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1 Introduction

Understanding black hole evaporation and information loss is one of the big unsolved

problems in quantum gravity [2].

Ever since the advent of AdS/CFT it has been understood that the evaporation process

is unitary since it can be described by a unitary QM theory on the boundary, and hence

information cannot be lost. However, this state of affairs is unsatisfactory, as we still have

no precise understanding of the bulk mechanism that releases the quantum information

during evaporation.

One of the hurdles we are faced with here is the difference in language between the two

set-ups. Hawking’s computation is done in the context of quantum field theory in curved

spacetimes, neglecting the matter-gravitational interactions and hence backreaction in the

process. Boundary holography on the other hand faces the problem of bulk reconstruction:
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how does one construct local bulk operators and make contact with local bulk dynamics,

as would be constructed by e.g. an infalling observer.

In order to address these problems, it is useful to have interesting toy models where

aspects of these computations can be carried out exactly. An interesting model studied

primarily in the ’90s is the 2d CGHS model [3–6]. Explicit computations can be performed

probing semi-classical Hawking evaporation, but it is asymptotically flat and hence more

difficult to embed within a tractable unitary framework. Another model that has attracted

a considerable amount of attention during the past few years is Jackiw-Teitelboim (JT)

gravity [7, 8], a model of 2d asymptotically AdS2 dilaton gravity with action:

SJT[g,Φ] =
1

16πG2

∫
d2x
√
−gΦ (R− Λ) + SGH, (1.1)

defined in terms of the 2d metric gµν and the dilaton field Φ, with cosmological constant

Λ = −2/L2. The model is topological in the bulk, but it has non-trivial dynamics due to the

choice of boundary conditions. This happens in a very similar way as in the Chern-Simons

/ WZW correspondence.

Upon path integrating Φ, one finds R = Λ and the only physical gravitational degree of

freedom in JT gravity is the boundary reparametrization F (τ) [1, 9–11], whose dynamics is

governed by the Schwarzian action, arising entirely from the Gibbons-Hawking boundary

term of (1.1):

S[f ] = −C
∫
dτ {F, τ} , {F, τ} ≡ F ′′′

F ′
− 3

2

(
F ′′

F ′

)2

, (1.2)

which first appeared describing the low-energy dynamics of Sachdev-Ye-Kitaev (SYK) mod-

els (see e.g. [12–20]). The reparametrization F (τ) represents the AdS2 Poincaré time F in

terms of some proper time τ . This means the quantum gravity path integral only contains

inequivalent frames in a fixed AdS2 ambient space, and is hence far more tractable than

expected generically. The finite temperature theory is found by further reparametriz-

ing F ≡ tan π
β f , in terms of the diff(S1) reparametrization f , satisfying ḟ ≥ 0 and

f(τ + β) = f(τ) + β. The quantum gravitational thermal correlation functions are then

found by computing the thermal Schwarzian path integral

〈O〉β ≡
∫
M

[Df ]O[f ]e
C
∫ β
0 dτ

{
tan π

β
f,τ
}
, (1.3)

with a suitable operator insertion O[f ], and with integration spaceM = diff(S1)/SL(2,R).

In the semi-classical regime (at large C), this path integral localizes to its classical equa-

tion of motion with solution f(τ) = τ . Such path integrals are always performed in

Euclidean signature, with the resulting expressions (carefully) Wick-rotated afterwards to

real time [21].

Given any (real-time) off-shell reparametrization map F (t) on the boundary curve of

a patch of AdS2, we can set up a unique bulk frame by shooting in (and extracting) null

rays at times t − z and t + z. This, combined with conformal gauge, uniquely defines a
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bulk point (t, z), and constructs the bulk metric:

ds2 =
F ′(u)F ′(v)

(F (u)− F (v))2
(dz2 − dt2), (1.4)

where the conformal factor is hence determined by the construction. This fully fixes the

(small) bulk diffeomorphism gauge invariance. We will use this particular choice of bulk

coordinates to define the bulk observables. This definition relates everything to boundary-

intrinsic operations, in effect anchoring the definition of bulk observables to the holographic

boundary line. The latter plays the role of a reference platform [22, 23]. We have previously

explored this definition of bulk coordinates in [24].

In this note, we present three separate computations that can be done within this

model that address aspects of the Hawking evaporation process. The computations are

logically distinct and illustrate the power of the JT model to investigate these problems.

Section 2 applies the above bulk frame to the bulk matter stress tensor and the matter

occupation numbers in the Unruh heat bath surrounding the black hole, i.e. we construct

the generalization of Unruh’s effect including matter-gravitational interactions. Section 3

discusses the entanglement entropy of matter fields in AdS2 across a bulk entangling surface,

emphasizing an invariant definition of the location of the surface. Section 4 proceeds within

the standard semi-classical framework, but includes evaporating boundary conditions. The

evaporating black hole in JT gravity was constructed in [1]. Here we extend this study

and compute the entanglement of outgoing matter (early radiation) with the remaining

interior (late radiation) and obtain an analytic result. The result demonstates information

loss within the semi-classical framework quite explicitly.

Of course, ultimately we would want to perform an exact quantum gravitational com-

putation of the evaporating black hole. Initial steps in this direction were taken in [25],

but a full understanding is still lacking. We leave this to future work.

For later reference, we write down the Schwarzian partition function [11, 20, 26]:

Z = 〈1〉β =

(
2πC

β

)3/2

e
2π2C
β , (1.5)

the Schwarzian derivative expectation value [21, 26]:〈{
tan

π

β
f, τ

}〉
β

=
1

βZ

∂Z

∂C
=

2π2

β2
+

3

2Cβ
, (1.6)

and the (Euclidean signature) bilocal correlation function [21, 27–33]:

Gβ`,C(τ1, τ2) = 〈O`(τ1, τ2)〉β =

〈(
f ′1f
′
2

β2

π2 sin π
β (f1 − f2)2

)`〉
β

=
1

(2C)2`Z

∫
dµ(k1)

∫
dµ(k2) e−τ

k21
2C e−(β−τ)

k22
2C

Γ(`± ik1 ± ik2)

2π2 Γ(2`)
, (1.7)

where dµ(k) = k sinh(2πk) and the ±-notation means taking the product of all cases.
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2 Unruh heat bath

We couple the JT model (1.1) to the free boson action:

Smat =
1

2

∫
d2x
√
−g(∂µφ)2, (2.1)

and want to study the effect of particle creation in different matter vacuum states [34],

labeled by the reparametrization functions f(u) and f(v) in the bulk geometry (1.4). Con-

sidering the thermal state, we will write down the Unruh energy fluxes in this system,

and decompose these to read off how the Planckian black body spectrum and the thermal

atmosphere are modified in quantum gravity for the eternal black hole.

2.1 Energy flux

Within this matter theory, for a fixed background F , the propagator is well-known:1

〈
φ(u, v)φ(u′, v′)

〉
CFT

= − 1

4π
ln

∣∣∣∣(F (u)− F (u′))(F (v)− F (v′))

(F (v)− F (u′))(F (u)− F (v′))

∣∣∣∣, (2.2)

which is the 2d CFT two-point function supplemented with an image charge term such

that Dirichlet boundary conditions are specified at the holographic boundary z = 0. The

stress tensor components are given by

Tuu = ∂uφ∂uφ, Tvv = ∂vφ∂vφ, (2.3)

interpreted as the outgoing and ingoing energy densities (figure 1 left).

As composite operators in the quantum theory, these require renormalization. Refer-

ring w.r.t. the Poincaré frame and using (2.2) with a point-splitting regularization, we find

the renormalized operators:

〈: Tuu(u) :〉CFT = − 1

4π
lim
u′→u

[
F ′(u)F ′(u′)

(F (u)− F (u′))2
− 1

(u− u′)2

]
, (2.4)

〈: Tvv(v) :〉CFT = − 1

4π
lim
v′→v

[
F ′(v)F ′(v′)

(F (v)− F (v′))2
− 1

(v − v′)2

]
. (2.5)

At finite temperature we set F ≡ tanh π
β f in terms of the reparametrization f . This is the

generalization of the parametrization mentioned in the Introduction in Euclidean time.

Series expanding the above expression, one rewrites these as2

: Tuu(u) := − c

24π

{
tanh

π

β
f(u), u

}
, : Tvv(v) := − c

24π

{
tanh

π

β
f(v), v

}
, (2.6)

1This formula implicitly contains a 1/Z factor in the l.h.s. Since the partition function Z in a 2d CFT

depends on the background metric F through the conformal anomaly, one might be worried about its role

in this computation. However, it was recently shown in appendix C of [33] that the conformal anomaly

only causes a shift of the C-coefficient of the Schwarzian that is moreover subdominant to the C coming

from the gravitational sector.
2The CFT expectation value brackets are left implicit from here on.
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Figure 1. Left: local bulk fluxes of energy. Outgoing flux Tuu and ingoing flux Tvv. Right: bilocal

boundary operation insertion at zero temperature, and the bulk injection of energy that it entails.

