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1 Introduction

The study of ultraviolet divergences of Wilson loops due to cusps and self-intersections of

their contours has a long history. It started in the early eighties [1, 2], and over the years

a lot of information about the corresponding weak coupling perturbation theory has been

accumulated. Of particular interest has been the cusp anomalous dimension, which is of

relevance also in various other physical settings see e.g. [3] and references therein. The

behaviour at strong coupling became accessible with the AdS-CFT holography [4–6] and

is a subject of ongoing interest.

The cusp anomalous dimension, and therefore also the renormalised Wilson loops for

cusped contours diverge, if the opening angle of the cusp tends to zero. Only recently we

started the investigation of Wilson loops for contours, which have a zero opening cusp, i.e.

a spike, from the very beginning [7, 8].1

In the first paper we found a new type of ultraviolet divergence, which is proportional

to the inverse of the square root of the cutoff times the jump in the curvature at the tip

of the spike. The second paper is devoted to the renormalised Wilson loops, i.e. the finite

pieces remaining after subtraction of UV divergences and removal of the regularisation. To

have an example where analytical results can be obtained, the analysis is performed for

two touching circles with opposite orientation at the touching point. In this case, besides

1The related problem for the holographic treatment of entanglement entropies has been discussed recently

in [9, 10].
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the new spike divergence, no logarithmic divergence appears. Usually the subtraction of

logarithmic divergences requires the introduction of a RG-scale and thus a corresponding

freedom for the renormalised quantities. But now no such RG-freedom appears in this

case, and the renormalised Wilson loop turned out to be equal to one, both in lowest order

weak as well as strong coupling.

To motivate the study of the present paper, let us make a small detour via the renor-

malisation issue for local composite operators. If such composite operators are properly

renormalised, their correlation functions are finite as long as the insertion points of the

operators are all separated. If two such points approach each other, the corresponding

correlation function develops a short distance singularity. In the coincidence limit a new

composite operator is formed. Its renormalisation can be treated either by starting with

the coincidence case and renormalise afterwards or by using an operator product expansion

to control the short distance expansion. The renormalised version of the new composite is

then defined by subtraction of the divergent short distance terms. Up to the freedom in

the choice of the RG scale both procedures yield the same result.

Let us now look at the case of a renormalised Wilson loop for a path formed by

consecutive passage of two touching circles. At the touching points both circles should

have the same normal direction but form cusps of non-zero opening angle α. It will diverge

for α → 0. This is the analogue to the previous paragraph. In both cases there appear

divergences in limits where a geometrical datum approaches zero, here the angle α, there

the distance between the insertion points of the operators. The task of this paper is to

check, whether via this route one gets the same result for the α = 0 case as in [8]. As

a welcome byproduct of this analysis we will gain the renormalised Wilson loop for two

touching circles at α 6= 0. This extends the not so large list of contours for which explicit

analytical results are known. Even for the special case of contours formed with circles the

known results concern the coaxial case only, see [11] and references therein.

We will treat the local supersymmetric Maldacena-Wilson loop in N = 4 SYM theory

W =
1

N

〈
tr P exp

∫ (
iAµẋ

µ + |ẋ|φIθI
)
dτ
〉
. (1.1)

The paper is organised as follows. Section 2 is devoted to the lowest order weak coupling

contribution to the renormalised Wilson loop for two touching circles of different radii

R1 > R2 and α 6= 0. Besides the divergence for α → 0 it becomes also divergent for

R1 → R2. This is the reason to start with equal radii before renormalisation in section 3.

Furthermore, this section contains the discussion of the α → 0 behaviour for both the

unequal as well as the equal radii case. In section 4 we use the holographic formula [4, 5]

log W = −
√
λ

2π
A , (1.2)

to relate the Wilson loop at strong ’t Hooft coupling λ = g2N to the area A of the minimal

surface in AdS approaching the Wilson loop contour at its boundary. Here we will succeed

only in the equal radii case, where we can make use of a suitable conformal map to the

straight line cusp [6]. Section 5 is devoted to a summary and some conclusions. Several

technical details of the calculations are presented in four appendices.

