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cent times. However, the performance of deep neural networks is often achieved at the cost

of interpretability. Here we propose an interpretable network trained on the jet spectrum

S2(R) which is a two-point correlation function of the jet constituents. The spectrum can

be derived from a functional Taylor series of an arbitrary jet classifier function of energy

flows. An interpretable network can be obtained by truncating the series. The interme-

diate feature of the network is an infrared and collinear safe C-correlator which allows us

to estimate the importance of an S2(R) deposit at an angular scale R in the classification.

The performance of the architecture is comparable to that of a convolutional neural net-

work (CNN) trained on jet images, although the number of inputs and complexity of the

architecture is significantly simpler than the CNN classifier. We consider two examples:

one is the classification of two-prong jets which differ in color charge of the mother particle,

and the other is a comparison between Pythia 8 and Herwig 7 generated jets.
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1 Introduction

Deep learning is gaining significant interest recently in the field of collider data analysis.

One of the primary motivations is to extract the maximum information from the complex

collision events. The deep learning in collider physics takes advantage of a large influx

of data from experiments, more precise theoretical predictions, significant improvement

in computing power, and ongoing progress in the field of machine learning itself. Such

techniques offer advances in areas ranging from event selection to particle identification.

The large center-of-mass energy at the Large Hadron Collider (LHC) enables the pro-

duction of boosted particles whose decay products are highly collimated. These collimated

objects are reconstructed as a jet, and it is often misidentified as a QCD jet originated

from light quarks or gluons. Many jet substructure techniques using the information of

subjets [1–10] and the distribution of jet constituents [11–17] have been developed in order

to improve the sensitivity of tagging and to classify these boosted particle jets. The deep

learning methods [18–34] have provided useful insight into the internal structure of the
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jets and, thereby, shown better performances than those jet substructure techniques.1 The

flexibility of deep learning also enables us to solve problems beyond supervised classifica-

tions, such as weakly supervised learning [37–39], adversarial learning to suppress learning

from unwanted information [40, 41], and unsupervised learning for finding anomalous sig-

natures [42–47]. The neural network can also be useful to new physics searches with deep

learning at the LHC [48–56].

The output of a neural network is, in general, a highly non-linear function of the inputs.

A neural network classifier often acts like a “black box”. One may consider architectures

with post-hoc interpretability [57], which allows us to extract information other than its

prediction from the learned model after training. A simple strategy is using a predefined

functional form to restrict the representation power of the neural network [31, 58]. Then

the network is interpreted in terms of the functional form. The aim of this paper is also to

construct an interpretable neural network architecture that allows us not only to interpret

the predictions of the network but also to visualize it in terms of trained weights connected

to physical variables.

In [28], a multilayer perceptron (MLP) trained on two-point correlation functions S2

and S2,trim of angular scale R was introduced. The S2(R) and S2,trim(R) spectra are con-

structed from the constituents of a jet before and after the trimming [59] respectively. The

angular scale R is an important parameter for describing the kinematics of a decaying par-

ticle and parton shower (PS); hence, these spectra efficiently encode the radiation pattern

inside a jet. The MLP trained on these inputs learns relevant features for the classification

among the Higgs boson jet (Higgs jet) and QCD jet.

In this paper, we connect the spectra to energy flow functionals PT (~R) [60], i.e., we

consider transverse energy of a jet constituent as particle-specific information at ~R in

the η − φ plane [61]. The spectra are basis vectors of infrared and collinear (IRC) safe

variables called bilinear C-correlators [60] whose angular weighting function depends only

on the relative distance between two constituents. Those correlators naturally appear in

the functional Taylor series of a classifier of PT (~R), and the MLP can be considered as

a subseries of the Taylor series. We show that the performance of the MLP and neural

networks trained on jet images [18, 19, 21, 62] are comparable. This strongly suggests

that S2 and S2,trim contain sufficient information for jet classification. Encouraged by

this feature, we construct an interpretable architecture by truncating the series. Namely,∫
dRS2(R)w(R; ~xkin) can be implemented in a classifier after proper discretization in R,

where ~xkin is a set of kinematic variables of the jet and w is a smooth function. By reading

the weights w(R; ~xkin), we could quantify important features for the given classification

problem.

Jet substructure studies often suffer from systematic uncertainties of soft activities.

The soft radiations generated by a Monte Carlo program are strongly model dependent.

While this mismodeling could be corrected by using real data, it is certainly useful to use

input variables with less systematic uncertainties. When hard substructures are important

1For a review on the recent theoretical and machine learning developments in jet substructure techniques

at the LHC, we refer [35, 36].
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for solving the problem, we may use jet grooming techniques [1, 10, 59, 63, 64] to remove

the soft activity. Instead of throwing this soft activity away, we encode it in S2,soft(R),

which is S2(R) − S2,trim(R). Then, the inputs S2,trim and S2,soft include hard and soft

substructure information, respectively. The interpretable architecture trained on S2,trim

and S2,soft is able to quantify these features. We study two classification problems: one is a

classification of two-prong jets to understand their hard substructures and color coherence,

and the other is a comparison of Pythia 8 [65] and Herwig 7 [66, 67] events to quantify

the differences.

The paper is organized as follows. In section 2, we review S2 and S2,trim and show

its relation to energy flow and C-correlators. We also show S2 and S2,trim distributions of

typical Higgs jet and QCD jet. A hypothetical color octet scalar particle, sgluon, decaying

to bb̄ is considered to study the color connection in two-prong jets. In section 3, we first

discuss the capability of S2 and S2,trim for the classification of two-prong jets and show the

result of an MLP trained on those inputs. The results are then compared with that of a

CNN trained on jet images. In section 4, we introduce a two-level architecture consists of

a softmax classifier and an MLP trained on S2 and S2,trim. The intermediate feature of

this architecture is the bilinear C-correlator whose basis vectors are S2,trim and S2,soft, and

the MLP generates its components. We visualize and interpret the weights of the given

classification problem. Finally, the summary and outlook are given in section 5.

2 Two-point correlation spectrum and two-prong jets

2.1 Jet spectra

In [28], we introduced a two-point correlation spectral function S2(R) which maps a jet to

a function of angular scale R,

S2(R) =

∫
d~R1 d~R2 PT (~R1)PT (~R2) δ(R−R12), (2.1)

PT (~R) =
∑
i∈J

pT,i δ(~R− ~Ri), (2.2)

where J is a set of jet constituents, ~Ri = (ηi, φi) is the position of the i-th jet constituent in

the pseudorapidity-azimuth plane, Rij =
√

(ηi − ηj)2 + (φi − φj)2 is the angular distance

between the two jet constituents i and j, and PT (~R) is an energy flow functional [60] of J.

For practical purpose, S2(R) is discretized as below,

S2(R; ∆R) =
1

∆R

∫ R+∆R

R
dRS2(R)

=
1

∆R

∑
i,j∈J

pT,i pT,j I[R,R+∆R)(Rij), (2.3)

where IA(Rij) is an indicator function of the angular distance Rij of the domain A,

IA(x) =

{
1 if x ∈ A,
0 if x /∈ A.
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The spectral function S2(R; ∆R) is, therefore, the sum of the product of pT ’s of the two

jet constituents with an angular distance Rij lying between R and R+ ∆R.

We obtain IRC safe quantities by multiplying smooth functions2 w(~R) and PT (~R) (or

S2(R)), and integrating over ~R. To understand the IRC safety of PT (~R), let us consider

splitting of a given constituent i0 in J into two constituents, i0 → i1i2. The inner product

of w(~R) and the difference of the energy flow before and after the splitting, δPT (~R), is

given as follows,∫
d~R δPT (~R)w(~R) = pT,i1w(~Ri1) + pT,i2w(~Ri2)− pT,i0w(~Ri0)

=
[
δpT,i0 − pT,i1(δ ~Ri1 · ∇~R)− pT,i2(δ ~Ri2 · ∇~R) + · · ·

]
w(~Ri0), (2.4)

where δpT,i0 = pT,i1 +pT,i2−pT,i0 , and δ ~Ri1(i2) = ~Ri1(i2)− ~Ri0 . The soft limit, where i2 car-

ries a small momentum, corresponds to δpT,i0 , δ
~Ri1 , pT,i2 → 0, while δpT,i0 , δ

~Ri1 , δ
~Ri2 → 0

in the collinear limit. The integral vanishes in these limits, namely the energy flow after

parton splitting converges weakly [60] to the one before splitting.

The spectrum S2(R) inherits the same property. The inner product of the smooth

function w(R) and the difference of the spectrum, δS2(R), before and after the splitting

i0 → i1i2 is given as follows,∫
dR δS2(R)w(R) = 2

∑
j∈J

[
δpT,i0+pT,i1(δ ~Ri1 ·∇~R)+pT,i2(δ ~Ri2 ·∇~R)+· · ·

]
pT,j w(Ri0j).

(2.5)

Again, this integral vanishes in the IRC limits. Note that the binned spectrum S2(R; ∆R)

is not completely IRC safe because of the discontinuity of the indicator function at the bin

boundaries. Nevertheless, when the domain is discretized into small sections [Ri, Ri+∆Ri),

the IRC unsafe terms cancel in the sum,
∑

i S2(Ri; ∆Ri)w(Ri), and it is approximately

IRC safe up to binning errors.

