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sists of two interacting scalar fields, where the mass of the complex scalar field results from

the interaction with the real scalar field which has a finite vacuum expectation value. We

here study a new family of self-gravitating axially-symmetric, rotating boson stars in this

model. In the flat space limit these boson stars tend to the corresponding Q-balls. Subject

to the usual synchronization condition, the model admits spinning hairy black hole solu-

tions with two different types of scalar hair. We here investigate parity-even and parity-odd

boson stars and their associated hairy black holes. We explore the domain of existence of

the solutions and address some of their physical properties. The solutions exhibit close

similarity to the corresponding boson stars and Kerr black holes with synchronised scalar

hair in the O(3)-sigma model coupled to Einstein gravity and to the corresponding solu-

tions in the Einstein-Klein-Gordon theory with a complex scalar field, where the latter are

recovered in a limit.

Keywords: Black Holes, Classical Theories of Gravity, Solitons Monopoles and Instantons

ArXiv ePrint: 1904.13379

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP07(2019)109

mailto:jutta.kunz@uni-oldenburg.de
mailto:jonahex111@outlook.com
mailto:shnir@theor.jinr.ru
https://arxiv.org/abs/1904.13379
https://doi.org/10.1007/JHEP07(2019)109


J
H
E
P
0
7
(
2
0
1
9
)
1
0
9

Contents

1 Introduction 1

2 The model 3

3 Spinning axially-symmetric configurations 5

3.1 Stationary axially symmetric ansatz and boundary conditions 5

3.2 Quantities of interest and Smarr relation 6

4 Results 7

4.1 Numerical implementation 7

4.2 Stationary spinning self-gravitating solitons and black holes with synchro-

nised hair 8

5 Conclusions 16

1 Introduction

The investigation of self-gravitating scalar field configurations in 3+1 dimensional asymp-

totically flat spacetime has attracted much interest in the last decades. One of the reasons

is that a fundamental scalar field is a necessary ingredient in models of inflation. Thus such

fields might play an important role in the evolution of the early Universe. On the other

hand, when scalar fields are present in the Universe, the gravitational interaction may lead

to gravitational collapse and form localized gravitating objects. In the case of a complex

scalar field so-called boson stars might arise, that is, compact, stationary configurations

where the scalar field possesses a harmonic time dependence [1, 2].

Similar static localized field configurations with finite energy exist in Einstein-Skyrme

theory [3–5] and in SU(2) Einstein-Yang-Mills theory [6] or Einstein-Yang-Mills-Higgs the-

ory [7–10]. Certain types of localized gravitating solutions, like boson stars with appro-

priate interactions, or gravitating monopoles, sphalerons and Skyrmions, are linked to the

corresponding flat space solutions, which represent topological solitons/Q-balls [11, 12], or

monopoles [13, 14], sphalerons [15], and Skyrmions [16], respectively.

In particular, the Friedberg-Lee-Sirlin model [11] provides an interesting example of a

simple renormalizable two-component scalar field theory with natural interaction terms. In

this model the complex scalar becomes massive due to the coupling with the real scalar field,

since the latter has a finite vacuum expection value generated via a symmetry breaking

potential. The Q-ball solutions of this model then appear because of the phase rotation of

the complex scalar field, and the coupling to gravity leads to the respective boson stars.

Gravitating localized solutions of another type are bound by gravity. Examples are bo-

son stars without appropriate self-interactions [1, 2], or the Bartnik-McKinnon solutions [6].

These do not possess a flat space limit.

– 1 –



J
H
E
P
0
7
(
2
0
1
9
)
1
0
9

All these self-gravitating configurations exist for a certain range of values of the pa-

rameters of the respective theory, For instance, there are two branches of self-gravitating

Skyrmions [4, 5], where the lower in energy branch is linked to the flat space Skyrmion

in the limit of a vanishing effective gravitational coupling. This lower branch of solutions

then ends at some critical maximal value of the gravitational coupling, where it bifurcates

with the second, higher in energy branch, which extends all the way backwards to the

limit of zero coupling. Likewise, for gravitating monopoles the lower in energy branch

is linked to the flat space monopole, however, the second branch ends when an extremal

Reissner-Nordström configuration is reached (in the exterior) [7, 8].

Boson star configurations, on the other hand, possess a presumably infinite number of

branches, representing an inspiraling of the solutions towards a limiting solution, when the

dependence of the mass or particle number on the frequency or on the radius is consid-

ered [17–20]. This spiraling behavior is reminiscent of the mass radius relation of neutron

stars beyond the maximum mass star. For other physical quantities this translates into an

oscillating behavior for boson stars and neutron stars, alike.