The bulk energy densities Tuu and Tvv are zero before and after the injections, and non-zero but

constant (in momentum space) and equal in between the ends of the bilocal. In the semi-classical

regime, a fixed energy E(`, t12) is injected by these operators.

where we have introduced the matter central charge c to generalize to a generic matter

CFT sector. The boundary time frame is extrapolated into the bulk using these equations,

in the light-ray fashion described in the Introduction.3

In effect, bulk energy densities can be computed by inserting the boundary energy

operator Ttt(t) = −C {F (t), t} (see e.g. (A.9)), up to some prefactors, and reinterpreting

the time t as either u or v.4 This bulk gauge is a choice, but it is one that nicely contains

the semi-classical Unruh physics as we illustrate now.

On the saddle f(t)= t, and
{
tanh π

β f(u), u
}

=−2π2

β2 , leading to the Unruh heat bath [34]

:Tuu(u): = :Tvv(v): = c
π

12
T 2
H , (2.7)

in terms of the Hawking temperature TH of the black hole. Performing instead the full

Schwarzian path-integral (1.3) for a temperature β−1 ≡ TH , we find using (1.6):5

〈:Tuu(u):〉β = 〈:Tvv(v):〉β = c
π

12
T 2
H + c

TH
16πC

, (2.8)

3These operators are of the type of (1.3), and should be written as : Tuu[f(u)] : and : Tvv[f(v)] :, which

we won’t do to avoid cluttering the equations. Note that these stress tensor components can be considered

as diff-invariant observables the way we constructed them, in spite of their tensor indices. Indeed, the tensor

indices are found in a boundary-intrinsic way by taking the derivatives in (2.3) in a limiting procedure,

a u-derivative varies the final boundary point, and a v-derivative varies the initial boundary point of the

radar definition of the bulk point (u, v).
4Note the presence of the factor of C in the boundary energy. This has dimensions of length, and hence

indeed the bulk stress tensor has dimension L−2, and the boundary stress tensor has units of L−1.
5The conformal anomaly determines the remaining stress tensor component to be 〈Tuv〉 = c

6L2 , in terms

of the AdS length L. This also holds when doing the full path integral (1.3). This is independent of the

temperature and can be viewed as an energy offset E0.
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which includes a further quantum thermodynamical correction that is suppressed in the

semi-classical regime C → +∞.6 The measured stress tensor components of observers

whose detectors are calibrated to the (u, v)-vacuum, is hence spacetime-independent. This

changes when matter is being injected (or extracted) into the system.

2.2 Energy pulses

Classically, energy can be injected through pulses as studied extensively in [1, 9]. At the

quantum level, this can be done by using bilocal operators of the type in (1.7) (figure 1

right). Let us explain this relation in more detail.

In appendix A, we demonstrate the Ward identity for boundary stress tensor inser-

tions Ttt(t) in bilocal correlators. Dropping contact terms, and continuing to Lorentzian

signature, we write:

〈T Ttt(t)O(t1, t2)〉β =
(
θ(t1 < t < t2)i∂t12 − ∂β

)
Gβ`,C(t1, t2) + (contact), (2.10)

in momentum space interpreted as energy
k21
2C between the ends of the bilocal, and

k22
2C

outside. In particular, one finds energy is conserved everywhere except at the bilocal points:

〈∂tTtt(t)O(t1, t2)〉β =
(
δ(t− t1)i∂t12 − δ(t− t2)i∂t12

)
Gβ`,C(t1, t2) + (contact), (2.11)

interpreted in Fourier space as injecting and extracting an energy
k21−k22

2C at the bilocal

points. Since :Tuu(u) : and :Tvv(v) : are also given by Schwarzian derivatives (2.6), the

result (2.11) implies there are no transient phenomena for these bulk stress tensors after

crossing energy pulses (figure 1 right).

Let us prove that this operator indeed gives the correct semi-classical energy pulse

interpretation. In the limit where we take N bilocals of ` = 1 at the same endpoints

and with `N ∼ C → +∞ to reach the semi-classical regime, the bulk interpretation is a

semi-classical coherent state: a null pulse (m2 = `(` − 1) = 0) of energy E(`N, t12) that

can be found by solving a transcendental equation [35], followed by a negative energy null

pulse with energy −E(`N, t12). One finds the bulk energy densities (2.9) in between the

null pulses, with M = E(`N, t12), and zero outside. The classical time reparametrization

profile is

f(t) =


t− t1, t < t1,√

2C
E

tanh

(√
E
2C

(t−t1)

)
`

2C

√
2C
E

tanh

(√
E
2C

(t−t1)

)
+1
, t1 < t < t2,

t− t2 + f2, t2 < t,

and represents the Poincaré frame, going through a thermal phase, and then returning to

a (Shapiro time-delayed) Poincaré frame.

6By inverse Laplace transforming, for a pure energy quantum state |M〉, with energy M/2C, we obtain

instead

〈:Tuu(u):〉M = 〈:Tvv(v):〉M = c
M

48πC2
. (2.9)
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The classical problem of measuring the ingoing and outgoing energy densities Tvv
and Tuu within the different regions of figure 1 right, is translated in the full quantum

theory in the operator ordering of the stress tensor w.r.t. the bilocal.7 For instance,

〈O`(t1, t2)Tuu(u)〉β→+∞ always vanishes, irrespective on the value of u w.r.t. t1 and t2.

The amplitude can be read as taking empty AdS, time-evolving to t = u, applying Tuu,

then evolving back or forward to the first bilocal time and inject energy, evolve to the

second bilocal time and extract the energy, to arrive at empty AdS again. This is similar

to the set-ups of [36, 37].

The explicit link of the bilocal operator insertions to semi-classical gravitational shock-

waves was made in [35], in the context of an out-of-time-ordered four-point function in the

Schwarzian model. Within such an OTO-four-point function, one can apply Tuu in any

ordering w.r.t. the four operators, semi-classically measuring the energy density in each of

the sectors of the shockwave diagram.

2.3 Planckian black body spectrum

Next we perform a spectral decomposition of the Unruh fluxes (2.8). It is well-known, using

2d CFT techniques, that the occupation number of the chiral mode uω(y) = 1√
4πω

e−iωy, i.e.

a positive frequency mode in the observer’s local frame y, written as Nω[f ] ≡ 〈0F | a†ωaω |0F 〉
in the vacuum associated to the Poincaré frame F (y) ≡ tanh π

β f(y), is given by [38]:

Nω[f ] = − 1

π

∫
dy1

∫
dy2uω(y1)u∗ω(y2)

[
f ′(y1)f ′(y2)

β2

π2 sinh2 π
β (f1 − f2)

−
(

1

y12

)2
]
. (2.12)

The integral is finite at y1 = y2 due to the renormalization w.r.t. the reference state |0y〉.
In these formulas, y can be either u or v.

Semiclassically, where f(y) = y, the treatment is well-known and leads to the Planckian

black body spectrum. Let us briefly write down how this is proven. Firstly, since the

integrand only depends on y1 − y2 one of the integrals factorizes out and gives a divergent

prefactor 2πδ(0).8 For the remaining integral one can use the Fourier transform formula

− 1

2πω

∫ +∞

−∞
dt

 1

β
π sinh

(
π
β (t∓ iε)

)
2

e−iωt =
1

βω
e∓

β
2
ωΓ

(
1 + i

β

2π
ω

)
Γ

(
1− i β

2π
ω

)

=
e∓

β
2
ω

e
β
2
ω − e−

β
2
ω
. (2.13)

7One can also place it in between both ends of the bilocal operator.
8Due to the reflecting boundary conditions at z = 0, the field φ(u, v) = φL(v) + φR(u) has mode

oscillators related by aRω = −aLω. This means there is only one set of oscillators and left- and right-

moving modes are related by the doubling trick. The integral over y1 + y2 mentioned here ranges from −∞
to +∞ after mirror doubling the system. Note also that one is free to choose y1 and y2 to be either u or

v independently without changing the result. This would select one of the four terms of (2.2) to relate the

occupation number to ∂±φ∂±φ, all of which yield the same outcome.
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In the limit β → +∞, we obtain the formula:

− 1

2πω

∫ +∞

−∞
dt

1

(t∓ iε)2
e−iωt = lim

β→+∞

e∓
β
2
ω

e
β
2
ω − e−

β
2
ω

= ∓Θ(∓ω), (2.14)

which is readily found from the integral definition of the Heaviside function. Both of these

formulas are regularized separately by moving the pole at t = 0 in the same direction.

