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Abstract: In this paper we study bulk viscosity in a thermal QCD model with large

number of colors at two extreme limits: the very weak and the very strong ’t Hooft cou-

plings. The weak coupling scenario is based on kinetic theory, and one may go to the very

strong coupling dynamics via an intermediate coupling regime. Although the former has a

clear description in terms of kinetic theory, the intermediate coupling regime, which uses

lattice results, suffers from usual technical challenges that render an explicit determination

of bulk viscosity somewhat difficult. On the other hand, the very strong ’t Hooft coupling

dynamics may be studied using string theories at both weak and strong string couplings

using gravity duals in type IIB as well as M-theory respectively. In type IIB we provide the

precise fluctuation modes of the metric in the gravity dual responsible for bulk viscosity,

compute the speed of sound in the medium and analyze the ratio of the bulk to shear

viscosities. In M-theory, where we uplift the type IIA mirror dual of the UV complete

type IIB model, we study and compare both the bulk viscosity and the sound speed by

analyzing the quasi-normal modes in the system at strong IIA string coupling. By deriving

the spectral function, we show the consistency of our results both for the actual values of

the parameters involved as well for the bound on the ratio of bulk to shear viscosities.
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1 Introduction and summary

The wide and thoroughgoing experimental programs pioneered at the Relativistic Heavy

Ion Collider (RHIC) and pursued at the Large Hadron Collider (LHC) offer a unique

opportunity to study properties of a most exotic state of matter: the quark-gluon plasma

(QGP). Although there is a common agreement that droplets of QGP are produced in heavy

ion collisions in the pursued experiments, a unequivocal and quantitative determination of

the properties of such a state is still the topic of much research. The time evolution of the

plasma, its transport properties, the parameters of the transition to the confined phase,

are some of the features that are currently being addressed along with many others. The

difficulties in extraction of QGP properties owe much to the fact that the excited nuclear

matter produced by colliding heavy ions at currently achievable energy scales is strongly

coupled. Accordingly, the applicability of known fundamental methods and approaches

to study the system in this regime is very limited, and hence all obtained findings in this

limit have to be examined critically. On the other hand, this situation may also provide an

opportunity to explore new technical facets of known tools and to explore new directions.

One of the methods that have proven useful to study the properties of QGP in the do-

main accessible experimentally is viscous hydrodynamics - a low-frequency long-wavelength

effective theory. The application of the hydrodynamic framework to heavy ion collisions [1–

9] and its use in the interpretation of a wide range of experimental observables [10–13]

allowed to conclude that the experimentally produced QGP is a strongly coupled sys-

tem. In particular, the studies on the hadronic flow and the emergence of other collective

phenomena in the hydrodynamic description of QGP were taken as an indication of its

fluid-like nature. Moreover, the success of hydrodynamics seemed to necessitate a fast

near-thermalization of the QGP. All these arguments led to the conclusion that the cre-

ated quark gluon plasma must be strongly coupled [14]. For reviews on hydrodynamic

applications and formulations see [15–19].

– 1 –
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Another powerful tool to study systems in the limit of strong ’t Hooft coupling orig-

inated with the discovery of the AdS/CFT correspondence [20]. Even though it was hy-

drodynamic predictions and analyses that provided the empirical evidence that the shear

viscosity to entropy density ratio is small [21], it was the AdS/CFT conjecture that estab-

lished an analytical bound of η/s = 1/4π [22].1

Transport coefficients are valuable elements of the hydrodynamic description as they

carry information about the microscopic properties of a medium. In the case of the shear

viscosity of strongly interacting matter, numerous phenomenological studies, the AdS/CFT

result, kinetic theory calculations in the high-temperature weakly coupled regime of QGP

η ∝ 1/(g4
YMlog(1/gYM)) [24], and non-perturbative estimates [25] allow a schematic global

understanding of the shear viscosity to entropy density ratio. It is known that shear viscos-

ity is large in the perturbative, high-temperature, limit, smaller near the phase transition

temperature [26, 27], and large again in the confined, pion gas domain [28, 29]. How-

ever, the physics of the bulk viscosity is less satisfactorily understood. There are strong

indications that bulk viscosity behaviour follows a trend opposite to that of the shear vis-

cosity. In the limit of high-temperature QCD, bulk viscosity was found to have a very small

value [30]: this is to be expected, as the coefficient of bulk viscosity can be written as a

correlator of the trace anomaly (see section 2.1), and QCD is known to be approximately

conformal at high temperatures. Although it may seem that, in the very large coupling

regime, a direct application of AdS/CFT techniques to bulk viscosity exploration is not

possible as the conjecture relies on the N = 4 super Yang-Mills theory which is perfectly

conformal: the bulk viscosity vanishes identically, this is not quite true. Approaches based

on holography in fact have proven useful by providing a lower bound on the ratio of bulk

to shear viscosities: ζ/η ≥ 2(1/3− c2
s) [31].2 In the vicinity of the transition from QGP to

hadronic degrees of freedom, the bulk viscosity should, in principle, be calculated from the

equation of state extracted the lattice data [34, 35]. It is expected to be proportional to

the trace anomaly (ε− 3P )/T 4 and hence be notably peaked. Various investigations, both

formal and phenomenological [36–41], confirm this expectation. Recently, it was demon-

strated that the presence of a coefficient of bulk viscosity is important in hydrodynamical

simulations, as it has a significant impact on the elliptic flow coefficients [41–43] and other

heavy-ion observables, strongly interacting and otherwise [44–48]. However, it is fair to

write that the precise behavior of the bulk viscosity for systems in extreme conditions of

temperature and density is not yet firmly established and therefore needs further studies.

Understanding the behavior of bulk viscosity and knowing how it changes when the

coupling strength varies is important for several reasons. First, bulk viscosity is an inherent

property of nonconformal systems, and finite-temperature systems obeying QCD are good

examples of such environments. The behavior of the bulk viscosity is fixed by parameters

that break conformal symmetry. These include, at least at the perturbative region, finite

1Violation of this bound is seen in the presence of higher derivative terms, discussed first in [23]. In the

absence of these terms, the KSS [22] bound continues to hold at strong ’t Hooft coupling.
2The non-conformal string theory studied in [31] is different from what we consider here. In [31] it’s the

N = 2∗ supersymmetric gauge theory obtained by a mass deformation of N = 4 Super Yang Mills theory.

See also [32] and [33] for an even earlier studies on bulk viscosity from first principles.
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masses of plasma constituents and the Callan-Symanzik β-function which expresses the

coupling constant as a function of an energy scale [30, 32]. Equivalently, these parameters

enter the definition of the speed of sound, and bulk viscosity can be conveniently expressed

as some function of 1/3− c2
s as well. From the phenomenological point of view, expressing

bulk viscosity via the speed of sound is practical as this enables a direct connection with

the lattice QCD equation of state. Second, bulk viscosity plays an essential role in the

hydrodynamical description and modelling of hot and dense strongly-interacting matter.

One could attempt to compute the coefficient within a theory which captures the micro-

scopic interactions, and then insert it into hydrodynamic equations. Alternatively, fluid

dynamics may be viewed as an effective theory of the long wavelength behaviour, and its

transport coefficients are to be extracted empirically. Either way, viscous hydrodynamics

serves as a powerful tool to investigate the strongly coupled nuclear medium produced in

RHIC and LHC experiments. It provides information on the dynamics of the plasma, in-

forms how the plasma evolves and also helps to extract, or at least constrain, other plasma

characteristics. In addition, bulk viscosity studies have the potential to further develop

new theoretical methods to study the conformal anomaly of QCD.

Because of different system dynamics at different coupling regimes one may expect a

different dependence of the bulk viscosity on the factor 1/3−c2
s. This is what was observed

by comparing the bulk to shear viscosity ratios at perturbative and very strong-coupling

limits: ζ/η ∝ (1/3 − c2
s)

2 [30] and ζ/η ∝ (1/3 − c2
s) [31], respectively. Analyzing this

difference is the main objectives of our studies. What is more, we focus on the intrinsic

physics of bulk viscosity which is a unique measure of a system’s departure from the

conformal symmetry independently of the differences in the dynamics at different energy

scale. Importantly, we also examine methods employed for the viscosity calculation. Our

ultimate goal is to provide a detailed picture of bulk viscosity as a physical quantity of

the SU(M) gauge theory. Due to complex nature of the theory we examine analytically

accessible limits of the quantity, which clearly requires us to use very different methods.

The system under consideration is governed by the SU(M) theory with the interaction

strength determined by the ’t Hooft coupling λ = g2
YMM , where gYM is the gauge coupling

and M is the number of colors. The ’t Hooft coupling may be thought as an effective

coupling of QGP. We distinguish here 3 regions of the ’t Hooft coupling: the weak coupling

region, the intermediate coupling region (near the phase crossover temperature), and the

strong (infinite) coupling one. In each region a different microscopic approach is applicable.

The extreme limits are discussed comprehensively while the intermediate coupling part

includes a brief summary and discussion on conceptual difficulties preventing one from

determining bulk viscosity in this domain.

As already mentioned, the weak-coupling studies on bulk viscosity for QCD were done

within kinetic theory in [30]. In our work we intend to adjust the kinetic theory result

to the ’t Hooft coupling. In this way we provide the form of bulk viscosity which can

be directly confronted with its strong-coupling counterpart discussed via string theory

methods. In this approach quark contribution is always suppressed by a factor 1/M and

may be neglected in the leading order analysis. Kinetic theory [24, 49, 50] is an effective

theory which is commonly and successfully used to compute transport coefficients. Its
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correspondence to fundamental microscopic theory was directly shown for scalar theory

in [32] and then also for QED [51, 52]. In this manuscript we undertake the task to justify

the validity of kinetic theory for SU(M) theory by providing power counting of microscopic

processes contributing to the collision kernel of the Boltzmann equation. Since a derivation

of the transport equation from diagrammatic representation of any non-Abelian theory is

highly non-trivial, we intend to present a procedure on how to justify the collision kernel

diagrammatically and we do not intend to derive the Boltzmann equation. We discuss

how the pinching poles and nearly pinching poles control power counting of elastic and

inelastic processes, respectively. The consequences of soft physics on power counting are

emphasized. We also show how the integral equations emerge by discussing all topological

structures of planar diagrams contributing to them. We believe that this examination

may provide solid arguments to prove an equivalence of the Boltzmann equation with the

analysis based on the loop expansion.

The intermediate coupling region is considered mostly to summarize the status of

studies of bulk viscosity done with microscopic analyses, that is, which need usage of

lattice QCD. The bulk viscosity in this regime can be obtained if one can extract the

low frequency behavior of the corresponding spectral density [36–38, 53–56]. Although

these approaches provide some constrains, they do not yet allow definite conclusions on

the behaviour of the bulk viscosity to be drawn. We briefly discuss the difficulties.

On the other hand, the strong ’t Hooft coupling behavior of bulk viscosity is an interest-

ing playground to study sting theory and gauge theory because of the use of gauge/gravity

duality. In fact since the bulk viscosity should truly be studied in a theory with running

couplings, the famed AdS/CFT duality is not very useful, as discussed above. Going be-

yond CFT will require us to find the right gravity dual to answer any questions related

to running couplings, and especially questions related to bulk viscosity. The gravity dual

that we seek has been first proposed in [57, 58] and the full UV completion was given from

the type IIB side in [59–61] and more recently from the type IIA side in [62].

At this stage one might ask as to how a gravitational background, which has hitherto

no connection to gauge theory, could in principle enter the picture to help us solve strongly

coupled system like the one that we concentrate on here. There are two ways to answer this

question, but none are completely satisfactory. The first one is to relegate this to the magic

of duality. However this duality is special because all dualities studied so far have either

been between two different gauge theories or between two different supergravity theories.

There has never been a duality between a gauge theory and a gravitational theory before

AdS/CFT [20].

The second one is to view the gauge theory as to be somehow contained inside a

gravitational background. To elaborate this viewpoint, let us consider a four-dimensional

Minkowski spacetime. This serves as an arena for gauge theory interactions, and for sim-

plicity we decouple all gravitational interactions by tuning the Newton constant. The

gauge theory interactions can happen at various energy scales, and we can assume that a

specific slice of four-dimensional Minkowski spacetime is associated with a specific energy

configuration. We can stack up all the slices together such that the low energy slices are

at the bottom and the high energy slices are kept on top of one another in an increasing

fashion. Clearly the topmost slice will be at infinite energy.

– 4 –
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The above construction immediate provides a five-dimensional space and if we assume

the energy direction to be parametrized by a radial coordinate r, then at r = 0 we have

IR physics and at r → ∞ we have UV physics. This is also by construction a five-

dimensional gravitational background, and by this simple assumption we seem to have got

a five-dimensional gravity theory that captures the dynamics of the four-dimensional gauge

theory from IR to UV! Of course this is a very simple construct and does not answer all

questions related to gauge/gravity duality but it is instructive to see how two seemingly

unrelated physics, one of gauge theory and other of gravity, may be united in a framework

like above.

A few quick checks may be easily performed at this stage. If the gauge theory is a CFT,

i.e scale independent, then the slicing idea will tell us that we need not worry too much of

the physics at any scale r, and instead study the dynamics of the corresponding gauge the-

ory from the boundary at r →∞. Of course this is what AdS/CFT dictionary tells us, but

what is lacking in our simple construct is the justification that the gravitational background

is indeed an AdS5 space. Maybe the idea of scale invariance, combined with decoupling

and the supergravity EOMs could uniquely fix that, but this has not been checked.

On the other hand if we are dealing with a gauge theory that is not scale invariant,

then every point on the slice matters. At every r we have the corresponding gauge theory

dynamics at that scale.3 Indeed in the Wilsonian sense at this scale all high energy degrees

of freedom are integrated out and we are left with a set of relevant, marginal and irrelevant

operators. This is of course the premise of our construction in [59], and the UV completion

in [60, 61] is done by introducing new degrees of freedom from the so-called Region 2

of [60] onwards.

Other checks, that include the exact mapping of the gauge theory operators to super-

gravity states, are much harder to perform and in fact the dictionary for gauge/gravity

duality for the non-conformal case is not yet fully developed compared to the conformal

case. Nevertheless one thing is for sure: to have any control on the computations on the

supergravity side we need small gs. For a background with a constant dilaton — an exam-

ple would be the Klebanov-Strassler background [57] — a little bit of numerology can tell

us that gs may be made arbitrarily small.4

There is also an additional requirement of large number of colors. For a SU(M) gauge

theory, the corresponding supergravity theory will make sense if λ ≡ gsM is very large.

In this limit all computations can be restricted to classical supergravity alone, and stringy

corrections can be entirely ignored. However if we want to study an actual large M QCD

3This argument entails the fact that if we keep r fixed and move along the remaining four-dimensions,

nothing should change. However we can envision more generic scenario where the energy scale is mapped

to a certain combination of r and the other three directions. In this case the Wilsonian effective action will

be sensitive to where we are on a given slice. Of course it should be possible to redefine coordinates in such

a way to find a new radial coordinate that will again correspond to the energy scale. For this paper we will

however stick to the simplest case where r is mapped to the energy scale, rc to the UV cut-off, and rh, the

horizon radius, to the temperature.
4For example if we take ϕ = −45, then gs ≡ eϕ = 2.86 × 10−20 which is a very small number. The

minus sign can be easily accommodated by assuming that the background appears from S-dualizing a NS5

background, i.e a torsional background (see for example [62, 63]).

– 5 –
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we will have to explore string coupling gs = O(1). How can we ignore stringy corrections

now and restrict ourselves to supergravity alone?

A way out of this conundrum was first proposed in [64] by performing a sequence of two

stringy dualities: mirror transformation and M-theory uplift. The mirror transformation

is a special kind of duality that takes a type IIB background to a type IIA background

by simply interchanging the Kähler and the complex structures of the internal manifolds

on both sides of the duality. In [64] this was implemented by performing three T-dualities

along the isometry directions of the internal manifold in the type IIB side [65]. Being

T-dualities they do not change the behavior of the dilaton too much, and therefore takes

a weakly coupled background into another weakly coupled one.

The second duality is when we increase the type IIA coupling. At strong coupling a

new internal direction opens up and the theory goes to eleven-dimensional M-theory where

the dynamics is now miraculously governed by eleven-dimensional supergravity. All the

type IIA stringy corrections are now captured succinctly by classical supergravity analysis

in M-theory [66], and therefore gs = O(1) can again be studied using supergravity, albeit

from eleven-dimensions. Such a dual description was termed as the MQGP limit of thermal

QCD with large number of colors in [64].

The above considerations tell us that the strong ’t Hooft coupling regime may be

studied from the perspectives of both weak and strong string couplings. In the presence

of Nf flavors, it means we are exploring both gsNf → 0 as well as gsNf = O(1) limits.5

This in turn boils down to saying that we can have analytic control on the transport

coefficients — and here we will concentrate only on bulk viscosities — for pure glue as well

as for flavored large M thermal QCD. Section 4 of the paper will therefore be dedicated

to studying the bulk viscosity using weak string coupling and with vanishing number of

flavors, whereas section 5 will be dedicated to studying the bulk viscosity using the other

limit, namely strong string coupling and non-vanishing number of flavors.

There is yet another limit where we can remain at weak string coupling, but explore

strong YM coupling. In the type IIB side such a scenario becomes possible once Nf flavor

degrees of freedom are switched on. That this could happen is a consequence of two

conspiracies: one, the dilaton picks up O(gsNf ) corrections forcing it away from being a

constant, and two, the NS 2-form field, through the vanishing two-cycle on which we have

the M wrapped D5-branes, also picks up O(gsNf ) corrections. These corrections provide

additional structure to the already non-constant field, but more importantly they add to

the dilaton factor constructively to provide the full structure of the YM coupling.

Interestingly, from either of these limits at strong ’t Hooft coupling, the ratio of the

bulk to shear viscosities remains proportional to linear power of
(

1
3 − c

2
s

)
. The difference

however lies in the precise coefficients that control the lower bounds at weak and strong

string couplings. For example at strong string coupling, the lower bound is almost 9 times

bigger than the Buchel bound [31] as we will discuss in section 5. Of course nowhere we

5By strong string coupling or by O(1) coupling we will mean gs close to 1 but slightly less. This is

because we always want to keep the combination (gsNf )k
(
gsM

2

N

)m
� 1 even for m = 1 and k ∈ Z. See

also footnote 25.
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see any violation of the Buchel bound, so presumably the violation can only occur once we

dimensionally reduce the four-dimensional theory to two-dimensions. This is much like the

scenario presented in [67], but we will not discuss it any further here.

What we will discuss however is the appearance of the linear power of the deviation

factor,
(

1
3 − c

2
s

)
, when we study spectral function using the weakly coupled type IIA theory.

The spectral function is an important aspect in the study of QGP, and its derivation is

rather complicated at weak ’t Hooft coupling. At strong ’t Hooft coupling there is a way to

derive it from the gauge/gravity duality, but the derivation is technical and involves various

manipulations of the background. Nevertheless an answer can be found in the present set-

up and the final result shows a linear dependence on the deviation factor. In the limit of

vanishing frequency, the result matches well with actual QGP, despite the presence of a

large number of colors. Such a success points towards some inherent universality, and it

will be interesting to explore this further.

1.1 Organization of the paper

The paper is organized as follows. In section 2 we study bulk viscosity at weak ’t Hooft

coupling. After short introductory remarks on the definition of bulk viscosity and the

applied microscopic theory, in section 2.1 we discuss the Kubo formula which provides a

general and first-principle method of the viscosity computation. In section 2.2 we briefly

summarize results on the leading order bulk viscosity calculation performed within kinetic

theory by solving the Boltzmann equation. Sections 2.3–2.6 contain a diagrammatic, but

qualitative only, analysis which is to justify validity of the effective kinetic theory formula-

tion for studies of transport coefficients. In section 2.3 we consider the one-loop diagram to

find a typical size of the bulk viscosity. This step shows also that fermionic contributions

are subleading in favor of the gluonic ones. Then, in section 2.4, the power counting of

the relevant self-energies is done. Section 2.5 is devoted to an evaluation of typical sizes

of multi-loop diagrams which represent scattering processes. Both particle number con-

serving and particle number changing processes are studied and the role of the soft physics

is emphasized in subsections 2.5.1 and 2.5.2. In section 2.6 a schematic form of the rele-

vant integral equations needed for a diagrammatic bulk viscosity computation is presented.

In section 2.7 we briefy refer to other diagrammatic methods which can be employed to

real-time dynamics investigations.

In section 3 an intermediate coupling regime is discussed. The section consists of a

brief overview of literature on the approaches aiming at an extraction of bulk viscosity

from lattice QCD results by studying mostly QCD sum rules and finding constraints on

the spectral density. The difficulties in the quantitative determination of the bulk viscosity

are pointed out.

The strong coupling results are discussed in sections 4, 5 and 6. In section 4, the

weak string but strong ’t Hooft coupling regime is discussed. We start by giving a detailed

description as to where the string theory techniques would fit in in the study of bulk vis-

cosity. The various domains of compatibility as well as the UV completion are emphasized

and the consistency of the background is shown from both type IIB and its dual type

IIA pictures. In section 4.1, a slightly simplified background is taken to quantify various

– 7 –
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parameters associated with the computation of bulk viscosity. For example, one of the

important parameter is the fluctuation associated with the vielbeins. This is elaborated in

section 4.2. The fluctuation modes can be divided into positive and negative frequencies,

and we show that there are pieces of the fluctuations, called pnk, that are related to certain

sources ∆
(n)
ab in the gravity dual picture. The analysis of the sources is rather complicated

and therefore in section 4.2.1 we first take a toy example to study the equations connecting

pnk fluctuations with the ∆
(n)
ab sources. The toy example is based on a simplifying con-

straint, and using this the simplest zero and the non-zero modes of the fluctuations are

shown to satisfy equations that relate them to the sources. In section 4.2.2 we go beyond

the simple toy example by studying the equations governing the fluctuating modes in a

generic setting. As before, the zero and the non-zero modes satisfy equations relating them

to certain sources.

Once we have the fluctuations, we can use them to compute the transport coefficients.

In section 4.3 we perform two important computations: one, the sound speed, and two, the

ratio of the bulk to the shear viscosities. The former is given by an equation which takes

into account not only the scale dependence of the temperature, but also the background

fluctuations. Needless to say, the ratio of the bulk to the shear viscosities should depend

on the sound speed, and we elucidate this by first computing the precise ratio and then

showing that the ratio is indeed bounded below by the deviation of the sound speed from

its conformal value and more interestingly, is independent of the cut-off.

The remaining two sections are devoted to studying bulk viscosity at strong string and

strong ’t Hooft couplings. The first, i.e section 5, has to do with obtaining a Buchel-like

bulk-viscosity-to-shear-viscosity bound by looking at scalar modes of metric perturbations

and the associated quasi-normal modes. The second, i.e section 6, has to do with obtaining

the same result from spectral functions. Here is a more detailed plan of these two sections.

In section 5, we first briefly review the Strominger-Yau-Zaslow (SYZ) type IIA mirror

of [59]’s top-down type IIB holographic dual of large-N thermal QCD, as well as its M-

theory uplift as constructed in [64]. This is followed by a discussion on obtaining the

EOM for a linear combination of scalar modes of metric perturbations gauge invariant

under infinitesimal diffeomorphisms and obtaining the associated quasi-normal modes in

section 5.2; it is noted that with a non-zero bare resolution parameter, the horizon turns out

to be an irregular singular point, a fact that proves in fact to be quite helpful in obtaining

the aforementioned quasi-normal modes. In section 5.3, we show that one cannot avoid

non-normalizable modes if one were to turn off the bare resolution parameter resonating

well with similar non-normalizable perturbation modes obtained in section 4. A Buchel-like

bound for the ratio of the bulk and shear viscosities in terms of the linear power of the

deviation of the square of the speed of sound from its conformal value is finally obtained,

both for Nf = 0 and Nf 6= 0 in section 5.4.

In section 6, we follow a different route — that of spectral function involving correlation

function of gauge fluctuations in background value of gauge fields on the world volume of

the flavor D6-branes of the aforementioned SYZ type IIA mirror. In section 6.1, we obtain

the background value of a D6-brane world volume gauge field At(r), r being the radial

coordinate and set up the EOM for fluctuations about the same. We obtain and explicitly
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solve the EOM — there turns out to be only one linearly independent EOM — in the zero-

momentum limit in section 6.2. From the on-shell action, the gauge-fluctuation correlation

function and hence the spectral function per unit frequency in the vanishing frequency

limit, is worked out in section 6.3 and it is explicitly seen that the difference between the

same at non-zero and zero temperatures is precisely proportional to the deviation of the

square of the speed of sound from its conformal value. In section 6.4, we argue that unlike

sections 6.1–6.3 wherein one had considered weak-string-coupling strong-’t-Hooft-coupling

limit, the result of section 6.3 goes through even for the strong string and strong ’t Hooft

couplings’ limit. We argue therein that the gs → 0 limit alongwith non-trivial B-field

along the vanishing two-cycle conspires to produce a g2
YM in the gauge theory side that is

no longer a small number.

Finally in the appendices we discuss four topics. The first one is on a gauge invariant

combination of the scalar modes of metric fluctuations. Such a combination is useful to

study the quasi-normal modes. The second one is on the derivation of the on-shell action

and Green’s function required to study the spectral function. The third one is on an

estimation of the horizon radius. The fourth one is on comparison between some of the

earlier approaches in deriving the ratio of bulk to shear viscosity with our work.

2 Bulk viscosity at weak ’t Hooft coupling

When the system exhibits a small deviation from thermal equilibrium, its evolution is well

described by the equations of hydrodynamics. These are given in terms of conservation

laws of currents accompanied by the equation of state. Here, we focus only on the energy

and momentum currents which are encoded in the stress-energy tensor Tµν . Its spatial

part is:

T ij = T ijeq + η(∇iuj +∇jui − 2/3gij∇ · u) + ζgij∇ · u, (2.1)

where ζ and η are the bulk and shear viscosities, ui is the fluid flow velocity and the

metric is mostly negative.6 A many-body system can be driven out of its equilibrium

state through uniform compression or rarefaction and both processes lead to changes in

the energy density ε, the increase or decrease, respectively. The pressure P also changes

but its change is different than that provided by the equation of state P (ε). The trace

of the stress tensor carries information on changes in pressure. The deviation from the

equilibrium pressure when the system is expanding or contracting is characterized by the

bulk viscosity ζ:

P = P − ζ∇ · u, (2.2)

where∇·u is the expansion parameter. Bulk viscosity, as well as other transport coefficients,

is determined by microscopic dynamics. Here we discuss how bulk viscosity emerges when

6In sections 2 and 3 we use the (+,−,−,−) signature for the metric, which is commonly used in

diagrammatic approaches, while in sections 4–6 we use (−,+,+,+), commonly applied for calculations in

string theories. The choice is made for convenience since we refer to many known results on both sides

throughout the manuscript.
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the system is governed by the non-Abelian SU(M) gauge theory with the Lagrangian:

L = −1

4
Fµνa F aµν + iψ̄γµD

µψ. (2.3)

Here ψ is the quark field with M×Nf degrees of freedom, where M is the number of colors

and Nf is the number of flavors, Dµ = ∂µ + igYMAµ is the covariant derivative with the

gluon field Aµ, which has M2 − 1 degrees of freedom, and Fµν = 1
igYM

[Dµ, Dν ] is the field

strength tensor. The strength of interaction is fixed by the gauge coupling gYM.

Classically, this theory has conformal symmetry as long as the quarks are massless.

Quantum mechanically, renormalization breaks the conformal symmetry since the Callan-

Symanzyk β-function is non-zero. Therefore, it is expected that the bulk viscosity of the

massless SU(M) gauge theory is directly related to the β-function. This is manifestly

shown within the effective kinetic theory analysis in ref. [30]. In the rest of our analysis,

we mainly consider the large M limit. In this limit, the relevant interaction strength turns

out to be the ’t Hooft coupling λ = g2
YMM and then β ∼ λ2/M [68].

In principle, to study bulk viscosity comprehensively one should consider massive

fermion fields, since a constant mass is a parameter that breaks conformal symmetry as

well. In the light of the forthcoming discussion it is, however, not necessary here as the

quark contribution will be M suppressed compared to the gluon contribution.

2.1 Kubo formula for bulk viscosity

The first-principles prescription to compute bulk viscosity is given by the Kubo formula [69]:

ζ =
1

2
lim
ω→0

lim
k→0

ρPP(ω,k)

ω
, (2.4)

where ρPP(ω,k) is the spectral function of the pressure-pressure correlator and ω is the

frequency of the hydrodynamic mode. In the following discussion, we will often omit the

k dependence from the correlation functions and spectral densities. The common k → 0

limit should be understood in those cases.

The spectral function is related to the imaginary part of the pressure-pressure retarded

correlation function:

ρPP(ω) = 2ImGPP
R (ω) ≡ i(GPP

R (ω)−GPP
A (ω)), (2.5)

where we used GA = G∗R. In the rest frame of the fluid cell, the pressure operator is given by

the trace of the stress-tensor P̂ = −1
3 T̂

i
i . Because of the energy-momentum conservation,

one can easily show that the spectral functions ρεP (ω,k) and ρεε(ω,k) must vanish in the

same limit [19], where ε̂ = T̂ 00 is the energy density operator. For theoretical analysis,

it is often more advantageous to use the trace of the full stress-energy tensor Θ̂/3 =

T̂µµ /3 = 1
3 ε̂− P̂ which is Lorentz invariant, or the more kinetic-theory-friendly combination

P̂ ′ = P̂ − c2
s ε̂ (cf. eq. (2.10) below and also see refs. [32, 76]) which reduces to −Θ̂/3 in the

conformal limit. Here c2
s = ∂P/∂ε is the speed of sound squared. Similar combination also

arises naturally in calculations of bulk viscosity in gauge-gravity theories [31]. Therefore,

ζ = lim
ω→0

ImGOOR (ω)

ω
= lim

ω→0
∂ωImGOOR (ω) (2.6)
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with the retarded correlation function given in coordinate space as

GOOR (x) = −iθ(t)
〈[
Ô(t, x), Ô(0, 0)

]〉
. (2.7)

Here the operator Ô can be P̂ , Θ̂/3 or P̂ ′. This correlation function contains all the

essential information about the physics of bulk viscosity and their structures are fixed by

the Lagrangian (2.3) and thermal medium effects.

Although the Kubo formula (2.6) is general, in this section we focus on the regime

of the sufficiently high energy scale, where the expansion in the small ’t Hooft coupling

λ may be applied. We consider here the limit where the ’t Hooft coupling λ = g2
YMM

remains small and the number of flavours Nf is fixed while M → ∞. In this limit one

should, in principle, be able to calculate bulk viscosity perturbatively. Due to very complex

multi-scale nature of the non-Abelian theory, a comprehensive quantitative computation

of bulk viscosity using field theoretical tools is not an easy task. To date, a complete

diagrammatic analysis of the bulk viscosity in QCD has not been carried out (for other

transport coefficients of QED, see [51, 52]). However, an equivalent approach to compute

the coefficient is offered by using effective kinetic theory.

2.2 Bulk viscosity from kinetic theory

The foundations of the effective kinetic theory of the SU(M) theory were formulated in

refs. [24, 49, 50]. The scattering processes governing transport properties of the medium

are embedded in the collision kernel of the Boltzmann equation and their sizes in terms

of the gauge coupling gYM, the numbers of degrees of freedom and the Casimir operators

are explicitly shown in ref. [49]. Further this formulation was used in ref. [30] to calculate

bulk viscosity of QCD. Here we briefly summarize these results in the leading order in the

’t Hooft coupling λ = g2
YMM .

In the large-M limit, the bulk viscosity in the leading order in λ is governed only by

the pure gluodynamics since quarks are suppressed by at least a factor of M . This can

be clearly seen from the following analysis. Bulk viscosity depends on two factors. First,

it must be proportional to the nonconformality parameter reflecting the incompressibility

of the system. Second, it is controlled by the mean free path carrying the information

on the microscopic properties of the medium, in particular, on the nature of interaction,

and relevant degrees of freedom. From ref. [30] one observes that the same dependence

of bulk viscosity on the nonconformality parameter is obtained either for quark and for

gluon contributions. The mean free path of the quark contribution and of the gluon one

is parametrically the same but it is associated with the corresponding numbers of degrees

of freedom, which are different. While the number of gluons scales as M2, the number of

quarks scales as M . This dependence occurs for both the number conserving and number

changing processes and can be extracted when analyzing all matrix elements and associated

degrees of freedom shown explicitly in [49]. Hence we ignore the quark contribution at every

step of the forthcoming analysis.

In kinetic theory one focuses on the evolution of the distribution function of relevant

quasiparticles. The evolution of the gluon distribution function f(p, x) is governed by the
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Boltzmann equation of the form:

(∂t + v · ∇x)f(p,x, t) = −C[f ]. (2.8)

Since f(p,x, t) is slightly out of equilibrium it can be expressed as f = feq + f1, where feq

is of the form feq(p,x, t) = (eβ(t)γu(Ep(x)−p·u(x))−1)−1, with γu = (1−u2)−1/2. feq is there-

fore a function of time-space dependent quantities: β(t) being the inverse of temperature

T (t) and Ep(x) =
√

p2 +m2
th(x) — the energy of a gluon where the x dependence appears

through the thermally fluctuating mass mth(x). f1 is the nonequilibrium correction, which

includes both the action of hydrodynamic forces and the correction due to thermally fluctu-

ating mass. C[f ] is a collision term, that contains processes involving only gluons, namely,

the number conserving gg → gg scatterings and the number changing g → gg splittings.

Its explicit form can be found in [49]. The left-hand side of the Boltzmann equation at the

linearized order is then:

(∂t + v · ∇x)feq(p,x, t) = −β2(t)S(p)∇ · u(x)
∣∣∣
β(t)=β,u(x)=0

, (2.9)

where S(p) = −Tq(p)f0(Ep)(1 + f0(Ep)) and f0 is the Bose-Einstein distribution function

(eβEp − 1)−1. The form of the quantity q(p) is most essential as it establishes the final

parametric dependence of bulk viscosity on the nonconformality parameter. It reads:

q(p) =
1

Ep

[(
1

3
− c2

s

)
p2 − c2

sm̃
2

]
. (2.10)

The quantity m̃2 is of the form:

m̃2 = m2
th −

d(m2
th)

d(logT 2)
= −MT 2

6
βλ. (2.11)

The formula (2.10) is obtained by taking into account the stress-energy conservation law,

thermodynamic relations and space dependence of the quasiparticle energy. Note that

as the consequence of the temperature dependence of the quasiparticle mass, given by

m2
th = g2

YM(T )MT 2/6, the beta function of SU(M) theory βλ = −11λ2/(48π2M) arises in

the formula (2.11) and, consequently, in eq. (2.10). The βλ-function is just the parameter

that breaks conformal symmetry in the system and the factor 1/3− c2
s, with the speed of

sound squared c2
s = ∂P/∂ε, is equivalent to it through the relation:

1

3
− c2

s = − 5

72π2
Mβλ =

55

3456π4
λ2. (2.12)

Due to such a dependence, q(p) can be expressed in a simple form:

q(p) =

(
1

3
− c2

s

)[
|p| − 4π2

5

T 2

|p|

]
. (2.13)

In all formulas, terms which are suppressed by any powers of M were omitted. The

form of left-hand side of the Boltzmann equation, eq. (2.9), dictates also the form of the

correction f1 which, in turn, fixes the form of the linearized collision kernel. The correction
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is f1 = β2f0(1 + f0)χ∇ · u, so that both sides of the Boltzmann equation are proportional

to ∇ · u. By dropping this scalar factor, the Boltzmann equation can be expressed in a

convenient form S(p) = [Cχ](p). Bulk viscosity may be then found as:

ζ = S̃mC̃
−1
mnS̃n, (2.14)

where the matrix is C̃mn = 2M2
∫
p φm(p)[Cφn](p) and the column vector is S̃m =

2M2
∫
p φm(p)S(p), with the basis functions φm(p) = pmTK−m−1/(T + p)K−2 and m =

1, . . . ,K. The numerical procedure relies on the variational method. Since ζ ∝ S2 ∝ q2,

the bulk viscosity is clearly expressed by the nonconformality parameter squared, (1/3−c2
s)

2

or equivalently β2
λ and the inverted collision kernel introduces the mean free path. The

final expression then scales as:

ζ =
aT 3M2

λ2log(b/λ)

(
1/3− c2

s

)2
, (2.15)

where a and b should be obtained by solving the integral equation (2.14). The whole

procedure of finding bulk viscosity coefficient of QCD is comprehensively discussed in [30]

for different values of the number of flavors Nf . One can then reproduce the dependence

of bulk viscosity of the SU(M) theory on the coupling constant λ from figure 1 of ref. [30]

by setting all quark masses to 0, taking Nf = 0, and rescaling the coupling 4πMαs → λ.

Due to the same sizes of the nonconformality parameter and the ’t Hooft coupling constant

squared, given by the relation (2.12), one can write:

ζ

s
∝ λ2

log(b/λ)
∝
(
1/3− c2

s

)
log(b/λ)

, (2.16)

where we used the entropy density s = (P + ε)/T ∝ M2T 3. The formula (2.16) shows

that in the very weak coupling regime the leading order bulk viscosity over entropy density

ratio is a linear function of the nonconformality parameter 1/3− c2
s, up to the logarithm.

This occurs due to the fact that βλ function is of the same order as the inverse of the mean

free path. This behavior is characteristic for the theories when the conformal symmetry is

broken only by the βλ function. These are, for example, SU(M) in the large M limit or

massless QCD. Also, the shear viscosity coefficient of QCD with the effective coupling λ

was studied in [70] and the result is:

η

s
=

A

λ2log(B/λ)
(2.17)

with A and B being numerical constants. Combining eqs. (2.17) and (2.15), one finds

that the ratio of ζ/η is characterized by the quadratic dependence of the nonconformality

parameter:

ζ

η
∝
(
1/3− c2

s

)2
. (2.18)

2.3 One-loop diagram and power counting

So far kinetic theory has been the only utilizable method allowing for a quantitative com-

putation of transport coefficients of non-Abelian weakly coupled gauge theories. However,
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it is an effective description of quasiparticle dynamics and its equivalence to quantum field

theoretical approach has not been fully shown for the SU(M) theory. In particular, a rigor-

ous diagrammatic derivation of the Boltzmann equation of that theory, and consequently

bulk viscosity, has not yet been presented. Given that, transport coefficients of QED were

analyzed using standard diagrammatic techniques in refs. [51, 52]. In this manuscript we

strongly rely on procedures shown in refs. [51, 52], which are similar here, but due to dif-

ferent nature of interaction in the non-Abelian gauge theory there are additional diagrams

contributing to the kernel and the effective vertices have more complicated structure. All

these subtleties will be discussed in the forthcoming parts in some detail.

As was shown in refs. [32, 71–73], the equivalence of the diagrammatic method and

the kinetic theory description can be established when the ladder diagram resummation

dominates the leading order result. To carry out a qualitative analysis of the weakly coupled

large M Yang-Mills theory, it will be therefore enough to confirm that the planar ladder

diagrams dominate in the viscosity calculations. The goal of the forthcoming subsections is

to do just that for the purpose of establishing the qualitative behavior of the bulk viscosity

in the weakly coupled theory. We will not, however, attempt to carry out the full analytical

computation necessary for the quantitative analysis as this is beyond the scope of this work.

To perform the qualitative analysis we need to establish the necessary basic ingredients

dictated by the Kubo formula (2.6). The full stress-energy tensor of the SU(M) gauge

theory is given by:

Tµν = Fµαa F a να − gµνLg. (2.19)

To have some insight into the parametric form of the bulk viscosity and to establish a

starting point for evaluating the size of microscopic processes governing its behavior, it is

illuminating to consider only the kinetic terms of the stress-energy tensor, that is, the first

term in eq. (2.19). Since quarks are subleading we focus only on the gluonic contribution

to the stress-energy tensor; we briefly comment on this issue later.

Power counting of the gluon one-loop diagram is most conveniently accomplished using

the (r, a) basis of the thermal field theory. This was shown for the scalar field theory

in [74, 75] and also for gauge theories in [71]. In this basis, the elementary gluon propagators

are the retarded propagator Gra, advanced oneGar and the auto-correlation function, which

introduces information on the medium momentum distribution, Grr = (1+2nB)(Gra−Gar),
where nB is the Bose-Einstein statistics. These propagators carry indices related to color,

spin or the Lorentz structure, but within this analysis we will not explicitly show them.

Since all these propagators describe a propagation of a given particle in a thermal

medium they are dressed with self-energies. The retarded self-energy is given by Π =

Re Π− iIm Π and the retarded propagator is:

Gra(p) =
Ag(p)

p2 −Π(p)
, (2.20)

where Ag(p) carries the necessary color and tensor indices. The advanced propagator then

is given by Gar = G∗ra.
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In the weakly coupled limit, the retarded propagator has poles at p0 ≈ ±Ep − iΓgp

where the quasi-particle energy is given by Ep =
√

p2 +m2
th with the thermal mass m2

th =

ReΠ(p). The thermal width is given by the imaginary part of the self-energy at the on-shell

momentum Γp = Im Π(Ep, |p|)/2Ep. The resummed propagator can be then expressed as:

Gra(p) =
Ag

(p0 + iΓp)2 − (Ep)2
. (2.21)

In using the propagators in the (r, a) basis to evaluate the Kubo formula, we encounter two

different types of singularities: the pinching pole singularity and the collinear singularity.