Notably, many of those regular particle-like gravitating solitons, like the gravitating

monopoles, sphalerons and Skyrmions or the Bartnik-McKinnon solutions, can be linked

to hairy black holes in the limit of vanishing event horizon radius [3, 21]. These static black

holes provide the first known counter-examples to the celebrated no-hair conjecture [22]

(see also [23–25] for further references and discussion).

In contrast, the spherically symmetric boson star solutions [1, 2, 17, 18] cannot be

generalized to contain a small Schwarzschild black hole in their inner region. More general,

it has been shown that there is no regular static asymptotically flat solution with an

event horizon in these models with a complex scalar field, which harmonically depends on

time [26, 27]. This situation is not unique, however. For example, regular static spherically

symmetric self-gravitating solutions of the generalized Skyrme model [28, 29] terminate at

a singular solution, and cannot be continuously connected to a static hairy black hole [30].

An interesting aspect for all such gravitating regular and black hole solutions is their

possible generalization to include rotation, since rotation is ubiquitous in the Universe.

For instance, for boson stars there is no slow rotating limit [31], however, they can rotate

rapidly [32–34]. Other rotating regular configurations include the gravitating Skyrmions

and Q-clouds [35], gravitating dyons and vortex rings [36, 37] or the spinning topological

solitons of the non-linear O(3) sigma model [38].

Whereas various rotating hairy black holes were obtained before [39–44], only recently

a spinning complex scalar field was considered in a Kerr black hole spacetime, first pertur-

batively and then with back reaction [45–52]. In that case, the rotating hairy black holes

obey a synchronization condition between the angular velocity of the event horizon and a

phase frequency of the scalar field. Numerous hairy black holes obeying such a synchro-

nization condition have been studied by now. Further examples are given in [38, 53–63].

Interestingly, the Q-balls in the Friedberg-Lee-Sirlin model in flat space may also exist

in the limiting case of vanishing scalar potential [64, 65]. In this limit the real component

of the scalar field becomes massless, thus it possesses a Coulomb-like asymptotic tail. This

leads to the interesting question, as to whether one can find similar rotating self-gravitating
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asymptotically flat solutions, which are either regular or possess an event horizon. Such

black hole solutions would represent a new type of hairy black holes, quite different from the

scalarized hairy black holes of scalar-tensor theory, where the real scalar field is associated

with the gravitational interaction [53].

In this paper we answer this question positively. In particular, we extend the study of

the spinning boson stars and hairy black holes, by constructing new families of stationary

rotating solutions in the Friedberg-Lee-Sirlin model minimally coupled to Einstein gravity.

The boson star solutions possess properties that are similar to those of the rotating boson

stars with a single complex scalar field [32–34], featuring both parity-even and parity-odd

configurations [19, 20]. In the flat space limit, they are linked to the corresponding spinning

flat-space Q-balls [19, 20, 65–68].

All these rotating boson star solutions are related to rotating hairy black hole solu-

tions, where the phase rotation of the massive complex component is synchronized with

the angular velocity of the horizon. An important novelty of these solutions is the fact

that in the limit of vanishing potential these solutions correspond to black holes with two

different types of scalar hair, where the second real scalar field is massless. Further, in the

opposite limit of infinite mass of the real component, the solutions of the model effectively

reduce to the corresponding boson stars and hairy black holes of the Einstein-Klein-Gordon

model [24, 46, 48, 63]. We here show that, depending on the values of the parameters of

the model and, in particular, the horizon radius parameter, the branch structure of the

solutions varies from the typical spiral pattern of boson stars [17–20, 69, 70], to a simpler

branch structure known for various types of hairy black holes [4, 5, 28, 29, 38–43, 46–

48, 53, 53–57, 60–63, 71].

2 The model

We consider the 3+1 dimensional action

S =

∫
d4x
√
−g
(
R

4α2
− Lm

)
, (2.1)

where the gravity part is the usual Einstein-Hilbert action, α2 = 4πG is the gravitational

coupling, R is the curvature scalar and G is Newton’s constant. The Lagrangian of the

matter fields Lm is given by the two-component Friedberg-Lee-Sirlin model [11]

Lm =
1

2
(∂µψ)2 + |∂µφ|2 +m2ψ2|φ|2 − µ2

(
ψ2 − v2

)2
. (2.2)

Here a real self-interacting scalar field ψ is coupled to a complex scalar field φ, the param-

eters m and µ are the real positive coupling constants and v is the vacuum expectation

value of the real scalar field ψ. The first two parts in (2.2) are the usual kinetic terms for

the real and complex field, respectively, the third is the interaction term, and the last term

gives the potential of the real scalar field.