The resulting IRC safe observables belong to C-correlators [60], which are multilinear

forms of the energy flow. An n-linear C-correlator is expressed as follows,∫
d~R1 · · · d~Rn PT (~R1) · · ·PT (~Rn)w(~R1, · · · , ~Rn), (2.6)

where w is a continuous function of ~R1, · · · , ~Rn. For example, an inner product of PT (~R)

and w(~R) is a linear C-correlator, and an inner product of S2(R) and w(R) is a bilinear

C-correlator with w depending only on the relative distance R12,∫
dRS2(R)w(R) =

∫
d~R1d~R2 PT (~R1)PT (~R2)w(R12). (2.7)

Many well-known jet observables belong to the C-correlator, for example, a jet transverse

momentum pT,J is a linear C-correlator with w(~R1) ≈ 1, a jet mass mJ is a bilinear

C-correlator with w(~R1, ~R2) ≈ R2
12/2.

2Continuous functions are sufficient for the convergence and IRC safety [60], but we further restrict w’s

to smooth functions for perturbative calculations.
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The S2(R) spectra use all the jet constituents, but it is useful to separate the corre-

lations of constituents of the hard subjets; we consider jet trimming for this purpose. We

recluster the constituents of a jet of a radius parameter RJ to subjets with a smaller radius

parameter Rtrim. A subjet Ja is discarded if pT,Ja < ftrim pT,J, where pT,J and pT,Ja are

the transverse momenta of the jet and a-th subjet respectively. The trimmed jet Jtrim is

defined as a union of the remaining subjets,

Jtrim =
⋃
a

pT,Ja
pT,J

≥ftrim

Ja . (2.8)

The jet trimming is beneficial because it does not introduce additional angular scale pa-

rameters other than Rtrim. The trimmed spectrum is then calculated using the constituents

of the trimmed jet. We denote it as S2,trim(R) and its binned version S2,trim(R; ∆R), which

are defined as follows:

S2,trim(R) =

∫
d~R1 d~R2 PT,trim(~R1)PT,trim(~R2) · δ(R−R12), (2.9)

PT,trim(~R) =
∑

i∈Jtrim

pT,i δ(~R− ~Ri), (2.10)

S2,trim(R; ∆R) =
1

∆R

∑
i,j∈Jtrim

pT,i pT,j · I[R,R+∆R)(Rij), (2.11)

where PT,trim(~R) is the energy flow of Jtrim.

In the limit of the constituents of each subjet Ja are localized, the energy flow and

the jet spectrum can be approximated in terms of the subjet momenta. The energy flow

of such a jet is decomposed into a sum of energy flows of all the subjets,

PT (~R) =
∑
a

PT,a(~R), PT,a(~R) =
∑
i∈Ja

pT,iδ(~R− ~Ri). (2.12)

The energy flow of each subjet converges weakly to pT,Jaδ(
~R− ~RJa). The S2(R) spectrum

can be approximated by the momenta of the subjets, i.e.,

S2(R; ∆R) ≈
∑
a,b

Ja,Jb⊂J

pT,Ja pT,Jb
· I[R,R+∆R)(Rab). (2.13)

The jet trimming also introduces a pT scale hierarchy among the subjets, and so their

pairwise contributions to S2(R; ∆R) can be classified by the scale. We define a quantity

S2,soft(R; ∆R) where

S2,soft(R; ∆R) = S2(R; ∆R)− S2,trim(R; ∆R). (2.14)

In the r.h.s. of the above equation, the correlations among the constituents of the hard

subjets are canceled, and we have

S2,trim(R; ∆R) = p2
T,J · O [1] , (2.15)

S2,soft(R; ∆R) = p2
T,J ·

(
O [ftrim] +O

[
f2

trim

])
. (2.16)
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The dominant contributions to S2,soft(R; ∆R) (i.e., the O [ftrim] terms) come from the

correlations between a constituent in Jtrim and a constituent in J− Jtrim. The subleading

O
[
f2

trim

]
terms denote the correlations among the constituents in J− Jtrim.

2.2 Derivation of classifiers based on energy flows and jet spectra

We discuss the relation between S2(R) and neural network classifiers trained on the energy

flow PT (~R). A general softmax classifier that solves K-class jet classification problem can

be expressed as a functional Ψ̂i which maps the energy flow to real numbers hi, i.e.,

hi = Ψ̂i[PT ] (2.17)

ŷ = ϕsoftmax (~z) , zk = w
(out)
ki hi + b

(out)
k , k ∈ {1, · · · ,K}, (2.18)

where w
(out)
ki and b

(out)
k are the weights and biases of the output layer, and ŷ is the predic-

tion of the classifier. Here the ϕsoftmax is the softmax function whose k-th component is

expressed as follows,

ϕsoftmax,k(~z ) =
ezk∑K
k=1 e

zk
. (2.19)

Many jet classifiers can be expressed in the form of eq. (2.17). For example, in the

cut-based analysis, Ψ̂i is a jet substructure variable, such as a ratio of n-subjettiness [12],

a ratio of energy correlation functions [16, 17], etc. The deep neural network classifiers,

such as artificial neural network tagger [18], convolutional neural network using pixelated

jet images [19], energy flow network [31], etc., are also described by eq. (2.17). The neural

networks that are introduced in section 3 and section 4 also belong to this category.

The jet spectra S2 and S2,trim can be derived from eq. (2.17) using a functional Taylor

expansion. The energy flow is decomposed by trimming as follows,

PT,a(~R) =

{
PT,trim(~R) a = 1,

PT (~R)− PT,trim(~R) a = 2.
(2.20)

One can express Ψ̂i[PT,a] as a functional series at a reference point PT,a(~R) = 0,

hi = w
(0)
i +

∫
d~R PT,a(~R)w

(1)
i,a (~R) +

1

2!

∫
d~R1d~R2 PT,a(~R1)PT,b(~R2)w

(2)
i,ab(

~R1, ~R2) + · · · ,
(2.21)

where w
(n)
i,a1···an(~R1, · · · , ~Rn) is the coefficient of n-th correlation function. The first order

coefficient w
(1)
i,a can be chosen as a constant if we are not interested in features depending

on reference vectors, for example, jet axes, beam directions, etc. The linear term in PT (~R)

of eq. (2.21) is related to the jet momentum pT,J and trimmed jet momentum pT,J,trim as

follows, ∫
d~RPT,1(~R) ' pT,J,trim,

∫
d~RPT,2(~R) ' pT,J − pT,J,trim. (2.22)

The second order coefficient w
(2)
i,ab, the first non-trivial term of the series expansion, is a

function of the relative distance of ~R1 and ~R2. The basis vectors of w
(2)
i,ab are two-point

– 6 –
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correlation functions S2,ab(R),

hi = w
(0)
i +

∫
d~RPT,a(~R)w

(1)
i,a +

1

2!

∫
dRS2,ab(R)w

(2)
i,ab(R) + · · · (2.23)

S2,ab(R) =

∫
d~R1d~R2 PT,a(~R1)PT,b(~R2) δ(R−R12). (2.24)

The spectra S2 and S2,trim are expressed in terms of S2,ab as follows,

S2(R) =
∑
a,b

S2,ab(R), S2,trim(R) = S2,11(R). (2.25)

Instead of the energy flows, we consider a classifier of S2,A (A = trim, soft),

hi = Ψi[S2,A; ~xkin], (2.26)

where ~xkin is a set of additional inputs to the classifier based on the kinematics of the jet.

Similar to eq. (2.23), we expand eq. (2.26) around S2,A(R) = 0 as

hi = w
(0)
i (~xkin) +

∫
dRS2,A(R)

w
(2)
i,A(R; ~xkin)

2

+
1

2

∫
dR1dR2 S2,A1(R1)S2,A2(R2)

w
(4)
i,A1A2

(R1, R2; ~xkin)

12
+ · · · , (2.27)

where w
(n)
i,A1···An

2

is the weight function corresponding to w
(n)
i in eq. (2.26). One may further

truncate the series to get a linear form,

hi =
1

2

∫
dRS2,A(R)w

(2)
i,A(R; ~xkin). (2.28)

The above-mentioned linear setup has an advantage on the interpretability and visualiza-

tion of the network predictions; we discuss more on this network in section 4.

2.3 Relation between two-point correlation spectra and energy flow polyno-

mials

Both the two-point correlation spectra and the energy flow polynomials [68] with two ver-

tices span the set of bilinear C-correlators; therefore, there is a transformation rule between

them. We first extend the definition of the energy flow polynomials to compare them to

S2,ab. Since S2,ab is a multivariate function of energy flows, we introduce a multivariate

energy flow polynomial with two labeled vertices,

EFP
(n)
2,ab =

∫
d~R1d~R2 PT,a(~R1)PT,b(~R1)Rn12 =

∑
i∈Ja

∑
j∈Jb

pT,ipT,jR
n
ij . (2.29)

This expression suggests that Rn can be considered as an angular weighting function

w
(2)
i,ab(R) in eq. (2.23).

