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1 Introduction

The boundary brings many novel characteristics to quantum field theories. The most

famous one is the Casimir effect [1–3], which originates from the change of zero point energy

of quantized fields due to boundaries. In this paper we focus on BCFT, the conformal field

theory defined on a manifold M with a boundary ∂M and suitable boundary conditions

(BC) [4, 5]. We use xi and ya to denote the coordinates of M and ∂M , respectively. We have

xi = (x, ya) and the boundary is labeled by x = 0. It is remarkable that the renormalized

expectation value of stress tensor of BCFT is divergent near the boundary [6],

< Tij >= α
k̄ij
xd−1

+O

(
1

xd−2

)
, x ∼ 0, (1.1)

where x is the distance to the boundary, k̄ij is the traceless part of extrinsic curvature,

d is the dimension of spacetime and α is a constant determined by the type of BCFT

under consideration. One may worry about the divergence of stress tensor at x = 0.

In fact, nothing goes wrong, since there are boundary contributions to the stress tensor,

which exactly cancel the apparent bulk “divergence” and make finite the total energy [7, 8].

Roughly speaking, we call the renormalized stress tensor (1) as ‘Casimir effect’ in this paper.
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In addition to Casimir energy, the boundary also plays an important role in the quan-

tum anomaly [9–21]. Let us focus on Weyl anomaly, which measures the breaking of scaling

symmetry of CFT due to quantum effects,

A = ∂σIeff[e2σgij ]|σ=0 =

∫
M
dxd
√
g < T ii > +

∫
∂M

dyd−1
√
h < taa >, (1.2)

where Ieff is the effective action of CFT, gij are the bulk metrics, hab are the induced

metrics on the boundary, Tij and tab are bulk and boundary renormalized stress tensors,

respectively. Note that there are non-trivial boundary contributions to Weyl anomaly for

BCFT [9, 10]. Take 3d BCFT as an example, we have [20, 21]

A3d =

∫
∂M

dy2
√
h
(
β0R− βtr(k̄2)

)
, (1.3)

where β0, β are boundary central charges and R is Ricci scalar on the boundary. As for

d ≥ 4, in general, (1.2) takes the form

A = Bulk Anomaly +

∫
∂M

dyd−1
√
h
(
βk̄ijq

(d−2)
ij + . . .

)
, (1.4)

where β is the boundary central charge, . . . denote terms without traceless parts of q
(d−2)
ij ,

q
(n)
ij is defined by the near-boundary metric in the Gauss normal coordinate

ds2 = dx2 +

(
hab − 2xkab +

∞∑
n=2

xnq
(n)
ab

)
dyadyb, (1.5)

where kab = ∂xi

∂ya
∂xj

∂yb
kij and similar for q

(n)
ab . The covariant form of Weyl anomaly of

4d BCFT can be found in [9, 10]. In particular, we have k̄ijCikjlh
kl = 1

2 k̄
ijq

(2)
ij +

terms without q̄
(2)
ij for d = 4 [14], where Cijkl are Weyl tensors. Since it is a non-trivial

problem to find out the exact expressions of boundary Weyl anomaly in general dimensions,

for simplicity we focus on the non-covariant form (1.4) in this paper.

Because the boundary breaks the translation invariance along the direction perpendic-

ular to the boundary, the energy moment tensor of BCFT is no longer conserved generally.

Instead, we have [22]

∇iT ij = −δ(x)Dj(ya), (1.6)

where Dj(ya) is the displacement operator with scaling dimension ∆ = d. Note that only

the orthogonal component of displacement operator is non-zero, i.e., Dini = −Dx 6= 0,

where ni is the outward-pointing normal vector of the boundary. The two point function

of displacement operator is given by

< Dx(y)Dx(0) >=
CD
|y|2d

, (1.7)

with CD the Zamolodchikov norm, which is a piece of BCFT data [22].
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The main goal of this paper is to show that the Casimir effect, Weyl anomaly and

displacement operator of BCFT are closely related to each other. As we will prove in the

text, there are universal relations

α = 2β (1.8)

α = −
dΓ[d+1

2 ]π
d−1
2

(d− 1)Γ[d+ 2]
CD, (1.9)

between the charges of Casimir effect (1.1), Weyl anomaly (1.4) and displacement opera-

tor (1.7). We also give some holographic and free-field tests of the above universal relations.

It should be stressed that the above universal relations (1.8), (1.9) are generalizations

of the works [8, 11, 12] to higher dimensions. [8] find universal relations between Casimir

coefficient α and boundary central charge β for 3d and 4d BCFTs. And [11, 12] find

remarkable relations between boundary central charge β and the Zamolodchikov norm CD
of displacement operator in three and four dimensions. As we will show in the paper, the

universal relations (1.8), (1.9) agree with the results of [8, 11, 12]. Besides, it should be

also mentioned that our results are generalization of the works of [23–28] for codimension

2 defect (entangling surface) to codimension 1 defect (boundary).

The paper is organized as follows. In section 2, we briefly review the displacement

operator of BCFT. In section 3, we study the universal relation between Casimir energy

and Weyl anomaly. In section 4, we derive the shape dependence of Casimir effect from

displacement operator. In section 5, we verify our main results by studying free BCFTs

and holographic BCFTs. Finally, we conclude with discussions in section 6.