The potential is chosen such that in the vacuum ψ → v, and the complex field φ

becomes massive with mass mv due to the coupling with its real partner. When expanded
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around its vacuum expectation value v, the fluctuations of the real scalar field are associated

with a mass
√

8µv, thus µ represents a mass parameter for the real scalar field. In the limit

of vanishing mass parameter µ → 0 but fixed vacuum expectation value v, the real scalar

field becomes massless and thus long-ranged. The complex component φ still acquires mass

in this limit due to the coupling with the Coulomb-like field ψ.

Note that two of the four parameters of the model (2.1) can be rescaled away via

transformations of the coordinates and the fields,

α→ vα , xµ → mvxµ , ψ → ψ

v
, φ→ φ

v
. (2.3)

After such a rescaling α̃ = vα and µ̃ = µ/m will be the remaining parameters. However,

we will only set v = 1 in the following, retaining α̃ (omitting the tilde), m and µ.

The model (2.1) is invariant under global U(1) transformations of the complex field

φ→ φeδ, where the parameter δ is a constant. The following Noether current is associated

with this symmetry,

jµ = i(φ∂µφ
∗ − φ∗∂µφ) , (2.4)

with the corresponding charge Q =
∫ √
−gjtd3x.

Variation of the action (2.1) with respect to the metric leads to the Einstein equations

Rµν −
1

2
Rgµν = 2α2Tµν , (2.5)

where

Tµν = ∂µψ∂νψ + (∂µφ∂νφ
∗ + ∂νφ∂µφ

∗)− Lmgµν (2.6)

is the stress-energy tensor of the scalar fields.

The corresponding equations of motion of the scalar fields read

�ψ = 2ψ
(
m2|φ|2 + 2µ2

(
1− ψ2

))
,

�φ = m2ψ2φ ,
(2.7)

where � represents the covariant d’Alembert operator. It follows from the linearized field

equations (2.7) that the parameters µ and m indeed determine the mass of the real and

complex scalar fields, respectively. Notably, the flat-space localized regular solutions of

the Friedberg-Lee-Sirlin model (2.2) exist in the limit of vanishing scalar potential, µ→ 0,

when the vacuum expectation value of the real component ψ is kept non-zero [64, 65]. They

represent Q-balls with a long-range massless scalar component. These Q-balls are similar

to those of the Wick-Cutkosky model [72, 73] revisited recently in [74, 75].

In the opposite limit, µ → ∞, the real component of the model (2.2) trivializes,

ψ = 1, and the massive complex field φ satisfies the Klein-Gordon equation. Clearly,

spatially localized stationary spinning solutions of this equation do not exist in the flat

space. However, there are families of corresponding boson stars and hairy black holes with

synchronised hair in the complex-Klein-Gordon field theory minimally coupled to Einstein’s

gravity [24, 46, 48, 61, 63].
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3 Spinning axially-symmetric configurations

3.1 Stationary axially symmetric ansatz and boundary conditions

Spherically symmetric self-gravitating regular solutions of the equations (2.5), (2.7) do not

admit spherically symmetric generalizations with a horizon [26]. In the present paper we

shall consider spinning regular and hairy black hole solutions to the system (2.5), (2.7).

We note, that spinning self-gravitating regular solutions of an extended model with two

complex interacting scalar fields were considered before [76].

To obtain stationary spinning axially-symmetric solutions we take into account the

presence of two commuting Killing vector fields ξ = ∂t and η = ∂ϕ, where t and ϕ are

the time and azimuthal coordinates, respectively. In these coordinates the metric can be

written in isotropic coordinates in the Lewis-Papapetrou form

ds2 = −F0dt
2 + F1

(
dr2 + r2dθ2

)
+ r2 sin2 θF2

(
dϕ− W

r
dt

)2

, (3.1)

where the four metric functions F0, F1, F2 and W depend on r and θ only.

For the scalar fields we adopt the axially-symmetric ansatz

ψ = X(r, θ), φ = Y (r, θ)ei(ωt+nϕ) , (3.2)

where the real profile functions X and Y depend on the radial coordinate r and the polar

angle θ, the frequency of the spinning complex field ω is a parameter of the model, and n ∈ Z
is the azimuthal winding number, also referred to as rotational quantum number. For sta-

tionary spherically symmetric configurations n = 0, and the system of equations (2.5), (2.7)

reduces to the set of equations of the corresponding boson stars.

To obtain hairy black holes, we assume the existence of a rotating event horizon,

located at a constant value of the radial variable, r = rh > 0. The Killing vector of the

horizon is the helicoidal vector field

χ = ξ + Ωhη , (3.3)

where the horizon angular velocity Ω is fixed by the value of the metric function W on

the horizon

Ωh = −
gφt
gtt

∣∣∣∣
r=rh

= W

∣∣∣∣
r=rh

.

