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the M → 0 limit in both quadratic and quartic interaction cases. The calculations of the
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1 Introduction

The Sachdev-Ye-Kitaev model [1–4] is a quantum mechanical model of N Majorana

fermions with disordered interactions that is solvable at large N in the strong coupling

limit. It was proposed [2] as a solvable toy model for holographic description of quantum

gravity in the AdS2 spacetime (see [5] for a review). This idea is justified by the fact that

the SYK model displays emergent approximate conformal symmetry in the strong coupling

regime [2, 3, 6] and that it exhibits maximal quantum chaos [2, 3, 7] at strong coupling.

The Goldstone mode corresponding to the conformal symmetry is connected to the grav-

itational mode in the effective description of the Jackiw-Teitelboim gravity in the AdS2

bulk [3, 4, 8–11]. Its dynamics in the leading order in inverse coupling turned out to be

completely solvable [10, 12–14], and in the leading order in 1/N all correlation functions

of operators dual to the matter fields in the bulk were computed as well [15]. While the

precise bulk dual theory is still unknown, the SYK model has already allowed to obtain

significant insight in the physics of black holes and wormholes [17, 18].

The defining characteristic of the SYK model is the quenched disorder which random-

izes the couplings between sites. Under the assumption that the system is self-averaging,

one can perform averaging over the disorder by introducing replicas, and obtain the path

integral in terms of auxiliary fields Gαβ(τ1, τ2) and Σαβ(τ1, τ2), where α, β are the replica

indices [2, 4, 12]. The results for SYK regarding the large N solution and thermodynam-

ics, are obtained under the assumption that the auxiliary fields are diagonal in replicas.

This assumption is justified by the exact diagonalization numerics [3, 12, 17, 19], and by a

physical qualitative argument1 [7, 20, 21] that prohibits realization of replica-nondiagonal

behavior. Besides that, the work which studied spin glass phases (which are usually realized

1We discuss this argument and its applicability in detail in appendix C.
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as particular replica-nondiagonal saddle points of the free energy path integral) [1, 20–24]

found no numerical evidence of glassy behavior in the fermionic SYK model and provided

several analytic arguments of why there should not be spin glass physics. However, all these

considerations do not conclusively exclude the existence of general replica-nondiagonal sad-

dle points of the path integral at either finite or zero replicas (in the case of the free energy).

Meanwhile, recent work [17, 25, 26] hints that replica-nondiagonal saddle points in annealed

quantities, such as the spectral form factor, are responsible for manifestations of quantum

chaotic behavior in black holes and possible recovery of information from the black hole,

which is lost at the semiclassical level, via holographic duality.

Motivated by these points, in the present work we study the replica-nondiagonal large

N saddle points of of the SYK model at general replica number. We start off with the

q = 2 variant of the model (where q is the degree of the interacting Hamiltonian). We

obtain a family of analytic replica-nondiagonal solutions of the saddle point equations of

the disorder-averaged partition function for M replicas of the SYK chain, where M can be

understood as an arbitrary real non-negative number. These solutions have an important

property of being singular at M → 0. This means that these saddles do not contribute to

the free energy. Computing the on-shell action on these solutions at finite replica number,

we show that for analytically continued 0 < M < 1 there is a nontrivial phase structure of

the path integral, however for M > 1 the standard diagonal solution always dominates. As

a next step, we use these analytic solutions in the q = 2 model to construct nondiagonal

numerical solutions to the exact saddle point equations in the interacting q = 4 variant of

the model. These numerical solutions also exhibit the singular behavior at M → 0 and

J = 0. In the q = 4 case the replica-nondiagonal saddles are also subleading in the replica

partition function at M > 1.

In the second part of the work, we focus on the strong coupling, or IR limit of the SYK

model. In this limit one can find analytic replica-nondaigonal solutions in the interacting

model either at finite replica number or in the limit of zero replicas. We study the class

of solutions, for which the time dependence and replica dependence are factorized. In

this case the saddle point equations separate in the strong coupling limit. The solution

is then constructed by solving the equation for the temporal part in the same way as in

the replica-diagonal case, and by solving an algebraic equation for the replica part. We

perform the latter by using the Parisi ansatz [27, 28]. The algebraic equation for the replica

dependence in the zero replica limit transforms into an integral equation. To solve it, we

restrict ourselves to the step-function ansatz, which corresponds to the one-step replica

symmetry breaking. We study the solutions at M = 0 and compute the regularized free

energy on the corresponding saddle points.

The paper is organized as follows. In the section 2 we briefly review the main features

of the replica-diagonal saddle-point of SYK, and discuss the non-perturbativity of the exact

replica-nondiagonal saddles. We start the study of the replica-nondiagonal solutions in the

section 3, which is devoted to the quadratic variation of the model. The exact nondiagonal

solutions and their properties are discussed. The next section 4 contains a description and

the results of the numerical study of exact saddles in the interacting q = 4 model, and

also a general remark on the large replica number limit. In the section 5 we switch gears
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to the study of replica-nondiagonal solutions in the strong coupling limit. Assuming the

factorized ansatz, we derive the reduced saddle point equations and explain in detail the

general strategy for constructing the solutions and computing the regularized free energy

in the zero replicas limit. Subsequently, in the section 6 we construct the solutions in the

one-step replica symmetry breaking ansatz and compute the leading contribution to the

regularized free energy in the strong coupling limit. In the next section 7 we make some

comments about generating other solutions using the reparametrization symmetry, possi-

ble holographic interpretation in particular cases and about solutions beyond the strong

coupling limit. We discuss our results and unanswered questions in the section 8. The

appendix A provides a brief introduction to Parisi matrices and derivations of a few formu-

las used in the main text, and the appendix B contains a few general formulae regarding

the computation of on-shell action in different cases. In the appendix C we present some

general considerations of the disordered correlation functions and other observables and

their relation to our results.

2 Setup

The object of our study is the Sachdev-Ye-Kitaev model [2–4], which is a theory of N � 1

interacting Majorana fermions in 0 + 1 dimensions.2 The Hamiltonian is given by

H =
iq/2

q!

N∑
i1,i2,...,iq=1

ji1i2...iqψi1ψi2 . . . ψiq . (2.1)

Here ψi are the Majorana fermions, and ji1...iq are totally antisymmetric couplings ran-

domized via the Gaussian distribution:

P (ji1...iq) =

√
N q−1

2(q − 1)!πJ2
e
−
Nq−1j2i1...iq

2(q−1)!J2 . (2.2)

To calculate a physical quantity in this model, one has to average over the disorder using

the rules which follow from the distribution (2.2):

ji1...iq = 0 , ji1...iqji1...iq =
(q − 1)!J2

N q−1
(no sum) . (2.3)

To study physically meaningful quantities, one usually has to average over all realizations

of the disorder. The free energy of the model with quenched disorder is given by

F = − 1

β
logZ , (2.4)

where Z = Tr e−βH . To simplify evaluating the disorder average, one employs the replica

trick, which we write in the form [29]:

lnZ = lim
M→0

lnZM

M
. (2.5)

2In this paper we work in the Euclidean time, unless mentioned otherwise.
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In the case of integer M on the right hand side there is a path integral over M copies

of SYK, so the fields now carry an additional index α = 1, . . . ,M . We study the case of

integer values of M separately. The limit M → 0 requires an analytic continuation, which

will be considered on a particular ansatz.

One can calculate the disorder average for the replica partition function and rewrite it

in terms of the path integral over O(N)-invariant auxiliary fields with replica indices. The

derivation was presented in detail in [4, 12]. After this procedure, one obtains the following

expression for the replica partition function:

Z(β)M =

∫
DGDΣ Pf[δαβ∂τ − Σ̂αβ ]N (2.6)

× exp

[
−N

2

∫ β

0

∫ β

0
dτ1dτ2

(
Σαβ(τ1, τ2)Gαβ(τ1, τ2)− J2

q
Gαβ(τ1, τ2)q

)]
,

where G is the bilocal field which has the meaning of the Majorana fermion two-point

function, and Σ is the auxiliary bilocal field3 which has the meaning of the fermion self-

energy. These bilocal fields are supposed to satisfy the antisymmetry condition

Gαβ(τ1, τ2) = −Gβα(τ2, τ1) ; Σαβ(τ1, τ2) = −Σβα(τ2, τ1) . (2.7)

In the present work we essentially study the saddle points of (2.6) for different values of

M . The saddle points of the path integral are defined by the following equations:

∂τGαγ(τ, τ ′′)−
∫
dτ ′Gαβ(τ, τ ′)Σβγ(τ ′, τ ′′) = δαγδ(τ − τ ′′) ; (2.8)

Σαβ(τ, τ ′) = J2Gαβ(τ, τ ′)q−1 . (2.9)

2.1 Review of the replica-diagonal solution

The replica partition function (2.6) has a family of replica-diagonal saddle points, which

have been extensively studied in the literature [2–4, 7, 12, 15]. One assumes the ansatz

Gαβ(τ, τ ′) = G(τ, τ ′)δαβ ; Σαβ(τ, τ ′) = Σ(τ, τ ′)δαβ . (2.10)

The quenched average in this case coincides with the annealed average up to subleading

orders in 1/N expansion [4, 16]:

logZRD︸ ︷︷ ︸
quenched

= logZRD︸ ︷︷ ︸
annealed

+O

(
1

N q−2

)
, (2.11)

which means that up to subleading orders in 1/N one can take off the replica indices in

the path integral (2.6):

ZRD =

∫
DGDΣ Pf[∂τ − Σ̂]N

× exp

[
−N

2

∫ β

0

∫ β

0
dτ1dτ2

(
Σ(τ1, τ2)G(τ1, τ2)− J2

q
G(τ1, τ2)q

)]
. (2.12)

3Here and henceforth the hat denotes the integral operator corresponding to the kernel given by the

bilocal field.
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At large N the asymptotic of the r.h.s. of (2.12) is given by saddle points contributions

ZRD = exp{−SRD} (2.13)

where the saddle points of (2.12) are given by the Schwinger-Dyson equations for melonic

diagrams [2, 3]

1

∂τ − Σ̂
= Ĝ ; (2.14)

Σ(τ, τ ′) = J2G(τ, τ ′)q−1 , (2.15)

where in the first equation hats denote the integral operators with the kernels defined by

the corresponding bilocal fields.

The solutions of these equations in general case can be constructed numerically, which

was done in the previous work [3, 4, 12, 17], and analytic solution is known in the IR/strong

coupling limit βJ � 1.

2.1.1 Strong coupling limit

Substituting (2.15) into (2.14) and taking ∂τ → 0, one obtains the equation

J2

∫ β

0
dτ ′G(τ, τ ′)G(τ ′, τ ′′)q−1 = −δ(τ − τ ′′) . (2.16)

The solution for G of the equation (2.16) has the form of the conformal propagator on

the circle:

gc,β(τ, τ ′) = b

(
π

β

)2∆ sgn(τ − τ ′)∣∣∣sin π
β (τ − τ ′)

∣∣∣2∆
, (2.17)

where ∆ = 1
q is the conformal dimension of the Majorana fermion and

bq =
(q − 2) tan π

q

2πqJ2
. (2.18)

In the frequency space the conformal propagator on a circle has a form [8, 30]:

gc,β(ωn) = −i2b
(

2π

β

)2∆−1

cos(π∆)
Γ
(
β
2πωn + ∆

)
Γ(1− 2∆)

Γ
(
β
2πωn + 1−∆

) , (2.19)

where ωn are Matsubara frequencies:

ωn =
2π

β

(
n+

1

2

)
, n ∈ Z . (2.20)

At zero temperature (2.17) and (2.19) reduce to

gc(τ) =
b

|τ |2∆
sgn(τ) (2.21)

gc(ω) = = ib 21−2∆√π Γ(1−∆)

Γ(1
2 + ∆)

|ω|2∆−1sgn(ω) , (2.22)
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where b is the dimensional constant fixed from (2.18). The equations (2.14), (2.15) are

invariant under time reparametrizations τ → f(τ) in the strong coupling limit, provided

the bilocal fields transform as follows (we assume without loss of generality that f is a

monotonically increasing function):

G(τ1, τ2) = f ′(τ1)∆f ′(τ2)∆G(f(τ1), f(τ2)) ; (2.23)

Σ(τ1, τ2) = f ′(τ1)1−∆f ′(τ2)1−∆Σ(f(τ1), f(τ2)) . (2.24)

Acting with these transformations on the solution (2.17), one can generate the full infinite-

dimensional manifold diff(S1)/SL(2,R) of the replica-diagonal saddle points.

2.1.2 On-shell action for replica-diagonal solution

The replica-diagonal on-shell action is given by

2

N
SRD = s1 + s2, (2.25)

where

s1 = −Tr log
(
∂τ − Σ̂

)
; (2.26)

s2 =

∫ β

0

∫ β

0
dτ1dτ2

(
G(τ1, τ2)Σ(τ1, τ2)− J2

q
G(τ1, τ2)q

)
=

(
1− 1

q

)
J2

∫ β

0

∫ β

0
dτ1dτ2G(τ1, τ2)q =

(
1− 1

q

)
Tr(1− ∂τ Ĝ) , (2.27)

where G and Σ solve (2.14) and (2.15).

The conformal limit is obtained by neglecting the time derivative. The s1 and s2 can

be simplified and we can rewrite them in the equivalent forms

s1,c = −Tr log
(
−Σ̂c

)
= −Tr log

(
−J2ĝq−1

c

)
(2.28)

s2,c =

(
1− 1

q

)
J2

∫
dτ1dτ2gc(τ1, τ2)q =

(
1− 1

q

)
Tr 1. (2.29)

In the conformal limit both these pieces in the on-shell action diverge and have to be regu-

larized. It is expected that the renormalization can be performed pertrurbatively (in 1/βJ)

by reinstating the time derivative in s1 and evaluating the corresponding counterterms, and

the resulting renormalized action equals to the on-shell action, evaluated on the solution

of exact saddle point equations [3].

2.2 Nonperturbative nature of the replica-nondiagonal correlators

Here we will show that one cannot obtain a replica-nondiagonal large N solution in pertur-

bation theory over the free fermionic theory. We will work in the frequency space, and we

also fix q = 4. In the free case we have J = 0, and the saddle point equations (2.8)–(2.9)

are solved by

Gαβ(ω) = Gf (ω)δαβ ; (2.30)

– 6 –
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where Gf is defined from

− iωGf (ω) = 1 . (2.31)

We introduce the dimensionless parameter λ and look for the solution by perturbing the

free UV fixed point:

Gαβ(ω) = Gf (ω)δαβ + λg
(1)
αβ (ω) + λ2g

(2)
αβ (ω) + . . . , . (2.32)

The field Σ in this case is expanded as follows:

Σαβ(ω) = 3J2λ(Gf ∗Gf ∗ g
(1)
αβ )(ω)δαβ + 3J2λ2(Gf ∗ g

(1)
αβ ∗ g

(1)
αβ )(ω)δαβ (2.33)

+3J2λ2(Gf ∗Gf ∗ g
(2)
αβ )(ω)δαβ + J2λ(g

(1)
αβ ∗ g

(1)
αβ ∗ g

(1)
αβ )(ω) + . . . ,

where the star denotes the functional contraction in the frequency space, and the replica

matrices are always multiplied a-la Hadamard, i.e. component-wise. Note that the leading

possible replica-nondiagonal contribution to Σ is of order λq−1. Substituting all this into

the saddle point equation (2.8) and equating the powers of λ, we arrive at an infinite system

of linear inhomogeneous integral equations for g(k). For example, for λ1 we obtain

iωg
(1)
αβ (ω) = 3J2Gf (ω) (Gf ∗Gf ∗ g

(1)
αβ )(ω)δαβ . (2.34)

It is clear that the solution for g(1) of this equation is replica-diagonal. Having solved

this equation, one can substitute the solution into the λ2 equation, which would then

allow to solve for g(2). However, since everything in the equation will be replica-diagonal,

the solution for g(2) will also be replica-diagonal. Using this expansion one can construct

the solution up to any finite order in λ, and it will thus always remain replica-diagonal,

ultimately because the free fixed point Gf is replica-diagonal.4

This means that we cannot obtain a replica-nondiagonal solution as a low-energy limit

of a replica-diagonal solution, and any replica-nondiagonal large N solution would be non-

perturbative in (βJ)−1.