In most treatments, one first subtracts these terms before performing the Fourier trans-

form, rendering the regularization t→ t∓ iε obsolete. Hence subtracting out the vacuum

contribution (2.14), one obtains the Planckian spectrum:

Nω[f(y) = y] =
e−

β
2
ω

e
β
2
ω − e−

β
2
ω
. (2.15)

Beyond semi-classical gravity, the two choices ∓iε are inequivalent, and we define the

correct quantum operator to be the average of time-ordered (+iε) and anti-time-ordered

(−iε) correlation functions, effectively the Hadamard two-point function.9,10 We hence

path-integrate over the frame f as in (1.3):〈
Nω

〉
β

=

∫
[Df ]Nω[f ]e

C
∫ β
0 dτ

{
tan π

β
f,τ
}
, (2.16)

using the average of both operator orderings for (2.12). Using the fact that the bilocal

operator commutes with the Hamiltonian of the Schwarzian system [21]:[
f ′(y1)f ′(y2)

β2

π2 sinh2 π
β (f1 − f2)

, HSchw

]
= 0, (2.17)

the result again only depends on the difference y12.11 This means the result is independent

of y1 + y2, and the integral gives 2πδ(0), the same universal divergence also appearing at

the semi-classical level. Using the known expressions for the Schwarzian bilocal for ` = 1

and averaging time-ordered and anti-time-ordered expressions, we write:12

〈
Nω

〉
β

+
1

2
=

1

4π3ω

1

Z

∫ +∞

−∞
dte−iωt

∫
dµ(k1)dµ(k2)Γ(1± ik1 ± ik2)

×
(
e−it(k

2
1−k22) + e+it(k21−k22)

)
e−βk

2
2 (2.18)

the +1
2 coming from (2.14). Performing the t-integral yields delta-functions δ(ω±k2

1∓k2
2).

We get:〈
Nω

〉
β

=
1+e−βω

2π2ω

1

Z

∫
dµ(k)sinh

(
2π
√
ω+k2

)
e−βk

2
Γ(1±ik±i

√
ω+k2)− 1

2
. (2.19)

This integral can be done numerically and is plotted in figure 2.

9In fact, considering the integral
∫ +∞
−∞ dω ω×(2.12), one needs to use ω → −ω and t→ −t transformations

to map this into an integral over positive ω only and identify it with the positive energy spectral density.

These transformations then immediately correspond to taking the average of time-ordered and anti-time-

ordered correlators.
10A similar conclusion was found for the bulk quantum metric in [24], in that case by insisting on

hermiticity of the metric operator.
11Note that this need not occur for each single path f in the integral.
12We set C = 1/2 here.
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Figure 2. Blue (upper): exact energy spectral density ω 〈Nω〉β of the Unruh radiation, computed

from (2.19)with β = 2. Red (lower): semi-classical Planck black body spectrum of Unruh radiation,

coming from (2.15).

Integrating the energy spectral density over ω, one obtains13∫ +∞

0
dω ω

〈
Nω

〉
β

=

∫ +∞

−∞
dy 〈 :T±±: 〉β =

∫ +∞

0
dy
〈√
−gg00 :T00:

〉
β
, (2.20)

where in the last equality we used that
√
−gg00 = 1, also off-shell. Indeed, the quantum-

corrected Unruh population (2.8) is slightly more energetic than the semi-classical one (2.7),

leading to a larger population of the thermal modes as figure 2 shows.

The y-integral in (2.20) factorizes and can be identified as 2πδ(0) = V . We have

checked numerically that indeed the quantum term in (2.8) is found by numerically doing

the ω-integral of (2.20) (figure 3).14

The radiation is not precisely thermal. The UV region (ω � 1) is dominated by the

τ → 0 pole and is the same as for the semi-classical Planck spectrum, but deviations due

to gravitational interactions are visible at lower energies. This means quantum gravita-

tional effects modify the Unruh process. This also means that there is information stored

within the heat bath of the black hole, but it is not visible at the semi-classical level. It

is well-known that matter interactions do not influence the thermal character of the Un-

ruh effect [39], basically because one can do perturbation theory and one finds thermal

answers at every fixed order. The non-thermality hence fully originates from the matter-

gravitational interactions. This is to be expected, and was also observed for the metric

tensor itself in [24].

It is remarkable that we are able to obtain an analytic formula describing the exact

quantum gravitational Unruh spectrum.

The zero-temperature limit of (2.19) gives:〈
Nω

〉
β→∞ = lim

β→∞

1 + e−βω

4π2ω
sinh

(
2π
√
ω
)
Γ(1± i

√
ω)− 1

2
=

1

2

(
cothπ

√
ω − 1

)
. (2.21)

13The doubling trick is also performed here.
14The formula of v1 of this paper did not average over time-ordered and anti-time-ordered correlators,

and did not pass this consistency check.
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Figure 3. Total energy density 1
V

∫ +∞
0

dω ω 〈Nω〉β of the Unruh radiation, as a function of β, com-

puted by integrating (2.19) (black dots). The exact energy (2.8) (with c = 1) is plotted as a blue

line (top). The semi-classical energy (2.7) is plotted as a red line (bottom), computable by inte-

grating (2.15). The inset shows in more detail the match at the exact level, and the approximation

made by taking the semi-classical result.

This still contains an interesting lesson. At zero temperature, the vacuum becomes

|0F 〉 → |0f 〉, instead of the local observer’s vacuum |0y〉. And it still contains low-energy

particles ω � 1.

Starting with (2.19), the semi-classical regime where one reproduces the standard

Unruh results, is when ω � k2, where k is evaluated at its saddle point. This ensures the

number operator insertion does not backreact on the geometry (influencing the location

of the saddle), and is really a semi-classical measurement. The zero-temperature result

becomes semi-classical when ω � 1.

Starting with these expressions, one can readily find related operators that can be used

to create and remove particles. E.g. using
[
aω, a

†
ω′
]

= δ(ω − ω′):〈
〈0F | aωa†ω |0F 〉

〉
β→∞

=
1

2

(
cothπ

√
ω + 1

)
, (2.22)

giving the normalization 1 for the high-energy modes, but deviating from this at lower ener-

gies. Since it is constructed from the bilocal Schwarzian operator, one can readily separate

the two oscillators, i.e. put other operators in between, and then utilize the Schwarzian

diagrammatic rules of [21] to write down the amplitude.

Following [40], one can isolate a defect insertion of the number operator from (2.19) as:

DNω(k) =
1

4π2ω
sinh

(
2π
√
k2−ω

)
Γ(1±ik±i

√
k2−ω)Θ(k2−ω)+(ω→−ω)− 1

2
, (2.23)

applied within the region of the disk with momentum label k.

The analytic solvability of the massless free scalar field, readily extends to other matter

fields.

The extension of the story to charged matter in a charged black hole is instructive,

and is presented in appendix B.
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Changing to a single fermionic field instead, one can wonder about how the low-

energy quantum gravitational corrections to the occupation level are modified due to Pauli

expulsion. This is an interesting calculation, which we perform in appendix C.

Another extension one can pursue is that of a massive scalar field. The same tech-

nique to derive (2.12) can be used in the massive case to relate the occupation number

to 〈∂tφ1∂tφ2〉QFT
β , where the two-point function 〈φ1φ2〉 for a massive bulk scalar field is

given in terms of a 2F1 hypergeometric function. The procedure to compute its Schwarzian

path integral was sketched in [24], in principle solving this problem. It remains to be seen

whether the resulting expressions can be written down in an illuminating way.

Finally, one can change both the oscillators and the state in (2.12) independently

by changing respectively the modes uω and the bilocal operator. These could then be

used to analyze the observations by other observers, e.g. in response to energy injections

from boundary bilocals as in section 2.2. We leave a study of the physical significance to

future work.

3 Matter entanglement entropy

Next we take a look at the matter CFT entanglement entropy. Divide a spatial slice Σ of

AdS2 in two parts (figure 4 left).

The entanglement entropy between the matter degrees of freedom left and right of the

bulk point u = t+ z, v = t− z of the matter CFT is given by the formula:

Sent =
c

12
ln

(f(u)− f(v))2

δ2f ′(u)f ′(v)
, (3.1)

where the UV cut-off δ is measured by the observer in the u, v-coordinate frame.15 In

our language, using the radar construction of bulk points, this corresponds to a boundary-

intrinsic choice of UV-cut-off. This equation excludes gravity, and is taken in the matter

Poincaré vacuum state, labeled by the coordinate f .