The presence of a rotating horizon allows to form stationary scalar clouds, supported by

the synchronisation condition [24, 38, 45, 46, 48]

ω = nΩh (3.4)

between the event horizon angular velocity Ωh, the complex scalar field frequency ω, and

the winding number n. This condition implies that there is no flux of the complex scalar

field into the black hole.
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It is convenient to make use of the exponential parametrization of the metric fields

F0 =

(
1− rh

r

)2(
1 + rh

r

)2 ef0 , F1 =
(

1 +
rh
r

)4
ef1 , F2 =

(
1 +

rh
r

)4
ef2 , (3.5)

where the functions fi depend on the radial coordinate r and the polar angle θ. Then a

power series expansion near the horizon yields the following conditions of regularity for the

profile functions X,Y and the metric functions fi:

∂rX
∣∣
r=rh

= ∂rY
∣∣
r=rh

= ∂rf0

∣∣
r=rh

= ∂rf1

∣∣
r=rh

= ∂rf2

∣∣
r=rh

= 0 . (3.6)

These Neumann boundary conditions must be supplemented by the synchronization con-

dition (3.4) imposed on the metric function W .

Requirement of asymptotic flatness implies that, as r →∞, the metric approaches the

Minkowski limit, and the scalar fields are taking their vacuum values

X
∣∣
r→∞ = 1 , Y

∣∣
r→∞ = f0

∣∣
r→∞ = f1

∣∣
r→∞ = f2

∣∣
r→∞ = W

∣∣
r→∞ = 0 . (3.7)

Demanding axial symmetry and regularity imposes the following boundary conditions on

the symmetry axis for θ = 0, π

∂θX
∣∣
θ=0,π

= Y
∣∣
θ=0,π

= ∂θf0

∣∣
θ=0,π

= ∂θf1

∣∣
θ=0,π

= ∂θf2

∣∣
θ=0,π

= ∂θW
∣∣
θ=0,π

= 0 . (3.8)

We also require the solutions to be Z2-symmetric with respect to reflection symmetry

θ → π− θ in the equatorial plane θ = π/2. Thus, we can restrict the range of values of the

angular variable as θ ∈ [0, π/2]. The corresponding boundary conditions on the equatorial

plane are

∂θX
∣∣
θ=π

2
= ∂θf0

∣∣
θ=π

2
= ∂θf1

∣∣
θ=π

2
= ∂θf2

∣∣
θ=π

2
= ∂θW

∣∣
θ=π

2
= 0 . (3.9)

Further, there are two different types of axially symmetric solutions, which possess

different parity of the complex scalar field [19, 20, 65]. The corresponding boundary con-

ditions on the complex component of the field in the equatorial plane are ∂θY
∣∣
θ=π

2
= 0 for

parity-even solutions, and Y
∣∣
θ=π

2
= 0 for parity-odd configurations.

Note that the absence of a conical singularity on the symmetry axis requires that

the deficit angle should vanish, δ = 2π

(
1− lim

θ→0

F2
F1

)
= 0. Hence the solutions should

satisfy the constraint F2

∣∣
θ=0

= F1

∣∣
θ=0

. In our numerical scheme we explicitly checked this

condition on the symmetry axis.

3.2 Quantities of interest and Smarr relation

Asymptotic expansions of the metric functions at the horizon and at spatial infinity yield

a number of physical observables. The total ADM mass M and the angular momentum J

of the spinning hairy black holes can be read off from the asymptotic subleading behaviour

of the metric functions as r →∞

gtt = −1 +
α2M

πr
+O

(
1

r2

)
, gϕt =

α2J

πr
sin2 θ +O

(
1

r2

)
. (3.10)

– 6 –
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The ADM charges can be represented as sums of the contributions from the event hori-

zon and the scalar hair, M = Mh+MΦ and J = Jh+JΦ, respectively. These contributions

can be evaluated separately via Komar integrals

Mh = − 1

2α2

∮
S
dSµν∇µξν , Jh =

1

4α2

∮
S
dSµν∇µην ,

MΦ = − 1

α2

∫
V
dSµ (2Tµν ξ

ν − Tξµ), JΦ =
1

2α2

∫
V
dSµ

(
Tµν η

ν − 1

2
Tηµ

)
,

(3.11)

where S is the horizon 2-sphere and V denotes an asymptotically flat spacelike hypersurface

bounded by the horizon.

Analogously to other axially symmetric stationary rotating boson stars [19, 20], self-

gravitating solitons of the non-linear sigma model [38] and vortons [76], one obtains the

quantization relation for the angular momentum of the spinning complex scalar component

of the model, JΦ = nQ, where Q is its Noether charge and n its winding number.