3 Nondiagonal saddles in the q = 2 model

In this section we consider the q = 2 variant of the SYK model. We present a class of

simple exact replica-nondiagonal solutions and study their properties.

3.1 The solutions

Let us consider the q = 2 case and show that there are replica-nondiagonal solutions of the

saddle point equation. The saddle point equations (2.8)–(2.9) in the q = 2 case condense

to a single equation, which in terms of replica matrices is written as

G(ω) ·
(
− iω I − J2G(ω)

)
= I . (3.1)

4Note that this argument does not rule out the replica-diagonal solutions with broken replica symmetry,

i.e. different values of gαα for distinct α.
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Here G(ω) = (G(ω))αβ is a M ×M matrix, where ω is the Matsubara frequency, and I is

the unit matrix in the replica space. We assume the replica-symmetric ansatz

Gαα = G0, Gαβ = G1, for α 6= β, α, β = 1, . . .M (3.2)

The equation (3.1) turns into the pair of equations for G0 and G1:

−iωG0 − J2
(
G2

0 + (M − 1)G2
1

)
= 1 (3.3)

−iωG1 − J2
(

2G0G1 +G2
1(M − 2)

)
= 0 (3.4)

In order to obtain the fermionic solutions, we have to impose the antisymmetry condition

Gαβ(ω) = −Gβα(−ω) , (3.5)

which in terms of the replica-symmetric ansatz simply means that G0 and G1 have to be

odd functions in frequency and time domains.

The equations (3.3)–(3.4) are readily solved. There are two replica-diagonal solutions:

G
(1)
0 (ω) =

−iω + isgn(ω)
√

4J2 + ω2

2J2
; (3.6)

G
(2)
0 (ω) =

−iω − isgn(ω)
√

4J2 + ω2

2J2
; (3.7)

G
(j)
1 = 0 for j = 1, 2, (3.8)

and two replica-nondiagonal solutions

G
(3)
0 (ω) =

−iω + i sgn(ω)
√

4J2 + ω2
(
1− 2

M

)
2J2

; (3.9)

G
(3)
1 (ω) = − i sgn(ω)

√
4J2 + ω2

J2M
; (3.10)

G
(4)
0 (ω) =

−iω − i sgn(ω)
√

4J2 + ω2
(
1− 2

M

)
2J2

; (3.11)

G
(4)
1 (ω) = i sgn(ω)

√
4J2 + ω2

J2M
. (3.12)

Let us make a few remarks about these solutions. The first solution coincides with the

solution presented in [3]. It admits the J = 0 limit, where its leading asymptotic is given

by the free correlator 1
−iω . The second solution is the one, which gives subleading saddles,

discussed by Cotler et al. in [17]. All solutions are pure imaginary and

Re G
(j)
k (ω) = 0 = Re G

(j)
k (ω) ; (3.13)

G
(j)
k (−ω) = −G(j)

k (ω), G
(j)∗
k (ω) = −G(j)

k (ω) = G
(j)
k (−ω), k = 0, 1 (3.14)

There are also the relations

G
(3)
0 −G

(3)
1 = G

(1)
0 ; (3.15)

G
(4)
0 −G

(4)
1 = G

(2)
0 . (3.16)
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In regards to the replica-nondiagonal third and fourth solutions, the important property

worth pointing out here is that they are singular in the M → 0 limit. Also, one can check

that these solutions are singular in the free limit J → 0, which confirms the nonperturbative

nature of these solutions, discussed in the section 2.2. We will see that these properties

remain for the class of numerical q = 4 solutions that we studied.

We conclude this subsection with a comment about other solutions of the equa-

tion (3.1). This is a quadratic matrix equation, which means that in principle one can

find and classify all of the solutions at any fixed M . Their general form can be found by

rewriting the equation (3.1) as follows:5(
JG(ω) +

iω

2J
I

)2

= −
(

1 +
ω2

4J2

)
I . (3.17)

The general solution will have a form

G = − iω

2J2
I ± i

√
4J2 + ω2

2J2
X ; (3.18)

where X is a matrix which parametrizes a particular solution, such that:

X ·X = I . (3.19)

There is no explicit dependence on M in (3.18), however the diagonal component of equa-

tion (3.19) has a sum of M terms equal to 1. That means that the individual non-trivial

components of X should contain the 1/M dependence to compensate. Because of this

argument, we expect that every solution will have singularity at M → 0.

3.2 On-shell action

Now we turn to the study of contributions of the nondiagonal saddle points, described

above, to the replica partition function. Since the saddle point equations for different

frequency modes decouple, we can consider the density of the action, which we denote by

ρ and define at zero temperature as follows:

4π

NMV
SM =

∫
dω ρ(ω, J,M) . (3.20)

Here V is the regularized volume. At finite temperature the definition is generalized by

setting V = 2π and
∫
dω →

∑
ωn

. The decoupling of the saddle point equations means that

for every allowed frequency one can in principle choose any of the four solutions obtained

above. The question, in which we are interested here in this section, is whether there

are any saddle points that would dominate over the replica diagonal saddle. Because of

the frequency decoupling, to check this fact it is enough to compare the action density ρ

evaluated on different roots. Using the formulae (B.6), (B.8) at q = 2, the action density

5We thank Andrey Mikhailov for pointing this out.

– 9 –



J
H
E
P
0
7
(
2
0
1
9
)
1
1
3

1 2 3 4 5

- 15

- 10

- 5

5

10

15

(a)

1 2 3 4 5

- 15

- 10

- 5

5

10

15

(b)

1 2 3 4 5

- 15

- 10

- 5

5

10

15

(c)

1 2 3 4 5

- 10

10

20

30

(d)

Figure 1. Action densities (3.25) on 4 roots. Here J = 1. (a) M = 4. (b) M = 2. In this case

ρ(3) = ρ(4). (c) M = 1. In this case ρ(1) = ρ(4) and ρ(2) = ρ(3). (d) M = 0.5.

is written as

ρ = −l1 −
1

M
l2 +

J2

2
m ; (3.21)

l1 = log

(
1 + J2G0(ω)−G1(ω)

iω

)
; (3.22)

l2 = log

(
1 +M

J2G1

iω + J2(G0(ω)−G1(ω))

)
; (3.23)

m = |G0(ω)|2 + (M − 1)|G1(ω)|2 . (3.24)

We denote the contributions from different solutions (3.6)–(3.12) as

ρ(j)(ω, J,M) = −l(j)1 −
1

M
l
(j)
2 +

J2

2
m(j), j = 1, 2, 3, 4 (3.25)

If we see an interval where ρ(3) < ρ(1) (ρ(4) < ρ(1)), then that means that there are solutions

that have action lower than the replica-diagonal. One such solution can be constructed

by selecting the 3-rd (4-th) root for the frequencies from the interval where the above

inequality is true, and choosing the 1-st root for the rest of the frequencies. Thus we focus

on the study of the function ρ(ω) in the remainder of this subsection.

Let us first estimate the contributions of the first two diagonal solutions to the on-shell

action. For these roots l2 = 0 and:

ρ(1,2) = −l(1,2)
1 +

J2

2
m(1,2),
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Figure 2. First line: the difference ρ(non-diag) − ρ(1) as a function of ω and M . The regions of

dominance of the diagonal solution are shown by gray color. Second line: the difference ρ(3) − ρ(4)

as a function of ω and M .

l
(1,2)
1 = log

(
1 + J2G

(1,2)
0

iω

)
= log

1± sgn(ω)
√

4J2

ω2 + 1

2

 ; (3.26)

m(1,2) = |G(1,2)
0 (ω)|2 = 4(

ω ± sgn(ω)
√
4J2 + ω2

)2

We can expand in terms of small ω > 0. In this case we get

ρ(1,2) =
1

2
+ log

ω

J
∓ ω

J
+O(ω2) . (3.27)

Let us now present the contributions to the action density the last two solutions.

ρ(3,4) = −l
(3,4)
1 − 1

M
l
(3,4)
2 +

J2

2
m(3,4) (3.28)

= − log

(
1

2

(
±
√

4J2

ω2
+ 1 sgn(ω) + 1

))
− 1

M
log

(
ω ∓

√
4J2 + w2sgn(ω)

ω ±
√
4J2 + ω2sgn(ω)

)

+
∓(M − 2)M |ω|

√
4J2 + ω2 +M2ω2

4J2M2
+

1

2
. (3.29)
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For small frequencies ω → 0 (ω > 0), we get

ρ(3,4) =
1

2
+ log

ω

J
− iπ

M
∓
(

1− 2

M

)
ω

J
+O(ω2) . (3.30)

Comparing (3.30) with (3.27) we see in the leading order the asymptotic coincides, except

for phase contribution, which would be proportional to 2πi in the total action and thus

inconsequential. However, in the subleading ω1 order and higher there is difference. As

hinted by this asymptotic and confirmed by the plots of the exact expressions on figure 1,

the M = 1 is a threshold value which distinguishes between two different types of behavior

of saddle points:

• M > 1. In this case 1− 2/M > −1, so that the diagonal 1-st solution dominates, see

figure 1(a,b).

• M < 1. In this case 1−2/M < −1, and consequently nondiagonal solutions dominate

over the diagonal 1-st solution, see figure 1(d).

The M = 1 case is degenerate, where the 1-st and 4-th solutions, as well as the 2-nd and

3-rd solutions give pairwise equal contributions to the action, see figure 1(c). Also note

the peculiar case of M = 2, where the two nondiagonal solutions give the same action

density, as shown on figure 1(c). For M > 2 we have ρ(3) < ρ(4), and for M < 2 we have

ρ(3) > ρ(4). This is also illustrated on the plots figure 2(d–f) we plot the difference between

the contributions of two nondiagonal solutions ρ(3) − ρ(4) as a function of ω and M .

On figure 2(a–c) we plot the difference ρ(non-diag) − ρ(1).6 Besides the observations

mentioned above, from these density plots it is evident that the IR region seems to be

more robust in the singular M → 0 limit, rather than the UV. One can interpret this as a

hint towards the fact that the singular behavior in M → 0 limit of nondiagonal solutions

is the UV effect in the SYK model. We explain more evidence for this in other sections of

the paper.

4 Exact nondiagonal saddles in q = 4 SYK: numerical study

Having found nondiagonal solutions in the q = 2 model, we now turn to study the inter-

acting q = 4 model. In this case the saddle point equations (2.8)–(2.9) cannot be solved

analytically in general, so we construct the solutions numerically. As was done in the

previous section, we assume the replica-symmetric ansatz (3.2). In terms of independent

variables the saddle point equations read

−iωG0(ω)−G0(ω)Σ0(ω)− (M − 1)G1(ω)Σ1(ω) = 1 ; (4.1)

−iωG1(ω)−G1(ω)Σ0(ω)−G0(ω)Σ1(ω)− (M − 2)G1(ω)Σ1(ω) = 0 ; (4.2)

Σ0,1(τ, τ ′) = J2G0,1(τ, τ ′)q−1 . (4.3)

We solve the equations numerically at finite temperature, with β = 2π.

6Here ρ(non-diag) is the contribution of 3-rd root for M > 2 and 4-th root for M < 2 (which is on the

plot), since they exchange dominance relative to each other at that point.
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4.1 Comments on the method

We solve the system of integral equations (4.1)–(4.3) by iterating them. We use the ap-

proach employed in [17] in studies of subleading replica-diagonal saddles. The main idea

is to start iterations with q = 2, using a particular solution of the q = 2 model as a trial

functions, and gradually increase q from 2 to 4 during the procedure. Let us know discuss

the procedure in more detail.

Initial condition. The trial functions for G0 and G1 are constructed by choosing one

of the four solutions (3.6)–(3.12) for every Matsubara frequency. We want the resulting

solution in the interacting model to have the asymptotic behavior in the UV region that

would correspond to the free theory, so we only consider the q = 2 trial functions for which

∃n̄ such that G0,1(ωn) = −G0,1(−ωn) = G
(1)
0,1(ωn) ∀n ≥ n̄. In this case for any n < n̄ we

can choose G0,1(ωn) = −G0,1(−ωn) to be equal to any of the four solutions (3.6)–(3.12).

Iteration procedure. We divide the iterations into two stages.

1. We start first stage of iterations at q = 2. At each iteration, q is increased by some

small amount. At every step Σ0 and Σ1 are computed in the position space using

fast Fourier transform for G and equation (4.3), and then the inverse fast Fourier

transform is performed on Σ0,1. Then G0(ω) and G1(ω) are updated according to

the weighted rule (as also used in [3]) of the form

Gnew
0,1 = (1− x) G0,1 + x G̃0,1 , (4.4)

where 0 < x < 1 is the weighting coefficient and G̃ is defined by solving the equa-

tions (4.1)–(4.2) in terms of G0 and G1:

G̃0 =
1

−iωn − Σ0 + Σ1
+

Σ1

(iωn + Σ0 − Σ1)(iωn + Σ0 + (M − 1)Σ1)
; (4.5)

G̃1 =
Σ1

(iωn + Σ0 − Σ1)(iωn + Σ0 + (M − 1)Σ1)
. (4.6)

At this stage we keep the weight fixed, and the procedure is finished when q reaches 4.

2. The second stage of iterations is performed at fixed q = 4. Its purpose is to tune

the solutions, obtained in the previous stage, to the desired precision. In this proce-

dure we take the approach of [3] and control the L2-norm of the solutions between

successive steps

||∆G0,1||2 =

∫ β

0
dτ |G0,1(τ)new −G0,1(τ)old|2 , (4.7)

decreasing the weight x every time the ||∆G0,1||2 starts increasing. The procedure is

completed once ||∆G0,1||2 reaches zero (up to desired numerical accuracy).

The main limitation of our approach is that only real-valued stable numerical solutions

can be obtained. This puts limitations on making connections with the analytic solutions

in the conformal limit, which we discuss in the section 5) and thereafter.
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Figure 3. G0 (blue curve) and G1 (orange curve) as a function of Euclidean time on replica-

nondiagonal solutions for q = 4. The parameters are set at β = 2π and J = 10.