– 7 –
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The resulting transformation from S2,ab(R) to EFP
(n)
2,ab is the Mellin transformation,

EFP
(n−1)
2,ab =

∫ ∞
0

dRRn−1 · S2,ab(R). (2.30)

The integral on the right-hand side is finite because S2,ab(R) vanishes on R � 2RJ. The

inverse transform is also well-defined if we allow the exponent n in the angular weighting

function of EFP
(n)
2,ab to be a complex number.

2.4 Spectra of two-prong jets

The S2(R; ∆R) spectrum is useful to identify the substructures of the jet and also to

characterize the jet. Typically, S2(R; ∆R) of QCD jet has a peak at R = 0 with a long tail

towards large R. The peak originates from the autocorrelation term
∑

i p
2
T,i in eq. (2.3).

On the other hand, if a jet originates from a Higgs boson decaying into bb̄, the b-partons

create two isolated cores inside the jet. The spectrum of the Higgs jet has a peak at the

angular scale equal to the angle between the two clusters. In addition, S2(R; ∆R) encodes

the fragmentation pattern of b-partons.

At the LHC, boosted heavy objects such as top quark, gauge bosons and Higgs bo-

son decaying into quarks can be studied by identifying jet substructures. Usually, these

substructures are characterized by parameters such as D2 defined as,

Dβ
2 = eβ3/(e

β
2 )3,

eβ2 =
1

p2
T,J

∑
i,j∈J,i<j

pT,ipT,jR
β
ij ,

eβ3 =
1

p3
T,J

∑
i,j,k∈J,i<j<k

pT,ipT,jpT,kR
β
ijR

β
jkR

β
ki, (2.31)

where β is the angular exponent. If a jet has a two-prong substructure, D2 is much less

than one. The jet spectrum S2(R; ∆R) contains more information than D2, and therefore,

the analysis with S2(R; ∆R) goes beyond the one using D2. It was shown that a neural

network trained on S2(R; ∆R) distinguishes Higgs jet from QCD jet better than the one

trained on D2 [28].

To study the fragmentation pattern of the b-partons and their color connection to the

mother particle, we introduce a color-octet scalar, sgluon (σ). We assume that the Higgs

boson (h) and σ decay into bb̄ through the interaction,

LSM 3 yhbb̄ h b̄b+ h.c. (2.32)

LSgluon 3 yσbb̄ σa b̄T ab+ h.c. . (2.33)

The Higgs boson is a color singlet particle, and the decay h→ bb̄ is isolated in color flows.

Therefore, S2(R; ∆R) beyond the angle between the b-partons, i.e., Rbb̄, is suppressed due

to the color coherence. No such constraint on the angular scale exists for sgluon and QCD

jets. Meanwhile, the Higgs jet and sgluon jet have the same two-prong substructure, unlike

the QCD jet, as both are originating from a particle decaying into bb̄ final states.

– 8 –
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Figure 1. A jet image (left) and the corresponding S2 (blue) and S2,trim (red) spectra (right) of

the leading jet of a pp → Zj event. In the jet image, a red triangle is a position of a parton level

quark in the jet, and a green “+” shows a leading gluon emitted from the quark.

To study the spectra of two-prong jets, we simulate events as follows. We use Madgraph5

2.6.1 [69] to generate the events of pp → Zh, pp → Zσ, and pp → Zj processes with a

collision energy of 13 TeV and the Z boson decaying to a pair of neutrinos. These events

are then passed to Pythia 8.226 [65] for the parton shower and hadronizations. To study

the impact of the parton shower and hadronization schemes, we also pass those parton

level events to Herwig 7.1.3 [66, 67]. A color octet scalar UFO model [70, 71] generated

by Feynrule 2.0 [72, 73] is used to simulate pp → Zσ process. The masses and widths

of Higgs boson and sgluon are mh = mσ = 125 GeV and Γσ = Γh = 6.4 MeV. The

detector response is simulated by Delphes 3.4.1 [74] with the default ATLAS detector

configuration. We use FastJet 3.3.0 [75, 76] to reconstruct jets from the calorimeter

towers using anti-kT algorithm [77] with the radius parameter RJ = 1.0. For jet trimming,

we use Rtrim = 0.2 and ftrim = 0.05. We select the events with the leading jet transverse

momentum pT,J ∈ [300, 400] GeV and its mass mJ ∈ [100, 150] GeV. For Higgs jet and

sgluon jet, we additionally require that the two b-partons originating from their decay are

located within RJ from the jet axis. More details on our simulations are described in

appendix A.

In figure 1, we show the pixelated jet image (left panel) and S2 and S2,trim spectra

(right panel) of a QCD jet. There are high energy deposits in the jet image near the jet

center along with a wide spray of soft activity. It also has a moderate amount of radiation

at (−0.4, 0.0). As a result, S2(R; ∆R) spectra has a long tail starting from R = 0.4. The jet

trimming eliminates a significant amount of soft particles and, therefore, the tail does not

appear in S2,trim(R; ∆R). The remaining cross-correlations contributing to S2,trim(R; ∆R)

are the ones between high and moderate energy deposits. Most of the energy deposits

are concentrated at the center, and the peak intensity at R = 0.4 is much lower than the

intensity from autocorrelations at R = 0.

In figure 2, we show S2(R; ∆R) and S2,trim(R; ∆R) distributions of a Higgs jet. For

this particular event, S2(R; ∆R) distribution is similar to S2,trim(R; ∆R) distribution, and
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Figure 2. A jet image (left) and the corresponding S2 (blue) and S2,trim (red) spectra (right) of

the leading jet of a pp→ Zh event. The blue triangles in the jet image are positions of the parton

level bottom quarks from the Higgs decay, and a green “+” shows the position of a leading gluon

emitted from a bottom quark.
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Figure 3. A jet image (left) and the corresponding S2 (blue) and S2,trim (red) spectra (right) of

the leading jet of a pp→ Zσ event. The blue triangles in the jet image are positions of the parton

level bottom quarks from the sgluon decay, and green “+” show the position of a leading gluon

emitted from a bottom quark.

their difference S2,soft(R; ∆R) is hard to be seen. No significant activity has been observed

beyond the peak at R ∼ 0.8, mostly because the Higgs jet is very compact compared to the

QCD jet. Correspondingly, there are two prominent subjets in the jet image, while most

of the cells have no jets.

Finally, we show the S2(R; ∆R) and S2,trim(R; ∆R) distributions of a sgluon jet in

figure 3. The S2(R; ∆R) distribution has a large peak at R = 0.6 which is as significant

as the one at R = 0. This spectrum is qualitatively similar to the Higgs jet in figure 2.

However, the S2(R; ∆R) spectrum has a long tail beyond RJ as compared with that of a
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Higgs jet. The tail disappears after jet trimming, like the QCD jet in figure 1, that makes

the S2,trim(R; ∆R) distribution more compact. From figure 1–3, we observe that S2,trim

and S2,soft include useful complementary information.

In [28], it was shown that a neural network classifier trained on S2(R; ∆R) and

S2,trim(R; ∆R) spectra performs better than one without S2,trim(R; ∆R). The reason is

that the hard and soft correlation terms in S2(R), i.e., O[1] terms in eq. (2.15) and

O[ftrim]+O[f2
trim] in eq. (2.16) respectively, can be resolved by the jet trimming. Therefore,

we use the orthogonal combinations, namely S2,trim and S2,soft, throughout this paper.

The S2,trim and S2,soft spectra encode the important features of the parton shower

and fragmentation, and, thus, may be regarded as a well-motivated prototype. The hard

partons evolve by the parton splittings i → i1i2, which are parameterized by the angle

Ri1i2 and momentum fraction z with pT,i1 = zpT,i and pT,i2 = (1 − z)pT,i. The splitting

generates two-point correlation z(1 − z)p2
T,i at Ri1i2 . Therefore, S2 spectra encode the

parton splitting at any angular scale.

3 Classifying Higgs jet, sgluon jet, and QCD jet

In this section, we introduce a neural network trained on the jet spectra for classifying

Higgs jet, sgluon jet, and QCD jet. We first discuss the basic kinematic features of these

jets and then outline their dependence on the parton shower simulators. Afterward, we

show the details of the neural network and then present our results in terms of the receiver

operating characteristic (ROC) curves.

3.1 Basic kinematics

In figure 4, we show pT,J and mJ distributions for the Higgs boson, sgluon, and QCD jets.

The solid and dashed lines correspond to Pythia 8 (PY8) and Herwig 7 (HW7) generated

jets, respectively. The mild differences in the pT distribution are due to the difference in

their matrix elements. The Higgs jet is produced via s-channel process, while the sgluon

and QCD jet are produced via t-channel and u-channel processes; hence, pT,J scalings are

different. Not much difference is observed between the pT,J distributions of PY8 and HW7

samples. This is because pT,J is mostly determined by the matrix level pT of the leading

parton and the jet algorithm with large radius parameter clusters most of the radiations

from this parton into a single jet. However, the difference between mJ distributions is

large. The peak at mσ of sgluon jet is significantly broader than that of Higgs jet because

radiations of the b-partons from the Higgs boson decay are mostly confined due to the

color coherence, but those of the sgluon are not. As a consequence, PY8 and HW7 generate

different mJ distributions.