Both are regulated by the thermal self-energies but they complicate the power counting.

In this section, we discuss the pinching pole singularity and its ramification. The effect of

collinear singularity is discussed in the later section.

Using the operator P̂ ′ defined below eq. (2.5) one finds the gluonic one-loop contribu-

tion to the bulk viscosity in the pinching pole approximation as:

ζ ∝
∫

d4p

(2π)4

[
c2
sp

2
0 − 1/3p2

]2
nB(p0)(1 + nB(p0))Gra(p)Gar(p) (2.22)

Note that the propagator part is written in a symbolic way as all internal indices and traces

over them are not written explicitly. The retarded propagator has poles at p0 = ±Ep− iΓg

and the advanced one at p0 = ±Ep + iΓg. Hence the two poles at Re p0 = Ep, for instance,

are separated by 2iΓgp in the imaginary direction on the opposite side of the integration

contour. When integrated, these “pinching poles” result in a large 1/Γg factor leading to

the following power counting:∫
dp0nB(p0)(1 + nB(p0))

[
c2
sp

2
0 −

1

3
p2

]2

Gra(p)Gar(p) (2.23)

→ nB(Ep)(1 + nB(Ep))

[
(1/3− c2

s)p
2 − c2

sm
2
th

Ep

]2M2 − 1

Γgp
.

This expression requires a few comments. First, the factor in the square bracket has anal-

ogous form to the quantity q(p) found within the kinetic theory and given by eq. (2.10),

up to the thermal mass term. The expression (2.23) is obtained, however, only from the

one-loop analysis and it does not include all effects. We expect that when the Lagrangian

part and the interaction terms of the stress-energy tensor operator are included in the com-

putation, the term d(m2
th)/d(logT 2) will emerge in eq. (2.23). This term, when subtracted

from m2
th in (2.23) will be analogous to the expression (2.11) and therefore will result in the

βλ function emergence, or equivalently (1/3−c2
s), analogously to what was obtained within

the kinetic theory. The inclusion of the temperature dependence of the thermal mass was

justified in ref. [32] and explicitly incorporated to formulate fluid dynamic equations in

ref. [76], but for scalar theories only. We expect that performing full analysis of the spec-

tral function of the SU(M) theory will result in this dependence of the nonconformality

parameter, but we do not intend to derive it. We do focus on discussing the consequences

of the presence of 1/Γg factor in the formula (2.23), which governs the mean free path

behavior. Before doing that let us point out that M2 − 1 in (2.23) reflects the number of
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a) b)

∝M2/Γg ∝MNf/Γ
f

Figure 1. One-loop contribution to the spectral function. a) gauge boson loop, b) fermion loop.

The crossed vertices denote insertions of the full trace of the stress-energy operator.

degrees of freedom and since the number of colors is large we will be neglecting further the

constant “−1”.

To represent the expression (2.23) diagrammatically, it is convenient to use the ’t Hooft

notation [77] so that a double line corresponds to a gluon propagator and any fermion

propagator is represented by a single line. In this representation power counting relies on

the simple formula [77]:

gV3+2V4
YM MLN

Lf
f , (2.24)

where L is the number of closed loops, V3 is the number of the 3-body interaction vertices

and V4 is the number of 4-body interaction vertices. In case of a fermion occurrence

there is an extra factor of Nf and Lf is the number of fermion loops. Using the ’t Hooft

notation, the one-loop diagram corresponding to the expression (2.23), together with its

typical size, is depicted in figure 1a), where the crossed vertices stand for the insertion of

the renormalized operator of the trace of the stress-energy tensor. For a comparison, in

figure 1b) we also present the fermionic one loop with its typical size given in terms of the

corresponding degrees of freedom and the fermionic thermal width Γf being given by the

imaginary part of the fermionic self-energy. Therefore, the gauge boson contribution to the

correlation function at the leading order scales as M2/Γg, since the diagram is made of two

closed loops and the fermionic one scales as MNf/Γ
f . As may be implied from figure 1 each

factor of the thermal width is associated with the presence of a pair of propagators. Thus

one observes that the fermion contribution is subleading by a factor of Nf/M comparing to

the gluonic one as long as the same parametric dependence in the parameter 1/3−c2
s holds

and Γf is of the same order as Γg. From the kinetic theory findings in refs. [30, 49] one finds

the parameter (1/3−c2
s)

2 being common for gluons and fermions and we rely on this result.

Given that, the estimates of the sizes of the fermionic and gluonic thermal widths are still

needed. What is more, to fully estimate the leading order 2-point correlation function for

bulk viscosity, one also needs to know typical sizes of the corresponding thermal masses,

which are essential for number changing processes.

2.4 Self-energy power counting

Both the real part and the imaginary part of the self energy plays a key role in the calcu-

lation of transport coefficients. The role of the imaginary part (the thermal width) as a
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a) b) c)

∝ g2
YMM ∝ g2

YMM ∝ g2
YMNf

Figure 2. 1-loop diagrams contributing to the real part of the gluon polarization tensor in a non-

Abelian gauge theory together with their relative sizes given in terms of the gauge coupling gYM,

number of colors M and the number of flavors Nf . a) gluon loop, b) gluon tadpole, c) fermion loop.

∝ g2
YMM

Figure 3. 1-loop contribution to the real part of the quark self-energy.

regulator for the pinching pole singularity has already been discussed in the previous sec-

tion. The role of the real part (the thermal mass) is to regulate the infrared and collinear

singularities that occur at finite temperature. Hence, the size of the thermal mass defines

the soft scale while the temperature itself defines the hard scale. In QCD, we know that

the thermal mass is of O(gYMT ) while the thermal width is of O(g4
YMT ) when the par-

ticle momentum is hard (For instance, see [51]). In the large M limit, these need to be

re-expressed using the ’t Hooft coupling.

The thermal mass is determined by the real part of the self-energy of a particle. In

our case, the leading order contribution comes from one-loop diagrams. The corresponding

diagrams contributing to the gluon thermal mass in the double-line representation are

shown in figure 2. For a systematic comparison, the fermion leading contribution to the

real part of self-energy is shown in figure 3.

The coupling dependence comes from counting the interaction vertices and number of

degrees of freedom using the formula (2.24). As in case of one-loop diagrams contributing

to the spectral density, when M →∞ the gluon loops, figures 2a) and 2b), dominate over

the fermion one by a factor of M/Nf . Thus, the leading order of the gluon thermal mass

as well as the fermion one (figure 3) in the large M limit is:

ReΠHTL ∝ ReΣHTL ∝ λT 2. (2.25)

For explicit expressions, see [78–80].

The imaginary part of the one-loop self-energy vanishes when bare propagators are

used due to kinematic constraints. It does not vanish when the resummed propagators

are used, but that is equivalent to the two-loop self-energy which we discuss next. The

relevant two-loop self-energy diagrams and their sizes for both gluons and quarks are shown

in figure 4 and 5, respectively. It is then apparent again that gluon contributions dominate
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a) b) c) d) e)

∝ g4
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YMM
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YMM

2 ∝ g4
YMM

2

f) g) h)

∝ g4
YMM

2 ∝ g4
YMM

2 ∝ g4
YMM

2

i) j) k) l) m)

∝ g4
YMMNf ∝ g4

YMM ∝ g4
YMM ∝ g4

YMMNf ∝ g4
YM

Figure 4. 2-loop diagrams contributing to the gauge boson self-energy with their relative sizes.

Diagrams a)–g) — purely gluonic contributions; h)–j) — contributions with fermionic degrees of

freedom.

over the fermion ones by a factor of M for both the gluon and quark self-energies. The

size of the imaginary parts of the self energies is:

ImΠ ∝ ImΣ ∝ λ2T 2, (2.26)

which leads to the thermal widths being of the same size, Γg ∼ Γf ∝ λ2T in the leading

order. This is already enough to justify that quark loops do not have to be considered

any more since the gluon contribution to a given quantity is always M times bigger than

the quark one, up to the factor of Nf , which is fixed constant and much smaller than M .

This justifies omitting all quark contributions in the forthcoming analysis. One can then

observe that the typical size of the propagator part of the correlation function is:∫
dp0Gra(p)Gar(p) ∼

M2

(Egp)2Γgp
,∼ M2

λ2T 3
(2.27)

up to the logarithm.

The parametric estimate of the self-energy is of significant importance since it controls

power counting of the scattering processes establishing the bulk viscosity coefficient. Con-

sequently, as we discuss in the next subsection, it is the form of the self-energy at the one

and two-loop order that controls the form of the collision kernel of the Boltzmann equation.

In particular, by studying the self-energy one is able to find which processes contribute to
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∝ g4
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e) f)

∝ g4
YMMNf ∝ g4

YM

Figure 5. 2-loop diagrams contributing to the quark self-energy with their relative sizes.

the collision kernel and what is their sensitivity to different scales. In contrast to the shear

viscosity, where the hard scale dominates its typical size, the bulk viscosity is sensitive

to the soft scale as well. Since the soft scale is dictated by the size of the thermal mass,

whenever we refer to it we mean momenta p ∼ ReΠ ∼
√
λT .

2.5 Diagrammatic justification of the processes contributing to the Boltzmann

equation

Although the parametric estimate of bulk viscosity can be found by considering the one-

loop diagram of the correlation function, in the thermal medium infinite number of multiple

processes have to be included in the leading order. Equivalently, the infinite number of

relevant loops need to be resummed. In the kinetic theory formulation this procedure is

supposed to be captured by the collision term of the Boltzmann equation. The equivalence

between the two approaches can be established by showing that at a given order of the

coupling constant microscopic processes obtained in the diagrammatic representation have

their counterparts in the collision kernel of the Boltzmann equation. Here we discuss

this issue.

There is a twofold source of the need for resummation of infinite number of diagrams.

Each of them is related to the presence of a different type of singularity. The first case

has already been discussed and it is the pinching pole singularity, regulated by the thermal

width Γg, where no other singularity occurs. The diagrams reflecting this type of singularity

correspond to the number conserving, 2→ 2, processes. Then, within the one loop already

discussed, any number of gluon exchanges between the side rails is possible. Any possible

insertion of the permissible gluon exchanges, meant as rungs, is of the order of λ2 and it

is compensated by an accompanying 1/Γg factor coming from pinching poles of the pair

of retarded and advanced propagators. Infinitely many such combinations are possible.

The other type of singularity, characteristic for gauge theories, is the collinear singularity

associated with the small angle between the scattering and scattered particles. This type

of singularity governs the number changing processes, 1 + N → 2 + N , where N is a

number of hard particles taking part in a splitting of one hard gluon into two hard gluons.
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The collinear processes contribute to the bulk viscosity computation at the same order of

the coupling constant as the number conserving processes. The splitting process occurs

when a hard gluon traversing the medium interacts with another hard gluon via a soft

momentum exchange and then emits an additional hard gluon so that both the emitted

and the emitting gluons move almost collinearly within an angle θ ∼ O(
√
λ). The collinear

region of propagating particles is always associated with the corresponding product of

retarded and advanced propagators, which, if not dressed, has a singular behavior. The

collinear singularities, similarly to the pinch singularities, are regulated by the thermal

width, but in this case, the soft scale fixed by the thermal mass plays an essential role as

well. As discussed in detail later, all hard gluons taking part in the process can interact

infinitely many times via the soft exchanges with the thermal background and they have

to be coherently resummed.

Since each type of singularity involves a resummation of the corresponding set of

infinitely many diagrams, there are two integral equations that need to be solved, each of

them associated with the corresponding type of singularity. We first focus on the physics

of number conserving processes which can be represented by a set of diagrams involving

the pinch singularities only. The case of collinear processes is discussed later.

2.5.1 The case without collinear singularities

2→ 2 processes are represented by rungs, which have to be inserted in the one-loop spectral

function and then resummed. Finding the structures of rungs is not trivial and to do so

one needs to rely on a few constraints: Ward identities, power counting and kinematic

boundaries. The most essential constraint is imposed by the Ward identities which provide

relations between the effective vertex and dressed propagators and also dictate the way to

maintain gauge invariance. Thus, the Ward identities should be used to obtain relations

between the full on-shell imaginary part of the self-energy and possible rung insertions.

This is discussed for QED transport coefficients in [51, 52] and for any SU(M) one should

expect similar relations. Accordingly, one can reproduce corresponding rungs by cutting

the two-loop self energy diagrams in all possible ways and then opening one line in every

diagram in all permissible ways. In figure 6 we show one schematic example. The two-loop

diagram in figure 4a) is cut through the two loops and the cross denotes lines which are

open. In this way one gets two possible topologies of a rung. The lines which are cut, but

not open, represent particles put on shell. Similarly, the external lines represent thermal

on shell excitations. By opening the cut lines one reproduces 2 → 2 scattering processes

shown in the right column in figure 6. Therefore, the first row shows how to obtain t and

u channels of scattering events, they are obtained from the same rung but with a different

momentum flow along the rung, which is not shown explicitly. The second row presents

how one gets the s channel.

The topological structures obtained by using this procedure are depicted in figure 7.

First, only the diagrams a)-e) in figure 4 of the two loop gluon self energy have to be

examined when looking for the topological structures of rungs. The diagrams g) and h)

of figure 4 are tadpole diagrams with one-loop corrections and they contribute to the real

part of self energy. The diagram f) is the one-loop diagram with a tadpole correction

– 20 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
5

Figure 6. The procedure of opening one line of the two-loop self-energy to reproduce rungs. The

dashed line is the cutting line and the cross denotes the open line. The last column shows the

scattering processes corresponding to the rungs shown.

a) b)

k)j)i)h)

g)c) f)e)d)

l)

Figure 7. The topological structures of rungs obtained by cutting the two-loop self energy.

The dashed and dotted lines represent the allowed and forbidden cuts, respectively, through the

diagrams.

and it also provides a contribution to the resummed propagator. Therefore, in general, all

diagrams containing tadpoles do not have to be investigated any more for this qualitative

analysis. For the power counting analysis one should include all rungs which have g4
YM

factor coming from the interaction vertices and which have one closed loop contributing

a factor of M . The other factor of M , expected for the proper ’t Hooft coupling order

is obtained when the external lines of rungs on the right-hand side are joined with other

rungs or with each other. What is more, in figure 7 we present all topological structures

arising only from the use of the Ward identity. The final relevant contributions to the

kernel of the integral equation can be, however, found by using kinematic constraints and

power counting arguments. The kinematic constraints are schematically represented by the

dashed and the dotted lines. The dashed lines represent the cuts through rungs which are

allowed by kinematics. The dotted lines, although coming from the Ward identity analysis,
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Figure 8. Rungs a), f) and h) from figure 7 shown with momentum convention and one out of

many r and a assignment.

reflect forbidden processes since one on-shell massless particle cannot decay into two on-

shell masslesss particles. Therefore, the structures k) and l) in figure 7 do not contribute to

the kernel. Accordingly, only diagrams a)-j) constitute the kernel of the integral equation

determined by the pinching singularity and they all contribute at the order O(λ2). It is also

easy to observe that all the contributing rungs with the associated cuts may be converted

to reproduce matrix elements in the scattering amplitude defining the collision term of the

Boltzmann equation. The rungs a) and b), shown also in figure 6, represent a contribution

to the scattering amplitude squared given by t, u, and s channels. The diagram c) leads

to the respective contribution from the contact interaction. The diagrams d)-j) reflect

possible interference terms.

At hard scale all allowed rungs contribute at the order O(λ2), where it is enough to

count the number of interaction vertices and the number of color loops. To see the relevant

M -dependence it is more convenient to count closed loops of the spectral function shown

in figure 1a) with the rungs inserted.

When the soft scale starts to play a role power counting of the diagrams presented in

figure 7 can change and not all diagrams are of the same size. The rung c) is not affected

by the soft physics since all lines must be hard and on-shell. To do power counting of other

diagrams with momenta of the order O(
√
λT ), we use the (r, a) basis. It is important to

notice that there can be many diagrams of the same topology but with different a and r

assignment and of different kinematic constraint; we discuss only a few exemplary cases. In

figure 8 we show diagrams from figure 7, where the a and r positions and the momentum

convention are shown explicitely.

The expression corresponding to the rung a) is:

Ka ∼ λ2

∫
d4l

(2π)4
Gra(l)Gar(l)Grr(k + l)Grr(p+ l). (2.28)

The size of the rung is estimated as follows. All incoming and outgoing momenta are hard,

k ∼ p ∼ O(T ), and on-shell, while the loop momentum l is soft l ∼ O(
√
λT ) and off-shell.

In this case both Gra(l) and Gar(l) propagators are of the order O(λ−1T−2). Additionally,

since both Grr(k + l) and Grr(p+ l) are on-shell they contain delta functions to maintain

energy-momentum conservation. When the loop momentum integration is performed the

phase space d4l combined with the delta functions reduces to d2l, which is O(λT 2) when l is
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soft. Combining all these factors one gets λ2 from the explicit interaction vertices, λ from

a phase space suppression and λ−2 from two soft propagators which make this rung to be

of the order O(λ). The rung has therefore a different size at the soft scale than at the hard

one, which is due to the Coulomb divergence characteristic for these scattering processes.

This is, however, only a superficial difference since there is an additional mechanism which

makes this rung contribute to the integral equation at the expected O(λ2) order. The

best way to see it is to refer to the 2 → 2 collision kernel of the Boltzmann equation [50],

which is:

Cgg→gg(k) =
1

32

∫
d3p

Ep(2π)3

d3k′

Ek′(2π)3

d3p′

Ep′(2π)3
|M(k, p; k′, p′)|2(2π)4δ4(k + p− k′ − p′)

×n(k)n(p)(1 + n(k′))(1 + n(p′))[χ(k) + χ(p)− χ(k′)− χ(p′)], (2.29)

where the functions χ represent a small nonequilibrium deviations from the Bose-Einstein

distribution function. When 2→ 2 scattering processes represented by rungs a) and b) in

figure 7 occur in the medium via the soft momentum exchange, which is when k− k′ = l,

with l ∼
√
λT , then one encounters the following cancellation between the χ functions:

χ(k)− χ(k′) = −l · ∇χ(k) +O(l2). (2.30)

The prescription dictated by the Kubo formula has similar structure to the Boltzmann

equation [32], where the term [χ(k)+χ(p)−χ(k′)−χ(p′)] needs to be squared to compute

any transport coefficients from the Boltzmann equation. This introduces additional power

of λ from the soft momentum and softens the contribution of rung a) so that its final size

is O(λ2). An analogous mechanism applies to the diagram b) where the two vertical soft

lines cause λ−2 enhancement, the explicit vertices and the phase space introduce λ3 and the

Boltzmann equation structure (2.30) - the factor λ, which altogether give the size O(λ2).

We also need to evaluate the interference terms, that is, the rungs d) - j). They are all

of O(λ2) order when the off-shell exchange momentum is soft. To see this we first consider

the rungs f) and g) (for the notation of the rung f) see figure 8). They both contain one

propagator with a soft momentum l whose contribution is O(λ−1), but this is canceled by

an additional phase space suppression. Due to combination of two delta functions in the

propagators Grr(k + l) and Grr(p + l) with the phase space d4l, the latter one is reduced

to d2l which leads to d2l ∼ O(λ). When assessing the size of the rungs h), i) and j) the

same arguments hold as before. The rung h) is shown in figure 8) and the corresponding

expression is:∫
d4p

(2π)4
Kh ∼ λ2

∫
d4p

(2π)4

∫
d4l

(2π)4
Gra(l)Grr(k + l)Grr(p+ l)Gra(p− k). (2.31)

The soft propagator Gra(l) introduces O(λ−1) and the number of integrals over the loop

momentum is reduced as previously so that we are left with d2l ∼ O(λ). These two

factors cancel each other leaving the rungs O(λ2). In rungs d) and e) the vertical line

represents the soft propagator which is λ−1. Including further the phase space suppression

and the couplings from the explicit interaction vertices, one gets this rung of the expected

O(λ2) size.
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Figure 9. The procedure showing how the number changing processes with a soft gluon exchange

are reproduced from the two-loop self-energy. The dashed line is the cutting line, the black cross

denotes the line opened to reproduce rungs, and the shaded line denotes a propagator with a soft

momentum, which contains the hard thermal loop correction.

2.5.2 The case with collinear singularities

Number changing processes contribute at the same order as 2 ↔ 2 processes (up to log-

arithm). They are entangled in the same topological structures as number conserving

processes, shown in figure 6, but emerge under different kinematic conditions. The mech-

anism responsible for their occurrence is also more complicated than the one discussed

above and it is fully controlled by soft physics. Here we briefly and qualitatively discuss

how they emerge and evaluate their sizes.

Collinear processes occur when one hard particle splits into two hard particles with an

accompaniment of a soft gluon exchange with the thermal medium [71–73]. The topological

structures corresponding to these processes can be obtained in the procedure shown in

figure 9. As presented, the rungs representing collinear processes are reproduced by opening

one outer line of the two-loop self-energy. The line which is open is denoted by the black

cross in the figure. The internal (shaded) lines of the self-energy represent propagators

with soft momenta. They contain the hard thermal loop corrections, which is not shown

explicitly in the two first columns of figure 9. Thus, whenever the cut is through the

soft line it means that the hard thermal loop is cut. Consequently, all the cut lines and

the external lines are hard and nearly on-shell. Specifically, in contrast to the number

conserving processes, the thermal masses in the respective propagators must be included.

To evaluate the size of the processes in figure 9 we consider in detail the rung shown

in figure 10, reproduced with a and r positions and momentum convention. As before

there is more than one layout of the a and r assignment and a complete analysis of the
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Figure 10. The rung representing gluon splitting shown with the momentum convention and a

and r assignment.

kernel of the spectral function has to include all possibilities. The size of this rung can

be evaluated similarly to the case where collinear singularities are absent, but the power

counting is more subtle. First, it is important to point out that whenever a soft line appears

in the rung, it must be Grr propagator since it carries the distribution function to account

for the interaction with the medium. Grr propagator, by contrast to other propagators,

introduces 1/
√
λ enhancement in the soft momentum region. Moreover, the process under

consideration is in the collinear regime when there is a pair of the adjacent retarded and

advanced propagators with respect to a given momentum. If these propagators were bare

their product would produce a singular behavior as their poles would nearly pinch the real

axis in the contour integration. This is, however, cured by the inclusion of the self-energies,

which leads to a finite expression. As in case of pinching pole approximation, diagrams

containing the products GraGra or GarGar instead of GraGar for the same momentum give

much smaller contribution to the whole expression and can be neglected in the leading

order analysis.

The expression corresponding to the rung shown in figure 10 is:∫
d4k

(2π)4
(. . . )

∫
d4p

(2π)4
K(k, l, p)(. . . ) (2.32)

∼ λ2

∫
d4k

(2π)4
(. . . )

∫
d4p

(2π)4

∫
d4l

(2π)4
Grr(l)Gar(l + k)Gra(l + k)Grr(l + k − p)(. . . ),

where (. . . ) means the contribution from the external propagators, which is not needed to

be shown explicitly. As mentioned, the external momenta are hard and nearly on-shell,

k ∼ p ∼ T and k2 ∼ p2 ∼ O(λT 2), while the loop momentum is soft l ∼
√
λT . In this

kinematic region the integral over the loop momentum is dominated by dl0 ∼ O(λT ) in

the frequency region, and d3l ∼ O(λ3/2T 3). What is more, Gra(l + k) and Gar(l + k)

propagators are both O(λ−1) since they are dressed with the self-energies to cure pinch

singularities. Additionally, since Grr(l + k − p) is in the collinear regime with Gar(l + k),

it is also dressed and is of the order O(λ). The properties of propagators impose that

(l+ k)2 and (l+ k− p)2 are O(λT 2) and the same holds for (l)2, which is soft and dressed

with the HTL correction. These conditions are, in turn, equivalent to the fact that the

angles between all participating particles are parametrically small so that they all propagate

collinearly. The small angles are therefore θkl ∼ θpl ∼ O(
√
λ). The constraints on the angles

impose constraints on the phase spaces, which is, d3p ∼ |p|2d|p|sinθpldθpldφ ∼ O(λT 3) and
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Figure 11. The procedure showing how to obtain topological structures of rungs representing

the interference terms between the number changing processes in the collinear regime. Only few

representative structures are shown.

d3k ∼ |k|2d|k|sinθkldθkldφ ∼ O(λT 3). The loop momentum l must be spacelike and since

it is soft there is an additional Bose-Einstein enhancement making Grr be of the order

O(λ−3/2). Combining all these powers of λ and the couplings coming from the explicit

interaction vertices combined with the closed color loops one finds this rung to be O(λ2).

The presence of the self-energy in Gar(l+k) and Gra(l+k) propagators signals further

interactions, which have not yet been explicitly shown nor discussed. In fact one can attach

other lines to the side rails of the rung to reproduce processes involving a larger number

of participating excitations. For example, one could add a hard line so that to obtain a

double gluon emission. Such a process is however subleading [50]. One could also add

many soft lines to reflect the process of a hard excitation interacting many times with the

medium via a soft exchange and then ending up with splitting into two hard particles.

Attaching any number of soft lines to the side rails is possible and they all contribute O(1)

corrections. These processes, however, do not need to be explicitly included inside the

diagram in figure 10 since they are resummed within the integral equation for the bulk

viscosity. Also, apart from the pair of propagators with pinching poles, there is also a pair

of Gar(l + k) and Gra(l + k − p) propagators, which contain nearly pinching poles, where

other insertions are possible. We do not examine them here since they are a part of the

forthcoming collinear analysis, which investigates the emergence of an effective vertex in

the collinear regime.

In figure 9 we depicted how one can reproduce the collinear processes when one soft

line appears in the two-loop self-energy. The rightmost column in figure 9 presents the

squares of amplitudes of these processes. For the entire analysis to be completed one also

needs the interference terms. The leading order interference terms, which contain number

changing processes, are those with only 3-gluon vertices; diagrams with 4-gluon vertices

are suppressed. The diagrams in question are shown in figure 11. The figure presents the

procedure of opening one cut line of the self-energy to reproduce the topological structures

representing interference terms between collinear processes. To reproduce number changing
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Figure 12. A typical interference rung containing nearly collinear singularities.

processes the cutting line has to go through 3 lines of the 2-loop self-energy including the

soft (shaded) line (as shown in figure 11). The line which can be open is the cut line which

is a part of the side rails. Opening the internal (vertical) line would mean opening all color

loops and it would lead to emergence of nonplanar diagrams, which are suppressed in large

M limit. One can also cut the self-energy so that the soft line remains uncut. Diagrams

obtained in this way could only represent number conserving processes. In figure 11 we

show only a few typical topologies with respect to the position of the soft line. One can also

realize that the same structures, but inverted upside down, are also possible. The latter

ones would be the complex conjugates of those shown in figure 11. The interference terms

are essentially the sums of the rungs shown in figure 11 and their complex conjugates.

Additionally, all structures shown can have different momentum and a and r assignment

and the full computation of the imaginary part of the spectral function requires summation

over all possibilities.

To show that collinear splittings occur at the same order as 2 → 2 processes we

examine one representative rung depicted in r, a basis in figure 12. Other rungs with

collinear singularities can be considered analogously. The expression corresponding to this

rung is∫
d4k

(2π)4
(. . . )

∫
d4p

(2π)4
K(. . . ) (2.33)

∼ λ2

∫
d4k

(2π)4
(. . . )

∫
d4p

(2π)4

∫
d4l

(2π)4
Grr(l)Grr(l − k + p)Gar(l + p)Gra(p− k)(. . . ),

where (. . . ) stands for the insertion of propagators corresponding to the incoming and

outgoing states and we also included integrals over all momenta since pairs of propagators

with respect to all momenta can have nearly pinching poles in the collinear regime. In this

particular case there are three such pairs: Grr(l−k+p)Gar(l+p) ∼ Gra(l−k+p)Gar(l+p),

Gra(k)Gra(p−k) and Gar(p)Gra(p−k), which have singularities with respect to momentum

l, k, and p, respectively. Notice that in case of k momentum integration the propagators

which have pinching poles are both denoted as Gra due to the notation and assignment of

r and a with respect to p in figure 12. However, taking into account that Gra(p − k) =

Gar(k− p) one obtains the expected Gra(k)Gar(k− p) responsible for the emergence of the

singularity. Due to all these constraints Grr(l), Grr(l − k + p), and Gra(p− k) have to be

dressed and therefore they all are of O(λ−1). In the leading order analysis l has to spacelike,

and thus Grr(l) is O(λ−3/2). All these properties of propagators have their equivalence in
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Figure 13. Different possible ways of adding a soft line between the propagators with nearly

pinching poles, which do not change the size of the rung. The momentum and a and r convention

is the same as in figure 12.

the kinematic constraints, which reflect collinearity conditions, namely, small scattering

angles θkp ∼ θkl ∼ θpl ∼ O(
√
λ). These, in turn, limit the respective phase spaces to

d3k ∼ d3p ∼ O(λ) and d3l ∼ O(λ3/2). Additionally, the integral over dl0 is dominated by

the narrow frequency width, ∼ O(λ). Collecting all powers of coupling constant one finds

this rung to be O(λ2).

When assessing the size of the rung in figure 12 one can realize that the enhancement in

the rung’s size coming from the collinear singularities is always balanced by the suppression

coming from the phase space caused by the small scattering angle. Given that, there are

more effects that need to be included in the leading order evaluation. One can attach

infinitely many soft lines to a given pair of propagators with nearly pinching poles and

still get the rung at the same order. This is schematically shown in figure 13, where a

few exemplary insertions of a soft line are shown (the r, a positions and the momentum

convention is the same as in figure 12). The insertion of soft lines in the leading order is

governed by a few rules. The lines have to be Grr propagators and they cannot cross each

other since they must be ordered in time and coherent. Moreover, their insertion must

follow the standard a and r assignments so that one has to have an odd number of a in

a given vertex. Also, a pair of propagators with the nearly pinching poles must appear,

otherwise the rung is suppressed by some powers of λ. If all these rules are kept then

attaching Grr soft line to the pair of lines with the nearly pinching poles always introduces

λ−3/2 from the very size of the propagator, λ from the two explicit interaction vertices

and a closed color loop, a pair of new propagators with the nearly pinching poles with the

contribution O(λ−2) and a phase space suppression d4l′ ∼ λ5/2. Altogether the insertion

is O(1) and thus infinitely many soft lines can be added in this way without changing the

size of the rung. All possibilities have to be resummed and such a procedure reflects the

diagrammatic representation of the LPM effect.

The resummation of all possibilities of adding a soft line to a given rung is most

efficiently done by finding an effective vertex. The vertex involves three hard and nearly

on-shell lines, where all possible insertions of a soft line are included. One exemplary vertex

in (r, a) basis is shown in figure 14, where one soft line can be added in 3 possible ways.

There are more such combinations since r and a can have a different layout. One has to

include all of them to perform a full analysis and sum over all possible insertions of the

soft line.

An inclusion of all possible combinations reflects the need for an integral equation,

which needs to be solved to find a form of the effective vertex. The solution should be
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Figure 14. One out of many vertices in (r, a) basis which has to be considered in the collinear

splitting analysis. Shown are also different possibilities of adding a soft line between a pair of

propagators with nearly pinching poles.

Figure 15. The integral equation for bulk viscosity in the SU(M) theory.

Figure 16. The kernel of the integral equation with possible topological rung insertions. The

rungs are shown schematically and the distinction between number conserving and number changing

processes (or soft and hard momenta) is not denoted explicitly here since both these classes come

from the same topological structures.

Figure 17. Integral equation for the effective vertex characteristic of the collinear splittings. The

hard and soft momenta are not distinguished.

then inserted in the kernel of the integral equation established by the pinch singularities.

This approach is, however, demanding within quantum field theory approach. The only

essential point to notice is that insertion of any number of soft lines does not change the

size of the vertex nor, consequently, the size of a rung where the effective vertex appears.

2.6 Integral equations

The bulk viscosity is controlled by the elementary scattering processes entangled in rungs

discussed above and both 2 → 2 and effective 1 → 2 processes between gluons contribute
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at the same order in the ’t Hooft coupling λ. For a quantitative computation of the bulk

viscosity coefficient all diagrams representing scattering events have to be resummed, which

leads to the relevant integral equations. For the prescription given by the Kubo formula

the integral equation is shown schematically in figure 15. The kernel of the equation is

presented in figure 16. It includes 2 → 2 processes and effective 1 → 2 processes as

well. For number changing processes another integral equation needs to be solved. It is the

equation for the effective vertex and is shown schematically in figure 17. The shaded regions

denote resummed parts. For this schematic representation of the integral equations we do

not distinguish between the propagators with hard and soft, HTL resummed, momenta,

but it can be easily done taking into account the discussion in section 2.5. In general,

the leading order analysis requires all propagators and vertices to be dressed with the self-

energies. In the last diagram in figure 16 effective vertices are shown explicitely. They

must be used in the leading order analysis as arbitrary many coherent interactions with

the medium through the soft momentum exchange occur. The rung is thus responsible for

the interference terms as well as it reflects the LPM effect for the effective 1 → 2 processes.

The analytical computation of the bulk viscosity spectral function in terms of quantum

field theory tools is very challenging and only qualitative picture can be sketched. The same

physics is, however, embodied in the Boltzmann equation as long as the same elementary

processes govern its collision kernel. As has been examined in this section, both 2 → 2

and 1→ 2 processes can be reproduced from the planar diagrams of the spectral function.

Both classes of processes occur at the same order and so contribute to the kernel of the

Boltzmann equation, discussed in detail in refs. [24, 49, 50]. It therefore justifies that the

collision kernel of the Boltzmann equation captures the same physics as the kernel of the

spectral function, shown in figure 16, and serves as a convenient way to compute transport

coefficients. In particular, the analysis justifies the employment of the Boltzmann equation

to calculate the bulk viscosity coefficient of the SU(M) theory, as carried out in ref. [30]

and summarized in section 2.2 of this manuscript.

2.7 Alternative diagrammatic approaches

In the previous subsections we discussed how to justify the Boltzmann equation using stan-

dard diagrammatic techniques. There are, however, other alternatives such as Kadanoff-

Baym and the nPI (n-particle irreducible) formalisms, which deal with the Green function

techniques to study real-time dynamics. Kadanoff-Baym equations [82] is a set of coupled

equations of motion for two-point real-time Green functions, where terms with self-energies

determine the system’s dynamics. They, in general, hold for nonequilibrium situations and

capture quantum effects, for a review see [83]. Using a number of approximations one is

able to derive a set of kinetic equations, see for example [84]. To compute any physical

quantity one needs to specify the form of self-energy. As long as the coupling is weak,

the analysis of the self-energy of a theory under consideration is uniform for different ap-

proaches at a given coupling order and holds for nPI formalism as well. Let us, therefore,

focus on the latter approach in more detail.

The nPI formalism allows one to study systems close to thermal equilibrium, which

involves perturbative calculations, as well as it provides an efficient way to analyze far-
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from-equilibrium dynamics and to include nonperturbative effects, see [85, 86] and for a

review [87]. In general, the formalism relies on the effective action Γ, which is the generating

functional for all correlation functions of the quantum theory. In practical calculations,

one does not have to know the most general form of Γ to reproduce all Green functions for

arbitrarily large n, but, due to the equivalence hierarchy between different nPI effective

actions, the expansion series can be truncated at a given loop order. For example, a self-

consistent two-loop order approximation of a given quantity is completely captured by the

2PI effective action and all (n > 2)PI effective actions are equivalent to it, analogously,

three-loop order approximation is well described by the 3PI formalism. The method has

been, in particular, successfully employed to compute transport coefficients of different

systems. The shear and bulk viscosities of the real scalar λφ4 theory were computed in

ref. [88] from the closed-time-path 2PI effective acion truncated at the four-loop order.

In [89] the shear viscosity and the electrical conductivity of gauge theories were obtained

in large Nf limit to next-to-leading order in the 1/Nf expansion. Later, the electrical

conductivity of QED was obatined in refs. [90] and [91] using 2PI and 3PI effective action,

respectively. The shear viscosity of QCD was calculated in ref. [92], where the analysis to

derive the matrix elements of the collision kernel of the Boltzmann equation is equivalent

to the one discussed in this manuscript in the leading order of ’t Hooft coupling. Below

we briefly summarize the basics of the nPI methods which lead to calculation of the shear

viscosity coefficient.

To analyze processes which determine the collision kernel of the Boltzmann equation

in the full leading order one needs to start with the 3PI effective action. As discussed

above, the quark contribution is subleading in the ’t Hooft coupling expansion, so we do

not include it here as well, and the 3PI effective action (in the Feynman gauge) can be

written as [92]:

Γ[A, η, η̄, G,∆, U, Y ] = Scl[A, η, η̄] +
i

2
Tr logG−1

12 +
i

2
Tr[(G0

12)−1(G21 −G0
21)]

−iTr log∆−1
12 − iTr[(∆0

12)−1(∆21 −∆0
21)]− iΦ[A,G,∆, U, Y ],

(2.34)

where A and η, η̄ are the gluon and ghost fields, respectively. The notation is compactified

so that the Lorentz and color indices are not shown explicitely and the indices 1 and 2 refer

to the time positions on the contour of the closed-time-path formalism. Scl is the classical

action defined by the Lagrangian density (2.3) adjusted to the Feynman gauge, that is,

when the gauge fixing term and the ghost term are included. G0 and ∆0 are the free gluon

and ghost propagators and G and ∆ are the full ones. U and Y are the self-consistent

3-gluon and gluon-ghost vertices. Φ is the sum of all 3-particle irreducible diagrams, which

contains the most essential information on the dynamics.

The free propagators as well as the free vertices are given by:

(G0
12)−1 = −i δ2Scl

δA2δA1
, (∆0

12)−1 = −i δ
2Scl

δη2δη̄1
, (2.35)

Ω0
132 = −δ(G

0
12)−1

δA3
, Θ0

132 = −δ(∆
0
12)−1

δA3
, M0

1234 = −δ
2(G0

12)−1

δA4δA3
, (2.36)
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where Ω0
132,Θ

0
132 and M0

1234 are the 3-gluon, gluon-ghost, and 4-gluon vertices. The free 3-

gluon and gluon-ghost vertices belong to respective chains of resummed vertices: Ω132 and

Θ132. To obtain building blocks of the integral equations needed to resumm all diagrams

at the leading order one needs to consider the equations of motion of the mean fields,

propagators, and vertices. They are obtained from the stationarity of the action:

δΓ

δA
=
δΓ

δη
=
δΓ

δη̄
= 0, (2.37)

δΓ

δG
=
δΓ

δ∆
= 0, (2.38)

δΓ

δU
=
δΓ

δY
= 0. (2.39)

These condtions are, however, not satisfactory to maintain the Ward identity for vertex

functions associated with the gauge symmetry of the theory. The problem appears as a

result of the truncations of the effective actions at a given order and the use of inconsistent

approximation scheme, see, for example [93, 94]. The solution to obtain gauge independent

quantities and preserve the Ward identities is to rely on the resummed effective action [95–

99], which provides properly resummed vertices. The resummed effective action Γ[A, η̄, η]

depends only on the expectation values of fields meant as:

Γ[A, η̄, η] = Γ[A, η̄, η, G̃[A, η̄, η], ∆̃[A, η̄, η], Ũ [A, η̄, η], Ỹ [A, η̄, η]], (2.40)

where G̃, ∆̃, Ũ , Ỹ are the self-consistnet solutions which are obtained simultaneously when

performing eqs. (2.37)–(2.39). The equivalence of (2.40) with eq. (2.34) holds at the ex-

act level.

Having given the 3PI formalism one proceeds to obtain integral equations and prescrip-

tion to reproduce matrix elements of the collision kernel. The whole procedure is presented

in ref. [92] and its main ingredients are as follows. As mentioned, there are two types of

sets of vertices. The first one contains Ω and Θ, which are defined by functional derivatives

of the self-consistent solutions with respect to field expectation values, that is, by analogy

to their free counterparts, see eqs. (2.36). Using next the equations of motion (2.38) and

the effective action (2.40) one obtains the integral equations for Ω and Θ vertices. The

kernels of these integral equations contain already topological rungs shown in figure 7 (and

also respective rungs with ghosts). These effective vertices carry therefore information on

both the pinching and collinear singularities. The latter ones are indeed taken into account

due to very structure of the integral equation for the effective vertices. The other set of

verices includes self-consistent vertex functions U and Y . These are defined by functional

derivatives of the resummed effective action with respect to field expectation values. The

corresponding integral equations are obtained directly from the equations of motion given

by (2.39). The role of U and Y veritces is mainly to supply the consistency of the procedure

so that some diagrams produced in Ω and Θ configurations are cancelled and thus double

counting is avoided. In the end, the procedure of dealing with the set of these coupled

equations for vertex functions shall be equivalent to the analysis discussed in the previous

parts of this section.
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3 Bulk viscosity at intermediate coupling

In the previous section, we have discussed the behavior of the bulk viscosity in the SU(M)

gauge theory in the weak coupling limit. In the next sections, we will discuss the strong

coupling behavior. In these two limits, we have well defined calculational tools, perturba-

tion theory in the case of the weakly coupled limit and the AdS/QCD correspondence in

the strongly coupled limit. When the coupling is neither weak nor strong the only reliable

QCD results are from Euclidean Lattice QCD (LQCD) calculations. Unfortunately, direct

extraction of viscosities from LQCD is very nontrivial since viscosities have to do with

dissipation in real time while LQCD calculations are inherently static. Of course, if one

can calculate full Euclidean correlation functions, they can be analytically continued to

real time correlation functions. But since only discrete and finite number of data points

are available from LQCD, this procedure in practice introduces large uncertainties.

