.4), this is relatively simple. We find

that the Schwinger-Dyson equation for the four point function (Φ̄iΦj)(Φ̄
jΦi) with i 6= j

is exactly the same as the equation for Nf = 1, with ω replaced by ω1. Similarly, the

equation for the four point function (Φ̄iΦi)(Φ̄
jΦj) is the same as the equation for Nf = 1,

with ω replaced by ω2 (up to some overall factors of Nf ).

As a result, the two and three-point functions are an immediate generalization of the

results of section 4.2 for the two and three-point functions of J when Nf = 1. We find

〈J 2
ij〉 = 〈J2〉|ω→ω1 ,

〈J 3
ij〉 = 〈J3〉|ω→ω1 ,

〈J 2〉 = Nf 〈J2〉|ω→ω2

〈J 3〉 = Nf 〈J3〉|ω→ω2

(6.12)

where the two-point function 〈J2〉 is given in equations (4.19), (4.20), and the three-point

function 〈J3〉 is given in equation (4.25) for ω = 1 (but as discussed above this equation,

the result for general ω can be obtained immediately from this result by multiplying it

by chains).

We can now check our proposal for the duality transformation. This check is imme-

diate, since 〈J2〉, 〈J3〉 are themselves duality-covariant according to the original Nf = 1

duality, and each sector transforms independently.
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Figure 15. The chains for Nf > 1.

6.2 Beta and Gamma functions for λ = 0

As explained in section 2.1, for Nf > 1 the Lagrangian has two classically marginal

operators:
ω̃0

N
(Φ̄a

iΦ
a
i )(Φ̄

b
jΦ

b
j),

ω̃1

N
(Φ̄a

jΦ
a
i )(Φ̄

b
iΦ

b
j). (6.13)

From now on we use brackets to describe a trace over gauge indices, so we can write these as

ω̃0

N
(Φ̄iΦi)(Φ̄jΦj),

ω̃1

N
(Φ̄jΦi)(Φ̄iΦj). (6.14)

We can now calculate the leading order beta functions at 1/N . Since the gauge indices are

the same, we have the same diagrams as for the Nf = 1 case, but we must follow the flavor

indices more carefully now.

We have two beta functions to calculate, for ω̃0 and ω̃1, and three different types of

correlators:

• Or = 〈(Φ̄iΦi)(Φ̄jΦj)〉 with i �= j

• Og = 〈(Φ̄jΦi)(Φ̄iΦj)〉 with i �= j

• Ob = 〈(Φ̄iΦi)(Φ̄iΦi)〉

r, g, b stand for red, green, blue in our figures.

We start by calculating the leading order in 1/N contributions to these correlators,

which are just generalizations of the chains (3.9). Next we calculate the contributions at

next order in 1/N , which are generalizations of the (a)-(e) diagrams. This allows us to find

the beta and gamma functions.

6.2.1 Leading order: chains

We now have three types of chains, shown in figure 15. In the red and green chains we

take i �= j. In the limit where Nf = 1 and either ω̃0 = 0 or ω̃1 = 0, the blue chain should

correspond to the chain found in the Nf = 1 case (3.9).

The calculation of the various chains is similar to the Nf = 1 case in section 3.2.

We find:

∆r = 2
∑

l=1,k=0

(
l + k

l

)
ω̃l
0N

l−1
f ω̃k

1

(
D2

4|p|

)l+k−1

= 32ω̃0

16− ω̃2ω̃1 + 4(ω̃2 + ω̃1)
D2

|p|(
ω̃2
1 + 16

) (
ω̃2
2 + 16

) = A0 +A1
D2

|p|
(6.15)
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Type Contribution to Or Contribution to Og

(a) −4∆g∆r(A1+B1Nf )+2∆2
rNf (A1+B1Nf )+B1∆2

g

8π2
D2

|p| −∆2
g(2A1+B1Nf )

8π2
D2

|p|

(b) −∆4
g+2∆2

g∆
2
r(N2

f+5)+2∆4
rN

2
f+4∆3

g∆rNf+8∆g∆3
rNf

64π2
D2

|p| −∆3
g(4∆r+∆gNf )

64π2
D2

|p|

(c) −∆3
g+6∆g∆2

r+2∆2
g∆rNf+2∆3

rNf

8π2 −∆2
g(4∆r+∆gNf )

8π2

(d) −2A0A1+B0B1
π2 −2A0B1+2A1B0+B0B1Nf

π2

(e) −2∆r(A1+B1Nf )+B1∆g

π2 −∆g(2A1+B1Nf )

π2

Table 4. The logarithmically diverging parts of the (a)–(e) diagrams for the case Nf > 1.