2 Review of displacement operator

In this section we briefly review the displacement operator for BCFT. Consider the varia-

tion of the effective action of BCFT, in general, we have [5, 22]

δIeff =
1

2

∫
M
dxd
√
gT ijbulkδgij +

1

2

∫
∂M

dyd−1
√
h
(
T ijbdyδhij + J (n)ijδq

(n)
ij + 2Diδx

i
)

(2.1)

where T ijbulk and T ijbdy are bulk and boundary stress tensor respectively, J (n)ij is the bound-

ary current conjugate to q
(n)
ij = ∂nxgij/Γ[n + 1] (1.5) and Di is the displacement operator.

For simplicity, we turn off the variation of q
(n)
ij below. Please see [5, 22] for the discussions

of such terms. Consider the diffeomorphism on the boundary,

δζy
a = −ζa, δζx

i = ζa∂ax
i, δζgij = 0 (2.2)

we have

δζIeff =

∫
∂M

dyd−1
√
hζa∂ax

iDi = 0, (2.3)

which yields

ζa∂ax
iDi = 0. (2.4)
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This means the components of Di parallel to the boundary must vanish. This is the

expected result, since the translation invariance along the direction parallel to the boundary

is preserved. As a result, we must have ∇iTij∂axj = 0, which yields (2.4) from (1.6).

Now consider an infinite-small transformation of bulk coordinates

δξy
a = 0, δξx

i = −ξi, δξgij = 2∇(iξj), (2.5)

we get

δξIeff = −
∫
M
dxd
√
gξj∇iT ijbulk

+

∫
∂M

dyd−1
√
h
(
T ijbulkniξj − ξ̂j∇̂iT

ij
bdy + T ilbdykiln

jξj − ξjDj
)

= 0, (2.6)

where ∇̂i is the induced covariant derivative on the boundary and ξ̂i = ξlh
l
i is the pull back

of the bulk vector ξi into the boundary. We have used T ijbdynj = 0 in the above derivations.

For infinite-small bulk ξ, we derive from (2.6)

∇iT ijbulk = 0. (2.7)

As for infinite-small boundary ξ, we get

∇̂iT ijbdy = T ilbulknih
j
l , (2.8)

njD
j = T ijbulkninj + T ijbdykij , (2.9)

which agrees with [20]. Note that there could be corrections to (2.8), (2.9) if we turn on

the variation of q
(n)
ij [5]. Below we focus on the flat space with a plate boundary. i.e.,

kij = q
(n)
ij = 0. Then the displacement operator D = Dx = −njDj becomes

D(y) = −T ijbulkninj = −Txx(0, y), (2.10)

where T ij = T ijbulk + δ(x)T ijbdy is the total stress tensor. From (2.10), it is clear that the

displacement operator of BCFT is given by the normal component of the stress tensor in

the flat space with a plate boundary [5, 20, 22]. As a result, we have

< D(y) > = − < Txx(0, y) >= 0,

< D(y1)D(y) > =< Txx(0, y1)Txx(0, y) >=
α(1)

|y1 − y|2d
, (2.11)

where α(1) = CD is defined by (2.34) of [5].

Now let us go on to discuss the two point functions. To reveal the relation between

Casimir effect and displacement operator, we need the correlator of displacement operator

with the stress tensor. According to [22], we have

< T ab(x1)D(y) > = b

(
4x2

1y
ayb

(x2
1 + y2)d+2

− δab

d(x2
1 + y2)d

)
, (2.12)

< T ax(x1)D(y) > = 2b

(
yax1

(x2
1 + y2)d+1

− 2yax3
1

(x2
1 + y2)d+2

)
, (2.13)

< T xx(x1)D(y) > =
b

(x2
1 + y2)d

(
(x2

1 − y2)2

(x2
1 + y2)2

− 1

d

)
, (2.14)
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where D(y) = D(x = 0, ya) and T ij(x1) = T ij(x1, y
a
1 = 0). Taking the limit x1 → 0

for (2.14) and comparing with (2.11), we get

b = − d

(d− 1)
α(1) = − d

(d− 1)
CD. (2.15)

3 Casimir effect from Weyl anomaly

In [8], it is found that there are universal relations between Casimir effect and Weyl anomaly

for BCFTs in three and four dimensions. In this section, we generalized the results of [8]

to higher dimensions.

The key observation of [8] is that, the Weyl anomaly A can be obtained either as the

trace of renormalized stress tensor or the logarithmic UV divergent term of the effective

action. Thus if we vary the metric and focus on the boundary term, we obtain

(δA)∂M = δIeff

∣∣
ln 1/ε

=
1

2

∫
M

√
gT ijδgij

∣∣
ln 1/ε

, (3.1)

where ε is an UV cutoff. To proceed, let us focus on the metric in the Gauss normal

coordinates (1.5). For simplicity, we only turn on the variation with respect to q
(d−2)
ab , i.e.,

δgab = xd−2δq
(d−2)
ab , δgxx = δgxb = 0.

Let us firstly discuss the case d ≥ 4, where q
(d−2)
ab and kab are independent. From (1.4),

we derive the left hand side of (3.1) as

(δA)∂M = β

∫
∂M

dyd−1
√
hk̄abδq

(d−2)
ab . (3.2)

From (1.1) together with δgab = xd−2δq
(d−2)
ab , we obtain the right hand side of (3.1) as

δIeff

∣∣
ln 1/ε

=
α

2

∫
M
dxdyd−1

√
h
k̄ab

x
δq

(d−2)
ab

∣∣
ln 1/ε

=
α

2

∫
∂M

dyd−1
√
hk̄abδq

(d−2)
ab . (3.3)

Identifying (3.2) with (3.3), we obtain the universal relation (1.8) for d ≥ 4.