We assume that both Higgs boson and sgluon have narrow-widths although sgluon

width can be large. An increase in the width will broaden Rbb̄ distribution of σ → bb̄ that

has a peak at the characteristic angular scale,

R̂bb̄ =
2mh

pT,J
=

2mσ

pT,J
' 2mJ

pT,J
. (3.1)
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Figure 4. The distribution of pT,J (left) and mJ (right) of the leading jet. The red, green, and

blue solid (dashed) lines correspond to the Higgs jet, sgluon jet, and QCD jet of PY8 (HW7) samples,

respectively.

For example, the variation of Rbb̄ is only about 0.07 for pT,J = 300 GeV, Γσ = 10 GeV

and 0.05 for pT,J = 400 GeV, Γσ = 10 GeV. Those variations are close to the calorimeter

angular resolution ∼ 0.1 and do not affect the calorimeter level analysis.

We first make a quantitative estimate of the radiation pattern inside the jet. To do

so, we define two quantities comparing S2(R) spectra around R̂bb̄,

Rsym =

∫ min[a′R̂bb̄,RJ]

aR̂bb̄

dRS2(R)∫ aR̂bb̄
0 dRS2(R) +

∫∞
min[a′R̂bb̄,RJ] dRS2(R)

, (3.2)

Rrad =
C
∫∞

min[a′R̂bb̄,RJ] dRS2(R)∫ min[a′R̂bb̄,RJ]
0 dRS2(R) + C

∫∞
min[a′R̂bb̄,RJ] dRS2(R)

(3.3)

with a = 0.75, a′ = 1.25 and C = 40. The ratio Rsym compares energy deposits around R̂bb̄
and in its surrounding angular scales [28]. The ratio is sensitive to the correlation between

the two hard substructures of the Higgs jet. On the other hand, The Rrad is sensitive to

the color of mother particle as it compares energy deposits in the large angular scales.

We show the Rsym distributions in the left panel of figure 5. The distributions of

the Higgs jet and sgluon jet are similar because both of the S2(R) spectra peak at Rbb̄.

Meanwhile, the two-point correlations for the QCD jet are not localized around the Rbb̄
scale, so the Rsym is smaller than that of a Higgs jet and a sgluon jet. In the right panel of

figure 5, we show the Rrad distributions. The Rrad of the sgluon jet and QCD jet are large

on average, while Rrad is smaller for Higgs jet because large angle radiations are suppressed.

The difference in Rsym and Rrad distributions between PY8 and HW7 samples is small;

however, there is an appreciable difference in the restricted phase space. In figure 6, we

plot Rrad distributions after the selection, Rsym > 0.85, so that the jets always contain two

hard subjets with similar transverse momenta. The PY8 (solid line) and HW7 (dashed line)

samples have significantly different Rrad distributions for the Higgs jet. Such a difference is

not observed for the QCD/sgluon jets. The observed deviation for the Higgs jets could be
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Figure 5. The distribution of Rprong,sym (left) and Rrad (right) for Higgs jet (red), sgluon jet

(green), and QCD jet (blue). The solid (dashed) lines correspond to the jets of PY8 (HW7) samples.

Figure 6. The distribution of Rrad for Higgs jet (red), sgluon jet (green), and QCD jet (blue) with

an additional selection of Rsym > 0.85. The solid (dashed) lines correspond to the jets of PY8 (HW7)

samples.

originating from the difference of the parton shower scheme. The angular-ordered shower is

adopted in HW7. On the other hand, the pT -ordered shower is the default shower algorithm

for PY8 where angular ordering is enforced by hand. An artificial veto in pT -ordered shower

introduces the mismatch to the angular-ordered shower at double-leading log level [78, 79].

3.2 Multilayer perceptron of spectra

We introduce a neural network trained on the kinematic and spectrum (S2,trim and S2,soft)

variables to classify the jets. A schematic diagram of the architecture of the classifier is

shown in figure 7. The following set of inputs is used,

~x = {pT,J,mJ, pT,J,trim,mJ,trim} ∪
{
Sk2,trim, S

k
2,soft | k ∈ {0, · · · , 19}

}
, (3.4)

where pT,J,trim and mJ,trim are the transverse momentum and mass of the trimmed jet,

respectively. The discretized spectra Sk2,trim and Sk2,soft are used to analyze the radiation

pattern of the jet,

Sk2,trim = S2,trim(0.1 k; 0.1), (3.5)

Sk2,soft = S2(0.1 k; 0.1)− S2,trim(0.1 k; 0.1). (3.6)
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ŷ2

Figure 7. Schematic diagram of the classifier, including the multilayer perceptron (MLP). The

double bordered boxes represent trainable modules.

layer: input dense dense dense dense dense
(output)

activation: ReLU ReLU ReLU ReLU softmax

bias:

...
...

...
...

...

1 1 1 1 1

ŷ3

ŷ2

ŷ1

~x

Figure 8. Schematic diagram of the multilayer perceptron.

Here we take the bin width ∆R = 0.1, which is approximately the angular resolution of

hadronic calorimeter of the ATLAS detector. Note that the maximum separation between

any two constituents of the jet is 2RJ.

A multilayer perceptron (MLP) with L layers is used to map the inputs to the class pre-

diction. The following first-order recurrence relation between the layers describes an MLP,

h
(`)
i = ϕ(`)

(
w

(`)
ij h

(`−1)
j + b

(`)
i

)
, ~h(0) = ~x, (3.7)

where w
(`)
ij and b

(`)
i are the weight and bias of the `-th layer. The activation function

of the `-th layer, ϕ(`) : R → R, is a monotonic and nonlinear function. We use four

hidden layers with 1000, 800, 400, and 200 nodes, respectively, with a rectified linear

unit (ReLU), ϕReLU(x) = max(0, x), as the activation function. This MLP will identify

important features of inputs for the classification after training. To make a class prediction,

we provide the outputs of the MLP to a softmax classifier in eq. (2.18). The whole network

architecture is illustrated in figure 8.

The MLP is trained by minimizing a loss function including categorical cross-entropy

and L2 weight regularization [80],

L =
1

Nevents

Nevents∑
events

∑
i

yi log ŷi + λ

L∑
`=1

∑
i,j

|w(`)
ij |2, (3.8)
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Figure 9. Ternary plots of the predicted label vector ŷ of the MLP for the Higgs jet (left), sgluon

jet (center), and QCD jet (right).

where Nevents is the total number of events in the training data set, λ is a weight decay

constant associated to the L2 regularization. We choose λ = 0.01. The yi (ŷi) denotes

the components of the truth (predicted) label vector ~y (ŷ). The L2 weight regularization

reduces the over-fitting on the training data and also allows smooth extrapolation to the

phase space that is not covered by the training sample. The minimization is done with

ADAM optimizer [81]. We stop training when the validation loss has stopped improving for

50 epochs. After the minimization of the loss function, the softmax layer provides scores

of the classes of a given event. The truth label vectors are defined as follows,

~y =


(1, 0, 0) Higgs jet,

(0, 1, 0) sgluon jet,

(0, 0, 1) QCD jet.

(3.9)

The unnecessary symmetries in the neural network are broken by using the Glorot uniform

initialization method [82]. The weights in the hidden layers are initialized by assigning

random numbers between [−
√

6/(Nin +Nout),
√

6/(Nin +Nout)], where Nin and Nout are

numbers of inputs and outputs of a layer, respectively. The biases are initialized to zero. All

the inputs are standardized before training. The architecture is implemented in Keras [83]

with backend TensorFlow [84].

In figure 9, we show ternary plots of the predicted label vector ŷ. The three sides

of the triangle (starting from the base of the triangle and then counterclockwise) are ŷ1,

ŷ2, ŷ3 axis; we denote them as ŷh, ŷσ and ŷQCD, respectively. The ŷ distributions of the

Higgs jet and QCD jet have high-density spots that do not overlap with each other. It

means that the network has found the exclusive features of those two kinds of jets. The

two-prong substructure of a Higgs jet and the one-prong structure of a QCD jet are the

exclusive features. However, the two-prong substructure of a sgluon jet is more radiative

and less exclusive, and therefore, there are no high-density spots in the ŷ distribution of

the sgluon jet.

Next, we show ROC curves of binary classifications in figure 10 with the red dotted

lines. The following signal-background classifications are considered: Higgs-QCD, sgluon-

QCD, and Higgs-sgluon. We assign the truth label vectors ~y = (1, 0) for the signal and
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Figure 10. The ROC curves of the binary classifiers: the MLP trained on S2,trim and S2,soft (red

dashed), the CNN trained on jet images (blue solid), and the two-level architecture (see section 4)

trained on S2,trim and S2,soft (green dotted) with PY8 samples. The dashed gray lines represent the

ROC curves of the random guess. We show the results of Higgs jet vs. QCD jet (left), sgluon jet

vs. QCD jet (center), and Higgs jet vs. sgluon jet (right) classifications.

~y = (0, 1) for the background. The QCD jet mistag rates are comparable for both Higgs-

QCD and sgluon-QCD classifications; however, the separation between the Higgs jet and

sgluon jet is weaker.

We now compare these ROC curves with that of CNN trained on jet images.3 The

CNN classifier takes 20×20 inputs of the jet images, while 2×20 inputs of S2,trim and S2,soft

spectra are used for the MLP. The solid blue lines in figure 10 denote the ROC curves of

the CNN. Some improvement in the background mistag rates is observed compared with

the MLP classifier. Quantitatively, it is only 0.2% (= 2.5%–2.3%) at the signal acceptance

of 20% for Higgs-QCD classification.