In literature, efforts were made to extract information on the bulk viscosity from LQCD

results using sum rules [36–38, 53–56]. In this section, we summarize the main points and

point out why it is difficult to get any information on the bulk viscosity from the sum rules

in particular and from LQCD results in general.

Extraction of the bulk viscosity from the sum rule relies on the Kubo formula for the

bulk viscosity ζ:

lim
ω→0

ρPP(ω,0)

ω
=
ζ

π
, (3.1)

where ρPP is the spectral density for the pressure-pressure correlator. Hence one may

expect that the bulk viscosity can be extracted from a sum rule involving ρPP(ω,0)/ω.

Equivalently, it may be able to extract ζ from a sum rule involving the correlation function

of the trace operator Θ̂ = T̂µµ = T̂ 00−3P̂ because the energy-momentum conservation laws

dictate that the zero wavenumber limit of T̂ 00 correlators vanish. Note that different forms

of the trace operator can be used and they were briefly discussed in the previous section.

In ref. [37], low energy sum rules for the stress-energy tensor trace, Θ = Tµµ , were

derived and the following result was established:∫ ∞
0

dω

π

ρΘΘ(ω,0)

ω
=

(
T
∂

∂T
− 4

)
〈ΘG〉T + (quark contribution), (3.2)

where ΘG is the gluon contribution to the stress-energy tensor trace and ρΘΘ is the spectral

density for the ΘΘ correlation function.7 As we have argued in the previous section, the

quark contribution is negligible in the large M limit and we will not consider it here, either.

Consequently we will drop the subscript G. The trace average is:

〈Θ〉T = (ε− 3P ) + 〈Θ〉0 (3.3)

where 〈Θ〉0 is the vacuum contribution.

7In literature, the definition of the spectral density varies. In this paper, we use the definition ρΘΘ(x) =

〈[Θ̂(x), Θ̂(0)]〉. The spectral density in ref. [37] (ρKT) and in ref. [53] (ρRS) are related by ρΘΘ = 2ρRS =

2πρKKT.
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In ref. [53], re-derivation of the results with the direct subtraction of the vacuum

spectral density led instead to:∫ ∞
0

dω

π

δρΘΘ(ω,0)

ω
=

(
3s

∂

∂s
− 4

)
(ε− 3P ) , (3.4)

where δρΘΘ(ω,k) = ρT (ω,k)− ρ0(ω,k) is the deviation from the vacuum spectral density

at finite temperature T . The difference between the two sum rules was attributed to the

non-commutability of the limits limω→0 and limk→0, see [53]. In ref. [55], the sum rule

eq. (3.4) is re-cast as:∫ ∞
0

dω

π

δρ∗(ω,0)

ω
= 3(1− 3c2

s)(ε+ P )− 4(ε− 3P ) (3.5)

where ρ∗ is the spectral density for the operator Θ̂∗ = T̂µµ − (1 − 3c2
s)T̂

00. The spectral

density of the operator Θ̂∗ satisfies the same Kubo formula but has an added benefit that

the limits limω→0 and limk→0 commute.

The right hand side of the sum rule (3.5) can be evaluated using the LQCD results. If

one can then show that the left hand side is a well defined function of the bulk viscosity then

these sum rules may be used to determine the bulk viscosity in the region of temperature

where LQCD calculations can be performed.

A first attempt at relating the sum rule integral (the left hand side of eq. (3.5) to the

bulk viscosity was carried out in [36, 37]. In ref. [37] the following ansatz was introduced:

δρ∗(ω,0)

ω
=

9ζ

π

ω2
0

ω2
0 + ω2

, (3.6)

which does satisfy the Kubo formula and makes the sum rule integral in the left hand side

of eq. (3.5) proportional to ζω0. However, this form lacks contribution from frequencies

higher than the unknown parameter ω0, see ref. [81]. It turned out that the high frequency

contribution is actually negative that largely cancels the low frequency contribution.

The fact that this ansatz is not adequate has been shown by [38, 53, 55] both perturba-

tively and non-perturbatively. The biggest problem is that the right hand side of eq. (3.5)

is negative while eq. (3.6) makes the left hand side strictly positive. This difference can

be attributed to the the presence of the glueball [55]. Hence, the sum rule eq. (3.5) is not

particularly useful since it cannot be definitely established that the dominant contribution

to the sum rule integral comes from the low frequencies.

If one cannot rely on the sum rule, then one needs to obtain the spectral density

directly from LQCD calculations at least in the k = 0 and |ω| � T limit. This is not

an easy task as it involves analytic continuation when only a finite number of data points

in the Euclidean space is known. First attempts in this direction were made in [54, 55],

which does show that δρ∗(ω,0)/ω has a peak at ω = 0. Unfortunately, actual values and

behavior of ζ/s obtained in this way contains too much uncertainty at this point. All one

can conclude from the LQCD studies right now is that ζ/s = O(10−2) − O(10−1) within

Tc < T < 1.65Tc.
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Figure 18. The three different regimes of interest used here to study bulk viscosity. The yellow box

denotes the regime of kinetic theory, the green box denotes the regime of LQCD, and the blue box

denotes the regime of string theory. All these regimes are analyzed at high temperatures, i.e above

the deconfinement temperatures, and the regular RG flows connecting the yellow and the green

boxes are denoted by black curves. On the other hand, the cascading RG flows, that specifically

arise from string theory, are shown here in the blue box. All the three different RG flows lead to a

consistent picture at low energies connecting the weak, intermediate and strong ’t Hooft couplings.

However the UV pictures are very different, for example in the string side, i.e in the blue box, the

UV gauge group is a product gauge group and is at strong ’t Hooft coupling.

4 Bulk viscosity at weak string and strong ’t Hooft couplings with zero

flavors

In the previous section we studied the bulk viscosity at weak ’t Hooft coupling, and argued

how the ratio of the bulk to shear viscosities should be interpreted at both weak and strong

couplings. As mentioned therein, the strong coupling result depends on the existence of a

gravity dual of the resulting framework. Our aim here is to analyze SU(M) gauge theory at

various values of the ’t Hooft couplings and at high temperatures as depicted in figure 18.

The three regimes of interest are shown in figure 18: the yellow box denotes weak, the

green box denotes intermediate and the blue box denotes strong ’t Hooft couplings, all at

high temperatures. The theories governing each of the three dynamics are also varied as

we discussed above. The weak and the intermediate couplings are studied using kinetic

and LQCD, whereas the strong coupling will be studied using string theory. The latter

however is more elaborate because of its UV properties, and in fact differs quite a bit from

what we expect from kinetic theory and LQCD.

Let us start with the kinetic theory which was discussed in details earlier. The regular

RG flow of such a theory is governed by the black lines in figure 18. At low energies
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the YM coupling becomes very large and the theory confines. However if we increase the

temperature, the coupling can be made smaller. In fact at high temperature the ’t Hooft

coupling λ ≡ g2
YMM can become very small even for large M . This is of course the regime

where kinetic theory can be studied (see section 2 for more details), and is denoted by the

yellow box in figure 18. One can similarly go to the intermediate coupling regime, whose

dynamics is governed by LQCD.

What we now require is to understand the regime where the ’t Hooft coupling λ can

be very large for both weak and strong YM couplings. This is the regime where neither

kinetic theory nor LQCD can help us, and therefore the only way we can have any analytic

control is to use techniques of string theory. Of course when M , the number of colors, is

small even string theory cannot provide a controlled laboratory, so it is the large M limit

that can be tackled using stringy techniques. This is then the regime of gauge/gravity

dualities, i.e the dynamics at strong ’t Hooft in the gauge theory side may now be done

using a gravity dual description.

Clearly since string theory provides a UV complete picture, it is natural to ask what

UV completion would mean in the present set-up. However before we go about exploring

this side of the story, let us first elucidate the IR dynamics of the theory directly from the

gravity dual description. The gravity dual description was originally provided in [59] (see

also [64] for the mirror set-up which will be useful soon). In simple terms, the gravity dual is

given in terms of a resolved warped-deformed conifold with fluxes with an additional black

hole that provides the high temperature physics in the gauge theory side, i.e the physics

above the deconfinement temperature. In the absence of a black hole we expect minimal

four-dimensional supersymmetry (that may be broken too), whose simplest description

appear, on one side from wrapped D5-branes on a non-Kähler resolved conifold [63], and

on the other side from fluxes on a resolved warped-deformed conifold alluded to above [62].

The “resolution” parameter in the resolved warped-deformed conifold is responsible for the

UV completion, that we will discuss soon (see also [101] for a slightly different realization

of the same story). In the following we want to discuss the background as well as the

issue of supersymmetry, mostly for the IR part of the gauge theory. For simplicity we will

concentrate on the Baryonic branch of the gauge theory where is the issue of supersymmetry

is most prominently displayed. Later on, in section 4.1, we will concentrate on a more

specific point in the moduli space of the corresponding gauge theory.

In the Baryonic branch, generated by M wrapped D5-branes on a non-Kähler resolved

conifold [63], the gravity dual for the IR physics may be given by the following type IIB

background with three- and five-form fluxes [62]:8

ds2 =
1√
h
ds2

0123 +
√
h ds2

6,

F3 = cosh βe−2φ ∗6 d
(
e2φJ

)
, H3 = −sinh β d

(
e2φJ

)
,

F̃5 = −sinh β cosh β (1 + ∗10) C5(r) dψ ∧
2∏
i=1

sin θi dθi ∧ dφi, (4.1)

8From here onwards we shall be using (−,+,+,+) convention to express the metric. This differs from

the (+,−,−,−) convention used in sections 2 and 3.
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where (θi, φi, ψ) are the angular coordinates, β is the parameter of the Baryonic branch,

h is the warp-factor and J is the fundamental (1, 1) form that is not closed. We have

also denoted the dilaton by φ, and the five-form by C5. The internal metric ds2
6 can be

expressed as:

ds2
6 = H1 dr

2 + H2(dψ + cos θ1dφ1 + cos θ2dφ2)2 +

2∑
i=1

H2+i(dθ
2
i + sin2θidφ

2
i ) (4.2)

+H5 cos ψ (dθ1dθ2 − sin θ1sin θ2dφ1dφ2)

+H5 sin ψ (sin θ1dφ1dθ2 + sin θ2dφ2dθ1) ,

with Hi(r) being the additional warp-factors. Note that the two-spheres, denoted by

(θ1, φ1) and (θ2, φ2) have different curvatures governed by H3 and H4 respectively, and

their inequality will be responsible for UV completion. The complexified three-form flux

G3 then takes the following form [62]:

G3

cosh β
=
ie−2φM1

2
E1∧

(
E3 ∧ E3 − E2 ∧ E2

)
+
ie−2φM2

2
E1∧

(
E2 ∧ E3 − E2 ∧ E3

)
, (4.3)

where Mi are certain functions expressed in terms of the vielbeins whose form may be

ascertained from eq (2.113) of [62]. The Ei are defined with the following choice of the

almost complex structure:

(−ieφ tanh β, i, i), (4.4)

which is integrable9 for a constant dilaton, otherwise the three-form flux G3 is defined as

an ISD (Imaginary Self-Dual) form with respect to the almost complex structure (4.4).

Note that (4.3) is a (2, 1) form as one would expect from a supersymmetry-preserving

background. Additionally, the choice of the Baryonic branch tells us that the gauge group

is SU(2M)× SU(M), which is in fact one cascading step away from the confining SU(M)

gauge group that we seek! In the blue box of figure 18 this may be seen as the second-last

stage of the cascading RG flow before permanent confinement sets in.

One can also give a physical meaning to the Baryonic branch directly from the wrapped

five-brane picture. The SU(2M)×SU(M) gauge group implies that, along with M wrapped

D5-branes, we have M D3-branes too. The five-branes wrap the two-sphere parametrized

by (θ2, φ2). For vanishing size of the two-sphere, the M additional D3-branes preserve the

same supersymmetries as the M wrapped D5-branes. However if the two-sphere is of finite

size, supersymmetry is completely broken, and the only way to preserve supersymmetry in

this case would be to dissolve the D3-branes on the D5-branes.

Being on the Baryonic branch does not give a well-defined UV picture. We will still

need to find the UV completion of the model. This will be discussed a bit later, but note

that being in the Baryonic branch does tell us that if we make one Seiberg duality we will

land in the confining SU(M) gauge theory description. At non-zero temperatures, we will

require black holes in the gravity side of our story. Since this is the premise on which

9The β = 0 limit has to be studied separately as discussed in [62, 63].
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Figure 19. The two configurations, one in type IIB and the other in the M-theory uplift of type

IIA, on which all the computations of sections 4 and 5 respectively will be based upon. On the left is

the type IIB picture with the gravity dual given by a resolved warped-deformed conifold with fluxes.

On the right is the M-theory uplift of the type IIA gravity dual. The IIA gravity dual involes a non-

Kähler resolved conifold with fluxes, whereas the M-theory uplift is a seven dimensional manifold

with a G2 structure. The type IIB computations will be done at high temperatures, i.e above the

deconfinement temperatures, but with zero flavors. The type IIA, and also the M-theory uplift,

will take into account both high temperatures as well as non-zero flavors.

our calculations in this paper will be based on, let us elaborate the story a bit more. At

zero temperature, the duality sequence that we shall use is laid out in figure 19. On the

bottom left corner, i.e box (a), is the gauge theory configuration discussed in [59, 63] with

M D5-branes wrapped on the two-sphere parametrized by (θ2, φ2). This is a non-Kähler

resolved conifold because at r = 0 there is a resolved two-sphere parametrized by (θ1, φ1).

The usefulness of such a configuration will be spelled out a little later. The wrapped D5-

branes on the non-Kähler resolved conifold give rise to the gravity dual background which

is a non-Kähler deformed conifold with three-form fluxes, much in the lines of (4.1), (4.2)

and (4.3) and is given by box (b) in figure 19. The computations performed in section 4

will be based on this configuration, albeit with a black hole that will signify non-zero

temperature, but with no flavors.

A mirror transformation, a la Strominger-Yau-Zaslow [65], on both the type IIB boxes

of figure 19 will produce the IR type IIA background whose gravity dual configuration

involves a non-Kähler resolved conifold with fluxes, as shown in box (d) in the figure. The

M-theory uplift of this is given in the top right-hand box of figure 19, i.e box (e), which is a

seven-dimensional G2 structure manifold with G-fluxes [64]. Our computations in section 5

will be based on this specific M-theory manifold albeit, again, with non-zero temperatures

– 38 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
5

but now including non-zero flavors. Interestingly for the spectral function computation of

section 6, we shall resort back to the type IIA picture.

Let us now come to the UV completion of these models that we alluded to earlier.

In the type IIB side, this was first discussed in [59], but a full elaborations on the actual

ingredients that constitute the UV degrees of freedom were given in [60] and [61] and

were named Regions 3 and 2 in [60]. We expect the UV theory to be a strongly coupled

conformal field theory, as this would be the closest to being asymptotically free. The

reason for choosing a CFT — and not an asymptotically free theory — as the UV theory

is because we require strong ’t Hooft coupling to allow for a gravity dual. In fact, a

gravity dual description only exists if the corresponding gauge theory is strongly coupled

at all scales, i.e strongly coupled from UV to IR. For large but finite number of colors,

this means that the requirement for asymptotic freedom is not quite compatible with the

existence of a gravity dual. Therefore the closest we can come to asymptotic freedom is to

allow for a CFT in the UV. In the limit of infinite number of colors, the ’t Hooft coupling

can be very large, yet the YM coupling can be made arbitrarily small.

One specific choice of a UV group that could lead to a CFT is SU(N+M)×SU(N+M),

where we have introduced an extra parameter of N . In the present context, the choice of

N has a special meaning. In the type IIB theory, N signifies the number of D3-branes

whereas M is the usual wrapped D5-branes. The two-cycle on which the D5-branes wrap,

i.e the two-cycle parametrized by (θ2, φ2), should now be of vanishing size to preserve

supersymmetry. In the blue box of figure 18, we have denoted the UV group SU(N +M)×
SU(N + M) that is shown to get Higgsed to a smaller group SU(N + M) × SU(N) at a

certain IR scale. This is followed by a series of cascading RG flows that eventually takes

us to the confining gauge group SU(M) at the far IR.

The complete RG flow that is depicted in the blue box of figure 18 can be described

rather succinctly from both type IIB as well as the type IIA theories. This will also answer

all the questions that we put aside earlier. From the type IIB side, the UV CFT may

be easily described by allowing additional M anti-D5-branes distributed on the northern

hemisphere of the resolved sphere parametrized by (θ1, φ1). These anti-D5-branes are

stabilized against collapse by using fluxes, details of which have appeared in [60, 104]. The

string connecting the branes and the anti-branes are heavy, and they are integrated out at

low energies. Thus at low energies we only see the cascading SU(N)× SU(N +M) theory.

At high energies, the anti-brane degrees of freedom are integrated in and the M D5-brane

and the M D5-branes combine to give M D3-brane degrees of freedom. Together with N

D3-branes localized at the south pole of the resolved sphere, this leads to the UV CFT

described above. Therefore the three stages of operation namely, (1) emergence of CFT,

(2) Higgsing and (3) the cascading behavior, are all described neatly from the type IIB

configuration of N D3, M D5 and and M D5-branes on a non-Kähler resolved conifold

with fluxes.

The correctness of our construction may also be ascertained from a T-dual type IIA

configuration as shown in figure 20. This T-duality is a single T-duality along the ψ

direction and therefore should not be confused with the three T-dualities that we performed

earlier to determine the mirror configuration. A single T-duality of a conifold along ψ
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Figure 20. The type IIA dual description of the UV completion as well as the Higgsing effect.

Figure (a) represents a CFT whereas figure (b) shows how cascading theory can be realized. The

absence of a Coulomb branch in figure (a) indicates that one cannot move the straddling D4 branes

around to Higgs the underlying gauge theory. Also the NS5-branes are not bent, so there is no

RG flow. In figure (b) and third NS5-brane is added without breaking any supersymmetry. This

is almost like the remnant of the N = 2 Coulomb branch. Higgsing can now be done resulting in

the bendings of the NS5-branes and triggering the RG flows. The far IR will be a confining SU(M)

gauge theory.

direction, in the type IIB theory, leads to a configuration of two orthogonal NS5-branes

in the type IIA side. In the presence of N + M extra D3-branes in the type IIB side, the

T-dual configuration is shown on the left of figure 20. The M D3-branes have five-brane

origins as discussed above, and so the configuration on the left of figure 20 gives us a CFT

with a gauge group SU(N + M) × SU(N + M). The reason why this is a CFT comes

from the fact that the NS5-branes are not bent. Clearly, any bendings of the NS5-branes

would have lead to running couplings of the gauge theories on the D4-branes [122]. These

bendings can be achieved by having an unequal number of D4-branes on both sides of the

NS5-branes. Such a feature may be achieved independently but does not seem to come

naturally from the configuration on the left of figure 20: a consequence due to the absence

of Coulomb branches in N = 1 gauge theories.

However, all is not lost as these theories do have other branches, namely Baryonic,

Mesonic and possible remnants of the N = 2 Coulomb branches. Without going into too

much details, which the readers may find in [62, 101], one may easily see that a branch

in the moduli space arises by putting an extra NS5-brane along the dotted line in the left

configuration of figure 20. Happily, this does not break any extra supersymmetries but

creates the necessary Higgsing effect that we require to jump-start the cascading process!

On the right of figure 20 we have shown how one may go from UV conformal to IR

cascading behavior. As should be obvious from figure 20, moving the M D4-branes along

parallel NS5-branes bends the NS5-branes, thus creating RG flows on the remaining D4-

branes. The far IR physics is then exactly a confining SU(M) gauge theory with decoupled

U(1)’s that we seek here. Switching on a non-zero temperature we can study the various

transport coefficients.

In the gravity dual, the IR story is clear: this is given as in (4.1) and (4.2). The UV

degrees of freedom start appearing from Region 2 onwards as shown in [60], and as we go to
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large r we are effectively in Region 3 where the three-form fluxes vanish and the background

asymptotes to an AdS5 space. In this section we will use a slightly simplified form of this

background and mainly concentrate on Region 1 — to be at low energies − to study the

bulk viscosity at strong ’t Hooft but weak string coupling in the absence of fundamental

flavors. In the next section, we will put in the flavors and study the bulk viscosity as

well as the ratio of the bulk to shear viscosites at both strong ’t Hooft and strong string

couplings, again concentrating on Region 1. For an earlier work on bulk viscosity with

bottom-up approach, using two different AdS spaces at UV and IR and for a wide class of

models, see [102, 103]. Note however that the study of bulk viscosity in [102, 103] differs

from our study here in at least two respects. First, the model considered in [102, 103] has

two fixed points: one at UV and the other at IR respectively. This differs from the IR

confining model that we consider here. Secondly, the study of bulk viscosity in [102, 103]

finds violation of the Buchel bound [31]. Although this is possible in our set-up, by choosing

a different lower bound for d1 in (4.94) and (4.95), we do not analyze such cases here.

4.1 The type IIB dual background for large N thermal QCD

In [104] we made some preliminary study of bulk viscosity using the UV complete large N

thermal QCD model of [59] with Nf = 0. The metric that we took in [104] is of the form:

ds2
10 = e2A

[
−e2Bdt2 + dx2 + dy2 + dz2 + e−4A−2B

(
r2 + 6a2

r2 + 9a2

)
dr2

]
+
r2e−2A

6
(dθ2

1 + sin2 θ1 dφ
2
1) + e−2A

(
r2 + 6a2

6

)(
dθ2

2 + sin2θ2 dφ
2
2

)
+
r2e−2A

9

(
r2 + 9a2

r2 + 6a2

)
(dψ + cos θ1 dφ1 + cos θ2 dφ2)2. (4.5)

Note that the internal space is a warped resolved conifold and not a resolved warped-

deformed conifold as one would have expected from (4.2). This is a simplifying assumption

which helped us to study bulk viscosity without worrying about the far IR regime of the

gauge theory. Recall that the far IR regime of the gauge theory is governed by the blown-up

three-cycle of the resolved warped-deformed conifold. However since the small r regime of

the geometry is covered by the horizon radius rh, our choice of the metric (4.5) is not too

far from the correct answer. The resolution parameter a2(r) is not the resolution parameter

used in the brane side to control the UV behavior of the theory. In the brane side, i.e in the

gauge theory description, the M D5-branes wrap the vanishing two-cycle of the resolved

conifold parametrized by (θ2, φ2) in a way that the D5-branes (and the N D3-branes) are

at the south pole of the resolved 2-cycle, parametrized by (θ1, φ1), and the anti-D5-branes

are distributed over the upper hemisphere of the 2-cycle.

In the language of the metric (4.5), this means putting the M D5-branes on the

(θ2, φ2) 2-cycle has caused an asymmetry quantified by the resolution parameter a2. From

the discussion above this would mean that a(r)2 = O(ε) and should have no terms that

are zeroth order in ε. This can be confirmed by plugging the metric into the equations of
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motion.The Einstein’s equations are:

Rµν = −gµν
[
G3 · Ḡ3

48Im τ
+
F2

5

8 · 5!

]
+
FµabcdFabcdν

4 · 4!

Rmn = −gmn
[
G3 · Ḡ3

48Im τ
+
F2

5

8 · 5!

]
+
FmabcdFabcdn

4 · 4!
+
GbcmḠnbc
4Im τ

+
∂mτ∂nτ̄

2|Im τ |2
. (4.6)

here G3,F5 and τ are the complexified three-form flux, five-form flux and the axio-dilaton

respectively as defined in (4.1) and (4.3). To figure out how the wrapped D5-branes,

inserted in the non-extremal system, affect the warp-factor, we can express the change as:

e−4A = e−4A0

(
1 + εP (r)

)
, (4.7)

where A0 ≡ −1
4 logL

4

r4 is the conformal value and ε = 3gsM2

2πN is our expansion parameter.

The resolution parameter a2 now may be expressed in the following way:

a(r)2 ≡ 0 + εQ(r) (4.8)

where, as we emphasized above, to zeroth order in ε, the D5-branes wrap vanishing two-

cycle. We start seeing non-zero resolution only from the first order in ε. The two functions,

P (r) and Q(r), are related via the following set of equations:

P (r) =

∫ r

x3dx

[
D1 −

∫ x

dy

(
15

y5

d2Q

dy2
− 51

y6

dQ

dy
+

72Q(y)

y7
+

4

y5

)]
+D2 (4.9)

=
1

4

∫ r

dx

[
−15x3

r4
h

(
1−

r4
h

x4

)(
d2Q

dx2
− dQ

dx

)
+

144Q(x)

x3
+

2

x

]
dx+ D̃1,

where D1, D2 and D̃1 are constants that may be fixed from the boundary conditions. This

has been discussed in details in [104], and after the dust settles, the functional form for

P (r) and Q(r) can be explicitly represented in the following way:

Q(r) =
r2

30

[
−log

(
1−

r4
h

r4

)
+
r2
h

r2
log

(
r2 − r2

h

r2 + r2
h

)
+

1

2
dilog

(
1−

r4
h

r4

)]
(4.10)

P (r) = logr +
1

5

[
log

(
1−

r4
h

r4

)
−
r2
h

r2
log

(
r2 − r2

h

r2 + r2
h

)
− 1

8
dilog

(
1−

r4
h

r4

)]
,

where both behave well in the limit r → rh as one would have expected. In fact knowing

the functional form for Q(r) immediately tells us what the black-hole factor, e2B, in the

metric (4.5) should be. This may be expressed by the following integral form:

e2B(r,ε) = 1 + 4r4
h

∫ r dx

x3 (x2 + 9εQ(x))
= 1−

r4
h

r4
− 36εr4

h

∫ r Qdx

x7
, (4.11)

which reproduces the conformal result for vanishing ε. Finally, plugging (4.10) to (4.7)

and (4.8) gives us the O(ε) corrections to the conformal values for the resolution and the

warp-factors:

a(r)2 = 0 +
εr2

30

[
−log

(
1−

r4
h

r4

)
+
r2
h

r2
log

(
r2 − r2

h

r2 + r2
h

)
+

1

2
dilog

(
1−

r4
h

r4

)]
(4.12)

e−4A =
L4

r4

{
1+ε

[
logr +

1

5

(
log

(
1−

r4
h

r4

)
−
r2
h

r2
log

(
r2 − r2

h

r2 + r2
h

)
− 1

8
dilog

(
1−

r4
h

r4

))]}
.
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The functional forms for a2, e2B and e−4A are consistent with the general picture developed

in [59, 60] and [105]. In particular knowing the O(ε) correction to the black-hole factor is

consistent with the O(ε) corrections to the two black-hole factors g1 and g2 in [59]. There

are also O(gsNf ) corrections, from the Nf flavors, that we do not consider here. This is

relegated to section 5.

4.2 Details on the bulk viscosity computations from gravity dual

Bulk viscosity appears, in a system with a SO(3) spatial symmetry, from the correlation

of Txx at two different points in four-dimensional space-time with one point fixed at the

origin. This means, as discussed earlier, in the gravity dual bulk viscosity may be computed

from the fluctuations of the vielbeins ek with k = 0, x and r. These fluctuations may be

divided into positive and negative frequencies, and are expressed as:

δe±k =

∫ +∞

−∞
dωek(r)exp(iωt)

[(
1±iε

∞∑
n=0

pnkω
2n−1

)
Γ0k (r, |ω|)+εΓ1k (r, |ω|)+O

(
ε2
)]
,

(4.13)

where ε is the same non-conformality factor as before and ω is the frequency. The other

parameters appearing in (4.13) may be defined in the following way. The coefficients pnk
are in general functions of r as well as |ω| but not constants. With constant pnk, the bulk

viscosity would vanish despite the existence of a complex piece in (4.13). Note however

that δek ≡ δek(r, t) are all real functions of r and t.

The coefficients Γ0k (r, |ω|) and Γ1k (r, |ω|) capture the essence of the bulk viscosity

computations here. In a system with SO(3) symmetry, Γ0x takes the following form:

Γ0x (r, |ω|) = exp

[
2B(r, 0)

(
1 +

|ω|2

8π2T 2

)]
, (4.14)

where B(r, 0) is given in (4.11) and T , the temperature, is proportional to rh, the horizon

radius. We also expect Γ0y = Γ0z to be equal to Γ0x. On the other hand, Γ00 and Γ0r take

the following form:

Γ00 =

[
1− 4B(r, 0)

log Γ0x

]
Γ0x, Γ0r =

2[e−2B(r,0) − 1] [log Γ0x −B(r, 0)] Γ0x

B(r, 0)
. (4.15)

Although (4.14) and (4.15) are related to conformal theory,10 we will use them to analyze

the non-conformal regime of our model as the imaginary parts of the fluctuations in (4.13)

depend on Γ0k as well as pnk. The latter are associated with extra sources coming from

the distribution of anti-D5 branes in Regions 2 and 3. These regions have been described

earlier and one may also see them in the blue box of figure 18 when we approach the high

energy regime. We can quantify these sources in the following way:11

∆k(r, ω) = 0 + ε

(
∆1k(r, |ω|) + i

∞∑
n=0

∆
(n)
2k (r, |ω|)ω2n−1

)
+O(ε2), (4.16)

10In fact, as one would expect, Γ0x and Γ00 do form the non-normalizable modes at the AdS boundary and

hence couple to the required components of the energy momentum tensor of the corresponding gauge theory.
11For details about the sources, the readers may refer to section 4.4 of [104].
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where we see that the imaginary part involves three infinite series of modes specified by the

sources ∆
(n)
20 ,∆

(n)
2x and ∆

(n)
2r . These modes can also be expressed in terms of pnk appearing

in the fluctuation (4.13). For example ∆
(n)
20 has the following expression:

∆
(n)
20 = p′′n0Γ00 + p′n0

[(
5

r
+ 2B′0

)
Γ00 + 2Γ′00 −A′0Γ00

]
− 3p′nxA

′
0Γ0x

+pn0

[
Γ′′00 + Γ′00

(
5

r
+ 2B′0 −A′0

)]
− 3pnxΓ′0xA

′
0 − pnrΓ′0r

(
A′0 +B′0

)
−p′nrΓ0r

(
A′0 +B′0

)
+ e−4(A0+B0)

[
3p(n−1)xΓ0x + p(n−1)rΓ0r

]
, (4.17)

where A0 is defined in (4.7) and B0 ≡ B(r, 0) is given in (4.11). Note that (4.17) involves

five fluctuation modes, pn0, pnx, pnr, p(n−1)x and p(n−1)r; as well as the three Γ0k’s defined

in (4.14) and (4.15). This means knowing ∆
(n)
2k , we will need at least five equations to

solve for the fluctuations pnk. One may also construct the following recursion relations

from (4.17):

∆
(0)
20 = p′′00Γ00 + p′00

[(
5

r
+ 2B′0 −A′0

)
Γ00 + 2Γ′00

]
− 3p′0xA

′
0Γ0x − p′0rΓ0r

(
A′0 +B′0

)
+p00

[
Γ′′00 + Γ′00

(
5

r
+ 2B′0 −A′0

)]
− 3p0xΓ′0xA

′
0 − p0rΓ

′
0r

(
A′0 +B′0

)
+e−4(A0+B0)

[
3p(−1)xΓ0x + p(−1)rΓ0r

]
∆

(1)
20 = p′′10Γ00 + p′10

[(
5

r
+ 2B′0 −A′0

)
Γ00 + 2Γ′00

]
− 3p′1xA

′
0Γ0x − p′1rΓ0r

(
A′0 +B′0

)
+p10

[
Γ′′00 + Γ′00

(
5

r
+ 2B′0 −A′0

)]
− 3p1xΓ′0xA

′
0 − p1rΓ

′
0r

(
A′0 +B′0

)
+e−4(A0+B0)

[
3p0xΓ0x + p0rΓ0r

]
, (4.18)

and so on. Note that there are two types of non-derivative terms in the first equation

of (4.18): (a) the terms proportional to p00, p0x and p0r, and (b) terms proportional to

p(−1)x and p(−1)r. The latter have no dynamics, so maybe we could use them to cancel the

former terms in the following way:

3p(−1)xΓ0x + p(−1)rΓ0r ≡ −p00

[
Γ′′00 + Γ′00

(
5

r
+ 2B′0 −A′0

)]
e4(A0+B0)

+
[
3p1xΓ′0xA

′
0 + p1rΓ

′
0r

(
A′0 +B′0

)]
e4(A0+B0). (4.19)

This would mean that by knowing p00, p0x and p0r, one may not only build the next set

of fluctuation modes from (4.18) but also determine the functional forms for the non-

dynamical modes p(−1)k. Unfortunately such an identification would either over-constrain

the dynamics or lead to some apparent contradictions. To avoid this, we will set:

p(−1)0 = p(−1)x = p(−1)r ≡ 0. (4.20)
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In any case, identification like (4.19) can never be used to cancel the non-derivative terms

p1k with p0k as both set of fluctuations are dynamical now. Thus generically we should

assume the existence of p(n−1)k modes along with the pnk modes.

The next series of sources appear from ∆
(n)
2x and would follow similar strategy as above.

These sources may be expressed in terms of the fluctuation modes pnk in the following way:

∆
(n)
2x = p′′nxΓ0x + p′nx

[(
5

r
− 3A′0 −B′0

)
Γ0x + 2Γ′0x

]
− pnrΓ′0rA′0

+pnx

[
Γ′′0x + Γ′0x

(
5

r
− 3A′0 −B′0

)]
− pn0Γ′00

(
A′0 +B′0

)
−p′n0Γ00

(
A′0 +B′0

)
− p′nrA′0Γ0r + e−4(A0+B0)p(n−1)xΓ0x, (4.21)

where this time four, instead of five, modes pnx, pn0, pnr and p(n−1)x are needed. As before,

the zeroth and the first order recursion relations may be written as:

∆
(0)
2x = p′′0xΓ0x + p′0x

[(
5

r
− 3A′0 −B′0

)
Γ0x + 2Γ′0x−

]
− p′00Γ00

(
A′0 +B′0

)
− p′0rA′0Γ0r

+p0x

[
Γ′′0x + Γ′0x

(
5

r
− 3A′0 −B′0

)]
− p00Γ′00

(
A′0 +B′0

)
− p0rΓ

′
0rA

′
0

∆
(1)
2x = p′′1xΓ0x + p′1x

[(
5

r
− 3A′0 −B′0

)
Γ0x + 2Γ′0x

]
− p′10Γ00

(
A′0 +B′0

)
− p′1rA′0Γ0r

+p1x

[
Γ′′0x + Γ′0x

(
5

r
− 3A′0 −B′0

)]
− p10Γ′00

(
A′0 +B′0

)
− p1rΓ

′
0rA

′
0

+e−4(A0+B0)p0xΓ0x, (4.22)

where this time an input of p0x is needed to build the first order fluctuation equation. In

a similar vein, we now construct the third series of sources associated with ∆
(n)
2r in the

following way:

∆
(n)
2r = p′′n0Γ00 + 3p′′nxΓ0x + p′n0

[
2Γ′00 + Γ00

(
A′0 + 2B′0

)]
+ p′nx

(
6Γ′0x + 3A′0Γ0x

)
+pn0

[
Γ′′00 + Γ′00

(
A′0 + 2B′0

)]
+ 3pnx

(
Γ′′0x +A′0Γ′0x

)
− pnrΓ′0r

(
5

r
+B′0 −A′0

)
−p′nr

[(
5

r
+ 2B′0

)
Γ0r − Γ0r

(
A′0 +B′0

)]
+ e−4(A0+B0)p(n−1)rΓ0r, (4.23)

with the input of four fluctuation modes pnx, pn0, pnr and p(n−1)r governing the dynamics.

The recursion relations for the zeroth and the first order can be easily expressed in terms

of the fluctuation modes as:

∆
(0)
2r = p′′00Γ00 + 3p′′0xΓ0x + p′00

[
2Γ′00 + Γ00

(
A′0 + 2B′0

)]
+ p′0x

(
6Γ′0x + 3A′0Γ0x

)
+p00

[
Γ′′00 + Γ′00

(
A′0 + 2B′0

)]
+ 3p0x

(
Γ′′0x +A′0Γ′0x

)
− p0rΓ

′
0r

(
5

r
+B′0 −A′0

)
−p′0r

[(
5

r
+ 2B′0

)
Γ0r − Γ0r

(
A′0 +B′0

)]
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∆
(1)
2r = p′′10Γ00 + 3p′′1xΓ0x + p′10

[
2Γ′00 + Γ00

(
A′0 + 2B′0

)]
+ p′1x

(
6Γ′0x + 3A′0Γ0x

)
+p10

[
Γ′′00 + Γ′00

(
A′0 + 2B′0

)]
+ 3p1x

(
Γ′′0x +A′0Γ′0x

)
− p1rΓ

′
0r

(
5

r
+B′0 −A′0

)
−p′1r

[(
5

r
+ 2B′0

)
Γ0r − Γ0r

(
A′0 +B′0

)]
+ e−4(A0+B0)p0rΓ0r. (4.24)

At this stage let us ask whether the above three set of equations, (4.17), (4.21) and (4.23),

are enough to determine the five unknown functions,12 pn0, pnx, pnr, p(n−1)x and p(n−1)r. It

would seem we need at least two more equations. However a careful look tells us that the

first equations in each of the three recursion series, (4.18), (4.22) and (4.24), are enough to

determine the three functions p00, p0x and p0r provided the sources ∆
(0)
2k and the boundary

conditions are adequately specified. Similar arguments apply for the next three functions,

p10, p1x and p1r: once we specify the sources ∆
(1)
2k and the boundary conditions, this would

in principle fix the functional forms for all p1k. Thus it seems that the above three equa-

tions (4.17), (4.21) and (4.23) should suffice.

For the present case we will work out the equation satisfied by p0x as this is the only

component relevant for bulk viscosity. This will be explained soon (see also [104]). In fact

what is required is not p0x, rather p′0x, and therefore we will work out the equation for

Yx(r, |ω|) ≡ p′0x. In the process we will also see how to write the equations for p00 and p0r.

To start, let us define a few variables fi, gi and hi using which the zeroth order equations

in (4.18), (4.22) and (4.24) may be re-expressed in the following way:

p′′00f1 + p′00f2 + p′0xf3 + p′0rf4 = ∆
(0)
20 +

2∑
k=0

p0kf5+k

p′00g1 + p′′0xg2 + p′0xg3 + p′0rg4 = ∆
(0)
2x +

2∑
k=0

p0kg5+k

p′′00h1 + p′00h2 + p′′0xh3 + p′0xh4 + p′0rh5 = ∆
(0)
2r +

2∑
k=0

p0kh6+k (4.25)

where we have identified p01 ≡ p0x and p02 ≡ p0r to avoid clutter. One may define similar

equations for the first order fluctuation equations, namely for the f1k using the recursion

relations. The various coefficients appearing in (4.25) may be written as:

f1 = Γ00, f2 =

(
5

r
+ 2B′0 −A′0

)
Γ00 + 2Γ′00,

f4 = − Γ0r

(
A′0 +B′0

)
h4 = 6Γ′0x + 3A′0Γ0x, h5 = −

(
5

r
+B′0 −A′0

)
Γ0r,

f3 = − 3A′0Γ0x (4.26)

g1 = − Γ00

(
A′0 +B′0

)
, g2 = Γ0x,

12Note that p(n−1)0 do not appear in any of the equations.
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g3 =

(
5

r
−B′0 − 3A′0

)
Γ0x + 2Γ′0x

g4 = −A′0Γ0r, h1 = Γ00,

h3 = 3Γ0x,

h2 = 2Γ′00 + Γ00

(
A′0 + 2B′0

)
,

g5 = Γ′00

(
A′0 +B′0

)
, g6 = − Γ′′0x − Γ′0x

(
5

r
− 3A′0 −B′0

)
,

g7 = A′0Γ′0r

f5 = − Γ′′00 − Γ′00

(
5

r
+ 2B′0 −A′0

)
, f6 = 3A′0Γ′0x,

f7 =
(
A′0 +B′0

)
Γ′0r

h6 = − Γ′′00 − Γ′00

(
2B′0 +A′0

)
, h7 = − 3

(
Γ′′0x +A′0Γ′0x

)
,

h8 = Γ′0r

(
5

r
+B′0 −A′0

)
,

where Γ0k have been defined in (4.14) and (4.15); and A0 and B0 are defined in (4.7)

and (4.11) respectively. It is interesting to note that the l.h.s. of the equations in (4.25),

i.e the coefficients of p′′0k and p′0k, are mostly functions of Γ0k whereas the r.h.s. of (4.25),

i.e the coefficients of p0k, are all functions of the derivatives of Γ0k.