Now let us go on to discuss the case d = 3, where q
(d−2)
ab = q

(1)
ab = −2kab and kab are

not independent. From (1.3), we get the left hand side of (3.1) as

(δA)∂M = −2β

∫
∂M

dy2
√
hk̄abδkab. (3.4)

Note that
∫
∂M

dx2
√
hR in (1.3) is the Euler density, whose variation vanishes. From (1.1)

together with δgab = −2xδkab, we derive the right hand side of (3.1) as

δIeff

∣∣
ln 1/ε

= −α
∫
M
dxdy2

√
h
k̄ab

x
δkab

∣∣
ln 1/ε

= −α
∫
∂M

dy2
√
hk̄abδkab. (3.5)
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Identifying (3.4) with (3.5), we obtain (1.8) for d = 3. Now we finish the derivations of the

universal relation (1.8) between Casimir effect and Weyl anomaly in general dimensions.

Now we show that the universal relation (1.8) agree with the results of [8] in three

and four dimensions. In the notations of [8], the universal laws between Casimir effect

and Weyl anomaly are given by α1 = −b2 for 3d BCFTs and α1 = b4/2 for 4d BCFTs.

Transforming into our notations, i.e., α1 = α/2, b2 = −β, b4 = 2β, the universal laws of [8]

become α = 2β for both 3d and 4d BCFTs, which is exactly the universal relation (1.8) in

our notations. Note that, to transform the notation b4 = 2β, we have used k̄ijCikjlh
kl =

1
2 k̄

ijq
(2)
ij + terms without q̄

(2)
ij [14].

4 Casimir effect from displacement operator

In this section, we derive the shape dependence of Casimir effect from the displacement

operator. Note that the technology used in this section was used in [26] to determine the

relation between CD and the one-point function of the stress tensor in the presence of a

defect of codimension two.

By definition, we have for displacement operator [26]

< D . . . >= ni
δ

δxi
< . . . >, (4.1)

where . . . denote arbitrary insertions of operators. From (4.1), one can derive the one point

function of an operator near the deformed boundary from the two point function of this

operator with displacement operator on the non-deformed boundary. Take stress tensor as

an example, we have

< Tij(x1) >f∂M=< Tij(x1) >∂M −
∫
dyd−1 < Tij(x1)D(y) >∂M f(y) +O(f2), (4.2)

where we have δxi = δixf(y) and recall that we have set ya1 = 0 for Tij and x = 0 for D

for simplicity. For a general deformation the above integral cannot be performed. Instead,

only the singular parts near the boundary x1 → 0 can be calculated explicitly. In the weak

sense, i.e., after integration against a test function, the correlator (2.12) can be rewritten

as distributions with support on the boundary. In the appendix, we prove

< Tab(x1)D(y) > =
bΓ[d+1

2 ]π
d−1
2

Γ[d+ 2]

(
∂a∂bδ

d−1(y)− δab 1
d−1∂

2δd−1(y)

(x1)d−1
+ . . .

)
, (4.3)

< Tax(x1)D(y) > = −
bΓ[d+1

2 ]π
d−1
2

(d− 1)Γ[d+ 2]

(
∂a∂

2δd−1(y)

xd−2
1

+ . . .

)
, (4.4)

< Txx(x1)D(y) > = (0 + . . .) , (4.5)

where . . . denote higher order terms and the terms without derivatives of delta function

(we focus on the case δd−1(y)f(y) = 0 below). Substituting (4.3), (4.4), (4.5) into (4.2)

– 6 –
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and using ∂a∂bf(y) = −kab(y) together with < Tij >∂M= 0, we obtain

< Tab(x) >f∂M =
bΓ[d+1

2 ]π
d−1
2

Γ[d+ 2]

k̄ab
xd−1

+O(k2), (4.6)

< Tax(x) >f∂M =
bΓ[d+1

2 ]π
d−1
2

(d− 1)Γ[d+ 2]

∂ak̄

xd−2
+O(k2), (4.7)

< Txx(x) >f∂M = O(k2), (4.8)

where we have replaced x1 by x for simplicity. These are some of the main results of this

paper. Comparing (4.6) with (1.1) and recalling that b = − d
(d−1)CD (2.15), we derive the

universal relation (1.9) between Casimir effect and displacement operator. Note that we

only list Tij up to order O(1/xd−1) in (1.1). To the next order in flat space, we have [6, 8]

Tax =
α

d− 1

∂ak̄

xd−2
+O

(
1

xd−3

)
, (4.9)

Txx =
α

d− 2

Trk̄2

xd−2
1

+O

(
1

xd−3

)
, (4.10)

which agree with (4.7), (4.8) and (1.9). This can be regarded as a double-check of our

calculations. It should be mentioned that, for 3d and 4d BCFTs, [11, 12] find interesting

relation between Weyl anomaly and displacement operator, while [8] obtain universal rela-

tion between Weyl anomaly and Casimir effect. Combining their results, we can verify our

main result (1.9) between displacement operator and Casimir effect for d = 3, 4. Let us

show more details below. Since we have already shown that results of [8] agree with ours

at the end of section 3, now we focus on the results of [11, 12]. In the notations of [11, 12],

the universal laws between Weyl anomaly and displacement operator are expressed as

b =
π2

8
cnn, for d = 3, (4.11)

b2 =
2π4

15
cnn, for d = 4, (4.12)

where b, b2 are boundary central charges and cnn denotes the norm of displacement operator.