4.2 The results

When studying the saddle points of the replica partition function at finite M , the obtained

solutions indicate that for every q = 2 solution, that we choose as initial condition as

discussed above, there exists a solution of the q = 4 model. This generalizes the observation,

made in [17] for the replica-diagonal solutions, to the replica-nondiagonal symmetric case.

The solutions shown on figure 3 are obtained by iterating from the following q = 2 solutions:

(a) M = 4. G0,1(ω0) = −G0,1(ω−1) = G
(3)
0,1(ω0); G0,1(ωn) = G

(1)
0,1(ωn) for all other n.

(b) M = 4. G0,1(ω1) = −G0,1(ω−2) = G
(3)
0,1(ω1); G0(ωn) = G

(1)
0 (ωn) for all other n.

(c) M = 4. G0,1(ω4) = −G0,1(ω−5) = G
(3)
0,1(ω4); G0,1(ωn) = G

(1)
0,1(ωn) for all other n.
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(d) M = 2. G0,1(ω0) = −G0,1(ω−1) = G
(3)
0,1(ω0); G0,1(ωn) = G

(1)
0,1(ωn) for all other n.

(e) M = 2. G0,1(ω1) = −G0,1(ω−2) = G
(3)
0,1(ω1); G0(ωn) = G

(1)
0 (ωn) for all other n.

(f) M = 2. G0,1(ω4) = −G0,1(ω−5) = G
(3)
0,1(ω4); G0,1(ωn) = G

(1)
0,1(ωn) for all other n.

(g) M = 2. G0,1(ω0) = −G0,1(ω−1) = G
(4)
0,1(ω0); G0,1(ωn) = G

(1)
0,1(ωn) for all other n.

(h) M = 2. G0,1(ω1) = −G0,1(ω−2) = G
(4)
0,1(ω1); G0(ωn) = G

(1)
0 (ωn) for all other n.

(i) M = 0.5. G0,1(ω4) = −G0,1(ω−5) = G
(4)
0,1(ω4); G0,1(ωn) = G

(1)
0,1(ωn) for all other n.

(j) M = 0.5. G0,1(ω0) = −G0,1(ω−1) = G
(3)
0,1(ω0); G0,1(ωn) = G

(1)
0,1(ωn) for all other n.

(k) M = 0.5. G0,1(ω1) = −G0,1(ω−2) = G
(3)
0,1(ω1); G0(ωn) = G

(1)
0 (ωn) for all other n.

(l) M = 0.5. G0,1(ω4) = −G0,1(ω−5) = G
(3)
0,1(ω4); G0,1(ωn) = G

(1)
0,1(ωn) for all other n.

We have also studied this class of solutions in the limit M → 0. For this purpose

we add a third stage of iterations, where we keep q fixed, but change the value of M

from some finite initial value to zero during iterations. Evaluating ||∆G0,1||2 and the left

hand side of the equations of motion, we observe that the sequence of functions obtained

this way fails to converge to any solution of the saddle point equations, other than the

standard replica-diagonal saddle. When starting from a replica-nondiagonal solution at

finite M , we observe that the iterated functions develop discontinuities as M → 0. Thus,

from our numerical evidence we conclude that the singular behavior in the M → 0 limit,

that we see in the analytic q = 2 solutions, persists for nondiagonal solutions in the q = 4

model. Therefore, the main result of our numerical investigation is that at finite replica

number we get an infinite number of nontrivial replica-nondiagonal saddle points, whereas

in zero replicas limit we do not obtain any replica-nondiagonal solutions of the exact saddle

point equations.

4.3 On-shell action

We compute the on-shell action on the replica-nondiagonal solutions at finite M defined

by the formula (B.1). it appears that in the q = 4 case all the nondiagonal saddles that

we have constructed for M > 1 are subleading, similarly to the q = 2 case. We study

the difference
2

N
∆S =

2

N
(S(standard)− S(nondiagonal)) , (4.8)

where S(standard) is the value of the on-shell action on the standard replica-diagonal saddle

(timesM), and S(nondiagonal) is the value of the action on a particular replica-nondiagonal

solutions. On figure 4 we plot 2
N∆S as a function of the label n of a Matsubara mode,

which was chosen to be other than G(1) in the q = 2 trial function of the corresponding

numerical solution. For the nondiagonal G(2), G(3) and G(4) branches ∆S decays with n

according to what appears to be a power law nα with the exponent α determined by M

(as well as coupling). We also confirm the approximately linear decay on the diagonal G(2)

branch, which was stated in [17].
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Figure 4. On-shell action on the solutions as a function of n, which labels the Matsubara frequency

pair, for which in the initial q = 2 solution the G(1) was replaced by either G(2) (green), G(3) (red),

or G(4) (blue). (a) M = 2. The solutions corresponding to G(3) and G(4) in this case have equal

values of the action (shown by the red curve). (b) M = 4. Here βJ = 20π.

4.4 Remark on the large replica number limit

We conclude our discussion of exact replica-symmetric nondiagonal saddle points in q = 2

and q = 4 models by considering the large replica number limit, M →∞. Namely, we note

that the solutions in this limit become replica-diagonal. In the q = 2 case this is evident

from the analytic solutions (3.9)–(3.12). From these formulae we see that the nondiagonal

terms G
(3)
1 and G

(4)
1 vanish in the limit M →∞, while the diagonal terms G0 have a well

defined non-vanishing limit. For the q = 4 case the situation is similar. One can show that

eqs. (4.1)–(4.3) are reduced in the limit M →∞ to the equations for the diagonal case

−iωG0(ω)−G0(ω)Σ0(ω) = 1, (4.9)

Σ0(τ, τ ′) = J2G0(τ, τ ′)q−1. (4.10)

So in principle one can treat the nondiagonal terms as the 1/M -corrections.

The diagonality of the solutions in the M →∞ limit leads to the following identity:

lim
M→∞

lim
N→∞

1

MN
log

ZM

Z
M

= 0. (4.11)

This can be interpreted as a sort of self-averaging relation for the partition function

ZM ≈ Z
M

(4.12)

for large M and N .

5 Replica-nondiagonal solutions at strong coupling

We have found in the above section that the limit of zero replicas is singular in the replica-

nondiagonal solutions of the exact saddle point equations, and thus there are no replica-

nondiagonal solutions at M = 0 in the class which we studied. Now we will consider

the saddle point equations in the strong coupling (IR or conformal) limit, where we omit
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the time derivative. By neglecting the UV source term, which is diagonal in replicas, we

thus allow for a much bigger set of possible solutions. The aim of the present and the

subsequent sections is to construct solutions of the SYK model in the strong coupling limit

in M → 0 limit.

In the strong coupling limit βJ � 1 at finite replica number M the saddle point

equations (2.8), (2.9) which follow from (2.6) read:∫
dτ ′Gαβ(τ, τ ′)Σβγ(τ ′, τ ′′) = −δαγδ(τ − τ ′′) ; (5.1)

Σαβ(τ, τ ′) = J2Gαβ(τ, τ ′)q−1 . (5.2)

The saddle point equations (5.1), (5.2) in the strong coupling limit are invariant under

the transformations, which are induced by separate time reparametrization τ → fα(τ) in

every replica [31]:

Gαβ(τ, τ ′) = f ′α(τ)∆f ′β(τ ′)∆Gαβ(fα(τ), fβ(τ ′)) ; (5.3)

Σαβ(τ, τ ′) = f ′α(τ)1−∆f ′β(τ ′)1−∆Σαβ(fα(τ), fβ(τ ′)) . (5.4)

In other words, in the general replica-nondiagonal case the emergent conformal symmetry

extends to the group diff(S1)×M .

5.1 Separation of variables in the IR limit

We are going to study the solutions of saddle point equations at strong coupling using the

particular ansatz, where the time and replica dependencies are factorized [31]:

Gαβ(τ, τ ′) = g(τ, τ ′)Pαβ . (5.5)

The main advantage of using the ansatz (5.5) is that we can construct analytic solu-

tions. First, we substitute Σαβ from the second equation (5.2) into (5.1), and we are left

with the equation for G:

J2

∫
dτ ′
∑
β

Gαβ(τ, τ ′)Gβγ(τ ′, τ ′′)q−1 = −δαγδ(τ − τ ′′) . (5.6)

We substitute the factorized ansatz (5.5):

J2

∫
dτ ′g(τ, τ ′)g(τ ′, τ ′′)q−1PαβP

q−1
βγ = −δαγδ(τ − τ ′′) . (5.7)

The general solution to (5.7) is given by a matrix Pαβ and a function g(τ) that satisfy the

matrix equation ∑
β

PαβP
q−1
βγ = δαγC . (5.8)

and the integral equation

J2

∫
dτ ′g(τ, τ ′)g(τ ′, τ ′′)q−1 = − 1

C
δ(τ − τ ′′) . (5.9)
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here C is an arbitrary non-zero constant. We take the antisymmetric conformal invariant

solution of (5.9)

g(τ, τ ′) =
gc(τ, τ

′)

C∆
=

b

C∆

(
π

β

)2∆ sgn(τ − τ ′)∣∣∣sin π
β (τ − τ ′)

∣∣∣2∆
, (5.10)

where b is defined by (2.18). Due to the requirement Gαβ(τ, τ ′) = −Gβα(τ ′, τ) the matrix

P is symmetric Pαβ = Pβα. We note that the equation (5.7) has the scaling symmetry

under transformations

g(τ, τ ′)→ µ g(τ, τ ′) ; P → µ−1P . (5.11)

Thus we have a scaling degree of freedom which can be fixed arbitrarily. There are two

convenient ways two impose the scaling symmetry fixing condition.

• Normalization constraint. One can fix C =
∑

β P
q
βγ = 1. The off-diagonal part of the

equation (5.8) reduces to ∑
β

PβαP
q−1
βγ = 0 , α 6= γ . (5.12)

This equation is treated on equal footing with the normalization constraint, and they

together determine the matrix P .

• Diagonal constraint. In the present work we instead impose the condition when we

fix Pαα = 1. In this case one first solves the equation for non-diagonal components

of P , which has the form eq. (5.12), and then computes C to completely determine

the solution according to ∑
β

P qαβ = C . (5.13)

This approach is more convenient for study of specific solutions, and we employ it

throughout the paper.

The previous considerations in fact mean that ultimately we deal with the normalized

replica matrix, such that

Gαβ(τ) = gc(τ)P̃αβ , P̃αβ =
1

C1/q
Pαβ , (5.14)

where P̃αβ is the normalized matrix ∑
β

P̃ qαβ = 1 (5.15)

We can write the equation (5.8) in the matrix form. To do that, we introduce the

Hadamard matrix product:

(A ◦B)ij = AijBij (no sum) . (5.16)
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The degree (q− 1) is then understood as the matrix degree with respect to the Hadamard

multiplication, and we write the equation (5.8) as follows:

P · P ◦(q−1) = CI , (5.17)

where P ◦r = P ◦ P ◦ . . . P︸ ︷︷ ︸
r

, and I is the identity matrix.

As a side remark, we note that the equation (5.17) with C = 1 can be interpreted as

the saddle point equation for the 0-dimensional version of the SYK model [32]. Thus in

principle one can treat the factorized ansatz (5.5) as a sort of dimensional reduction of the

SYK model.

We also note that the factorized ansatz (5.5) breaks the reparametrization symme-

try (5.3)–(5.4) symmetry down to a single copy of diff(S1), which acts in the same way

as in the replica-diagonal case, see eqs. (2.23), (2.24). The solution (5.10) spontaneously

breaks it down further to SL(2,R). By acting with the (5.3)–(5.4) transformations on (5.5),

we can generate other analytic replica-nondiagonal solutions. The most general form of

the solution which can be obtained this way is the follows:

Gαβ(τ, τ ′) = Gαβ(τ, τ ′)Pαβ(τ, τ ′) , (5.18)

where

Gαβ(τ, τ ′) = g(fα(τ), fβ(τ ′)) ; (5.19)

Pαβ(τ, τ ′) = f ′α(τ)∆f ′β(τ ′)∆Pαβ (no sum) . (5.20)

In particular, these transformations can alter time dependence of replica-nondiagonal com-

ponents and thus lead to physically more interesting solutions. An example is considered

in the section 7.1.

5.2 The approach

To solve the equations (5.8), we use the Parisi ansatz [27, 28] for the matrix P . For the

definition and properties of Parisi matrices, see appendix A. The Parisi matrix P of the

rank l is characterized by the parameters a0, . . . , al. The key properties of the Parisi matrix

form that make it especially suitable for solving the equation (5.8), are the following:

1. A Parisi matrix satisfies the constraint∑
β

P qαβ = C ∀α (5.21)

identically, for any q with some C. This is easy to see because every line and every

column of a Parisi matrix contains all of its parameters, so the sum across every line

and column is the same.

2. The Parisi matrices form an algebra with respect to both direct matrix product and

the Hadamard matrix product (the proof is presented in the section A.3). This

guarantees the consistency of the matrix equation (5.17) (see representation (A.11)).
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For different possible configurations, we use the terminology analogous to the context

of spin glass solutions:

• l = 1, a0 6= 0, a1 = 0 - replica-diagonal solution

• l = 1, a0 6= a1 6= 0 - replica-symmetric solution

• l > 1, a0 6= a1 6= · · · 6= al - (l − 1)-th step of replica symmetry breaking. At finite

replica number the equations are easily solved in the complex domain for any rank l

of the Parisi ansatz.

In the framework of the Parisi ansatz we rewrite the equations (5.12), (5.13) using the

formulae (A.33), (A.34) with bj = aq−1
j :

0 = aja
q−1
0 + a0a

q−1
j +

∑
i<j

(aia
q−1
j + aja

q−1
i )(mi+1 −mi)−mja

q
j

+
∑
i>j−1

aqi (mi+1 −mi). (5.22)

C = aq0 +
l∑

j=1

aqj(mj+1 −mj); (5.23)

Our aim is to obtain and study solutions in the limit M → 0. We approach the problem

of finding the solutions as follows.7 We will take the limit M → 0 first, directly in the

saddle point equation (5.17) and in the on-shell action. Then we will find the solutions

and calculate the (regularized) on-shell action on them.

In general, the strong coupling limit of SYK contains UV divergences, and they will

appear in the action, evaluated on an IR solution. Therefore, if one wants to understand

the role of solutions in this limit when submerged into complete SYK model, one has to

perform the renormalization, by fitting to the numerical solutions of the exact equations.8

Because we were not able to find solutions of the exact saddle point equations in zero

replicas limit as discussed in section 4, we expect that for any replica-nondiagonal solution

in the IR limit this renormalization will bring the value of the on-shell action to be equal to

the standard saddle value. Thus we do not expect that the nondiagonal solutions that we

construct in M = 0 case in the strong coupling limit make any contribution to the physical

free energy in the complete SYK model. Nevertheless, we will be interested in calculating

the regularized free energy in the strong coupling limit on nondiagonal solutions, and study

its difference from the regularized free energy on the diagonal conformal solution in order

to analyze the dominance of saddles in the leading order of the strong coupling expansion.