Figure 16. Diagrams contributing to the gamma function.

∆g = 2ω̃1

∑
n=0

(
ω̃1

D2

4|p|

)n

=
8ω̃1

ω̃2
1 + 16

4|p|+ ω̃1D
2

|p|
= B0 +B1

D2

|p|
(6.16)

∆b = ∆r +∆g (6.17)

Where we have defined ω̃2 = Nf ω̃0 + ω̃1. So at leading order in 1/N we find

Or = ∆r, Og = ∆g, Ob = ∆b = ∆r +∆g (6.18)

6.2.2 Subleading order: (a)–(e) diagrams

We have three types of correlation functions to calculate, corresponding to Or,Og,Ob. The

diagrams contributing to these are of the same form as the (a)−(e) diagrams in figure 2, to

which we must add the correct flavor index structure. Thus, each of the (a)− (e) diagrams

contribute to Or, Og and Ob according to the structure of the flavor indices on the external

legs. The results for the logarithmically diverging terms are summarized in table 4.

ForOb, a direct calculation shows that the logarithmically diverging terms at order 1/N

obey the relation Ob = Or +Og, as they must for the consistency of the Callan-Symanzik

equation at this order.

6.2.3 Gamma function

The diagrams contributing to γΦ appear in figure 16. Using our result for Nf = 1 and just

adding the flavor index sums, we find the following results for the two diagrams:

A1 +B1

2π2ε
D2, (Nf − 1)

B1

2π2ε
D2 (6.19)

So the total contribution is
A1 +NfB1

2π2ε
D2 (6.20)
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The gamma function is then

γΦ =
1

2

A1 +NfB1

2π2
=

2

π2N
(
ω̃2

1 + 16
) ( 16ω̃0(Nf ω̃0 + 2ω̃1)

(Nf ω̃0 + ω̃1)2 + 16
+Nf ω̃

2
1

)
(6.21)

One can expand γΦ in small ω̃0, ω̃1, and the result agrees with that of [7] (up to the same

overall factor of 2 discussed in section 3.2.2).

6.2.4 Beta functions

In order to find the beta functions β0, β1, it is enough to consider the Callan-Symanzik

equation for Or (the Callan-Symanzik equations for Og,Ob can be used as consistency

checks). This equation is(
β1

∂

∂ω̃1
+ β2

∂

∂ω̃2
+ 4γΦ

)
∆r + ((a)r + (b)r + (c)r + (d)r + (e)r) =0, (6.22)

where we use ω̃2 = Nf ω̃0+ω̃1 as in (6.4). Since each of the terms in the equation once again

has two terms (one proportional to 1 and one proportional to D2

|p| ), this Callan-Symanzik

equation gives us two independent equations for β1 and for β2. Solving these equations

we find

β1 =
8ω̃1

π2Nf

(
ω̃2

1 + 16
)2 (

ω̃2
2 + 16

)[ω̃4
1

(
2
(
ω̃2

2 + 48
)
−N2

f

(
ω̃2

2 + 16
))

+ 16
(
3N2

f − 10
)
ω̃2

1

(
ω̃2

2 + 16
)
− 2ω̃5

1ω̃2 + 64ω̃3
1ω̃2 + 1536ω̃1ω̃2 + 1024ω̃2

2

]
, (6.23)

β2 = − 16

π2Nf

(
ω̃2

1 + 16
)2 (

ω̃2
2 + 16

)2 [ (N2
f − 1

)
ω̃3

1

(
ω̃2

2 − 16
) (
ω̃2

2 + 16
)2

− 32ω̃2
1ω̃2

(
N2
f

(
ω̃2

2 + 16
)2 − 2

(
ω̃4

2 − 8ω̃2
2 + 128

))
+ ω̃4

1ω̃
3
2

(
ω̃2

2 − 48
)

+ 256ω̃3
2

(
ω̃2

2 − 48
) ]
. (6.24)

As a consistency check, we find that the solutions to the Callan-Symanzik equations for

Og,Ob agree with the results above. Also, in the limit Nf = 1 with either ω̃0 → 0 or

ω̃1 → 0, the results agree with our beta function at Nf = 1 (3.31). Next, note that β1

in (6.23) is proportional to ω̃1, and so it vanishes if ω̃1 = 0. Indeed, at ω̃1 = 0 the symmetry

of the Lagrangian (2.14) is enhanced from U(Nf )×U(Nc) to U(Nf ×Nc), and so we expect

the value ω̃1 = 0 to be preserved under the RG flow. As a final consistency check, we note

that expanding the results for the beta functions (6.23), (6.24) for small ω̃0, ω̃1 reproduces

the result from [7] (again, up to the overall factor).