Transforming into our notations, i.e., b = −4πβ, b2 = −32π2β, cnn = CD, (4.11), (4.12)

become

β = − π

32
CD, for d = 3, (4.13)

β = − π2

240
CD, for d = 4. (4.14)

Note that, to transform the notation b2 = −32π2β, we have used k̄ijCikjlh
kl = 1

2 k̄
ijq

(2)
ij +

terms without q̄
(2)
ij [14]. From our key results (1.8), (1.9), we get

β = −
dΓ[d+1

2 ]π2 d−1
2

(d− 1)Γ[d+ 2]
CD, (4.15)

which reduces to (4.13) and (4.14) for 3d BCFT and 4d BCFT, respectively. Now we have

shown that our results indeed agree with those of [11, 12] in three and four dimensions.

This is a test of our universal results in general dimensions.
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5 Tests of universal relations

5.1 Story of free BCFT

Now let us verify our results by studying free BCFT. For simplicity, we focus on conformally

coupled free scalar with the following action

I =
1

2

∫
M
dxd
√
g(∇iφ∇iφ+ ξRφ2) +

∫
∂M

dyd−1
√
hξkφ2, (5.1)

where ξ = d−2
4(d−1) and k is the extrinsic curvature. There are two kinds of conformally

invariant BCs for free scalar

Dirichlet BC : φ|∂M = 0,

Robin BC : (∇n + 2ξk)φ|∂M = 0.
(5.2)

We use the heat kernel [30] to derive the renormalized stress tensor. The heat kernel of

scalar satisfies the EOM

∂tK(t, xi, x
′
i)− (�− ξR)K(t, xi, x

′
i) = 0 (5.3)

together with the BC (5.2) at x = 0 and BC

lim
t→0

K(t, xi, x
′
i) = δd(xi − x′i) (5.4)

at t = 0. Using the heat kernel, we can obtain the Green function

G(xi, x
′
i) =

∫ ∞
0

dtK(t, xi, x
′
i), (5.5)

and then derive the expectation value of the stress tensor by

T̂ij = lim
x′i→xi

[
(1−2ξ)∇i∇j′−2ξ∇i∇j+

(
2ξ− 1

2

)
gij∇l∇l

′
+ξ

(
Rij+

4ξ−1

2
Rgij

)]
G(xi,x

′
i).

(5.6)

In general T̂ij is divergent, which can be renormalized by subtracting the value it would

have in the space without boundary,

Tij = T̂ij − T̂0ij . (5.7)

To proceed, we choose the following background metric

ds2 = dx2 + (1− 2kx)dy2
1 + dy2

2 + . . .+ dy2
d−1 (5.8)

with k a constant. Then we solve the heat kernel (5.3), (5.2), (5.4) perturbatively in powers

of k. At the linear order, we get

K
(
t, x, x′

)
=

1

(4πt)
d
2

(
exp

[
− ρ

4t

]
+ exp

[
−ρI

4t

]
ΩI (t)

)
+O(k2), (5.9)

– 8 –



J
H
E
P
0
7
(
2
0
1
9
)
0
9
8

where ρ and ρI are the geodesic distances in real space and image space, respectively,

ρ = (x− x′)2 + (ya − y′a)2 − k(x′ + x)
(
y1 − y′1

)
2, (5.10)

ρI = (x+ x′)2 + (ya − y′a)2 − k (x2 + x′2) (y1 − y′1) 2

x′ + x
. (5.11)

For Dirichlet BC, ΩI(t) is given by

ΩI =−1 (5.12)

+k
xx′

4t

(y1−y′1
)

2

√πe
(x′+x)2

4t erfc
(
x′+x
2
√
t

)
√
t

− 2

x′+x

−2
√
π
√
te

(x′+x)2

4t erfc

(
x′+x

2
√
t

) .
As for Robin BC, ΩI(t) reads

ΩI = 1+k

(y1−y′1
)

2

√πe
(x′+x)2

4t erfc
(
x′+x
2
√
t

)
√
t

− 2

x′+x

−2
√
π
√
te

(x′+x)2

4t erfc

(
x′+x

2
√
t

)

(
y1−y′1

)
2

√πe
(x+x′)2

4t

(
2t+x2+x′2

)
erfc

(
x+x′

2
√
t

)
8t3/2

+
xx′

2t(x+x′)
−x+x′

4t


 . (5.13)

Note that the above heat kernel (5.9) agrees with the general results of [29]. We remark

that the first term of (5.9) is the heat kernel in free space without boundary, while the

second term of (5.9) is due to the boundary effect. To calculate the renormalized stress

tensor (5.7), we subtract the first term and only keep the second term of (5.9).

Substituting the heat kernel (5.9), (5.11), (5.12), (5.13) into (5.5), (5.6), (5.7), after

some complicated calculations, we obtain the renormalized stress tensor

Tij =
2−dπ−

d
2 Γ
(
d
2

)
1− d2

k̄ij
xd−1

+O(k2) (5.14)

which gives

α =
2−dπ−

d
2 Γ
(
d
2

)
1− d2

(5.15)

for free scalar. It is remarkable that Dirichlet BC and Robin BC yield the same α. Actually,

this is a special character of free BCFT. In general α depends on BCs [8, 32].