7Our approach is different from that in the spin glass studies (e.g. [20, 27, 33–35]), where it is conventional

to derive the expression for the free energy in the M → 0 limit first, then minimize it on the class of

configurations restricted by the assumed ansatz. Instead of extremizing the action on the restricted class of

configurations, we find extrema of the action, under the assumption that the equations of motion continue

to define the saddle points after the zero replica limit.
8A perturbative in (βJ)−1 approach in the leading order amounts to accounting for the reparametrization

soft modes, as explained in [3, 4].
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In the next subsection we will consider the solutions of the factorized form (5.5) in the

simplest case, when q = 2 and M is non-zero integer. We employ the strategy, outlined

above, in the one-step replica symmetry breaking case and discuss the corresponding solu-

tions in detail in the next section 6. The rest of this section is focused on technical aspects

of regularization and calculation of the on-shell action and of the limit M → 0.

5.3 Factorized solutions in the q = 2 model

To provide some more motivation for consideration of solutions of the factorized form, let

us consider the simplest example of replica-symmetric solutions in the q = 2 model at

finite M . In this case exact solutions are given by formulas (3.9), (3.10), (3.11), (3.12).

We show in this subsection that in the IR limit these solutions have the form (5.5). This

fact illustrates the connection between the exact saddle points (3.6)–(3.12) and factorized

solutions of the form (5.5) in the strong coupling limit of the q = 2 model.

First of all, let us discuss what we expect in the strong coupling limit. Note that if

q = 2, then in the frequency space the function g(ω) is piecewise constant, as can be seen

from equation (2.22) by setting ∆ = 1
2 :

gc(ω) ∼ sgn(ω) . (5.24)

That means that for q = 2 the full solutions of the form (5.5) in the frequency space are

also piecewise-constant:

Gαβ(ω) = Csgn(ω)Pαβ . (5.25)

We want to check whether the exact replica-nondiagonal solutions, given by the formu-

lae (3.9), (3.10), (3.11), (3.12), assume this form in the IR limit. To take the IR limit in

these solutions, we set ω → +0.9 We get

G
(3)
0 =

i
(
1− 2

M

)
J

; (5.26)

G
(3)
1 = −i 2

JM
; (5.27)

G
(4)
0 =

−i
(
1− 2

M

)
J

; (5.28)

G
(4)
1 = i

2

JM
. (5.29)

If one takes the IR limit as ω → −0, then one obtains the same expressions with different

overall signs because of the sgn-functions in the solutions (3.9), (3.10), (3.11), (3.12).

Thus, these solutions have the form

Gαβ =
i

J
sgn(ω)Pαβ , (5.30)

9Note that this approach to taking the IR limit is not suitable for general q. In general one has to perform

the strong coupling expansion and select the leading IR asymptotic (we elaborate on this in section 7.3.2).

However just setting ω → +0 works in q = 2.
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where

Pαα = ±
(

1− 2

M

)
∀α ; (5.31)

Pαβ = ∓ 2

M
∀α 6= β , (5.32)

is the replica-symmetric Parisi matrix.

Having confirmed the general form (5.25), we now only have to check that the equa-

tion (5.8) for the matrix P is satisfied. The off-diagonal equation (5.22) in this case reads

−2

(
1− 2

M

)
2

M
+

(
2

M

)2

(M − 2) = 0 . (5.33)

It is easy to see that this is true identically for any M 6= 0. Now we can find the normal-

ization constant C from the equation (5.23):

C =

(
1− 2

M

)2

+

(
2

M

)2

(M − 1) = 1 . (5.34)

Thus we have shown that the solutions (3.9)–(3.12) reduce to solutions of the form (5.5)

in the IR limit.

5.4 Treatment of the Pfaffian term

5.4.1 Pfaffian factorization

To obtain the expression of on-shell action for factorized solutions from the partition func-

tion (2.6), we first need to evaluate the Pfaffian term. In the IR limit ∂τ → 0 the factorized

ansatz for replica-nondiagonal solutions allows for the factorization of the Pfaffian. To

prove it, we can write

Pf(−Σ̂αβ) =

∫
Dχ exp

(
−1

2

∫
dτdτ ′χα(τ)Σαβ(τ, τ ′)χβ(τ ′)

)
. (5.35)

We can diagonalize the Σαβ(τ, τ ′) by making the transition to the frequency space. We write

χ(τ) =
1

β

∑
n∈Z

χ̃(ωn)e−iωnτ ; (5.36)

Σαβ(τ1, τ2) =
1

β

∑
n∈Z

Σ̃αβ(ωn)e−iω(τ1−τ2) , (5.37)

where ωn are Matsubara frequencies defined in (2.20). Then the quadratic form reads

1

2

∫
dτ1dτ2χα(τ1)Σαβ(τ1, τ2)χβ(τ2) =

1

β

∑
n∈Z+

χ̃α(−ωn)Σ̃αβ(ωn)χ̃β(ωn) . (5.38)

Note that ¯̃χα(ωn) = χ̃α(−ωn).

On the factorized solution (5.5), we write

Σαβ(τ, τ ′) = Σc(τ, τ
′)C∆−1P q−1

αβ ⇒ Σ̃αβ(ωn) = Σ̃c(ωn)C∆−1P q−1
αβ , (5.39)
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where Σc(τ, τ
′) = J2gc(τ, τ

′)q−1, and gc is the conformal propagator given by (2.17). Sub-

stituting this and (5.38) into (5.35), we evaluate the path integral as∫ ∏
n∈Z+

∏
α

dχ̃α(ωn)d ¯̃χα(ωn) exp

(
− 1

β

∑
n∈Z+

¯̃χα(ωn)Σ̃c(ωn)C∆−1P q−1
αβ χ̃β(ωn)

)

=
∏
n∈Z+

[(
− 1

β
Σ̃c(ωn)

)M
det(C∆−1P q−1

αβ )

]

=
∏
n∈Z+

(
− 1

β
Σ̃c(ωn)

)M
×
∏
n∈Z

det(C∆−1P q−1
αβ )1/2 .

(5.40)

The factor depending on Σ̃ is the same as in the replica-diagonal case. The second

factor is the contribution from replicas, it is an infinite degree of the determinant of a Parisi

matrix. The latter is calculated in the M → 0 limit in section (A.4), see eq. (A.41). To

calculate its contribution in the action, we only need to introduce an appropriate regular-

ization by introducing a cutoff at some large n in the product.

5.4.2 Regularization

To finally separate out the contribution of the replica matrix in the Pfaffian, we need to

regularize it. In the present work we use a direct regularization, which is a hard cutoff in

the frequency space such that the validity of the strong coupling regime is preserved:

|ωn| ≤ J . (5.41)

This corresponds to the restriction on number of Matsubara modes∣∣∣∣n+
1

2

∣∣∣∣ ≤ βJ

2π
. (5.42)

and corresponds to the cutoff of dimHf , where Hf is a finite dimension subspace of the

infinite dimension space H of functions on the circle,

dimHf ≡ df '
βJ

π
. (5.43)

In this regularization we can write∏
n∈Z

det(C∆−1P q−1
αβ )1/2 = det(C∆−1P q−1

αβ )df/2 , (5.44)

and

TrHf 1 = df . (5.45)

The restriction (5.41) also supports the validity of the strong coupling, or IR, regime.

Indeed, the contribution of the free propagator (the ω-term) in the denominator of the

l.h.s. of (2.14) is suppressed as compared to Σ(ω) that at large β can be estimated as

Σ(ωn) ∼ J2∆ω1−2∆
n (5.46)

and ωn < Σ(ωn) corresponds to the bound (5.41).

Another regularization was discussed in [30], it is essentially equivalent to the expo-

nential cutoff in frequencies.
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5.5 On-shell action on factorized solutions

We start with the on-shell action for the partition function (2.6) at finite M in the strong

coupling limit,

2

N
SM = −Tr log

(
−Σ̂αβ

)
(5.47)

+

∫ β

0

∫ β

0
dτ1dτ2

∑
α,β

(
Gαβ(τ1, τ2)Σαβ(τ1, τ2)− J2

q
Gαβ(τ1, τ2)q

) ∣∣∣
on-shell

.

We use the saddle point equations (5.1), (5.2) and substitute the factorized ansatz (5.5).

For the action we get

2

N
SM = −Tr log[−Σ̂αβ ] +

(
1− 1

q

)
J2

∫ β

0

∫ β

0
dτ1dτ2

∑
α,β

Gαβ(τ1, τ2)q.

Substituting for the solution

Gαβ(τ, τ ′) = gc(τ, τ
′)

1

C∆
Pαβ , (5.48)

Σαβ(τ, τ ′) = Σc(τ, τ
′)C∆−1P q−1

αβ = J2gc(τ, τ
′)q−1C∆−1P q−1

αβ , (5.49)

we get

2

N
SM = − log Det[−C∆−1P

(q−1)
αβ Σ̂c] +

q − 1

qC
J2
∑
α,β

P qαβ

∫ β

0

∫ β

0
dτ1dτ2gc(τ1, τ2)q

Using the factorization property of the det and the identity∑
α,β

P ◦qαβ = CM , (5.50)

we obtain

2

N
SM = −M log Det[−Σ̂c] + df

(
1− 1

q

)
J2M − df log det[C∆−1P ◦(q−1)]

= M(s1,c + s2,c + s3) (5.51)

where s1,c and s2,c are defined in (2.28) and (2.29) respectively. Note that we use the

same regularization in the polynomial term (which amounts to (5.45), as discussed above

for the Pfaffian term. The new term unique to replica-nondiagonal factorized solutions is

introduced:

s3 = −
df
M

log det[C
1
q
−1
P ◦(q−1)] . (5.52)

Note that it is proportional to the UV cutoff parameter df , which is defined in (5.45).
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5.6 The M → 0 limit

5.6.1 Replica symmetric case

Let us first consider the simplest example of a Parisi matrix to illustrate our approach for

taking the zero replicas limit. We consider the Parisi matrix P of the first level (as explained

in appendix A), or the replica symmetric ansatz. Let us take Pαα = a, α = 1, 2, . . . ,M and

Pαβ = A if α 6= β. Here a and A are two generically complex-valued numbers. We have

P = (Pαβ) =


a A A . . .

A a A . . .

A A a . . .

. . . . . .

 , P ◦(q−1) = P q−1
αβ =


aq−1 Aq−1 Aq−1 . . .

Aq−1 aq−1 Aq−1 . . .

Aq−1 Aq−1 aq−1 . . .

. . . . . .


(5.53)

Note that from (A.38)

det(P ◦(q−1)) = (aq−1 −Aq−1)M−1
(
aq−1 + (M − 1)Aq−1

)
. (5.54)

The limit M → 0 in this case is taken straightforwardly:

lim
M→0

1

M
log det(P ◦(q−1)) = log(aq−1 −Aq−1) +

Aq−1

aq−1 −Aq−1
(5.55)

Equations (5.12) and (5.13) read

aAq−1 +Aaq−1 +Aq(M − 2) = 0, (5.56)

C = aq +Aq(M − 1) (5.57)

and in the limit M → 0 take the form

aAq−1 +Aaq−1 − 2Aq = 0, (5.58)

aq −Aq = C . (5.59)

Fixing the scaling freedom by setting a = 1,we get the final equations for the M = 0 case:

Aq−1 +A− 2Aq = 0 , (5.60)

1−Aq = C . (5.61)

Now we compute the limit of s3 at M → 0. We have

− lim
M→0

1

M
log det(C

1
q
−1
P ◦(q−1)) =

q − 1

q
log(1−Aq)− log(1−Aq−1)− Aq−1

1−Aq−1
(5.62)

For q = 2(n− 1) the equation (5.60) has n pairs of conjugated roots (b(i), b̄(i)). Each such

pair gives the contribution to the regularized free energy, determined by the real part of s3,

see discussion below in section 5.6.4 for more details. Taking into account that the cutoff is
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Figure 5. (a) Locations of the dominant root of (5.60) for q = 4, 6, . . . 20 (14,16,18,20 — green).

(b) Absolute value of the dominant root of (5.60) for q = 4, 6, . . . 20.

df ' βJ , we can compute the normalized difference between the regularized free energies

of the replica-diagonal and nondiagonal solutions:

f ≡ 2

NJ
∆F =

2

NJ
(FRND − FRD) (5.63)

= − lim
M→0

Re
1

M
log det(C

−1+ 1
qP ◦(q−1))]] (5.64)

=

(
q − 1

q
log |1− bq| − log |1− bq−1| − Re

bq−1

1− bq−1

)
. (5.65)

In the q = 4 case, log |1 − b4| = 0 since |1 − b4| = 1. Then |1 − b3|2 = 1/2 and therefore

log |1− b3| = −1
2 log 2.. Finally, Re b3

1−b3 = 3
8 , and we have

f
(1)
4 = −3

8
+

log 2

2
= −0.028 , (5.66)

It is negative, so the value of the regularized free energy on this solution is below the replica

diagonal case.

We present pairs of nontrivial solutions A = (b
(i)
q , b̄

(i)
q ), i = 1, . . . q2 − 1 to (5.58) for

values q = 4, 6, 8, 10 and the corresponding values of fq in the table 1. Comparing the

regularized free energies for solutions for every q, the last pair of roots in every column

have the smallest regularized free energy and are thus dominant. The position of these

dominant roots on the complex plane are shown on the figure 5(a), and the absolute value

as a function of q is plotted on figure 5(b). The values of fq for other replica-symmetric

solutions are plotted on figure 6(a), and the dependence of the fq for the lowest replica-

symmetric saddle on q is presented on figure 6(b).