6.2.5 Generalization to finite λ and discussion

We have found γΦ (6.21) and the two beta functions (6.23), (6.24). We plot the results in

figure 17. Explicitly, for Nf = 2 the fixed points are:

(ω̃2, ω̃1) = (0, 0),
(
±
√

48, 0
)
,
(
±
√

48,±
√

48
)
, (∞, 0), (0,∞), (∞,∞). (6.25)
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Figure 17. Fixed points in terms of ω̃1, ω̃2 at λ = 0.

The only attractive fixed points are (0, 0) and (∞, 0). For Nf > 2 we have the same fixed

points (6.25), and in addition there are four extra fixed points for finite values of ω̃i, which

are all repulsive.

As for Nf = 1, we were not able to compute the beta functions for general values of

λ, but we know some things about them. We first attempt to generalize the results to

small λ, that is, we attempt to find the fixed points in terms of the ωi. We focus on the

fixed points as a function of (ω2, ω1) since these are the useful values for the duality. For

the fixed point at (ω̃2, ω̃1) = (0, 0) we can use the results of [7] in order to find the fixed

points in terms of ωi at small λ, while for the other fixed points we can use the relation

ω̃i = πλωi. This is enough to determine the O( 1
λ) contributions to the fixed points, but

when these vanish we cannot determine the O(1) values.

For all Nf ≥ 2, the results of [7] give nine fixed points near the origin (in figure 18(a)

we show the region closest to the origin, containing eight of these fixed points, for Nf = 2,

and in figure 18(b) we show the region near the origin for Nf = 3). In addition, there

are two fixed points at (ω2, ω1) =
(
±
√

48
πλ ,±

√
48
πλ

)
and one at (ω2, ω1) = (∞,∞). There

are four other fixed points for which the finite value of one of the two parameters ω2,ω1

cannot be determined, which correspond to (ω̃2, ω̃1) = (±
√

48, 0), (ω̃2, ω̃1) = (∞, 0) and

(ω̃2, ω̃1) = (0,∞). Finally, for Nf > 2 there are four extra fixed points which are at infinity

for λ = 0, and for small λ behave as c/λ for some constant c.

For all Nf > 1 the N = 2 fixed point is no longer stable, but there are other stable

fixed points with ωi of order one. One of these is expected to appear on the domain walls

of 4d SQCD with Nf flavors [28]. The only other stable fixed point at large finite N is the

one that starts at λ = 0 from (ω̃2, ω̃1) = (∞, 0).

We can use parity arguments to constrain the leading-order behavior in λ of the roots,

just as we did in the Nf = 1 case in section 5. Furthermore, using the duality (6.5) one

can map these fixed points into fixed points near λ = 1. One can then try to connect the
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Figure 18. Fixed points in terms of ω1, ω2 for small λ near to origin.

fixed points at λ = 0 with those at λ = 1 in order to try and conjecture the behavior of the

fixed points for general λ. However, since we cannot find the ω1 values of all of the fixed

points, we cannot find all of the fixed points at λ = 1, and so it is difficult to connect the

fixed points at weak and strong coupling.

As in the Nf = 1 case, for infinite N we can rewrite the theories using variables that are

more appropriate for large ω by adding singlet superfields, and for finite N we conjecture

that the theories with the extra superfields still flow to the same fixed points, at least for

large enough N . The form of the superpotential (6.4) suggests that we can add an SU(Nf )-

singlet superfield H coupled to J , an SU(Nf )-adjoint superfield Hij (Tr(Hij) = 0) coupled

to Jij , or both, giving three extra dual descriptions for each of our CS-matter theories. For

example, the theory with both types of superfields added, which gives a smooth description

of the region near the fixed point at (ω2, ω1) = (∞,∞), is

W = HJ −
NfN

4πλω2
H2 +HijJij −

N

4πλω1
H2
ij . (6.26)

This makes it natural to view the space of couplings ω1, ω2 as a compact space with the

topology of a product of two circles, and with some finite number of fixed points on this

space. The relevant deformations in the description (6.26) are terms in the superpotential

linear in H and in Hij . These alternative descriptions make it clear that for λ = 0, the

fixed points at (ω̃2, ω̃1) = (0,∞), (∞, 0), (∞,∞) have time-reversal symmetry, explaining

why the beta functions vanish there.