– 2 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
8

Figure 1. In red a larger circle with R1 = 4. In blue smaller circles with R2 = 2 for various angles

α = 0, π4 ,
π
2 ,

3π
4 .

2 Lowest order at weak coupling in N = 4 SYM

We start with two circles

~x1(ϕ1) = R1

(
sinϕ1, 1− cosϕ1, 0

)
,

~x2(ϕ2) = R2

(
cosα sinϕ2, (1− cosϕ2), sinα sinϕ2

)
, (2.1)

with

0 < α < π , R1 > R2 . (2.2)

Then the contour to be used in (1.1) is given by

~x(τ) = ~x1(τ) , 0 ≤ τ ≤ 2π ,

~x(τ) = ~x2(4π − τ) , 2π ≤ τ ≤ 4π . (2.3)

For simplicity only the case with constant θI will be considered.

For α = 0 one has the spiky situation of two touching circles with a common tangent

but opposite orientation as studied in [7, 8]. For α = π the circles have again a common

tangent, but now with the same orientation. In the case R1 = R2 the circles have two

touching points. For a visualisation see figure 1. The lowest order perturbative Wilson

loop has the structure2

logW =
g2CF
4π2

(
I1 + I2 + I12

)
+O(g4) . (2.4)

As in [7, 8] we regularise the propagators by replacing (~x1 − ~x2)2 by (~x1 − ~x2)2 + ε2. Then

2CF = N2+1
2N

for SU(N) gauge group.
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the trivial integrals Ij are evaluated as

I1 = I2 = π2 +O(ε) . (2.5)

I12 is given by

I12 =

∫ 2π

0

∫ 2π

0

(1 + cosα cosϕ1cosϕ2 + sinϕ1sinϕ2) dϕ1 dϕ2

D(ϕ1, ϕ2, κ, α, δ)
, (2.6)

with

D= 2
(
κ(1−cosϕ1)+

1

κ
(1−cosϕ2)−cosα sinϕ1sinϕ2−(1−cosϕ1)(1−cosϕ2)

)
+δ2 (2.7)

and the dimensionless quantities3

δ =
ε√
R1R2

, κ =
R1

R2
> 1 . (2.8)

Performing the ϕ2-integration we get

I12 = I
(1)
12 + I

(2)
12 , (2.9)

with

I
(1)
12 = π cosα

∫ 2π

0

(1− 1
κ)cosϕ− 1

(1− 1
κ)2 − 2(1− 1

κ)cosϕ+ cos2α+ sin2α cos2ϕ
dϕ (2.10)

and

I
(2)
12 = 2π

∫ 2

0

(
1+cosα

1+κδ2

2
+(A+κδ2

2
(κ−1))y+By2

1+Py+Qy2

)
dy√

y(2−y)
√

δ4

4 + δ2

κ +(2sin2α+δ2(κ−1))y+((κ−1)2−sin2α)y2
. (2.11)

In the last integral we have performed the change of variables

y = (1− cosϕ1) (2.12)

and introduced the abbreviations

A = κ2 − 1 , B = κ(κ− 1)2 ,

P = 2κ2
(

cos2α− 1

κ

)
, Q = κ2sin2α . (2.13)

The term I
(1)
12 is manifestly independent of δ. It turns out to be also independent of κ,

equal to

I
(1)
12 = 2π2sign

(
α− π

2

)
. (2.14)

The second term I
(2)
12 diverges if δ → 0, i.e. if the regularisation is removed.

3The limiting case of equal radii will be discussed in the next section.
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To control its behaviour in this limit we write

I
(2)
12 = I

(2),lead
12 + I

(2),rest
12 , (2.15)

with

I
(2),lead
12 = 2π

∫ 2

0

(1 + cosα) dy√
y(2− y)

√
δ2

κ + 2y sin2α
(2.16)

and I
(2),rest
12 defined by making in the integrand of I

(2)
12 the corresponding subtraction.