The set of equations (4.25) are highly non-linear and solving them will in general be

a non-trivial exercise. Therefore it might be instructive to first solve a slightly simpler

system than (4.25) to gain some familiarity with the solutions and then proceed to address

the full set of equations. In the following subsection we analyze a simpler case, and in the

next subsection we will study the full system.

4.2.1 A toy example in full details

To study a toy example from (4.25), the first question is: how can we simplify the set

of equations in (4.25)? This is where the observation that we made above could become

useful, namely, we can assume that the derivatives of Γ0k are much smaller than Γ0k at

some r � rh. This would immediately imply:

f5+k = g5+k = h6+k ≈ 0, (4.27)

making the r.h.s. of all the equations in (4.25) to only depend on the sources ∆
(0)
2k . Note

that (4.27) does not imply absorbing the p0k terms in the definition of the sources because

the sources are independent of the bulk fluctuations. Nor does this imply invoking relations

like (4.19), since such a procedure is generically prone to errors. Thus (4.27) would be the

only way to simplify (4.25).
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With this in mind the next set of procedures may be elaborated in the following way.

Using (4.26), let us define another set of functions as:

F1(r) = exp

[∫ r (f2g4 − g1f4

f1g4

)
dx

]
, F2(r) = exp

[∫ r (f3g4 − g3f4

f4g2

)
dx

]
F3(r) = exp

[∫ r (h2g4 − g1h5

h1g4

)
dx

]
, F4(r) = exp

[
−
∫ r (h4g4 − g3h5

h3g4 − g2h5

)
dx

]
, (4.28)

which will help us to avoid cluttering of formulae later when we write the equations for the

fluctuations pnk. Note that these functions are all expressed in terms of certain definite

integrals (the lower bounds of these integrals could be rh or r = 0, but these details will be

irrelevant). There are also four other functions that are not expressed in terms of integrals.

They may be expressed as:

G1(r) =
g2f4

f1g4
, G3(r) =

h3g4 − g2h5

h1g4

G2(r, |ω|) =
∆

(0)
20 g4 −∆

(0)
2x f4

f1g4
, G4(r, |ω|) =

∆
(0)
2r g4 −∆

(0)
2x h5

h1g4
, (4.29)

where ∆
(0)
2k are the zeroth order sources that appear in (4.25). Note that G2 and G4 are

functions of r as well as |ω| because they depend on the sources ∆
(0)
2k (r, |ω|). Therefore

with (4.26), (4.28) and (4.29), we are ready to write the equation governing the fluctuation

Yx(r, |ω|) ≡ p′0x as:

a11
d2Yx
dr2

+ a21
dYx
dr

+ a31Yx = a41, (4.30)

which is a second order differential equation and therefore would require boundary con-

ditions, both at the cut-off r = rc as well as at the horizon radius r = rh, to determine

the functional behavior precisely. The coefficients aI1 appearing in (4.30) are non-trivial

functions of Fi and Gi variables, defined in (4.28) and (4.29), and can be written as:

a11 ≡
(G3 −G1)F3

(F3/F1)′
, a41 ≡

d

dr

[
(G4 −G2)F3

(F3/F1)′

]
−G2F1, k ≡

(
F3

F1

)′
a21 ≡

1

k

[
2
d

dr
(G3F3 −G1F3) + (G3 −G1)F3

d2

dr2

(
F3

F1

)]
− 1

kF4

d

dr
(G3F3F4)

+
F3

kF1F2

d

dr
(G1F1F2) ,

a31 ≡
d

dr

[
1

k

d

dr
(G3F3 −G1F3)− 1

kF4

d

dr
(G3F3F4) +

F3

kF1F2

d

dr
(G1F1F2)

]
+

1

F2

d

dr
(G1F1F2) , (4.31)

where a41 = a41(r, |ω|) and all other aI1 are functions of r. This implies Yx = Yx(r, |ω|) as

expected. Solving (4.30) would provide the fluctuation mode p0x. Once p0x is known, we

can use it to determine the next fluctuation mode, p00. Let us now define p00 ≡ Y0(r, |ω|),
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instead of p′00, and write the equation for Y0 in the following way:

dY0

dr
=

1

F1(r)

∫ r

dxG1(x)F2(x)F1(x)
d

dx

[
Yx(x, |ω|)
F2(x)

]
+

1

F1(r)

∫ r

dxF1(x)G2(x, |ω|)

=
1

F3(r)

∫ r

dxG3(x)F4(x)F3(x)
d

dx

[
Yx(x, |ω|)
F4(x)

]
+

1

F3(r)

∫ r

dxF3(x)G4(x, |ω|),

(4.32)

where one may use either of the two set of expressions on the r.h.s. of (4.32) to solve for Y0.

The equality between the two expressions can be argued easily from (4.25). Finally, knowing

Yx and Y0, one may use any of the three equations in (4.25) to solve for Yr(r, |ω|) ≡ p′0r.
Let us now work out the first order fluctuations for our case invoking (4.27). Again

we expect three set of fluctuations of the form p10, p1x and p1r, similar to the three set of

fluctuations p00, p0x and p0r respectively for the zeroth order case. The equations satisfied

by the first order fluctuations are a slight variations of (4.25), namely:

p′10g1 + p′′1xg2 + p′1xg3 + p′1rg4 = ∆
(1)
2x − e

−4(A0+B0)p0xΓ0x

p′′10h1 + p′10h2 + p′′1xh3 + p′1xh4 + p′1rh5 = ∆
(1)
2r − e

−4(A0+B0)p0rΓ0r

p′′10f1 + p′10f2 + p′1xf3 + p′1rf4 = ∆
(1)
20 − e

−4(A0+B0) (3p0xΓ0x + p0rΓ0r) , (4.33)

where fi, gi and hi are exactly the ones appearing in (4.26); Γ0k are as in (4.14) and (4.15);

and A0 and B0 are the zeroth order values in (4.7) and (4.11) respectively. However not

everything remain the same: the r.h.s. of the equations (4.33) have two kind of sources, (a)

the first order sources ∆
(1)
2k , and (b) sources appearing from the zeroth order in fluctuations,

p0x and p0r. These changes in sources imply that G4(r, |ω|) and G2(r, |ω|) in (4.29) may

be replaced by:

G̃4(r, |ω|) =
∆̃

(1)
2r g4 − ∆̃

(1)
2x h5

h1g4

≡
(
∆

(1)
2r − e−4(A0+B0)p0rΓ0r

)
g4 −

(
∆

(1)
2x − e−4(A0+B0)p0xΓ0x

)
h5

h1g4
(4.34)

G̃2(r, |ω|) =
∆̃

(1)
20 g4 − ∆̃

(1)
2x f4

f1g4

≡
(
∆

(1)
20 − e−4(A0+B0)

(
3p0xΓ0x + p0rΓ0r

))
g4 −

(
∆

(1)
2x − e−4(A0+B0)p0xΓ0x

)
f4

f1g4
,

respectively and not naively by replacing ∆
(0)
2k with ∆

(1)
2k in G2 and G4. Note that there are

no additional changes to G1(r) and G3(r) in (4.29). The above observation immediately

tells us that the equation satisfied by p′1x ≡ Y1x(r, |ω|) should be:

a11
d2Y1x

dr2
+ a21

dY1x

dr
+ a31Y1x = ã41, (4.35)

where we see that the coefficients appearing in the l.h.s. of (4.35) are the same as the ones

appearing in (4.30) with a11, a21 and a31 as given in (4.31). The only difference from (4.30)
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is the replacement of a41 by ã41, where:

ã41 ≡
d

dr

[
(G̃4 − G̃2)F3

(F3/F1)′

]
− G̃2F1. (4.36)

Similarly the equation for p′10 ≡ Y10(r, |ω|) will be similar to (4.32) with the replacement

of Yx by Y1x and G2 and G4 by G̃2 and G̃4 respectively. Once we know Y1x and Y10, we

can use (4.33) to determine the equation for Y1r. This way the first order fluctuations may

be completely determined.

The picture is now clear for the generic order fluctuations. If we want to study the n-th

order fluctuations Ynx, Yn0 and Ynr, all we need is to rewrite the sources, ∆
(n)
2x ,∆

(n)
20 and ∆

(n)
2r

by adding the fluctuations Y(n−1)x and Y(n−1)r exactly in a way elaborated in (4.34), i.e.:

∆̃
(n)
2r ≡ ∆

(n)
2r − e

−4(A0+B0)Γ0r

∫ r

Y(n−1)r(y, |ω|)dy (4.37)

∆̃
(n)
2x ≡ ∆

(n)
2x − e

−4(A0+B0)Γ0x

∫ r

Y(n−1)x(y, |ω|)dy

∆̃
(n)
20 ≡ ∆

(n)
20 − e

−4(A0+B0)

∫ r [
3Y(n−1)x(y, |ω|)Γ0x(r) + Y(n−1)r(y, |ω|)Γ0r(r)

]
dy.

Once these sources are specified we can construct G̃4 using ∆̃
(n)
2r and ∆̃

(n)
2x ; and G̃2 using

∆̃
(n)
20 and ∆̃

(n)
2r using the definitions in (4.34); and finally ã4 using (4.36). The equations

for Ynx, Yn0 and Ynr would then follow the steps outlined above.

4.2.2 Towards exact solutions for the fluctuations

To study exact solutions for the system of equations in (4.25), one way would be to eliminate

the p0k pieces on the r.h.s. by rearranging the set of equations there. However a slightly

simpler approach is to keep the r.h.s. only as a function of p0x and eliminate the others.

This leads to the following set of equations:

k[1l6]p
′′
00 + k[2l6]p

′
00 + k[3l6]p

′′
0x + k[4l6]p

′
0x + k[5l6]p

′
0r = ∆1 (r, |ω|; p0x)

l[1m6]p
′′
00 + l[2m6]p

′
00 + l[3m6]p

′′
0x + l[4m6]p

′
0x + l[5m6]p

′
0r = ∆3 (r, |ω|; p0x) (4.38)

k[1m6]p
′′
00 + k[2m6]p

′
00 + k[3m6]p

′′
0x + k[4m6]p

′
0x + k[5m6]p

′
0r = ∆2 (r, |ω|; p0x) ,

where, as mentioned above, we kept the r.h.s. as functions of p0x only. The set of equa-

tions (4.38) are in some sense more symmetrical than the earlier set of equations (4.25).

The coefficients are expressed in terms of brackets which may be defined as:

k[alb] ≡ kalb − kbla. (4.39)

This formalism has some distinct advantages that will be clear soon. Note also that,

in (4.38), there are no second derivatives of p0r which in turn will help us to rearrange

the set of equations further. But before we do so, let us define the coefficients appearing

in (4.38). The ki are defined in the following way:

k1 = f1g7, k2 = f2g7 − f7g1, k3 = −f7g2

k4 = f[3g7], k5 = f[4g7], k6 = f[5g7], k7 = f[6g7], (4.40)
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where k6 and k7 will be used to describe the sources ∆1 and ∆2 in (4.38) below. All the ki
are in turn constructed out of the (fi, gk) coefficients defined earlier in (4.26). In a similar

vein, the li coefficients are defined as:

l1 = h1g7, l2 = h2g7 − g1h8, l3 = h3g7 − g2h8 (4.41)

l4 = h4g7 − g3h8, l5 = h5g7 − g4h8, l6 = h6g7 − g5h8, l7 = h7g7 − g6h8,

where the (hi, gk) coefficients, used here to define li, are given in (4.26). As before, the

(l6, l7) coefficients will be used below to describe the sources ∆1 and ∆3. Finally the mi

coefficients may be defined in the following way:

m1 = h8f1 − h1f7, m2 = f2h8 − h2f7, m3 = −h3f7 (4.42)

m4 = h8f3 − f7h4, m5 = h8f4 − f7h5, m6 = h8f5 − f7h6, m7 = h8f6 − f7h7,

where again the (hi, fk) coefficients are given in (4.26), and m6 and m7 will be used to

describe the sources ∆2 and ∆3. The sources ∆k may now be expressed as:

∆1(r, |ω|; p0x) ≡
(

∆
(0)
20 g7 −∆

(0)
2x f7

)
l6 −

(
∆

(0)
2r g7 −∆

(0)
2x h8

)
k6 + p0xk[7l6] (4.43)

∆2(r, |ω|; p0x) ≡
(

∆
(0)
20 g7 −∆

(0)
2x f7

)
m6 −

(
∆

(0)
20 h8 −∆

(0)
2r f7

)
k6 + p0xk[7m6]

∆3(r, |ω|; p0x) ≡
(

∆
(0)
2r g7 −∆

(0)
2x h8

)
m6 −

(
∆

(0)
20 h8 −∆

(0)
2r f7

)
l6 + p0xl[7m6].

The new sources are combinations of the original sources ∆
(0)
2k , the coefficients defined

in (4.40), (4.41), (4.42) and (4.26); and p0x. These equation explicitly take us away

from the simplifying assumption (4.27), and so are only valid when no approximations

are made.13 Additionally, the dependence of all the sources only on p0x means that any

further rearrangements of the sources will not have new dependences on other fluctuation

modes. This means one may eliminate p′0r pieces from (4.38) to simplify them further in

the following way:

β1p
′′
00 + β2p

′
00 + β3p

′′
0x + β4p

′
0x = ∆[2,3]

α1p
′′
00 + α2p

′
00 + α3p

′′
0x + α4p

′
0x = ∆[1,2], (4.44)

which mix the sources ∆1 and ∆2 as well as ∆2 and ∆3. We could also write another

equation, parametrized by γi coefficients, that mix the sources ∆1 and ∆3, but that won’t

be necessary for us. The new sources may be expressed in the following way:

∆[1,2] ≡∆1k[5m6] −∆2k[5l6], ∆[2,3] ≡∆2l[5m6] −∆3k[5m6], (4.45)

which explicitly show that they are not only linear with respect to the fluctuation mode

p0x but also that no other modes show up in the definition (4.45). The precise coefficients

of p0x appearing in the sources above are respectively:

k[5m6]k[7l6] − k[5l6]k[7m6], l[5m6]k[7m6] − k[5m6]l[7m6], (4.46)

13In fact both sides of all the equations in (4.38) would vanish in the limit (4.27).
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which do not vanish generically, although special cases with vanishing coefficients could

appear. Of course in the limit (4.27) everything vanishes, but since we are no longer

considering the simplifying condition (4.27), we will assume non-zero coefficients. This

consideration also allows us to express the other coefficients in (4.44), namely αi and βi,

in the following suggestive way:

α1 ≡ k[5m6]k[1l6] − k[5l6]k[1m6], β1 ≡ k[1m6]l[5m6] − l[1m6]k[5m6]

α2 ≡ k[2l6]k[5m6] − k[2m6]k[5l6], β2 ≡ k[2m6]l[5m6] − l[2m6]k[5m6]

α3 ≡ k[3l6]k[5m6] − k[5l6]k[3m6], β3 ≡ k[3m6]l[5m6] − l[2m6]k[5m6]

α4 ≡ k[4l6]k[3m6] − k[4m6]k[5l6], β4 ≡ k[4m6]l[5m6] − l[4m6]k[5m6], (4.47)

which again do not generically vanish. At this stage the signs of the various αi and βi coef-

ficients are not important, but they could be worked out by carefully studying the relative

terms. The relative terms depend on the (ki, li,mi) coefficients defined in (4.40), (4.41)

and (4.42) respectively which in turn are expressed in terms of coefficients given in (4.26).

We also expect αi 6= βi as well as αi
αj
6= βi

βj
for all i 6= j, which may be inferred from (4.47).

Something interesting happens here. Eliminating p00 from (4.44) lands us directly to

an equation for p′0x ≡ Yx whose form is similar to what we had earlier when we analyzed

a toy example. This means, as in (4.28) therein, we can define the following functions:

J3(r) = exp

(∫ r β2(y)

β1(y)
dy

)
, J4(r) = exp

(∫ r β4(y)

β3(y)
dy

)
J1(r) = exp

(∫ r α2(y)

α1(y)
dy

)
, J2(r) = exp

(∫ r α4(y)

α3(y)
dy

)
, (4.48)

using the integrals of the functions defined in (4.47), assuming neither αi nor βj vanish. If

any of the αi or βj vanish, the analysis has to be changed completely to get the requisite

equation for Yx.

We can also define another set of functions using αi, βj and the sources ∆[a,b] that do

not involve integrals, much like the ones in (4.29). They are:

P3(r, |ω|) =
∆[1,2]

α1
, P4(r, |ω|) =

∆[2,3]

β1

P1(r) =
α3(r)

α1(r)
, P2(r) =

β3(r)

β1(r)
, k ≡ d

dr

(
J1

J3

)
, (4.49)

where as before we have — similar to G2 and G4 in (4.29) — P1 and P2 that are functions

of both r and |ω| because of their dependences on the sources ∆[1,2] and ∆[2,3] respectively.

Thus using (4.48) and (4.49), we can write the equation for Yx in the following way:

a12
d2Yx
dr2

+ a22
dYx
dr

+ a32Yx = a42, (4.50)

similar to (4.30). The coefficients aI2 are defined in somewhat similar form to (4.31) in the
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following way:

a12 =
(P1 − P2)J1

k
, a42 = −P4J3 +

d

dr

(
P3J1 − P4J1

k

)
(4.51)

a32 = J4
d

dr

(
P2J3

J4

)
+

d

dr

[
1

k

d

dr
(P1J1 − P2J1) +

J1J4

kJ3

d

dr

(
P2J3

J4

)
− J2

k

d

dr

(
P1J1

J2

)]
a22 =

d

dr

(
P1J1 − P2J1

k

)
+

1

k

[
d

dr
(P1J1 − P2J1) +

J1J4

J3

d

dr

(
P2J3

J4

)
− J2

d

dr

(
P1J1

J2

)]
.

Note that, although the analysis is similar to what we had for (4.30), there is an important

difference now. The r.h.s. of the equation (4.50), defined using a4 is constructed with P3

and P4 which are in turn defined in (4.49). Both P3 and P4 are linear in p0x as may be

seen from (4.45) and (4.43). Thus a4 in (4.51) differs from a4 in (4.31) by the presence of

p0x, implying (4.50) to be a third order equation in p0x.

We can use the above set of equations to formulate the equation for p00, instead of p′00,

as we had in (4.32). Needless to say, the equation for Y0(r, |ω|) ≡ p00 follows similar route

as before, and we can write the equation for Y0 in the following way:

dY0

dr
=

1

J1(r)

∫ r

dyJ1(y)P3(r, |ω|)− 1

J1(r)

∫ r

dy
P1(y)J1(y)

J2(y)

d

dy
[Yx(y, |ω|)J2(y)]

=
1

J3(r)

∫ r

dyJ3(y)P4(r, |ω|)− 1

J3(r)

∫ r

dy
P2(y)J3(y)

J4(y)

d

dy
[Yx(y, |ω|)J4(y)] ,

(4.52)

where the equality between the two sides is the consequence of (4.50). The way we have

constructed the sources P3 and P4 in (4.49), Y0 do not appear on the r.h.s. of (4.52) and

therefore knowing Yx we would not only know:

p0x(r, |ω|) ≡
∫ r

dyYx(y, |ω|), (4.53)

but also p00. We may then use any one of the three equations in (4.38) to determine p0r.

This way all the zeroth order fluctuation modes may be easily determined. For the first

order, and consequently the higher order fluctuation modes, one will have to rely on the

recursion relations (4.17), (4.21) and (4.23) for ∆
(n)
20 , ∆

(n)
2x and ∆

(n)
2r respectively. These may

be worked out with some effort, but we will not do so here as these fluctuation modes are

not important for computing the bulk-viscosity to the order that we want to analyze here.

The story however does not end here as there are additional constraints on the pnk
modes that appear from the flux EOMs, namely the five-form, the three-forms and the

axio-dilaton EOMs. We can also get another equation from the cross-term in the metric,

namely the rt component of the metric. All these should further constrain the fluctuation

modes, and there is a worry that these additional EOMs may over-constrain the system

rendering them inconsistent. The scenario is subtle, so let us proceed carefully. First, and

to O(ε), we may ignore the three-form EOMs as they start changing the equations only to

O(ε2). Similarly, once we switch off the gsNf corrections we are also effectively switching

off the contributions from the axio-dilaton EOMs. On the other hand we cannot ignore
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the five-form and the rt EOMs. They will constrain the pnk modes, and it is easy to see

how the rt component of the metric EOM does this:

3p′nxΓ0x + 3pnx
(
Γ′0x −B′0Γ0x

)
− pnrΓ0r

(
5

r
− 2A′0

)
=

2∑
k=0

(
cnk∆

(n)
2k + c[q]nkm∂

m
r pqk

)
,

(4.54)

where the summation convention for k follows the same as in (4.25). The other coefficients

appearing in (4.54) are defined in the following way: cnk are constants that one may

determine from the way the sources arrange themselves in the rt EOM, whereas c[q]nkm are

functions of r such that:

c[q]nkm ≡ 0 for m ≥ 3, (4.55)

which should be obvious from the construction itself. Also should be obvious are the two

possible categories for c[q]nkm, namely c[n−1]nkm and c[n]nkm, for which we could define the

r.h.s. of (4.54). In fact once we choose the mode pnk, there are nine possible choices of

c[n]nkm for the allowed values of k and m in (4.54) and (4.55) respectively. In fact this is

where the above mentioned constraint show up: one can determine the functional forms

of the coefficients c[q]nkm and the constants cnk by comparing with the l.h.s. of (4.54).

One may also get these coefficients directly from the rt EOM. We expect these two ways

of getting these coefficients to match because in the absence of the sources i.e for the

conformal case, the extra rt equation did not over-constrain the system [104].

Motivated by the above discussions, one may now give similar arguments for the five-

form EOM, where the constraint equation takes the following form:

1∑
k=0

(2k + 1)

{
p′′nkΓ0k + p′nk

[
2Γ′0k + Γ0k

(
5

r
− 4A′0

)]
+ pnk

[
2Γ′′0k + Γ′0k

(
5

r
− 4A′0

)]}

− 4A′0
(
p′nrΓ0r + pnrΓ

′
0r

)
=

2∑
k=0

(
dnk∆

(n)
2k + d[q]nkm∂

m
r pqk

)
, (4.56)

for every choice of n, and with dnk and d[q]nkm being the coefficients similar to cnk and

c[q]nkm respectively in (4.54) with d[q]nkm vanishing for m ≥ 3 as (4.55). As before, the

r.h.s. of (4.56) may be expressed in terms of the modes pnk and their derivatives which

may be compared with the l.h.s. of (4.56). The system will be consistent when all the

coefficients on both sides match.

There is also a simpler way to see why the coefficients on both sides of the equations

in (4.54) and (4.56) would match, once the r.h.s. of these equations have been specified in

terms of the sources and the modes. This is because, all the three equations in (4.17), (4.21)

and (4.23) may be expressed as:

∆
(n)
2k ≡

2∑
l=0

f
(k)
[q]nlm∂

m
r pql, (4.57)
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with f
(k)
[q]nlm being constrained in the same way as in (4.55), implying that the r.h.s. of

either of the two equations (4.54) and (4.56) take the following form:

2∑
k=0

(
2∑
l=0

bnkf
(k)
[q]nlm∂

m
r pql + b[q]nkm∂

m
r pqk

)
, (4.58)

where b can be either c or d for (4.54) and (4.56) respectively. In this form (4.58) may

easily be made to match with the l.h.s. of the respective equations.

Finally, let us give a reason why the r.h.s. of the two equations (4.54) and (4.56)

are expressed in terms of the sources ∆
(n)
2k and the modes pnk and p(n−1)k. For (4.54)

it is easy to justify since it is the Einstein equation for the rt component and therefore

should depend on the sources and the fluctuation modes. To O(ε) we expect only a linear

combination of the form given as the r.h.s. of (4.54). On the other hand, in the five-form

EOM (4.56), the fluxes used to balance the system against any collapse [104] would in turn

induce three-brane sources on the anti-D5 branes. The fluctuation modes should also affect

these sources, and therefore the r.h.s. of (4.56) is expressed as a linear combination of the

sources and the fluctuation modes to O(ε), justifying the above analysis.

4.3 The speed of sound in the strongly coupled plasma

We are now ready to do the two set of computations related to bulk viscosity: the speed of

sound and the bound on the ratio of bulk viscosity to shear viscosity. The latter is again

related to the speed of sound [31], so it will suffice to compute the speed of sound in the

strongly coupled plasma. However before we go about computing the sound speed, let us

present the generic formula for the ratio of the bulk viscosity ζ to the entropy density s (a

specific case was studied earlier in [104]) for an appropriate choice of the quadrant:

ζ

s
=

3εYx(rh, 0)rh
64

[
3 +

13rc
rh

(
r4
c

r4
h

− 16

13

)
Yx(rc, 0)

Yx(rh, 0)

]
, (4.59)

where Yx(r, ω) ≡ p′0x(r, ω) satisfies the differential equation given in (4.50). The result for

the ratio of bulk viscosity to entropy density in a different quadrant can also be written

down, and even their equivalence may be shown as in [104], but we will not do so here.

Instead we will analyze the sound speed in the medium using all the ingredients we have

collected so far.

One of the ingredients that we shall use extensively to compute the sound speed is the

entropy density s. This has already appeared in (4.59) above, but the s appearing above

is only the conformal result as the ratio (4.59) is already proportional to ε ≡ 3gsM2

2πN . What

we now need is the non-conformal correction to s. This may be written as:

s =
πr3

hsin θ1sin θ2
√
gsN

2
√

27κ2
10

[
1− 6a2

r2
+O(a4)

]
, (4.60)

where the non-conformal corrections to s enters through the resolution parameter a2 given

in (4.12). We have chosen zero bare resolution parameter for simplicity and therefore, as

evident from (4.12), a non-zero resolution already implies non-conformality in this set-up.
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One may worry that a zero bare resolution parameter may fail to capture the essential

ingredients for a UV completion [59, 104]. However that is not much of a concern here

as we are not exploring the UV physics. Thus a cut-off rc will prominently feature in

our results, as evident from (4.59) already. However the end results of the bulk and shear

viscosities as well as their ratio will be cut-off independent, clarifying their IR nature, as will

be demonstrated soon. However since we are using Wilsonian method, we will continue

with this construction with an explicit cut-off rc. In section 5 and beyond we will use

the full set of quantum corrections, where the cut-off is taken to infinity, and therefore

observables will appear with the QCD scale rd.

There is however one issue that we do want to emphasize at this point and it has to

do with the sign of the first expression in (4.12). Of course we naively expect a2 to be

positive, but the expression (4.12) involves various functions of log and dilog, so it will be

instructive to check the sign of (4.12). Let us therefore start by defining x ≡ r2
h
r2
c
� 1, using

which we can express (4.12) by:

a2 = −εr
2
c

60

∞∑
n=1

x2n

(2n− 1)n2
, (4.61)

which is negative definite. This may trigger an alarm because a now becomes imaginary.

Note that this problem does not arise if there is a bare resolution parameter a0, however

small (as one may tune ε to be smaller than the smallest a0). The way out of this conundrum

is to notice that all expressions of fluxes etc involve a2 and not a. Further, a2 appears

in the metric (4.5) as a combination r2 + 6a2, and since we are only exploring the region

r ≥ rh, the sign of a2 does not create any problem here too. On the other hand, when there

is no black-hole, rh vanishes, and so does a2 (4.61). All this has also appeared in [105] —

see discussions around figure 3 therein — for a more generic choice of a2 given as eq. (2.63)

in [105]. We can of course resort to a more conservative approach by writing an expression

for |a| instead, and we shall do so in (5.13) in the next section wherein a non-zero bare

resolution parameter will also be taken into account.

Coming back, the entropy density computed above in (4.60) is proportional to powers

of rh, so it vanishes when rh → 0. Additionally when r → rh, the entropy density receives

corrections that take us away from the conformal value. These corrections may be easily

quantified as powers of ε but we won’t analyze it here.14 Instead, at this point it may be

instructive to point out the steps that went in the computation of the entropy density s.

This would in turn effect the computation of the sound speed cs, since it depends upon

s via:

c2
s =

dlog T

dlog s
=
s

T

(
dT/drh
ds/drh

)
. (4.62)

14For example, to first order in ε and for r → rh we can sum up the series (4.61), or use (4.12), to show

that the entropy density may be expressed as:

s = s0

[
1 +

ε

5

(
log 4− π2

12

)]
where s0 is the conformal value for the entropy density that can be read up from (4.60). To this order we

can see that there is no rh dependence at the horizon.
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The entropy density may be determined directly from supergravity by first computing the

energy-momentum tensors and then dividing the result by the temperature T . The energy-

momentum tensor, on the other hand, arises from the variation of the action of the the

form given by eq (3.120) of [59]. One may add a Gibbon-Hawkings term to it to control

the boundary behavior, as evident from equations (3.121) and (3.123) of [59], but that

does not alter the required linear term for our case. One may also add counter-terms to

holographically renormalize the subsequent action, but since we are using a finite cut-off

rc, it is not necessary to add them at this stage. This aspect has already been alluded to

earlier, and here we see a more concrete realization of this. Putting everything together,

the sound speed for r > rh will be given by:

c2
s =

1

3
+

2ε

45

[
x log

(
1− x
1 + x

)
− log

(
1− x2

)]
=

1

3
+
gsM

2

15πN

[
r2
h

r2
c

log

(
r2
c − r2

h

r2
c + r2

h

)
− log

(
1−

r4
h

r4
c

)]
, (4.63)

where x is the same parameter used in (4.61) before. Expectedly, the sound speed reduces

to cs = 1√
3

in the conformal limit, and is smaller than 1√
3

when non-conformal corrections

are included. One may justify this by looking at either of the two expressions in (4.63):

the two terms, that account for the non-conformal corrections, are negative definite15 when

x < 1 (or rh < rc). In the limit rh � rc, the sound speed (4.63) may be approximated by:

c2
s =

1

3
− gsM

2

15πN

(
rh
rc

)4

. (4.64)

The above limit is not without its merit as we expect rc to be much bigger than rh, even if

we restrict the dynamics completely to Region 1 of [59]. We can now use (4.59) and (4.64),

to express the ratio of the bulk viscosity to shear viscosity in the following suggestive way:

ζ

η
=

135π

32x2

(
3− 16αx√

x

)(
1

3
− c2

s

)
+

39παxε

16x5/2
, (4.65)

where η = 1
4π is taken at its conformal value to this order in ε, x =

r2
h
r2
c

as before, and

αx ≡ Yx(rc,0)
Yx(rh,0) is the ratio if the two fluctuations. We have also defined, without loss of

generality, Yx(rh, 0) ≡ 1
rh

for x� 1. Note that the expression (4.65) is valid in the limit:

3gsM
2

2πN
= ε→ 0, x→ ε1/9, (4.66)

and therefore we can see how the last term in (4.65) vanishes. This would be a useful way to

separate the scales in the problem. We could have also gone for more generic analysis where

15This may be easily seen from the first expression in (4.63) written in terms of the variable x in the

following way:

c2s =
1

3
− 2ε

45

∞∑
n=1

x2n

n(2n− 1)

which is by construction smaller than cs = 1√
3
. Note that, for vanishing ε we get back the conformal result

for the sound speed as one would expect.
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we do not impose (4.66). In this case we can rewrite (4.65), using the expression (4.64) for

the speed of sound c2
s, in the following way:

ζ

η
=

135π

32x2

(
3− 16αx√

x
+

13αx

x5/2

)(
1

3
− c2

s

)
. (4.67)

However such an expression hides the scale dependences of each terms and is also a bit

cumbersome to analyze. For simplicity therefore we will resort to an expression like (4.65)

with a suppression factor going like the last term in (4.65). In fact this works as long as

the second term in (4.65) appears with a plus sign. If there is a relative minus sign, an

expression like (4.67) is not only useful but also necessary.

We expect the ratio (4.65) to be positive definite, as (4.59) is positive definite. The

second term is already positive, and the first term can become positive if αx is constrained

in the following way:

αx <
3
√
x

16
=⇒ Yx(rc, 0)

Yx(rh, 0)
<

3rh
16rc

. (4.68)

There is something puzzling about (4.65) that we should clarify right now. The way we

have expressed (4.65) would seem to put an additional constraint on the ratio αx of the

fluctuations as evident from (4.68). However such a constraint does not seem to follow

from (4.59). In fact as long as x2 < 13
16 both (4.59) and (4.65) should be positive definite.

Since the expression (4.65) is basically a rewriting of (4.59) using the expression (4.64),

it implies that (4.65) should not introduce any additional constraint of the form (4.68) on

the ratio αx. Then why is there a new constraint? One way to argue for this would be to

observe that the expression (4.65) is generic in the sense that it may be re-expressed as:

ζ

η
= a(x)

(
1

3
− c2

s

)
+ b(x), (4.69)

where a(x) and b(x) are variations of the coefficients appearing in (4.65). If b(x) is not

proportional to ε, this generalization will suffer16 from the appearance of explicit cut-off

dependences of the respective variables that cannot be expressed in an implicit scale-

separated way as in (4.67). Once however an expression like (4.67) is realized for (4.69),

there will be no additional constraints and the expression will be similar to (4.59). We will

exploit this angle to our advantage when we go for the case where c2
s itself generalizes.

An example of such generalizations appears with O(ε) corrections to (4.63) and (4.64)

that may change the coefficients of (4.65). These corrections appear from O(ε) corrections

to the temperature T , which we had identified to the horizon radius rh. To see this first

let us take the cut-off temperature Tc used in [59], which may be expressed as:

Tc ≡
B′(rh, ε)

2π
exp [2B(rh, ε)−B(rc, ε) + 2A(rh, ε)] , (4.70)

where e2B and e2A are defined in (4.11) and (4.12) respectively. To O(ε) the functional

forms for the various parameters, i.e g(r) ≡ e2B(r,ε) and h(r) ≡ e−4A(r,ε), appearing in (4.70)

16In addition to being inconsistent at the conformal limit.
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may be determined exactly as:

g′(rh) =
4

rh
+

6ε

5rh

(
log 4− π2

12

)
g(rc) = 1− x2 − 3ε

20

∞∑
n=1

x2(n+1)

n2(n+ 1)(2n− 1)

h(rh) =
L4

r4
h

[
1 + ε log x+

ε

5

(
log 4− π2

48

)]
, (4.71)

where L4 ≡ 27gsN
4 , and note the appearance of higher powers of x in the black-hole factor

g(r) defined at the cut-off rc. This series has similarity with the series (4.61) defined for

the resolution parameter a2. The connection is of course spelled out earlier in (4.11), and

once we plug (4.71) in (4.70), the temperature may be expressed as:

Tc =

rh
πL2

[
1 + 3ε

10

(
log 4− π2

12

)]
[
1 + ε

5

(
log 4x5 − π2

48

) ]1/2[
1− x2 − 3ε

20

∑∞
n=1

x2(n+1

n2(n+1)(2n−1)

]1/2
(4.72)

=
rh
πL2

(
1 +

x2

2

)[
1 +

ε

5

(
log 4− 11π2

96

)
− ε

4
log x+

9ε

2

(
x4

2 + x2

)
+O(x6)

]
,

where the second line is in the limit x� 1. The ε corrections are exactly the ones that one

would expect from switching on non-conformalities in the system. However note that even

in the limit ε→ 0, our expression for Tc seems to have an additional factor of the form:

Tc =
rh

πL2
√

1− x2
, (4.73)

which implies the cut-off dependence of the temperature. Clearly when we make rc → ∞
we recover the conformal result, but the appearance of x in (4.73) as well as in (4.72) means

that UV completion is necessary to argue for the physical value of Tc here. Naively taking

rc → ∞ for non-zero ε will not give us the correct answer here, which of course resonates

well with the UV completion discussed in [59].

Thus there is a way to holographically renormalize the system, following the procedure

given in [59], that would take care of the log pieces in the metric and other variables in

the problem. Once this is accomplished one may, in some restrictive sense, take rc → ∞.

This is a specific UV completion wherein the UV cap gives rise to an asymptotically

conformal theory. For such a case the temperature does take a physical value which may

be expressed as:

Tc =
rh
πL2

[
1 +

ε

5

(
log 4− 11π2

96
− 5

4
log

rh
Λ

)]
+O(ε2), (4.74)

where Λ is related to the QCD scale for this model. The above is the so-called boundary

temperature of [59] that we define at far UV. We will however need to define the temper-

ature at any given scale, not just the UV, to avoid issues like (4.73) in the absence of any

non-conformalities. Let us therefore take the following definition of the temperature:

T = rh (a1 + εa2) , (4.75)
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where a1 and a2, which can be functions of x =
r2
h
r2
c
, will be determined below. Note that T

and Tc are similar when ai take specific values extracted from (4.74). In general however,

T should be the temperature that would occur naturally in this framework. This means we

need to change slightly the formula for entropy in (4.60) by replacing r3
h in (4.60) by r4

h/T ,

with T given by (4.75). The sound speed will also change from (4.63) to the following:

c2
s =

1

3
− 2ε

45

∞∑
n=1

x2n

n(2n− 1)

(
1 +

2x

a1

da1

dx

)
(4.76)

+
4x2

9a2
1

[(
da1

dx

)2(
1− 2εa2

a1

)
+ 2ε

da1

dx

da2

dx

]
+

8x

9a1

[
da1

dx

(
1− εa2

a1

)
+ ε

da2

dx

]
,

where the expected cut-off dependence appears from x as before. Clearly when a1 = 1
πL2

and a2 = 0, we recover the sound speed computed in (4.63). However now, when both a1

and a2 are functions of x, the ε = 0 limit gives us:

c2
s =

1

3
+

4x

9a1

(
da1

dx

)[
2 +

x

a1

(
da1

dx

)]
, (4.77)

which takes us away from the conformal value of c2
s = 1

3 in the conformal limit. This is

not what we expect here, so we can use (4.77) to determine the functional form for a1(x).

There are clearly two possible solutions for a1(x), namely:

a1(x) = b, a1(x) =
b

x2
, (4.78)

where b is yet an undetermined constant. The second choice is not acceptable in a theory

that is holographically renormalizable, as it blows up when the cut-off is taken to infinity.

This implies that T in (4.75) can only be:

T = rh (b+ εa2(x)) , (4.79)

with constant b. What value can a2(x) take? To determine this we will need to study

the full holographically renormalized temperature. This is in general a tedious exercise,

but we can get a hint from the renormalized boundary temperature Tc that we determined

earlier in (4.74). To the first order in ε, the renormalized boundary temperature depends

on log rh. This tells us that we can make the following ansatze for a2(x):

a2(x) = c1(x) + c2(x)log x, (4.80)

where c1(x) and c2(x) are polynomials in x that do not have either log x or x−n pieces.

The two functions c1(x) and c2(x) contribute to the full sound speed in the following way:

c2
s =

1

3
− 2ε

45

∞∑
n=1

x2n

n(2n− 1)
+

8εx

9a1

(
da2

dx

)

=
1

3
+

8εc2(x)

9b
− 2ε

45

∞∑
n=1

x2n

n(2n− 1)
+

8εx

9b

(
dc1

dx
+ log x

dc2

dx

)
, (4.81)
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where we see that the result is not so different from our earlier value for sound speed (4.63).

The difference lies in the additional term proportional to da2/dx, which in turn would

depend on how c1(x) and c2(x) depend on x. If cn(x) = −|cn| with constant cn, and

x� 1, the sound speed is simple and is given by:17

c2
s =

1

3
− 8ε|c2|

9b
− 2ε

45

(
r4
h

r4
c

)
+O(ε2), (4.82)

where b > 0, and the signs are dictated by the fact that the beta function is negative and

so the sound speed is smaller than 1/
√

3. The additional term in the sound speed (4.82)

means that the ratio of bulk to shear viscosities, i.e (4.65), changes to:

ζ

η
=

135π

32x2

(
3− 16αx√

x

)(
1

3
− c2

s

)
+
παxε

x5/2

(
39

16
+

60|c2|
b

)
− 45πε|c2|

4bx2
, (4.83)

where expectedly when |c2| = 0 we recover (4.65) with scales separated as in (4.66). The

relative minus sign for the last term appearing above however creates an issue now, so it

is more advisable to resort to the expression of the form (4.67) where the scale separation

is more implicit. In other words, we want to express (4.83) alternatively as:

ζ

η
=

135π

32x2

[
3− 16αx√

x
+

((
26 +

640|c2|
b

)
αx√
x
− 120|c2|

b

)
b

2bx2 + 40|c2|

](
1

3
− c2

s

)
.

(4.84)

The r.h.s. now crucially depends on αx i.e on the ratio of fluctuations Yx(rc, 0) and Yx(rh, 0)

satisfying (4.50). The equation (4.50) is difficult to solve, partly because of our ignorance

of the precise sources a4 defined in (4.49) using ∆[1,2] and ∆[2,3] via (4.45) (which in-turn

are defined in terms of Pi and Jk functions in (4.51), extracted from (4.48) and (4.49)).