As a final comment, we note that using time-reversal symmetry, we can once again

find some of the fixed points at the self-dual value λ = 1
2 , in analogy with the Nf = 1 case

in section 5.2. A similar argument to the one there shows that the points

(ω1, ω2) = (−3,−3), (1,−3), (−3, 1), (1, 1) (6.27)
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all have emergent time-reversal symmetry T ′ at λ = 1
2 (note that the last point is the

N = 2 point). Under this symmetry, a small deformation (δω1, δω2) around any one of the

four points (6.27) transforms as

T ′(δω1, δω2) = (−δω1,−δω2). (6.28)

which means that this deformation breaks the symmetry, and so it cannot be generated

along the RG flow emanating from this point. In other words, the points (6.27) are all

fixed points of the RG flow at λ = 1
2 .

We can also discuss the existence of moduli spaces of the theories (5.29) at large N , as

a generalization of the Nf = 1 result discussed in section 5.4. A similar argument shows

that of the four fixed points (6.27) with emergent time-reversal symmetry, only the point

(ω1, ω2) = (−3,−3) is expected to have a moduli space at large N , because at this point

all the operators that can appear in the superpotential are even under the emergent time-

reversal symmetry. Once again, we expect this moduli space to appear for finite N in the

corresponding fixed points of the theories (5.29) as well.
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A Conventions

We mostly follow [40], and some additional conventions from [15].

A.1 Lorentzian

The metric signature is ηµν = {−,+,+}. Spinors are ψα, and spinor indices are raised and

lowered with

Cαβ = −Cαβ = (σ2)αβ ⇒ CαβC
γδ = δα

δδβ
γ − δβδδαγ . (A.1)

Explicitly, for a spinor ψ we have

ψα = Cαβψβ , ψβ = ψαCαβ , ψ2 ≡ 1

2
ψαψα = iψ+ψ− . (A.2)

Vectors are real and symmetric Vαβ with Vαβ = Vµγ
µ
αβ , with γµ the γ matrices. We will be

using light-cone coordinates, where

k± =
±k0 + k1√

2
, k2

s = 2k+k− = k2
1 − k2

0, k2 = k2
s + k2

z . (A.3)
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We choose a basis for the gamma matrices such that a spinor matrix pαβ is related to a

vector pµ by:

p11 = p0 + p1 =
√

2p+, p22 = p0 − p1 = −
√

2p−, p12 = pz, (A.4)

so that

p2 = p2
z + 2p+p− = p2

12 − p11p22 = − det(p), (A.5)

p · k = pzkz + (p+k− + p−k+) = p12k12 −
1

2
(p11k22 + p22k11). (A.6)

A.2 Euclidean

The metric signature is ηµν = {+,+,+}. This means that we rotate k0 → ik0. Corre-

spondingly, we have

k± =
±ik0 + k1√

2
, k2

s = 2k+k− = k2
1 + k2

0, k2 = k2
s + k2

z . (A.7)

As before, we have:

p11 = p0 + p1 =
√

2p+, p22 =
√

2p−, p12 = pz. (A.8)

A.3 Superspace conventions

The spinor derivatives Dα in superspace obey the usual algebra:

{Dα, Dβ} = 2i∂αβ , (A.9)

and again the convention is D2 = 1
2D

αDα. The following identities are very useful:

DαDβ = i∂αβ − CαβD2 , DαDβDα = 0 , D2Dα = −DαD
2 = i∂αβD

β ,

∂αβ∂γβ = δγ
α� , (D2)2 = � , � ≡ 1

2
∂αβ∂αβ .

(A.10)

The free scalar superfield action is

S =
1

2

∫
d2θ (ΦD2Φ +mΦ2) =

1

2

∫
d2θ

(
−1

2
DαΦDαΦ +mΦ2

)
. (A.11)

This superfield can be expanded in components as

Φ = φ+ θψ − θ2F, (A.12)

with φ a real boson, ψ a real fermion and F an auxiliary field.

The gauge multiplet is described by covariantizing the spinor and vector derivatives:

{∇α,∇β} = 2i∇αβ , ∇α ≡ Dα − iΓα , (A.13)

where the generators are hermitian (which is why there is an i in the definition of the gauge

covariant derivative ∇α). The gauge multiplet Γα can also be expanded in components:

Γα = χα − θαB + iθβAαβ − θ2(2λα − i∂αβχβ) (A.14)

with A the gauge field, λα the gaugino, B an auxiliary scalar and χα an auxiliary fermion.
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A.4 Chern-Simons levels

We now describe our regularization procedure for Chern-Simons levels. We mostly follow

the notation appearing in the literature (for a detailed review see [5]), and consider only

SU(N) gauge theories for simplicity.

