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1 Introduction

Conformal field theories (CFTs) have many interesting properties and applications to vari-

ous physical systems. The extension of Lorentz symmetry to conformal symmetry provides

quite stringent constraints on CFTs. The quantities of interest in CFTs are the spectrum

of operators and their correlation functions. Symmetries restrict the form of two- and

three-point correlation functions, such that the information about the dynamics is encoded

in purely numerical coefficients. Because the operator product expansion (OPE) is conver-

gent in CFTs, the OPE can be used to systematically reduce higher-point functions until

only two- and three-point functions remain [1].

Moreover, it was observed in the seventies that crossing symmetry of four-point func-

tions can be used to constrain the possible values of operator dimensions and coefficients

of three-point functions [2, 3]. That observation proved to be very fruitful when applied

to two-dimensional CFTs. When a four-point function is reduced by applying the OPE to

pairs of points, symmetries reduce the problem to a sum over operators that are exchanged

in either the s, t, or u channels. The expression for an individual operator exchange is

governed by conformal symmetry and is called the conformal block. In larger number of

dimensions, similar techniques have been used with much success only more recently [4].

In part, it took a lot longer to adopt bootstrap techniques beyond two dimensions because

analytic information about conformal blocks has been rather limited with some of the first

results obtained in [5, 6].

Conformal blocks are fully determined by symmetries. Yet, conformal symmetry acts

non-linearly on the coordinates, which obscures consequences of the symmetry group. The

most natural, linear, action of conformal symmetry in d dimensions is on a d+2-dimensional

space called the embedding space [7]. While many results on CFTs were obtained using the
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embedding space, see for example [8–10], the advantage of embedding space formulation

has not been fully harnessed (articles in [11–14] contain early important work on the OPE).

In [15], we outlined a program of deriving conformal blocks in the embedding space

and showed how to obtain some already known results using our method. Here, we provide

further ingredients that are necessary to implement conformal block calculations and the

bootstrap program in the embedding space. There are two main parts of this article.

In the next section, we investigate the differential operators that are consistent with the

light-cone constraint of the embedding space and could appear on the right-hand side of

the OPE. We show that all such operators can be generated from a single operator. We

then investigate how this differential operator acts on the conformal cross ratios. In the

following section, we show that the most general conformal block can be obtained from the

action of the differential operator. We are concerned only with conformal blocks without

any uncontracted Lorentz indices. Conformal blocks containing free Lorentz indices can

be obtained by acting with more derivatives on the expression presented in this article.

We also point out that the expression from which conformal blocks can be constructed is

invariant under the dihedral group with 12 elements.

2 Differential operator

We denote the embedding space coordinate as ηA, where ηA = (ηµ, ηd+1, ηd+2). The

embedding space is a projective space with ηA and ληA identified for λ > 0, and it is

restricted to the light cone η2 ≡ ηAηA = 0.

The OPE expresses the product of two quasi-primary operators in terms of a series

of quasi-primary operators and their descendants. To generate the descendants, the OPE

must thus include differential operators which act on the quasi-primary operators. The

only consistent differential operators with one derivative which are well defined on the

light cone are

Θ = ηA
∂

∂ηA
and LAB = i

(
ηA

∂

∂ηB
− ηB

∂

∂ηA

)
. (2.1)

Θ is the homogeneity operator, while LAB are the Lorentz generators in the (d + 2)-

dimensional embedding space, thus they satisfy the conformal algebra in d dimensions.

With two derivatives, the only consistent differential operator which is not built from (2.1)

is the Thomas-Todorov operator [16–18]

KA =

(
ηB

∂

∂ηB
+
d

2

)
∂

∂ηA
− 1

2
ηA

∂

∂ηB

∂

∂ηB
. (2.2)

Moreover, the non-vanishing commutation relations satisfied by the homogeneity operator,

the conformal generators, and the Thomas-Todorov operator are

[LAB,LCD] = −i (gACLBD − gBCLAD + gADLCB − gBDLCA) ,

[Θ,KA] = −KA, [LAB,KC ] = i (gBCKA − gACKB) .

– 2 –
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Neither Θ, LAB nor KA involve derivatives with respect to η2 and are therefore well de-

fined on the light cone. This can be seen by changing coordinates from ηA = (ηµ, ηd+1, ηd+2)

to ηA = (xµ, k, η2), where

ηµ = kxµ, ηd+1 =
η2 − k2(1 + x2)

2k
, ηd+2 =

η2 + k2(1− x2)

2k
,

or equivalently

xµ =
ηµ

−ηd+1 + ηd+2
, k = −ηd+1 + ηd+2, η2 = ηµηµ − (ηd+1)2 + (ηd+2)2.

In the new variables, one obtains

∂

∂ηA
=

1

k

[
g µ
A −

(
−g d+1

A +g d+2
A

)
xµ
] ∂

∂xµ
+
(
−g d+1

A +g d+2
A

) ∂

∂k
+2ηA

∂

∂η2
,

ηA
∂

∂ηB
=
ηA
k

[
g µ
B −

(
−g d+1

B +g d+2
B

)
xµ
] ∂

∂xµ
+
(
−g d+1

B +g d+2
B

)
ηA

∂

∂k
+2ηAηB

∂

∂η2
,

∂

∂ηB

∂

∂ηB
=

1

k2

∂

∂xµ

∂

∂xµ
+4

(
k
∂

∂k
+η2 ∂

∂η2
+
d+2

2

)
∂

∂η2
,

which can still be simplified on the light cone. Hence

Θ = k
∂

∂k
+ 2η2 ∂

∂η2
,

LAB =
i

k

{
ηA

[
g µ
B −

(
−g d+1

B + g d+2
B

)
xµ
]
− ηB

[
g µ
A −

(
−g d+1

A + g d+2
A

)
xµ
]} ∂

∂xµ

+ i
[
ηA

(
−g d+1

B + g d+2
B

)
− ηB

(
−g d+1

A + g d+2
A

)] ∂

∂k
,

KA = − ηA
2k2

∂

∂xµ

∂

∂xµ
+

1

k

[
g µ
A −

(
−g d+1

A + g d+2
A

)
xµ
](

k
∂

∂k
+ 2η2 ∂

∂η2
+
d

2

)
∂

∂xµ

+
(
−g d+1

A + g d+2
A

)(
k
∂

∂k
+ 2η2 ∂

∂η2
+
d+ 2

2

)
∂

∂k
+ 2ηAη

2 ∂

∂η2

∂

∂η2
,

which shows that Θ, LAB and KA are well defined on the light cone.1

Note that, due to the homogeneity condition of quasi-primary operators in embedding

space, the differential operator Θ acts trivially. Indeed, it does not generate descendants

from the quasi-primary operators and can be discarded as a genuine differential operator.