Nevertheless, using the constraint (4.68), allows us to make the following ansatze for αx:

αx =
3
√
x

16
F(x), (4.85)

where F(x) is another function of x. What constraints do F(x) satisfy? From (4.68),

F(x) < 1 for all values of x < 1. We also require x2 < 13
16 as mentioned before, which we

can constrain further by inserting a constant d1 > 1 allowing x2 < 13
16d1

without loss of

generalities. Thus F(x) may be expressed as a series in x2. This series could be summed

up18 providing the following ansatze for F(x):

F(x) =
16(d1 − 1)x2

13− 16x2
, (4.86)

17Both the expressions of generalized sound-speed, (4.81) and (4.82), appear with explicit cut-off de-

pendent terms that vanish in the limit when the cut-off is taken to infinity, i.e when x → 0. This is of

course the consequence of using Wilsonian method as we emphasized repeatedly. We can alternatively write

cut-off independent sound-speed as in (4.89) which works for any UV completions. Thus all observables

will be cut-off independent as we demonstrate soon. One may also compare this with the sound-speed

computed in (5.32), which uses full quantum corrections where the cut-off is taken to infinity, therefore as

a consequence only the QCD scale rd appears. See also footnote 24 for more details.
18Let us denote the functional form for F(x), expressed as series in powers of x2, in the following way:

F(x) =

∞∑
n=1

bnx
2n ≡ ax2

b− cx2
,
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where d1 is the constant used earlier, and in fact because of this constant (4.86) is always

positive definite, and expectedly smaller than 1. The way the series is constructed does

not include terms proportional to
√
x or x3/2 in (4.86). Combining (4.86) with (4.85)

and plugging this in (4.84) gives us the following suggestive form for the ratio of bulk to

shear viscosities:

y ≡ ζ

η
=

405πbd1

32 (20|c2|+ bx2)

(
1

3
− c2

s

)
, (4.87)

where the cut-off dependence, compared to (4.84) or (4.83), appears explicitly through the

denominator of (4.87) and implicitly through (4.82). Although in the absence of the precise

knowledge of b, d1 and c2, it appears that this is the best we can do at this stage, taking a

x derivative of y in (4.87) gives us:

∂y

∂x
= − 405πbd1

16 (20|c2|+ bx2)

[
bx

20|c2|+ bx2

(
1

3
− c2

s

)
− cs

∂cs
∂x

]
= 0, (4.88)

showing that the ratio of the bulk to shear viscosities is cut-off independent! As a corollary

to above, since the cut-off independence of shear viscosity is already demonstrated in [59],

it follows from (4.88) that the bulk viscosity is also cut-off independent. The result appears

to be almost miraculous, so question is what happened. First note that if we naively take

the cut-off to infinity, i.e x → 0, the sound speed and the ratio of the bulk to shear

viscosities become:

c2
s =

1

3
− 8|c2|ε

9b
,

ζ

η
=

9πd1ε

16
. (4.89)

From this we can see how the miracle happens. On one hand, the ratio of bulk to shear

viscosities is always proportional to the value quoted in (4.89) times a function that depends

on the cut-off x2. On the other hand,
(

1
3 − c

2
s

)
is always proportional to the value quoted

in (4.89) times a function in x2 that is exactly the inverse of the function that appears

with the ratio of the bulk to shear viscosities. Thus they cancel proving not only the IR

nature of the ratio, but also the IR natures of both the bulk and the shear viscosities!

This is almost what we wanted, although one concern remains related to the

choices (4.85) and (4.86). How are we justified in the selective choices of the coefficients

in the above equations? How do we even know that such choices will solve the EOMs?

The answer to both the questions lies in the specific UV completion, or more appropri-

ately on the distribution of the anti D5-branes in Regions 2 and 3 (see the blue box in

figure 18). Once we plug (4.85) and (4.86) in (4.50), we can in principle determine the

form of the sources ∆[1,2] and ∆[2,3] in a4, given via (4.49). One can then re-arrange

whereas the r.h.s. is an ansatze for the series sum. The way we have constructed this, for small x2, F(x) is

proportional to x2. The positivity of the function gives x2 < b
c

which could be equated to the constraint

x2 < 13
16

. The function F(x) itself should be less that 1 for all x2 < 1. This provides additional constraint

of the form x2 < b
a+c

. This could now be equated to x2 < 13
16d1

with d1 defined above. Putting everything

together essentially reproduces (4.86) up to an irrelevant overall constant that we can absorb in the definition

of d1.
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the anti D5-distributions to match with the functional forms of ∆[1,2] and ∆[2,3], justify-

ing the ansatze (4.85). Notice that the ansatze (4.85) combined with (4.86) implies that

Yx(rc, 0) = αx
rh

. Plugging this in (4.50) gives us:

4a12x
3α′′x +

(
6a12x

2 − 2rha22x
3/2
)
α′x + r2

ha32αx = r3
ha42, (4.90)

where the amn coefficients are defined in (4.51) in terms of the Pn and Jm sources. It is

not too hard to see that (4.90) may be easily satisfied by choosing appropriate sources in

Regions 2 and 3. For example, taking rh = 1 in appropriate units, one particular set of

solution would be the following:

a12 = −a2

x
, a22 =

a2√
x
, a32 = 3a2, a42 = − 21632a2αx

(13− 16x2)2
, (4.91)

where a2 is a constant and αx is defined in (4.85). The overall signs for a12 and a42 can be

inferred from the definitions of the coefficients given in (4.51). Thus if:

P2 > P1, P4 > P3, (4.92)

with Pi defined in (4.49), and assuming that the derivatives in (4.51) do not offset the sign

assignments, (4.91) gives us a distribution of anti-branes in Regions 2 and 3 that would

allow for IR independent observables. Interestingly, (4.91) is not the only allowed solution.

In fact our claim is that as long as the theory is holographically renormalizable, there would

always exist distributions of the form (4.91) that would effectively make the bulk and shear

viscosities as well as their ratio to be cut-off independent.

Once this is settled, note that the negative definite last-term in (4.84) cannot be very

large as all the three constants appearing there, namely d1, |c2| and b, are finite numbers.

In fact for x < 1, it is easy to establish the following range of the function F(x):

60|c2|
13b+ 320|c2|

< F(x) < 1, (4.93)

assuming x is always away from zero. (When x = 0, F(x) vanishes so one will have to

look for appropriate UV completion that allows for a non-zero F(x) at the boundary.) This

also means that the cut-off dependent terms in (4.84) will dominate over the two negative

definite terms. Expectedly, this is consistent with the overall positivity of the ratio (4.87).

However we now need the lower bound on d1. To determine this, let us first assume that

the sound-speed c2
s quoted in (4.89) is the renormalized sound-speed. This immediately

reproduces the following ratio of the bulk to shear viscosities:

ζ

η
=

81πbd1

128|c2|

(
1

3
− c2

s

)
, (4.94)

which is cut-off independent and may be justified from the positivity arguments that we

presented earlier. We expect this bound to not violate the original Buchel-bound [31],
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which was presented for weak string and strong ’t Hooft couplings.19 Combining this

with (4.93) then gives the following lower bound for d1 in (4.86):

d1 ≥
256|c2|
81πb

> 1, (4.95)

which would eventually control the behavior of the fluctuation modes studied in section 4.2.

In the next section, we will study the sound speed and viscosity bound with non-zero

fundamental flavors and with string coupling of order 1. We will re-derive some of the

above results, but in a different regime of the parameter space. Such an analysis will

hopefully shed light on the underlying universality of the results derived here.20

5 Bulk viscosity at strong string and strong ’t Hooft couplings with non-

zero flavors

In the previous section we saw how one may study bulk viscosity, sound speed and the

bound on the ratio of the bulk to shear viscosities at strong ’t Hooft coupling using a

gravity dual in type IIB theory. At this stage one may attempt few improvements in the

present scenario by including both the flavor degrees of freedom as well as the UV regions.

One may even ask the questions in the regime where the string coupling itself is of order 1,

which of course still maintains strong ’t Hooft coupling in the gauge theory side. The latter

is however harder to study because it is the regime where even S-duality does not help. The

question then is whether we can say something concrete in this regime of parameter space.

One simple answer to the enigma may be to T-dualize the system to type IIA, by

including the flavor branes, and then lift the configuration to M-theory. This should in

principle accomplish the task, except that the T-dual scenario leads to a configuration of

intersecting NS5-branes with the intersection region being blown up to a diamond [107–

110]. This is not necessarily bad, and in fact in the past useful results have been drawn

out of this configuration [111], but the requirement of keeping track of the NS5 degrees

of freedom may thwart a simple analysis of the system. What we are looking for is a

configuration with manifold and fluxes that we could use to succinctly address similar set

of questions as in the previous section, avoiding the unnecessary requirement of including

extra degrees of freedom. This is exactly where the mirror dual of the type IIB framework

becomes handy. In fact, lattice-compatible results pertaining to glueball spectroscopy

were obtained in [126] and P(article)D(ata)G(roup)-compatible results pertaining to meson

spectroscopy were obtained in [127], by working with the mirror dual.

5.1 The mirror type IIA model and its M-theory uplift

As discussed above, and also alluded to in figure 19, the model that we want to use

here is the M-theory uplift of the type IIB scenario that we studied earlier. This is the

19Although note that there does exist a possibility, by choosing an appropriate d1, to violate the bound [31]

as alluded to earlier. This should lead to interesting physics whose implications, if any, will not be investi-

gated here.
20In appendix D we will compare our results, derived here and in section 5, with some of the other related

works like [106].
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MQGP model of [64, 112] where at weak string coupling we have a type IIA description.

One of important procedure that goes in the construction of [64, 112] is the so-called

delocalized mirror symmetry via the Strominger-Yau-Zaslow (SYZ) prescription [65]. This

prescription involves a two-step procedure: one, by viewing the Calabi-Yau manifold as a

special Lagrangian T3 fibered over a base that is taken very large, and two, by performing

three T-dualities over the T3 fiber. In this sub-section, we will provide some discussions

on the details of the procedure.

The first requirement of a large base is important. This has to do with nullifying

the contributions from open-string disc instantons with boundaries that appear as non-

contractible 1-cycles in the special Lagrangian (sLag) T3 fibered over the base. To see this

more clearly, let us define three delocalized T-dual coordinates (x, y, z) which are basically

proportional to (φ1, φ2, ψ) coordinates respectively that we encountered earlier. These

coordinates are valued in the fiber torus T3 via [64]:

x = s1φ1, y = s2φ2, z = s3ψ, (5.1)

where si are constants whose values may be derived from [114–116]. Interestingly, the choice

of the coordinates (x, y, z) allows us to study the local geometry of the underlying manifold.

Furthermore, using the results of [113] the following conditions, as shown in [112, 128],

are satisfied:

i∗J ≈ 0, Im (i∗Ω) ≈ 0,

Re (i∗Ω) ∼ volume form
(
T3(x, y, z)

)
, (5.2)

for the underlying T2-invariant special Lagrangian manifold of [113] for resolved and

deformed conifold. This immediately implies that, if the underlying resolved warped-

deformed conifold is predominantly either complelely resolved or deformed, the local sLag

T3 of (5.1) is then the required sLag to allow for the SYZ mirror construction via local

T-dualities.

Let us analyze thus further by taking the type IIB background given in (4.5) but now

with eB = 1. The latter requirement is to just simplify the ensuing discussion. As we saw

above, to enable use of SYZ-mirror duality via three T dualities, one is required to take a

large base. This immediately means taking large complex structures of the aforementioned

two two-tori of the sLag T3(x, y, z) fibration. One may easily implement this via the

following considerations [117]:

dφk → dφk − fk(θk)dθk, dψ → dψ +

2∑
k=1

fk(θk) cos θkdθk, (5.3)

for appropriately chosen large values of fk(θk) with k = 1, 2. This choice does not change

the local NS three-form flux, as was shown in [114–117]. Globally the underlying manifold

can be a non-Kähler manifold as we discussed earlier. This is the advantage of using the

(x, y, z) coordinates. On the other hand, the fact that one may be allowed to choose large

values of fk(θk), was justified later in [64]. The main idea is basically the requirement that
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the metric obtained after SYZ-mirror transformation, applied to the non-Kähler resolved

warped-deformed conifold, should resemble, at least locally, a non-Kähler warped resolved

conifold. This means after incorporating (5.3) to (4.5), the (x, y, z) coordinates discussed

in (5.1) will parametrize the local behavior succinctly. The global considerations will follow

afterwards as shown in [117, 118].21

In the local geometry, we can now perform three T-dualities,22 first along coordinate

x, then along coordinate y and finally along coordinate z, to get the local mirror manifold.

The details of this construction, utilizing the results of [114–117] was first worked out in [64].

The local mirror captures all the right properties of the expected dual configuration in the

type IIA side, and then one may use the coordinates (φ1, φ2, ψ) to express the global metric

as ds2
IIA (see [64, 114–118] for details). An additional ingredient that appears naturally

from the SYZ procedure from the type IIB three and five-form fluxes as well as the axio-

dilaton, is the one-form type IIA potential A. Such a one-form is useful to construct the

M-theory uplift of the mirror type IIA as was shown in [64].23 The global M-theory metric

takes the following form:

ds2
11 = e−

2ϕ
3

[
−gttdt2 + gR3

3∑
i=1

dx2
i + grrdr

2 + ds2
IIA(φi, θi, ψ)

]
+ e

4ϕ
3 (dx11 +A)2 ,

(5.4)

where ϕ is the type IIA dilaton that appears from the mirror transform of the type IIB

dilaton. Once the dilaton is allowed to take a non-trivial value, both in type IIB as well

as in the mirror type IIA side, one starts seeing the effects of the flavors. This is simply

because, in the type IIB side, non-trivial axio-dilaton shows up only when we switch on Nf

seven-branes. Of course, not all the Nf seven-branes are required to be local D7-branes,

but having D7-branes make the mirror picture more transparent as these would eventually

contribute to the dilaton ϕ in the type IIA side. Once the dust settles, the gR3 and gtt

21To justify the delocalization method while constructing the type IIA mirror à la SYZ triple-T-duality

prescription [65] and its subsequent M-theory uplift one may argue the following. Consider the example of

the mirror of a D5-brane wrapping the resolved S2 with fluxes as studied in the first reference of [114–116].

The M-theory uplift can be made free of delocalization ensuring that one can construct a permissible G2

structure manifold for the entire domain of validity of the delocalized coordinates. For example, in the

delocalized large-complex structure limit and after a fixed ψ coordinate rotation, one obtains the SYZ

mirror to be D6-brane wrapping a non-Kähler deformed conifold. Now, as shown in section 6 of [114–116],

one can define an appropriate set of vielbeins to construct an explicit G2 structure in terms of which the

M-theory uplift of the previously obtained type IIA mirror could be rewritten, and which is valid for all

values of ψ. In other words, the mirror for ψ = ψ0 coincides with the triple-T-dual-fixed-ψ rotated type IIA

mirror obtained assuming delocalization. This essentially states that the type IIA mirror in equation (6.23)

of the first reference in [114–116] obtained by descending to type IIA from arbitrary-ψ M-theory uplift will

be the same as the fixed-ψ0 type IIA mirror of equation (5.64) obtained using delocalization for ψ = ψ0.

Hence we could just replace ψ0 by ψ in the type IIA mirror obtained assuming delocalization.This therefore

implies that the type IIA mirror is effectively free of the delocalization restriction.
22Now also switching on eB in (4.5).
23As is standard in such constructions, the one-form A may not be globally defined, although it’s field

strength will be. In the type IIB side such one-form will lead to either a RR two-form field or the axion

depending on the T-duality direction.
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components appearing in (5.4) may be defined in the following way:24

gR3 =
r2

√
4πgsN

{
1− 3gsM

2

4πN

[
1 +

3gsNf

2π

(
log r +

1

2

)
+
gsNf

4π
log

(
αθ1αθ2
4
√
N

)]
log r

}
gtt =

(r4 − r4
h)

r2
√

4πgsN

{
1 +

3gsM
2

4πN

[
1 +

3gsNf

2π

(
log r +

1

2

)
+
gsNf

4π
log

(
αθ1αθ2
4
√
N

)]
log r

}
,

(5.5)

where rh is the horizon radius, and both gsNf as well as gsM2

N are expectedly small.25 Note

also that both the metric components are independent of the resolution parameter a2. In

fact the only metric component that depends on the resolution parameter would be the grr
component, whose explicit value is given by:

grr =
r2
√

4πgsN

r4 − r4
h

(
6a2 + r2

9a2 + r2

)
×
{

1− 3gsM
2

4πN

[
1 +

3gsNf

2π

(
log r +

1

2

)
+
gsNf

4π
log

(
αθ1αθ2
4
√
N

)]
log r

}
(5.6)

where the full structure for a2 will be given later. The functional forms for the coefficients

appearing in (5.5) and (5.6) are determined by mapping the local metric to the warped

resolved conifold metric26 with a resolution parameter a2. In addition to that, and in the

MQGP limit of [64], the αθk factors for k = 1, 2 are angular coordinates such that around:

θ1 ∼
αθ1

N
1
5

, θ2 ∼
αθ2

N
3
10

, (5.7)

we can allow the decoupling of the five-dimensional spacetime M5(t, x1,2,3, u) from the

internal six-dimensional space M6(θ1,2, φ1,2, ψ, x10). This decoupling is affected by making

the Kaluza-Klein (KK) modes very heavy.

The above discussions more or less summarizes the mirror construction as well its M-

theory uplift. However it would be instructive to compare this with the type IIA brane

construction of figure 20, which deals with both the UV and the IR brane configurations.

The IR picture is of course the Klebanov-Strassler construction which is got by making

a single T-duality along a direction orthogonal to the wrapped D5-brane world volume,

i.e along z of (5.1). This yields the r.h.s. of figure 20, if we ignore the parallel NS5-

brane. In other words, we get M D4-branes straddling between a pair of orthogonal

24Note that, unless mentioned otherwise, we shall always assume log r, in expressions like (5.5), is written

as log r
rd

with rd being the scale associated with D5 − D5 separation to keep the ratio dimensionless.

Compared to the previous section, the analysis in this section and next uses full quantum corrections where

the cut-off is taken to infinity so only the scale rd appears. To avoid clutter, we will also take rd = 1 so

that r remains dimensionless.
25In section 4 we took gs → 0 with N,M very large and Nf vanishing such that gsM

2

N
� 1 and gsNf = 0.

Here we take gs < 1 and Nf = O(1) with N,M still very large. Again gsM
2

N
� 1, but gsNf < 1. The

latter can be implemented, for example, by choosing gs ∼ 0.4 and Nf ∼ 2. Such a choice will guarantee

that (gsNf )m
(
gsM

2

N

)n
� 1 even for n = 1 and m = Z. Note however that gs → 0 does not always imply

g2
YM → 0. We can have g2

YM = O(1) when Nf 6= 0. This will be elaborated in section 6.4.
26Recall that globally we can only put a non-Kähler metric on the resolved conifold [63].
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NS5-branes whose world-volume directions are parametrized by (θ1, x) and (θ2, y) [120,

121]. The mirror picture discussed here is then got by making two further T-dualities

along x and y directions. Each of these T-dualities would yield Taub-NUT spaces from

the corresponding NS5-branes [123]. The Nf flavor D7-branes would yield Nf D6-branes

that are then uplifted to M-theory as KK monopoles [124]. These are also Taub-NUT

spaces. Combining everything together then leads to a seven-dimensional manifold with a

G2 structure and with G-fluxes. This configuration is precisely equivalent to the uplift of

the wrapped D5-branes on a warped resolved conifold of [63, 114–117].

5.2 Quasi-normal modes, attenuation constant and the sound speed

Let us now discuss the main ingredient of our construction, namely the quasi-normal modes

in the dual gravitational background. The procedure involves a few steps that we lay down

in the following.

Building up on the ideas developed in [125] and [128], and using gauge-invariant

combinations of metric perturbations invariant under infinitesimal diffeomorphisms, in

other words:

hµν → hµν +∇(µξν), (5.8)

as discussed in [125], the gauge-invariant combination of scalar modes of (M-theory) met-

ric27 perturbations was constructed in [128]. A discussion of the same appears in ap-

pendix A.

Next, we work near the decoupling limit prescribed in (5.7), and choose the other

three angular coordinate (ψ, φ1,2) in the mirror metric (5.4) as ψ = 2nπ, with n = 0, 1, 2

and small φ1,2. We also choose our radial variable henceforth as u ≡ rh
r . Using these we

can define:

B(u)

2N
=

3gsM
2

4πN

[
1 +

3gsNf

2π

(
log

rh
u

+
1

2

)
+
gsNf

4π
log

(
αθ1αθ2
4
√
N

)]
log

rh
u
, (5.9)

in the context of the gravitational dual of large-N thermal QCD with Nf 6= 0, where Nf

is the number of flavors. This functional form of B(u) appears in the construction of the

gauge-invariant Zs(u) in the following way:

Zs(u) = Hyy

(
q2 +

q2u4

π2T 2
− w2 −

B′(u)q2u5Nfg
2
s

2N

)
+ q2

(
u4 − 1

)
Htt + 2qwHtx + w2Hxx,

(5.10)

where the Hab functions are given in appendix A, and T is the temperature whose form will

be given below. Note that the upshot of appendix A is essentially the construction of the

gauge-invariant Zs(u) that will satisfy certain EOM to be elaborated in the following.28

In obtaining an EOM for Zs(u), we will make use of q3 = q
πT , w3 = w

πT where T is

temperature that appears in (5.10) above. We will express T in terms of all the variables

27As discussed above, this corresponds to the local uplift of the delocalized Strominger-Yau-Zaslow [65]

type IIA mirror of the holographic type IIB dual of [59] of large-N thermal QCD, having integrated out

the six angular directions as in [129], up to NLO in N in the MQGP limit of [64].
28Our emphasis here would be to determine the EOM up to NLO in N .
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that appear in the metric. To proceed, and for later brevity, we start by defining the

following quantity:

Ckj(u) ≡ 1 +
gsNf

4π
log

(
αθ1αθ2
4
√
N

)
+

3gsNf

2π

(
k log

rh
u

+
2j − 1

2

)
, (5.11)

where (k, j) will be integers. Now assuming the resolution to be larger than the deformation

in the resolved warped-deformed conifold in the type IIB background of [59] in the MQGP

limit, and using the decoupling limit (5.7), the temperature T may be expressed in the

following way (see also [128]):

T =
∂r|G00|

4π
√
|G00|Grr

= lim
u→1

rh
π
√

4πgsN

(
1 +

3a2

2r2
h

)[
1− 3gsM

2

4πN
C11(u)log rh

]
, (5.12)

where Gµν is the M-theory metric (5.4), and C11(u) may be extracted from (5.11). We

can also go to the limit where αθi are O(1) numbers. This way the temperature may

be written completely in terms of the resolution parameter a2 and the horizon radius rh.

Interestingly when a2 � r2
h, the temperature is expressed in terms of inverse rh. Otherwise,

the temperature is proportional to rh. In the limit of vanishing flavors, small bare resolution

parameter, and large cut-off, the expression for the temperature becomes identical to what

we took on the type IIB side (see (4.79) and (4.80) and discussion below). The bare

resolution parameter in type IIB side, as given in (4.12), was taken to be zero. A natural

question then is to ask what happens if we take non-zero bare resolution parameter.29 A

particular choice of a(u) can be:

a(u) =

[
b+

gsM
2

N
(c1 + c2log rh)

]
rh, (5.13)

this way b may serve as the bare resolution parameter in (5.12) and c1(u), c2(u) are some

slowly varying functions of the u parameter (not to be confused with b and c1, c2 taken

in (4.79) and (4.80)). One may compare (5.13) with the type IIB resolution parame-

ter (4.12) in the limit b → 0. The functional forms in the two cases are similar, but not

identical. This is intentional because the choice (5.13) allows us to perform computations

in the mirror side more efficiently compared to the choice (4.12). This in turn will also

effect some of our final results, so comparison with the type IIB side will have to be done

more carefully. In fact writing (4.80) as:

a2(x) = c1 + c2(x)log x+ c3(x)log2x, (5.14)

29Note that allowing a bare resolution parameter in the type IIB side allows us to perform the SYZ mirror

transformation more efficiently [114–116]. Here however we will use the word bare to denote the part of the

resolution parameter that is independent of gsNf and gsM
2

N
. Of course the rh independent piece of a(u)

vanishes.
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where we have added a log2x piece with a coefficient c3 to the already existing result, one

can show that (using c20 ≡ 33/2

256π3/2L2 ):

b|(4.79) =
3

3
2 (2 + 3b2)

8
√
πL2

,

c1(x)|(4.80) =
4 · 3

3
2 c1(x)π

8
√
πL2

, c3(x) = −
3

5
2 (2 + 3b2)gsNf

64
√
πL2

(5.15)

c2(x)|(4.80) = −4πc20

[
4− 16πbc2(x) + 6b2

]
+ gsNf (2 + 3b2)c20

[
3− 2log

(
αθ1αθ2
4
√
N

)]
.

With these definitions at hand, we are now ready to write down the equation of motion for

Zs(u) appearing in (5.10). This may be expressed in the following way:

Z ′′s (u) = m(u)Z ′s(u) + l(u)Zs(u), (5.16)

which is a second-order differential equation in u whose solutions will tell us the precise

gauge-invariant variables that we seek here. This equation depends on two non-trivial

functions of u, namely m(u) and l(u), whose functional form will be important. Both these

functions may be expressed in terms of Ckj(u) in (5.11) as well as certain other functions

that we shall elaborate in the following. We start with m(u) which may be written as:

m(u) ≡ 1

4 (u4 − 1) [q3
2 (u4 − 3) + 3w3

2]2

{
A1(u)

u
+
gsM

2

N

[
8bu (c1 + c2log rh)A2(u)

−9b2u

2π
C21(u)A3(u) +

3

2πu
C23(u)A4(u)− 9

πu
C21(u)A5(u)

]}
, (5.17)

where note the appearance of C21(u) and C23(u) defined in (5.11) as well as Ai(u) that form

the various coefficients above. The function A1(u) may be written as:

A1(u) ≡ 4
(
q3

2
(
u4 − 3

)
+ 3w3

2
) [
q3

2
(
b2
(
u8 + 2u4 − 3

)
u2 + 7u8 − 8u4 + 9

)
−w3

2
(
b2
(
5u4 − 3

)
u2 + 3

(
u4 + 3

)) ]
, (5.18)

which expectedly simplifies for vanishing b. On the other hand, at the boundary when u

vanishes, A1(0) is proportional to
(
ω2

3 − q2
3

)2
which is now expressed in terms of T defined

at u→ 0 instead. Similarly, A2(u) may be written in the following way:

A2(u) ≡ q3
4
(
u12 − u8 − 9u4 + 9

)
− 2q3

2
(
u8 − 12u4 + 9

)
w3

2 + 3
(
3− 5u4

)
w3

4, (5.19)

which is again proportional to
(
ω2

3 − q2
3

)2
at the boundary u→ 0. When b vanishes, A2 is

unaffected, but the term itself comes multiplied with b in (5.17), so decouples completely.

The third term in (5.17) is proportional to b2, so we expect it to decouple in the limit

of vanishing b. To see what happens at the boundary, i.e when u→ 0, we express A3(u) as:

A3(u) ≡ 3q3
4
(
u8 − 4u4 + 3

)2
+ 2q3

2
(
10u12 − 43u8 + 60u4 − 27

)
w3

2 +
(
17u8 − 48u4 + 27

)
w3

4

u4 − 3
,

(5.20)
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which is expectedly proportional to
(
ω2

3 − q2
3

)2
, but the term itself decouples because it

appears together with a factor of u in (5.17), much like the previous term in (5.17).

The remaining two coefficients, A4(u) and A5(u), are in similar vein as (5.18), (5.19)

and (5.20) and share much of the same properties as above. They take the following form:

A4(u) ≡
(
u4 − 1

) (
q3

2
(
u4 − 3

)
+ 3w3

2
) (
q3

2
(
7u4 − 3

)
+ 3w3

2
)

u4 − 3
(5.21)

A5(u) ≡
(
u4 − 1

) (
q3

4
(
4u8 − 25u4 + 15

)
+ 5q3

2
(
5u4 − 6

)
w3

2 + 15w3
4
)

u4 − 3
,

and become proportional to (ω2
3 − q2

3)2 when u→ 0 at the boundary, but do not decouple

in a simple way as before. In this sense they share the property of the first term in the

definition (5.17). The boundary behavior of m(u) can then be given by the following

limiting expression:

m(0) = lim
u→0

36− ε [C23(u)− 10C21(u)]

12u
, (5.22)

where ε ≡ 3gsM2

2πN is the same expansion parameter that we used in section 4. Both the

C2j factors behave as log u, but are suppressed by ε as well as gsNf (5.11) (any constant

factors get suppressed by ε from (5.17)). Thus m(0) seems to blow up as 1
u or log u

u . This

preliminary analysis however is naive because precisely in this regime the UV cap modifies

the boundary behavior appropriately to avoid any such pitfalls. Therefore a more relevant

question to ask is the behavior of m(u) at the horizon, i.e when u → 1. We will analyze

this below, but before that let us discuss the behavior of the other function l(u) appearing

in (5.16).

The expression for l(u) turns out to be very large so we shall suffice ourselves by

demonstrating that the horizon u = 1 is an irregular singular point whenever N 6= 0. In

the following we give below the expansion of l(u) about u = 1 to see the same:

l(u→ 1) =
ω4

3b
2
(
6 + q2

3

)
128q4

3(u− 1)3

+
3b2ω4

3

1024πq2
3(u− 1)3

(
gsM

2

N

)[
C21(1) +

16π

3b

(
6 + q2

3

)
(c1 + c2log rh)

]
+O

[
1

(u− 1)2

]
, (5.23)

where C21(1) may be extracted from (5.11) by putting u = 1 therein. For vanishing

bare resolution parameter (5.23) vanishes, so a minimal resolution is necessary to see the

behavior at the horizon.

The above expression for l(u) near the horizon is what we need, and we could also go

to the u → 1 limit for m(u) in (5.17) to determine its behavior at the horizon. However

the results are expressed in terms of both q3 and ω3. To elaborate further, we need to first

express ω3 in terms of q3 and then identify the subsequent behavior of m(u) and l(u) at

the horizon. To this effect, we make the following ansatz:

ω3 =

(
1√
3

+ α
gsM

2

N

)
q3 +

(
− i

6
+ β

gsM
2

N

)
q2

3, (5.24)
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and substitute into m(u) and l(u). Here α(u) and β(u) are certain functions whose values

will be determined near the horizon. We then first perform a small q3 expansion, fol-

lowed by an expansion around u = 1 and lastly a large N expansion. The procedure is

straightforward albeit a little tedious. After the dust settles, we come up with the following

expansions for m(u) by keeping terms up to O
(
q3,

gsM2

N

)
and the most singular term in u

near u = 1, namely:

m(u→ 1) =
b2 − 6

6(u− 1)
− b2

16π(u− 1)

(
gsM

2

N

)[
C21(1) +

32πα√
3

+
16π

3b
(c1 + c2log rh)

]
− ib2q3

3
√

3(u− 1)
+

iq3

√
3b2

12π(u− 1)

(
gsM

2

N

)
×
[
C21(1)− i8πβ − 20πα√

3
− 8π

b
(c1 + c2log rh)

]
, (5.25)

with C21 as in (5.11). For vanishing bare resolution parameter, there is a further simplifi-

cation: m(u→ 1) behaves simply as 1
1−u as may be easily seen from (5.25). On the other

hand, the behavior of l(u) at the horizon may be read more directly from (5.23) as:

l(u→ 1) =
bq3

288(u− 1)3

(
gsM

2

N

)[
2
√

3 (3bβ − ic1)− 9iαb− 2i
√

3c2log rh

]
+

b

96(u− 1)3

(
gsM

2

N

)(
2
√

3αb+ c1 + c2log rh

)
+

b2

96(u− 1)3

(
1

2
− iq3√

3

)
,

(5.26)

which expectedly vanishes for vanishing bare resolution parameter, and has the required

irregular singular point.

The functional forms for m(u) and l(u), expressed using the dispersion relation (5.24),

and analyzed near the horizon u→ 1 is essentially the regime that we want to concentrate

here. We can also study the system at the boundary by attaching an appropriate UV cap

controlling, in turn, the behavior of m(u) and l(u), but this will not be the emphasis of this

section. Our aim would be to explore the near horizon behavior where one sees u = 1 as an

irregular singular point of (5.16). To proceed, let us make the following ansatz for Zs(u):

Zs(u) = eS(u), (5.27)

where we shall assume [S′(u ∼ 1)]2 > |S′′(u ∼ 1)|. This derivative requirement essentially

converts (5.16) to a simple quadratic equation in S′(u) with coefficients m(u) and l(u).

The solutions are:

S′(u→ 1) = lim
u→1

1

2

(
m(u)±

√
m2(u) + 4l(u)

)
. (5.28)

At this stage it would be interesting to ask what happens when the derivative condition

is not satisfied. Clearly in this case we will get a second order inhomogeneous differential

equation which becomes homogenous when the bare resolution parameter vanishes. Gener-

ically it is harder to deal with the inhomogeneous case, because of the complicated forms of
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m(u) and l(u), and the homogenous form is not a suitable choice for the system undergo-

ing SYZ transformations [65, 114–116]. Thus the simplification and calculability attained

from the derivative requirement guarantee not only analytic control, but also solutions not

far from the regime of interest. With this in mind, the next set of steps are standard.30

Choosing the minus sign in (5.28), one obtains the following:

S′(u→ 1) =

(
b2 − 6

)√
3− 2ib2q3

12
√

3(u− 1)
−

√
bgsM2

N

(
B1 + B2

3

)
+ b2

(
1
2 −

iq3√
3

)
4
√

6(u− 1)3/2
(5.29)

− b2

32π(u− 1)

(
gsM

2

N

)[
C21(1)− 32πα√

3
− 16π

3b
(c1 + c2log rh)

]
+
i
√

3b2q3

24(u− 1)

(
gsM

2

N

)[
C21(1)− i8πβ − 8π

3b
(c1 + c2log rh)− 20πα√

3

]
,

which has a simple pole structure of − 1
2(u−1) in the limit of vanishing bare resolution

parameter b. The other parameters appearing in (5.29) are C21(u) defined in (5.11), and

the two functions B1 and B2 defined in the following way:

B1 ≡ 2
√

3αb+ c1 + c2log rh

B2 ≡ 3
√

3b
(

2β − i
√

3α
)
− 2i
√

3 (c1 + c2log rh) . (5.30)

Let us now assume that q3 → 0 as N−1−κ with κ > 0. One might worry that imposing

this one would obtain, near u = 1 — which is an irregular singular point — a solution of

the type eS(u) = (1−u)γF (u) implying u = 1 to be a regular singular point. This does not

happen, and therefore demanding the vanishing of the residue of S′(u) at u = 1 gives the

following values for β, b, and α:

β = −3iC21(1)

64
− i
√

6 (c1 + c2log rh)

72

b ≈
√

6, α =

√
3C21(1)

32π
− c1 + c2log rh

6
√

2
, (5.31)

where C21(u) is defined in (5.11). In fact this is all we needed to determine both the sound

speed cs as well as the attenuation constant Γ because the first term in (5.24), i.e the term

proportional to q3, gives us the sound speed as:31

cs ≡
1√
3

+

√
3

32π

(
gsM

2

N

)
C21(1)− gsM

2

6
√

2N
(c1 + c2log rh) , (5.32)

30Although we do not undertake here, a more generic analysis away from u = 1 can be performed and

from there the limiting form of (5.29) can be ascertained. Needless to say, the results match.
31Recall that we can express the dispersion relation (5.24) in terms of sound speed cs, shear viscosity η

and bulk viscosity ζ as:

ω3 = csq3 −
iπ

2s

(
ζ +

4η

3

)
q2
3

where s is the entropy density. This means α(u) in (5.24) is related to cs and β(u) in (5.24) is related

to shear viscosity and bulk viscosity combination, or the attenuation constant Γ. However since we are

analyzing the system close to the horizon, i.e u→ 1, the relevant parameters for us will be α(1) and β(1).
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where one can see that the result differs from the conformal answer of 1√
3

expectedly by the

gsM2

N and gsNf factors. Even in the absence of the fundamental flavors Nf , the sound speed

deviates from the conformal answer. The form of the deviation is consistent with what

we had earlier in (4.63), or more generically in (4.81), although the precise factors differ.

This is understandable in the light of the different choices of the supergravity parameters

in the type IIB and the M-theory pictures. Interestingly, if one drops the O
(
εr4
h
r4
c

)
terms

(as |log rh| � r4
h) in addition to the O(ε2) terms in (4.82) in the type IIB computation of

cs, the cs in (4.82) from a type IIB computation can then be shown to match up with the

M theory result (for Nf = 0, explicitly in C21(1)) given in equation (5.32) for the following

choice of the bare resolution parameter:32

b =
64
√

3|c2|
8
√

2π(|log rh||c2| − |c1|)− 3
3
2

. (5.33)

To ensure that b > 0 and b = O(1), as has been assumed in this section, this would imply

a further constraint on |c1,2|, namely:

|log rh||c2| − |c1| = O(1)|c2| ∩ O(1) >
3

3
2

8
√

2π|c2|
. (5.34)

However, it must be kept in mind that the M-theory-uplift calculation presented here

is expected to yield a better result because of two reasons: (i) it is essentially a pure

supergravity calculation (unlike the type IIB which also involves branes), and (ii) it permits

considering finite gs thus encompassing the full quantum corrections.

The attenuation constant Γ may now be easily extracted from (5.24) by plugging in

the value of β from (5.31). To NLO in N , Γ may be written as:

Γ ≡ 1

πT

[
1

6
+

3gsM
2

64πN

(
C21(1) +

8
√

6π

27
(c1 + c2log rh)

)]
, (5.35)

where T is the temperature, and again we see that even in the absence of fundamental

flavors, the attenuation constant differs from the conformal value of 1
6πT . The parame-

ter C21(1), defined in (5.11), becomes identity when Nf = 0, so the deviation from the

conformal value is solely governed by gsM2

N .

5.3 The case with a vanishing bare resolution parameter

Let us now discuss what happens if one sets b = 0 in (5.13). We briefly dwelt on this

earlier, wherein we saw how (5.17) and (5.23) behave when b vanishes: (5.23) completely

decouples but some remnants of (5.17), as seen from (5.18), (5.19), (5.20) and (5.21),

survive. Interestingly, this now makes u = 1 a regular singular point of (5.16). To proceed,

let us then rewrite Zs(u) using an analytic function F (u) in the following way:

Zs(u) ≡ (1− u)−
i
8

√
εC23(1)F (u), (5.36)

32There is of course one crucial difference between (5.32) and (4.82) in the sense that the former is the

renormalized answer, so only depends on the scale rd, whereas the latter is the Wilsonian cut-off dependent

answer, and therefore depends on the cut-off radius rc.

– 74 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
5

where C23(1) can be evaluated from (5.11) by putting u = 1 in the required expression and

we have defined ε ≡ 3gsM2

2πN as the non-conformality factor. With the definition (5.36), the

EOM (5.16) becomes:

1024F ′′ +

(
a1 + a2log u

u

)
F ′(u) +

b2
u4
F (u) = 0, (5.37)

which is a second order homogenous differential equation with coefficients defined by pa-

rameters a1, a2 and b2. The 1
u and log u

u terms are remnants of the equivalent terms in (5.22).

The a1 and a2 coefficients take the following form:

a1 =
384

π

[
−8π +

9gsM
2

N
(C21(1) + 24gsNf )

]
, a2 = −10368

π2
· gsNf ·

gsM
2

N
, (5.38)

where C21(1) is extracted from C21(u) in (5.11). It is interesting to note that the combined

expression with a1 and a2 may be succinctly expressed as:

a1 + a2log u =
384

π

[
−8π +

9gsM
2

N
(C21(u) + 24gsNf )

]
, (5.39)

which simply converts C21(1) in (5.38) to C21(u). This is expected from the way we rep-

resented the EOM for Zs in (5.16). On the other hand, the form for b2 in (5.37) may be

expressed as:

b2 =
2q2

3C23(u)

9π

(
gsM

2

N

)(
D + 2

√
3 + 6

)2 (
D + 2

√
3− 6

)2
, (5.40)

where C23(u) is given in (5.11) (note the appearance of C23(u) instead of C23(1), much like

what we have in (5.39)) and D is defined in the following way:

D ≡ 6(α+ βq3)
gsM

2

N
− iq3, (5.41)

where we see that there are terms in b2 (5.40) that are of O
(
ε2
)

which would help us to

simplify the third term in the EOM (5.37). On the other hand, looking at (5.39) and (5.40),

simplifications in both the second and the third terms in (5.37) can happen if we go from

C21(u) to C21(1). Implementing this, F (u) takes the following form:

F (u) =

(
1

u

) 1
2

(a1+|a1−1|−1) [
d1e
−
√
−b2
u 1F1

(
1

2
(|a1 − 1|+ 1) ; |a1 − 1|+ 1;

2
√
−b2
u

)
+

2−
1
2
|a1−1|d2√
π

(√
−b2
u

)− 1
2
|a1−1|

K 1
2
|a1−1|

(√
−b2
u

)]
,

(5.42)

where d1 and d2 are constants. We can also motivate the replacement C21(u) → C21(1)

in both (5.39) and (5.40) in the following way. In (5.39), this amounts to dropping the

log u term near u = 0 compared to the log N term in the large N limit i.e making a2 = 0

in (5.37). In (5.40), this amounts to just keeping terms of O
(
gsM2

N

)
as the log u term in

C21(u) is already suppressed by gsNf (see (5.11)).
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The u→ 0 limit may seem a bit puzzling because so far we have analyzed the system

near the horizon i.e near u→ 1. However in (5.16), for vanishing bare resolution parameter,

as we saw earlier, l(u) vanishes and the EOM is solely governed by m(u) (5.17). This may

be defined both at the boundary (5.22) and at the horizon (5.25). Thus extrapolating F (u)

to the boundary is still well defined, modulo the subtlety of including a UV cap.