We do not need to specify the precise shape of the Cauchy surface Σ of interest due to

the foliation independence of Sent and the fact that we insist on the UV-cut-off associated

to the u, v-frame. This is illustrated in figure 4 middle.16

Classically, using f(u) = tanh π
βu, this becomes

Sent =
c

6
ln
β

π
sinh

π

β
(u− v)− c

6
ln δ. (3.2)

Setting z → +∞ to obtain the thermal entropy, we write:

Sth = lim
z→+∞

Sent − Sref =
c

6

2π

β
lim

z→+∞
z, (3.3)

15This is half the entanglement entropy of the doubled interval between (u, v) and (v, u). See also [41]

for a thorough early treatment, and [42, 43] for a recent analysis within the JT context. We compare the

renormalized version of this formula with the general curved space formula of [41] in appendix D.
16Different foliations can be obtained by applying conformal transformations F with the fixed point

properties F (f(u)) = f(u) and F (f(v)) = f(v). Additionally, insisting on using the same UV-cutoff yields

the same formula. Note that this is different than replacing f in (3.1) by F ◦ f in both numerator and

denominator, which would change the state to the vacuum in the F -coordinates.
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8

Figure 4. Left: matter entanglement entropy obtained by dividing a Cauchy slice Σ in two pieces.

The bulk point is at (z, t). Middle: foliation independence of entanglement entropy on Cauchy slice.

One can freely move the Cauchy surface within the blue regions, keeping it spacelike everywhere.

Right: z → +∞ limit, where the entanglement entropy is between the interior (blue) and exterior

(green) of the black hole. The full patch is the Poincaré frame. The result agrees with the thermal

entropy of the CFT gas surrounding the black hole.

which is IR-divergent where limz→+∞ z ≡ V , the spatial volume. Note that one might

equally well call this a UV horizon divergence, associated to the infinite volume stashed close

to the black hole horizon.17 In writing this expression, we subtracted the zero-temperature

entropy Sref = c
6 ln u−v

δ to isolate the thermal piece [44]. This cancels the dependence on

the cutoff δ and gives an additional contribution c
6 ln β

4πz that is subdominant in the large

z-regime.

As a check on (3.3), the total matter energy is

Emat = −
∫
dz
√
−g :T 0

0 : =

∫
dz :T00: =

c

6

π

β2
lim

z→+∞
z, (3.4)

obtained by integrating (2.7) over the spatial volume.18 Using the thermodynamical re-

lation Emat = ∂ββF , one finds F = −Emat and the thermal entropy S = β(Emat − F ) is

indeed given by (3.3). This is the semi-classical result that the thermal entropy of the mat-

ter gas surrounding the black hole can be viewed as entanglement entropy of the half-space

(figure 4 right).

The formula (3.1) can also be read as the (analytically continued) geodesic length

between two boundary points v and u [45]. Since the information within the matter CFT

moves on null rays, the information inside the interval can be mapped into the time interval

[t− z, t+ z]. One can view this as the boundary observer’s ignorance to information prior

and after this interval (figure 5 left).

In quantum gravity, we generically expect the entanglement entropy formula (3.1) to be

qualitatively influenced in two ways. Firstly, gravitons also contribute to the entanglement

17This is similar to the divergence of the thermal gas entropy in Rindler space, for which the UV cutoff

in the Rindler radial coordinate at ρ = ε is mapped into a volume divergence in tortoise coordinates at

r = ln ε→ −∞.
18We used T00 = Tuu +Tvv. In principle, one should add to this 2Tuv = c

3L2 from the conformal anomaly

and using R = −2/L2 for AdS2 JT-gravity, with L the AdS length. This contribution is β-independent and

hence does not contribute to the entropy.
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Figure 5. Left: in a CFT, one can change a spatial interval (blue) into a time interval (green)

using null paths, preserving information flow. Right: in a chiral (sector of a) CFT, one can move

the endpoint of the interval (blue) along one of the null directions, e.g. up to the time interval

(green), and preserve the information flow.

entropy and they should be taken into account. Secondly, a conceptually deeper question is

how one defines the location of the entangling surface invariantly within quantum gravity.

For JT gravity, bulk gravitons are of course absent, but we can deal with the second

conceptual issue in a precise way.

The location of the entangling surface is at the bulk point (u, v), which is found by

the radar definition from the boundary observer’s times u and v. Given two boundary

times u and v, the entanglement entropy can be viewed as a diff-invariant bulk observable

if we construct it as Sent[f(u), f(v)], and it is this operator that we will insert in the

gravitational path integral (1.3). The computation can be done by taking the `-derivative

of the two-point function (1.7) and setting ` = 0 in the end:

〈Sent〉β +
c

6
ln δ = − c

12

1

Z

∫
dµ(k1)dµ(k2)ei2z

k21
2C e−(β+i2z)

k22
2C

∂

∂`

(
Γ(`± ik1 ± ik2)

(2C)2`Γ(2`)

)∣∣∣∣
`=0

,

(3.5)

time-independent as it should be. For small separations z � C, we retrieve the semi-

classical formula (3.2).

Still for a macroscopic black hole but in the very-near horizon regime β � C � z, the

k2-integral is dominated by its saddle (leading to the equivalence between microcanonical

and canonical ensembles), whereas the large z-regime enforces k1 ≈ k2. Using an integral

formula for the Gamma-functions, the computation is identical to that in [33]19 and, upon

subtracting the UV-divergent piece, leads to

〈Sent〉β ∼
c

6

2π

β
z, (3.6)

of the same form as (3.3). Hence the linear increase of the entanglement entropy happens

well past the semi-classical regime. This suggests the identification of the total thermal

entropy in the thermal atmosphere and the entanglement entropy of the half-space remains

true for macroscopic black holes β � C, in spite of probing the dangerous deep bulk z � C

where quantum gravitational effects are expected, see also [24].

19In fact, the computation of [33] computes the same quantity but taking t→ t+ iβ/2 to reach the other

side of the TFD. This computes the wormhole length and is interpreted as the computational complexity.

– 13 –



J
H
E
P
0
7
(
2
0
1
9
)
0
9
7

From the perspective of the 0+1d boundary theory, the full entropy contains the

classical Bekenstein-Hawking contribution, combined with the bulk entanglement entropy

as in the FLM-framework [46, 47]. Since in the JT-model, Newton’s constant scales as

GN ∼ 1/C, the contribution (3.2) with z → +∞ is ∼ G0
N , with its quantum corrections

in (3.5) contained as a series expansion in 1/C. From the holographic perspective, we

have to introduce counterterms to remove the z-divergent terms. For the semi-classical

piece (3.2), we would end with only a logarithmic contribution ∼ c
6 lnT , which was studied

from a (non-)decoupling argument perspective in [34], and thermodynamically in [9] from

the holographic boundary stress tensor.

Hence, the expression (3.5) contains a partial summation of all diagrams contributing to

the full entropy, namely those incorporating matter-gravity interactions. The contribution

that is left out is the pure gravity piece, coming solely from the boundary graviton degree

of freedom, which is an edge state contribution, see e.g. [31, 48]. This pure gravity entropy

is just the thermal entropy of the Schwarzian and is one-loop exact:

Sgrav =
4π2C

β
+

3

2
+

3

2
ln

2πC

β
. (3.7)

The first term is the classical Bekenstein-Hawking term, and the other terms can be treated

on the same footing as the matter contributions (3.2).20 Notice that the pure gravity sector

also contributes a term ∼ lnT as a one-loop contribution, similarly to the matter sector.

We leave a more thorough study to future work.

For completeness, this set-up can be readily extended to the entanglement entropy for

a bulk interval (figure 6). One uses the following quantum gravity operator insertion:

Sent[f(u1),f(v1),f(u2),f(v2)] =
c

12
ln

(f(u1)−f(u2))2

δ2f ′(u1)f ′(u2)
+(u↔ v)+

c

6
lnη+lnG(η), (3.8)

where η = (f(u1)−f(v1))(f(u2)−f(v2))
(f(u1)−f(v2))(f(u2)−f(v2)) is the reparametrized cross-ratio, and G(η) is a non-

universal function that is only known in very specific cases, see [49] for a discussion in this

context.21 As before, this quantity is independent of the precise spatial form of the Cauchy

surface Σ on which the entropy is computed. The resulting quantity is a bulk bilocal

observable, whose Schwarzian path integral is more difficult to compute. It is amusing to

note that the log of a crossratio can be computed explicitly using the techniques of [24].

4 Semi-classical entanglement of Hawking particles

Everything up to this point concerned non-evaporating black holes, as black holes in AdS

tend to equilibrate instead. In order to allow evaporation, we have to modify the asymptotic

boundary conditions from perfect reflection to absorption. This model was studied in [1],

and we retake it here.
20Recalling the fact that the matter action does not affect any pure gravity computation (see footnote 1),

additional matter loop corrections to Sgrav seem to be absent.
21Considering only the first two terms of this expression, corresponds to the operator required when the

boundary is transparent instead of reflecting. Semi-classically, we will use this operator in the next section.