Therefore, the only non-trivial differential operators which are well defined on the light

cone must be made out of partial derivatives in the specific combinations LAB or KA.

2.1 Elementary operator

We now show that all non-trivial differential operators in the embedding space relevant

for the OPE (i.e. with two embedding space coordinates) can be obtained from a sin-

gle operator.

1Another way to ensure that a differential operator is well defined on the light cone is to check that its

effect on η2 = 0 is consistent. For example, ∂
∂ηA

η2 = 2ηA 6= 0 thus ∂
∂ηA

is not a well defined differential

operator on the light cone. On the other hand, Θη2 = 2η2 = 0 and LABη2 = 2i(ηAηB − ηBηA) = 0

are consistent.

– 3 –
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Because the Casimir operators cannot generate descendant operators it is straightfor-

ward to conclude that all possible non-trivial differential operators can be written as com-

binations of (Ln)AB for n > 0 and KA (since 4KAKA = η2∂2∂2 vanishes on the light cone).

It turns out that (Ln)AB can be written in the following form (Ln)AB = ηAηB∂
2Sn +

ηA∂BTn+ηB∂AUn+gABVn, where the derivatives act to the right and the operators Sn, Tn,

Un, and Vn only depend on the homogeneity operator Θ. The form of (Ln)AB is preserved

when n is increased by one

(Ln+1)AB ≡ gCDLAC(Ln)DB

= ηAηB∂
2[i(dE − 2 + Θ)Sn + iUn] + ηA∂B[i(dE − 2 + Θ)Tn + iUn + iVn]

+ ηB∂A[i(1−Θ)Un − iVn] + gAB(−iΘUn),

which gives the following relations

Sn+1 = i(dE − 2 + Θ)Sn + iUn,

Tn+1 = i(dE − 2 + Θ)Tn + iUn + iVn,

Un+1 = i(1−Θ)Un − iVn,
Vn+1 = −iΘUn,

where dE = d + 2 is the dimension of the embedding space. One can then show that the

differential operators (Ln)AB = (L2)ABAn + LABBn + gABCn, where An, Bn, and Cn are

again functions of the homogeneity operator Θ. Indeed, for n = 1 one obtains LAB by

setting S1 = 0, T1 = i, U1 = −i, and V1 = 0. Given these initial values the recursion

relations are satisfied by

Sn =
−in[(1+Θ)(dE−2+Θ)n+(dE−3+Θ)(−Θ)n−(dE−2+2Θ)]

(1+Θ)(dE−3+Θ)(dE−2+2Θ)
,

Tn =
in[(1+Θ)(dE−4+2Θ)(dE−2+Θ)n−2(dE−3+Θ)(−Θ)n+(1−Θ)(dE−2+2Θ)]

(1+Θ)(dE−3+Θ)(dE−2+2Θ)
,

Un =
−in[1−(−Θ)n]

1+Θ
,

Vn =
inΘ[1−(−Θ)n−1]

1+Θ
.

Therefore, (Ln)AB is simply given by

(Ln)AB = ηAηB∂
2Sn + ηA∂BTn + ηB∂AUn + gABVn

=

[
ηAηB∂

2 + ηA∂B
Tn + Un − (1−Θ)Sn

Sn
+ ηB∂A(1−Θ) + gAB(−Θ)

]
Sn

− (ηA∂B − ηB∂A)[Un − (1−Θ)Sn] + gAB(Vn + ΘSn)

= [ηAηB∂
2 − ηA∂B(dE − 3 + Θ) + ηB∂A(1−Θ) + gAB(−Θ)]Sn

+ i(ηA∂B − ηB∂A)[iUn − i(1−Θ)Sn] + gAB(Vn + ΘSn)

= (L2)ABAn + LABBn + gABCn,

– 4 –
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where An = Sn, Bn = iUn − i(1 − Θ)Sn, and Cn = Vn + ΘSn. Since the homogeneity

operator commutes with the conformal generator, all non-trivial differential operators can

be expressed in terms of linear combinations of LAB, (L2)AB and KA. Indeed, since

LABKB = −iΘKA +
i

2
η2∂A∂

2,

(L2)ABKB = −Θ2KA + η2

(
KA −

d− 2

2
∂A

)
∂2,

on the light cone η2 = 0, all remaining products are linear combinations of LAB, (L2)AB
and KA with different factors which are functions of Θ. An analog result has been obtained

in [18] by studying the symmetries of the Laplacian operator.

The OPE involves operators at two points on the light cone, η1 and η2. We use

the convention that the operators on the right-hand side of the OPE are located at η2,

therefore the differential operators present in the OPE must act at η2. There are then

three differential operators without contractions given by

L2AB = i(η2A∂2B − η2B∂2A),

(L2
2)AB = η2Aη2B∂

2
2 − η2A∂2B(dE − 3 + Θ2) + η2B∂2A(1−Θ2)− gABΘ2,

K2A =

(
Θ2 +

d

2

)
∂2A −

1

2
η2A∂

2
2 .

There are also five simple differential operators which can be constructed with one con-

traction from the conformal generators,

(η1 · L2)A = i(η1 · η2)∂A2 − iη
A
2 η1 · ∂2,

(η1 · L2
2)A = (η1 · η2)ηA2 ∂

2
2 − (η1 · η2)∂A2 (dE − 3 + Θ2) + ηA2 η1 · ∂2(1−Θ2)− ηA1 Θ2,

(η2 · Ln2 )A = ηA2 (−iΘ2)n,

η1 · K2 =

(
Θ2 +

d

2

)
η1 · ∂2 −

1

2
(η1 · η2)∂2

2 ,

η2 · K2 = Θ2

(
Θ2 − 1 +

d

2

)
.

The third and last operators can be disregarded since they depend on the homogeneity

operator only. Due to the antisymmetry of the conformal generators, there are only two

differential operators with two contractions which are given by

η1 · L2
2 · η1 ≡ ηA1 η

B
1

(
L2

2

)
AB

= (η1 · η2)2∂2
2 − (η1 · η2)η1 · ∂2 (dE − 4 + 2Θ2) ,

η1 · L2
2 · η2 ≡ ηA1 η

B
2

(
L2

2

)
AB

= ηA1 η
B
2

[(
L2

2

)
BA
− i (dE − 2) (L2)BA

]
= −(η1 · η2)

[
Θ2

2 + (dE − 2)Θ2

]
.