CD of free scalar is calculated in [5], which is given by

CD = α(1) =
Γ[d2 ]2

2πd
. (5.16)

One can check that (5.15) and (5.16) indeed satisfy the universal relation (1.9) between

Casimir effect and displacement operator. The universal relation (1.8) between Casimir

effect and Weyl anomaly has been verified for 3d and 4d free BCFT in [8]. Since Weyl

anomaly of free BCFT in higher dimensions is unknown in the literature, so far we cannot

verify the universal relation (1.8) generally. In the next subsection, we shall test (1.8) by

studying holographic BCFTs.
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M

Q

Figure 1. Geometry of holographic BCFT.

5.2 Holographic BCFT

The bottom-up model of holographic BCFT is firstly studied by Takayanagi [33]. Neumann

boundary condition (NBC) plays an important role in this model and produces many

interesting results [34, 35]. In this section, we use the holographic model of BCFT [33] to

test the universal relations (1.8), (1.9).

Let us start with the geometry setup of holographic BCFT. The d dimensional manifold

M is extended to a d+ 1 dimensional asymptotically AdS space N so that ∂N = M ∪Q,

where Q is a d dimensional manifold which satisfies ∂Q = ∂M = P . See figure 1 for

example. A central issue in the construction of the AdS/BCFT is the determination of the

location of Q in the bulk. It turns out that the location of Q can be fixed by boundary

conditions (BC).

The action for holographic BCFT is given by (16πGN = 1, L = 1)

I =

∫
N

√
G
(
R− 2Λ

)
+ 2

∫
Q

√
γ(K − T ), (5.17)

where Λ = −d(d−1)
2L2 is the cosmological constant, L is the AdS radius, K is the extrinsic

curvature on Q and T = (d − 2) tanh ρ is a constant parameter which can be regarded as

the holographic dual of boundary conditions of BCFT. For simplicity, we set AdS radius

L = 1 in this paper. Following [33], we impose NBC on the bulk boundary Q

Kij − (K − T )γij = 0. (5.18)

One can easily check that Poincare AdS

ds2 =
dz2 + dx2 + δabdy

adyb

z2
, (5.19)

is a solution to the NBC (5.18), provided that the embedding function of Q is given by

x = − sinh ρ z. (5.20)

Recall that we have T = (d− 2) tanh ρ.

The holographic one-point function of stress tensor is derived in [32], which takes the

form of (1.1) with α given by

α =
2d coshd ρ

(− coth ρ)d 2F1

(
d−1

2 , d2 ; d+2
2 ;−csch2ρ

)
+ d cosh2 ρ coth ρ

. (5.21)
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It should be mentioned that suitable analytic continuation of the hypergeometric function

should be taken in order to get smooth function at ρ = 0. For example, we have for d = 4,

α4 =
−1

(1 + tanh ρ)
. (5.22)

In the following subsections, we will derive holographic Weyl anomaly and holographic

displacement operator to verify the universal relations (1.8), (1.9).

5.2.1 Holographic Weyl anomaly

We follow the approach of [32, 36] to derive the holographic Weyl anomaly [37] for BCFTs.

For our purpose, we only need to work out the linear terms of O(k) and O(q(d−2)) in the

perturbation solutions. For simplicity, we take the following ansatz of metric

ds2 =
1

z2

[
dz2 +

(
1 + xd−1k̄abq̄

(d−2)
ab X

( z
x

)
+ . . .

)
dx2

+
(
δab − 2xk̄abf1

( z
x

)
+ xd−2q̄

(d−2)
ab f2

( z
x

)
+ xd−1

[
k̄c(aq̄

(d−2)c
b)f3

( z
x

)
+ δabk̄

ceq̄(d−2)
ce f4

( z
x

)]
+ . . .

)
dyadyb

]
(5.23)

where Āab denote the traceless part of Aab and we set

f1(0) = f2(0) = 1, X(0) = f3(0) = f4(0) = 0 (5.24)

so that the metric of BCFT takes the form in Gauss normal coordinates

ds2
M = dx2 +

(
δab − 2xk̄ab + xd−2q̄

(d−2)
ab + xd−10 + . . .

)
dyadyb. (5.25)

For simplicity, we focus on the solutions without ya dependence. We further set kab =

diag(k1,−k1, 0, . . . , 0), q
(d−2)
ab = diag(q1,−q1, 0, . . . , 0), where k1, q1 are constants. Then the

embedding function of Q takes the form

x = − sinh ρ z + λdk̄
abq̄

(d−2)
ab zd + . . . (5.26)

where λd is a constant to be determined.