5.6.2 General Parisi ansatz at M → 0

To take the limit M → 0 for more general structure of the Parisi matrix, we use the

standard trick of [27]: we introduce the Parisi function of a continuous variable instead

of the Parisi matrix parameters, thus performing the analytic continuation from integer
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q bq fq

4 b
(1)
4 =

(
−1± i

√
7
)
/4 f

(1)
4 = −0.028

6
b
(1)
6 = 0.621± 0.502i; f

(1)
6 = 0.0652;

b
(2)
6 = 0.371± 0.803i f

(2)
6 = −0.301

8

b
(1)
8 = −0.757± 0.388i; f

(1)
8 = 0.104;

b
(2)
8 = −0.137± 0.869i; f

(2)
8 = −0.080;

b
(3)
8 = 0.644± 0.690i f

(3)
8 = −0.556

10

b
(1)
10 = −0.824± 0.314i; f

(1)
10 = 0.125;

b
(2)
10 = −0.415± 0.79i; f

(2)
10 = 0.0132;

b
(3)
10 = 0.215± 0.898i; f

(3)
10 = −0.244;

b
(4)
10 = 0.775± 0.582i f

(4)
10 = −0.773

Table 1. Complex roots of equation (5.60) and corresponding values of fq for different values of q.
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Figure 6. (a) Regularized free energy on replica-symmetric saddles at various values of q. (b) Free

energy of the lowest replica-symmetric saddle as a function of q.

values of M to arbitrary positive real number: aj → a(u)

n∑
i=1

ρi(mi+1 −mi) →
∫ n

1
ρ(v) dv ; (5.67)

j∑
i=1

ρj(mi+1 −mi) →
∫ u

1
ρ(v) dv ; (5.68)

n∑
i=j+1

ρj(mi+1 −mi) →
∫ n

u
ρ(v) dv . (5.69)

and (5.22) and (5.23) become

0 = aq−1
0 a(u) + a0a

q−1(u)− uaq(u) + aq−1(u)

∫ u

1
a(v) dv + a(u)

∫ u

1
aq−1(v) dv

+

∫ M

u
aq(v) dv . (5.70)

C = aq0 +

∫ M

1
aq(v) dv ; (5.71)
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Taking the limit M → 0, we write

0 = aq−1
0 a(u) + a0a

q−1(u)− uaq(u)− aq−1(u)

∫ 1

u
a(v) dv − a(u)

∫ 1

u
aq−1(v) dv

−
∫ u

0
aq(v) dv . (5.72)

C = aq0 −
∫ 1

0
aq(v) dv ; (5.73)

Defining the average ∫ 1

0
ap(v) dv ≡ 〈ap〉 (5.74)

we arrive at the following equations:

0 = a(u)[aq−1
0 − 〈aq−1〉] + aq−1(u)[a0 − 〈a〉]−

∫ u

0
[a(v)− a(u)][aq−1(v)− aq−1(u)] dv ,

(5.75)

C = aq0 − 〈a
q〉 . (5.76)

where u ∈ [0, 1]. Finally, we fix the scaling freedom by imposing Pαα = a0 = 1, or,

equivalently, dividing (5.75) and (5.76) by aq0. We arrive at

0 = a(u)[1− 〈aq−1〉] + aq−1(u)[1− 〈a〉]−
∫ u

0
[a(v)− a(u)][aq−1(v)− aq−1(u)] dv ,

(5.77)

C = 1− 〈aq〉 . (5.78)

Thus, these integral equations are the final form of the matrix equation (5.17) in the zero

replicas limit.

5.6.3 A comment on the q = 2 case

For q = 2 the equations (5.78), (5.77) have the form

0 = 2a(u)[1− 〈a〉]−
∫ u

0
[a(v)− a(u)]2 dv . (5.79)

C = 1− 〈a2〉 ; (5.80)

Taking the derivative on the first equation, we get

2a′(u)[1− 〈a〉]− [a(u)− a(u)]2 + 2a′(u)

∫ u

0
[a(v)− a(u)] dv = 0 , (5.81)

or

2a′(u)[1− 〈a〉] + 2a′(u)

∫ u

0
[a(v)− a(u)] dv = 0 . (5.82)

If a′(u) 6= 0, we get

1− 〈a〉+

∫ u

0
[a(v)− a(u)] dv = 0 . (5.83)
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Taking derivative once again, we arrive at

− a′(u)

∫ u

0
dv = 0 (5.84)

This shows that there is no solution, except for a′(u) = 0, i.e. a = A = const. From the

equation (5.79) it follows that only two possibilities can be realized:

• A = 0 — this leads to the regular replica-diagonal solution;

• A = 1 — is not a solution of the full SYK saddle point equations, because it according

to (5.80) it results in C = 0.

Therefore the replica-diagonal solution is the only valid solution of the q = 2 SYK model

in the zero replicas limit. We note that the proof works only for smooth functions a(u).

For the discontinuous function a(u), we have checked that this also is the case on the step

function ansatz, and expect this to be true for any function.

5.6.4 Contribution to the regularized free energy

The free energy is expressed from (2.4) using (2.5):

− βF = lim
M→0

logZM

M
. (5.85)

To calculate it in the large-N approximation, we have to find the saddle point configuration

of ZM ∼ exp(−SM ) in the space of replica bilocal fields Gαβ and Σαβ with the minimal

value of the real part of the on-shell action. On the factorized solutions, we can have one

or several saddle points with the same value of real part of the action.

We are specifically interested in the free energy of factorized replica-nondiagonal Parisi

saddle points in the conformal limit. The regularized on-shell action in this case, as dictated

by (5.51), separates into the contribution identical to the replica-diagonal on-shell action

in the conformal limit plus a contribution from the Parisi replica matrix:

lim
M→0

s3 = − lim
M→0

1

M
df tr logQ , (5.86)

where we use the cutoff consistency assumption that df = βJ/π, and the matrix Q on the

replica space is defined as

Q = C∆−1P ◦(q−1) . (5.87)

The matrix Q has the Parisi form and is expanded as (A.11):

Q =
M∑
i=1

qi(Imi+1 − Imi) + q0I1 , (5.88)

where the Parisi parameters are defined as follows:

qi = C∆−1aq−1
i ; i = 0, . . . ,M . (5.89)
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In the continuum representation the matrix Q is defined by the constant q0 and the Parisi

function q(u), which are defined as (with a0 = 1 taken into account)

q0 = C∆−1 ; (5.90)

q(u) = C∆−1a(u)q−1 . (5.91)

To compute (5.86) in the replica limit M → 0, we use the formula for the Parisi matrix

tracelog in the continuum representation [27]:

lim
M→0

1

M
tr logQ = log(q0 − 〈q〉) +

q(0)

q0 − 〈q〉
−
∫ 1

0

dv

v2
log

q0 − 〈q〉 − [q](v)

q0 − 〈q〉
, (5.92)

where

[q](u) =

∫ u

0
dv(q(u)− q(v)) . (5.93)

Substituting (5.87) into (5.92), we obtain the expression:

lim
M→0

1

M
tr logQ = log(q0 − 〈q〉) +

q(0)

q0 − 〈q〉
−
∫ 1

0

dv

v2
log

q0 − 〈q〉 − [q](v)

q0 − 〈q〉
(5.94)

=
1− q
q

log C + log(1− 〈aq−1〉) +
aq−1(0)

1− 〈aq−1〉

−
∫ 1

0

dv

v2
log

1− 〈aq−1〉 − [aq−1](v)

1− 〈aq−1〉
. (5.95)

With C substituted using the equation (5.78), this formula establishes the resulting general

expression for the contribution of the replica structure to the on-shell action on a particular

solution for the Parisi function a(u).

To be able to compute the free energy, what is left is to describe which saddle points

actually contribute in the path integral. We find them by solving the equations of motion

for the Parisi matrix P . The subtlety here is that we can have multiple saddle points with

equal absolute value of the integrands. Each saddle point gives a contribution to the free

energy which reads

Fsaddle(k) =
1

β
lim
M→0

1

M
SM (k) , (5.96)

where k labels the saddle point. If we have a family of n saddle points with free energy

values Fsaddle(k) such that

Re Fsaddle(i) = Re Fsaddle(j) ∀i, j = 1, . . . , n , (5.97)

we have to sum over them to obtain the full expression for the free energy:

F = − 1

β
log

n∑
k=1

e−βFsaddle(k) = Re Fsaddle −
1

β
log

n∑
k=1

e−iβ Im Fsaddle(k) . (5.98)

Note that in the case of integer M the l.h.s. of the equation (5.17) is a polynomial with

real coefficients. Therefore is P1 is a complex-valued solution of the equation, then the

matrix P2 = P ∗1 is also a solution, as we saw in the replica-symmetric particular case in
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section 5.6.1. Therefore for every complex saddle point we will also have the complex

conjugated saddle point contributing in the sum in (5.98). Focusing on the case of two

complex-conjugated saddle points in the sum, the formula for the free energy is written as

F = Re Fsaddle −
1

β
log [2 cos (β Im Fsaddle)] . (5.99)

Recall that the saddle point value of the free energy is determined by the on-shell action

SM in the M → 0 limit, see eq. (5.96). The SM is expressed by the formula (5.51). First

of all, let us note that the on-shell action is proportional to N . The first term in the

formula (5.99) is a real part of that action, and is also therefore an extensive contribution

to the free energy. However, the second term is not proportional to N . When taking the

large N limit in a special way, so that the singularities in the log are avoided, the second

term can be neglected. Therefore, we are left with the real part of the on-shell action (5.51)

defining the free energy at large N .

The s3 piece is responsible for non-trivial contributions to the free energy of the replica-

nondiagonal factorized solutions. Hence on specific solutions we are most interested in

the quantity

∆F = FRND − FRD = lim
M→0

N

2β
Re s3 , (5.100)

and, in particular, in the sign of ∆F describing the shift of the replica non-diagonal solutions

in respect to the diagonal one. The negativity of ∆F for given pair of solutions means

that the replica non-diagonal solution is the dominant one. This is the quantity in the

rigid strong coupling limit where the replica matrix P in the factorized ansatz introduces

discrepancy with the replica-diagonal result.

6 One-step RSB solution

Having established the formalism and derived general expressions for equations of motion

and on-shell action in the previous section, we are now ready to study solutions more

specifically. In this section we focus on the SYK model with q = 4. We study the solutions

of the equations (5.78), (5.77). We restrict ourselves to the solutions for a(u), which can be

described by the one-step replica symmetry breaking ansatz, in analogy with the one-step

solutions in the spin glass systems [27, 28], such as the Sachdev-Ye model [20]:

a(u) = A0 +A1θ(u− µ) . (6.1)

In this formula µ is a free parameter, to which we will refer as the breakpoint (again, in

analogy with [20]). The moments of a(u) and integrals which contribute to (5.78), (5.77)

are evaluated on the ansatz (6.1) as follows:

〈a〉 = A0 +A1(1− µ) ; (6.2)

〈a3〉 = (A0 +A1)3 −A1(3A2
0 + 3A0A1 +A2

1)µ ; (6.3)

〈a4〉 = (A0 +A1) 4 −A1 (2A0 +A1)
(
2A2

0 + 2A1A0 +A2
1

)
µ ; (6.4)∫ u

0
dv(a(v)− a(u))(a(v)3 − a(u)3) = A2

1(3A2
0 + 3A0A1 +A2

1)µ θ(u− µ) . (6.5)
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The equation (5.78) reduces to

1− (A0 +A1)4 +A1 (2A0 +A1)
(
2A2

0 + 2A1A0 +A2
1

)
µ = C . (6.6)

Meanwhile, the equation of motion (5.77) decays into two equations which we get separating

the coefficient in front of the step function:

A0

(
A2

0 + 1 +A3
1(µ− 1) + 3A0A

2
1(µ− 1) + 4A2

0A1(µ− 1)− 2A3
0

)
= 0 ;

(6.7)

A1

(
A2

1 (1 +A0(3µ− 7)) + 3A0A1 (1 +A0(µ− 3)) + 3A2
0 + 1 +A3

1(µ− 2)− 4A3
0

)
= 0 .

(6.8)

We take µ as the free parameter and solve these equations for A0 and A1. Equations (6.7)–

(6.8) are algebraic equations of the 4-th order, so we have 16 solutions. We want to pick

solutions that describe saddle points of the model, i.e. ones that also solve the equation (5.7)

in the M → 0 limit.

We compute the contribution to the regularized free energy (5.100) on these solutions

∆F = lim
M→0

N

2β
Re s3 = − lim

M→0

N

2β

1

M
dfRe[tr logQ] = − lim

M→0

J N

2

1

M
Re[tr logQ] ,

(6.9)

For the tracelog we use the formula (5.95), which on the one-step ansatz assumes the

following form:

lim
M→0

1

M
tr logQ = −3

4
log
(
1 +A1 (2A0 +A1)

(
2A2

0 + 2A1A0 +A2
1

)
(µ− 1)−A4

0

)
+ log

(
1 +A1

(
3A2

0 + 3A1A0 +A2
1

)
(µ− 1)−A3

0

)
+

A3
0

1 +A1

(
3A2

0 + 3A1A0 +A2
1

)
µ− (A0 +A1) 3

(6.10)

+

(
1− 1

µ

)
log

(
1−

A1µ
(
3A2

0 + 3A1A0 +A2
1

)
1 +A1

(
3A2

0 + 3A1A0 +A2
1

)
µ− (A0 +A1) 3

)
.

Let us note some observations:

• All of the complex saddle points, which give the same real part of the action, are

organized in mutually conjugated pairs, and we didn’t find any instances of multi-

ple pairs of saddle points giving the same real part of the on-shell action, so the

formula (5.100) is applicable.

• While the general formula (5.99) does not necessarily guarantees that the regularized

free energy is real-valued, we found this to be the case for all solutions we studied,

except for one which we mention below.

The constant solutions correspond to one step function with A1 = 0, see (6.1). We

have two kinds of solutions in this class:
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Figure 7. (a) Trajectory of the saddle point (6.12) parametrized by µ on the complex plane. (b)

The value of the free energy on solution (6.12), the solid line shows the real part and dashed line

the imaginary part.

1. Replica-diagonal (paramagnetic) solution: A0 = 0, A1 = 0.

2. Replica-symmetric complex-valued solutions. This case is reduced to considerations

performed in section 5.6.1, see table 1.

Replica symmetry breaking solutions. There are also two kinds of solutions with

A1 �= 0:

1. A0 = 0. In this case A1 is a solution of the equation which follows from (6.8):

A2
1a0 + a30 +A3

1(µ− 2) = 0 (6.11)

This equation has one real and two complex mutually conjugated solutions:

A
(1)
1 =

3
√
2

3(2− µ)K
+

K

3 3
√
2(2− µ)

+
1

3(2− µ)
; (6.12)

A
(2,3)
1 = −

(
1∓ i

√
3
)

3 22/3(2− µ)K
−

(
1± i

√
3
)
K

6 3
√
2(2− µ)

+
1

3(2− µ)
, (6.13)

where

K =
3

√
−k−

√
k2 − 4, k = −27µ2 + 108µ− 110 . (6.14)

The regularized free energy for the real solution labeled by (1) is complex valued.

The location of solution (6.12) on the complex plane and its contribution to the free

energy is presented on figure 7. Note that the free energy diverges at the real solution

near the limiting case µ = 0.

The solutions (6.13) are mutually complex conjugated. Their trajectories on the

complex plane parametrized by µ and their contribution to the regularized free energy

is presented on figure 8. We see that at µ = 0 the positions of these solutions coincide
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Figure 8. (a) Trajectories of saddle points (6.13) parametrized by µ on the complex plane. The

green points show the location of the replica symmetric solutions. (b) The value of the regularized

free energy on solution (6.13) as a function of µ. The green line is the value of the free energy for

replica-symmetric solutions (5.66).
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ImA0

ReA0
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1
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3

ReA1

ImA1

(b)

Figure 9. Trajectories of saddle points parametrized by µ on the complex plane. The black point

is the corresponding replica-symmetric solution with a0 = A0. The green points are the complex

replica-symmetric solutions.

with the positions of pure constant complex solutions (see table 1 at q = 4), shown

by green points. This is not surprising since for µ = 0 our step function solution in

fact corresponds to the constant solution.

2. Second group of RSB solutions is characterized by non-zero both A0 and A1. In this

case the degree of the algebraic equations (6.7), (6.8) is too high to obtain explicit

analytic solutions, but they can be solved numerically. We plot these solutions on the

complex plane on figure 9. Among these RSB solutions there are some that turn into

the real replica-symmetric solution with A0 = a0 at either µ = 0 or µ = 1, whereas

others reduce to the complex replica-symmetric solutions. We have calculated the

contribution to the regularized free energy of the remaining solutions. The depen-

dence of ∆F on the breakpoint parameter µ is presented on figure 10. We see that

there are three local minima below the replica-diagonal value.
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Figure 10. The plot of the replica dependent part of the free energy on numeric solutions. Green

line is the free energy on complex replica symmetric solution. All colors here correspond to the

colors in the figure 9.