Once again, the second operator is trivial because it is expressed in terms of the homo-

geneity operator only.

There remain seven operators that could be useful: three with no contractions, three

with one contraction, and one with two contractions. Of those seven, only one is indepen-

– 5 –
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dent since

L2AB =
1

(η1 · η2)
[η2A(η1 · L2)B − η2B(η1 · L2)A],

(L2
2)AB = L2ACL C

2 B,

K2A = − 1

2(η1 · η2)
[(η1 · L2

2)A + i(η1 · L2)A(Θ2 − 1) + η1AΘ2],

(η1 · L2
2)A =

ηA2
(η1 · η2)

η1 · L2
2 · η1 + i(η1 · L2)A(dE − 3 + Θ2)− ηA1 Θ2,

η1 · L2
2 · η1 = −(η1 · L2)A(η1 · L2)A.

Therefore, there is only one non-trivial differential operator which plays a significant role

in the OPE, and it is chosen to be

DA12 ≡
1

(η1 · η2)
1
2

[
−i(η1 · L2)A − ηA1 Θ2

]
=

1

(η1 · η2)
1
2

[
(η1 · η2)∂A2 − η

A
2 η1 · ∂2 − ηA1 η2 · ∂2

]
= (η1 · η2)

1
2AAB12 ∂2B, where AAB12 =

1

(η1 · η2)

[
(η1 · η2)gAB − ηA1 η

B
2 − η

B
1 η

A
2

]
.

(2.3)

The prefactor (η1 ·η2)
1
2 is introduced for future convenience. All remaining differential oper-

ators built from (2.1) and (2.2) can be expressed in terms of the differential operator (2.3),

thanks to the extra embedding space coordinate η1.

Because AAB12 is transverse in each of its indices, the differential operator in (2.3) has a

special status and satisfies several interesting identities. The most important ones, which

can all be proven by induction, are given below. First, note that AAB12 = ABA12 = AAB21 =

ABA21 and

η1AAAB12 = η2AAAB12 = 0, AAC12 A B
12C = AAB12 .

Therefore, DA12 trivially satisfies

ηA1 D12A = ηA2 D12A = 0 and AAB12 D12B = DA12,

which imply that

DA12(η1 · η2)α − (η1 · η2)αDA12 = 0. (2.4)

The non-trivial commutation relations between DA12 and Θ1,2 are given by

[DA12,DB12] =
1

(η1 · η2)
1
2

(ηA1 D
B
12 − η

B
1 D

A
12), [Θ1,DA12] =

1

2
DA12, [Θ2,DA12] = −1

2
DA12,

ηA2 D
B
12 −DB12η

A
2 = −(η1 · η2)

1
2AAB12 . (2.5)

The second and third equations of (2.5) imply that DA12 has well defined degrees of homo-

geneity in η1 and η2.

Squaring DA12 gives the scalar differential operator

D2
12 ≡ DA12D12A =

1

(η1 · η2)
η1 · L2

2 · η1 = (η1 · η2)∂2
2 − η1 · ∂2(dE − 4 + 2Θ2)

= (η1 · η2)∂2
2 − (dE − 2 + 2Θ2)η1 · ∂2,

– 6 –
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for which

[DA12,D2
12] =

2

(η1 · η2)
1
2

ηA1 D
2
12, [Θ1,D2

12] = D2
12, [Θ2,D2

12] = −D2
12,

ηA2 D
2
12 −D2

12η
A
2 = −2(η1 · η2)

1
2DA12 + (dE − 2)ηA1 .

(2.6)

With the help of fractional calculus, the scalar differential operator can naturally be applied

h/2 times to a quasi-primary operator, where h ∈ R. This generalization will be needed

because conformal dimensions are real numbers. Commutation relations in (2.6) can be

generalized to arbitrary h as follows

[DA12,Dh12] =
h

(η1 · η2)
1
2

ηA1 D
h
12, [Θ1,Dh12] =

h

2
Dh12, [Θ2,Dh12] = −h

2
Dh12,

ηA2 D
h
12 −Dh12η

A
2 = −h(η1 · η2)

1
2DA12Dh−2

12 +
h

2
(dE + h− 4)ηA1 D

h−2
12 .

(2.7)

Finally, the commutation relations for the conformal generators with the embedding space

coordinates and the differential operators are

LABηC − ηCLAB = −(SAB)CDη
D ,

[L1AB + L2AB,DC12] = −(SAB)CDDD12,

[L1AB + L2AB,Dh12] = 0,

(2.8)

where (SAB)CD are the SO(d, 2) generators in the vector representation.

2.2 Change of variables

It will obviously be useful to express the operator DA12 in terms of the conformal ratios

u =
(η1 · η2)(η3 · η4)

(η1 · η3)(η2 · η4)
and v =

(η1 · η4)(η2 · η3)

(η1 · η3)(η2 · η4)
. (2.9)

Since DA12 commutes with (η1 · η2)α, as shown in (2.4), the differential operator acts non-

trivially only on (η2 · η3) and (η2 · η4) and one obtains

DA12u
α − uαDA12 = (η1 · η2)

1
2AAB12 (∂2Bu

α) = −αuα(η1 · η2)
1
2AAB12

η4B

(η2 · η4)
,

DA12v
β − vβDA12 = (η1 · η2)

1
2AAB12 (∂2Bv

β) = βvβ(η1 · η2)
1
2AAB12

[
η3B

(η2 · η3)
− η4B

(η2 · η4)

]
.

The conformal ratios have vanishing degrees of homogeneity, so it is of interest to redefine

the differential operator DA12 such that it is homogenous with respect to all four coordinates.

The rescaled operator is defined as

DA(u,v) =
(η1 · η2)

1
2 (η3 · η4)

1
2

(η1 · η3)
1
2 (η1 · η4)

1
2

DA12 and D(u,v) = DADA =
(η1 · η2)(η3 · η4)

(η1 · η3)(η1 · η4)
D2

12.

The scalar operator D(u,v) is more suited to act on functions of the conformal ratios since

its action results in other functions of the conformal ratios only. When DA(u,v) and D(u,v)

– 7 –
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act on functions of conformal ratios only, one can change variables such that the derivatives

are with respect to u and v only

DA(u,v) =
(
DA(u,v)u

)
∂u +

(
DA(u,v)v

)
∂v,

D(u,v) = DA(u,v)

[(
D(u,v)Au

)
∂u +

(
D(u,v)Av

)
∂v
]

=
(
DA(u,v)u

) (
D(u,v)Au

)
∂2
u + 2

(
DA(u,v)u

) (
D(u,v)Av

)
∂u∂v

+
(
DA(u,v)v

) (
D(u,v)Av

)
∂2
v +

(
D2

(u,v)u
)
∂u +

(
D2

(u,v)v
)
∂v.