The quantum treatment would be harder though, since the action is not just the Schwarzian action.
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Figure 6. Left: matter entanglement of a bulk interval between (u1, v1) and (u2, v2)). Right: the

Cauchy slice Σ can be deformed into those new surfaces within the blue regions that respect the

spacelike nature.

t = +∞

Black

hole

Poincaŕe

Figure 7. Left: creation of a black hole by sending in a pulse in the Poincaré patch. The

dashed line represents the black hole horizon as described in the black hole frame. The red line

is the holographic boundary curve. Right: evaporating black hole structure. The blue region is

the original Poincaré patch. After the initial pulse passes, the boundary observer lives in the red

evaporating patch which encompasses the green (non-evaporating) frame. The white dashed line

represents the apparent horizon which jumps from the initial Poincaré extremal horizon to the

would-be horizon in the non-evaporating case and then recedes back as the evaporation continues.

Energy conservation dictates that the total bulk energy can only be modified by in-

and outfluxes of matter in the sense that:

dE

dt
= :Tvv(t): − :Tuu(t): . (4.1)

Consider now an infalling matter pulse at t = 0, with hence Tvv(t) = E0δ(t). Solving

the Schwarzian equation of motion, this causes us to transfer from the Poincaré solution

f(t) = t to the thermal solution f(t) = tanh
√

E0
2C t (figure 7 left).

Besides this pulse, we set the boundary conditions such that nothing reflects back into

the bulk: :Tvv(t): = 0 for t > 0 as perfect absorption boundary conditions. Both the total

boundary energy Ttt(t) = −C {f, t} and the ingoing flux :Tuu(t): = − c
24π {f, t} are given by
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Figure 8. Two-point correlator for a field with ` = 1 and C = 1/2. Blue: Poincaré background

f(t) = t. Green: eternal black hole f(t) = tanh
√
E0t. Red: evaporating black hole f(t) = (4.3).

Schwarzian derivatives. Hence plugging these in (4.1), the energy decays exponentially in

the system:

Ttt(t) = E0e
−At, (4.2)

where A = c
24πC . This leads to the time reparametrization profile [1]:22

f(t) =
1

α2

∫ t

0
dx

1(
I1 (α)K0

(
αe−

Ax
2

)
+K1 (α) I0

(
αe−

Ax
2

))2
=

2

αA

I0(α)K0(αe−At/2)−K0(α)I0(αe−At/2)

I1(α)K0(αe−At/2) +K1(α)I0(αe−At/2
, (4.3)

with α = 24π
c

√
2CE0. This time reparametrization asymptotes to a fixed value beyond

the eternal black hole horizon. The endpoint however does not reach the original Poincaré

horizon. The Penrose diagram of the evaporating hole is shown in figure 7 right.

In any given frame f , the semi-classical two-point correlator is of the form:

〈O(t1)O(t2)〉 =

(
f ′1f
′
2

(f1 − f2)2

)`
. (4.4)

In the evaporating black hole frame (4.3), two-point functions decay at an intermediate

pace between the polynomial decay in the vacuum and the exponential decay in the eternal

black hole (figure 8).

Let us now use this solution to compute the entanglement entropy in the matter sector

between the early and late Hawking radiation. This computation is similar to that of [6]

done for the asymptotically flat CGHS model. Where JT gravity stands out again, is in

the full analytic solvability of the problem.

The entanglement entropy of the matter fields can be computed using a Cauchy surface

Σ that is close to the initial infalling pulse and then reconnects to the Poincaré horizon

in the end (figure 9). Note that we are required to study a Cauchy surface in the entire

Poincaré patch as this is our starting geometry. The interval is between (u = ε, v = ε) and

22The expression in the second line was recently written down in [49].
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Figure 9. Left: evaporating black hole structure, with a spacelike Cauchy surface Σ superimposed.

The surface is almost lightlike, and is divided in two pieces (blue and darkgreen). One computes

the entanglement entropy between the two pieces, as the division point moves closer and closer to

the final event horizon as boundary time progresses. Right: early-late entanglement of Hawking

quanta at the time t can be computed by computing the bulk entanglement entropy between both

parts of the bulk Cauchy surface Σ.

(u = t, v = ε/2) for some infinitesimal ε whose sole purpose is to make sure the surface

is spacelike. As the matter is null and propagates unhindered to the timelike boundary,

the entanglement entropy across this interval on Σ measures the entanglement entropy the

boundary observer would associate to all radiation he received until some specific time t,

measured in his evaporating time frame (see also figure 5 right).

The entanglement entropy in the interval in the Poincaré vacuum state, but described

using the evaporating frame (4.3) is then found as

S =
c

12
ln

(f(u1)− f(u2))2

δ2f ′(u1)f ′(u2)
+

c

12
ln

(f(v1)− f(v2))2

δ2f ′(v1)f ′(v2)
. (4.5)

The UV-cutoff δ is the one used by the time frame t and hence the one of the local boundary

observer. Since u2 ≈ v2 ≈ v1 ≈ 0, plugging in the values f(u2) = f(v2) = f(v1) = 0,

f ′(u2) = f ′(v2) = f ′(v1) = 1 and subtracting the entanglement entropy in the evaporating

state,23

Sref =
c

12
ln

(u1 − u2)2

δ2
+

c

12
ln

(v1 − v2)2

δ2
, (4.6)

we find:

Sren ≡ S − Sref =
c

12
ln

f(t)2

t2f ′(t)
. (4.7)

Since the outgoing radiation propagates along a null line, this same entanglement entropy

is found on the boundary line as that distinguishing the early radiation (times < t) with

the late radiation yet to come (times > t) (figure 9 right).

23The boundary observer’s detector is calibrated to the vacuum he would define using his time coor-

dinate: the evaporating state. This is analogous to the flat space Unruh effect where one considers the

Minkowski vacuum to find the thermal population in Rindler coordinates, upon subtracting the Rindler

vacuum contribution. The Poincaré state plays the role of the Minkowski vacuum.
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Figure 10. Renormalized entanglement entropy (4.7) as a function of boundary time t for A = 1,

α =
√

2 and c = 12. The dashed blue line represents the same quantity for the non-evaporating

black hole, which after starting in the same way, diverges linearly for large t.

Plotting this function explicitly, one finds the result of figure 10. The entanglement en-

tropy increases monotonically as time progresses, and information does not come out. The

mass of the remaining black hole (4.2) becomes arbitrarily low, in spite of the entanglement

entropy not decreasing. This arises fully from the fact that f(t) does not asymptote to t

itself: in the distant future, the frame is not reduced to the Poincaré patch (figure 9). If it

were, then Sren would vanish in the end as well, leading to the information being returned

with the Hawking radiation.

Hence we do not obtain a Page curve, and information is lost. A similar feature was

observed with the analysis of the CGHS model [6]. In both cases, this can be viewed

as a quantitative confirmation that the semi-classical Hawking computation is not able to

restore information, but this is an artifact of the semi-classical approximation, see also [50].

As a comparison, doing the same computation for the non-evaporating black hole, by

plugging f(t) = tanh
√

E0
2C t into (4.7), one finds an ever-increasing entropy:24

Sren =
c

6
ln

(√
2C

E0

1

t
sinh

(√
E0

2C
t

))
, (4.8)

for large t scaling linearly in time: Sren ∼ t. The perfectly thermal Hawking emission does

not contain any information whatsoever, and the information contained in the compen-

sating ingoing quanta is lost in the process, see also [41]. This quantity is also plotted

in figure 10.

One checks explicitly using (4.3) that f(+∞) = 2
αA

I0(α)
I1(α) is finite and f ′(+∞) ∼ 1/t2,

leading to a constant value of Sren → c
6 ln I0

(
24π
c

√
2CE0

)
at late times, identifiable with the

amount of lost information in the evaporation processs. In particular, for a macroscopic

black hole where E0 � 1/C, and hence α� 1, one can approximate the late-time value as

Sren(t→∞) → 4π
√

2CE0 = 2SBH(t = 0), (4.9)

which is twice the original Bekenstein-Hawking entropy of the formed black hole. This

factor of two has been found before in the similar context of the CGHS / RST model [41],

24This expression is formally identical to that of the previous section upon setting t→ 2z and
√

E0
2C
→ π

β
.

The volume-scaling ∼ z of the thermal matter entropy explains the linear time-scaling ∼ t found here.
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Figure 11. Renormalized entanglement entropy (4.7) and black hole entropy (4.10) as a function

of boundary time t for A = 1, α = 50000 and c = 12. The dotted black line is the coarse-grained

matter entropy, the r.h.s. of (4.11).

and the physical interpretation is the following. It was shown by Zurek a long time ago [51],

that a black hole evaporating into empty space is an irreversible process where the final

thermodynamic (coarse-grained) matter entropy is larger than the initial black hole entropy,

by a factor of (D + 1)/D in D spatial dimensions. This gives a factor of two for D = 1.

The argument basically compares the infinitesimal decrease in BH entropy: δSBH = − δE
TH

,

with the increase in thermal entropy of a free Bose gas in D dimensions in a time span dt

in the heat bath generated by the black hole itself: δS = D+1
D

E
TH
dt with δE = Edt.25,26

Here, however, the factor of two appears for the fine-grained (entanglement) entropy.