Let us now go to the various choices of the parameters d1 and d2 in the solution (5.42).

If one sets d2 = 0 then the small-u expansion of F (u) will be given by the small-u expansion

of the first part of the solution (5.42), i.e the d1 part of the solution in (5.42), as:

F (u) =

(
1

u

) 1
2

(a1+|a1−1|−1)

d1e
−
√
−b2
u 1F1

(
1

2
(|a1 − 1|+ 1) ; |a1 − 1|+ 1;

2
√
−b2
u

)
=

1

Γ
(

1
2 (|a1 − 1|+ 1)

){2−
1
2
|a1−1|− 1

2d1

(
−
√
−b2

)− 1
2
|a1−1|− 1

2
(5.43)

×u
1−a1

2
+ 1

2 Γ (|a1 − 1|+ 1) e−
√
−b2
u

[
(−b2)

1
4
|a1−1|+ 1

4 e
2
√
−b2
u +

(
1 +O

(
u1
))]}

.

To analyze the boundary conditions, first let us make Im b2 = 0. There is already a problem

at this stage, but let us still carry on. At the boundary u = 0, if Re b2 < 0 then (5.43) blows

up as exp
(√
|Re b2|
u

)
. On the other hand, if Re b2 > 0, then (5.43) oscillates infinitely fast

as exp
(
i
√
|Re b2|
u

)
. This behavior will persist even if we include the a2log u piece in (5.37).

Thus to be able to impose Dirichlet boundary condition on F (u), i.e impose F (u) = 0 at

the boundary, one needs to set b2 = 0. Now, substituting b2 = 0 in (5.37), one obtains:

F (u) =
16
√

2πd3√
a2

exp

[
(a1 − 1024)2

2048a2

]
erf

(
a1 + a2log u− 1024

32
√

2a2

)
+ d4, (5.44)

where d3 and d4 are constants. We can fix d4 in terms of d3 by demanding Dirichlet

boundary condition on F (u). This immediately gives us:

d4 = ±16

√
2π

a2
exp

[
(a1 − 1024)2

2048a2

]
d3. (5.45)

Plugging (5.45) in (5.44) now determines F (u) up to an overall constant. This form of

F (u) may be used in (5.36) to determine the gauge invariant combination Zs(u). This

is almost what we need, except for an important caveat. Putting b2 = 0 (or Im b2 = 0)

in (5.40) gives us:

D + 2
√

3± 6 = 0, (5.46)

where D is defined in terms of α, β, q3 as well as gsM2

N in (5.41). Since the r.h.s. of (5.46) is

a c-number, and β defined in (5.24) is a pure imaginary number (at least at the horizon),

the equation (5.46) can only be solved if:

α =

(
1− 1√

3

)(
gsM

2

N

)−1

, β ≡ i

6

(
gsM

2

N

)−1

. (5.47)
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The above forms of α and β are unfortunately not acceptable as they will not only lead to

the wrong sound speed and attenuation constant, but also take us away from the pertur-

bative regime where all our computations were focussed. One might think that this could

be rectified if we had started off with a non-zero Im b2, but unfortunately the conclusions

don’t change much as F (u) would still oscillate infinitely fast or blow up.

The above failure is a near miss, but it teaches us an important lesson about the

choice of the function F (u): the boundary conditions are subtle and important, but one

still needs to choose the function carefully, as any arbitrary choice may take us away from

the perturbative regime of interest. Therefore at this stage there are two ways to fix the

function F (u). One, we may not impose a Dirichlet boundary condition, and allow a

non-normalizable functional form for F (u). Two, we again allow for a Dirchlet boundary

condition, but choose the functional form for F (u) a little differently from the previous

choice (5.43). The latter case is easier to implement, so we start by setting d1 = 0 in (5.42).

This gives us:

F (u) =

(
1

u

) 1
2

(a1+|a1−1|−1) 2−
1
2
|a1−1|d2√
π

(√
−b2
u

)− 1
2
|a1−1|

K 1
2
|a1−1|

(√
−b2
u

)
(5.48)

=

(
1

u

) 1
2

(a1+|a1−1|)
d2e
−
√
−b2
u

(√
−b2
u

)− 1
2
|a1−1|(

2−
1
2
|a1−1|− 1

2u
4
√
−b2

+O
(
u2
))

.

We see that if Im b2 = b2 = 0 then we would encounter similar problem as in (5.47). On

the other hand, if we allow Re b2 < 0, then we can control the amplitude of oscillation

from the Im b2 piece, provided:

|Re b2| � (Im b2)2 . (5.49)

The above set of conditions does help us to solve for F (u) as before allowing the required

Dirichlet boundary condition at u = 0, although the procedure for getting the exact func-

tional form for F (u) is not as straightforward as in (5.44). However the condition Re b2 < 0

now leads to the following condition on α and β ≡ iγ:

2πε
(

4
√

3γ − 12α
)
q3 − 12

√
3q3 > 4πε

(
γq2

3 + 12
√

3α
)
− 3(q2

3 + 24), (5.50)

where ε = 3gsM2

2πN is the non-conformal factor. Although the above condition gets further

refined by (5.49), getting α and γ satisfying (5.50) can at least indicate the behavior of α

and β with respect to gsM2

N .

A careful look at (5.50) tells us that if both α and γ are proportional to ε, then q3 gets

constrained. This cannot be right, so it seems the only way to satisfy (5.50) would be to

take α and γ to be inversely proportional to ε, much like what we had in (5.47) before.

Such a choice will again take us away from the perturbative regime of interest. Thus it

seems the only way to analyze the behavior of α and β from the boundary u = 0 point

of view is to allow for a non-normalizable F (u). This resonates well with the analysis of

fluctuation modes of the metric in section 4 where pnk and Γ0k functions were both non-

normalizable functions. Note that we did not encounter these issues while studying the

b 6= 0 case because the analysis was performed at the horizon u = 1 where these subtleties

were not visible.
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5.4 Shear viscosity, entropy and the bulk viscosity bound

After this detour, it is time to go back to our analysis of bulk viscosity and the bound on

the ratio of the bulk to shear viscosities. To proceed, we will first quantify the functional

forms of f1(θ1) and f2(θ2) in (5.3) in the following way [119]:

f1(θ1) =
cot θ1

αN
, f2(θ2) = −αN cot θ2, (5.51)

where αN and the choice (5.7) ensure large base for implementing the SYZ [65] mirror

transformation. Recall the necessity of a large base in our set-up to nullify certain disc

instanton contributions. The choice (5.51) is essential to compute transport coefficients

and entropy in the M-theory uplift of the mirror set-up. We can now combine this with

the value of the bare resolution parameter b =
√

6 that we got in (5.31), and using results

of [64, 128], we can show that the shear viscosity near the horizon takes the following form:

η =
N9/10r3

hΥ
√
gsπ

αNα2
θ1
g2
s

(5.52)

×

{
π

20
+

3gsM
2

80N

[
log rh

(
Ĉ21(1)−

gsNf

8π
log N

)
− 2
√

6π

5
(c1 + c2log rh)

]}
,

where Ĉ21(1) is defined as C21(u) with u = αθi = 1 in the definition (5.11). Note also

the appearance of αθ1 and not αθ2 in (5.52). This is because θ1 and θ2 defined in (5.7)

approach zero at different rates so the former got selected in the computation.33 We have

also introduced a coefficient Υ in the formula (5.52) for η, whose value will be fixed soon.

It is now time to compute the entropy density s. The procedure for computing s

remains similar to what we did in section 4, although the choice of the mirror variables

differ from the type IIB case. This implies that the entropy density at the horizon may

now be expressed as:

s =
64π3/2N3/4r3

h

αNα5
θ1
g

9/4
s

×

{
1 +

3gsM
2

4πN

[
π
√

6

2
(c1 + c2log rh) + Ĉ23(1)log rh + Ĉ01(1)

]}
, (5.53)

where Ĉkj(1) is defined for Ckj(u) with u = αθi = 1 in (5.11). One may now compare (5.53)

with (4.60) as well as the entropy computed in [59] where we see similar suppressions

with respect to gsM2

N and gsNf . The precise coefficients understandably differ because

of the different choices of variables alluded to above. One may get away from this by

choosing a uniform definition of the variables in all the models. However this suffers from

a reduction in the efficiency of computations of physical quantities in some models and

increase in others.34

33Although for N ∼ 100− 1000, one may notice that θ1 and θ2 as given in (5.7) are not too different, so

it does not really matter that much which one is chosen in (5.52).
34As an example, if we choose zero bare resolution parameter in both type IIB and the M-theory uplift

of the mirror type IIA models, the efficiency of computing the sound speed and the attenuation constant

in M-theory reduces considerably, whereas in type IIB it becomes much enhanced.
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The above discussion however does not spell out a failure to compare the physical

quantities in different models; rather one should interpret the validity of different results

to be at different range of parameter values. For the choice of parameters in the mirror

set-up, and using (5.52) and (5.53), we can now express the ratio between shear viscosity

and entropy density as:

η

s
=

1

4π
+

3gsM
2

128π3N

[
gsNf log

(
16N

r24+log N
h

)
− (8π + 6gsNf )− 36

√
6π

5
(c1 + c2log rh)

]
,

(5.54)

where note the absence of the parameter αN from (5.51). We also wrote the first term as
1

4π . In the absence of the gsM2

N correction, this should be the conformal result [131], and

therefore we have used this to fix the parameter Υ in (5.52) as:

Υ ≡ 320

πg
3/4
s N3/20α3

θ1

. (5.55)

There are a few issues regarding the ratio (5.54) that we should take into account now.

First, observe the appearance of an inherent scale in (5.54). This appears through the

log rh term above as log rh
rd

, where rd is the scale defined earlier.

The rd dependence in (5.52) for example should remind us of a similar rc dependence

of shear viscosity in the type IIB side as given in eq (3.198) of [59]. The introduction

of UV cap to the geometry contributed an additional piece as eq (3.200) in [59]. This

eventually led to the ratio of the shear viscosity to the entropy density being given by eq

(3.222) therein that depended upon the UV degrees of freedom Nuv as e−Nuv . The result

for infinite UV degrees of freedom was exactly 1
4π , so we should expect similar result for

our case too. However the analysis of η
s in (5.54) is done at the horizon with a scale rd,

and one may easily see that the scale dependence is log rd which is an expected answer for

a QCD like model. This means that, even with a QCD scale inserted in, we expect η
s to be

at least bigger than 1
4π so that the KSS bound [131] is not violated. In (5.54) it is easy to

see that the rh dependent terms are positive definite because log rh
rd
< 0. Thus if we define

c1, which is as yet an unfixed function, as:

c1 ≡ −|σ| −
5
√

6

9

(
1

3
+
gsNf

4π

)
, (5.56)

with σ as another undetermined function, then η
s >

1
4π . Addition of the UV cap can then

change the result accordingly, but we will not elaborate on this here anymore. At this

stage, it will simply suffice to see that the KSS bound is not violated.

All the ingredients are at hand now to compute both the bulk viscosity ζ as well as

the ratio of the bulk to shear viscosities i.e ζ
η . As we saw earlier, the shear and the bulk

viscosities are connected by the following relation:

1

2sT

(
ζ +

4η

3

)
= Γ, (5.57)
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where s is the entropy density (5.53), T is the temperature (5.12) and Γ is the attenuation

constant (5.35). One can therefore use (5.57) to express the ratio ζ
s in terms of Γ and η

s as:

ζ

s
=

gsM
2

32π2N

[
3C21(1) + 8Ĉ01(1) + κ0 (c1 + c2log rh)

−8log rh

(
Ĉ21(1)− Ĉ23(1) +

gsNf

8π
log N

)]
, (5.58)

where κ0 ≡ 364π
√

6
45 , Cjk(1) is given by (5.11) for u = 1, and Ĉjk(1) is given by (5.11) with

u = αθi = 1. The overall factor of gsM2

N is interesting and crucial: it tells us that the

ratio (5.58) is zero for conformal theories. This is of course consistent with what we had

in section 4, and we note that the bulk viscosity may be easily derived, to this order in
gsM2

N , by simply multiplying (5.58) by the conformal entropy density. Any non-conformal

corrections to s will change the bulk viscosity only to higher orders in gsM2

N . Note also

that, in the limit of vanishing fundamental flavors i.e Nf = 0, the ratio (5.58) takes the

following form:

ζ

s
=

gsM
2

32π2N

[
11 +

364π
√

6

45

(
c1 + c2log

rh
rd

)]
, (5.59)

where we have inserted back the scale rd (which was taken to be 1 so far). Looking at (5.59)

one might be tempted to compare it with the bulk viscosity that we got in (4.59), which

was expressed using the fluctuation mode Yx satisfying (4.50). In fact (4.59) had rh/rc
dependence whereas (5.58) has rh/rd dependence; and their exact factors differ. This has

already been alluded to earlier because of the different choices of the parameters in the

two theories. Additionally, as we discussed in section 5.3, the ratio (4.59) is derived for

vanishing bare resolution parameter whereas (5.58) is derived with non-zero bare resolution

parameter. This of course is not the only difference. The zero bare resolution case, accord-

ing to section 5.3, involves study of quasi-normal frequencies whereas the result (4.59) is

derived from the study of fluctuation modes Yx. The point of comparison35 between the

two results maybe that both involve certain non-normalizable functions at the boundary

u = 0. Plugging in the non-normalizable function F (u) in (5.36) will help us find α and β

in (5.24), which in turn may be compared to (5.58).

Finally, the ratio of bulk to shear viscosities may now be determined from (5.58), to

first order in gsM2

N , by taking the conformal limit of (5.54). The result is similar to what

we have in (5.58) up to a factor of 4π:

ζ

η
=
gsM

2

8πN

[
3C21(1) + 8Ĉ01(1) + κ0

(
c1 + c2log

rh
rd

)
−8log

rh
rd

(
Ĉ21(1)− Ĉ23(1) +

gsNf

8π
log N

)]
, (5.60)

where κ0 is defined earlier and we have inserted back rd, the QCD scale. To see

whether (5.60) does not violate the Buchel bound [31] we will have to determine c1 and

35Despite the fact that the former uses Wilsonian method with a cut-off rc whereas the latter uses full

quantum corrections with a scale rd.
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c2 in (5.60). In (5.56) we expressed c1 in terms of a negative definite function −|σ| at the

horizon u = 1, assuming c2 to be a positive definite quantity there. However underneath

this choice was the assumption that both the bare resolution parameter b and the full res-

olution parameter a in (5.13) remain positive definite. As long as b > 0, this could still be

made true with c2 > 0. However b can be zero, as we saw in sections 4 and 5.3, and in this

case c2 > 0 will make a < 0 in (5.13) with the choice of c1 in (5.56), rendering the whole

construction meaningless. One might think that c1 could be changed, but then the KSS

bound [131] will be affected. Therefore it seems the only way to avoid any contradictions

is to take c2 = −|c2| with:

|c2| ≤
5
√

6gsNf

216π
(24 + log N) , (5.61)

at the horizon u = 1. It should be clearly noted that (5.56) and (5.61) arise by demanding

the KSS bound [131] is satisfied, and that the resolution parameter (5.13) is positive defi-

nite.36

With this at hand, it is now time to see if the ratio of bulk to shear viscosities (5.60)

preserve the Buchel bound [31]. We will start with the simplest case of vanishing flavor i.e

Nf = 0. Referring back to sound speed (5.32) and the ratio (5.60), we get:

ζ

η
=
gsM

2

8πN

[
11 +

364
√

6π

45

(
c1 + c2log

rh
rd

)]
1

3
− c2

s =
gsM

2

16πN

[
−1 +

40
√

6π

45

(
c1 + c2log

rh
rd

)]
, (5.62)

where c1 and c2 now satisfy (5.56) and (5.61) respectively. Since log rh
rd
< 0, all terms in

ζ
η in (5.62) are positive definite. In the limit where rd > rh, the ratio of bulk to shear

viscosities may be related to the sound speed as:

ζ

η
=

91

5

(
1

3
− c2

s

)
+

201

80π

(
gsM

2

N

)
, (5.63)

which clearly satisfies the Buchel-bound [31]. Interestingly, for rd � rhexp
(

11+|c1|
|c2|

)
, one

may ignore the second piece in (5.63) and the ratio (5.60) may solely be expressed in terms

of 1
3 − c

2
s. In either case, one may easily infer from (5.62) that the Buchel-bound is always

satisfied, at least for vanishing fundamental flavors Nf .

What happens when Nf 6= 0, i.e when we switch on fundamental flavors? Both, the

ratio of bulk over shear viscosities and sound speed, have been computed above in (5.60)

and (5.32) respectively. So it’s time to combine them to see whether the specified combina-

tion of them satisfy the Buchel-bound. It is easy to see that the bulk to shear ratio (5.60)

may now be expressed as:

ζ

η
=

91

5

(
1

3
− c2

s

)
+
gsM

2

16πN

[
16Ĉ01 +

121

5
C21 + 16log

rd
rh

(
Ĉ21 − Ĉ23 +

gsNf

8π
log N

)]
,

(5.64)

36To see this, define N , without any loss of generality, as N ≡ exp
(

w
gsNf

)
near the horizon u = 1 with

some appropriately chosen function w that takes very large value.
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where the Cij and Ĉij terms may be extracted from (5.11) using the limits u = 1 and

u = αθi = 1 respectively. By switching off the gsNf terms one gets (5.63) from (5.64), so

the question now is whether the gsM2

N terms in (5.64) can again be positive definite.

It turns out, with some algebraic manipulations, one may rewrite the gsM2

N terms

appearing on the r.h.s. of (5.64) in the following suggestive way:

ζ

η
=

91

5

(
1

3
− c2

s

)
+
gsM

2

16πN

[
201

5
+

121

20π

(
log (αθ1αθ2) +

603

121

)
gsNf (5.65)

+
2gsNf

π

(
log N − 603

10

)(
log

rd
rh
− 201

80

)
− σ0gsNf

]
,

where σ0 ≡ 201
20π

(
log 4 + 603

20

)
≈ 100.86 is a positive coefficient. Since N is very large and

rd � rh, every term in (5.65) can be shown to be positive definite, and the negative piece

σ0gsNf does not change anything as long as log N log rd
rh
� 160. The latter is not a

constraint as we saw above.37 Thus generically our model satisfies the Buchel-bound [31],

and comparing (5.63) and (5.65), we see that there is in fact a new bound on the ratio of

bulk to shear viscosities given by:

ζ

η
>

91

5

(
1

3
− c2

s

)
. (5.66)

6 Type IIA spectral function and the viscosity bound at strong coupling

with non-zero flavors

In the above section we found an interesting bound (5.66) for the ratio of bulk to shear

viscosities at strong string and strong ’t Hooft couplings. In fact the form of the bound

seems consistent over the whole strong ’t Hooft coupling regime as is obvious from the weak

string coupling bound that we got earlier in (4.94): both (5.66) and (4.94) are proportional

to 1
3 − c

2
s, although their coefficients differ. On the other hand, the weak ’t Hooft coupling

bound differs by being proportional to the square of the strong coupling bound as shown

in (2.18). The reason for the different results at the two ends of the couplings has been

motivated in section 2.2. Loosely, it is the ratio of the shear viscosity over entropy density

that creates the difference at the two ends. At weak ’tHooft coupling the ratio is not a

constant and is given by (2.17), whereas at strong ’t Hooft couping we expect the ratio

to be a constant [131]. This is a reasonably strong argument for justifying the difference

between the two bounds, despite the fact that we have no control on the dynamics at the

intermediate coupling regime as argued in section 3. The very weak coupling results have

been justified in great details, and in sections 4 and 5, we provided some justifications for

the strong coupling results. However one might be interested in deriving the bound at

strong coupling directly from the spectral function, as such an analysis will be in line with

the discussions of section 3. Further, we make the following observations:

37To see that the terms on the r.h.s. of (5.65) can be positive definite, choose N ≡ exp (n0 + 60.3) with

n0 being a very large number approaching infinity, and rd ≡ rhexp (n1 + 2.5125) with n1 being another

large number, not necessarily infinite. The condition for positivity of the r.h.s. of (5.65) is n0n1 > 160.

This is easily achieved because going to the gravity dual description forces us to choose both n0 and n1

very large.
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• The ratio of the bulk viscosity ζ to entropy density s is of O
(
gsM2

N

)
as we saw

in (5.58), and the ratio of the shear viscosity η to the entropy density is dominated

by the conformal result plus an O
(
gsM2

N

)
correction term from (5.54). This means

up to O
(

1
N

)
the ratio ζ/η would mimic ζ/s.

• The gauge and the metric perturbations may be required to be considered simulta-

neously — see subsection 4.2 of [100] and references therein.

• The correlation of gauge fluctuations, 〈AxiAxi〉 for i = 1, 2, 3, along the same direction

could hence mimic the spirit behind the correlation of the metric perturbations,

〈hxixihxixi〉, along the xi axis relevant to the evaluation of bulk viscosity as, for

example in [39] or in section 4.

The above three observations provide the necessary motivation for this section. There-

fore we would like to evaluate the aforementioned gauge-field correlation function (in the

hydrodynamical limit using the prescription of [132]) and see if one obtains a linear bound

seen in (4.94) and (5.66). Even if this may not be explicitly tied to ζ/η, we feel the result

obtained in this section, in itself, is sufficiently interesting.

6.1 Background gauge fluxes and perturbations on the flavor branes

Our starting point is configuration of Nf D6-branes in the type IIA mirror set-up. For

our purpose, we will however isolate one D6-brane and study world-volume dynamics on

it. Alternatively, one can view this as D6-brane probing a non-Kähler warped-resolved

conifold with Nf flavor D6-branes. The DBI action for a single D6 brane is given as:

SD6 = −TD6

∫
d7ξ e−ϕ

√
det (g +B + F ), (6.1)

with 2πα′ = 1. Here the worldvolume directions of the D6 brane are denoted by the

coordinates: (t, x1, x2, x3, Z, θ2, ϕ2), with (t, x1, x2, x3) as the usual Minkowski coordinate,

Z as the newly defined radial direction and two angular coordinate (θ2, ϕ2); Z is related

to the usual radial coordinate r as r = rhe
Z and ϕ2 is the local value for the angle φ2 (for

more details, see sections 3 and 4 of [127]).

In the above, and as before, ϕ denotes the type IIA dilaton which is the triple T-dual

version of type IIB dilaton. The pullback metric and the pullback of the NS-NS B field on

the worldvolume of the D6 brane are denoted as g and B in (6.1). F is the field strength

for a U(1) gauge field Aµ, where the only nonzero component of the same is the temporal

component At. In the gauge AZ = 0, the only nonzero component of F is FZt = −FtZ .

Combining together the symmetric g field and the anti-symmetric B field as G ≡ g + B

and expanding the DBI action up to quadratic order in A, we get:

SD6 =
TD6

4

∫
d7ξ e−ϕ

√
−G

(
GµαGβγFαβFγµ −

1

2
GµνGαβFµνFαβ

)
. (6.2)

The second term in (6.2), is coming because of the anti-symmetric B field in G. As none

of the fields in the DBI action depends on the angular coordinates ϕ2, the integrand in
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equation (6.2) is independent of the same. Also we choose to work around the same small

values of both θ2 and θ1 given by (5.7) earlier. Hence, the upshot is that the integration

over θ2 and ϕ2 is trivial and we denote Ω2 as the factor one gets after the integration over

θ2 and ϕ2, such that:

SD6 =
TD6Ω2

4

∫
d4x dZ e−ϕ

√
−G

(
GµαGβγFαβFγµ −

1

2
GµνGαβFµνFαβ

)
. (6.3)

The equation of motion for the temporal gauge field At(Z) as obtained from the above

lagrangian in (6.3) is given as:

∂Z

(
e−ϕ
√
−G GttGZZ∂ZAt(Z)

)
= 0. (6.4)

At this point we can use the precise functional forms for the background data, namely Gtt,

GZZ as well as the dilaton ϕ2, to rewrite the above equation in the following form:

C

A′t(Z)
= 3a2

[
gsNf log

(
N2

e3+6Z

)
+ 8π

]
α4
θ1 − 3a2

[
gsNf log

(
N

e3Z

)
+ 4π

]
α4
θ2 (6.5)

+2

[
gsNf log

(
N

e3Z

)
+ 4π

]
α4
θ1r

2
he

2Z

−3gsNf log rh
[
2α4

θ1r
2
he

2Z + 3a2
(
2α4

θ1 − α
4
θ2

)]
,

where a2 is the resolution parameter, (αθ1 , αθ2) are the two angular values in (5.7) and C

is the integration constant. In the large Z and small a2 limit, (6.5) yields:

2α4
θ1rh

2e2ZAt
′(Z)

[
gsNf log

(
N

r3
he

3Z

)
+ 4π

]
= C, (6.6)

which appears from the fact that the second line in (6.5) dominates over the first line.

The large Z limit is also the large r limit where one might be concerned about UV issues

appearing from AdS cap. This is however not much of a worry at this stage because as

long as rhe
Z � a, (6.6) continues to hold. With this in mind, the solution to (6.6) is:

〈At(Z)〉 = C1 −
Ce
− 2

3

(
4π

gsNf
+log N

)
Ei
[

2
3 log

(
N

r3
he

3Z

)
+ 8π

3gsNf

]
6α4

θ1
gsNf

=
Ce−2Z

12α4
θ1
gsNfrh2Z

+ C1 +O
(

1

Z2

)
, (6.7)

where we have used 〈At〉 to express the background value to avoid confusion. The other

parameters appearing in (6.7) are C1, which is yet another constant and Ei, which is the

exponential integral.38 In the second line of (6.7) we have shown the first dominant piece

in the large Z limit. Higher powers of 1
Z can then be ignored. This background value also

38Ei(x) ≡ −
∫∞
x

e−t

t
dt. This definition can be used for positive values of x, but the integral has to be

understood in terms of the Cauchy principal value due to the singularity of the integrand at zero.

– 84 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
5

prepares us to study the fluctuation of the gauge field components. For example we can

express the gauge field appearing in (6.3) as:

Aµ(x, Z) = δtµ〈At(Z)〉+Aµ(x, Z), (6.8)

where the fluctuation Aµ only exists along the directions µ = (t, x1, x2, x3) due to the par-

ticular gauge choice and depends only on the radial variable Z. Including the perturbations

in the lagrangian of the DBI action (6.1), one gets:

L = e−ϕ
√

det (g +B + F + F), (6.9)

with F as the field strength for the gauge field fluctuations. Now defining G ≡ g+B+F and

again expanding the above lagrangian up to quadratic order in the gauge field fluctuation

one gets:

L = −1

4
e−ϕ
√
−G

(
GµαGβγFαβFγµ −

1

2
GµνGαβFµνFαβ

)
. (6.10)

Writing the field strength F in terms of the gauge field fluctuation Aµ and after doing some

simplifications in terms of the interchange of indices, one can write the above lagrangian as:

L = e−ϕ
√
−G

(
Gµ[αGβ]γ∂[γAµ] −

1

2
G[αβ]Gµν∂[µAν]

)
∂αAβ

= ∂α

[
e−ϕ
√
−G

(
Gµ[αGβ]γ∂[γAµ] −

1

2
G[αβ]Gµν∂[µAν]

)
Aβ
]

(6.11)

−∂α
[
e−ϕ
√
−G

(
Gµ[αGβ]γ∂[γAµ] −

1

2
G[αβ]Gµν∂[µAν]

)]
Aβ .

The second line in equation (6.11) is a total derivative term and equating the last line to

zero for any arbitrary Aβ gives the equation of motion for the gauge field fluctuation:

∂α

[
e−ϕ
√
−G

(
Gµ[αGβ]γ∂[γAµ] −

1

2
G[αβ]Gµν∂[µAν]

)]
= 0. (6.12)

The total derivative term in (6.11) does not necessarily have to vanish at Z →∞, as there

could be non-normalizable modes serving as sources for the dual gauge theory operators.

Our EOM in (6.12) however is not affected by this, and in the following section we will

discuss possible solutions of (6.12).

6.2 Equation of motion for gauge field fluctuations

To derive the equation of motion for the gauge field fluctuation, we first need to write down

the fluctuating field as the following Fourier decomposed form:

Aµ(t, x1, Z) =

∫
d4k

(2π)4
e−iωt+iqx1Aµ(ω, q, Z), (6.13)

where we assume the fluctuation to have momentum along x1 direction only, with k0 = ω,

k1 proportional to q and k2, k3 arbitrary. Now, the equation (6.12) has a free index β
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and for β = (t, x1, x2, x3, Z), one gets a total of five equations of motion. For example for

β = Z, plugging in (6.13) in (6.12) yields:

ωGtt(∂ZAt)− qGx1x1(∂ZAx1) = 0, (6.14)

where the r.h.s. vanishes because of the antisymmetry of G[αβ]. The dilaton does not appear

because it is independent of the four-dimensional spacetime coordinates. The above equa-

tion relates A′t with A′x1
. On the other hand if we take β = t, we get the following EOM:

∂Z

(
e−ϕ
√
−G GttGZZ∂ZAt

)
= e−ϕ

√
−G GttGx1x1

(
ωqAx1 + q2At

)
, (6.15)

which now relates A′t with At and Ax1 . A somewhat similar equation appears when we

choose β = x1 in (6.12), namely:

∂Z

(
e−ϕ
√
−G Gx1x1GZZ∂ZAx1

)
= e−ϕ

√
−G GttGx1x1

(
ωqAt + ω2Ax1

)
. (6.16)

At this stage one can easily verify that pluging in (6.14) in (6.15), we can get (6.16). This

shows that the above three equations (6.14), (6.15) and (6.16) are self-consistent. Finally,

one may find the equations for β = x2 and β = x3. We expect them to be equivalent, and

are given by:

∂Z

(
e−ϕ
√
−G GββGZZ∂ZAβ

)
= e−ϕ

√
−G Gββ

(
q2Gx1x1 + ω2Gtt

)
Aβ . (6.17)

To proceed further, we will have to define gauge invariant variables. For our case, there

would be two such variables Ex1 and Eβ with β = x2 or x3, expressed in the following way:

Ex1 ≡ qAt + ωAx1 , Eβ ≡ ET = ωAβ . (6.18)

With these new variable the three equations in (6.14), (6.15) and (6.16) can be cast into a

single second order equation involving Ex1 . Even more obviously, the fourth one for β = x2

or x3, can be rewritten in terms of the new variable ET . Moreover, in the zero momentum

limit, i.e in the limit q → 0, it can be shown that the equation involving Ex1 is the same

as the one involving ET , given as:

∂Z

(
e−ϕ
√
−G Gx2x2GZZ∂ZET

)
= e−ϕ

√
−G Gx2x2

(
ω2Gtt

)
ET , (6.19)

implying that in the zero momentum limit all we need is to solve one second order differ-

ential equation. This is of course a huge simplification, and one can even rewrite (6.19) in

the following suggestive way:

∂Z

[
P (Z)∂ZET (Z)

]
+ ω2Q(Z)ET (Z) = 0, (6.20)

where all functions appearing above are only functions of the Z variable. In fact P (Z) and

Q(Z) may be easily seen from (6.19) to take the following form:

P (Z) ≡ e−ϕ
√
−GGZZGx2x2 , Q(Z) ≡ −e−ϕ

√
−GGx2x2Gtt. (6.21)
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The suggestive way alluded to above is that the above equation (6.20) can be recast in a

Schrödinger like form by certain redefinition of the variables involved in the following way:(
∂2
Z + VET

)
ET = 0, (6.22)

with ET defined as ET (Z) ≡
√
P (Z)ET (Z), and VET is the potential term that is ex-

pressed as:

VET ≡
1

4P 2

(
∂P

∂Z

)2

− 1

2P

(
∂2P

∂Z2

)
+
ω2Q

P
. (6.23)

The Schrödinger like equation is a valid description in the zero momentum limit. Once we

go away from that limit, we will have more equations for the fluctuations with different

choices of potentials. This is a more complicated scenario and fortunately our present

analysis does not call for that. Nevertheless, the potential (6.23) is still highly non-trivial,

as both P (Z) and Q(Z) take non-trivial values when expressed in terms of the background

metric and dilaton in (6.21). For example, the function P (Z) that may be written as:

P (Z) ≡ −
gsNf e

−3Z
(
e4Z − 1

)
P1P2G3

g
3/2
s

[
r2
he

2Z − C2e−4Z

4α8
θ1

(gsNf )2 r4
hP2

2

]1/2

(6.24)

+

[
e−4ZP3G2

g
3/2
s (gsNf )2 P2

2

+
r2
he

2Z
(
α2
θ1
P2 − α2

θ2
P3

)
g

3/2
s

]
gsNf e

−5Z
(
e4Z − 1

)
P1G1[

r2
he

2Z − C2e−4Z

4α8
θ1

(gsNf)
2
r4
hP

2
2

]1/2
,

where C is a constant that appeared first time in (6.5). The other parameters that appear

above are Gi and Pi. All the Gi’s depend only on the fixed parameters of the theory, and

are defined by:

G1 ≡
6
√

3a2

32
√

2π3/2N1/6rhα
4
θ1
α2
θ2

, G2 ≡
α2
θ2

C2

4r4
hα

8
θ1

, G3 ≡
rh

16
√

335/6π3/2α4
θ1
N1/10

, (6.25)

where a is the resolution parameter (5.13) and αθi are defined in (5.7). The other variables

appearing in (6.25) are the Pi’s out of which only P1 is a constant. They are defined in the

following way:

P1 ≡ 9
√

2α3
θ1 − 4

√
3N1/5α2

θ1 − 2
√

3α2
θ2 , P2 ≡ log

(
N

r3
he

3Z

)
+

4π

gsNf

P3 ≡ gsNf log

(
N2

r6
he

3+6Z

)
+ 8π = (2P2 − 3) gsNf , (6.26)

where we have laid out clearly the gsNf dependences of each of the coefficients. One may

see that the gsNf independent terms appear only from P2 and P3. In a similar vein, we

can also work out the Q(Z) piece in (6.21). This is given by:

Q(Z) ≡ gsNf G4P2 −
√

3gsNf N
17/30α2

θ1
e−2ZG1

rh
√
gs

(
α2
θ1P2 + 2α2

θ2

)
(6.27)

−gsNf

(
P1 + 4

√
3N1/3α2

θ1

)[
G5P2 −

4πN16/15G1e
−2Z

√
gs

(
α2
θ1P2 + 3α2

θ2

) ]
,

– 87 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
5

where P2 and G1 have already been defined in (6.26) and (6.25) respectively, but G4 and

G5 are new. They can be related to, say, G3 in the following way:

G4 ≡
2
√

2π1/4

35/6

(
N23/20

√
G3√

rh

)
, G5 ≡ 2

√
6π

(
NG3

rh
√
gs

)
. (6.28)

With these set of definitions, the functional forms for P (Z) and Q(Z) are fully determined,

although there is one issue that one may want to clarify at this point. This has to do

with the presence of terms with relative minus sign inside the square root in (6.24). To

avoid (6.24) to develop complex values, we require:

rhe
Z >

(
C

8πα4
θ1

)1/3

, (6.29)

where we have used the fact that gsNfP2 ≥ 4π in the limit gs → 0 (see also (6.26)). This

seems to constrain short distances, but since r > rh (6.29) do not put strong constaints.

In fact we can take small Z, large N and vanishing momentum limits to re-express the

potential (6.23) in the following way:

VET = α(Z)

{
πm2

0++

m2
0

(
6b2 + 1

9b2 + 1

)
+

3ω2

2

(
gsM

2

N

)[
1

4
log rh −

πβb (1 + log rh)

(6b2 + 1) (9b2 + 1)

]

+
πω2

4
+

3ω2 log rh
32π

(gsNf )

(
gsM

2

N

)[
log (αθ1αθ2) + 6 log

(
dorh√
N

)]}
, (6.30)

The way we have expressed the above potential, one may clearly see how the various terms

in the sum are increasingly suppressed by gsNf and gsM2

N . The constant β appearing above

is related to ci in (5.13) as β = c1 = c2 for simplicity;39 and m0++ is the mass of the lightest

glueball given via:

m0++ = m0

(
rh√

4πgsN

)
, (6.31)

and parametrized by the scale m0. This is computed using M-theory metric perturbation,

much like the analysis we had in section 5, and is further detailed in [126]. We have also

used (6.31) to define do as:

do ≡
√
e

41/4
≈ 1.1658, (6.32)

which is a constant. Note that in (6.31) the first term in independent of ω2 and only

depends on Z, b2 and the glueball mass. The glueball mass also features in the definition

of α(Z), that appears in (6.30), in the following way:

α(Z) ≡ 1

4πZ2

(
6b2 + 1

9b2 + 1

)
m2

0

m0++

, (6.33)

39Alternative a(u) in (5.13) can be expressed as a(u) =
[
b+ βgsM

2

N
(1 + log rh)

]
rh where β appears as an

overall coefficient of gsM
2/N piece. For the present case, where we study weakly coupled type IIA theory as

opposed to the strongly coupled type IIA treatment in section 5, β appears as a constant only. Henceforth,

unless mentioned otherwise, this will the case that we shall consider here.
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where b is the bare resolution parameter that is defined in (5.13). Comparing the definition

of the glueball mass in (6.31), we see that α(Z) is proportional to gsN , but suppressed by
1
Z2 . This clearly indicates that the potential (6.30) goes as 1

Z2 for small Z.

Note that Z = 0 (horizon) is a regular singular point of (6.22) and the exponents of

the indicial equation near Z = 0 can then be written as 1
2 ± iI, where I is defined as:

I ≡ m0ω

4m0++

√
6b2 + 1

9b2 + 1

[
1 +

9

8π2

(
gsM

2

N

)
gsNf log2rh

]
. (6.34)

The functional form for I shows that it is suppressed by both gsNf and gsM2

N so to zeroth

order there is only a piece that depends on the bare resolution parameter b, the frequency

ω, the horizon radius rh and the ’t Hooft coupling gsN . We can also express the solution

for the Schrödinger type equation (6.22) using I as:

ET = Z
1
2−iI FT (Z), (6.35)

with FT (Z) being a function that is analytic at the horizon radius rh (or at Z = 0). The

above equation tells us the precise behavior of the eigenfunction ET (Z) at Z = 0. This is

useful but not exactly relevant for the present case, as what we actually need is the form

for ET (Z) when Z � 1. The question then is how will the Z = 0 analysis be useful for the

large Z domain.

The answer lies in our choice of the ansatze (6.35) that in fact serves as a good ansatze

even when Z � 1. In other words, the exponent of the indicial equation I that we computed

in (6.34) still remains a valid solution for large Z. What changes for large Z is the functional

form for FT (Z).

Of course there is yet another change in (6.22): it is the functional form for the potential

VT (Z) that we computed earlier in (6.30). Naturally since (6.30) was for small Z, this

should change. The change is easy to work out, and may be written in the following way:

VET (Z)
Z�1−→ A + Be−2Z , (6.36)

where we are ignoring higher powers of e−2Z that would appear from the relevant higher

powers of e−2Z in P (Z) and Q(Z) in (6.24) and (6.27) respectively. The A and B appearing

in (6.36) are not constants, with A defined as:

A ≡ −1 +
3

P2
+

9

4P2
2

, (6.37)

where P2 is given in (6.26). The function P2 is defined with N, rh and Z, and one may take

appropriate limits in terms of either of these parameters. Before we do this, let us write

the expression for B in terms of the background parameters:

B =
m2

0ω
2

m2
0++

+
3(2P2 − 3)(α2

θ1
− 2α2

θ2
)

2β2
oα

2
θ2
P2

2

(
b

βo
+
gsM

2

N

)2 [
P4 +

1

2
+

P6

P2
−
(

2− 3

P2

)
log rh

]
+

3m2
0ω

2P5(Z + log rh)

32π2m2
0++

(
gsM

2

N

)
×
[
1 +

3

64π2

(
gsM

2

N

)
(Z + log rh)(P5 − 4 log 2)gsNf

]
gsNf , (6.38)

– 89 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
5

where the successive suppressions with respect to gsM2

N as well as gsNf are shown. The

term independent of all these is proportional to b/βo where b is the resolution parameter

and βo ≡ β log(erh) with β = c1 = c2 in (5.13). The other parameters appearing in (6.38)

are defined in the following way:

P4 = 3 log rh − 2P2 + P6, P6 = P2 −
3α2

θ2

α2
θ1
− 2α2

θ2

(6.39)

P5 = 12 (1− log 2) + 4 log(αθ1αθ2)− 2 log N + 24 (Z + log rh) +
16

gsNf
.