We start with the non-supersymmetric Chern-Simons theories. There are two common

regularizations appearing in the literature. One is Yang-Mills regularization, by adding a

Yang-Mills term for the gauge fields, making them free at high energies, for which the

UV level is denoted by k. The other is dimensional regularization, for which the level is

denoted by κ. The former is often used when discussing small k,N dualities, while the

latter is common when discussing the large-N ’t Hooft limit. The relation between these

two is the following: a Chern-Simons theory at level κ in dimensional regularization is the

same as an identical theory with Yang-Mills regularization at level k, with

κ = sign(k)(|k|+N). (A.15)

Next, we describe the case for N = 1 theories. There is an additional subtlety here due

to the gaugino, which must be integrated out, and the CS level shifts accordingly. If we

start with a pure N = 1 SU(N)kN=1 CS theory, it is equivalent to a non-supersymmetric

SU(N) CS theory with level12

k = sign(kN=1)

(
|kN=1| − N

2

)
, κ = kN=1 + sign(kN=1)

N

2
. (A.16)

In particular, the ’t Hooft coupling λ for an N = 1 theory SU(N)kN=1 is λ = N
κ = N

kN=1+N
2

.

Our theories sometimes have enhanced N = 2 SUSY, and so we view them as N = 2

theories. In this description, there is an extra gaugino that must be integrated out, so that

a pure N = 2 SU(N)kN=2 CS theory is equivalent to a non-supersymmetric SU(N) CS

theory with level

k = sign(kN=2)
(
|kN=2| −N

)
, κ = kN=2. (A.17)

Finally, we discuss the result of integrating out massive fundamental matter fields.

Integrating out a massive boson does not shift the level, while each fundamental fermion

of mass m that is integrated out leads to a shift by sign(m)
2 in the level κ of the low-energy

CS theory.

In order to comply with the notation in the literature, in the present paper we use κ

for dualities in the large-N ’t Hooft limit, and kN=1 for finite-N dualities (dropping the

N = 1 superscript when the context is clear).

B Calculating the (a)–(e) diagrams

B.1 Quick introduction to 3d N = 1 supergraphs

We study the superspace Lagrangian

Φ̄aD
2Φa +

ω̃

N
(|Φa|2)2, (B.1)

12We are assuming here that kN=1 is large enough so that SUSY is not broken [41].
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Figure 19. Integration by parts in superspace.

with a = 1, · · · , N . The Φ propagator is

〈Φ̄a(p, θ)Φb(−p, θ′)〉 = δabD
2

p2
δ(θ − θ′). (B.2)

Interaction vertices are taken care of in a similar fashion to the non-SUSY case.

One main part of calculating supergraphs is the D-algebra. Each diagram comes with

some D’s acting on some propagators, but only diagrams with specific configurations of

D’s are non-vanishing. A non-vanishing diagram must have exactly one factor of D2 acting

inside each of its loops. This is due to the following identities:

δ(θ − θ′)δ(θ′ − θ) = 0, (B.3)

δ(θ − θ′)Dαδ(θ
′ − θ) = 0, (B.4)

δ(θ − θ′)D2δ(θ′ − θ) = δ(θ − θ′). (B.5)

In other words, having no factors of D in a loop or exactly one factor of D in a loop will

make it vanish (note that using the superspace identities (A.10), 3 factors of D or higher

can always be reduced to either 0,1 or 2 factors of D).

The game is thus to put all of the factors of D acting inside a certain loop on the same

propagator. The diagrams that do not vanish then must have exactly one factor of D2

inside each loop. To get all of the factors of D to act on one propagator, we use integration

by parts. This means that at a specific vertex, we can transfer a factor of D that acts on

one propagator to the other propagators attached to that same vertex. A diagrammatic

version of this operation (for a Φ3 interaction) is shown in figure 19 (up to signs). Using

integration by parts we can get to a point where each loop has all of its D factors acting

on a a single propagator (or on external legs), and then we can throw out this diagram

unless each loop has exactly one D2.

An example of calculating a specific diagram (again using Φ3 interactions) is shown

in figure 20. Each (internal) propagator starts with a D2 due to (B.2), and we integrate

by parts the top propagator such that all D’s act on exactly one propagator inside the

loop. We find that only the rightmost diagram contributes, since it is the only one with

the correct configuration of D’s inside the loop.

B.2 Comments on the calculations

• For our calculation of log-divergent terms in 〈Φ̄ΦΦ̄Φ〉, we only need to calculate

diagrams that have no D’s acting on external Φ legs (since these would be corrections

to the Kahler potential and not the superpotential). Note that this does not prohibit

D’s from acting on external chains, since the chains include factors of D’s themselves.
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Figure 20. A one-loop diagram in Φ3 theory.