Substituting (5.23) into the Einstein equations, we get one independent equation at

order O(k)

s(s2 + 1)f ′′1 (s)− (d− 1)f ′1(s) = 0 (5.27)

and another independent equation at order O(q(d−2))

s(s2 + 1)f ′′2 (s)−
(
(d− 1) + 2(d− 3)s2

)
f ′2(s) + (d− 2)(d− 3)sf2(s) = 0. (5.28)

Solving the above equations, we obtain

f1(s) = 1 + c1
sd 2F1

(
d−1

2 , d2 ; d+2
2 ;−s2

)
d

, (5.29)

f2(s) =
(
s2 + 1

) d−3
2 + c2

sd
(
d− (d− 1) 2F1

(
1
2 , 1; d+2

2 ;−s2
))

d (s2 + 1)
. (5.30)
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Imposing the NBC (5.18) on Q (5.26), we can determine the integral constants

c1 =
−d coshd ρ

(− coth ρ)d 2F1

(
d−1

2 , d2 ; d+2
2 ;−csch2ρ

)
+ d cosh2 ρ coth ρ

, (5.31)

and

c2 =
dsinh4(ρ)tanh(ρ)(−coth(ρ))d/(d−1)

(2−d+2cosh(2ρ))2F1

(
1
2
,1; d+2

2
;−csch2ρ

)
− 2coth2(ρ)2F1( 3

2
,2; d+4

2
;−csch2ρ)

d+2
+ d(d−2−2cosh(2ρ))

d−1

(5.32)

Similarly, one can work out solutions of order O(kq(d−2)). Since the solutions are quite

complicated, below we focus on the case d = 4. The generalization to higher dimensions is

straightforward. It is interesting that, the integral constant c1 is the same as c2 for d = 4

c1 = c2 =
1

2 + 2 tanh(ρ)
. (5.33)

Solving Einstein equations of order O(kq(2)), we get

X(s) =
1

3

(
(3c1 (2c1−5)+10)s2+2(1−2c1)2

)
+(1−2c1)c1

(
s2+1

)
log
(
s2+1

)
+

2

3

√
s2+1

(
2c2

1

(
s2−2

)
+4c1

(
s2+1

)
−s2−1

)
, (5.34)

f3(s) = 2+3s2−2
√
s2+1+c3

(
(
√
s2+1− 3

2
)s2+

√
s2+1−1

)
+c1

(
−4s2+8

√
s2+1−8

)
+c2

1

(
5s2−12

√
s2+1− 2√

s2+1
+14

)
, (5.35)

f4(s) =
1

9

((√
s2+1−9

)
s2+

√
s2+1−1

)
+

1

18
c3

((
9−6

√
s2+1

)
s2−6

√
s2+1+6

)
+

1

18
c1

((
9−8

√
s2+1

)
s2−8

√
s2+1+3log

(
s2+1

)
+8
)

+
1

9
c2

1

(
4
√
s2+1s2−14

√
s2+1+3log

(
s2+1

)
+14

)
, (5.36)

where we have used c2 = c1 for d = 4. Imposing now BCs on Q (5.26), we can fix the

integral constants for NBC (5.18)

c3 =
1

4
e−2ρ(8 sinh(2ρ) + 7 cosh(2ρ)− 1), (5.37)

λ4 = −−208 sinh(2ρ)− 144 cosh(2ρ) + 32 cosh(4ρ) + 16 cosh(6ρ) + 96

1536(sinh(ρ) + cosh(ρ))2
.

−
20 sinh(4ρ) + 16 sinh(6ρ)− 9 sinh(2ρ) log

(
coth2(ρ)

)
+ 3 sinh(6ρ) log

(
coth2(ρ)

)
1536(sinh(ρ) + cosh(ρ))2

,

(5.38)

where λ4 characterizes the location of Q (5.26).

Now we are ready to derive the holographic Weyl anomaly for 4d BCFT. On-shell,

the gravitational action (5.17) becomes

I = −8

∫
N

√
G+ 2

∫
Q

√
γ(K − 3 tanh ρ). (5.39)
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To get the holographic Weyl anomaly, we need to do the integration along x and z, and

then select the UV logarithmic divergent terms. We divide the integration region into two

parts: region I is defined by (z ≥ 0, x ≥ 0) and region II is the complement of region I.

Let us first do the integral in region I, where only the bulk action in (5.39) contributes.

Integrating along z and selecting the 1/x term, we obtain

I1 = −
∫
ε
dx

[
2 + tanh ρ

4x (1 + tanh ρ)2 Tr
(
k̄q(2)

)
+ . . .

]
= − log

(
1

ε

)
2 + tanh ρ

4 (1 + tanh ρ)2 Tr
(
k̄q(2)

)
+ · · · . (5.40)

Next let us consider the integration in region II. In this case, both the bulk action and

boundary action in (5.39) contribute. For the bulk action, we first do the integral along

x, which yields a boundary term on Q. Note that since only the UV logarithmic divergent

terms are related to Weyl anomaly, we keep only the lower limit of the integral of x. Adding

the boundary term from bulk integral to the boundary action in (5.39), we obtain

I2 =

∫
ε
dz

[
sinh (2ρ) (sinh (2ρ)− cosh (2ρ))

8z
Tr
(
k̄q(2)

)
+ . . .

]
= log

(
1

ε

)
sinh (2ρ) (sinh (2ρ)− cosh (2ρ))

8
Tr
(
k̄q(2)

)
+ · · · . (5.41)

Adding (5.40) to (5.41), we finally obtain the Weyl anomaly (1.4) for 4d BCFT with the

boundary central charges given by

β4 =
−1

2(1 + tanh ρ)
. (5.42)

Comparing the above central charges with (5.22), we find that the universal relation (1.8) is

indeed satisfied for d = 4. It is straightforward to generalize the above results to higher di-

mensions. Following the above approach, we verify the universal relation (1.8) up to d = 6.