It is then straightforward to verify that

DA(u,v) =− (η1 ·η2)(η3 ·η4)
1
2

(η1 ·η3)
1
2 (η1 ·η4)

1
2

AAB12

{
η4B

(η2 ·η4)
u∂u−

[
η3B

(η2 ·η3)
− η4B

(η2 ·η4)

]
v∂v

}
,

D(u,v) = (−2)
{
u3∂2

u+u2(u+v−1)∂u∂v+u2v∂2
v−
(
d
2−2

)
u2∂u+u

[
u+
(
d
2−1

)
(1−v)

]
∂v
}
.

(2.10)

Because of transversality of AAB12 , DA(u,v) can only be contracted with either η3A or η4A.

These contractions give the following new operators, where their respective pre-factors were

chosen for homogeneity,

D(u) = − (η1 · η3)
1
2 η4A

(η1 · η4)
1
2 (η3 · η4)

1
2

DA(u,v) = −2u∂u − (u+ v − 1)∂v,

D(v) = − (η1 · η4)
1
2 η3A

(η1 · η3)
1
2 (η3 · η4)

1
2

DA(u,v) = u(u− v − 1)∂u + v(u− v + 1)∂v.

Their algebra is

[D(u),D(v)] = D(u) −D(v),

[D(u),Dh(u,v)] = −2hDh(u,v),

[D(v),Dh(u,v)] = −2hDh(u,v),

and it can be obtained from (2.5), (2.6) and (2.7). Moreover, they satisfy several important

properties, for example

D(u)u
α − uαD(u) = (−2α)uα,

D(v)

(u
v

)β
−
(u
v

)β
D(v) = (−2β)

(u
v

)β
,

D(u,v)u
α − uαD(u,v) = (−2α)uα+1

(
α+ 1− d

2 −D(u)

)
,

D(u,v)

(u
v

)β
−
(u
v

)β
D(u,v) = (−2β)

(u
v

)β+1 (
β + 1− d

2 −D(v)

)
.

A further generalization of these properties can be obtained using the general Leibniz rule
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and recursion

Dh(u)u
α =

∑
i≥0

(
h

i

)
(−2α)iuαDh−i(u) ,

Dh(v)

(u
v

)β
=
∑
i≥0

(
h

i

)
(−2β)i

(u
v

)β
Dh−i(v) ,

Dh(u,v)u
α =

∑
i≥0

(
h

i

)
(−2)i(α)iu

α+i
(
α− h+ i+ 1− d

2 −D(u)

)
i
Dh−i(u,v),

Dh(u,v)

(u
v

)β
=
∑
i≥0

(
h

i

)
(−2)i(β)i

(u
v

)β+i (
β − h+ i+ 1− d

2 −D(v)

)
i
Dh−i(u,v),

where (. . .)i denotes the Pochhammer symbol. With a slight abuse of notation, the argu-

ments of the Pochhammer symbols contain not just pure numbers, but sometimes operators

as well. The terms with no derivatives on the right-hand sides of the equations above give

the action of the derivative operators on the powers of u and u/v alone

Dh(u)u
α = (−2α)huα,

Dh(v)

(u
v

)β
= (−2β)h

(u
v

)β
,

Dh(u,v)u
α = (−2)h(α)h(α+ 1− d/2)hu

α+h,

Dh(u,v)

(u
v

)β
= (−2)h(β)h(β + 1− d/2)h

(u
v

)β+h
,

(2.11)

which we quote for future reference.

3 Master function

We now turn to constructing the most general form of a conformal block and show how to

apply the derivatives developed in the previous section. We assume that the OPE is used

once at points 1 and 2 and another time at points 3 and 4. The most general conformal block

will depend on the Lorentz representations of both the external and exchange operators.

The OPE will contain two types of derivatives: scalar derivatives raised to real powers,

that correspond to scaling dimensions, and vector derivatives with integer powers that

account for the operator spin. In this section we are concerned with the most general

action of the scalar derivatives. Obtaining general conformal blocks will require proper

accounting for the spins of the operators, but the answer can be expressed in terms of the

function Fd described below and derivatives acting on it. The details will be presented in

a future publication.

The numbers of embedding space positions and derivatives DA12 and DA34 that are not

contracted are finite integer numbers that depend on the Lorentz representations of external

operators. Such positions and derivatives with free Lorentz indices can be commuted to

the left of the derivatives D2
12 and D2

34 with the help of the commutation relations (2.7).

Therefore, the most general contribution to any conformal block without free embedding
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space vector indices is

F
(p,q;r;s,t)
d (ηi · ηj) = D2p

12D
2q
34(η2 · η4)−r(η2 · η3)s(η1 · η4)t

=
(η1 · η3)r+p+q(η1 · η4)t−q−s+p

(η1 · η2)r−s+p(η3 · η4)r−s+p
Dp(u,v)

(u
v

)t−s−q
Dq(u,v)

(u
v

)r−t
vr.

(3.1)

From its definition and the fact that the derivatives D2
12 and D2

34 commute, it is clear that

F
(p,q;r;s,t)
d (ηi · ηj) can also be expressed as

F
(p,q;r;s,t)
d (ηi · ηj) = D2p

12D
2q
34(η2 · η4)−r(η2 · η3)s(η1 · η4)t

=
(η1 · η3)r+p+q(η2 · η3)s−p−t+q

(η1 · η2)r−t+q(η3 · η4)r−t+q
Dq(u,v)

(u
v

)s−t−p
Dp(u,v)

(u
v

)r−s
vr.