(a)

(b)

Figure 21. Type (a) diagrams.

• We keep all factors of N implicit.

• Some integrals that appear multiple times in the calculation are:∫
d3k

(2π)3
1

k2 (k + p)2
=

1

8 |p|
, (B.6)

∫
d3k

(2π)3
1

k2 (k + p1)
2 (k − p3)

2 =
1

8 |p1| |p1 + p3| |p3|
. (B.7)

We encounter only one diverging integral, of the form
∫

d3k
(2π)3

1
|k|(p+k)2

. Using dimen-

sional regularization, this is∫
d3k

(2π)3
1

|k|(p+ k)2
=

1

2π2

1

pεε
(1 +O(ε)). (B.8)

• The numerical factors we find in the following are for diagrams which contribute to

〈|Φa|2|Φb|2〉 with a �= b. In our normalization for ω̃, the tree level result for this is 2ω̃.

B.3 Calculation of the diagrams

B.3.1 Type (a)

There are two types of type (a) diagrams. The D-algebra for the first type appears in

figure 21(a) (here and in the following, we keep only diagrams which may diverge). Ignoring

the external legs, the diverging terms in these diagrams are:

0, −2a1
1

8

1

2π2ε

D2

|p|
, 0. (B.9)
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(a) (b)

(c)

(d)

Figure 22. Type (b) diagrams.

The second type appears in figure 21(b). These contribute

0, 0, −2a1
1

8

1

2π2ε

D2

|p|
. (B.10)

So the full (a)-type contribution (including the external leg factors) is

− a1
4π2ε

D2

|p|

(
a0 + a1

D2

|p|

)2

. (B.11)

B.3.2 Type (b)

These appear in figure 22(a). There are 4 types of diagrams, where in each type we choose

either the 1 or the D2 from the top and bottom chains. We do each type separately.

The (b)(1,1) appear in figure 22(b) and contribute:

− 2 · 2a20
1

8

1

8

D2

2π2ε|p|
, 0. (B.12)

The (b)(1,D2) diagrams appear in figure 22(c) and contribute:

2a0a1
1

8

1

8

1

2π2ε
, 2a0a1

1

8

1

8

1

2π2ε
, 0. (B.13)

The (b)(D2,1) Diagrams are the same as the (b)(1,D2) diagrams. Finally, the (b)(D2,D2)

diagrams appear in figure 22(d). These contribute

2a21
D2

128π2ε|p|
, 0, 0, 2

a21
128π2ε

D2

|p|
, 0. (B.14)

So the full (b)-type contribution is (including the two external chains)

− 1

32π2ε

(
a0 + a1

D2

|p|

)2
D2

|p|

(
a0 + a1

D2

|p|

)2

. (B.15)
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Figure 23. Type (c) diagrams.

Figure 24. Type (d) diagrams.

(a) (b)

Figure 25. Type (e) diagrams.

B.3.3 Type (c)

The diagrams appear in figure 23. The diagrams contribute:

− 4a20
1

8

1

2π2ε
, −4 · 2a0a1

1

8

1

2π2ε

D2

|p|
, 4a21

1

8

1

2π2ε
, (B.16)

so the total contribution (including the external chain) is

− 1

4π2ε

(
a0 + a1

D2

|p|

)3

. (B.17)

B.3.4 Type (d)

After doing the D-algebra, the only relevant diagram appears in figure 24. Its contribution is

− 2a0a1
π2ε

. (B.18)

B.3.5 Type (e)

There are two (e)-type diagrams. After doing the D-algebra, the diagram contributing to

the logarithmic terms from the first type appears in figure 25(a). This diagram contributes

− a1
π2ε

. (B.19)
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The second type appears in figure 25(b). This is a correction to the external Φ propagator,

but we include it here since we consider the Callan-Symanzik equation for the full connected

4-point function. These contribute

− 2a1

π2ε
, 0. (B.20)

So the total contribution (including the external chain) is

− 3a1

π2ε

(
a0 + a1

D2

|p|

)
. (B.21)

C Conjecture for the N = 1 version of Maldacena-Zhiboedov

Our results for the 3-point functions in section 4.2.4 suggest a possible generalization of

the results of Maldacena and Zhiboedov [30, 33] to N = 1 supersymmetric theories (such

a generalization may be studied directly by their methods, but this was not yet done as far

as we know). The main result of [30] can be stated as follows. Consider a 2+1d CFT which

has a large N expansion, and whose large N spectrum of single-trace operators includes:

• a single spin-two conserved current.