5.2.2 Holographic displacement operator

In this section, we study the holographic two point function of displacement operator, which

is equivalent to the two point function of stress tensor. That is because the displacement

operator is given by the normal component of the stress tensor for BCFTs. For simplicity,

we focus on the case that the bulk boundary Q is perpendicular to AdS boundary M , i.e.,

T = ρ = 0. The case with T 6= 0 is a non-trivial problem and we leave it to future study.

We follow the work of [38] to derive the two-point function of stress tensor. Consider

the metric fluctuations Hµν in AdS spacetime

ds2 =
dz2 + dx2 + δabdy

adyb +Hµνdx
µdxν

z2
(5.43)

and choose the gauge

Hzz(z = 0,x) = Hzi(z = 0,x) = 0 (5.44)
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at the AdS boundary M . Here the Greek letter µ denote (z, x, ya) and the Latin letter i

denote (x, ya). Imposing BCs (5.18) on Q together with the following BC on M

Hij(z = 0,x) = Ĥij(x), (5.45)

we solve the bulk solution

Hµν(z,x) =
Γ[d](d+ 1)

πd/2Γ[d/2](d− 1)

∫
ddx′

[
zd

S2d
JµiJνjPijklĤkl(x

′) +
zd

S̄2d
J̄µiJ̄νjPijklĤkl(x

′)

]
(5.46)

where

S2 = z2 + (x− x′)2 + (ya − y′a)2,

S̄2 = z2 + (x+ x′)2 + (ya − y′a)2,

Pijkl =
1

2
(δikδjl + δilδjk)−

1

d
δijδkl,

Jµν = δµν − 2
(xµ − x′µ)(xν − x′ν)

S2
,

J̄µν = Jµν − 2XµX
′
ν , (5.47)

and

Xµ =
1

SS̄

(
2xz, x2 − x′2 − (ya − y′a)2 − z2, 2x(ya − y′a)

)
, (5.48)

X ′µ =
1

SS̄

(
−2x′z, x′2 − x2 − (ya − y′a)2 − z2,−2x′(ya − y′a)

)
. (5.49)

Notice that the first term of (5.46) is just the solution without boundary [38] and the

second term comes from the boundary effects.

According to [38], the on-shell quadratic action for Hij is given by

I2 =

∫
M
dxdz1−d

(
1

4
Hij∂zHij −

1

2
Hij∂jHzi

)
. (5.50)

Note that the terms on Q do not contribute to the quadratic action. That is because

(δI)Q =

∫
Q
dxd(Kij −Kγij)δγij = 0, (5.51)

which vanishes due to BCs (5.18). Substituting (5.46) into (5.50), we derive

I2 =
1

4

Γ[d+ 2]

πd/2Γ[d/2](d− 1)

∫
dxddx′dĤij(x)

[
Iij,kl
s2d

+
Īij,kl
s̄2d

]
Ĥkl(x

′), (5.52)

where

s2 = (x− x′)2 + (ya − y′a)2, (5.53)

s̄2 = (x+ x′)2 + (ya − y′a)2, (5.54)

Iij,kl = lim
z→0

1

2
(JikJjl + JilJjk)−

1

d
δijδkl, (5.55)

Īij,kl = lim
z→0

1

2

(
J̄ikJ̄jl + J̄ilJ̄jk

)
− 1

d
δijδkl. (5.56)
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From (5.52), we finally obtain the two point function of stress tensor for holographic BCFT

< Tij(x)Tkl(x
′) >= CT

[
Iij,kl
s2d

+
Īij,kl
s̄2d

]
, (5.57)

where CT = 2Γ[d+2]

πd/2Γ[d/2](d−1)
. Note that the first term of (5.57) is just the two point function

without boundary, and the second term of (5.57) is due to the boundary effect, which

depends on boundary conditions. After some calculations, we rewrite (5.57) into the form

used in [5],

<Tij(x)Tkl(x
′)>=

1

s2d

[
δ(v)δijδkl+ε(v)(IikIjl+IilIjk)+(β(v)−δ(v))(X̂iX̂jδkl+X̂

′
kX̂
′
lδij)

−(γ(v)+ε(v))(X̂iX̂
′
kIjl+X̂jX̂

′
lIik+X̂iX̂

′
lIjk+X̂jX̂

′
kIil)

+(α(v)−2β(v)+4γ(v)+δ(v)+2ε(v))X̂iX̂jX̂
′
kX̂
′
l

]
, (5.58)

where

v =
s

s̄
=

√
(x− x′)2 + (ya − y′a)2

(x+ x′)2 + (ya − y′a)2
,

Iij = lim
z→0

Jij = δij − 2
(xi − x′i)(xj − x′j)

s2
,

X̂i = lim
z→0

Xi =
1

ss̄

(
x2 − x′2 − (ya − y′a)2, 2x(ya − y′a)

)
,

X̂ ′i = lim
z→0

X ′i =
1

ss̄

(
x′2 − x2 − (ya − y′a)2,−2x′(ya − y′a)

)
,

(5.59)

and

α(v) = CT
(d− 1)

(
1 + v2d

)
d

,

β(v) = δ(v) = −CT
1 + v2d

d
,

γ(v) = CT
v2d − 1

2
,

ε(v) = CT
1 + v2d

2
.