Now we obtain

I
(2),lead
12 =

π(1 + cosα)

sinα
log

64κ sin2α

δ2
+O(δ2logδ) . (2.17)

In the limit I
(2),rest
12 stays finite and, to extract its value, we can put δ = 0 under the

integral. This means

I
(2),rest
12 =

√
2 π

sinα

∫ 2

0

dy

y
√

2− y

1 + cosα 1+Ay+By2

1+Py+Qy2√
1 + S y

− (1 + cosα)

+O(δ2) , (2.18)

with

S =
(κ− 1)2 − sin2α

2 sin2α
. (2.19)

Some details of the evaluation of this integral one can find in appendix A. With (A.10)

from that appendix and (2.17), (2.15), (2.14), (2.9) as well as (2.8) we arrive at

I12 = −2π2 + 4πα+
2π(1 + cosα)

sinα
log

(
8 sin2α

ε | 1R1
− 1

R2
|

)
+O(ε2logε) . (2.20)

Using this together with (2.4), (2.5) and (2.20) we get finally

logW =
g2CF
4π2

(
4πα+

2π(1 + cosα)

sinα
log

(
8 sin2α

ε | 1R1
− 1

R2
|

))
+O(ε2logε) . (2.21)

The logarithmic divergent term ∝ logε can be obtained also by studying the case of two

crossing straight lines with an orientation generating two touching cusps.

As usual in situations with a logarithmic divergence, there is a renormalisation group

ambiguity for defining the renormalised quantity. With a RG-scale µ we subtract the term

∝ log(εµ) and get then for the renormalised Wilson loop

logWren =
g2CF
4π2

(
4πα+

2π(1 + cosα)

sinα
log

(
8µ sin2α

| 1R1
− 1

R2
|

))
+O(g4) . (2.22)

The discussion of the α-dependence will be postponed to the end of the next section, where

it will be combined with that of the equal radii case.
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3 The case of equal radii

The case of equal radii R := R1 = R2, i.e. κ = 1, requires separate treatment, since one is

confronted with four cusps instead of two.4 The integrals I1, I2 and I
(1)
12 are independent

of the radii and can be taken from the previous section. However, the integrand in (2.11),

defining I
(2)
12 , has now a non-integrable singularity not only at y = 0, but also at y = 2.

Moreover, the integrand depends on y(2− y) only, and we can write

I
(2)
12

∣∣
κ=1

= 4π

∫ 1

0

(
1 + cosα

1+ δ2

2

1−y(2−y) sin2α

)
dy√

y(2− y)
√

δ4

4 + δ2 + y(2− y)sin2α
. (3.1)

Now we split

I
(2)
12

∣∣
κ=1

=
(
I
(2)
12

∣∣
κ=1

)lead
+
(
I
(2)
12

∣∣
κ=1

)rest
, (3.2)

with (
I
(2)
12

∣∣
κ=1

)lead
= 4π

∫ 1

0

(1 + cosα) dy√
y(2− y)

√
δ2 + 2y sin2α

(3.3)

and
(
I
(2)
12

∣∣
κ=1

)rest
defined by making in the integrand of I

(2)
12

∣∣
κ=1

the corresponding sub-

traction. Then with manipulations similar to that in the previous section we get

(
I
(2)
12

∣∣
κ=1

)lead
=

4π(1+cosα)

sinα
log

(
8 sinα

δ
√

3+2
√

2

)
+O(δ2logδ) , (3.4)

(
I
(2)
12

∣∣
κ=1

)rest
=

4π(1+cosα)

sinα
log

(√
3+2
√

2

2

)
+4πα−4π2 Θ

(
α−π

2

)
+O(δ2) .

Collecting now (2.4), (2.5), (2.8), (2.9), (2.14), (3.2), and (3.4), the final result is

logW
∣∣
κ=1

=
g2CF
4π2

(
4πα+

4π(1 + cosα)

sinα
log

(
4R sinα

ε

))
+O(ε2logε) (3.5)

and

log
(
W
∣∣
κ=1

)
ren

=
g2CF
4π2

(
4πα+

4π(1 + cosα)

sinα
log(4Rµ sinα)

)
+O(g4) . (3.6)

Comparing now this result with (2.22) we find

logWren(α) = log
(
W (α)|κ=1

)
ren

if
1

(µR)2
= 2

∣∣∣∣ 1

µR1
− 1

µR2

∣∣∣∣ . (3.7)

Therefore we comment on the α-dependence of

w(α, ν) =
1

π

(
α+

1 + cosα

sinα
log(4ν sinα)

)
. (3.8)

4More precise: two touching cusps and one self-intersection.
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Figure 2. The function w(α, ν) for ν = 10, 5, 2, e4 , 0.1 (from above), on the left in the whole

α-interval, on the right zoomed into the vicinity of α = π. The case ν = e
4 is shown in red.