One can physically interpret this as the thermal entropy of the emitted gas being dominated

by the cross-horizon correlations, leading to an equality between fine- and coarse grained

matter entropies.

In fact, still for a macroscopic black hole for which E0 � 1/C, the equality of these

entropies holds for all times. The thermal entropy of the black hole as it evaporates is

given by:

SBH(t) = 2π
√

2CE0e
−At

2 . (4.10)

Using the asymptotic forms of the Bessel functions in (4.3) for α� 1, one can approximate

the fine-grained entropy as:

Sren(t) ≈ 4π
√

2CE0

(
1− e−

At
2

)
= 4π

√
2CE0 − 2SBH(t), (4.11)

indeed satisfying Zurek’s irreversibility argument δSren = −2δSBH for the thermal entropy

at all times. We plotted these different entropy functions in figure 11.

25Since the (semi-classical) Planck black body law still holds for the massless scalar in AdS2, this argument

is unchanged from the flat case. Moreover, no greybody factors appear in 2d.
26As a sidenote, if one would demand this evaporation to happen reversibly to interpret the black hole

microstates, one would need to take a matter system satisfying the thermodynamic relation S = E
T

. An

example is given in [51] by placing the black hole in an external bath at temperature very near TH .

Even stronger, if one would demand the process of emitting a small pocket of radiation to relate matter

equilibrium configurations, one needs the more stringent S = E
TH

, which is a Hagedorn system of long

strings with THag = TH [52].
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Defining the Page time as the time when the thermal entropies of the black hole and

the radiation are the same, we obtain the Page time

tPage =
48π

c
C ln

3

2
. (4.12)

We have seen in the previous sections how Schwarzian techniques can be used to go beyond

semi-classical gravity. What is required here, is an embedding of this computation within

a unitary quantum-mechanical framework. Due to the absorbing boundary conditions

however, this is not so simple, and is postponed to future work.

5 Concluding remarks

The Unruh and Hawking effects are of fundamental importance in understanding quantum

black holes, but unfortunately it is very difficult to go beyond the level of matter quan-

tum fields in a curved spacetime. Due to its solvability, Jackiw-Teitelboim gravity is an

ideal test-case to attempt to include quantum gravitational effects, which we have studied

throughout this work.

Within the set-up of a thermal quantum system, we have studied several bulk diff-

invariant operators: the bulk stress tensor components : Tuu[f(u)] :, : Tvv[f(v)] :, the

spectral occupation number Nω[f ] and the matter entanglement entropy Sent[f(u), f(v)].

We defined these objects operationally using only boundary-intrinsic data and studied how

quantum gravitational effects modify them from their semi-classical limit. It would be inter-

esting to study more general correlation functions where several of these objects, combined

with boundary bilocals O`(t1, t2) and local HKLL bulk fields [24], are applied together.

In the final section, we imposed absorbing boundary conditions at the holographic

boundary to allow the bulk black hole to evaporate. We computed the entanglement be-

tween the early and late Hawking radiation in this model and found information loss within

the semi-classical set-up. This was expected and illustrates that unitarity can seemingly be

violated as an artifact of the semi-classical perturbative expansion, see however [49, 53]. It

would be very interesting to combine these two types of calculations, and reach a quantum

understanding of evaporation in this model. This is left to future work.

The 1+1d JT model is actually very universal in several ways. Firstly, it describes the

low-energy dynamics of SYK-like systems. Secondly, it corresponds to the s-wave sector

of pure 3d Λ < 0 gravity (see e.g. [54] for the original argument, and [29] for a discussion

in this context). Finally, near-extremal (charged and/or rotating) black holes in higher

dimensions develop a long throat with an AdS2 near-horizon region (in product with some

compact space), whose dynamics is governed by JT gravity. Within this set-up, it has

been argued that one can think of the Schwarzian wiggly boundary curve as separating

the near-horizon JT region from the asymptotic region [55–58]. As such, it is intriguing

to contemplate having defined the near-horizon frame and (s-wave) observables (studied in

this paper) for a higher-dimensional black hole using this separating curve as an anchor.

The analysis of the last section describes only entanglement of s-wave Hawking parti-

cles of higher-dimensional black holes. We generically expect particles with other angular
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momenta to experience a gravitational potential hindering their escape. They are more-

over more energetic and hence Boltzmann-suppressed. Hence the restriction to the s-sector

seems plausible to obtain the essential horizon entanglement physics.

These links with other systems illustrate the potential applications of any study done

within JT gravity, either for higher-dimensional black holes or for full-fledged holographic

systems (e.g. SYK). It would be interesting to understand this better.
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A Time-dependent Schwarzian coupling and Ward identities

We study Schwarzian QM with a classical time-varying coupling constant C(τ), with action

S = −
∫
dτ C(τ) {f, τ} , (A.1)

and use this to derive the Ward identities for stress tensor insertions in correlation functions.

We work in Euclidean signature in this appendix.

A.1 Time-dependent couplings and einbeins

The Hamiltonian corresponding to (A.1) is time-dependent. Defining a new time variable

τ̃ as

dτ̃ =
dτ

2C(τ)
⇒ τ̃ =

∫ t dτ

2C(τ)
, (A.2)

the generalized Schwarzian action (A.1) transforms into a regular one:

S = −1

2

∫
dτ̃ {f, τ̃} , (A.3)

which we know how to compute with. As well-known, the Schwarzian model has no

time reparametrization invariance (1d diff invariance).27 Bilocal operators are transformed

by (A.2) as (
∂τf1∂τf2

(f1 − f2)2

)`
=

1

(2C(τ1))`(2C(τ2))`

(
∂τ̃f1∂τ̃f2

(f1 − f2)2

)`
. (A.4)

The resulting vacuum two-point function for a given profile C(τ) then becomes:

G∞`,C(τ)(τ1, τ2) =

∫
dk2 sinh (2πk) e−(τ̃(τ2)−τ̃(τ1))k2 Γ2(`+ ik)Γ2(`− ik)

(2C(τ1))`(2C(τ2))` 2π2 Γ(2`)
, (A.5)

with τ̃(τ) as given in (A.2). This generalizes immediately to higher-point functions. Ob-

viously, time-translation invariance τ21 → τ21 + c is lost for any non-constant profile C(τ).

27From a 2d CFT perspective, conformal invariance is completely broken explicitly when doing the

dimensional reduction, and only the Virasoro zero-mode L0 survives.
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ZZ ZZ

s

t2d

Figure 12. Liouville ZZ-brane system with a varying circular circumference T (σ) for the angular

coordinate τ2d ∼ τ2d + T (σ).

This simple generalized model also demonstrates that one can compute amplitudes us-

ing quasi-statics of the coupling C(τ): no dependence on its derivatives is present. This

resonates with the exactness of the quasi-static approximation in 2d JT gravity, as we

mentioned in sections 2.2 and 4.

This procedure also has an interpretation in JT gravity [1, 9–11]. Changing the asymp-

totic boundary value of the dilaton as

Φ =
a

z̃
→ a(τ)

z
, (A.6)

with z = ετ̇ and z̃ = ε ˙̃τ , requires the time reparametrization

dτ

dτ̃
= a(τ)/a, (A.7)

and indeed transforms the original Schwarzian action into the generalized one (A.1), identi-

fying a(τ)/a = C(τ). Any choice of the dilaton asymptotics breaks explicitly 1d conformal

invariance, where the different possible theories are parametrized by the given function

a(τ).

A.2 Comments on Liouville embedding

When embedding the generalized Schwarzian theory (A.1) within Liouville theory [21, 29]

between two ZZ-branes, we should consider a cylindrical surface with a varying cylinder

radius T (σ), in the double-scaling limit c→ +∞, T (σ)→ 0 keeping fixed cT (σ) = C(σ) to

some prescribed function (figure 12). Within 2d CFT, a varying cylinder radius is trivial

as it can be undone by a conformal transformation. However, when taking the Schwarzian

limit, 2d conformal symmetry is taken to 1d reparametrization symmetry, which is explicitly

broken in this procedure.

As emphasized in [21], the Liouville computation reduces to a minisuperspace Hamil-

tonian propagation amplitude along the cylinder, where the Schwarzian time coordinate

τ is identified with the Liouville σ-coordinate, τ ≡ σ, and one finds a time-dependent

Schwarzian coupling constant C(τ) in (A.1). The changing circumference corresponds to a

time-dependent Hamiltonian. The boundary ZZ-states and Liouville primary vertex opera-

tor insertions happen at a single instant in time τ , and are unaffected by this varying radius.
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The only effect in the minisuperspace Liouville computation is then the replacement:

e−τH → e−
∫ τ
0 dτH(τ), (A.8)

indeed what was found in (A.5).