One can now take the form of the potential, given in (6.36), and the wave-function ansatze,

given in (6.35), and plug them in the Schrödinger-type equation (6.22) to obtain the fol-

lowing equation for FT (Z):

F”T (Z) +

(
1− 2iI
Z

)
F′T (Z) +

(
1

A + Be−2Z
− 1 + 4I2

4Z2

)
FT (Z) = 0, (6.40)

where I is still given by (6.34). The above second order differential equation is rather hard

to solve because of the presence of the exponential term e−2Z . However, since we seek the

spectral function only in the limit of large Z where e−2Z vanishes, we can easily remove the

problematic term from our equation (6.40). Doing this yields the following form for ET (Z):

ET (Z) = Z
1
2−iI

[
C+exp

(
− iZ√

A

)
+ C−exp

(
iZ√
A

)]
, (6.41)

where C+ and C− are two integration constants whose values will be determined later. To

extract the actual fluctuation ET (Z) from (6.41), we need the functional form for P (Z) in

the large Z limit. This is easy to extract from (6.24) and may be written as:

P (Z) = gsNf G6P2e
2Z , (6.42)

which is as expected proportional to gsNf , and P2 is defined in (6.26). The other coefficient

G6 appearing above can be extracted from some combinations of Gi and Pi in (6.25)

and (6.26) respectively at large N . Here we write this simply as:

G6 ≡
N1/10r2

h

noα2
θ1
g

3/2
s

, (6.43)

where no is a numerical constant given by no = 4
√

231/3π3/2 ≈ 45.43. Combin-

ing (6.41), (6.42) and (6.43) together and looking at the definition of ET (Z) given just

after (6.22), we can finally determine the form of the fluctuation at large Z as:

ET (Z) =
Z

1
2−iI

[
C+exp

(
− iZ√

A

)
+ C−exp

(
iZ√
A

)]
e−Z√

gsNf G6P2

. (6.44)

Few comments are in order related to the form of (6.44). First we see that the suppression

factor is (gsNf )−1/2. From here it would seem like this does not have a natural zero flavor
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i.e Nf = 0 limit. However when combined with P2, gsNf P2 does have a zero flavor limit,

and is given by:

lim
Nf→0

[
gsNf P2

]
= 4π, (6.45)

which one may also verify directly at the level of the Schrodinger equation (6.22). Secondly,

the integration constants C± appearing in (6.44), can in principle be complex valued. So

this will require us to investigate few possibilities associated with various choices of C±
satisfying the boundary conditions. Let us start by investigating the form for A given

in (6.37). First let us assume that Z goes to infinity as:

Z ≈ 1

3

(
log N +

4π

gsNf

)
. (6.46)

The above would make sense because N → ∞ and gsNf → 0. In this limit P2 may be

replaced by −3 log rh. In other words A in (6.37) becomes:

A = −1− 1

log rh
+O

(
1

log2rh

)
, (6.47)

for large log rh so that the inverse suppression in (6.47) makes sense. Assuming this is

possible, plugging (6.47) in (6.44) would imply the following form for fluctuation ET (Z):

ET (Z) =

Z
1
2−iI

[
C+exp

(
− Z√

1+ 1
log rh

)
+ C−exp

(
Z√

1+ 1
log rh

)]
e−Z√

gsNf G6P2

, (6.48)

where we have suppressed inverse log2rh dependences. Note that the functional form for

ET (Z) is not the only way to express ET (Z) from (6.44). For example if the horizon radius

goes as:

rh ≈ exp

(
4π

3gsNf
− Zuv

)
, (6.49)

in the limit of very large Zuv and vanishing gsNf , then one may rewrite P2 simply in terms

of log N and not log rh. This means A in (6.37) in-turn will be expressed in terms of log N

and not log rh, implying:

ET (Z) =

Z
1
2−iI

[
C+exp

(
− Z√

1− 3
log N

)
+ C−exp

(
Z√

1− 3
log N

)]
e−Z√

gsNf G6P2

. (6.50)

From the multiple ways of expressing (6.44), for example (6.48) and (6.50), one might

worry that the final result would be dependent on our approximation scheme. However we

will show in section 6.3 that this will not be the case.

Finally, the functional form for ET (Z) in the zero momentum limit matches with the

functional form for Ex1 as may be seen from (6.18). This will help us to express the on-

shell action completely in terms of known parameters appearing in (6.44), allowing us to

compute the spectral function more efficiently. This is the topic that we turn to next in

the following section.
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6.3 On-shell action and the strong coupling spectral function

In the previous section we managed to find the functional form for the gauge field fluc-

tuation ET (Z) in the large Z and in the zero momentum limit. What we now want is

the four-dimensional on-shell action. This can be easily extracted from the boundary piece

of the Lagrangian (6.11). Earlier we had used (6.11) to determine the EOM for ET (Z)

and subsequently for ET (Z). Plugging in the EOM in (6.11) then leaves us only with the

boundary term, that we shall label as the on-shell four-dimensional action S4. This takes

the following form:

S4 =
Ω2TD6

4

∫
d4x dZ ∂α

[
e−ϕ
√
−G

(
Gµ[αGβ]γ∂[γAµ] −

1

2
G[αβ]Gµν∂[µAν]

)
Aβ
]

=
Ω2TD6

2

∫
d4x

[
e−ϕ
√
−G

(
(GtZ)2At∂ZAt −

3∑
a=0

GxaxaGZZAxa∂ZAxa

)]Zuv

Zh

, (6.51)

where x0 ≡ t and Ω2 is the same volume of the two-sphere that we had in (6.3). Note

that we took Zh to be the lower limit of Z to be consistent with the lower bound (6.29).40

However what we seek here is in fact the on-shell action at the boundary Z = Zuv, so the

near-horizon geometry is not too relevant for us. At the boundary FtZ = −FZt = 0, so we

must set GtZ = 0 and replace
√
−G by

√
−G. Incorporating these changes, the boundary

value of the on-shell action is now given as:

S4 = −Ω2TD6

2

∫
d4x

[
e−ϕ
√
−GGZZ

(
3∑

a=0

GxaxaAxa(Z,−k)∂ZAxa(Z, k)

)]
Zuv

. (6.52)

Using the gauge field EOM (6.14), but now resorting to the metric Gµν instead of Gµν , and

the result in appendix B, the above action can be rewritten in terms of the gauge invariant

variables Ex1 , Ex2 and Ex3 as:

S4 = −Ω2TD6

2

∫
d4x

[
e−ϕ
√
−G GZZ

3∑
a=1

Gxaxa
(
Exa(Z,−k)∂ZExa(Z, k)

ω2 − k2
a

)]
Zuv

, (6.53)

with k2
a given in (B.9), and at this point we will be concerned about the x1 part of the

fluctuation. In other words, we only want to study the behavior of Ex1 at zero momentum.

At zero momentum, according to (6.18), the fluctuations Ex1 and ET follow the same

equation (6.19). Using such an identification, we can define:

Ex1(Z, k) ≡ E0(k)ET (Z)

Ex1(Zuv, k)
, (6.54)

where one may match the Lorentz indices using (6.18). Plugging (6.54) in (6.53) and using

E0(k)E0(−k) = 1, it is easy to see that the zero momentum limit yields the following action

for the x1 piece of the fluctuation:

S(1)
4 = −Ω2TD6

2ω2

∫
d4x

[
e−ϕ
√
−G GZZGx1x1

(
∂ZET (Z)

ET (Z)

)]
Zuv

. (6.55)

40Using (6.29) one may easily show that Zh ≥ 1
3

log

(
C

8πα4
θ1
r3
h

)
.
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Before moving ahead, let us make couple of observations. One, ET (Z) is exactly the

fluctuation (6.44) that we derived earlier and is therefore subjected to take either of the

two possible limits (6.48) and (6.50) that we mentioned above. Two, the coefficient of

E′T (Z)/ET (Z) looks very similar to P (Z) in (6.21), so one might think that it can take the

functional form (6.24). This is unfortunately not the case because P (Z) in (6.21) and (6.24)

involves det Gab whereas the coefficient of E′T (Z)/ET (Z) in (6.55) involves det Gab. The

former differs from the latter by the presence of Fab.

The above discussion more or less sets out the tone for the rest of the computations.

There are two parts to the computation that we will indulge in the following. One is the

coefficient of E′T (Z)/ET (Z) in (6.55) and the other is E′T (Z)/ET (Z) itself. To condense

some of the subsequent formulae, let us define:

P7 ≡ P2 + 3 log rh, (6.56)

where P2 is given in (6.26). The coefficient of E′T (Z)/ET (Z) can then be represented in

the following way:

e−ϕ
√
−G GZZGx1x1 ≡ Σ11

16
√

3noN
1
10α4

θ1
α4
θ2
g

3/2
s (6b2 + e2Z)

+
3Σ22

2noN
− 1

10α2
θ1
α4
θ2

(6b2 + e2Z)2
, (6.57)

where we are suppressing higher orders 1/N terms, and no is a numerical constant that

appeared in (6.43). Note that both the denominators are suppressed differently with respect

to N,αθ1 and e2Z . The numerators are non-trivial functions of e2Z , and they will govern

the behavior of the spectral function. Let us therefore study them carefully by first writing

out the form for Σ11:

Σ11 = −gsNf r
2
h(1− e−4Z)(9b2 + e2Z)(2α4

θ1e
2Z − 3b2α4

θ2)(−9b2e−2Z + 2P2)P1, (6.58)

where we see that it is proportional to gsNf . This makes sense because in the absence of

the flavor D6-branes we won’t see this contribution. The forms for P1 and P2 are given

earlier in (6.26), where P2 is a function of Z and rh but P1 is independent of both of them.

At this stage we can make (6.58) vanish by choosing:

2P2 − 9b2e−2Z = 0. (6.59)

Few questions immediately arise from (6.59). What is the logic behind the choice (6.59),

instead of making the other bracketed terms in (6.58), to vanish? What would happen if

we make the other bracketed terms in (6.58) vanish? The answers to both the questions

lie on the following observation: since b2 as well as αθi pieces cannot be large, the first

three brackets in (6.58) cannot vanish. Making them zero would lead to contradictions.

Therefore from (6.46) we see that Z can be very large, and we can use this to fix the value

of rh using (6.59). This gives us:

rh = exp

− 3b2

2N
2
3 exp

(
8π

3gsNf

)
 ≡ 1− ε2, (6.60)
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where ε is a small number that can be derived from above. One may also see that (6.60)

cannot be related to (6.49). This is because of our choice between (6.46) and (6.49): we are

allowed either of them, but not both. Coincidentally, we can choose either (6.48) or (6.50),

but not both. As one may easily verify that the choice (6.46) only, and therefore (6.48),

can be consistent with (6.59). The caveat however is that, since log rh is no longer a large

number, the expansion in (6.47) cannot be terminated and we shall require the exact form

for A in (6.47). We will discuss a way out of this soon.

After the dust settles, there will be no Σ11 term, and so we have to go to the next

term given by Σ22. The next term incorporates both gsNf as well as gsM2

N , and takes the

following form:

Σ22 = gsNf

(
gsM

2

N

)
bβr2

he
−6Z(e4Z − 1)(1 + log rh)

×
[
α4
θ2

(
6e2Zαb log rh + L(Z)

)
− α4

θ1

(
12e6Z log rh − 2K(Z)

) ]
, (6.61)

where we see that the term is dependent on r2
h as well as various other factors of log rh.

There are also eZ and N dependences that will take large values, so we will have to be

careful taking the limits at large Z and large N . The various other quantities appearing

above are αb,K(Z) and L(Z) that will be defined in the following. First let us start with αb:

αb ≡ 54b4 + 18b2e2Z + e4Z → e4Z , (6.62)

where on the right we have shown its behavior at large Z: the resolution parameter b2

being small, does not contribute anything to αb. In the same vein, K(Z) is defined in the

following way:

K(Z) ≡ −162b4e2Z − 54b2e4Z + (2P7 − 3) e6Z , (6.63)

where we have defined P7 in (6.56) above. Using this definition for P7, and (6.46) for Z

that we took earlier, one can easily show that:

P7 = 0, (6.64)

leading to some simplification in (6.63). It also means that for large Z, K(Z) goes as

−3e6Z . This is consistent with the other coefficient for α4
θ1

as evident from (6.61). Finally,

the last term L(Z) takes the following form:

L(Z) ≡ 972b6 − 27b4 (4P7 − 11) e2Z − 18b2 (2P7 − 1) e4Z − 2P7 e
6Z → 18b2e4Z , (6.65)

where the large Z behavior is solely governed by the vanishing of P7 in (6.64). In fact

plugging the limiting values of (6.62), (6.63) and (6.65) in (6.61) and then in (6.57), leads

us to the following behavior of (6.57) for large Z:

e−ϕ
√
−G GZZGx1x1 = −9gsNf κor

2
h (1 + log rh)

[
(1 + 2 log rh)α2

θ1

α4
θ2

− log rh
α2
θ1

]
gsM

2

N
,

(6.66)
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with κo being a constant that depends on N as κo ≡ bβN0.1

no
, where no remains the same

numerical constant that appeared in (6.43).

Before moving ahead, let us pause briefly to examine the situation at hand. The

crucial outcome of (6.66) is the dominance of Σ22 over Σ11 because of the imposed con-

straint (6.59). This further lead to the form of the horizon radius given in (6.60) that is of

order 1. This in turn gives us the high temperature limit, and so one might ask if there is a

way to analyze the spectral function for small rh. Otherwise an expression like A in (6.47)

does not have a good expansion in terms of inverse log rh. The situation is subtle because

we would still have to impose (6.59) to eliminate Σ11 piece in (6.57). How can we then

avoid the outcome (6.60) for the horizon radius?

A way out of this conundrum is to not impose (6.46) that determines Z from the start,

and instead use (6.59) to fix Z. This means (6.47) for A does not hold anymore although

the form of A in (6.37) continues to hold. Z then satisfies:

Z +
3

2
b2e−2Z =

1

3
log N − log rh +

4π

3gsNf
, (6.67)

which is extracted from (6.59). The r.h.s. has log rh and, as discussed above, we cannot use

either (6.60) or (6.49) for rh. Instead we will use a different way, as shown in appendix C,

to determine the horizon radius by demanding the vanishing of the effective number of the

three-brane charges in the original type IIB side. Solving (6.67) then gives us the following

value for Z:

Z = Zuv ≡
1

3
log N − log rh +

4π

3gsNf
+

1

2
Wn

[
−

3b2r2
h

N2/3
exp

(
− 8π

3gsNf

)]
, (6.68)

where Wn is the analytic continuation of the product log function with integer n. By

construction this is a large positive number because N is large whereas rh is a very small

number. Plugging (6.68) in (6.37) then gives us the following value for A:

A = −1 +
2N2/3

3b2r2
h

exp

(
8π

3gsNf

)
+
N4/3

9b4r4
h

exp

(
16π

3gsNf

)
→ N4/3

9b4r4
h

exp

(
16π

3gsNf

)
,

(6.69)

which is expectedly different from (6.47). The form of A shows that it is in fact a very

large number because in addition to it being inversely proportional to a small number,

i.e rh � 1 as mentioned above, it is also exponentially dependent on a large number as

gsNf → 0. This will be useful for us because large A can simplify the expression for ET (Z)

in (6.44). We will come back to this soon.

Let us now compute the coefficient (6.57), which in turn means computing Σ11 and

Σ22. As mentioned earlier, Σ11 vanishes, so we only need to compute Σ22 at large Z. For

this we will need the limiting values for αb,K(Z) and L(Z) in (6.62), (6.63) and (6.65)

respectively. The limiting value for αb remains e6Z as before, but the limiting values for

K(Z) and L(Z) change because we can no longer apply (6.64) anymore. They now take

the following values:

K(Z) = 2P7 − 3, L(Z) = −2P7, (6.70)
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where P7 is given in (6.56). Plugging (6.70) in (6.61) and using (6.59), gives us the following

value for the coefficient in (6.57):

e−ϕ
√
−G GZZGx1x1 = −1

2
gsNf κ1r

2
h (1 + log rh)

[
9b2

e2Z

(
1

α2
θ1

−
2α2

θ1

α4
θ2

)
+

6α2
θ1

α4
θ2

]
gsM

2

N

= −3gsNf

(
gsM

2

N

)(
α2
θ1

α4
θ2

)
κ1r

2
h (1 + log rh) , (6.71)

where κ1 = κo

g
3/2
s

and κo is the same constant that appeared earlier in (6.66), and in the last

line we have used the large Z limit (6.68) to eliminate the e−2Z piece. The above result

differs clearly from (6.66), which was computed for rh as in (6.60). Here we expect rh to be

small — as shown in appendix C — and so (6.71) will finally be proportional to r2
h log rh.

Having done the first part of the computation in (6.55), let us now investigate the

second part which is the ratio E′T (Z)/ET (Z). The functional form for ET (Z) is given

in (6.44) and is expressed in terms of coefficients C± which could in principle be complex.

The ratio then can be written as:

E′T (Z)

ET (Z)
=
C+e

−gZ (α
Z −Q

)
+ C−e

−gZ (α
Z −Q

)
C+e−gZ + C−e−gZ

, (6.72)

where we have introduced three functions α, g and Q that are in general complex. In fact

what we require is that the α, g and Q functions remain complex for large Z and small rh.

The precise forms for these functions are:

α ≡ 1

2
− iI, g ≡ 1 +

i√
A
, Q ≡ g + Z

dg

dZ
+

1

2P2

dP2

dZ
, (6.73)

where I and A are defined in (6.34) and (6.37) respectively. Note that in the limit of

large N , small gsNf , and small rh, A is large number, implying a small (but non-zero)

complex piece in g. On the other hand, I is a large number being proportional to gsN and

inversely proportional to the horizon radius rh. However to avoid contradictions, we will

not take any limit at this stage and continue with the operations with exact expressions.

This gives us:

E′T (Z)

ET (Z)
=
C+

[
Po − i

( I
Z + Qo

)]
+ C−

[
Po − i

( I
Z −Qo

)]
exp

(
2iZ√
A

)
C+ + C−exp

(
2iZ√
A

) , (6.74)

where now there are three distinct sources of imaginary pieces from (6.74): they can come

from the C± coefficients, the exponential term eiZ/
√
A and the bracketed terms in (6.74).

The bracketed terms are defined with respect to two new functions Po and Qo, which may

be written as:

Po = −1 +
1

2Z
+

3

2P2
, Qo =

1√
A

[
1− 9Z

2AP2
2

(
1 +

3

2P2

)]
. (6.75)

The limit that we are looking for now, and as mentioned earlier, is the large Z, large N

and small rh limit where Z becomes large as (6.68). Essentially then it is the large N and
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large |log rh| limit. In this limit P2 can be expressed using Z as (6.59), which would tell

us that it is a small number.41 Plugging the values of A from (6.69), and Z from (6.68)

now implies that Qo may be approximated by:

Qo ≈
3b2r2

h

N2/3

[
log

(
r2
h

N2/3

)
− 8π

3gsNf

]
exp

(
− 8π

3gsNf

)
≡ 3b2 lim

x→0 [x log x] , (6.76)

where on the r.h.s. we have shown the behavior of the function as it approaches zero, by

ignoring a constant additive factor as the term in the bracket on the l.h.s. of (6.76) will

always dominate. We have also defined x and then Z as a function of x in the following way:

x ≡
r2
h

N2/3
exp

(
− 8π

3gsNf

)
, Z ≡ −1

2
log x, (6.77)

where the latter should be viewed as an alternative expression for (6.68). For large N ,

small rh and gsNf → 0, it is easy to see that x vanishes whereas Z becomes very large.

However Qo will always go to zero in this limit. What we now want to claim, in this limit,

is that: ∣∣∣ I
Z

∣∣∣ � |Qo|, (6.78)

which is easy to justify from the form on Z in (6.77) and the fact that multiplying x with

any powers of log x will always approach zero in the above limit.

The dominance of I/Z over Qo is a huge simplification for us because this will not only

render the expression (6.74) manageable without worrying about contributions from the

exponential pieces, but also remove the ambiguity of its dependence on the constants C±
whose values have not been explicitly determined. In fact after plugging in all the values

from (6.75) and (6.34) in (6.74) and using the limiting conditions (6.76) and (6.78), it is

easy to see that:

E′T (Z)

ET (Z)
= −1 +

1

2Zuv
+

3

P2
− im0ω

4Zuvm0++

√
6b2 + 1

9b2 + 1
+O

(
1

N2

)
, (6.79)

where m0++ is the mass of the lightest glueball expressed in terms of scale m0 and is given

in (6.31). In fact this is all we need, because the imaginary part of (6.79) can then take

the following form:

Im

[
E′T (Z)

ET (Z)

]
= −ω

√
4πgsN

4rhZuv

√
6b2 + 1

9b2 + 1
, (6.80)

where we have used (6.31) to write it in this form. One may note its linear dependence on

ω, the frequency parameter that we encountered earlier. It is also inversely proportional

to the horizon radius rh, a fact that will be useful soon.

The logic behind the above series of computations should be clear now. What we are

looking for is the retarded Green’s function in the zero momentum limit. This is now easy

to extract from (6.55), and can be written as:

G(R)
x1x1

(ω, q = 0) ≡ Ω2TD6

[
e−ϕ
√
−G GZZGx1x1

(
∂ZET (Z)

ET (Z)

)]
Zuv

, (6.81)

41P2 ≈ 9b2r2h
2N2/3 exp

(
− 8π
gsNf

)
.
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which precisely contains the two pieces of computations that we performed above, namely

the coefficient of E′T /ET in (6.71) and the ratio E′T /ET itself in (6.79). One additional

input was the imaginary piece in (6.79) that we extracted in (6.80). The reason for this

extra bit of work is apparent: the spectral function is exactly the imaginary piece of the

retarded Green’s function, i.e:

ρ(T, ω) ≡ −2Im G(R)(ω, q = 0), (6.82)

where T is the temperature that will be related to the horizon radius rh. Since (6.71) is

all real, the imaginary piece in the retarded Green’s function can only come from (6.79).

Any other contributions to the imaginary piece will be suppressed by higher powers of

1/N so does not concern us here. Putting everything together then gives us the required

expression for the spectral function:

ρ(T, ω)

ω
=

3

4
gsNf

(
gsM

2

N

)
Fa(N, gs, Zuv)Fb(b, αθi) brh log rh, (6.83)

where expectedly this is proportional to gsNf and gsM
2/N . It is also proportional to

rh (and also log rh), so at zero temperature ρ(0, ω) = 0. We can use (5.13), or the

footnote 39, to express the combination brh in terms of the resolution parameter as a(rh) ≡
brh +O

(gsM2

N

)
. This way, the pre-factor multiplying log rh in (6.83) is not explicitly but

only implicitly dependent on rh and it brings out the resolution in the gravity dual rather

succinctly. The two other functions appearing in (6.83) may be defined in the following way:

Fa(N, gs, Zuv) =
N1/10

√
4πgsN

g
3/2
s Zuv

, Fb(b, αθi) =
β

no

(
α2
θ1

α4
θ2

)√
6b2 + 1

9b2 + 1
, (6.84)

where no is a numerical constant defined after (6.43), and β is defined in footnote 39. Note

that if we use the strong string coupling result, as opposed to the weak string coupling

analysis presented here (both a strong ’t Hooft coupling of course), β can be defined

from (5.13) with β = c1 = c2. The coefficient c1 appears in (5.56) and c2 is bounded

by (5.61). Following this logic, what we now need is the gsNf independent pieces to define

β. Thus if we take the negative definite constant piece of c1 from (5.56) and use this to

define both c2 and β then we can ignore higher order gsNf dependences. Thus essentially,

from both strong and weak type IIA couplings, β will be another constant to O(gsNf ),

which in turn would make Fb to be another constant,42 that we shall call fb. However the

worrisome feature is the other function in (6.84), i.e the function Fa that depends on N, gs
and Zuv. Both N and Zuv, with Zuv defined in (6.68), go to infinity whereas gs approaches

zero. If we define ζ1 ≡ gs, ζ2 ≡ 1/N and ζ3 ≡ 1/Zuv, then we can choose the behavior of

each of these parameters such that:

lim
ζi→0

Fa(ζ1, ζ2, ζ3) ≡ fa, (6.85)

42Recall that the parameters αθ1 and αθ2 are constants.
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with a constant fa.
43 As T → 0, rh vanishes, and from the expression of the spectral

function in (6.83), this also vanishes. Therefore we can finally put everything together and

argue that:

lim
ω→0

ρ(ω)

ω
≡ lim

ω→0

[
ρ(T, ω)

ω
− ρ(T = 0, ω)

ω

]
∝ 1

3
− c2

s, (6.86)

where we have used (5.62) to express the r.h.s. in terms of the sound speed. Of course, as

mentioned above, (5.62) is a strong coupling result, so the comparison has to be done with

c1 and c2 being proportional to gsNf and not constants (as opposed to the weak string but

strong ’t Hooft coupling answer). Taking all these into consideration we see a clear linear

dependence on (1
3 − c

2
s) at strong ’t Hooft coupling, perfectly consistent with the results of

sections 4 and 5.

Few comments are in order now. Our analysis is based on small rh as derived in

appendix C, so the natural question is what happens when rh is of order 1, i.e the one

given in (6.60). When the horizon radius is of order 1, it means we are at the point where

new degrees of freedom are about to enter, i.e we are in Region 2 of [59]. Therefore unless

we know the detailed metric configuration of Region 2 and beyond, we cannot perform the

analysis as clearly as we have done here because of our definition the radial coordinate as

r = rhe
Z . When rh is small we are still in Region 1 of [59] and so precise computations

may be performed (as shown here).

Secondly rh itself is bounded below by (6.29). This bound is of course to prevent any

appearances of unphysical imaginary pieces in the computations. Clearly for the range of

Z that we are concerned here, this poses no constraints. Thus happily all the results lead

to the following conclusion:

lim
ω→0

ρ(ω)

ω
∝ 1

3
− c2

s. (6.87)

6.4 The strong string coupling limit and pure classical supergravity

Most of the analysis section 6 is done with gs → 0 and with large M . This differs a bit from

what we did in section 5 where gs = O(1), so that natural question is whether we can work

through the analysis of sections 6.1–6.3 assuming (gs, Nf ) ∼ O(1) and N � 1 as part of the

MQGP Limit of [64].44 This is an unusual large N limit but still warrants the use of pure

classical supergravity. To see this, one notes that by including terms higher order in gsNf

in the RR and NS-NS three-form fluxes than those considered in [64] and the NLO terms

in the angular part of the metric, one sees that in the IR in the MQGP limit, there occurs

an IR color-flavor enhancement of the length scale as compared to a Planckian length

scale in the Klebanov-Strassler (KS) model [57] for large M , thereby showing that stringy

43In the MQGP limit wherein gs
<∼ 1, one can argue that fa will be a finite non-zero constant as follows. As

rh < r0 or |logrh| > |logr0| (r0 being the r where theD3-branes have been entirely cascaded away, and noting

min(r) = rh), hence instead of choosing rh to satisfy (C.9), assume |logrh| = N1/3

κ

(
1
f

)
, 0 < f < 1 and κ =

nbgsM
2/3 from (C.9). As ZUV ∼ |logrh|+ logN1/3 ∼ N1/3

κ

(
1
f

)
, so Fa ∼ N3/5fκ

N1/3 = N4/15fκ. If gs ∼ O(1)

then N ∼ 102 is sufficient to consider large ’t-Hooft coupling gsN , one can choose f : N4/15fκ ∼ O(1).
44See footnote 25.
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corrections will be suppressed. To see this more explicitly, we summarize the main ideas

of [119, 128] here. Using [59] let us define an effective number of color in the following way:

Neff(r) = N

[
1 +

3gsM
2
eff

2πN

(
log r +

3gsN
eff
f

2π
log2r

)]
, (6.88)

where Meff and N eff
f are the effective number of bi-fundamental and fundamental flavors

respectively that are defined for our background in the following way:

N eff
f (r) ≡ Nf

(
1 +

∑
m,n

kmnN
m
f M

n

)
Meff(r) ≡M

[
1 +

3gsNf

2π

(
log r +

∑
m,n

fmnN
m
f M

n

)]
, (6.89)

where (m,n) indices are summed from (m,n) = (0, 0) onwards, and henceforth to avoid

clutter we will use Einstein summation convention. The coefficients kmn ≡ kmn(r, gs) and

fmn ≡ fmn(r, gs) and therefore the effective flavors are constructed from the higher orders

gsNf and gsM2

N corrections [59]. Combining these together, it was argued in [119, 128] that

the length scale in the IR at r = Λ will be dominated by:

L4 ≡ 4πα
′2 (gsNf )3

(
3gsM

2π

)2 (
fmn(Λ)Nm

f M
n
)2(

kpq(Λ)Np
fM

q
)

log Λ. (6.90)

In the IR, relative to KS geometry, we thus see that (6.90) implies the abovementioned

color-flavor enhancement of the length scale. Therefore in the IR, even for gs = 0.45,M = 3

andNf = 2, upon inclusion of of n,m > 1 terms inMeff andN eff
f in (6.89), the characteristic

length scale in the MQGP limit [64] involving gs ≤ 1 satisfy:

L � LKS, (6.91)

where LKS is the characteristic length scale for the Klebanov-Strassler model [57] in the

far IR. Because of this enhancement, the stringy corrections are suppressed implying that

one can still trust classical supergravity.

It is however interesting to note that in the IR, one can obtain g2
YM = O(1) even for

gs → 0, provided Nf 6= 0). To see this let us first consider vanishing Nf . The NSVZ RG

flow equation for the SU(M) gauge group that survives at the end of the Seiberg duality

cascade, gives us:

∂

∂log Λ

(
8π2

g2
YM

)
= 3M, (6.92)

where the r.h.s. appears from the integral of the NS two-form field over a vanishing two cycle

S2 in the type IIB side. This is of course the same two-cycle discussed at the beginning of

section 4, parametrized by (θ2, φ2), on which we have M wrapped D5-branes. The question

is whether (6.92) can allow g2
YM = O(1).

Solving the equation (6.92) gives the inverse YM coupling in terms of M and log r, for

r = Λ. It is easy to see that, with M = O(1) this is only possible if Λ is proportional to the
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UV cutoff itself. Clearly since we want to concentrate on far IR physics, such a choice is

not feasible. Additionally, since near the UV cutoff we expect the theory to become scale

invariant, M automatically vanishes there.

On the other hand, when Nf 6= 0, the above conclusion can change because the dilaton

on the gravity side is no longer a constant. Recall that, with Nf flavors, the dilaton takes

the following form [58, 59]:

e−φ =
1

gs

[
1−

gsNf

8π
log
(
r6 + 9r4a2

)
−
gsNf

2π
log

(
sin

θ1

2
sin

θ2

2

)]
, (6.93)

where a2 is the resolution parameter that we encountered earlier. Using the fact that we

have an almost vanishing resolution parameter, and the angular coordinates (θ1, θ2) are

parametrized by (5.7), the inverse of the YM coupling now satisfy:

1

g2
YM

∝M
[
1−

gsNf

2π
log (αθ1αθ2)−

3gsNf

4π
log r +

gsNf

4π
log N

](
log r +O(gsNf )

)
,

(6.94)

at the scale r = Λ measured with respect to the cutoff scale Λ∞. What we are looking for

now is a Λ in the IR whereat g2
SU(M) = O(1). The scenario is more subtle now because of the

additional O(gsNf ) pieces appearing in (6.94). These pieces come from carefully looking

at the NS B-field threading the vanishing two-sphere on which we have the wrapped D5-

branes. The B-field is more non-trivial than what we had above, and is given by:

B2|S2 = 3gsM log r
[
1 + Q(r, θ1, θ2)gsNf +O(g2

sN
2
f )
]
sin θ2 dθ2 ∧ dφ2, (6.95)

where the first term is precisely what we had on the r.h.s. of (6.92) for the case with

vanishing Nf , and the second term involves the gsNf corrections. These correction terms

have been worked out in [59], and may be expressed as:

Q(r, θi) ≡
9

8π
log r − 1

4π

(
2 +

1

log r

)
log

(
sin

θ1

2
sin

θ2

2

)
− 1

4π
cot θ2 cot

θ2

2
, (6.96)

where we have removed any dependence on the resolution parameter when writing (6.96)

from [59].45 In fact the O(gsNf ) term alluded to in (6.94) comes precisely from Q in (6.96).

There is however one subtlety associated with the angular variables θi and φ2. Since the

integral of the B2 field over the two-sphere parametrized by (θ2, φ2) contributes to the

YM coupling g2
YM, one needs to be careful while imposing (5.7). One way would be to

impose (5.7) to θ1 in (6.95) and then integrate over θ2. In that case an additional N

dependence would appear from the second term in (6.96). Alternatively we could also

insert the value of θ2 from (5.7) after integration over the two-sphere. The latter would

45There is one subtlety that we are putting under the rug. A part of the B-field in (6.95) goes as
9

4π
(gsM) (gsNf ) log r log |a|, where a is the resolution parameter. This blows up in the limit a → 0, so

one might be worried that Q given in (6.96) is not well defined in this limit. This is however not the case

because the derivation of the B-field in [59] was done with non-zero resolution parameter, and for zero

resolution parameter we have to do the analysis separately. The result then is of course independent of the

log |a| piece, and is as given in (6.96).
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imply that the integration of B2 field over the two-sphere is concentrated mostly near

the regime defined in (5.7). After the dust settles, the equation that we need to solve to

determine Λ can be derived from (6.94) as:

A log2

(
Λ

Λ∞

)
+ B log

(
Λ

Λ∞

)
+ C = 0, (6.97)

which is a quadratic equation to the first order in gsNf . To higher orders in gsNf the equa-

tion starts becoming more complicated. The various coefficients of (6.97) are defined as:46

B = 1−
gsNf

4π

[
1 + log

(
α3
θ1α

4
θ2

)]
+
gsNf

2π
log N

A =
3gsNf

8π
, C = 1−

gsNf

8π

(
log αθ2 −

1

5
log N

)
. (6.98)

Let us pause a bit to see what are the dominating terms in the above set of coefficients.

We want gs → 0, and small Nf , but we also want very large N . Let us therefore take the

following limiting values for gs, Nf and N :

gs → ε, Nf = O(1), N → exp
(αN
εb

)
, (6.99)

where αN could be a large number and 1 < b < 2. This clearly shows that the gsNf log N

term in B dominates and B2 � 4AC. Using this criteria, and solving (6.97) immediately

gives us:

Λ =
Λ∞

N4/3
� Λ∞, (6.100)

implying that Λ can be in the deep IR. Hence, one can obtain an O(1)gYM in the IR

without requiring an O(1) gs, in the presence of flavors but not in their absence. In the

IR, of course Nf 6= 0.

Before ending this section, let us make a few observations. First, if we also take M to

be very large, then the first term of C in (6.98) will be suppressed by 1/M . This of course

will not change the conclusion of (6.100). Secondly, in section 6, (6.29) will be replaced

by the observation that for large Z the argument of the square root in (6.24) is obviously

positive and for small Z:

1

P2
2

∼ 1

(log N − 3log rh)2
� 1, (6.101)

where P2 is given in (6.26); as long as logN, |logrh| � 1. This is obviously true from our

earlier considerations. Therefore, the argument of the square root in P (Z) in (6.24) is

always positive.

46We have used the following values of the integrals governing the B2 field using the θi values given

in (5.7): ∫
dθ2 sin θ2 log

(
sin

θ2

2

)
=

cos θ2

2
+ (1− cos θ2)log

(
sin

θ2

2

)
≈ 1

2∫
dθ2 cos θ2 cot

θ2

2
= cos θ2 + 2log

(
sin

θ2

2

)
≈ 1 + 2log αθ2 −

3

5
log N
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7 Conclusions and discussions

The aim of this work is to study bulk viscosity, a universal physical quantity defining

conformal anomaly of a system, in accessible computational limits of the ’t Hooft coupling

constant λ = g2
YMM . Therefore, the discussion covers very different methodologies relevant

for different strengths of the coupling. They all, however, describe the IR limit of the

SU(M) gauge theory. The discussion is meant to be exhaustive enough since we not only

focus on presenting new results, but also broadly show the context of our studies and

elaborate on tools needed for computation of the coefficient.

It is fair to state that the limits considered in this work — kinetic theory and strings —

have traditionally been tackled by two distinct communities. Hence one of the goals pursed

in this enterprise is to facilitate a rapprochement between two groups of practitioners that

have more often than not remained distinct. Building on the unity of physics, different

groups can learn from each other.

In light of this, one of the main tasks of the analysis was to express the bulk viscosity as

a function of the speed of sound within well-established first-principle SU(M) gauge theory

in large M limit. Our efforts were put into clarifying possible differences in the parametric

form of the ratio ζ/η, obtained at different coupling constants. At weak coupling, kinetic

theory was used, which is currently the most common and efficient approach to calculate

transport coefficients. In our studies we provided justification of the effective kinetic theory

using a fundamental diagrammatic approach. At strong (’t Hooft) coupling, the UV com-

plete type IIB holographic dual (and its M theory uplift when addressing also the strong

string coupling limit) of large-N thermal QCD was employed. The intermediate coupling

behavior, most relevant for the quark gluon plasma produced experimentally in the heavy

ion collisions, was also briefly discussed. We mainly summarized known challenges related

to the first-principles extraction of bulk viscosity.

To discuss the weak coupling limit we encapsulated the analysis of bulk viscosity

of QCD done extensively within the kinetic theory in ref. [30]. When the interaction is

governed by the ’t Hooft coupling λ = g2
YMM and M →∞, the behavior of bulk viscosity is

controlled by gluons only as the quark contributions are suppressed by a factor 1/M .47 The

parametric form of the bulk viscosity as a function of the speed of sound is ζ/s ∝ 1/3− c2
s,

while the ratio ζ/η ∝ (1/3− c2
s)

2. Then, starting from the Kubo formula, we performed a

multi-loop analysis which enabled us to determine which scattering processes contribute to

the collision kernel of the Boltzmann equation and provided a power counting in the weak

’t Hooft coupling and high temperature. Collecting all evaluated diagrams we have shown

a schematic procedure how to derive an integral equation which may be thought of as a

diagrammatic representation of the Boltzmann equation. The integral equation is formed

by infinite number of planar diagrams with propagators and vertices being dressed. Both

number conserving and number changing processes have to be included in the complete

bulk viscosity examination. For the vertices a separate integral equation, governed mainly

47The number of colors is N + M in the UV and M in the IR; both are kept very large in sections 2.2

and 4 and Nf (along with string coupling) could be taken to be O(1) in sections 5 and 6 keeping N to be

very large as part of the “MQGP” limit.
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by the soft physics and capturing the LPM effect, has to be solved. The integral equations

can be also obtained using nPI formalism and the findings were also briefly summarized.

Within the intermediate coupling region, we shortly presented a state of the knowledge

on the bulk viscosity studies. Although the prescription of calculation of bulk viscosity is

given by the Kubo formula, it is difficult to reliably establish the hydrodynamic limit of

the spectral function and determine which physical phenomena may be responsible for its

shape. Therefore we can only conclude that all compiled findings do not allow one for

quantitative determination of the bulk viscosity behavior in this region starting from first

principles and new methods and/or perspectives are needed.

After analyzing the weak and the intermediate ’t Hooft coupling regimes, we go to the

next stage, i.e the strong ’t Hooft coupling regime. Clearly neither pQCD, nor lattice results

can help us here. A new paradigm is needed and is given by the so-called gauge/gravity

duality. This is a refined form of the famed AdS/CFT duality, constructed precisely to

tackle strongly coupled gauge theories that are non-conformal. In section 4 we study

a SU(M) gauge theory in the IR at high temperature (i.e the temperature above the

deconfinement temperature) and at strong ’t Hooft coupling. We take large M , but keep

the string coupling gs very small, such that λ = gsM is still very large. To avoid additional

complications, we take no flavor degress of freedom.

In such a setup, the computation of bulk viscosity boils down to the computation

of metric fluctuations in the corresponding gravity dual. In section 4.2 we study the

equations governing the fluctuations using two steps: one, in section 4.2.1, we relax some

of the constraints and study a toy example which in turn provides a nice solvable system;

and two, in section 4.2.2, we do a more precise and careful computations of the fluctuation

equations. Knowing the precise fluctuations help us to compute both the sound speed

as well as the ratio of the bulk to the shear viscosities. In section 4.3 we perform the

aforementioned computations and show that the ratio of the bulk to shear viscosities is

indeed bounded below by the deviation of the square of the sound speed from its conformal

value but more interesting, is independent of the cut-off.