3.3 Event generator dependence

The classifier introduced in the previous subsection uses not only the information of hard

subjets encoded in S2,trim but also the soft activities captured in S2,soft as well. This leads

to concerns about the accuracy of the models of soft physics. Specifically, the performance

of the classifier could be sensitive to the soft activities in the jet while the simulated soft

activities may be significantly different from the truth.

In figure 11, we compare the ROC curves of the MLP trained with PY8 and HW7

samples. As these two event generators are based on different modeling of parton shower

and hadronization scheme, the comparison would give us a reasonable estimate of the

systematic uncertainty originating from the generator choice.

In the left panel of figure 11, we compare the ROC curves of the Higgs jet vs. QCD

jet classification for different generator choices. By doing this exercise, we estimate a

systematic uncertainty in the predictions of the classifier by comparing ROC(PY8, PY8) and

ROC(HW7, HW7) curves, where the first and second entries in the parenthesis correspond to

the generators used to simulate the training and test samples, respectively. On the other

3The CNN setup is explained in detail in appendix C.
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Figure 11. The ROC curves of the MLP trained on S2,trim and S2,soft. The solid and dashed

lines correspond to the classifier trained with PY8 and HW7, respectively. The red and blue lines

correspond to the classifier tested with PY8 and HW7, respectively. The dashed gray lines represent

the ROC curves of the random guess. We show the results of discriminating Higgs jet vs. QCD jet

(left), sgluon jet vs. QCD jet (center), and Higgs jet vs. sgluon jet (right).

hand, ROC(HW7, PY8) and ROC(PY8, HW7) show the degradation of the performance of

classifier trained on the “wrong sample” to analyze “real events”.

The performance of the classifier improves as we vary generator combinations in the

following order: ROC(PY8, HW7), ROC(HW7, HW7), ROC(HW7, PY8), and ROC(PY8, PY8).

We find that the classification performance is significantly better for PY8 test samples

than that of HW7 samples. On the other hand, the classification performance for the same

test samples hardly depends on the classifiers, namely ROC(PY8, HW7) ∼ ROC(HW7, HW7)

and ROC(HW7, PY8) ∼ ROC(PY8, PY8). For the Higgs jet vs. QCD jet classification, the

classifier mostly concentrates on the core substructures within the jet, and here both PY8

and HW7 provide similar kinematics and radiation spectra. Therefore, we do not observe

any significant change in the ROC curves by varying training samples while keeping the

test samples the same.

In the middle panel of figure 11, we compare the classifier performance for the sgluon jet

vs. QCD jet classification. It improves in the following order: ROC(PY8, HW7), ROC(HW7,

PY8), ROC(HW7, HW7), and ROC(PY8, PY8). The classifiers are indeed sensitive to the

choice of generators. The network trained with PY8 (HW7) samples has failed to capture

the features of HW7 (PY8) test samples. The networks have focused on different portions of

the distribution of the fragmentation functions. In the right panel of figure 11, the ROC

curves for the Higgs jet vs. sgluon jet classification show similar behavior.

4 Interpretable two-level architecture

A quantitative understanding of a neural network is not straightforward because the pa-

rameters and intermediate outputs of the neural network are less readable. In this section,

we propose an architecture constructed from the truncated series in eq. (2.28) and try to ex-

plain quantitatively how this network classifies events. In the case of binary classifications,
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Figure 12. A schematic diagram of a two-level architecture for binary classification. An MLP

trained on pT,J and mJ generates weights wtrim and wsoft for analyzing radiation patterns encoded

in S2,trim and S2,soft spectra. Double bordered boxes represent trainable modules. The ŷ2 is given

by the normalization, i.e., ŷ2 = 1− ŷ1.

the discretized architecture is defined as follows,

h =
∑
k

Sk2,trimw
k
trim +

∑
k

Sk2,softw
k
soft, wkA =

1

2

∫ Rk+∆Rk

Rk

dRw
(2)
A (R) (A = trim, soft),

(4.1)

ŷ1 =
eh

eh + 1
, ŷ2 = 1− ŷ1 (4.2)

where wkA is a trainable weight. We change the activation of the output layer to a sigmoid

activation since the softmax function for binary classification is essentially a sigmoid with

a scale factor on its argument. The loss function is the categorical cross-entropy as defined

in eq. (3.8). This setup is effectively a logistic classifier on Sk2,trim and Sk2,soft. After the

training, the magnitude of Sk2,trimw
k
trim or Sk2,softw

k
soft is high when the corresponding Sk2,trim

or Sk2,soft is useful for the classification.

The logistic classifier does not take into account the pT,J dependence of R̂bb̄; therefore,

we introduce a two-level architecture, which is a variant of the logistic classifier. The

weights wkA are calculated by a kinetic module Φk
A(~xkin) of an MLP trained on ~xkin =

(pT,J,mJ),

wkA = Φk
A(~xkin). (4.3)

A schematic diagram of this setup is shown in figure 12. The inputs ~xkin are standardized

before training, and Sk2,trim and Sk2,soft are divided by their maximum value of the training

sample because standardizing the spectra reintroduce the zeroth order term of eq. (2.27).

This architecture is similar to the self-explaining neural network [85]. The Φk
A is modeled

with an MLP of two hidden layers with exponential linear unit (ELU) activations [86],

ϕELU(x) =

{
x x > 0,

ex − 1 x < 0.
(4.4)
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Figure 13. Two-dimensional histograms of two ŷh’s from the two-level architecture and the jet

image CNN in Higgs jet vs. QCD jet classification. The left panel is the histogram of Higgs jets,

and the right panel is that of QCD jets.

The nodes of the successive layers are configured as 400 ELU, 200 ELU, 2 × 20 linear

respectively. We do not use ReLU in modeling Φk
A because dead ReLU nodes with a zero

gradient kill ~xkin dependency of the weights. This is known as the dying ReLU problem.

In this case, the architecture is reduced to the logistic classifier.

The vanishing gradient problem arises when the momentum range of the training

sample is too small, which generates constant weights. The characteristic scale of R̂bb̄ is

[0.625, 0.833] for the pT,J range [300, 400] GeV. The variation in R̂bb̄ is about 0.2, which

is not significantly large compared with the calorimeter resolution of 0.1. Therefore, we

extend the pT,J range of all the samples to [300, 600] GeV. In addition, we avoid vanishing

gradient problem by using He uniform initializer [87]. The weights and biases are initialized

by uniform random numbers in [−
√

6/Nin,
√

6/Nin] where Nin is the number of inputs to

the layer. The advantage of using He initializer over Glorot initializer is that it generates

random numbers in a wider range so that the neural network can start up from wider initial

weights and gradient. The weight decay parameter λ of the L2 weight regularizer is set to

0.001 so that the weights do not vanish too early.

After the successful training, the performance of the two-level architecture is close to

that of the MLP in section 3. The green dotted lines in figure 10 are the ROC curves of

the classifier. The difference is smaller than the systematic uncertainty shown in figure 11.

This makes a good reason to believe that the weights in eq. (4.3) capture the essential

features of the MLP and CNN in section 3. The correlation between the output of the

two-level architecture and the CNN model is shown in figure 13. We can see a positive

correlation between them, but the correlation is slightly tilted towards the lower triangle

(upper triangle) for small (large) ŷh values because the CNN performs better than the

two-level architecture.

In figure 14, we show the weight functions wtrim (left) and wsoft (right) of Higgs jet

vs. QCD jet classifier trained with MG5+PY8+Delphes samples. Note that the weights are
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Figure 14. The weights wtrim (left) and wsoft (right) of Higgs jet vs. QCD jet classification. We

show the weights for pT,J values in the range [300, 550] GeV while fixing the mJ to 115 GeV. The

weights at an angular scale smaller than 1.0 are magnified by 10. The value of wsoft in the bin

[0, 0.1), i.e., w0
soft, is approximately 32 for all the values of pT,J. In the lower panels, we show the

statistical uncertainty of the weights from the training dataset at pT,J = 350 GeV.

outputs of the neural network for the given ~xkin and not the output with the sample at

the indicated pT,J and mJ. The weights in R > RJ and wsoft in R < Rtrim are large

compared to the weights in other angular scales. The S2,trim and S2,soft on these angular

scales are typically smaller than that in other scales. Therefore, their weights become large

to compensate for the energy difference when the corresponding value of the spectrum is

useful for jet classification. The dotted lines in figure 14 denote the values of R̂bb̄, defined

in eq. (3.1), for different values of pT,J.

The wtrim around R̂bb̄ is positive because the correlation at the scale is a characteristic

feature of Higgs jet. If a Higgs boson is decaying to a pair of bottom quarks perpendicular

to the boosted direction in its rest frame, the relative angular separation of the decay

products is R̂bb̄ in the lab frame. Due to the phase space of the decay, most of the events

are distributed near θ = π/2, where θ is Higgs decay angle relative to the boost direction.