A.3 Ward identities

We can use the time-dependent coupling C(τ) to derive the Ward identity for stress tensor

insertions in bilocal correlation functions. A version of the Ward identity for solely stress

tensor correlators was explored in [26]. The Ward-like identities for bilocal correlators were

derived in [21] using the embedding within Liouville CFT. Finally, another approach is

being developed in [59].

Writing C(τ) ≡ C/e(τ), with a dimensionless einbein e(τ) ≡ √gττ , we can write the

Euclidean stress tensor T ττ ≡ 2√
g
δS
δgττ

as

Tττ = e(τ)2 δS

δe(τ)
= C {f, τ} . (A.9)

Differentiating (A.5) w.r.t. e(τ) and setting e(τ) = 1 at the end, we find:

〈T Tττ (τ)O`(τ1, τ2)〉 =
(
− `

C
δ(τ − τ1)− `

C
δ(τ − τ2)− θ(τ1 < τ < τ2)∂τ12

)
G∞`,C(τ1, τ2).

(A.10)

In Fourier space, the stress tensor insertion leads to an energy k2

2C in between the ends of

the bilocal. This is the zero-temperature Ward identity.

At finite temperature, the stress tensor insertion is Tττ (τ) = C
{

tan π
β f, τ

}
. The

time-dependent thermal generalization of (A.5) is given by the expression:

Gβ`,C(τ)(τ1, τ2) =

∫
dµ(k1)

∫
dµ(k2) e

−
∫ τ2
τ1

dτ
2C(τ)

(k21−k22)
e
−
∫ β
0

dτ
2C(τ)

k22
Γ(`± ik1 ± ik2)

(2C(τ1))`(2C(τ2))` 2π2 Γ(2`)
,

(A.11)

leading to the thermal Ward identity

〈T Tττ (τ)O`(τ1, τ2)〉β

=
(
− `

C
δ(τ − τ1)− `

C
δ(τ − τ2)− θ(τ1 < τ < τ2)∂τ12 − ∂β

)
Gβ`,C(τ1, τ2), (A.12)

in Fourier space leading to an energy
k21
2C between the legs of the bilocal, and

k22
2C outside.

Inverse Laplace transforming this expression, one finds the Ward identity in a fixed

energy eigenstate |k〉 with energy k2/2C, for which the last term can be rewritten as

〈Tττ (τ)〉k 〈O`(τ1, τ2)〉k, in agreement with the result of [21].

B Planckian spectrum for a charged system

Consider a bulk massless complex scalar field φ, with action S =
∫
d2x
√
−g∂µφ∂µφ̄. Let φ

be a charge +q field, transforming as φ → eiqΛφ. The grand canonical partition function

– 23 –



J
H
E
P
0
7
(
2
0
1
9
)
0
9
7

Z(β, µ) ≡ Tr
[
e−βHe−µβQ

]
of the matter sector can then be computed as the vacuum

amplitude on the thermal manifold τ ≡ it ∼ it + β with twisted boundary conditions

φ(τ + β) = e−qµβφ(τ) and φ̄(τ + β) = e+qµβφ̄(τ).

Redefining the field using ∂τφ = e−qµτ∂τφ leaves the action invariant, and untwists

the fields. The same is true when redefining the field using either the u or v light-cone

coordinate.

This means the real-time two-point function in the grand canonical ensemble is readily

computed as: 〈
∂uφ∂uφ̄

〉
β,µ

= eiqµ(u1−u2) 1
β2

π2 sinh π
β (u1 − u2)2

. (B.1)

Semi-classically, the only difference is then the additional factor of eiqµt in (2.13), leading

to the shift ω → ω − qµ in the Planckian spectrum (2.15):

Nω[f(y) = y] =
e−

β
2

(ω−qµ)

e
β
2

(ω−qµ) − e−
β
2

(ω−qµ)
, (B.2)

interpretable as the emission spectrum of a particle of energy ω and charge q from a thermal

system with temperature β−1 and chemical potential µ. Just as the bulk frame is fixed as

the black hole frame f(y) = y, so also has the U(1) frame Λ = 0 been chosen, where Λ

is the gauge parameter: Aµ → Aµ + ∂µΛ. These frames are the classical solutions to the

Schwarzian + free boson system.

Beyond classical gravity, we have to perform a path integral over frames. Reparametriz-

ing to the diff-frame f in (B.1), one writes

Nω,q[f ] = − 1

π

∫
dy1

∫
dy2uω(y1)u∗ω(y2)

[
eiqµ(f(y1)−f(y2)) f ′(y1)f ′(y2)

β2

π2 sinh2 π
β (f1 − f2)

−
(

1

y12

)2
]
.

(B.3)

However, this is not the end of the story since the bulk field φ[f ](x) defined using the radar

definition of the main text is still not observable as it carries charge. Including the coupling

to the background gauge field, the bulk matter action is modified to S =
∫
d2x
√
−gDµφDµφ

in terms of the gauge-covariant derivative Dµ = ∂µ − iqAµ. In addition, the gauge theory

itself is described by a BF-model, as relevant for the complex SYK-model [29, 56, 57, 60],

whose dynamics dictate that F = 0 and the gauge field is hence pure gauge. The boundary

dual is described by a free U(1) boson Λ(t), coupled by the chemical potential µ to the

gravitational degree of freedom f(t).

To obtain an observable, several approaches can be followed. The simplest procedure

is to extract the U(1) gauge-dependence of any covariant operator and fixing this to a

predefined choice. E.g. the U(1) covariantly transforming Duφ is taken to:

Duφ → eiqΛ(u)∂uφ, (B.4)

where the explicit gauge-dependence is fixed and extracted, and the remainder is in a

gauge-fixed form. Here, due to A being pure gauge in BF-theory, we can gauge-fix to

A = 0 in the last piece.
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t

z

u=t+z

v=t-z

(z,t)

u
v

WC

Figure 13. Wilson line dressing to define a small-gauge-invariant bulk operator Ou(u, v). The

right-moving operator Ov(u, v) would be constructed using a Wilson line along the u-direction, and

leads to a factor eiqΛ(v) instead.

An equivalent prescription is to dress the operator with an EM Wilson line emanating

from the boundary. A small-gauge-invariant operator is then constructed as

Ou(u, v) ≡ WCDuφ = eiq
∫ u
v dvAvDuφ = eiqΛ(u)∂uφ, (B.5)

where we choose the bulk Wilson line to lie along a lightlike direction, connecting the bulk

point (u, v) with the boundary point u or v, choosing the null direction opposite to the

index in the operator (figure 13).28 This leads to the (observable) two-point function in

the generic diff-frame f and U(1)-frame Λ:〈
OuŌu

〉CFT

β,µ
= eiqµ(f(y1)−f(y2))eiq(Λ(y1)−Λ(y2)) f ′(y1)f ′(y2)

β2

π2 sinh2 π
β (f1 − f2)

. (B.6)

Alternatively, one can find both modifications simultaneously by using the boundary value

At = µ∂tf + ∂tΛ and extending this into the bulk.

By (B.5), the new observable operator Ou has a mode expansion related to the un-

dressed operator ∂uφ obtained by Fourier expanding eiqΛ(u), schematically:

∂uφ =
∑
ω

aω∂uuω(u) + (a↔ b†), → Ou =
∑
ω

ãω∂uuω(u) + (ã↔ b̃†), (B.7)

in terms of new oscillators ãω. The result (B.3) is now readily modified into:

Nω,q[f,Λ] ≡ 〈0F | ã†ωãω |0F 〉 = − 1

π

∫
dy1

∫
dy2uω(y1)u∗ω(y2)

×

[
eiqµ(f(y1)−f(y2))eiq(Λ(y1)−Λ(y2)) f ′(y1)f ′(y2)

β2

π2 sinh2 π
β (f1 − f2)

−
(

1

y12

)2
]
, (B.8)

computable in terms of bilocal correlators that have been computed previously in [40].29

There is a very natural extension to a non-abelian matter sector [40] that we postpone

to future work.
28The middle equation shows the small-gauge-invariance of the operator. The r.h.s. uses the fact that A

is pure gauge in the bulk, allowing us to do a small gauge transformation to turn off A at the bulk point,

without changing the value of the operator.
29Upon Wick-rotating our f → if to go from the Lorentzian signature operator to the Euclidean one.