It is believed that QGP is an example of a strongly coupled system at finite temperature

wherein unlike as considered in most gravity duals, the gauge coupling and hence the string

coupling, is of O(1). Motivated by the same and with the idea of also including the flavor

degrees of freedom as well as the UV region, in section 5, we calculate holographically at

finite string coupling, the deviation of the square of the speed of sound from its conformal

value, the attenuation constant and the ratio of the bulk and shear viscosities and find a

Buchel-like bound for the latter. Finite string coupling necessitates addressing these issues

from the M-theory uplift of the type IIB construct of [59] which was obtained by the M-

theory uplift of the SYZ type IIA dual in [64]. This also enjoys the additional benefit of

not having to keep track of the NS5-degrees of freedom that one needs to while working

with a single T-dual of the type IIB configuration of [59]. Based on [125, 128], an equation

of motion (EOM) for a combination of scalar modes of metric perturbations invariant

under infinitesimal diffeomorphisms, is constructed. Upon investigating this EOM near

the horizon, it is realized that for a non-zero bare resolution parameter, the horizon turns

out to be an irregular singular point. Demanding the same of an ansatz for the solution
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to the same, in section 5.2, the dispersion relation for the quasinormal modes obtains not

only the conformal values of the speed of sound and the attenuation constant but also

their respective non-conformal corrections. Interestingly, for the case of a vanishing bare

resolution parameter, by looking at the solution to the EOM near the asymptotic boundary,

in section 5.3 one realizes that one can not consistently impose Dirichlet boundary condtion

(at the asymptotic boundary); like section 4, non-normalizable modes are required to

propagate. In section 5.4, with a non-zero bare resolution parameter, we first show that the

KSS bound on the shear-viscosity-to-entropy-density is not violated having incorporated

the non-conformal corrections. We then obtain the bulk-viscosity-to-entropy-density ratio

and the deviation of the square of the speed of sound from its conformal value, and confirm

that the conformal value of both vanish and they are both hence determined entirely by

the non-conformality of the theory. One of the main results of this section is a crisp bound:
ζ
η ≥

91
5

(
1
3 − c

2
s

)
with(out) the flavor degrees of freedom.

In section 6, we approach the issue of obtaining the deviation of the square of the

speed of sound from its conformal value, from two-point correlators involving gauge field

fluctuations on the world-volume of flavor D6-branes using the prescription of [132]. To

begin with one considers the weak-string-coupling strong-’tHooft-coupling limit. The fluc-

tuations are considered over a background value of the gauge field — worked out in sec-

tion 6.1 — assumed to be having only a temporal component and radial dependence. In

the zero-momentum limit, interestingly and as shown in section 6.2, there is only a single

second order equation in a gauge-invariant perturbation field — the ‘electric field’ — which

needs to be and is solved for (in section 6.3). Finally the subtracted (zero temperature

from the non-zero temperature) spectral function per unit frequency in the vanishing-

frequency limit yields that the same is proportional to the linear power of the deviation of

the square of the speed of sound from its conformal value, thereby validating the same as

obtained in the previous sections 4 and 5. We conclude section 6 with some remarks (in

section 6.4) arguing that this result remains unchanged even in the strong-string-coupling

stong-’tHooft-coupling, or the true MQGP limit of [59].

Let us briefly discuss some future directions. It would be rather interesting to probe

better the regime of intermediate ’t Hooft coupling whereat the number of colors is large,

the gauge coupling is small but the ’t Hooft coupling is finite, i.e., neither small (weak

coupling regime) nor large (strong coupling regime). As discussed, techniques based on

QCD do not offer currently a reliable way to explore this region. The ansatz proposed for

the spectral function parametrization does not capture properly a high frequency tail and

the QCD sum rule cannot be directly applied to constrain bulk viscosity. Since it is not

clear how to handle the issues with the QCD tools, the region can be alternatively explored

within the supergravity framework. One could invoke higher derivative corrections in the

supergravity action which would hence back-react on the background. The same in the

context of N = 4 SYM has been studied recently in [133]. For the present case there

are two ways to go about it. One, we could start from the type IIB background of [59]

and consider corrections to the metric and fluxes in powers of α′3 and solve the modified

equations of motion up to O(α′3). Two, we could use the MQGP limit (with gs ∼ O(1),

large N but finite gsM) and start with D = 11 supergravity action up to sextic power
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in the eleven-dimensional Planck length [134], and construct solutions to the EOMs as

Planck-length perturbation of the M-theory uplift of [64]. Clearly the latter is a bit more

practical because of the reduced number of fields in M-theory. Following this, one can

then include metric perturbations and solve for their EOMs and hence see the effects of

the inclusion of the aforementioned higher derivative terms on some spectral functions.

It would be interesting to evaluate the non-zero frequency contribution to the spectral

function per unit frequency and compare with previous studies on this topic as in [135]

(which had excluded higher derivative corrections) in N = 4 SYM.

Another possible future direction could be to look at simultaneously turning on gauge

and vector modes of metric perturbations [100] and then see the modification in the spectral

function of gauge fluctuations considered in section 6. The same in the context of type IIB

for evaluating electrical and thermal conductivities, was considered in [128].
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A A gauge-invariant combination of scalar modes of metric perturba-

tions

The black M3-brane metric of [64], after dimensional reduction to five dimensions, can be

extracted from the eleven-dimensional metric (5.4). Consider a linear perturbation of the

above metric as:

gµν = Gµν + hµν , (A.1)

where Gµν is the unperturbed background metric. Assuming the perturbations to propa-

gate in the above background with momentum along the x-direction, it can be defined as

following Fourier decomposed form:

hµν(t, x, u) =

∫
d4q

(2π)4
e−iwt+iqxhµν(w, q, r), (A.2)

where u ≡ rh
r as defined earlier. For the scalar channel the nonzero independent perturba-

tions may be split into the following five components:

htt(u), htx(u), hxx(u), hyy(u) = hzz(u), (A.3)
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where we have considered all the cross-terms to vanish, i.e we choose hrµ = 0 (for all µ)

gauge. As is the convention in the literature, [125, 129, 131], we define new variables for

the above perturbations:

Htt ≡ htt = Gtthtt, Htx ≡ hxt = Gxxhtx

Hxx ≡ hxx = Gxxhxx, Hyy ≡ hyy = Gyyhyy, Hzz ≡ hzz = Gzzhzz, (A.4)

where, as mentioned above, the Lorentz indices for the fluctuations follow the conven-

tions of [125, 129, 131]; and the unperturbed M-theory inverse metric components may be

expressed in the following way:

Gtt =
e

2ϕ
3

gtt
, Gxx = Gyy = Gzz =

e
2ϕ
3

gR3

, (A.5)

wherein gtt, gR3 are as given in equation (5.5) and ϕ is the type IIA dilaton. We will also

find useful to construct the following linear combinations of the fluctuation modes Hxx

and Hyy:

Hs(u) ≡ Hxx(u) + 2Hyy(u), (A.6)

whose equation of motion will be discussed in section A.2. The EOMs for the other fluctua-

tion modes are expectedly correlated to each other which will be illustrated in the following.

We will start with the fluctuation mode Htt, then go to the mode Hs, and finally discuss

the remaining modes.

A.1 The equation of motion for the fluctuation mode Htt

To elaborate the implications of the above discussion, let us discuss the EOM for Htt. This

can be expressed in terms of the other fluctuation modes in the following way:

H ′′tt(u) =
A1Htx(u) + A2H

′
tt(u) + A3Htt(u) + A4Hxx(u) + A5Hyy(u)

r4
h(u4 − 3)2(u4 − 1)

, (A.7)

which at first glance seems to be well defined in the regimes rh > 0 and u ≥ 1.32. The

precise regimes of interest however is not important for the kind of details that we are

aiming for here. This will be illustrated later. Note also that Ai are not constants but

certain nested functions whose forms may be given in the following way:

A1 =
D1 − r2

hD2

u2
, A2 =

r2
hu(u4 − 3)(u4 − 1)D3 + r4

hD4

4Nu

A(4,5) =
a2D(7,9) − r2

hD(8,10)

(2, 1)u2
, A3 =

a2D5 − r2
h(u4 − 1)D6

2u2
, (A.8)

where the denominator of the form (a, b) is to be understood as being identified with the

subscript bracket A(a,b) so that individual relations for Aa and Ab may be constructed.

The nested function D1 takes the following form:

D1 ≡ a2gsπqw
[
6
(
u4 − 15

)
B′(u)u5 + 8

(
4u8 − 9u4 − 9

)
B(u)

+
(
u4 − 3

) (
9
(
u4 − 1

)
B′′(u)u2 + 8N

(
4u4 + 3

)) ]
, (A.9)

– 107 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
5

where B(u) is defined earlier in (5.9) and N is the usual number of colors. The information

of the Nf flavors are in the definition of B(u). In the same vein D2 takes the following

form:

D2 ≡ gsπqw
[
2
(
u4 − 15

)
B′(u)u3 + 16

(
u4 − 3

)
B(u)u2

+
(
u4 − 3

) (
16Nu2 + 3

(
u4 − 1

)
B′′(u)

) ]
, (A.10)

which is also expressed in terms of B(u) in a somewhat similar form as in (A.9) above.

Together they would determine the coefficient A1 in (A.7). The next coefficient A2 is now

determined in terms of D3 and D4. The former is simple:

D3 ≡ ua2
[
4N
(
u4 + 3

)
+ 9u

(
u4 − 1

)
B′(u)

]
, (A.11)

and expressed in terms of B(u), whereas the latter is more involved and may be expressed

in the following way:

D4 ≡ 6u
(
2u12 − 17u8 + 30u4 − 15

)
B′(u)

+
(
u4 − 3

) [
3u2B′′(u)

(
u4 − 1

)2
+ 4N

(
u8 + 2u4 + 9

)]
. (A.12)

The first four coefficients Di as in (A.9), (A.10), (A.11) and (A.12) seem to illustrate a

pattern: any Dk may be expressed in terms of powers of u and powers of derivatives of

B(u). In other words the pattern seems to be:

Dk ≡
∑
n,m

cknmu
nB(m)(u), (A.13)

where cknm coefficients are independent of u, but functions of N , a2 etc., and B(2)(u) ≡
B′(u) for example. One may easily read up the values for c1nm, c2nm, c3nm and c4nm

from (A.9), (A.10), (A.11) and (A.12) respectively. Working out the coefficients c5nm

lead us to express D5 in the following way:

D5 ≡ 6gsπq
2
(
u8 − 16u4 + 15

)
B′(u)u5 + 8gsπq

2
(
4u12 − 13u8 + 9

)
B(u)

+
(
u4 − 3

) [
8gsNπ

(
4u8 − u4 − 3

)
q2

+9gsπu
2
(
u4 − 1

)2 B′′(u)q2 + 2rh
2u2

(
5u8 − 42u4 + 33

) ]
, (A.14)

where the B(u) independent terms appear, in our notation, as B(0)(u) and one may verify

the uniqueness of the proposed form (A.13). This is also evident from the next coefficient,

namely D6 which may be determined from c6nm as:

D6 ≡ gsπq
2
[
2
(
u4 − 15

)
B′(u)u3 + 16

(
u4 − 3

)
B(u)u2

+
(
u4 − 3

) (
16Nu2 + 3

(
u4 − 1

)
B′′(u)

) ]
, (A.15)

which as one may easily check follows (A.13). The other set of coefficients, namely c7nm,

combines in a way to reproduce the next coefficient D7 appearing in A4 as:

D7 ≡ 6gsπ
(
u4 − 15

)
w2B′(u)u5 + 8gsπ

(
4u8 − 9u4 − 9

)
w2B(u)

−
(
u4 − 3

) [
2rh

2
(
u8 − 12u4 + 3

)
u2

−9gsπ
(
u4 − 1

)
w2B′′(u)u2 − 8gsNπ

(
4u4 + 3

)
w2
]
. (A.16)
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We see that the structure is somewhat similar to (A.14), i.e the coefficient D5 in the sense

that we have B(0), B(1), B(2) and B(3) terms distributed in an identical way (although the

precise cknm coefficients differ) as the derivations of these terms involve similar manipu-

lations of the Einstein’s equations. This is evident from the form of the next coefficients,

namely D8 which may be expressed as:

D8 ≡ gsπw
2
[
(2
(
u4 − 15

)
B′(u)u3 + 16

(
u4 − 3

)
B(u)u2

+
(
u4 − 3

) (
16Nu2 + 3

(
u4 − 1

)
B′′(u)

) ]
, (A.17)

which is structurally similar to D6 in (A.15). On the other hand, the last two coefficients

require a slightly different analysis and therefore we expect them to differ from the above

Dk coefficients. This becomes clear from the expression of D9 which is written as:

D9 ≡ 6gsπ
(
u4 − 15

) ((
u4 − 1

)
q2 + w2

)
B′(u)u5

+8gsπ
(
u4 − 3

) ((
u8 + 8u4 − 3

)
q2 +

(
4u4 + 3

)
w2
)
B(u)

+
(
u4 − 3

) [
− 2rh

2
(
u8 − 12u4 + 3

)
u2 + 9gsπ

(
u4 − 1

) ((
u4 − 1

)
q2 + w2

)
B′′(u)u2

+8gsNπ
((
u8 + 8u4 − 3

)
q2 +

(
4u4 + 3

)
w2
) ]
, (A.18)

that takes the form, although similar to (A.13), different from the other Dk coefficients.

The final coefficient, D10, may be presented in the following to illustrate the same point:

D10 ≡ gsπ
[
2
(
u4−15

) ((
u4−1

)
q2+w2

)
B′(u)u3+8

(
u4−3

) ((
u4+1

)
q2+2w2

)
B(u)u2

+
(
u4 − 3

) (
8N
((
u4 + 1

)
q2 + 2w2

)
u2 + 3

(
u4 − 1

) ((
u4 − 1

)
q2 + w2

)
B′′(u)

) ]
.

(A.19)

This completes our analysis of the EOM (A.7) for Htt(u). Our next step is to analyze the

EOM for Hs(u) defined above in (A.6).

A.2 The equation of motion for the combined mode Hs

The functional form for Hs(u), as evident from (A.6), can be expressed as certain linear

combination of Hxx and Hyy. As in (A.7), we can express the EOM for Hs(u) in the

following way:

H ′s(u) =
B1Htx(u) + B2H

′
tt(u) + B3Htt(u) + B4Hxx(u) + B5Hyy(u)

r4
h(u4 − 3)2(u4 − 1)

, (A.20)

where we see that both the denominator and the numerator have the same set of factors

as in the denominator and the numerator of (A.7). The only thing that would differ are

the actual values of Bk. The functional forms for Bk may be expressed in terms of certain

nested functions in the following way:

B1 = a2F1 − r2
hF2, B4 = a2F7 + r2

hF8,

B5 = 2a2F9 + r2
hF10 (A.21)

B3 = a2(u4 − 1)F5 + r2
h(u4 − 1)F6, B2 =

r4
h(u4 − 1)

2N
F3 − r4

h(u4 − 3)(u4 − 1)F4,
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where the Fk functions may be compared with the Dk functions in (A.8). In fact one may

even express the functional forms for Fk as a power series in u and derivatives of B(u),

much like (A.13), but now with coefficients gknm instead of cknm. The coefficients gknm are

independent of u, and may be determined easily as before by analyzing the corresponding

Einstein’s equations. For example finding g1nm and g2nm immediately reproduces the

functional forms for F1 and F2 in the following way:

F1 = 2u2F2 ≡ 6πgsqu
3w
[
3u
(
u4 − 1

)
B′(u)− 4

(
u4 − 3

)
B(u)− 4N

(
u4 − 3

)]
, (A.22)

which as expected takes the form (A.13). One may also easily see the pattern repeating

for the next two coefficients, namely F3 and F4, in the following way:

F3 =
F4

u5B′(u)
= 3(u4 − 1). (A.23)

We can now go to the other set of coefficients where we can see how we could relate to the

Dk coefficients studied above. A priori there shouldn’t be any apparent connections, but

the functional forms for F5 and F6 are similar to what we had earlier. For example:

F5 ≡ 9πgsq
2
(
u4 − 1

)
u4B′(u)− 12πgsq

2
(
u4 − 3

)
u3B(u)

+
(
u4 − 3

)
u
[
rh

2
(
5u4 − 3

)
− 12πgsNq

2u2
]
, (A.24)

which should be somewhat reminiscent of (A.14). Similarly the functional form for F6,

expressed here as:

F6 ≡ πgsq2u
[
−3u

(
u4 − 1

)
B′(u) + 4

(
u4 − 3

)
B(u) + 4N

(
u4 − 3

)]
, (A.25)

should be reminiscent of D6 in (A.15). Of course all of these could also be expressed

as (A.13) with cknm replaced by appropriate gknm as we mentioned earlier. Interestingly

comparing (A.25) with (A.22), we see that they are related via the following relation:

F6

q
+
F1

6wu2
= 0. (A.26)

Thus knowing F1 would determine the functional forms for F2 as well as F6. In fact one

can show that F1 or F6 can also fix the functional forms for two other coefficients, namely

F8 and F10, in the following way:

F6

q2
=
F8

w2
=

F10

2[q2(u4 − 1) + w2]
. (A.27)

The remaining two coefficients, namely F7 and F9, are however more complicated and are

not anyway related to F1 in a simple way. For example the functional form for F7 may be

expressed as:

F7 ≡ 9πgs
(
u4 − 1

)
u4w2B′(u)− 12πgs

(
u4 − 3

)
u3w2B(u)

−
(
u4 − 3

)
u
[
12πgsNu

2w2 + rh
2
(
u8 + 2u4 − 3

)]
, (A.28)
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which of course follows the pattern similar to (A.13), but cannot be decomposed in terms

of any of the above Fk coefficients. A similar thing may also be said for the coefficient F9,

written as:

F9 ≡ 9πgs
(
u4 − 1

)
u4B′(u)

[
q2
(
u4 − 1

)
+ w2

]
− 12πgs

(
u4 − 3

)
u3B(u)

[
q2
(
u4 − 1

)
+ w2

]
−
(
u4 − 3

)
u
[
12πgsNu

2
(
q2
(
u4 − 1

)
+ w2

)
+ rh

2
(
u8 + 2u4 − 3

)]
, (A.29)

which evidently takes a more non-trivial form. Thus together

with (A.22), (A.23), (A.24), (A.25), (A.27), (A.28) and (A.29), the EOM for Hs(u)

may be succinctly presented in terms of the other fluctuation modes.

A.3 The equations of motion for the remaining fluctuation modes

Knowing the functional form for Hs(u)′ in (A.20) in terms of Hxx(u), Hyy(u), Htt(u) and

Htx(u) tells us that we can express the EOM for H ′tx(u) in the following way:

H ′tx(u) =
4qu3Htx(u) + w

[
2u3Hxx(u) + 4u3Hyy(u)−

(
u4 − 1

)
Hs
′(u)

]
q (u4 − 1)

, (A.30)

whose form is, not surprisingly, similar to (A.7) for the Htt(u) component. In fact since

both (A.7) and (A.20) are expressed in terms of Hab(u) and H ′tt(u), where a, b take values

in (t, x, y), (A.30) may also be expressed in terms of Hab(u) and H ′tt(u). This pattern

follows for the next component H ′yy(u) as:

H ′yy(u) = −
q
(
u4 − 1

)
H ′tt(u) + 2qu3Htt(u) + wH ′tx(u)

2q (u4 − 1)
, (A.31)

implying that solutions may be found once we know the background values. Finally, com-

bining the above set of equations with the defining equation for Hs(u), namely (A.6), gives

us a way to formulate the EOM for Hxx(u) as:

H ′xx = Hs
′(u)− 2H ′yy(u). (A.32)

Basically this is all we need to construct gauge invariant perturbation modes. For us,

following [125], a specific combination of the above set of perturbations is useful to quantify

the required perturbation as:

Zs(u) = Hyy

(
q2 +

q2u4

π2T 2
− w2 −

B′(u)q2u5Nfg
2
s

2N

)
+q2

(
u4 − 1

)
Htt + 2qwHtx + w2Hxx. (A.33)

This is the perturbation (5.10) that we described earlier. Our aim now is to write down

the set of four equations, namely (A.7), (A.30), (A.31) and (A.32), as a single second-order

equation in terms of the gauge invariant variable Zs(u) in the following way (see (5.16)):

Z ′′s (u) = m(u)Z ′s(u) + l(u)Zs(u), (A.34)

with the two coefficients m(u) and l(u) of Z ′s(u) and Zs(u) respectively to be determined.

Now the system of equations, (A.7), (A.30), (A.31) and (A.32), is written in such a way
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that on the r.h.s. of these equations there are no derivatives of the variables Hab except

only single derivatives on Htt. Hence the double derivatives of each variable: Hxx, Hyy, Htx

and Htt contain double derivatives only of Htt. This means the expression for Z ′′s (u) and

Z ′s(u), as evaluated using (A.7), (A.30), (A.31) and (A.32), can have a single derivative

term acting only on Htt, with no double derivatives on any variables. Since the expression

of Zs(u) in (A.33) has no H ′tt, one can easily determine m(u) by taking the ratio of the

coefficient of H ′tt from Z ′′s (u) to the coefficient of H ′tt from Z ′s(u). Equation (5.17) is a

precise reproduction of this fact. Once m(u) is determined, l(u) can also be obtained by

equating the coefficient of Htt from Z ′′s (u) to the sum of coefficients of Htt from Z ′s(u) and

Zs(u). In (5.23) we quoted the functional form for l(u) for u → 1. The generic form for

l(u) is straightforward but technically challenging, and is therefore left as an exercise for

the reader.

After the dust settles, one may verify that the EOM (A.34) is satisfied by the gauge-

invariant choice of the perturbation Zs(u) in (A.33).

B A derivation of the on-shell action and the Green’s function

The four-dimensional action that we considered in (6.51) uses the pull-back metric Gµν
constructed out of the type IIA metric, the NS B-field and the world-volume gauge field

background. When the gauge field fluctuation, whose Fourier component is written as Aµ
in (6.13), is also taken into account, the four-dimensional action takes the following form:

S4 =
Ω2TD6

2

∫
d4x

[
e−ϕ
√
−G

(
(GtZ)2At∂ZAt −

3∑
a=0

GxaxaGZZAxa∂ZAxa

)]Zuv

Zh

, (B.1)

where x0 ≡ t, TD6 is the tension of the probe D6-brane, and Ω2 is the volume of the

two-sphere that we had in (6.3). The presence of Z derivative in the integrand, despite

integrating out the Z variable, is from a total derivative term as may be inferred from (6.51).

This also explains the two limits of Z in (B.1) Note that we took Zh to be the lower limit

of Z to be consistent with the lower bound (6.29). However what we seek here is in fact

the on-shell action and the Green’s function at the boundary Z = Zuv, so the near-horizon

geometry is not too relevant for us. At the boundary FtZ = −FZt = 0, so we must set

GtZ = 0 and replace
√
−G by

√
−G. Incorporating these changes, the boundary value of

the on-shell action may now be re-written from (6.52) as:

S4 = −Ω2TD6

2

∫
d4x

[
e−ϕ
√
−GGZZ

(
3∑

a=0

GxaxaAxa(Z,−k)∂ZAxa(Z, k)

)]
Zuv

(B.2)

where we have suppressed the ω dependence, and will have to resort back to Gµν component

if we want to take Zh, i.e the lower limit of Z. Recall also that we have used EOM to get

to the boundary action (B.2), so it makes sense to use the EOM further to simplify the

above action. For example we can use (6.14) to rewrite Gtt in the following way:

Gtt(∂ZAt) =
q

ω
Gxx(∂ZAx), (B.3)
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for non-vanishing ω. Plugging (B.3) in (B.2) then gives us the following action:

S4 = −Ω2TD6

2ω

∫
d4x

[
e−ϕ
√
−GGZZ

(
3∑

a=1

GxaxaExa(Z,−k)∂ZAxa(Z, k)

)]
Zuv

, (B.4)

which is almost similar to the action (B.2) except with three major differences: one, the

appearance of 1
ω as an overall factor; two, the sum over a now being from 1 to 3; and three,

the appearance of three new variables Exa for a = 1, 2, 3. The new variables are defined in

the following way:

Ex1 ≡ qAt + ωAx, Ex2 ≡ ωAy, Ex3 ≡ ωAz, (B.5)

which are clearly borne out from (B.3) and explains the appearance of the 1
ω suppression

of the full action. We could also use (B.5) to express Ay and Az in terms of Ex2 and Ex3

respectively, but we won’t do this right way. Instead let us use the first equation in (B.5)

to write:

∂ZEx1 = q∂ZAt + ω∂ZAx =

(
ω +

q2

ω

Gxx

Gtt

)
∂ZAx, (B.6)

where to get the second equality in the above we have used equation (B.3). To complete the

picture we will need the ratio of the two metric components. Using the fact that r ≡ rheZ ,

we can easily argue that Gxx

Gtt = −
(
1− e−4Z

)
. Plugging this in (B.6) gives us:

∂ZAx =
ω(∂ZEx1)(
ω2 − q2

1−e−4Z

) . (B.7)

This is all we need, because the derivatives on the other components are straightforward

replacements of Exa with a = 2, 3. Therefore combining (B.7) with (B.5) and plugging this

in (B.4) gives us the final action:

S4 = −TD6Ω2

2

∫
dx4

[
e−ϕ
√
GGxx

{
Ex1(Z,−k)∂ZEx1(Z, k)

ω2 − q2

1−e−4Z

+
Ex2(Z,−k)

ω2
∂ZEx2(Z, k) +

Ex3(Z,−k)

ω2
∂ZEx3(Z, k)

}]
Zuv

, (B.8)

which is the action given earlier in (6.53). The k2
a appearing in (6.53) are the poles in (B.8)

and may be identified with the variables of (B.8) as:

k2
1 =

q2

1− e−4Z
, k2

2 = k2
3 = 0. (B.9)

Since we are only interested in the x1 part of the fluctuation, the values of k2
2 and k2

3 are

not very useful for us. Of course one may perform a more generic study, but we will not

do so here. For the simplest case, the next step would be to define (6.54) and then re-write

the action as in (6.55). From here the story follows as depicted in section 6.3.
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C Effective number of three-brane charges with background three-forms

and the horizon radius

The horizon radius that we computed in (6.60) was typically a O(1) number that was

written as rh = 1 − ε2 by demanding the vanishing of (6.59). The small parameter ε is

defined as:

ε ≡ b
√

3
√

2N1/3exp
(

4π
3gsNf

) , (C.1)

with both b, the resolution parameter, and gsNf small. This choice of the horizon radius is

not very useful for us because this would imply that rh is placed right at the point where

new degrees of freedom would appear to UV complete the system. With the definition of

the radial coordinate r as r = rhe
Z , this means Z only measures geometry beyond rh, i.e

the geometry of Regions 2 and 3. Question then is how to place rh deep inside Region

1 where the background is well known. However we cannot make rh arbitrarily small, as

there exists a lower bound on rh given in (6.29). If r
(o)
h denotes the lower bound, then:

0 < r
(o)
h ≤

(
C

8πα4
θ1

)1/3

, (C.2)

with C being an integration constant that appeared in (6.5), and we expect the horizon

radius to satisfy rh > r
(0)
h . Such a lower bound is necessary otherwise an expression like

P (Z) in (6.24) will develop unphysical imaginary piece.

To find an appropriate rh it would be easier to do the analysis in the type IIB side

instead of the mirror type IIA side. Such an analysis won’t change the expression for rh
as the mirror transformation a la SYZ [65] keeps the radial coordinate unchanged. To

proceed then, let us define an effective number of three-brane charge as:

Neff(r) =

∫
M5

F5 +

∫
M5

B2 ∧ F3, (C.3)

where B2,F3 and F5 are given, for Nf = 0 and in the Baryonic branch, in (4.1). The

five-dimensional internal space M5, with coordinates (θi, φi, ψ), is basically the resolved

warped-defomed conifold of (4.2), or its simplified avatar given in (4.5). What we now

need is the functional form for B2 and F3 with non-zero Nf and non-zero axio-dilaton τ .

This may be worked out in the following way:

B2 ∧ F3 = B2 ∧ F̃3 + Re τ (B2 ∧H3)

= Re τ [(b2d1 − a2c1 + b1d2) dφ2 − a1c2dφ1] dr ∧ dθ1 ∧ dθ2 ∧ dψ (C.4)

+ [(a0b2 + e0c2 + f0d2)dθ1 ∧ dθ2 + d0 (b2dθ2 − a2dθ1) ∧ dr] ∧ dφ1 ∧ dφ2 ∧ dψ
+Re τ

[
(−a2c1 + b2d1 + b1d2)cos θ1

+a1(b2 + c2cos θ2)
]
dr ∧ dθ1 ∧ dθ2 ∧ dφ1 ∧ dφ2,

where F̃3 is the standard combination of F3 and −Re τ H3, and is used because of its

appearance directly from the type IIB EOM. The various other coefficients appearing above
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may be defined in the following way:

a0 ≡Msin θ1

(
3gsNf log r

2π
+ 1

)(
9a2gsNf (2− 3log r)

4πr2
+ 1

)
b0 ≡Msin θ2

(
3gsNf log r

2π
+ 1

)(
9a2gsNf (2− 3log r)

4πr2
+ 1

)
×
(

81a2gsNf log r

2 (9a2gsNf (2− 3log r) + 4πr2)
+ 1

)

c0 ≡
3gsMNf cot

(
θ2
2

)(
18a2log r

r2 + 1
)

4πr

d0 ≡
3gsMNf cot

(
θ1
2

)(
18a2log r

r2 + 1
)(

36a2log r
18a2rlog r+r3 + 1

)
4πr

e0 ≡
3gsMNf sin θ1 sin θ2 cot

(
θ2
2

)(
1− 18a2log r

r2

)
8π

f0 ≡
3gsMNf sin θ1 cot

(
θ1
2

)
sin θ2

(
1− 18a2log r

r2

)(
36a2log r

r2−18a2log r
+ 1
)

8π

a1 ≡
3gsM

(
1− 3a2

r2

)
sin θ1

(
9gsNf log r

4π +
gsNf log

(
sin
(
θ1
2

)
sin
(
θ2
2

))
2π + 1

)
r

b1 ≡
3gsM

(
1− 3a2

r2

)
sin θ1

(
9gsNf log(r)

4π +
gsNf log

(
sin
(
θ1
2

)
sin
(
θ2
2

))
2π + 1

)
r

c1 ≡
3gs

2MNf cot
(
θ1
2

)(
36a2log r

r + 1
)(

72a2log r
36a2log r+r

+ 1
)

8πr

d1 ≡
3gs

2MNf cot
(
θ2
2

)(
36a2log r

r + 1
)

16π

e1 ≡
3gs

2MNf cot
(
θ2
2

)(
36a2log r

r + 1
)

16π

f1 ≡
3gs

2MNf cot
(
θ1
2

)(
36a2log r

r + 1
)(

72a2log r
36a2log r+r

+ 1
)

16π

a2 ≡ 3gsM

(
1− 3a2

r2

)
sin θ1

×

gsNf (2log r + 1)log
(

sin
(
θ1
2

)
sin
(
θ2
2

))
4π

+
9gsNf log2r

4π
+ log r


b2 ≡ 3gsM

(
1− 3a2

r2

)
sin θ2

(
3a2gs
r2 − 3a2

+ 1

)

×

gsNf (2log r + 1)log
(

sin
(
θ1
2

)
sin
(
θ2
2

))
4π

+
9gsNf log2r

4π
+ log r


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c2 ≡
3gs

2MNf log r cot
(
θ2
2

)(
36a2log r

r + 1
)

8π

d2 ≡
3gs

2MNf log r cot
(
θ1
2

)(
36a2log r

r + 1
)(

72a2log r
36a2log r+r

+ 1
)

8π
. (C.5)

To estimate the value of the horizon radius rh, lets us fix a point on the radial direction

r = r0 where the effective number of three-brane charges vanish, i.e Neff(r0) = 0. We will

take the other internal coordinates, namely (θi, φi, ψ) to have the span:

θ1 ∈
[
αθ1

N
1
5

, π

]
, θ2 ∈

[
αθ2

N
3
10

, π

]
, φ1,2 ∈ [0, 2π] , ψ ∈ [0, 4π] , (C.6)

where the effective lower limits of the θi angular terms have been described earlier. If we

now collectively denote the lower limits of all the angular variables, namely (θi, φi, ψ) as

R− and the upper limits of all the angular variables as R+; and also use the fact that at

fixed r, dr = 0, then the effective number of three brane charges take the following form:

Neff(r) = N +

∫ R+

R−
(a0b2 + e0c2 + f0d2)dθ1 ∧ dθ2 ∧ dφ1 ∧ dφ2 ∧ dψ, (C.7)

thus simplifying the expression (C.3) tremendously. Here N denotes the integral over F5,

and is therefore related to the integer D3-branes in the dual gauge theory side at the Higgs-

ing scale. The second term combined with N then denotes the effective number of cascading

D3-brane charges at the scale r = r0. The functional forms for (a0, e0, f0, b2, c2, d2) can be

extracted from (C.5). Combined together leads to the following expression for Neff :

Neff = N +
3gsM

2log r

10r4

{
18πr(gsNf )2log N

1∑
k=0

(
18a2(−1)klog r + r2

)(108a2log r

2k + 1
+ r

)
+5
(
3a2(gs − 1) + r2

)
(3gsNf log r + 2π)(9gsNf log r + 4π) (C.8)

×
[
9a2gsNf log

(
e2

r3

)
+ 4πr2

]}
,

= N

[
1 + 6πlog r (3gsNf log r + 2π) (9gsNf log r + 4π)

gsM
2

N

]
+O

[
gsM

2

N
(gsNf )2 log N

]
,

where we have only kept terms linear in gsM2

N , linear and quadratic in gsNf , and ignored

higher order terms. Of course one may question the logic of suppressing a term linear in

log N . Such a term typically comes with (gsNf )2 and with either a2 or with higher powers

of r = r0. Since we will be assuming r0 � 1, we can safely ignore the log N piece. Note

that the assumption of small r0 is crucial here. This implies the domination of gsNf |log r0|
over other constant pieces in (C.8). Implementing this,48 and putting Neff = 0, gives the

48Otherwise one will have to solve a cubic equation in log r0 from (C.8). This will have one real solution

that we can identify with the horizon radius rh.
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following estimate for r0 that we will identify with the horizon radius rh as:

rh ∼ r0 ∼ exp

− 1

nb (gsNf )2/3
(
gsM2

N

)1/3

 , (C.9)

where nb ≡ 3 (6π)1/3. Since both gsNf and gsM2

N are very small quantities, the horizon

radius is indeed deep inside Region 1. Note that this estimate has to be bigger than the

lower bound r
(o)
h which in turn has a range (C.2).

D Equivalence between various alternative approaches of computing the

bulk to shear ratio

The analysis that we performed in sections 4 and 5 gave us precise formulae for the sound

speed as well as the ratio of bulk to shear viscosities. The results of section 4 was derived

using Wilsonian method with zero flavors, whereas the results of section 5 were derived

using a formalism similar to the renormalized perturbation theory with non-zero flavors.

In the regime where the parameters of both the sections could be identified, the results for

the sound speed as well as the ratio of bulk to shear viscosities match. For example using

the expressions for T and s in (5.12) and (5.53) respectively, one can express 1
3 − c

2
s as:

1

3
− c2

s =
1

3
− dlog t

dlog s

=
1

3
− s

T

(
∂T/∂rh
∂s/∂rh

)
(D.1)

=
gsM

2

4πN

[
C11(1) + Ĉ23 + 2Ĉ01 +

π
√

6

2
(2c1 + c2)

−
(

3Ĉ23 − π
√

6c2 +
3gsNf

2π

)
log rh

]
,

where Ckj(u) is defined in (5.11) and Ĉkj is Ckj(u) for u → 1, θi → 1. Happily, like the

quasinormal mode analysis, the aforementioned thermodynamical computation also yields:

1

3
− c2

s ≡ O
(
gsM

2

N
, (gsNf )

gsM
2

N

)
. (D.2)

This is a good start but we want to show that the match is exact. From a quasinormal

mode analysis of scalar modes of metric perturbations in the hydrodynamical limit, which

also is used in (5.65), one obtains from (5.32) the following relation:

1

3
− c2

s =
gsM

2

N

(
c1 + c2log rh

3
√

6
− C21(1)

16π

)
, (D.3)

where we again see the expected gsM
2/N factor emerging, as well as the (c1, c2) depen-

dence. The c1 factor, as defined in (5.56), has an undetermined piece σ that we did not
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compute in section 5. On the other hand |c2| is bounded above by (5.61), and for consis-

tency we require c2 = −|c2|. If we now demand the equality between (D.2) and (D.3), then

the following bound on |σ| emerges:

|σ| >
2
√

3gsNf (19log N + 552|log rh|)
64π2

, (D.4)

leading to a consistent framework. Turning the idea around, bounding |σ| below by (D.4),

one obtains an identical result for 1
3 − c

2
s from a quasinormal mode analysis in the hydro-

dynamical limit and from thermodynamics.

Having shown the consistency of two different approaches to determine the sound speed

above, and the consistency of the ratio of the bulk to shear viscosities for the two approaches

instigated in sections 4 and 5, it is time to compare the ratio with other results from

the literature. Unfortunately many of the results in the literature have been determined

using bottom-up approaches, so a direct comparison would be futile to perform as most

of the bottom-up approaches cannot be embedded in string theory. In other cases where

embeddings appear feasible, these backgrounds do not solve all the supergravity equations

of motion.49 An alternative way out is to take our background, and look for limiting

scenario where it would appear to resemble a class of background coming from the bottom-

up approaches. As a concrete example, let us consider the model studied in [106], where

the ratio of bulk to shear viscosities has been discussed. Question is, what simplifications

should we impose to our background so that it resembles the model of [106]?

First we need to dispose away the angular coordinates (ψ, φi, θj), and secondly decouple

the internal space M6(θ1,2, φ1,2, ψ, x10) from the five-dimensional space-time M5(t, x1,2,3, u).

The former can be easily done by choosing an appropriate slicing (see [59]) whereas the

latter can be achieved by imposing (5.7). With both these in place, one sees that one can

write the resulting five-dimensional metric in the form of equation (4) of [21] in [106] using

the following identification:

e2A ≡ e
−2ϕ

3

√
h
, (D.5)

where ϕ ≡ ϕ(r, 〈θ1,2〉) is the type IIA string coupling and h ≡ h(r, 〈θ1,2〉) is the warp-

factor; and both are measured for 〈θ1,2〉. The scalar field in the 5D action (1) of the

aforementioned [106]’s reference [21], in our context could correspond to one of the metric

components gmn(r, 〈θ1,2〉), where (m,n) ∈ θ1,2, φ1,2, ψ, x10. Additional simplifications are

imposed by ignoring most components of internal fluxes, that would appear as scalar fields

in five-dimensions, and taking a single scalar field and then, like [21] of [106], work in a

gauge wherein the five-dimensional radial coordinate r is set equal to this scalar field.

Ignoring issues like compatibility with equations of motion, flux-quantizations etc, we

can now make some precise connections with the results of [106]. According to [106], the

ratio of bulk to shear viscosities, is expressed as:

ζ

η
=

(
1

3A′(rh)

)2

, (D.6)

49In most cases problems appear with Bianchi identities.
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where A(rh) is the warp-factor near r = rh which we can now identify with our dilaton ϕ

and h as in (D.5) and substitute them in (D.6). In fact we can do slightly better by finding

the ratio for both LO in N , i.e O
(

1
N0

)
, as well as for NLO in N , i.e O

(
1
N

)
, in the same

setting. In other words:

ζ

η
=

(
ζ

η

)(0)

+

(
ζ

η

)(1)

. (D.7)

The LO result is easy to figure out by plugging in the values for the type IIA dilaton and

the warp-factor at the slice. The dilaton appears from the mirror transform of the type

IIB dilaton, and may be read up from [64], including the form of the warp-factor. After

the dust settles, the LO result can be presented as:(
ζ

η

)(0)

= r2
h +

r2
h − 3a2

log N

[
3(1 + 2log rh)

log N
− 8π

(gsNf )log N
+ 2

]
+O

(
a4

r2

)
, (D.8)

where a2 is the resolution parameter which, as discussed in [59, 64], is a function of the

horizon radius rh. One easily sees that by choosing the resolution parameter to be:

a(rh) =
rh√

3

[
1 +

log2N

12|log rh|
+O

(
log3N

|log2rh|

)]
, (D.9)

the leading order value (D.8) vanishes.50 More interestingly, the choice (D.9) connects some

of the discussions regarding Regions 2 and 3 that we had in section 4. Given that r >
√

3a

is treated as large r when dealing with resolved conifolds, this ties in very nicely with

having chosen in [127, 128] the D5−D5 separation RD5/D5 ∼
√

3a > rh as the boundary of

Regions 2 i.e the IR-UV interpolating region, and 3, i.e the UV region (see figure 18). This

additionally implies rh <
√

3a, that appears from (D.9), is indeed in the IR and distances

exceeding
√

3a are in the UV. All in all:(
ζ

η

)(0)

= 0, (D.10)

fits consistently with not only our whole IR picture, but also elucidates how the scales are

separated. Additionally, our approach reproduces the NLO result rather succinctly as:(
ζ

η

)(1)

=
3gsM

2

4πN
(gsNf ) a2 log rh ∝

1

3
− c2

s, (D.11)

where we have used (5.32) to tie the ratio with the sound speed cs. In the regime of

interest discussed above, this matches precisely with the class of models using bottom-

up approaches, for example [106]. Our analysis, in particular the ones we performed in

section 5 onwards, reveals the power of the UV complete set-up in not only matching up

with results from other models (once appropriate simplifications are inserted in), but also

reveals how various parameters of the system, namely colors (N,M), flavors Nf , resolution

parameter a2 as well as the horizon radius rh conspire to produce answers that may be

consistently compared to experimental data (see for example [127]).

50From (C.9) we should keep in mind that log2N
12|log rh|

∼ log2N

N
1
3

.
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