(3.2)

The two forms for F
(p,q;r;s,t)
d (ηi · ηj) (3.1) and (3.2) and the behavior (2.11) of the

derivative D(u,v) as u→ 0 and v → 1 suggest writing F
(p,q;r;s,t)
d (ηi · ηj) as

F
(p,q;r;s,t)
d (ηi · ηj) = (−2)p+q(r − s)p(r − t)q(r − s+ 1− d/2)p(r − t+ 1− d/2)q

× (η1 · η3)r+p+q(η1 · η4)t−q−s+p

(η1 · η2)r−s+p(η3 · η4)r−s+p

(u
v

)r−s+p
H

(p,q;r;s,t)
d (u, v)

= (−2)p+q(r − s)p(r − t)q(r − s+ 1− d/2)p(r − t+ 1− d/2)q

× (η1 · η3)r+p+q(η2 · η3)s−p−t+q

(η1 · η2)r−t+q(η3 · η4)r−t+q

(u
v

)r−t+q
H

(q,p;r;t,s)
d (u, v),

where the function H
(p,q;r;s,t)
d (u, v) is given by

H
(p,q;r;s,t)
d (u, v) =

(
u
v

)−(r−s+p)Dp(u,v)

(
u
v

)t−s−q Dq(u,v)

(
u
v

)r−t
vr

(−2)p+q(r − s)p(r − t)q(r − s+ 1− d/2)p(r − t+ 1− d/2)q
. (3.3)

The power of u
v and the normalization are chosen such that H

(p,q;r;s,t)
d (0, 1) = 1. Note that

the equivalence of the two forms (3.1) and (3.2) for the function F
(p,q;r;s,t)
d (ηi · ηj) implies

the symmetry H
(p,q;r;s,t)
d (u, v) = H

(q,p;r;t,s)
d (u, v).

To proceed, it is convenient to introduce another function,

G
(q;r;t)
d (u, v) =

(
u
v

)−(r−t+q)Dq(u,v)

(
u
v

)r−t
vr

(−2)q(r − t)q(r − t+ 1− d/2)q
, (3.4)

in addition to function H
(p,q;r;s,t)
d (u, v). Again, from the behavior of D(u,v) as u → 0 and

v → 1 one concludes that G
(q;r;t)
d (0, 1) = 1. Having defined G

(q;r;t)
d (u, v), we can re-express

H
(p,q;r;s,t)
d (u, v) as the derivative operator acting on G

(q;r;t)
d (u, v)

H
(p,q;r;s,t)
d (u, v) =

(
u
v

)−(r−s+p)Dp(u,v)

(
u
v

)r−s
G

(q;r;t)
d (u, v)

(−2)p(r − s)p(r − s+ 1− d/2)p
. (3.5)
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It turns out that G
(q;r;t)
d (u, v) and H

(p,q;r;s,t)
d (u, v) have several simple limits. These

are obtained using (2.11) and are valid for arbitrary values of the remaining parameters.

First, G
(q;r;t)
d (u, v) obeys

G
(0;r;t)
d (u, v) = vr,

G
(q;0;t)
d (u, v) = 1,

G
(q;r;0)
d (u, v) = vr+q,

while H
(p,q;r;s,t)
d (u, v) satisfies

H
(0,q;r;s,t)
d (u, v) = G

(q;r;t)
d (u, v),

H
(p,0;r;s,t)
d (u, v) =

(
u
v

)−(r−s+p)Dp(u,v)

(
u
v

)r−s
vr

(−2)p(r − s)p(r − s+ 1− d/2)p
= G

(p;r;s)
d (u, v),

H
(p,q;0;s,t)
d (u, v) =

(
u
v

)−(−s+p)Dp(u,v)

(
u
v

)−s
(−2)p(−s)p(−s+ 1− d/2)p

= 1,

H
(p,q;r;0,t)
d (u, v) =

(
u
v

)−(r+p)Dp(u,v)

(
u
v

)r
G

(q;r;t)
d (u, v)

(−2)p(r)p(r + 1− d/2)p
,

H
(p,q;r;s,0)
d (u, v) =

(
u
v

)−(r−s+p)Dp(u,v)

(
u
v

)r−s
vr+q

(−2)p(r − s)p(r − s+ 1− d/2)p
= G

(p;r+q;s+q)
d (u, v).

The symmetry H
(p,q;r;s,t)
d (u, v) = H

(q,p;r;t,s)
d (u, v) then implies the following identity for

G
(q;r;t)
d (u, v)

G
(p;r+q;s+q)
d (u, v) =

(
u
v

)−(r+q)Dq(u,v)

(
u
v

)r
G

(p;r;s)
d (u, v)

(−2)q(r)q(r + 1− d/2)q
.

Setting s = 0, the identity above leads to G
(p;r+q;q)
d (u, v) = G

(q;r+p;p)
d (u, v). Renaming the

parameters gives G
(q;r;t)
d (u, v) = G

(t;r−t+q;q)
d (u, v).

Several other special cases can be obtained from the definition (3.3) and the symmetry.

For example, one has

H
(s−t,q;r;s,t)
d (u, v) = G

(q+s−t;r;s)
d (u, v).

Moreover, the relation G
(q;r;t)
d (u, v) = G

(t;r−t+q,q)
d (u, v) implies for H

(p,q;r;s,t)
d

H
(p,q;r;s,t)
d (u, v) =

(
u
v

)−(r−s+p)Dp(u,v)

(
u
v

)r−s
G

(q;r;t)
d (u, v)

(−2)p(r − s)p(r − s+ 1− d/2)p

=

(
u
v

)−(r−s+p)Dp(u,v)

(
u
v

)r−s
G

(t;r−t+q;q)
d (u, v)

(−2)p(r − s)p(r − s+ 1− d/2)p

=

(
u
v

)−(r−s+p)Dp(u,v)

(
u
v

)r−t+q−(s−t+q)
G

(t;r−t+q;q)
d (u, v)

(−2)p(r − s)p(r − s+ 1− d/2)p

= H
(p,t;r−t+q;s−t+q,q)
d (u, v).

This transformation is consistent with the special cases already mentioned and allows other

relations to be found.
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From their definitions, (3.4) and (3.3), G
(q;r;t)
d (u, v) and H

(p,q;r;s,t)
d (u, v) satisfy the

following recurrence relations

G
(q+k;r;t)
d (u, v) =

(
u
v

)−(r−t+q+k)Dk(u,v)

(
u
v

)r−t+q
G

(q;r;t)
d (u, v)

(−2)k(r − t+ q)k(r − t+ q + 1− d/2)k
,

H
(p+k,q;r;s,t)
d (u, v) =

(
u
v

)−(r−s+p+k)Dk(u,v)

(
u
v

)r−s+p
H

(p,q;r;s,t)
d (u, v)

(−2)k(r − s+ p)k(r − s+ p+ 1− d/2)k
.