– 25 –



J
H
E
P
0
7
(
2
0
1
9
)
0
9
7

C Fermi-Dirac spectrum for a Majorana fermion

C.1 Fermion field mode expansion in AdS2

In [61], a complex (Dirac) two-component spinor in the global AdS2 frame was studied. We

focus instead on a real (Majorana) spinor, and generalize to the arbitrary frame (1.4). We

follow the conventions of [61] and use the gamma matrices γ0 = iσ1 and γ1 = σ3, together

with the massless Majorana equation:

iγaeµaDµψ = 0, Dµ ≡ ∂µ +
1

8
ωabµ [γa, γb] . (C.1)

Using lightcone coordinates u = t+z and v = t−z for the local Lorentz frame, and denoting

the conformal factor of the metric as Ω2 ≡ (F (u)−F (v))2

F ′(u)F ′(v) , we can read off the zweibein and

spin connection of the metric (1.4) as:

eaµ ≡ euv = evu = Ω−1/2, ωabµ dx
µ ≡ ωuv = −∂uΩ

2Ω
du+

∂vΩ

2Ω
dv (C.2)

We hence find explicitly Dµ =

(
∂µ −iωuvµ
iωuvµ ∂µ

)
, and the equation decouples into two com-

ponents for ψ± = 1√
2
(1 + γ0)χ± as

(∂u + ωuvu )χ− = 0, (∂v − ωuvv )χ+ = 0, (C.3)

solvable by the mode expansions:

χ+ = e
∫ v dv ωuvv ∑

ω

s+e
−iωua+

ω , χ− = e−
∫ u duωuvu ∑

ω

s−e
−iωva−ω , (C.4)

in terms of the spinors s+ = 1√
2

(
1

i

)
and s− = 1√

2

(
i

1

)
. Combining both components,

and explicitly plugging in the spin connection, we can write the full mode expansion as:

ψ(u, v) ≡ ψ+ + ψ− =

(
F (u)− F (v)√
F ′(u)F ′(v)

)1/2 [
s+

∑
ω

e−iωua+
ω + s−

∑
ω

e−iωva−ω

]
, (C.5)

with a±†ω = a±−ω satisfying
{
a±ω , a

±†
ω′

}
= δ(ω − ω′). The components ψ± are the left-

and right-handed Majorana-Weyl components. Up to the conformal prefactor Ω1/2 ≡(
F (u)−F (v)√
F ′(u)F ′(v)

)1/2

, these fields represent the flat space left- and right-moving degrees of

freedom.

All of this can be viewed as a very explicit verification of the Weyl rescaling prop-

erty of the massless fermion field equation (C.1) in 2d: given a solution (g, ψ), the pair

(Ω−2g,Ω1/2ψ) is also a solution, and this is indeed the mode expansion (C.5) constructed

above.30

30We also remark that Dirichlet boundary conditions at z = 0 have to be imposed, basically setting

a+ω = −a−ω , and removing half of the oscillators. The Weyl rescaling mentioned here keeps fixed the

holographic boundary, and preserves Dirichlet boundary conditions. Just as for the bosonic case, the

computation in the next subsection can be done with any of the four options (taking u or v for each of the

two operators in the two-point function), all of which would give the same outcome. For concreteness, we

take u in both cases.
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C.2 Fermion number operator and occupation

Using the Weyl-transformation property of the fermion two-point function:〈
ψ±1 ψ

±
2

〉
Ω−2η

= Ω
1/2
1 Ω

1/2
2

〈
ψ±1 ψ

±
2

〉
η

(C.6)

to relate the AdS2 metric (1.4) to the flat metric,31 and using the flat result

〈0F |ψ+
1 ψ

+
2 |0F 〉η =

√
F ′(u1)F ′(u2)

F (u1)− F (u2)
, (C.7)

one can write the expression for the fermion number occupation number as:

Nω[f ] = 〈0F | a+†
ω a+

ω |0F 〉 =
1

4π2

∫
du1

∫
du2Ω

−1/2
1 Ω

−1/2
2 e−iω(u1−u2)

〈
s†+ψ

+
1 ψ

+†
2 s+

〉
Ω−2η

=
ω

π

∫
dy1

∫
dy2uω(y1)u∗ω(y2)

√
f ′(y1)f ′(y2)

β
π sinh π

β (f1 − f2)
, (C.8)

where in the second line, we canceled the explicit conformal prefactors in these expres-

sions, and wrote the expression in terms of the canonically normalized scalar modes

uω(y) ≡ 1√
4πω

e−iωy.

Subtracting the vacuum contribution, we find that the number operator for a single

Majorana fermion is given by:

Nω[f ] =
ω

π

∫
dy1

∫
dy2uω(y1)u∗ω(y2)

[ √
f ′(y1)f ′(y2)

β
π sinh π

β (f1 − f2)
− 1

y12

]
, (C.9)

computable from the ` = 1/2 bilocal Schwarzian operator.32

As for the bosonic case in section 2.3, we average over time-ordered and anti-

time-ordered two-point correlators to obtain the exact quantum gravitational occupation

number:〈
Nω

〉
β

=
e−βω − 1

2π2

1

Z

∫
dµ(k2) sinh

(
2π
√
ω + k2

)
e−βk

2
Γ

(
1

2
± ik ± i

√
ω + k2

)
+

1

2
.

(C.10)

Semi-classically, using the Fourier transform∫ +∞

−∞
dt

1

β
π sinh

(
π
β (t∓ iε)

)e−iωt =
1

2π
e∓

β
2
ωΓ

(
1

2
+ i

β

2π
ω

)
Γ

(
1

2
− i β

2π
ω

)

=
e∓

β
2
ω

e
β
2
ω + e−

β
2
ω
, (C.11)

and its β →∞ limit, one indeed finds the Fermi-Dirac population statistics of the thermal

gas:

Nω[f(y) = y] =
e−

β
2
ω

e
β
2
ω + e−

β
2
ω
. (C.12)

31The Weyl anomaly cancels out in numerator and denominator.
32Note that, combining (C.6) and (C.7), we can also study the bulk-to-bulk fermionic two-point function

as the product of three Schwarzian bilocal operators along the lines of [24]. We will not do that here.
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Figure 14. Blue (upper): exact occupation number 〈Nω〉β of the Unruh radiation, computed

from (C.10) with β = 2. Red (lower): semi-classical fermionic (Fermi-Dirac) spectrum of Unruh

radiation, coming from (C.12).
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Figure 15. Total energy density 1
V

∫ +∞
0

dω ω 〈Nω〉β of the Unruh radiation, as a function of β,

computed by integrating (C.10) (black dots). The exact energy (2.8) (with c = 1/2) is plotted as

a blue line (top). The semi-classical energy (2.7) is plotted as a red line (bottom), computable

by integrating (C.12). The inset shows in more detail the match at the exact level, and the

approximation made by taking the semi-classical result.

Both of these formulas are compared in figure 14. As for the bosonic case, a slightly higher

occupation number is observed. Notice that the quantum corrections are small at low

energies. This can be explained due to a competition between quantum gravity and Pauli

repulsion, the latter preventing any major modification in the population of these largely

occupied energy levels.

We can check again that it is consistent with the total energy E as computed by

integrating the stress tensor (2.8) for c = 1/2 matter (figure 15). Including charge can be

readily done by combining the analysis of this section with that of the previous appendix.

– 28 –



J
H
E
P
0
7
(
2
0
1
9
)
0
9
7

D Matter entanglement entropy in curved spacetime

For a curved 2d metric in conformal gauge ds2 = −eωdUdV , the entanglement entropy for

the interval (U1, V1) to (U2, V2) is written as

S =
c

12
(ω1 + ω2) +

c

12
ln

(U1 − U2)2

δI1δI2
+

c

12
ln

(V1 − V2)2

δI1δI2
, (D.1)

with δI a UV cut-off measured by the inertial observer at the endpoints. This formula was

suggested in [41] as the curved space generalization of the entanglement entropy formula,

where refering to local inertial quantities is indeed the most natural thing to do. In our

specific case, due to the presence of a prefered boundary coordinate, it is convenient to

refer to that observer’s time instead. Here we illustrate that the renormalized versions of

these formulas agree.

Denoting Ui = f(ui) and Vi = f(vi), and specifying to AdS2, we write the entanglement

entropy (D.1) for the Poincaré vacuum as:33

S =
c

12
ln

1

(f(u1)− f(u2))2
+

c

12
ln

(f(u1)− f(u2))2

δ2
I

+ (u↔ v). (D.2)

Subtracting the reference entropy in the (u, v)-frame:

Sref =
c

12
ln

f ′(u1)f ′(u2)

(f(u1)− f(u2))2
+

c

12
ln

(u1 − u2)2

δ2
I

+ (u↔ v), (D.3)

we can write the renormalized entropy as

Sren = S − Sref =
c

12
ln

(f(u1)− f(u2))2

δ2f ′(u1)f ′(u2)
− c

12
ln

(u1 − u2)2

δ2
+ (u↔ v), (D.4)

in agreement with the formulas in the main text in sections 3 and 4, in principle valid for

whatever cutoff we like, but we of course specify to the boundary observer’s cutoff δ.

Ultimately, this equality follows from the fact that in JT gravity, we only consider

frames related by chiral mappings to the Poincaré frame. Otherwise, and in other models,

one has to resort to (D.1) for the curved space entanglement formula.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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