• a series of higher spin currents13 js with even spins s ∈ 2Z which are approximately

conserved (by which we mean that their twists differ from 1 by corrections of order

1/N).

• a single scalar operator j0. Theories in which this operator has dimension 2 at leading

order in 1/N are called quasi-fermion, while theories in which it has dimension 1 are

called quasi-boson.

Then, at leading order in 1/N , the three-point functions of these operators are con-

strained to have a specific form. In particular, these three-point functions are made up of

three structures:

〈js1js2js3〉 = c1〈js1js2js3〉free,bos + c2〈js1js2js3〉free,fer + c3〈js1js2js3〉odd (C.1)

where the first two structures are the result in the free theory of a single boson and a single

Majorana fermion respectively, and all the coefficients may be determined up to a single

constant (for quasi-fermion theories) or up to two constants (for quasi-boson theories).

When all si > 0, the coefficients are independent of the spin.

Our N = 1 theories with Nf = 1 obey only the second assumption (explic-

itly, we have a single higher-spin approximately-conserved supercurrent multiplet Js for

s = 0, 1
2 , 1, · · · [39]). In particular, our theories include two scalar single-trace operators

φ̄aφa,ψ̄
aψa, and two spin-2 operators which are conserved at large N . We thus might

not expect the three-point functions to have a simple form. However, the results in the

present paper suggest a generalization of the theorem of [30] to theories with N = 1 SUSY.

13We use lowercase j to denote non-SUSY currents and uppercase J to denote SUSY current multiplets.
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In particular, if we think of J = Φ̄aΦa as a supersymmetric generalization of the scalar

single-trace operator j0, then we have found that its large N three-point functions for a

wide range of theories (with Nf = 1 and with different values of ω) are made up of only

two structures:

〈JJJ〉 = α〈JJJ〉free + β〈JJJ〉odd, (C.2)

where the first structure is the result in the free theory (λ = ω = 0) of a single matter

multiplet. We conjecture a similar form for three-point functions of higher-spin currents

as well:

〈Js1Js2Js3〉 = αs1s2s3〈Js1Js2Js3〉free + βs1s2s3〈Js1Js2Js3〉odd. (C.3)

In our theories, the coefficients αs1s2s3 , βs1s2s3 are functions of a single parameter λ when all

si > 0, and may also depend on ω when at least one si vanishes. We conjecture that general

arguments of approximately-conserved higher-spin symmetry imply such a dependence on

one or two parameters, that would appear in the non-conservation equations of the high-

spin currents as in [30]. We will present evidence that when all spins si are even integers, the

coefficients αs1s2s3 , βs1s2s3 are independent of the si. We conjecture that more generally,

the coefficients are independent of the si also when all si >
1
2 , but we do not yet have

evidence for this more general claim.

Let us use the non-SUSY results to show that the bottom component of 〈Js1Js2Js3〉
obeys this conjecture when all spins si are positive even integers (we use A| to denote the

bottom component of A). We can decompose Js| in terms of the corresponding currents in

the bosons-only and fermions-only theories, jbs and jfs , by Js| = jfs + jbs. Setting ω = −1, a

discussion similar to the one in section 4.2.3 shows that the contributions from the bosons-

only and fermions-only theories detach in planar diagrams,14 and we find

〈Js1Js2Js3〉| = 〈jbs1j
b
j2j

b
j3〉+ 〈jfs1j

f
s2j

f
s3〉. (C.4)

Taking the bottom component of our conjecture (C.3) and plugging in this equation, we find

〈jbs1j
b
s2j

b
s3〉+ 〈jfs1j

f
s2j

f
s3〉 =αs1s2s3

(
〈jbs1j

b
s2j

b
s3〉free + 〈jfs1j

f
s2j

f
s3〉free

)
+ βs1s2s3

(
〈jbs1j

b
s2j

b
s3〉odd + 〈jfs1j

f
s2j

f
s3〉odd

)
(C.5)

In order for our conjecture to be correct, this equation for the non-SUSY three-point func-

tion must be obeyed. Using the general form (C.1) and plugging in the correct coefficients

ci for the bosons-only and fermions-only theories with the same value of λ (see [10, 30]), we

find that this equation is indeed obeyed. Apart from giving us a nice consistency check, this

calculation also allows us to find the coefficients αs1s2s3 , βs1s2s3 for even spins si in terms

of the non-SUSY coefficients ci in (C.1). In particular, this proves that the coefficients

αs1s2s3 , βs1s2s3 are independent of the spins si when the spins are all even integers.