The physically interesting horizon properties include the Hawking temperature Th,

which is proportional to the surface gravity κ2 = −1
2∇µχν∇

µχν

Th =
κ

2π
=

1

16πrh
exp

[
(f0 − f1)

∣∣
r=rh

]
, (3.12)

where χ is the horizon Killing vector (3.3). Of interest is also the horizon area Ah, which

is given by

Ah = 32πr2
h

∫ π

0
dθ sin θ exp

[
(f1 + f2)

∣∣
r=rh

]
. (3.13)

The observables are related via the Smarr relation

M = 2ThS + 2ΩhJh +MΦ , (3.14)

where S = π
α2Ah is the entropy of the black hole and MΦ is the energy of the scalar fields

outside the event horizon (3.11). Another relation between the physical quantities of the

hairy black hole is the first law of thermodynamics

dM = ThdS + ΩhdJ .

4 Results

4.1 Numerical implementation

The set of six coupled non-linear elliptic partial differential equations of the functions

X,Y,W , f0, f1, f2, which parametrize the system (2.5), (2.7), has been solved numerically

subject to the boundary conditions (3.6)–(3.8). We have made use of a fourth-order finite

differences scheme, where the system of equations is discretized on a grid with 101 × 101

points. To facilitate the calculations in the near horizon area, we have introduced the

new radial coordinate x = r−rh
r+c , which maps the semi-infinite region [0,∞) onto the unit

interval [0, 1]. Here c is an arbitrary constant used to adjust the contraction of the grid.

The emerging system of nonlinear algebraic equations is solved using a modified Newton
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method. The underlying linear system is solved with the Intel MKL PARDISO sparse

direct solver. The errors are on the order of 10−5. All calculation have been performed

using CESDSOL1 library.

4.2 Stationary spinning self-gravitating solitons and black holes with synchro-

nised hair

When constructing spinning gravitating solutions, we start with the corresponding flat

spacetime configurations [65] as initial guesses. Since the present system possesses a large

space of parameters, we restrict our analysis to two particular values of the mass parameter

µ, µ2 = 0.25 and µ = 0 (i.e., the limiting case of vanishing potential), recall that the mass

m of the complex field can be rescaled to m = 1. The regular self-gravitating solitonic

solutions are found by replacing the boundary conditions at the horizon rh with appropriate

boundary conditions at r = 0.

As usual, the stationary spinning solutions exist within a restricted interval of the

scaled frequency ω ∈ [ωmin, ωmax = 1]. The upper bound of the frequency ω corresponds

to the mass of the complex scalar field, the lower critical frequency depends on the value

of the second mass parameter µ. As ω → ωmax = 1 the spinning configurations smoothly

approach linearized perturbations around Minkowski spacetime, with the ADM mass M

tending to zero.

Note that, unlike the corresponding solutions of the non-renormalizable flat space

model with a single complex field and a sextic potential [19, 20], there is no lower bound

on the frequency in the flat space limit of the present model: the Friedberg-Lee-Sirlin Q-

balls exist for all non-zero values of the frequency ω < m [64, 65]. As we shall see, the

coupling to gravity changes this, and a lower critical value of the frequency appears.

Setting the winding number n to n = 0 reduces the above system to the spherically

symmetric case of the regular boson star solutions. In figure 1 we display the ADM mass

M as a function of rescaled frequency (left) and the mass M vs the charge Q for oscillating

n = 0 parity-even boson stars in the model (2.1).

Notably, the coupling to gravity reduces the interval of values of the frequency ω, and

the spherically symmetric boson stars exist in a more limited frequency range. The minimal

value ωmin > 0 depends on the strength of the gravitational coupling α and on the value

of the mass parameter µ, see figure 1, left plot. As expected, these boson stars exhibit a

typical spiral-like frequency dependence of the charge and the mass, and should approach

finite limiting values at the centers of the spirals.

Considering the n = 0 configurations we do not find spherically symmetric hairy black

holes, as expected. However, taking n ≥ 1, we obtain both boson stars with non-zero

angular momentum, and spinning hairy black holes. Furthermore, for n ≥ 1 there are two

different types of spinning configurations, [19, 20, 61, 63, 66], referred to as parity-even and

parity-odd solutions, respectively.

1Complex Equations — Simple Domain partial differential equations SOLver is a C++ library developed

by IP. It provides tools for the discretization of an arbitrary number of arbitrarily nonlinear equations

with arbitrary boundary conditions on direct product arbitrary dimensional grids with arbitrary order

of accuracy.
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Figure 1. The ADM mass M vs the angular frequency ω (left plot) and Noether charge Q (right

plot) at µ/m = 0.25, µ = 0 and α = 0.5 for parity-even n = 0 boson stars.