(3.6)

The recurrence relations (3.6) are exactly the same, but the two functions are differ-

ent because of the initial conditions. Indeed, G
(0;r;t)
d (u, v) = vr while H

(0,q;r;s,t)
d (u, v) =

G
(q;r;t)
d (u, v). Consequently, H

(p,q;r;s,t)
d (u, v) is expressible in terms of G

(q;r;t)
d (u, v) as will

be shown below.

It is possible to use the algebra of differential operators to derive the action of the

derivatives on the functions G
(q;r;t)
d (u, v) and H

(p,q;r;s,t)
d (u, v). One obtains

D(u)G
(q;r;t)
d (u, v) = −

[
(r − t+ q)

u+ v − 1

v
+ t

]
G

(q;r;t)
d (u, v) + tG

(q;r−1;t−1)
d (u, v)

− t(r − t+ q)(r − t+ q + 1− d/2)

(r − t)(r − t+ 1− d/2)

u

v
G

(q;r;t−1)
d (u, v),

D(v)G
(q;r;t)
d (u, v) = rG

(q;r;t)
d (u, v)− rG(q;r+1;t+1)

d (u, v)

+
r(r − t+ q)(r − t+ q + 1− d/2)

(r − t)(r − t+ 1− d/2)

u

v
G

(q;r+1;t)
d (u, v),

and

D(u)H
(p,q;r;s,t)
d (u,v) =−

[
(r−s+p)

u+v−1

v
+s+q

]
H

(p,q;r;s,t)
d (u,v)+tH

(p,q;r−1;s−1,t−1)
d (u,v)

− t(r−s+p)(r−t+q)(r−s+p+1−d/2)(r−t+q+1−d/2)

(r−s)(r−t)(r−s+1−d/2)(r−t+1−d/2)

u

v
H

(p,q;r;s−1,t−1)
d (u,v)

+
qt(q+s−t)(r−s+p)(r−s+p+1−d/2)

(r−s)(r−t)(r−s+1−d/2)(r−t+1−d/2)

u

v
H

(p,q−1;r;s−1,t−1)
d (u,v)

− (q+s−t)(r−s+p)(r−s+p+1−d/2)

(r−s)(r−s+1−d/2)

u

v
H

(p,q;r;s−1,t)
d (u,v)

+
(q+s−t)(r−t−1)(r−t−d/2)

(r−t+q−1)(r−t+q−d/2)
H

(p,q;r−1;s−1,t)
d (u,v)

+
q(q+s−t)(2r−t+q−1−d/2)

(r−t+q−1)(r−t+q−d/2)
H

(p,q−1;r;s,t)
d (u,v)

− qt(q+s−t)
(r−t+q−1)(r−t+q−d/2)

H
(p,q−1;r−1;s−1,t−1)
d (u,v),

D(v)H
(p,q;r;s,t)
d (u,v) = rH

(p,q;r;s,t)
d (u,v)−rH(p,q;r+1;s+1,t+1)

d (u,v)

+
r(r−s+p)(r−t+q)(r−s+p+1−d/2)(r−t+q+1−d/2)

(r−s)(r−t)(r−s+1−d/2)(r−t+1−d/2)

u

v
H

(p,q;r+1;s,t)
d (u,v).
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By using the knowledge of the derivatives and their actions on powers of u and u/v, it is

also possible to obtain several contiguous relations like

G
(q+1;r;t)
d (u,v) =− t

r−tG
(q;r;t−1)
d (u,v)+

r

r−tG
(q;r+1;t)
d (u,v)

+
rt(r−t+q+1)(r−t+q+2−d/2)

(r−t)(r−t+1)(r−t+1−d/2)(r−t+2−d/2)

u

v
G

(q;r+1;t−1)
d (u,v),

G
(q;r−1;t)
d (u,v) =

(r−t+q−1)(r−t+q−d/2)

(r−t−1)(r−t−d/2)

1

v
G

(q;r;t)
d (u,v)

+
qt

(r−t−1)(r−t−d/2)
G

(q−1;r−1;t−1)
d (u,v)− q(2r−t+q−1−d/2)

(r−t−1)(r−t−d/2)
G

(q−1;r;t)
d (u,v)

− qt(r−t+q−1)(r−t+q−d/2)

(r−t−1)(r−t)(r−t−d/2)(r−t+1−d/2)

u

v
G

(q−1;r;t−1)
d (u,v),

G
(q;r;t+1)
d (u,v) =

(r−t+q−1)(r−t+q−d/2)

(r−t−1)(r−t−d/2)
G

(q;r;t)
d (u,v)− q(r−2t+q−1−d/2)

(r−t−1)(r−t−d/2)
G

(q−1;r;t)
d (u,v)

− rq

(r−t−1)(r−t−d/2)
G

(q−1;r+1;t+1)
d (u,v)

+
rq(r−t+q−1)(r−t+q−d/2)

(r−t−1)(r−t)(r−t−d/2)(r−t+1−d/2)

u

v
G

(q−1;r+1;t)
d (u,v).

Analogously,

H
(p+1,q;r;s,t)
d (u,v) =− (q+s−t)(r−t+q−s+1−d/2)

(r−s)(r−s+1−d/2)
H

(p,q;r;s−1,t)
d (u,v)

+
r(q+s−t)(r−s+p+1)(r−t+q)(r−s+p+2−d/2)(r−t+q+1−d/2))

(r−s)(r−s+1)(r−t)(r−s+1−d/2)(r−s+2−d/2)(r−t+1−d/2)

× u

v
H

(p,q;r+1;s−1,t)
d (u,v),

− r(q+s−t)
(r−s)(r−s+1−d/2)

H
(p,q;r+1;s,t+1)
d (u,v)

+
(r−t+q)(r−t+q+1−d/2)

(r−s)(r−s+1−d/2)
H

(p,q+1;r;s−1,t)
d (u,v),

H
(p,q+1;r;s,t)
d (u,v) =− t

r−tH
(p,q;r;s,t−1)
d (u,v)+

r

r−tH
(p,q;r+1;s+1,t)
d (u,v)

+
rt(r−s+p)(r−t+q+1)(r−s+p+1−d/2)(r−t+q+2−d/2)

(r−s)(r−t)(r−t+1)(r−s+1−d/2)(r−t+1−d/2)(r−t+2−d/2)

× u

v
H

(p,q;r+1;s,t−1)
d (u,v),

H
(p,q;r;s+1,t)
d (u,v) =

(r−s+p−1)(r−s+p−d/2)

(r−s−1)(r−s−d/2)
H

(p,q;r;s,t)
d (u,v)

− p(r−2s+p−1−d/2)

(r−s−1)(r−s−d/2)
H

(p−1,q;r;s,t)
d (u,v)