As pT,J increases, R̂bb̄ decreases, and the lower edge of wtrim > 0 moves toward smaller

values. The region with wtrim > 0 also shifts towards smaller values of R. The weight wtrim

on R > R̂bb̄ is positive for capturing a Higgs jet whose θ is smaller than π/2. These events

have pT asymmetric subjets, and the cross-correlation terms in S2,trim(R) are smaller than

that of pT symmetric case. These correlations are still useful for the classification because

S2 spectrum of QCD jet reduces much faster than that of Higgs jet. As a result, the wtrim

is an increasing function in this region to compensate for the S2,trim reduction.

For R & RJ, weight wtrim is negative. The score ŷh decreases whenever there are any

energy deposits at R & RJ. The crossover point from wtrim > 0 to wtrim < 0 shifts towards

smaller values of R with an increase of pT,J because the Higgs decay products become
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more asymmetric with respect to the boost direction. In such a case, one of the subjets

tends to be soft so that the two-point correlations are included in S2,soft, instead of S2,trim.

These contributions to S2,soft do not affect wsoft, because S2,soft spectra of QCD jets are

overwhelming at large R.

The S2,soft on R > Rtrim always reduces ŷh, and there is no prominent structure around

R̂bb̄. Moreover, |wsoft| decreases as pT,J increases. The reduction of wsoft compensates the

increase of S2,soft, and the prediction is more or less pT,J independent. On R > RJ,

|wsoft| increases with R because activity in this region is a sign of QCD jet even though

corresponding S2,soft decreases due to suppressed large angle radiations.

The wsoft on R . Rtrim is positive and wsoft has a break at R ∼ Rtrim. Correlations

between the constituents in a soft subjet contributes to the S2,soft on R < Rtrim, i.e.,

S2,soft(0;Rtrim) ∝ f2
trim. Let us assume Ja is a single soft subjet, then S2,soft(0;Rtrim) ∼

p2
T,Ja

∼ (pT,J − pT,J,trim)2. If there are multiple soft subjets, then S2,soft(0;Rtrim) ∼∑
a p

2
T,Ja

< (
∑

a pT,Ja)2 ∼ (pT,J − pT,J,trim)2. This triangular inequality suggests that

the magnitude of S2,soft(0;Rtrim) is small for a jet with a given pT,J − pT,J,trim when there

are multiple soft jets. The positive w2 on R < Rtrim means that Higgs jet has less soft

subjets than QCD jet. The S0
2,soft consists of the autocorrelation of soft subjets, which has

different energy scaling behavior compared with the other Sk2,soft. The S2,soft on R < Rtrim

is S2,22 ∼ O[f2
trim] in eq. (2.24). On the other hand, Sk2,soft (k ≥ 1) is dominated by S2,12.

The S2,12 on R < Rtrim does not contribute to S0
2,soft because it vanishes. Therefore, we

may rewrite h as follows,

h =

∫
dRS2,trim(R)wtrim(R) +

∫ Rtrim

0
dRS2,soft(R)w′soft(R) +

∫
dRS2,soft(R)w′′soft(R)

(4.5)

where w′soft and w′′soft are continuous functions with w′soft(Rtrim) = 0 and wsoft(R) =

w′soft(R) + w′′soft(R). The second term is essentially the same as
∫
dRS2,22(R)w

(2)
2,22(R)

in eq. (2.23), and the last term is
∫
dRS2,12(R)w

(2)
2,12(R) +

∫
dRS2,21(R)w

(2)
2,21(R).

The sudden changes of wtrim and wsoft at R ' 1.8 are due to the statistical fluctuations

of the training sample. The S2,trim and S2,soft may have a non-zero value at large R if the jet

has multiple large angle radiations with the opposite direction from the jet axis; however,

the probability of such a radiation pattern is small. As a result, the number of events

used for training the weights at large R is not sufficient. The large weights also do not

contribute much to the classification (see figure 16).

To estimate this statistical uncertainty, we use both training and test datasets. The

merged dataset is divided into ten subsets and we train a network for each of them. This

will decrease the number of events in each subset by a factor 5. We estimate the uncertainty

of the fit by calculating the mean and variance of the wktrim and wksoft from the ten subsets.

The green band in the bottom panels of figure 14 represents the estimated uncertainty.

Note that wktrim and wksoft are not sensitive to the network initialization because the two-

level network is effectively a logistic regression for a fixed pT,J and mJ and the loss function

is a convex function of them.
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Figure 15. The weights wtrim (left) and wsoft (right) at pT,J = 350 GeV and mJ = 115 GeV for

the sgluon jet vs. QCD jet (top) and the Higgs jet vs. sgluon jet (bottom) classification. We show

the weights with statistical uncertainty from the training dataset.

In the top panels of figure 15, we show the weights wtrim and wsoft for the sgluon jet

vs. QCD jet classification with pT,J = 350 GeV and mJ = 115 GeV. The wtrim distribution

is similar to that of the Higgs jet vs. QCD jet classification. However, the |wsoft| is much

smaller. This comes from the fact that S2,soft of sgluon jet is similar to that of QCD jet and

it is less important in the classification. No peak of S2,soft around R . Rtrim also indicates

that the soft substructures of sgluon jet are as radiative as QCD jet. Additionally, there

is no color coherence restriction of soft radiations for the sgluon jet. This leads to small

|wsoft| for R > RJ. In the bottom panels of figure 15, we show the weights for the Higgs

jet vs. sgluon jet classification. The peak of wtrim around R = R̂bb̄ is small as the hard

substructures of Higgs jet and sgluon jet are (almost) the same. However, a sgluon is more

radiative than a Higgs boson, and wsoft is negative in the entire region of R < 1.5.

As described above, weights wtrim and wsoft may take large values, but it does not

necessarily mean that the corresponding S2,trim and S2,soft contribute dominantly in the jet

classification. The energy scaling factors on the S2,trim (S2,soft) and its weight wtrim (wsoft)

cancel out in the quantity of our interest h =
∑

k(S
k
2,trimw

k
trim + Sk2,softw

k
soft). For example,

O[1] terms in S2,trim and O[ftrim] terms in S2,soft contribute equally to the classifier if wsoft

is around ftrimwtrim. In the left panel of figure 16, we draw the mean values 〈Sk2,trimwktrim〉
and 〈Sk2,softw

k
soft〉 of Higgs jet vs. QCD jet classification, which are more directly related

to the jet classification. The solid and dashed red lines correspond to the distributions

of the Higgs jet, while the solid and dashed blue lines are for the QCD jet. The regions

where Higgs jet and QCD jet distributions differ significantly are important for the network

predictions. We find 〈Sk2,trimwktrim〉 around R ∼ R̂bb̄ and 〈Sk2,softw
k
soft〉 in the region R < 1.2

mostly contribute to the jet classification.

The average distribution may not illustrate all the features of the classifier performance.

The energy deposits in each bin fluctuate, and the bins with hits higher than the average
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Figure 16. The distribution of the mean value 〈S2,trim(R)wtrim(R)〉 (solid) and 〈S2,soft(R)

· wsoft(R)〉 (dashed). We show the 〈S2,A(R)wA(R)〉 for Higgs jet vs. QCD jet (top), sgluon jet

vs. QCD jet (center), and Higgs jet vs. sgluon jet (bottom) classifications. In the right figure, we

additionally demand that ŷh of the Higgs jet and ŷQCD of the QCD jet are larger than their 95th

percentile respectively. We show their statistical uncertainty from the training samples as colored

bands.

value contribute more to the network decisions. For example, soft emissions outside the

angle between the two hardest subjets are rare in the Higgs jet. Once there is large angle

radiation outside the cone of hard subjets, the network is likely to identify the jet as a QCD

jet. In the right panel of figure 16, we plot the 〈Sk2,trimwktrim〉 and 〈Sk2,softw
k
soft〉 distributions

of the Higgs jet (QCD jet) with ŷh (ŷQCD) higher than the 95th percentile. The distributions

indicate that the selected Higgs jets are mostly classified because of the S2,trim excess at

R̂ ∼ Rbb̄, while the QCD jets are classified using S2,soft excess above R > 0.2.

We now use the two-level architecture to compare PY8 and HW7. As we have already

shown in section 3, the performance of the classifier depends on the event generators
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Figure 17. Top figures are the weights wtrim (left) and wsoft (right) at pT,J = 350 GeV and

mJ = 115 GeV for classifying Higgs jet of PY8 and HW7 events. Bottom figures are 〈S2,A(R)wA(R)〉.
In the right bottom figure, we additionally demand that ŷ1 of the PY8 generated jets and ŷ2 of

the HW7 generated jets are larger than their 95th percentile respectively. We show their statistical

uncertainty from the training samples as colored bands.

significantly. We show the weights of the classifiers for pT,J = 350 GeV and mJ = 115 GeV

trained with Higgs jets in figure 17, sgluon jets in figure 18, and QCD jets in figure 19.

For each plot, the signals are PY8 events, and the backgrounds are HW7 events. The wtrim

in R . RJ is close to zero everywhere, representing S2,trim spectra of PY8 and HW7 events

are similar. It is not surprising because both PY8 and HW7 events from identical hard

partons and these partons create the trimmed subjets inside the jet. On the other hand,

the correlation involving constituents of the soft activities, S2,soft, is manifestly different

and so wsoft is nonzero. For Higgs jet and sgluon jet, the wsoft distribution of PY8 events is

significantly large (and positive) for R ∼ Rtrim and it decreases as R increases. The weight

wsoft is negative for R > RJ, which means that HW7 events have more soft activity in the

region R� R̂bb̄.