In figure 2 the ADM mass M of the n = 1 parity-even and parity-odd solutions is

exhibited versus the frequency ω for a set of values of the horizon radius parameter rh,

including the regular limit rh = 0, for the chosen values of the mass parameter µ2 = 0.25

and the gravitational coupling α = 0.5. The families of boson star solutions are found in

the rh → 0 limit. They emerge from the vacuum at ωmax = 1, and form the fundamental

branch of solutions. Both the dependence of the mass and the Noether charge of the regular

configurations on the frequency form an inspiraling pattern, which is typical for spinning

boson star solutions and some other types of gravitating solitons [19, 20, 38, 53, 76].

As the fundamental branch of regular solutions arises from the upper limiting frequency

value ωmax, the mass M of the configurations gradually increases with decreasing ω and,

for all values of the mass parameter µ not too close to zero, the dependence M(ω) possesses

a maximum at some critical value of the frequency ωM. As the frequency decreases below

that point, the mass of the solutions decreases until the minimum frequency ωmin is reached.

Here the fundamental forward branch merges with a second (backward) branch, leading to

a counterclockwise inspiraling of the mass curve M(ω).

In general, for the same set of values of the parameters of the model, the mass of the

parity-odd configurations is considerably higher than the mass of the parity-even boson

stars, as seen in figure 2, left column. The parity-odd n = 1 solutions represent a new family

of boson stars, which in the flat space limit are linked to the corresponding Q-balls [65].

We have found that black holes with synchronized hair exist in a small interval of the

event horizon radius parameter, typically rh < 0.07, see figure 2. For very small values of

the horizon radius rh, rh < 0.02, the inspiraling critical behavior is changed to a multi-

branch structure with a few branches only, leading toward a second upper critical value of

the frequency ω
(1)
cr < 1, see figure 2, upper plots. In this limit, the real scalar component

trivializes and the lower branch ends on the vacuum Kerr black holes with stationary scalar

Klein-Gordon clouds, see [24, 38, 45, 46, 48, 54].
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Figure 2. The ADM mass M (upper row) and the Hawking temperature Th (middle row) vs the

frequency ω, and the mass M vs the angular momentum J (bottom row) for a set of values of the

horizon radius parameter rh for n = 1 rotating parity-even (left column) and parity-odd (right col-

umn) hairy black holes at µ/m = 0.25 and α = 0.5. In the upper plots, here, and in the subsequent

figures below, the shaded area corresponds to the domain of existence of vacuum Kerr black holes,

the red short-dashed line to the extremal vacuum Kerr black holes, and the blue short-dashed line

to the subset of vacuum Kerr black holes with stationary scalar Klein-Gordon clouds.
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As the horizon radius rh increases, the multibranch structure is replaced by a two-

branch scenario with the second (lower, backward) branch ending on the limiting Kerr

solution as ω → ω
(1)
cr , see figure 2, left column. The maximum value of the frequency along

the second branch ω
(1)
cr slowly increases as the horizon radius rh grows, and approaches

ωmax = 1 at some maximal value of the horizon radius rh as the loop shrinks to zero. The

branches exist up to the limit α = 0, where the regular solutions approach the corresponding

flat space Q-ball configurations while the solutions with non-zero horizon radius rh become

linked to the scalar clouds spinning around the Kerr black hole in the probe limit.

The Hawking temperature constantly decreases as ω varies along the branches, see

figure 2, middle row. Note that the configurations with the smallest horizon radius rh have

the smallest temperature, both for the parity-even and parity-odd solutions.

Figure 2 also presents the ADM mass as a function of the angular momentum J , see

the lower column. The mass of the regular spinning configurations with horizon radius

rh = 0 exhibits a typical zig-zag behavior known for boson stars [17–20, 53, 68, 70]. As the

horizon radius increases, it becomes replaced with the two-branch pattern, which is well

known for the Kerr scalar clouds and other similar solutions [24, 38, 45, 46, 48, 54]. Here

the lower branch corresponds to the values of the frequency smaller than ω
(1)
cr , while the

upper branch represents the values ω > ω
(1)
cr .

This pattern is similar to the corresponding branch structure of the usual boson

stars [17–20] and spinning hairy black holes [38, 45–52]. The analysis of the stability

of the solutions of that type [78–80] suggests that the appearance of a cusp in the mass vs

charge dependence indicates a transition from a stable fundamental branch to an unsta-

ble branch. Moreover, the spinning boson stars become unstable, when they develop an

ergoregion. Analogous arguments should hold also in the case of regular and hairy black

hole solutions of the Einstein-Friedberg-Lee-Sirlin model.