+
pr(r−s+p−1)(r−t+q)(r−s+p−d/2)(r−t+q+1−d/2)

(r−s)(r−s−1)(r−t)(r−s+1−d/2)(r−s−d/2)(r−t+1−d/2)

× u

v
H

(p−1,q;r+1;s,t)
d (u,v)− pr

(r−s−1)(r−s−d/2)
H

(p−1,q;r+1;s+1,t+1)
d (u,v),

H
(p,q;r;s,t+1)
d (u,v) =

(r−t+q−1)(r−t+q−d/2)

(r−t−1)(r−t−d/2)
H

(p,q;r;s,t)
d (u,v)

− q(r−2t+q−1−d/2)

(r−t−1)(r−t−d/2)
H

(p,q−1;r;s,t)
d (u,v)

+
qr(r−s+p)(r−t+q−1)(r−s+p+1−d/2)(r−t+q−d/2)

(r−s)(r−t)(r−t−1)(r−s+1−d/2)(r−t+1−d/2)(r−t−d/2)

× u

v
H

(p,q−1;r+1;s,t)
d (u,v)− qr

(r−t−1)(r−t−d/2)
H

(p,q−1;r+1;s+1,t+1)
d (u,v),

where the contiguous relation for H
(p,q;r−1;s,t)
d (u, v) is omitted since it is quite complicated.
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3.1 Power series

Functional form of G
(q;r;t)
d (u, v) and H

(p,q;r;s,t)
d (u, v) can be obtained by expressing them

as multiple sums over powers of the variables x = u/v and y = 1 − 1/v. First, using the

recurrence relation (3.6) with k = 1, it is easy to verify that

G
(q;r;t)
d (u, v) =

∑
m,n≥0

(−q)m(−t)m
(r − t+ 1− d/2)mm!

(r)m+n(r − t+ q)m+n

(r − t)2m+nn!
xmyn. (3.7)

In terms of the hypergeometric function G(α, β, γ, δ;x, y) of Exton [6, 19], (3.7) can be

expressed as

G
(q;r;t)
d (u, v) = G(r, r − t+ q, r − t+ 1− d/2, r − t;x, y).

To obtain H
(p,q;r;s,t)
d (u, v), we start from (3.5) using G(α, β, γ, δ;x, y) in (3.7) rewritten

in terms of the fourth Appell hypergeometric function. Then we apply the derivatives D(u,v)

as done for G
(q;r;t)
d (u, v). The result is given in terms of four infinite sums: two sums of

functions G
(q;r;t)
d (u, v) that itself is given in terms of a double sum. This expression can be

simplified, with the help of generalizations of Gauss’ identity, to an expression with two

infinite sums and two finite sums given by

H
(p,q;r;s,t)
d (u,v) =

∑
m,n≥0

P
(p,q;r;s,t)
d (m,n)

× (r)m+n(r−s+p)m+n(r−t+q)m+n

(r−s)2m+n(r−s+1−d/2)m(r−t)2m+n(r−t+1−d/2)mn!
xmyn,

P
(p,q;r;s,t)
d (m,n) =

m∑
i=0

i∑
j=0

(−i)j
i!j!(m−i)!

(−p)i(−q)m−i+j(−s−q+m−i+j)i−j(−t)m−i+j

×(r−s+m+n+i)m−i(r−s+p+1−d/2)m−i(r−t+2m+n−i+j)i−j
×(r−t+1−d/2+m−i)i. (3.8)

P
(p,q;r;s,t)
d (m,n) is a polynomial of degree m in the variables {p, q, d} when each of these

variables is considered separately and a polynomial of degree 2m in the variables {r, s, t},
again considering each of these variables independently. Moreover, P

(p,q;r;s,t)
d (m,n) is writ-

ten as a sum over (m + 1)(m + 2)/2 terms, however both sums in P
(p,q;r;s,t)
d (m,n) can be

extended to infinity as the expression vanishes for i > m or j > i. From the recurrence

relation (3.6) with k = 1, it satisfies

P
(p+1,q;r;s,t)
d (m,n) =

r − s+ p+ 1− d/2 +m

r − s+ p+ 1− d/2
P

(p,q;r;s,t)
d (m,n)

− (r − s− 1 + 2m+ n)(r − s− d/2 +m)(r − t− 1 + 2m+ n)(r − t− d/2 +m)

r − s+ p+ 1− d/2
× P (p,q;r;s,t)

d (m− 1, n+ 1)

+
(r +m+ n)(r − s− d/2 +m)(r − t− d/2 +m)(r − t+ q +m+ n)

r − s+ p+ 1− d/2
× P (p,q;r;s,t)

d (m− 1, n+ 2),

by construction.
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It is important to note that (3.7) and (3.8) fulfils all the expected limits. In-

deed, G
(q;r;t)
d (0, 1) = 1 and G

(0;r;t)
d (u, v) = vr, while H

(p,q;r;s,t)
d (0, 1) = 1 and

H
(0,q;r;s,t)
d (u, v) = G

(q;r;t)
d (u, v). Moreover, by examining (3.7) it is straightforward to check

the G
(t;r−t+q;q)
d (u, v) = G

(q;r;t)
d (u, v) symmetry relation. Hence, by construction, (3.8) satis-

fies all the symmetry properties. The symmetry H
(p,t;r−t+q;s−t+q,q)
d (u, v) = H

(p,q;r;s,t)
d (u, v)

is also straightforward to verify, but the symmetry H
(q,p;r;t,s)
d (u, v) = H

(p,q;r;s,t)
d (u, v) is not.

3.2 Discrete invariance

We now point out that H
(p,q;r;s,t)
d (u, v), and consequently P

(p,q;r;s,t)
d (m,n), are invariant

under the dihedral group D6 of order 12,

H
(p,q;r;s,t)
d (u, v) = H

g·(p,q;r;s,t)
d (u, v),

P
(p,q;r;s,t)
d (m,n) = P

g·(p,q;r;s,t)
d (m,n),

where g ∈ D6, since the two symmetries discussed above generate the dihedral group D6.

Indeed, defining the action of the group g·(p, q; r; s, t) as standard matrix multiplication

on the five-dimensional vector (p, q, r, s, t)T , the two symmetries are represented by the

following matrices

t1 =


0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

 , t2 =


1 0 0 0 0

0 0 0 0 1

0 1 1 0 −1

0 1 0 1 −1

0 1 0 0 0

 .