For the case of QCD jet, the distribution of wsoft is always positive and flat for R < RJ

and negative for R > 1.5. It would be interesting to evaluate the weights for the classifiers

trained with the experimental data and compare with the simulated results to tune the

parameters of the event generators further.

5 Summary and outlook

The classification of jets with deep learning has gained significant attention in recent times.

Majority of these analyses take advantage of the significant development in computing
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Figure 18. Top figures are the weights wtrim (left) and wsoft (right) at pT,J = 350 GeV and

mJ = 115 GeV for classifying sgluon jet of PY8 and HW7 events. Bottom figures are 〈S2,A(R)wA(R)〉.
In the right bottom figure, we additionally demand that ŷ1 of the PY8 generated jets and ŷ2 of the

HW7 generated jets are larger than their 95th percentile respectively. We show their statistical

uncertainty from the training samples as colored bands.

power. These deep learning architectures utilize the complete event information in terms

of low-level observables. These deep learning based strategies can be compared with the

previous approaches for tagging jets, for example, mass drop tagger, n-subjettiness, energy

correlation function where each of them has solid physics motivation.

In this paper, we introduce neural networks trained on “jet spectrum” S2(R), which are

essentially two-point correlation functions of jet constituents. We also introduce S2,trim(R),

which is S2(R) calculated from the trimmed jet, to encode hard substructure of the jet.

The difference S2,soft(R) = S2(R)−S2,trim(R) encodes the remaining correlations with soft

radiations and is less affected by the correlations among the hard constituents. Our neural

networks are trained on S2,trim and S2,soft integrated over certain bins. If the S2,trim and

S2,soft spectra are multiplied by smooth functions and integrated over R, it forms an IRC

safe C-correlator. This feature assures that the classifiers trained on binned S2,trim and

S2,soft are approximately IRC safe.

The performance of MLP trained on S2,trim and S2,soft is compared to that of CNN

trained on jet images. The CNN shows better performance than the MLP, but the difference

is small. The key reason is efficient preprocessing of parton shower effects with less number

of free parameters. Parton shower is the multiple splittings of the partons where each

splitting is parametrized by the angular scale and momentum fraction of the partons. The

binned S2(R) spectra collect the information of the parton splitting successfully. The

spectra provide comparable jet classification performance with a fewer number of inputs.
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Figure 19. Top figures are the weights wtrim (left) and wsoft (right) at pT,J = 350 GeV and

mJ = 115 GeV for classifying QCD jet of PY8 and HW7 events. Bottom figures are 〈S2,A(R)wA(R)〉.
In the right bottom figure, we additionally demand that ŷ1 of the PY8 generated jets and ŷ2 of

the HW7 generated jets are larger than their 95th percentile respectively. We show their statistical

uncertainty from the training samples as colored bands.

Furthermore, the MLP is computationally economical than the CNN because the MLP has

smaller complexity than the CNN and takes only O(40) inputs.

The S2,trim(R) and S2,soft(R) spectra can be obtained from a functional Taylor series

of an arbitrary classifier in energy flows. The spectra are basis vectors of the second order

term in the expansion. In this context, the MLP trained on S2,trim(R) and S2,soft(R) can

be considered as a sum of 2n-linear C-correlators which can be reduced to products of the

bilinear C-correlators in S2,trim and S2,soft. The (mild) difference in the performance of the

CNN and MLP comes from the remaining irreducible n-linear C-correlators.

The terms linear in S2,trim(R) and S2,soft(R) provide an opportunity to visualize and

interpret the network predictions; therefore, we study a novel two-level architecture that

involves an interpretable layer of a single node in the form of a C-correlator. The output

is the sum of the product of the trained weights (wtrim and wsoft) and jet spectra (S2,trim

and S2,soft). The absolute values of the weights signify the impact of the corresponding

S2,trim and S2,soft bin values on the jet classification. In the context of classification between

Higgs jet and QCD jet, the distribution of wtrim shows that S2,trim spectrum around R̂bb̄ =

2mh/pT,J increases the output, and the classifier regards the jet as a Higgs jet. We have

also shown that the dependence of wtrim on jet pT can be qualitatively understood (at

the parton level) from the decay of a boosted Higgs boson. In short, the network is using

S2,trim inputs to obtain the core substructure information inside the jet.

The soft activity is also useful for Higgs jet vs. QCD jet classification. The probability

for assigning the given jet as a QCD jet increases with increase in S2,soft on R > Rtrim. To
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study the impact of soft physics in jet classification, we also introduce sgluon, a hypothetical

color octet scalar, and compare the classifier performance among Higgs jet, sgluon jet, and

QCD jet. The network predictions for sgluon jet vs. QCD jet classification are primarily

determined by the core substructure information as expected. However, the network uses

the difference in the S2,soft spectra arising from the different color structure of the decaying

particle for Higgs jet vs. sgluon jet classification.

The non-trivial role of soft radiations in the predictions of the classifiers implies the

results are highly sensitive to the choice of event generators. The weights associated with

the S2,trim are almost insensitive to the choice; however, the weights of the S2,soft are

strongly affected. This behavior is expected as modeling of soft physics is quite different

in Pythia 8 and Herwig 7.

The two-point correlation spectra and the architectures introduced in this paper can

be applied for solving other interesting problems, thanks to flexibility on designing neural

network. For jets with more complex substructures, e.g., top jet, the higher order terms

in the energy flow series expansion may be included. It would be worthwhile to study

the classifier performances when the network is trained with the experimental data and

compare with the predictions of event generators to tune their parameters to reduce the

uncertainty in modeling the soft physics. It is also interesting to use this interpretable

architecture as a model-agnostic interpreter for black box architectures [88]. We leave

these possibilities for future works.
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A Event generation and reconstruction

The parton level event samples, namely pp → Zj, pp → Zh and pp → Zσ events, are

generated at the leading order in QCD using MadGraph5 aMC@NLO 2.6.1 [69]. We force

the Higgs boson (h) and the sgluon (σ) to decay to a pair of bottom quarks, while Z

boson to decay invisibly. For sgluon, we use a UFO model in [70, 71] with the following

interaction term for the decay,

Lsgluon 3 yσbb̄ σa b̄T ab+ h.c. (A.1)

The parton distribution function (PDF) set NNPDF 2.3 LO at αS(mZ) = 0.130 [89] is

used. To generate Higgs jets and Sgluon jets, we impose a parton level selection criterion

on the Z boson transverse momentum, pT,Z > 250 GeV. We simulate approximately 3

million events of pp→ Zh and pp→ Zσ processes and 18 million events of pp→ Zj.

We use two parton shower and hadronization simulators to compare the results. Name-

ly, we use Pythia 8.226 [65] with Monash tune [90] and Herwig 7.1.3 [66, 67] with default
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tune [91, 92]. The shower starting scale is HT /2 for pp→ Zh and pp→ Zσ processes and

pT,j for pp→ Zj process, where HT is the transverse energy sum of the produced partons.

The effects of underlying events and multi-parton interactions are taken into account, but

we neglect the contaminations coming from the pile-ups. The PDF set for simulating all

these effects are the same as that in the parton level simulation.

We use Delphes 3.4.1 [74] with its default ATLAS configuration for fast detector

simulations. Jets are reconstructed from the calorimeter towers using FastJet 3.3.0 [75,

76] with anti-kT algorithm [77] and jet radius parameter RJ = 1. The leading jet of each

event with pT,J ∈ [300, 400] GeV and mJ ∈ [100, 150] GeV is selected. Since the scale HT /2

for pp→ Zh and pp→ Zσ is higher than pT,h and pT,σ, respectively, there is a chance that

the leading jet is from the initial state radiation rather than from the decay of Higgs boson

or sgluon. To filter out such jets from the Higgs jet and sgluon jet samples, we require that

b-partons produced from the decay are within RJ from the leading jet axis.

B Oversampling and pT,J-bias removal

The neural networks may learn the inherent pT,J difference among Higgs jet, sgluon jet, and

QCD jet in figure 4 to classify them instead of learning the difference in their substructures.

To penalize the learning from the pT,J distribution, we augment the training and validation

samples by oversampling as follows,

1. The samples (of each class) are binned in pT,J with bin-width 1 GeV with bi entries

in the i-th bin and bmax = max{bi}.

2. For each bin, oversample the events so that the number of the bin contents becomes

a certain value nmax = cd bmax. This oversampling is identical to repeating events in

bin i sequentially for

Mi = ceil

(
cd · bmax

bi

)
(B.1)

times and stop the oversampling when the number of events in the bin reaches nmax.

It may introduce a small bias due to unequal oversampling among different bins. We

choose cd = 2 and ignore the small residual bias.

In the upper (lower) panel of figure 20, we show the conditional probability density of

the predicted class vector ŷh (ŷσ) for a given pT . The probability density has a mild

dependence on pT,J which is originating from the interplay of the phase-space selection

and the jet radius parameter.