7 Some implications of factorized solutions

7.1 Spin-glass-like metastable states

As we discussed in the section 5, we can use the extended reparametrization symme-

try (5.3), (5.4) to generate more physically interesting solutions from a factorized solution.

For example, we can make the time dependence of replica-offdiagonal components of the

field Gαβ differ from the time dependence of the diagonal components if we act with the

set of diffeomorphisms Vα ∈ diff(S1) which is arranged in such a way that

∀α, β : α �= β , Vα = Vβ ◦ Uβ , where Uβ ∈ SL(2,R) . (7.1)

In this case all diagonal components will have the same time dependence, whereas the time

dependence of the off-diagonal components will be different, because of the extra SL(2,R)
transformation which acts only on one of the times.

Example. Let us fix M = 2. We will work in terms of dimensionless times on the

thermal circle

θ1,2 =
2π

β
τ1,2 . (7.2)

Consider the following pair of diffeomorphisms, where the first transformation is identity

and the second one is a fraction linear transformation on the circle:

θ → ϕ1(θ) = θ ; (7.3)

θ → ϕ2(θ) : eiϕ2(θ) =
aeiθ + b

ceiθ + d
, ad− bc = 1 . (7.4)

In this case the diagonal components G11 and G22 are invariant under these transformations

and are given by

G11 = g(τ1, τ2)P11 ; G22 = g(τ1, τ2)P22 . (7.5)
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However, the off-diagonal part transforms non-trivially:

G12 → const(d+ c eiθ2)−2∆

∣∣∣∣eiθ1 − aeiθ2 + b

ceiθ2 + d

∣∣∣∣−2∆

P12 . (7.6)

In order to analyze the dependence on real time, we set θ1 = 0 and eiθ2 = e
2π
β
t2 . Then,

we obtain

G12(0, t2) ∼
(
d− b− (a− c)e

2π
β
t2
)−2∆

. (7.7)

This is the decay law of the off-diagonal component. The exponent does not dominate

until the characteristic time scale of

t∗2 =
β

2π
log

d− b− 1

a− c
. (7.8)

Since the SL(2,R) is non-compact, by fine tuning the parameters of the Möbius transfor-

mation, we can make this time scale as long as we like, so that

log
d− b− 1

a− c
� 0 . (7.9)

For comparison, the diagonal components behave like

G11(0, t2) ∼ (1− e
2π
β
t2)−2∆ , (7.10)

and it starts decaying right away. This means that at short times t2 < t∗2 the trans-

formed solution is frozen, behaving like a kind of spin glass. However, after t∗2 the thermal

fluctuations destroy the spin-glass-like configuration with the same speed as a regular

replica-diagonal configuration.

7.2 On relation to thermofield double and AdS2 gravity

7.2.1 Thermofield double from two replicas

The emergent (extended) conformal invariance suggests that the factorized solutions might

have a holographic interpretation in terms of nearly AdS2 gravity, like the replica-diagonal

solution does [9, 11, 25]. The purpose of this section is to explore this correspondence on

a toy example of factorized solution for M = 2.

In this case we need to solve the equation (5.8) for the q = 4 and M = 2. Assuming

the replica-symmetric form for P like in (5.53), we arrive at the equations (5.56)–(5.57)

with M = 2 and q = 4:

aA3 +Aa3 = 0 ; (7.11)

a4 +A4 = C . (7.12)

Fixing the scaling with a = 1, we arrive at the solution with

P11 = P22 ≡ a = 1 ; P12 = P21 ≡ A = i ; (7.13)

C = 2 . (7.14)
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We now apply a pair of reparametrizations to the solution using (5.3):

f1(τ) = τ ; f2(τ) = τ +
β

2
. (7.15)

Each of these transformations belongs to SL(2,R), so diagonal elements of G are unchanged,

whereas the off-diagonal elements transform non-trivially. The transformed solution is

given by

G11(τ1, τ2) = G22(τ1, τ2) =
b

2∆

(
π

βJ

)2∆ sgn(τ1 − τ2)∣∣∣sin π
β (τ1 − τ2)

∣∣∣2∆
; (7.16)

G12(τ1, τ2) = G21(τ1, τ2) =
b

2∆

(
π

βJ

)2∆ i sgn(τ1 − τ2)∣∣∣cos πβ (τ1 − τ2)
∣∣∣2∆

. (7.17)

When performing the analytic continuation to the Lorentzian signature, it is evident

that (7.16), (7.17) are, correspondingly, one-sided and two-sided correlators of a Majo-

rana fermion in the thermofield double state [25, 36, 37]. The transformations (7.15) make

it explicit that the two-sided (off-diagonal) correlator can be obtained from a one-sided

(diagonal) correlator by moving one of the endpoints halfway along the thermal circle [37].

Thus, a replica-nondiagonal large N saddle point of the SYK model with M = 2 replicas

in the conformal limit can describe the purification of a single replica of SYK model at

finite temperature in the form of the thermofield double state.

7.2.2 Comparison with semiclassical holographic computation

We can compare the factorized solution (7.16), (7.17) with what we can get from a holo-

graphic computation of correlators in the AdS2 spacetime. We consider the Lorentzian

AdS2 spacetime, which is described in embedding space of signature (− − +) as a hyper-

boloid defined by the equation [9, 25]

− T 2
1 − T 2

2 +X2 = −1 . (7.18)

We are interested in the Schwarzschild coordinate patch in the AdS2. Let us denote by

symbols L and R two boundaries of the AdS2. In this case there are two corresponding

choices of the Schwarzshild patch, which are described by the parametrizations [25]:

TL1 =
r

R
; TR1 = − r

R
; (7.19)

TL,R2 =

√
r2

R2
− 1 sinhRt ; (7.20)

XL,R =

√
r2

R2
− 1 sinhRt . (7.21)

Here r, t ∈ R. The horizon radius is related to the temperature as R = π
β . The induced

metric in both cases is the same,

ds2 = −(r2 −R2)dt2 +
dr2

r2 −R2
. (7.22)
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Suppose we want to calculate a correlator of heavy (scalar) operator O of the dimension

∆O inserted on the same boundary. In the limit ∆O � 1, the correlator is determined10

by the length L of the geodesic anchored on the boundary endpoints:

G∆O(t1, t2) ∼ e−∆OL(t1,t2) (7.23)

Thus we need the boundary-to-boundary geodesics. The one-sided geodesics give complex-

valued lengths because the interval is timelike, but we can circumvent this by making

analytic continuation to the Euclidean signature τ = it in the parametrization and T2 → iT2

in the embedding space. To find the geodesic length between the points 1 and 2, we can

use the relation

coshL(1, 2) = 〈~Y (1), ~Y (2)〉 , (7.24)

where ~Y denotes a point in the embedding space, and angular brackets denote the scalar

product in the embedding space. We choose the endpoints on the boundary, i.e. so that

r1 = r2 = r0 →∞. Taking the asymptotic with respect to r0 and subtracting the divergent

part, we obtain for one-sided correlator

GLL∆O(τ1, τ2) ∼

(
1

2 sin π
β (τ1 − τ2)

)∆O

, (7.25)

and for the two-sided correlator

GLR∆O(τ1, τ2) ∼

(
1

2 cos πβ (τ1 − τ2)

)∆O

. (7.26)

We see that the time dependence of these semiclassical correlators is captured properly

by the 2-replica result (7.16), (7.17). However, it is clear that the structure of the Parisi

matrix P will not be captured by the bulk theory on the leading semiclassical level.

In conclusion to this remark we would like to note that in the holographic derivation

we performed the analytic continuation to the Euclidean signature while trating it purely

formally. It seems plausible that the actual bulk spacetime which would have to corre-

spond to our analytically continued Lorentzian AdS2 would be similar to the double cone

construction, described by authors of [26].

7.3 Comments on solutions beyond the strong coupling limit

7.3.1 (In)applicability of separation of variables

Now let us make some comments about possible continuation of the factorized solu-

tions (5.5) beyond the strong coupling regime. The non-conformal saddle point equation

under the assumption of separability of variables (5.5) reads

Pαγ(∂τg)(τ, τ ′′)− J2

∫
dτ ′g(τ, τ ′)g(τ ′, τ ′′)q−1PαβP

q−1
βγ = −δαγδ(τ − τ ′′) . (7.27)

10In this discussion we do not go into the details about analytic continuations and iε-prescription for

correlators. We note that one can restore the analytic structure of the geodesic correlators by modifying

the prescription to include the specific phase factors [39].
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Taking the diagonal and off-diagonal part, one can write

Pαα(∂τg)(τ, τ ′′)− J2

∫
dτ ′g(τ, τ ′)g(τ ′, τ ′′)q−1Cα = −δ(τ − τ ′′) ; (7.28)

Pαγ(∂τg)(τ, τ ′′)− J2

∫
dτ ′g(τ, τ ′)g(τ ′, τ ′′)q−1PαβP

q−1
βγ = 0 , α 6= γ . (7.29)

On the Parisi ansatz we have Pαα = a0, so Cα = C remains true beyond the conformal limit.

However, the ansatz in the form (5.5) is inconsistent with the full saddle point equa-

tion (7.27). Let us assume without loss of generality11 that P is a Parisi matrix, which can

be represented using (A.11):

P =
∑
i

ai(Imi+1 − Imi) + a0IM , (7.30)

and that we fixed the scaling freedom by setting Cα = C = 1. In this case the equation (7.28)

can be written in operator form as

a0∂τ ĝ − J2ĝ ∗ ĝ◦(q−1) = 1 , (7.31)

where 1 denotes the delta-function. To rewrite the the off-diagonal equation (7.29) in the

convenient form, we introduce the Parisi matrix Q:

Q := P · P ◦(q−1) =
∑
i

wi(Imi+1 − Imi) + w0IM . (7.32)

Now we can expand the entire (7.29) in terms of the Parisi algebra generators and rewrite

it in terms of the components:

ai∂τ ĝ − J2wiĝ ∗ ĝ◦(q−1) = 0 . (7.33)

We can extract the derivative term from (7.31) and substitute it into (7.33), which yields

the equation

J2ĝ ∗ ĝ◦(q−1) = −
(

1− wi
ai
a0

)−1

1 . (7.34)

This equation says that the function g(τ, τ ′) is a conformal correlator, up to a constant

factor. However, this contradicts the diagonal equation (7.31). This means that there are

no exact saddles which have the factorized form, and we have to break an assumption

e.g. about the time independence of P . To find the exact UV completion of a factorized

solution, we have to modify the factorized ansatz. One can show that this modification

must be replica-nondiagonal.

11The Parisi form assumption here is mainly for streamlining the notations. The statement is true for a

generic matrix P with properties Pαα = a0 and Cα = C.
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7.3.2 Strong coupling expansion

One would like to look for solutions of the equations (2.8), (2.9), which we will write in the

operator form as

κ∂τ Ĝαγ −
∑
β

Ĝαβ ∗ Σ̂βγ = 1× δαγ ; (7.35)

Σ̂αβ = J2Ĝ
◦(q−1)
αβ . (7.36)

Based on the above considerations, one has to look for the solution in the form

Gαβ(τ, τ ′) = g(τ, τ ′)Pαβ + Φαβ(τ, τ ′) . (7.37)

Perturbatively, the solution can be constructed using the strong coupling expansion in κ:

Φαβ = κϕ
(1)
αβ + κ2ϕ

(2)
αβ + . . . . (7.38)

In the position space, the Σ is then expanded as follows:

Σαβ = gq−1P q−1
αβ + κ(q − 1)J2gq−2P q−2

αβ ϕ
(1)
αβ + . . . . (7.39)

Next we substitute the expansions into (7.36) and equate the powers in κ to 0. The κ0

equation gives us the saddle point equations for the factorized configurations in the IR

limit (5.9), (5.8). They are solved by g given by (5.10) and a Parisi matrix P .

The κ1 equation reads

1

J2
Pαγ∂τ ĝ =

∑
β

[
ϕ̂

(1)
αβ ∗ ĝ

◦(q−1)P q−1
βγ + (q − 1)Pαβ ĝ ∗ (ĝ◦(q−2)ϕ̂

(1)
βγ )P q−2

βγ

]
. (7.40)

This is again a linear inhomogeneous integral equation for ϕ̂
(1)
βγ . It is not very tractable

analytically in general, but one can make some remarks:

• If P = I, then the equation (7.40) and equations for higher degrees of κ ensure that

Φαβ = 0 for α 6= β, as can be expected from general intuition and known numerical

solutions of exact saddle point equations in the replica-diagonal case (see e.g. [3]).

• The replica dependence in the equation (7.40) would mean that if one was to take

the replica limit M → 0 like we do in the strong coupling limit in section 5, this will

mean that one would arrive at the integral equation for a function ϕ(τ, τ ′;u) of three

variables, with mixed integrals in time and replica variables.

8 Discussion

In this paper we have found and discussed replica-nondiagonal saddle points of the replica

partition function (2.6) of the SYK model. The obtained results are schematically presented

on table 2. Let us summarize and comment on these results in more details.

First, we have studied the exact nondiagonal saddles, analytically in the q = 2 model

and numerically in the q = 4 model.
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Replica number M Exact Strong coupling limit

q=2 q=4 q=2 q=4

M > 1, M ∈ Z SRND > SRD SRND > SRD SRND < SRD SRND < SRD

0 < M < 1 SRND < SRD SRND < SRD

M → 0 no solutions no solutions no solutions FRND < FRD

Table 2. A summary of replica-nondiagonal solutions considered in the present work. SRND denotes

the on-shell action on the dominant nondiagonal solution (among obtained ones), FRND denotes

the lowest regularized free energy on a nondiagonal solution.

1. For q = 2 we found exact analytic replica-nondiagonal solutions of the saddle point

equations, given by the formulae (3.9)–(3.12), for arbitrary M > 0. As we have

discussed, these solutions are singular in the limit M → 0. It is easy to check that

the on-shell action in the zero replica limit is also singular, which means that there

is no well-defined limit of zero replicas on this class of solutions. Another significant

property of these solutions is the non-analyticity in coupling constant at J = 0. This

confirms the nonperturbative nature of the nondiagonal solutions, discussed in the

section 2.2.

2. Our numerical study shows that for every exact q = 2 nondiagonal solution there is

a numerical real-valued nondiagonal solution in the q = 4 model. It appears that the

lack of the zero replicas limit is also present in the interacting case. The solutions are

plotted on the figure 3. Note that in the IR region the diagonal and nondiagonal part

exhibit similar behavior up to a numerical factor, and the absolute value of that factor

approaches to 1 as M decreases. We also argue that these solutions probably can be

analytically constructed in terms of the 1/M expansion, which we will investigate in

the future work.