Hence, x = t1 and y = t2t1 lead to the presentation 〈x, y|x2 = y6 = (xy)2 = 1〉 of the

dihedral group D6. By defining rotations ri = yi and reflections si = xy−i, it is easy to

observe that

rirj = ri+j , risj = si+j , sirj = si−j , sisj = ri−j ,

which are the correct multiplication rules of D6. Since D6 has six conjugacy classes given by

E = {r0}, C6 = {r1, r5}, C3 = {r2, r4},
C2 = {r3}, C ′2 = {s0, s2, s4}, C ′′2 = {s1, s3, s5},

it has six irreducible representations (A1,2, B1,2 and E1,2) of dimensions given by the charac-

ter of the conjugacy class E shown in table 1. The five-dimensional reducible representation

over the space of (p, q; r; s, t) decomposes as two one-dimensional irreducible representation

A1, one one-dimensional irreducible representation B2, and one two-dimensional irreducible

representation E2. A possible similarity transformation matrix S is

S =


1 1 1 0 0

0 0 2 −1 −1

0 0 0 1 −1

1 0 0 −1 0

0 1 0 0 −1

 ,
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E C6 C3 C2 C ′2 C ′′2

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 1 −1

B2 1 −1 1 −1 −1 1

E1 2 1 −1 −2 0 0

E2 2 −1 −1 2 0 0

Table 1. Table of characters for dihedral group D6.

which makes SriS
−1 and SsiS

−1 block-diagonal for all i. Therefore, under group trans-

formations, the linear combinations p + q + r and 2r − s − t are invariant, while the

linear combination s − t changes sign under reflections. The remaining linear combina-

tions, p − s and q − t, transform according to the action of E2. From the invariant the-

ory of finite groups, the polynomial P
(p,q;r;s,t)
d (m,n) and the function H

(p,q;r;s,t)
d (u, v) are

thus functions of p + q + r, 2r − s − t, (s − t)2, (p − s)2 − (p − s)(q − t) + (q − t)2 and

[(p− s) + (q− t)][2(p− s)− (q− t)][(p− s)− 2(q− t)] although it is not straightforward to

verify from (3.8). As will be shown in a forthcoming publication, some of the well-behaved

linear combinations found here have direct links to the conformal blocks while others are

useful to simplify results.

3.3 Relation to conformal blocks

As mentioned before, conformal blocks can be obtained from linear combinations of the

function H
(p,q;r;s,t)
d (u, v) with extra vector derivatives (fractional calculus is not needed

anymore). The main purpose in computing the function H
(p,q;r;s,t)
d (u, v) is that it has the

proper analytic behavior to generate conformal blocks. Indeed, all scalar derivatives with

real powers have been evaluated correctly.

To connect with the extensive literature on conformal blocks (see e.g. [20–28]), we

give here two linear combinations corresponding to scalar and spin one exchange in

the four-point correlation function of four scalars. Writing the conformal blocks as

G∆1,∆2,∆3,∆4

∆,J (u, v) for four scalar quasi-primary operators with conformal dimensions

∆1,...,4 and an exchanged quasi-primary operator with conformal dimension ∆ and spin

J , they are given by

G∆1,∆2,∆3,∆4

∆,J=0 (u,v) = v(∆ij−∆)/2H

(
−∆12+∆

2
,−∆34+∆

2
;∆;0,0

)
d (u,v),

G∆1,∆2,∆3,∆4

∆,J=1 (u,v) =
4∆2v(∆ij−∆+1)/2

(∆12−∆+1)(∆34−∆+1)

×

[
H

(
−∆12+∆+1

2
,−∆34+∆+1

2
;∆+1;1,1

)
d (u,v)−H

(
−∆12+∆+1

2
,−∆34+∆+1

2
;∆;0,0

)
d (u,v)

]

+
(∆+1)(∆+1−d−∆12)(∆+1−d−∆34)uv(∆ij−∆−1)/2

4(∆+1−d/2)2(∆+1−d)

×H
(
−∆12+∆+1

2
,−∆34+∆+1

2
;∆+1;0,0

)
d (u,v),
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where ∆ij = ∆i−∆j . They correspond to the conformal blocks of Dolan and Osborn [5, 6].

To obtain these results, the general strategy is to consider the three-point correlation func-

tions and contract the indices appropriately. By doing so, the remaining derivatives are

all scalar, and they act on linear combinations of products of embedding space coordi-

nates, like in (3.1). It is then straightforward to normalize the results to match known

conformal blocks. It is important to point out here that extra derivatives were not needed

to generate the vector exchange conformal block. However, that is not the case for most

conformal blocks as generalization to any spin is not straightforward. The study of these

more complicated blocks will be discussed elsewhere.

4 Summary

We showed several technical results that are needed to implement the OPE and to calculate

conformal blocks in embedding space. We anticipate that these results are a necessary

step to developing a new method for calculating conformal blocks, but several further

advances are still required. The right-hand side of the OPE contains sums over quasi-

primary operators and their descendants. We were able to reduce all non-trivially acting

differential operators to a single one that can appear in the OPE in order to generate

descendants. When the basic differential operator is used in the four-point function it is

more natural to express all results in terms of the conformal invariants, u and v, therefore

we presented relevant expressions in term of those variables as well.

We demonstrated how the differential operator can be used to obtain a function in

terms of which conformal blocks can be constructed. This follows from the action of

derivative operators in two OPEs that one uses to reduce a four-point function. The most

compact expression that we were able to obtain for the function needed to build conformal

blocks is written as a quadruple sum in (3.8). Two of these sums are infinite and they are

over powers of two combinations of the conformal ratios u/v and 1− 1/v. The remaining

two sums are finite and involve only numerical constants that depend on the quantum num-

bers of operators. There are many interesting properties that the conformal block master

function satisfies, among those an invariance under the dihedral group D6. Our expressions

do not yet contain un-contracted Lorentz indices corresponding to Lorentz quantum num-

bers of external fields, but these can be obtained with more derivative operators. Thus,

conformal blocks will be expressed in terms of the master function and its derivatives.

A future publication will address the details of obtaining the OPE in our formalism

and of constructing conformal blocks for arbitrary Lorentz quantum numbers. An in-

teresting followup would be investigating supersymmetric version of this program given

the formalism in [29, 30]. Interestingly, [31] points to a supersymmetric version of the

Casimir equation and their solutions which may be very useful for superconformal field

theories. Finally, from the correspondence found in [31] between conformal blocks and

integrable systems, our master function may be of interest in the analysis of Calogero-

Sutherland Hamiltonians.
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