C Jet image and convolution neural network

We obtain and pre-process the jet image as follows,4

1. Recluster the jet constituents by kT algorithm with a jet radius parameter RJ = 0.2.

2. Set the center of (η, φ) coordinate to the leading (in pT ) subjet.

4This setup is similar to [21].
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Figure 20. Validation of the pT -bias removal on the training samples. Each row is a conditional

probability density on a given pT,J range, i.e., the sum of each row is 1. Upper (lower) panel displays

the conditional probability density histograms of the predicted class vector ŷh (ŷσ) for the Higgs

jet (left), sgluon jet (center), and QCD jet (right).

3. If a second leading subjet is found, rotate the jet constituents on (η, φ) plane about

the jet center so that the sub-leading jet is on the positive y-axis.

4. If a third leading subjet is found, flip the image about y-axis when x coordinate of

the subjet is negative.

5. Select jet constituents within [−1.5, 1.5]⊗ [−1.5, 1.5].

6. Finally, pixelate the jet constituents with pixel size 0.1 × 0.1. The (k, l)-th pixel

intensity P k,lT is determined by the total transverse energy of the jet constituents

present in a given pixel, i.e.,

P k,lT =
∑
i∈J

pT,iIbink,l
(~Ri) =

∫
bink,l

d~RPT (~R) (C.1)

where bink,l is the region of (k, l)-th bin.

7. Standardize all the P k,lT .

This jet image is analyzed by a CNN which consists of two-dimensional convolutional

layers (CONV) and max-pooling layers (figure 21). In particular, we use the following

CNN setup,
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ŷ2

Figure 21. A schematic diagram of a convolutional neural network trained on jet image. The

double bordered boxes represent trainable modules.

• Layer 1: convolutional layer with 64 filters with kernel size 3×3, and ReLU activation,

• Layer 2: max-pooling layer with pool size 2 × 2,

• Layer 3: convolutional layer with 32 filters with kernel size 4×4, and ReLU activation,

• Layer 4: max-pooling with pool size 2 × 2.

The first convolutional layer deals with angular scale up to 0.3 to treat collinear radia-

tions while the second convolutional layer operates up to 0.8. The outputs of Layer 4 are

flattened into a one-dimensional array and concatenated with a set of kinematic inputs,

{pT,J,mJ, pT,J,trim,mJ,trim}. The flattened output array is fed into an MLP with two hid-

den layers with 300, 100 filters respectively, and ReLU activation function. The outputs of

the MLP are fed into a softmax layer to make a prediction. The training setup is the same

as in section 3.
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[65] T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)

159 [arXiv:1410.3012] [INSPIRE].

[66] J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196

[arXiv:1512.01178] [INSPIRE].

[67] M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639

[arXiv:0803.0883] [INSPIRE].

[68] P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: A complete linear

basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].

[69] J. Alwall et al., The automated computation of tree-level and next-to-leading order

differential cross sections and their matching to parton shower simulations, JHEP 07 (2014)

079 [arXiv:1405.0301] [INSPIRE].

[70] C. Degrande, B. Fuks, V. Hirschi, J. Proudom and H.-S. Shao, Automated next-to-leading

order predictions for new physics at the LHC: the case of colored scalar pair production,

Phys. Rev. D 91 (2015) 094005 [arXiv:1412.5589] [INSPIRE].

[71] FeynRules models to be used for NLO calculations with aMC@NLO, (2019)

https://feynrules.irmp.ucl.ac.be/wiki/NLOModels.

[72] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A

complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250

[arXiv:1310.1921] [INSPIRE].

[73] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The

Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040]

[INSPIRE].

[74] DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a

generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

[75] M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012)

1896 [arXiv:1111.6097] [INSPIRE].

[76] M. Cacciari and G.P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B 641

(2006) 57 [hep-ph/0512210] [INSPIRE].

[77] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)

063 [arXiv:0802.1189] [INSPIRE].

[78] B.R. Webber, QCD Jets and Parton Showers, in proceedings of the Gribov-80 Memorial

Workshop on Quantum Chromodynamics and Beyond, Trieste, Italy, 26–28 May 2010,

pp. 82–92 [https://doi.org/10.1142/9789814350198 0010] [arXiv:1009.5871] [INSPIRE].

[79] B. Bhattacherjee, S. Mukhopadhyay, M.M. Nojiri, Y. Sakaki and B.R. Webber, Associated

jet and subjet rates in light-quark and gluon jet discrimination, JHEP 04 (2015) 131

[arXiv:1501.04794] [INSPIRE].

– 34 –

https://doi.org/10.1103/PhysRevD.80.051501
https://arxiv.org/abs/0903.5081
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.5081
https://doi.org/10.1103/PhysRevD.81.094023
https://arxiv.org/abs/0912.0033
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0033
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3012
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://arxiv.org/abs/1512.01178
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.01178
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://arxiv.org/abs/0803.0883
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0883
https://doi.org/10.1007/JHEP04(2018)013
https://arxiv.org/abs/1712.07124
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07124
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.0301
https://doi.org/10.1103/PhysRevD.91.094005
https://arxiv.org/abs/1412.5589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5589
https://feynrules.irmp.ucl.ac.be/wiki/NLOModels
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1921
https://doi.org/10.1016/j.cpc.2012.01.022
https://arxiv.org/abs/1108.2040
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2040
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6346
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6097
https://doi.org/10.1016/j.physletb.2006.08.037
https://doi.org/10.1016/j.physletb.2006.08.037
https://arxiv.org/abs/hep-ph/0512210
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0512210
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189
https://doi.org/10.1142/9789814350198_0010
https://arxiv.org/abs/1009.5871
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5871
https://doi.org/10.1007/JHEP04(2015)131
https://arxiv.org/abs/1501.04794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04794


J
H
E
P
0
7
(
2
0
1
9
)
1
3
5

[80] A. Krogh and J.A. Hertz, A simple weight decay can improve generalization, in proceedings

of the Advances in Neural Information Processing Systems 4 (NIPS 1991), Denver, Colorado,

U.S.A., 2–5 December 1991, J.E. Moody, S.J. Hanson and R.P. Lippmann eds.,

Morgan-Kaufmann (1992), pp. 950–957.

[81] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980

[INSPIRE].

[82] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural

networks, in proceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, Y.W. Teh and

M. Titterington eds., pp. 249–256 [Proc. Mach. Learn. Res. 9 (2010) 249].

[83] F. Chollet et al., Keras, (2015) https://keras.io.

[84] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, (2015)

https://www.tensorflow.org/.

[85] D. Alvarez Melis and T. Jaakkola, Towards robust interpretability with self-explaining neural

networks, in proceedings of the Advances in Neural Information Processing Systems 31

(NIPS 2018), Montreal, Canada, 3–8 December 2018, S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi and R. Garnett eds., Curran Associates, Inc. (2018),

pp. 7786–7795 [arXiv:1806.07538].

[86] D. Clevert, T. Unterthiner and S. Hochreiter, Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUs), in proceedings of the International Conference on

Learning Representations (ICLR), Caribe Hilton, San Juan, Puerto Rico, 2–4 May 2016,

arXiv:1511.07289.

[87] K. He, X. Zhang, S. Ren and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification, in proceedings of the IEEE International

Conference on Computer Vision (ICCV), Washington, D.C., U.S.A., 7–13 December 2015,

arXiv:1502.01852 [INSPIRE].

[88] M.T. Ribeiro, S. Singh and C. Guestrin, Model-Agnostic Interpretability of Machine

Learning, in proceedings of the 2016 ICML Workshop on Human Interpretability in Machine

Learning (WHI 2016), New York, U.S.A., 23 June 2016, arXiv:1606.05386.

[89] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244

[arXiv:1207.1303] [INSPIRE].

[90] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur.

Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].

[91] Herwig collaboration, Minimum-bias and underlying-event tunes, (2015)

https://herwig.hepforge.org/tutorials/mpi/tunes.html.

[92] S. Gieseke, C. Rohr and A. Siodmok, Colour reconnections in HERWIG++, Eur. Phys. J. C

72 (2012) 2225 [arXiv:1206.0041] [INSPIRE].

– 35 –

https://arxiv.org/abs/1412.6980
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6980
https://keras.io
https://www.tensorflow.org/
https://arxiv.org/abs/1806.07538
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1502.01852
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01852
https://arxiv.org/abs/1606.05386
https://doi.org/10.1016/j.nuclphysb.2012.10.003
https://arxiv.org/abs/1207.1303
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.1303
https://doi.org/10.1140/epjc/s10052-014-3024-y
https://doi.org/10.1140/epjc/s10052-014-3024-y
https://arxiv.org/abs/1404.5630
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5630
https://herwig.hepforge.org/tutorials/mpi/tunes.html
https://doi.org/10.1140/epjc/s10052-012-2225-5
https://doi.org/10.1140/epjc/s10052-012-2225-5
https://arxiv.org/abs/1206.0041
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.0041

	Introduction
	Two-point correlation spectrum and two-prong jets
	Jet spectra
	Derivation of classifiers based on energy flows and jet spectra
	Relation between two-point correlation spectra and energy flow polynomials
	Spectra of two-prong jets

	Classifying Higgs jet, sgluon jet, and QCD jet
	Basic kinematics
	Multilayer perceptron of spectra
	Event generator dependence

	Interpretable two-level architecture
	Summary and outlook
	Event generation and reconstruction
	Oversampling and p(T,J)-bias removal
	Jet image and convolution neural network