In figure 3 we present the horizon values of the massive scalar fields X(rh) and Y (rh)

as functions of the frequency ω for µ2 = 0.25. Both the parity-even and the parity-odd

solutions start at ωmax = 1 from the regular limits X(ωmax) = 1, Y (ωmax) = 0.

To conclude the analysis of the massive (µ2 = 0.25) spinning configurations, we exhibit

in figure 4 the dependence of the scalar mass of the n = 1 parity-even solutions on the

gravitational coupling α for some set of the values of the horizon radius rh. One can see

that the mass of the solutions on both branches decreases monotonically as α increases. In

the limiting case α → 0 the solutions approach the Q-balls spinning on the Minkowski or

Schwarzschild background.

The situation changes drastically for the spinning solutions when µ → 0. First, we

observe that the spinning component of the coupled configuration falls off exponentially. It

remains massive, whereas the real scalar field decays as ∼ r−1. Figure 5 exhibits the profile

functions of both parity-even and parity-odd scalar field functions X(r, θ) and Y (r, θ) for

the massive µ2 = 0.25 and the massless (µ = 0) case. Thus, the massless limit provides

a new type of hairy black hole with hair of two different types, that are short- and long-

ranged, respectively.

In figure 6 we display the ADM mass M (left plot) and the Hawking temperature

TH (right plot) of the parity-even n = 1 configurations versus the frequency ω. Similar
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Figure 3. The value of real scalar field on the horizon X(rh) at θ = 0 (left column) and the

maximal value of the complex scalar field on the horizon Ymax(rh) (right column) vs the frequency

ω for a set of values of the horizon radius parameter rh for n = 1 rotating parity-even (upper row)

and parity-odd (lower row) hairy black holes at µ/m = 0.25 and α = 0.5.

to the solutions with non-zero values of the mass parameter µ presented in figure 2, the

fundamental branch of the regular spinning boson stars arises in the limit ωmax = 1, and

the mass of the configuration increases as the frequency decreases. This branch extends

up to some lower non-zero critical value ωmin > 0, and the ADM mass of the boson star

increases monotonically along this branch.

The lower critical value ωmin depends on the strength of the gravitational coupling,

and increases slowly as α grows. In the flat space limit the axially-symmetric spinning

Q-balls with massless real component exist over the entire range of values of the frequency

ω ∈ [0, 1] [64, 65]. We constructed solutions with very large values of α, and they are likely

to exist for arbitrary values of the effective gravitational coupling.

This branch bifurcates with the second upper branch at ωmin, and we observe a small

loop in the M(ω) dependence, as illustrated in figure 6, left plot, see also the zoomed-in

subplot in figure 7. This loop, which is observed both for the parity-even and parity-odd

black holes with a synchronized massive component, disappears when the mass parameter

µ increases sufficiently from zero.
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Figure 4. The scalar hair mass MΦ vs the gravitational coupling constant α for a set of values of

horizon radius parameter rh and the potential coupling constant µ for n = 1 rotating parity-even

hairy black holes at frequency ω/m = 0.9.

The mass of the configurations rapidly increases as the frequency ω approaches its

minimal value ωmin. Further increase of the frequency ω along the second branch is related

with a decrease of the mass. At some upper critical value of the frequency ω
(2)
cr the curve

backbends and a third (backward) branch of the regular spinning solitons is found. Thus,

an overall inspiral type pattern is observed again for this sequence of solutions.

We have performed a similar study also for the parity-odd µ = 0 solutions with a long-

range real component, see figure 7. The branch structure of the spinning parity-odd black

holes with synchronized hair is more explicit than the one of the corresponding parity-even

solutions. In particular, for small values of the horizon radius, the third and the forth

branch are clearly visible.

In addition, figure 8 exhibits the pattern of the evolution of the branches of the parity-

even (upper row) and parity-odd (bottom row) solutions at the horizon radius rh = 0.01, as

the mass parameter µ varies. We observe that the range of allowed values of the frequency

rapidly decreases as µ grows. In the limiting case, µ → ∞, the real scalar component

becomes trivial everywhere in space, so the model (2.1) becomes effectively truncated to

the massive complex-Klein-Gordon theory minimally coupled to Einstein gravity [77].

It is known, that the latter model supports the existence of black holes with syn-

chronised hair [45, 46, 48]. These solutions trivialize when the gravitational coupling is

switched off. Indeed, our simulations show that the spinning component of the parity-even

solutions of the model (2.1) approaches the corresponding solutions of the complex-Klein-
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Figure 5. Contour plots of the profile function of the real scalar field X (first and third columns)

and the profile function of the complex scalar field Y (second and fourth columns) in the y = 0

plane for parity-even (left two columns) and parity-odd (right two columns) n = 1 black holes with

synchronized hair at ω/m = 0.9, α = 0.5 and horizon radius parameter rh = 0.05. The upper row

shows solutions for a finite value of the real scalar field mass µ/m = 0.25, whilst the bottom row

shows solutions for a massless real scalar field with µ = 0.