Another consistency check can be performed using correlators of the form 〈J0J0Js〉.
In [39] it was shown that superconformal invariance allows just one possible structure

14This is clear at ω = −1, but one can show that if all si > 0 then these correlators do not depend on ω,

and so the contributions detach for all ω.
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Figure 26. Diagrammatic version of the gap equation. A double line denotes the full matter

propagator P (r, θ1, θ2) = − 1
D2+m0+Σ , and a wiggly line denotes the full gauge field propagator

obtained in [15] (both propagators are at leading order in 1/N).

in this correlator for s an even integer even, which is just the free structure. For s an

odd integer or half-integer, this correlator vanishes. This is in agreement with the con-

jecture above. Similarly, it was shown in [39] that correlators of the form 〈J1J1J1〉 and

〈J1/2J1/2J1/2〉 vanish, which trivially agrees with the conjecture. Finally, note that the

multiplet J3/2 contains the energy-momentum tensor and is thus conserved (as opposed

to approximately-conserved). This allows for explicit computations, and indeed it was

shown that the three-point function of J3/2 contains only the free structure [42], again in

agreement with the conjecture.

It would be nice to confirm that a general analysis along the lines of [30] indeed leads

to (C.2) and (C.3), with the coefficients fixed in terms of one undetermined constant (two

when one of the spins si vanishes); our results express these coefficients in terms of λ and

ω. We note that for exactly conserved higher-spin currents, it was conjectured already

in [39] that only two structures can appear. Our results seem to indicate that this is true

also for approximately-conserved higher spin currents.

D The gap equations for Nf > 1

We solve the gap equations for Nf > 1 with arbitrary masses. This analysis is a gener-

alization of the gap equation solved in [15], and we follow that calculation closely. Our

superpotential is:

WΦ = m0,ij(Φ̄iΦj) +
πω0

κ

(
Φ̄iΦi

)2
+
πω1

κ

(
Φ̄iΦj

) (
Φ̄jΦi

)
, (D.1)

and we use the U(Nf ) symmetry to diagonalize the mass matrix, so that the bare masses are

m0,ij = diag(m0,1,m0,2, . . . ,m0,Nf ). (D.2)

It is useful to distinguish the symmetric-traceless part of this matrix and the trace part.

Define

M0 = Tr(m0,ij), M0,ij = m0,ij −
δij
Nf

M0, (D.3)

so that Tr(M0,ij) = 0.

– 52 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
0

Now we solve the gap equation for the self-energy Σij . The diagrammatic version of

the gap equation appears in figure 26. Explicitly, following the derivation in [15], this gives:

Σij (p, θ1, θ2) = 2πλω0δij

∫
d3r

(2π)3
δ2 (θ1 − θ2) Tr [Pkl (r, θ1, θ2)]

+ 2πλω1

∫
d3r

(2π)3
δ2 (θ1 − θ2)Pij (r, θ1, θ2) (D.4)

− 2πλδij

∫
d3r

(2π)3
δ2 (θ1 − θ2)Pii (r, θ1, θ2)

= 2πλ

[
ω0δij

∫
d3r

(2π)3 δ
2 (θ1 − θ2) Tr [Pkl (r, θ1, θ2)]

+ (ω1 − δij)
∫

d3r

(2π)3
δ2 (θ1 − θ2)Pij (r, θ1, θ2)

]
(D.5)

where Pij is the full matter propagator. Since the final line does not depend on the

momentum p, we guess a solution where Σij is constant. Furthermore, note that if we guess

a diagonal solution for Σij , then Pij becomes diagonal as well. We thus guess a solution

of the form Σij = diag(m1 −m0,1,m2 −m0,2, . . .), which leads to Pij = diag(P1, . . . , PNf )

with Pi = D2−mi
p2+mi

δ2 (θ1 − θ2). The gap equations (D.5) then reduce to

mi −m0,i = 2πλ

(
ω0

∑
j

∫
d3r

(2π)3

1

r2 +mj
+ (ω1 − 1)

∫
d3r

(2π)3

1

r2 +mi

)
. (D.6)

Calculating the integrals using dimensional regularization, we find

mi −m0,i = (1− ω1)
λ |mi|

2
− ω0

λ
∑

j |mj |
2

. (D.7)

The solution is:

mi =
2M0,i

λsign(mi)(ω1 − 1) + 2
+

2
Nf
M0

λsign(mi)(ω2 − 1) + 2
, (D.8)

where ω2 = Nfω0 +ω1. Note that the result has split into two separate contributions from

the symmetric-traceless part and the trace part, which are each (almost) identical to the

Nf = 1 result (6.9). It is thus immediate to show that this result is invariant under the

proposed duality transformation (6.5).

Open Access. This article is distributed under the terms of the Creative Commons
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