3. We have shown that the solutions, that we have constructed in the q = 2 case, are

suppressed by the diagonal saddle in the replica path integral for M > 1 (however,

they can dominate in the replica partition function in the 0 < M < 1 case). In the

q = 4 SYK the replica-nondiagonal saddles are also subleading for M > 1. The fact

that nondiagonal saddle points are suppressed at integer M is in agreement with the

statement that the SYK partition function is self-averaging at large N [12, 17, 19,

26, 40], as verified by exact diagonalization numerics.

Second, we have studied the analytic nondiagonal solutions in the strong coupling

limit βJ � 1. We focused on the class of solutions with the time dependence given by

the conformal propagator, and the replica dependence given by a Parisi matrix. The key

findings are the following.

4. We were able to obtain solutions in the M → 0 limit, using the Parisi ansatz analytic

continuation. We have obtained the nondiagonal replica-symmetric solutions, and

the solutions with one-step replica symmetry breaking. Meanwhile, the findings of
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the previous part suggest that these solutions have no well-defined UV completion

at M = 0, and therefore seem to have no influence on the thermodynamics of SYK

at finite coupling. Nevertheless, we calculated the regularized free energy on the

solutions. Among them there are some that have global minimum regularized free

energy value smaller than the replica-diagonal free energy. We have also checked that

at finite M the replica-symmetric solution dominates over the diagonal saddle in the

strong coupling limit for q = 4 and q = 2.

5. We have illustrated on an M = 2 example that the extended reparametrization sym-

metry in the IR limit has interesting consequences, since it can be used to obtain

solutions that have spin-glass-like dynamics for a finite amount of time. Another

solution that can be obtained using reparametrizations is related by analytic contin-

uation to the purification of the replica-diagonal SYK by the thermofield double.

An important technical question that we left unattended in this work is the problem of

stability of the replica-nondiagonal solutions that we have obtained in the interacting q = 4

model. The numerical solutions of the exact saddle point equations appeared to be stable

to small enough fluctuations in the initial condition. As far as the factorized solutions

in the strong coupling regime are concerned, the following comments can be made. We

can say that the replica-diagonal solution is stable with respect to the replica-diagonal

fluctuations of the field G(τ1, τ2), because the quadratic part of the action is determined

by the ladder kernel and it has non-negative eigenvalues [3]. The numerical investigations

of [21, 24] confirm that there is no instability to general fluctuations of the replica-diagonal

saddle point. Since the time dependence of the factorized solutions is the same, we can

expect that they also would be stable with respect to the replica-diagonal fluctuations.

However, we also can expect that some of the solutions discussed in the section 6 can be

unstable to general fluctuations, because they are defined by pairs of complex saddles, and

one would need to take into account fluctuations around both saddles for every solution.

It could also be instructive to consider other solutions with several steps or continuous

replica symmetry breaking to verify these observations. We leave these questions for the

future study.

It is also important to clarify the role of the replica-nondiagonal solutions obtained

in the present paper in regards to the previous results about replica-nondiagonality in

SYK obtained in the literature. As was mentioned in the introduction, the papers [1,

20–24] studied the question of the spin glass phase in SY and SYK models, and they

argue against the existence of such a phase in fermionic models (but they do not rule

out replica-nondiagonal solutions conclusively in general). The exact replica-nondiagonal

solutions, constructed in the present work in sections 3 and 4 are time dependent (so do

not generally describe glassy physics), and, more importantly, are always subleading in the

replica path integral at M > 1. Therefore, they do not introduce new phases, but remain a

small nonperturbative effect within the 1/N expansion of the partition function and some

annealed correlators, see appendix C.

The second class of solutions, that we study in this paper, is restricted to the IR limit

of the SYK model. We treat the IR limit of SYK as essentially a low-energy effective field

theory with a UV cutoff, and we found nontrivial phase structure in this EFT by studying
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the regularized free energy. The fact that we have not found any replica-nondiagonal

saddles, contributing to the free energy after the zero replicas limit beyond the IR limit,

hints that the phase structure of an EFT does not generally match the phase structure

of the UV completion (see also discussion in the end of section 5.2). It is worth noting

that the effect of destruction of conformal replica-nondiagonal saddle points by the UV

corrections was encountered by authors of [26] in the two-replica case. They explicitly

show that the leading UV-correction to the replica-nondiagonal conformal saddle point of

the spectral form factor introduces an instability to the contribution of this solution to the

path integral. We can expect that at least some of our solutions in the M → 0 limit suffer

from the same effect beyond the strong coupling limit.

Let us note that the solutions that we have constructed can be interesting in the

following aspects.

(i) We have shown that the annealed quantites, which would require a finite number of

replicas, do have nontrivial repica-nondiagonal saddle points, but they are subleading

in the replica partition function. In the case of M = 2 and complex-valued β it is

shown that non-trivial saddles can become dominant and are crucial for the quantum

dynamics of black holes in the work [17, 26]. Therefore, an interesting problem is to

study the counterparts of our saddles in the spectral form-factor, and to see if they

can be responsible for the long-time behavior of this quantity.

(ii) The factorized solutions, which we discussed, also have the emergent conformal sym-

metry in the strong coupling regime, which suggests the applicability of the holo-

graphic description in some sense as well. At finite replica number this would suggest

that we need some kind of asymptotically AdS2 space with multiple boundaries.

However, we are not aware of such solutions except for the AdS2 itself, which we

connected in the section 7.2 to the M = 2 solution. It would be interesting to find

holographic duals to other replica structures.
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A Parisi matrices

A.1 Definition

A symmetric M ×M matrix Q is called the Parisi matrix if it is defined in the following

way. The Parisi matrix is associated with a tree

T = T(r1, r2, r3 . . . rl) (A.1)
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characterized by the set {r1, r2, r3 . . . rl} satisfying

r1 · r2 . . . rl = M (A.2)

Note that here the order of ri is important. From this set of numbers one constructs a set

of number

DT = DT(m1,m2, r3 . . .ml,M), (A.3)

where mi, i = 1, . . . l are

mi =
i−1∏
j=1

rj . (A.4)

As follows from (A.4) the number ri,mi and mi+1 are related as

mi+1 = mi · ri, i = 1, . . . l − 1, M = ml · rl. (A.5)

The numbers {rl, . . . r1} characterize the ramifications in the given tree and {ml, . . .m1},
m1 = 1 characterize the thickness of branches corresponding to the same tree, see figure 11.

l is a number of branch points12. We call the number l the rank of the Parisi matrix.

Definition. The Parisi matrix Q associated with the given tree T with a set DT is defined

as follows

Qa,a = q0,

Qa,b = Qb,a = qi, if


[
a−1
mi

]
6=

[
b−1
mi

]
and[

a−1
mi+1

]
=
[
b−1
mi+1

]
 a, b = 1, . . . ,M (A.8)

A.2 Representation in terms of block matrices Imi

It is convenient to represent the Parisi matrix (A.8) using the family of the block matrices

Imi composed on 1’s and 0’s

Imi = IM/mi ⊗ Jmi (A.9)

Here Jl are Hadamard identity matrices of dimension mi:

(Ji)kj = 1 , k, j = 1, . . . ,mi . (A.10)

12One can repeat the the above description of the tree in other words: each tree is characterized by

dividing the elements of M into rl groups with ml elements in each, i.e.

M = rl ·ml. (A.6)

Then we divide ml elements on rl−1 groups with ml−1 elements in each, i.e.

ml = ml−1rl−1 (A.7)

and so on. On the last step we left with r1 elementary elements, i.e dim r1 = 1.
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M

ml

ml-1

m1

rl

1-st level

l-1-th level

l-th level

r1

rl-1

ground  level

Figure 11. Illustration of the tree structure of a Parisi matrix with given ramifications

{r1, r2, r3 . . . rl}. The dimensions {m1,m2, r3 . . .ml,M} are represented by thickness of the

branches

and Ip are the usual unit matrix of dimension p, ⊗ is the tensor product. The matrix Q

defined by (A.8) can be represented as

Q =

l∑
i=1, mi∈T

qi(Imi+1 − Imi) + q0I1 (A.11)

Note that in according with (A.9)

Im1 ≡ I1 = J1 ⊗ IM = IM (A.12)

Notice that representation (A.11) is equivalent to the following representation

Q = q0I1 + q1(Im2 − Im1) + q2(Im3 − Im2) + . . .+ ql(Iml+1
− Iml) (A.13)

= (q0 − q1)IM + (q1 − q2)Im2 + (q2 − q3)Im3 + . . .+ (ql−1 − ql)Iml + qlJM ,

where we use (A.12) and

Iml+1
= JM . (A.14)

Rewriting (A.13) we get

Q = (q0 − q1)I1 +
l−1∑
i=1

(qi − qi+1)Imi+1 + qlJM

=

l−1∑
i=0

(qi − qi+1)Imi+1 + qlJM (A.15)
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A.3 Algebra of Parisi matrices

The block matrices Imi satisfy the following relations

ImiImj = ImjImi = miImj , for i ≤ j (A.16)

From this statement follow the

Lemma. The space of Parisi matrices with fixed tree T{r1, r2, r3 . . . rl} is an algebra under

both regular and Hadamard matrix products.

Proof. The closeness under the Hadamard product is obvious. For the direct matrix prod-

uct this follows from representation (A.11) and the following properties (A.16) of Imi
matrices corresponding to the same tree. Indeed we define the two Parisi matrices of the

rank l (al+1 = 0):

A =

l∑
i=1, mi∈T

ai(Imi+1 − Imi) + q0I1 ; (A.17)

B =

l∑
i=1, mi∈T

bi(Imi+1 − Imi) + b0I1 . (A.18)

We want to calculate their product, which we denote as

W = A ·B . (A.19)

We proceed as follows:

W = a0b0I1 +
∑
i

(b0ai + a0bi)(Imi+1 − Imi) + four terms . (A.20)

The four terms come from the multiplication of two brackets between each other. Let us

evaluate carefully each term using the relation (A.16). The first term gives

T1 :=
∑
i

∑
j

aibjImi+1Imj+1

=
∑
j

∑
i<j

aibjmi+1Imj+1 +
∑
j

ajbjmj+1Imj+1 +
∑
j

∑
i>j

aibjmj+1Imi+1

=
∑
j

∑
i<j

(aibj + ajbi)mi+1Imj+1 +
∑
j

ajbjmj+1Imj+1 . (A.21)

The second term yields

T2 := −
∑
i

∑
j

aibjImiImj+1

= −
∑
j

∑
i<j+1

aibjmiImj+1 −
∑
j

aj+1bjmj+1Imj+1 −
∑
j

∑
i>j+1

aibjmj+1Imi

= −
∑
j

∑
i<j

aibjmiImj+1 −
∑
j

ajbjmjImj+1 −
∑
j

∑
i<j

ajbimi+1Imj . (A.22)
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We relabeled some summation indices and canceled two terms here. The third term can

be obtained from T2 by making the replacement a↔ b:

T3 := −
∑
i

∑
j

aibjImi+1Imj

= −
∑
j

∑
i<j

biajmiImj+1 −
∑
j=i

ajbjmjImj+1 −
∑
j

∑
i<j

bjaimi+1Imj . (A.23)

The fourth term yields:

T4 : =
∑
i

∑
j

aibjImiImj

=
∑
j

∑
i<j

aibjmiImj +
∑
j=i

ajbjmjImj +
∑
j

∑
i<j

ajbimiImj

=
∑
j

∑
i<j

(aibj + ajbi)miImj +
∑
j=i

ajbjmjImj (A.24)

where we again relabeled the indices in the last term. Therefore, we have presented the

four terms as a linear combination of the I-matrices, more specifically

four terms =
∑
j

(UjImj+1 + VjImj ) . (A.25)

As it will become clear below, this is already proves the lemma. Let us write down the U

and V explicitly:

Uj =
∑
i<j

(aibj + biaj)(mi+1 −mi) + ajbj(mj+1 − 2mj) . (A.26)

Vj = −
∑
i<j

(aibj + biaj)(mi+1 −mi) + ajbjmj . (A.27)

As we see, there is a difference between the two:

Dj := Uj + Vj = ajbj(mj+1 −mj) , (A.28)

and therefore in W there is a rogue term∑
j

DjImj+1 (A.29)

However, we can deal with it using a trivial formula:

Imk = I1 +
∑
j<k

(Imj+1 − Imj ) . (A.30)

Thus, we can write the term as follows:∑
i

DiImi+1 =
∑
i

DiI1 +
∑
i

∑
j<i+1

Di(Imj+1 − Imj )

=
∑
i

DiI1 +
∑
j

∑
i>j−1

Di(Imj+1 − Imj ) . (A.31)
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Therefore, the lemma is proved. We obtain that W is a Parisi matrix

W =
∑
j

wj(Imj+1 − Imj ) + w0I1 , (A.32)

where its parameters are given by

w0 = a0b0 +
∑
j

ajbj(mj+1 −mj); (A.33)

wj = b0aj + a0bj +
∑
i<j

(aibj + biaj)(mi+1 −mi)− ajbjmj +
∑
i>j−1

aibi(mi+1 −mi)

= b0aj + a0bj +
∑
i<j

(aibj + biaj)(mi+1 −mi)− ajbjmj +
∑
i>j

aibi(mi+1 −mi)

+ajbj(mj+1 −mj) . (A.34)

These formulae can be used to directly solve the equation (5.17), if one takes bj = aq−1
j .

A.4 Determinant of the Parisi matrix

The eigenvalues of the Parisi matrix Q are given by the formulae [41]

λ0 = q0 − q1 (A.35)

λi = q0 − q1 +

i∑
j=1

(qj − qj+1)mj , i = 1, 2, . . . , l − 1 (A.36)

λl = q0 − q1 +

l−1∑
j=1

(qj − qj+1)mj + qlml. (A.37)

Throughout the paper we compute log detQ for different Parisi matrices both at finite

and zero M . We illustrate the calculation for l = 1 and present the result for general l.

In the case of l = 1, the determinant for arbitrary M reads:

detQ = (q0 − q1)M−1(q0 + (M − 1)q1) . (A.38)

For the logarithm we write

log detQ = (M − 1) log(q0 − q1) + log(q0 − q1) + log

(
1 +

Mq1

q0 − q1

)
= M log(q0 − q1) + log

(
1 +

Mq1

q0 − q1

)
. (A.39)

Taking the limit M → 0, we arrive at the expression

lim
M→0

1

M
log detQ = log(q0 − q1) +

q1

q0 − q1
. (A.40)
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The cases of higher l can be calculated analogously. The main idea is to extract the part

from the lowest degree bracket which is the same as the next degree bracket, which will

always be of the odd degree and carry a singular contribution.

For arbitrary l we obtain the expression

lim
M→0

1

M
log detQ =

1

2
log(q0 − q1) +

l−1∑
i=2

1

2i
log

(
q0 +

i−1∑
m=0

2mqm+2 − 2iqi+1

)
(A.41)

+
1

2k−1
log

(
q0 +

l−1∑
m=0

2mqm+2 − 2lql

)
+

1

2

ql

q0 +
∑l−1

m=0 2mqm+2 − 2lql
.