(5.60)

Note that v (5.59) characterizes the distance to the boundary. In the limit far aways from

the boundary we have v = 0, while in the limit near the boundary we have v = 1. It is

remarkable that, the above functions take exactly the same form as those for free fermions

and free scalars (half NBC and half DBC) [5]. According to [31], this is the expected result

and can be regarded as a check of our calculations. Reflection positivity in Euclidean

signature impose bounds on the functions (5.60). According to [12], we have

α(v) ≥ 0, −γ(v) ≥ 0, ε(v) ≥ 0. (5.61)

It is remarkable that our holographic results (5.60) indeed satisfy the above positivity

constraints. This is another support of our results.

– 15 –



J
H
E
P
0
7
(
2
0
1
9
)
0
9
8

Now let us focus on the normal components of (5.57), from which we derive the

Zamolodchikov norm of displacement operator

CD = α(1) =
4Γ[d+ 2]

πd/2dΓ[d/2]
, (5.62)

for T = ρ = 0. Under the same conditions, the holographic Casimir coefficients (5.21)

reduce to

α = −
dΓ
(
d−1

2

)
√
πΓ
(
d+2

2

) . (5.63)

Comparing (5.62) with (5.63), we verify the universal relation (1.9) between displacement

operator and Casimir effect. It is interesting to generalize the above discussions to T 6= 0.

However, this is a non-trivial problem due to complicated BCs and we leave it to fu-

ture work.

6 Conclusions and discussions

In this paper, we have obtained universal relations between Casimir effect, Weyl anomaly

and displacement operator for BCFTs in general dimensions. We verify our results by

free scalars and holographic BCFTs. It is interesting to generalize our work to defect

CFTs [22]. Notice that BCFT can be regarded as a defect CFT with co-dimension one.

And the case of co-dimension two is closely related to Rényi entanglement entropy and is

studied by [23–28]. It is also interesting to derive the holographic two point functions of

stress tensor and current for general boundary conditions. We hope we could address these

problems in future.
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A Useful formulas

In this appendix, we apply the method of [26] to re-express a function as distributions. Let

us start with the function

K(x, y) =
y2α

(x2 + y2)d+β
(A.1)

and a test function f(y) which is regular at y = 0 and decays fast enough when y → ∞.

Define the integral

I(x) =

∫
dyd−1K(x, y)f(y). (A.2)

Since we are interested in the singular parts, we focus on the domain |y| ≤ 1. (A.2) becomes

I(x) =
∞∑
n=0

1

n!
∂i1 . . . ∂inf(0)

∫
|y|≤1

dyd−1yi1 . . . yinK(x, y) + regular terms. (A.3)
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Performing the coordinate transformation ya = xza, we get

I(x) =

∞∑
n=0

1

n!
∂i1 . . . ∂inf(0)

1

xd−n+1+2β−2α

∫
|z|≤1/x

dzd−1 z
i1 . . . zinz2α

(1 + z2)d+β
+ regular terms

=
∞∑
n=0

1

n!
∂i1 . . . ∂inf(0)

Ωd−2

xd−n+1+2β−2α

δi1i2 . . . δin−1in + permutations

normalization

×
∫
r≤1/x

dr
rd−2+n+2α

(1 + r2)d+β
+ regular terms

=

∞∑
n=0

1

n!
∂i1 . . . ∂inf(0)

1

xd−n+1+2β−2α

δi1i2 . . . δin−1in + permutations

normalization

×
π
d−1
2 Γ

(
α+ d+n−1

2

)
Γ
(
β − α+ d−n+1

2

)
Γ(d−1

2 )Γ(β + d)
+ regular terms (A.4)

In the weak limit, we can replace f(0) by δd−1(y) and obtain

K(x, y) =
π
d−1
2

Γ(d−1
2 )Γ(β + d)

∞∑
n=0

Pn
Γ
(
α+ d+n−1

2

)
Γ
(
β − α+ d−n+1

2

)
xd−n+1+2β−2α

(A.5)

where

Pn =
∂i1 . . . ∂inδ

d−1(y)

n!

δi1i2 . . . δin−1in + permutations

normalization
. (A.6)

From (A.5) and the derivatives of (A.5), we obtain the following useful formulas.

yayb

(x2 + y2)d+2
=
π
d−1
2 Γ

(
d+1

2

)
4Γ (d+ 2)

[
δab
(

(d+ 1) δd−1 (y)

xd+3
+
∂2δd−1 (y)

2xd+1

)
+
∂a∂bδd−1 (y)

xd+1

]
(A.7)

1

(x2 + y2)d
=
π
d−1
2 Γ

(
d+1

2

)
Γ (d)

[
δd−1 (y)

xd+1
+

∂2δd−1 (y)

2 (d− 1)xd−1

]
+ . . . (A.8)

ya

(x2 + y2)d+1
= −

π
d−1
2 Γ

(
d+1

2

)
2Γ (d+ 1)

[
∂aδd−1 (y)

xd+1
+

∂a∂2δd−1 (y)

2 (d− 1)xd−1

]
+ . . . (A.9)

ya

(x2 + y2)d+2
= −

π
d−1
2 Γ

(
d+1

2

)
4Γ (d+ 2)

[
(d+ 1) ∂aδd−1 (y)

xd+3
+
∂a∂2δd−1 (y)

2xd+1

]
+ . . . (A.10)

y2

(x2 + y2)d+2
=
π
d−1
2 Γ

(
d+1

2

)
4Γ (d+ 1)

[
(d− 1) δd−1 (y)

xd+1
+

(d+ 3) ∂2δd−1 (y)

2(d− 1)xd−1

]
+ . . . (A.11)

Using the above formulas, we can derive (4.3), (4.4), (4.5).
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