Gordon theory presented in [46, 48]. Likewise, in the limit µ → ∞ the n = 1 parity-odd

solutions of the model (2.2) approach Kerr black holes with parity-odd synchronised scalar

hair [61, 63].

Finally, we address the geometry of the ergo-surfaces of the hairy black holes in the

Einstein-Friedberg-Lee-Sirlin model. The ergo-surfaces are defined as the zero locus of the

normalized time-like Killing vector ξ · ξ = 0, or

gtt = −F0 + sin2 θF2W
2 = 0 . (4.1)

We found that, in analogy to other known hairy black holes, there are both the ordinary
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Figure 6. The ADM mass M (left plot) and the Hawking temperature Th (right plot) vs the

frequency ω for a set of values of the horizon radius parameter rh for n = 1 rotating parity-even

hairy black holes in the limiting case of vanishing scalar potential (µ = 0) at α = 0.5. To simplify

the presentation the ADM mass is multiplied by ω.
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hairy black holes at µ = 0, rh = 0.01 and α = 0.5. To simplify the presentation the ADM mass is
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Figure 8. The ADM mass M (left column) and the Hawking temperature Th (right column) vs

the frequency ω for a set of values of the potential coupling constant µ/m for n = 1 parity-even

(upper row) and parity-odd (lower row) rotating hairy black holes at the horizon radius parameter

rh = 0.01 and α = 0.5.

Kerr-like S2 ergo-regions with topology S2, which appear on the fundamental branch, and

ergo-Saturns with topology S2
⊕

(S1×S1), when the black holes possess parity-even scalar

hair [47, 53], see figure 9. Further, analogously to the corresponding parity-odd solutions in

the Einstein-Klein-Gordon theory [63], there is a new type of ergo-surfaces, which represent

ergo-double-torus-Saturns with topology (S1×S1)
⊕

(S1×S1)
⊕
S2, see figure 9, right plot.

Also, we constructed spinning solutions for higher values of the azimuthal winding

number n > 1. Generally, these possess similar properties as the n = 1 solutions, however,

their mass is higher, and they exist in a larger interval of frequencies, as seen in figure 10.

5 Conclusions

In this work we have coupled the Friedberg-Lee-Sirlin model [11] to Einstein gravity and

investigated some of its solutions. When the flat space non-topological solitons are cou-

pled to gravity, regular boson star solutions arise. In the simplest case, these boson star
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Figure 9. Ergosurfaces of n = 1 parity-even hairy BHs with horizon radius parameter rh = 0.01

and frequencies ω/m = 0.35 (1), ω/m = 0.5 (2) and parity-odd BH with ω/m = 0.5 (3) on the

backward branch. Blue surfaces represent the horizon.
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Figure 10. The ADM mass M (left plot) and the Hawking temperature Th (right plot) vs the

frequency ω/m for a set of values of the winding number n for rotating parity-even hairy black

holes at the horizon radius rh = 0.05 and µ/m = 0.25.

solutions are spherically symmetric. Here, however, we have concentrated on their rotating

generalizations, which may feature a parity-even or parity-odd complex scalar field.

The properties of these boson stars are similar to those found in models with a complex

scalar field only, like the Einstein-Klein-Gordon model. In fact the solutions of this model

are recovered, when the coupling constant µ is taken to infinity. On the other hand, also

boson star solutions with a massless real scalar field have been found.

When the presence of an event horizon together with the synchronization condition

between the frequency and the horizon angular velocity is imposed, new hairy black holes

emerge in a certain region of the parameter space. According to the symmetries of the

complex scalar field they represent parity-even or parity-odd hairy black holes.

These hairy black holes possess two types of hair, consisting of the usual complex

scalar field hair and the additional real scalar field hair. In particular, when the mass of

the real scalar field vanishes, the real scalar field hair becomes long-ranged, whereas the

complex scalar field hair remains massive. This constitutes an interesting new quality of

hairy black holes.
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We note that similar hairy black hole solutions as the ones studied here may also exist

in the Wick-Cutkosky model [72, 73], recently revisited in [74, 75], if the corresponding

Q-ball configurations are coupled to Einstein gravity.

Various interesting features of the regular and hairy black hole solutions of the Einstein-

Friedberg-Lee-Sirlin model remain to be studied, and, in particular, there should be nu-

merous further radially and angularly excited regular and hairy black hole solutions in

the model.
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