B The action on replica-nondiagonal solutions at finite M

We start with the on-shell action for the path integral (2.6) at finite M :

2

N
SM = −Tr log

(
δαβ∂τ − Σ̂αβ

)
+

∫ β

0

∫ β

0
dτ1dτ2

∑
α,β

(
Gαβ(τ1, τ2)Σαβ(τ1, τ2)− J2

q
Gαβ(τ1, τ2)q

) ∣∣∣
on-shell

. (B.1)

We use the saddle point equations (2.8), (2.9) and rewrite it as

2

N
SM = −Tr log[δαβ∂τ − Σ̂αβ ] +

(
1− 1

q

)
J2

∫ β

0

∫ β

0
dτ1dτ2

∑
α,β

Gαβ(τ1, τ2)q
∣∣∣
on-shell

. (B.2)

We renormalize the logarithmic term by subtracting the free part −MTr log(∂τ ) [3, 4] and

denote it as:

s1 = −Tr log det

(
δαβ +

Σ̂αβ

−∂τ

)∣∣∣
on-shell

, (B.3)

where the determinant is taken over the replica indices. We denote the polynomial term as

s2 =

(
1− 1

q

)
J2

∫ β

0

∫ β

0
dτ1dτ2

∑
α,β

Gαβ(τ1, τ2)q
∣∣∣
on-shell

. (B.4)

Replica-symmetric ansatz. In this case we have two dynamical variables G0,1 (and

corresponding Σ0,1(τ) = J2Gq−1
0,1 (τ)). To evauate the Pfaffian term in the frequency space

we use the formula for the determinant of a Parisi matrix (A.39) for every frequency:

log det

(
δαβ +

Σαβ(ω)

iω

)
= M log

(
1 +

Σ0(ω)

iω
− Σ1(ω)

iω

)
+ log

(
1 +M

Σ1(ω)

iω + Σ0(ω)− Σ1(ω)

)
. (B.5)

At zero temperature, s1 reads

s1 = − V
2π

∫ ∞
−∞

dω

[
M log

(
1 +

Σ0(ω)

iω
− Σ1(ω)

iω

)
+ log

(
1 +M

Σ1(ω)

iω + Σ0(ω)− Σ1(ω)

)]
.

(B.6)
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At finite temperature we have instead the sum over Matsubara frequencies (2.20):

s1 = −
∞∑

n=−∞

[
M log

(
1 +

Σ0(ωn)

iωn
− Σ1(ωn)

iωn

)
+ log

(
1 +M

Σ1(ωn)

iωn + Σ0(ωn)− Σ1(ωn)

)]
.

(B.7)

For the polynomial term, we have the expression

s2 =

(
1− 1

q

)
J2

∫
dτ1dτ2 (MG0(τ1, τ2)q +M(M − 1)G1(τ1, τ2)q) . (B.8)

C Observables and disorder: annealed vs quenched

Having found replica-nondiagonal solutions in q = 2 and q = 4 SYK models, it is appropri-

ate to discuss which observables will be affected by these saddle points. For this purpose,

it is useful to review the two types of correlation functions, which one can consider in a

disordered model.

First, let us remind that the Lagrangian of the SYK model is given by [3, 4, 7]

L[ψ, j] = −1

2

∑
i

ψi
d

dτ
ψi −

iq/2

q!

∑
i1,i2,...,iq

ji1i2...iqψi1ψi2 . . . ψiq , (C.1)

which is used to construct the generating functional of SYK correlation functions for a

fixed realization of disorder j = {ji1i2...iq}:

Zj(β; η) =

∫
Dψ exp

[
−
∫ β

0
dτL[ψ, j] +

∫ β

0
ηi(τ)ψi(τ)dτ

]
. (C.2)

Here we have introduced the fermionic sources ηi(τ). The correlation functions in a fixed

realization of disorder are defined as usual:

〈ψi1(τ1) . . . ψik(τk)〉j =
1

Zj(β; 0)

1

k!

δ

δηi1(τ1)
. . .

δ

δηik(τk)
Zj(β; η)

∣∣∣∣
η=0

. (C.3)

As a final preliminary remark, the average over the disorder of a function f(j) is performed

by taking the integral

f(j) =

∫
dj P (j)f(j) , (C.4)

where the Gaussian distribution P (j) is given by (2.2).

C.1 Quenched quantities

In the quenched quantities the disorder averaging is performed on the last step. The

quenched correlators are defined as

〈ψi1(τ1) . . . ψik(τk)〉 =
1

Zj(β; 0)

1

k!

δ

δηi1(τ1)
. . .

δ

δηik(τk)
Zj(β; η)

∣∣∣∣
η=0

. (C.5)

Because the nominator and denominator are averaged together, these quantities require

replica trick, and specifically they require taking the limit M → 0. Below we explicitly

derive the representation of the quenched correlators in terms of the bilocal replica field

path integral.
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C.1.1 Replica-diagonal case

We start with the singlet two-point function of fermions in a single copy of SYK:13

G(τ1, τ2;N) :=
1

N

N∑
i=1

〈ψi(τ1)ψi(τ2)〉 =
1

2!N

N∑
i=1

1

Zj(β; 0)

δ

δηi(τ1)

δ

δηi(τ2)
Zj(β; η)

∣∣∣∣
η=0

.

(C.6)

Now let us derive the expression for G in terms of the disorder-averaged bilocal replica field

path integral. Let us define the bilocal field correlator in the disorder-averaged SYK with

M replicas:

G(τ1, τ2;N,M) =

∫ M∏
α,β=1

DGαβDΣαβ e−NS[Gαβ ,Σαβ ]GMM (τ1, τ2) . (C.7)

In terms of this quantity, the quenched correlator is written as following:

G(τ1, τ2;N) = lim
M→0

G(τ1, τ2;N,M) . (C.8)

Let us sketch the proof. On the first step we take the derivatives in (C.6) and write

the nominator partition function explicitly as the path integral. For the normalizing de-

nominator, we use the following formal identity [29]:

Zj(β; 0)−1 = lim
M→0

Zj(β; 0)M−1 . (C.9)

We get (the summation over color indices is implicit)

G(τ1, τ2;N) =
1

N
lim
M→0

Zj(β; 0)M−1

∫
DψM e−SSYK[j,ψM ]ψMi (τ1)ψMi (τ2) , (C.10)

where we have assigned a replica index M to fermion fields participating in the last path

integral. We can rewrite this as the path integral over M replicas with insertions supported

on the M -th replica:

G(τ1, τ2;N) =
1

N
lim
M→0

∫ M∏
α=1

Dψα e−
∑M
α=1 SSYK[j,ψα]ψMi (τ1)ψMi (τ2) , (C.11)

The averaging over the disorder can be performed in this replica integral in the same way

as in the partition function (2.6). After that, we can rewrite this in terms of the bilocal

fields with the fermions integrated out:14

∫ M∏
α′=1

Dψα′ e−
∑M
α′=1 SSYK[j,ψα′ ] 1

N

∑
i

ψMi (τ1)ψMi (τ2)

=

∫ M∏
α,β=1

DGαβDΣαβ e−NS[Gαβ ,Σαβ ]GMM (τ1, τ2) . (C.12)

13We also emphasize the N dependence for purposes of the further discussion.
14This identity holds up to some numerical constants which come from the measure [4], which we omit.
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Thus, we obtain the formula (C.8):

G(τ1, τ2;N) = lim
M→0

∫ M∏
α,β=1

DGαβDΣαβ e−NS[Gαβ ,Σαβ ]GMM (τ1, τ2) . (C.13)

We see that a quenched correlator is expressed in terms of replica correlators in the limit

M → 0. Note that this limit is taken before the thermodynamic limit N →∞.

C.1.2 Replica-offdiagonal case

A common diagonostic of the spin glass physics is the quenched replica-offdiagonal corre-

lator [1, 6, 20, 21, 24, 28, 34, 35]. Let us start with the two replicas α and β of the given

system. The offdiagonal quenched correlator is defined as

Gαβ(τ1, τ2;N) :=
1

N

N∑
i=1

〈ψαi (τ1)ψβi (τ2)〉

=
1

2!N

N∑
i=1

1

Z
(2)
j (β; 0)

δ

δηαi (τ1)

δ

δηβi (τ2)
Z

(2)
j (β; ηα, ηβ)

∣∣∣∣∣
η=0

. (C.14)

Here Z(2) is the two-replica partition function. If the two replicas are independent, then

Z
(2)
j (β; ηα, ηβ) = Zj(β; ηα)Zj(β; ηβ) and the expression under line can factorizes into prod-

uct of two one-point functions:

1

Zj(β; 0)2

δ

δηαi (τ1)

δ

δηβi (τ2)
Zj(β; ηα)Zj(β; ηβ)

∣∣∣∣∣
η=0

= 〈ψαi (τ1)〉〈ψβi (τ1)〉 . (C.15)

In the fermionic theory, like SYK, the one-point functions vanish, which, assuming N

is finite, gives that in total Gαβ(τ1, τ2) = 0.15 This is a general argument that is often

presented to support the absense of spin glass phase in fermionic models such as variations

of SY and SYK [1, 20, 21, 24, 35].

Let us now see what this tells us about the replica structure of the G, Σ saddle points.

We again define the replica bilocal field correlator

Gαβ(τ1, τ2;N,M) =

∫ M∏
α,β=1

DGαβDΣαβ e−NS[Gαβ ,Σαβ ]Gαβ(τ1, τ2) , α 6= β . (C.16)

Note that, formally speaking, G(τ1, τ2;N,M) = GMM (τ1, τ2;N,M) (see (C.7)). Analo-

gously to the diagonal case (C.8), one can derive the bilocal field representation for the

quenched offdiagonal correlator:

Gαβ(τ1, τ2;N) = lim
M→0

Gαβ(τ1, τ2;N,M) . (C.17)

15This argument does not generally work in the thermodynamic limit N →∞.
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The proof goes as follows. Proceeding analogously to the derivation of the expres-

sion (C.8) above, we write

Gαβ(τ1, τ2;N) =
1

N
lim
M→0

Zj(β; 0)M−2

∫
DψαDψβ e−SSYK[j,ψα]−SSYK[j,ψβ ]ψαi (τ1)ψβi (τ2) ,

(C.18)

or in terms of the disorder-averaged replica bilocal field theory we obtain

Gαβ(τ1, τ2;N) = lim
M→0

∫ M∏
γ,δ=1

DGγδDΣγδ e−NS[Gγδ ,Σγδ]Gαβ(τ1, τ2) . (C.19)

This formula gives representation for non-diagonal disorder correlator in terms of the

disorder-averaged replica bilocal field theory. We once again see that the quenched corre-

lator is governed by the replica structure in the limit M → 0.

The replica factorization and vanishing of the fermionic one-point functions at large

(but finite) N seems to tell that there should be no replica-nondiagonal saddle points,

but in fact this is not conclusive. It is worth noting that the factorization argument

holds at finite N , and it does not exclude possible dominant non-diagonal saddle points

in the thermodynamic limit N →∞. The factorization adds a nontrivial nonperturbative

constraint on the full 1/N expansion of the right hand side of (C.17). In particular, at some

orders of 1/N one expects replica-nondiagonal contributions in perturbations even over the

replica-diagonal saddle [4, 16, 35]. The factorization in the fermionic case implies that

all such perturbative corrections should resum to zero, together with any nonperturbative

corrections (that come e.g. from subleading saddles). Of course, with only finite amount

of the asymptotic 1/N series taken into account, one does not expect zero. This will be

more relevant to our results in the case of annealed correlators.

C.2 Annealed quantities

The quantities, which are obtained by performing annealed averaging, treat the disorder

on equal footing with other microscopic degrees of freedom of the model. In the general

case, one can also consider annealed quantities that deal with M copies of the initial model

by construction. The simplest example is the replica partition function Z(β)M , which we

consider throughout the paper, taken with an integer M . As we show in sections 3 and 4,

there are nontrivial exact replica-nondiagonal saddle points, contributing to this quantity

in case of a finite replica number. We also show that these saddle points are suppressed at

large N , giving nonperturbative contributions to the 1/N -expansion that are suppressed

exponentially like e−NS .

Another closely related example of an annealed quantity is the spectral form factor
1

Z(β)2
Z(β + iT )Z(β − iT ), which is essential in studies of quantum chaos and quantum

gravity [17, 19, 26]. The study of replica-nondiagonal saddle points of this and related

quantities is the topic of the future work.

Below we consider the annealed correlators. The annealed correlation functions are

computed by performing the average over the disorder in the normalization and in the

nominator of (C.3) separately.
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C.2.1 Single-replica correlators

If the fields all belong to the same one replica of the theory initially, the correlator is

written

〈ψi1(τ1) . . . ψik(τk)〉annealed =
1

Zj(β; 0)

1

k!

δ

δηi1(τ1)
. . .

δ

δηik(τk)
Zj(β; η)

∣∣∣∣
η=0

. (C.20)

The integral over the disorder is a straightforward Gaussian integral in both nominator

and denominator and can be taken right away. The single-replica annealed correlators do

not have any replica structure.

In terms of the bilocal fields G, Σ the annealed two-point function is written as

1

N

N∑
i=1

〈ψi(τ1)ψi(τ2)〉annealed =

∫
DGDΣ e−NS[G,Σ]G(τ1, τ2)∫

DGDΣ e−NS[G,Σ]
. (C.21)

C.2.2 Replica-offdiagonal correlators

Finally, one can consider the replica-offdiagonal annealed correlators of the form

1

N

∑
i

〈ψαi (τ1)ψβi (τ2)〉annealed =
1

2!N

N∑
i=1

1

Zj(β; 0)2

δ

δηαi (τ1)

δ

δηβi (τ2)
Zj(β; ηα)Zj(β; ηβ)

∣∣∣∣∣
η=0

.

(C.22)

Factorization. Note that this correlator does not factorize into product of one-point

functions due to the fact that disorder averaging introduces interaction between replicas.

However, the fermionic path integral still factorizes at finite N . Taking the derivatives

in the right hand side of (C.22), one obtains under the averaging line the product of two

copies of ∫
Dψ e−SSYK[j,ψ] . (C.23)

This is zero at finite N due to parity, and therefore also nullifies the correlator (C.22).

Bilocal field representation and 1/N-expansion. In terms of the bilocal replica

fields, the correlator (C.22) reads

1

N

N∑
i=1

〈ψαi (τ1)ψβi (τ2)〉annealed =
1

Z(β)2
Gαβ(τ1, τ2;N, 2) (C.24)

=

∫ ∏2
γ,δ=1DGγδDΣγδ e−NS[Gγδ,Σγδ ]Gαβ(τ1, τ2)∫ ∏2

γ,δ=1DGγδDΣγδ e−NS[Gγδ ,Σγδ]
,

where M = 2. Note that there is a normalization factor, unlike the quenched case. This

correlator requires two replicas, and can detect replica-nondiagonal saddle points, obtained

in sections 3 and 4. We have shown that those saddle points are suppressed at large N ,

thus their effect can only appear at finite N .

However, at finite N the factorization of the fermionic path integral dictates that (C.22)

exactly should be zero. But here one can repeat the same arguments as in the disorder case

in the end of section C.1.2. We can also expect that at finite N the replica-nondiagonal

saddle points may give a nonperturbatively small contribution to annealed 4- and higher-

point nondiagonal correlators.
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