Up to the factor g2CF this yields (3.6) if ν = µR and (2.22) if ν =
√

µR1

2(κ−1) .

Now for all ν

w(π, ν) = 1 , w(0, ν) = −∞ . (3.9)

w(α, ν) is a monotonic rising function of α ∈ (0, π) as long as ν < e
4 . If ν > e

4 there is a

maximum5 at α = arcsin e4ν and a local minimum at α = π−arcsin e4ν . For some illustration

see figure 2.

4 Holographic evaluation at strong coupling

For generic radii R1 6= R2, we do not know of any explicit construction of the minimal

surface in AdS, relevant for the holographic evaluation of our Wilson loop. However, in

the special case of equal radii one can generate the two circles as the image under inversion

on the unit sphere of two straight lines crossing each other at an angle α. The intersection

point has to have a distance 1/(2R) from the centre of the unit sphere, and the lines should

be both orthogonal to the straight line connecting the intersection point with the centre.

For a visualisation see figure 3. The minimal surface approaching at the boundary of AdS

the cusp formed by the two half-lines, with positive x1 and x2, is in Poincare coordinates

given by [6],

x1 = ρ cosϕ , x2 = ρ sinϕ , x3 =
1

2R
,

z =
ρ

f(ϕ)
, 0 ≤ ϕ ≤ α , 0 ≤ ρ <∞ . (4.1)

The function f(ϕ) has the property

f(α− ϕ) = f(ϕ) (4.2)

and is for 0 ≤ ϕ ≤ α
2 defined implicitly by

ϕ = f0

√
1 + f20

∫ ∞
f(ϕ)

df√
(f4 + f2)2 − (f40 + f20 )(f4 + f2)

. (4.3)

5Just above e
4
only a local maximum, but soon the absolute maximum in α ∈ (0, π).

– 7 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
8

Figure 3. A transparent unit sphere with parts of the straight lines and their circular images.

R = 1 and α = π/4.

Finally, the parameterf0 is related to the opening angle α by

f0 = f
(α

2

)
. (4.4)

Extending now the inversion on the unit sphere to an isometry inside AdS, we find the

part of the minimal surface related to the two half-circles with positive x1, x2.
6

x1 =
4R2ρ cosϕ

4R2ρ2(1 + f−2) + 1
, x2 =

4R2ρ sinϕ

4R2ρ2(1 + f−2) + 1
,

x3 =
2R

4R2ρ2(1 + f−2) + 1
, z =

4R2ρ

f(4R2ρ2(1 + f−2) + 1)
. (4.5)

For a visualisation of this surface in AdS4 we have to rely on projections onto three-

dimensional subspaces. Before presenting corresponding figures, it is useful to take notice

of the following facts.

xj(ρ̂, ϕ) = xj(ρ, ϕ) , j = 1, 2 ,

x3(ρ̂, ϕ) = 2R− x3(ρ, ϕ) ,

z(ρ̂, ϕ) = z(ρ, ϕ) , (4.6)

with

ρ̂ =
f(ϕ)2

4ρ R2(1 + f2)
. (4.7)

Furthermore, the surface parameter point (ρ, ϕ) on (4.5) has the same x1, x2 and

z-coordinate as the parameter point
( 4R2f2ρ
f2+4ρ2R2(1+f2)

, ϕ
)

on the preimage (4.1). These

analytic properties help to understand the projections obtained numerically for the case

R = 1 and α = π/4, as shown in figure 4.

6The other part is obtained by xj → −xj , j = 1, 2 in (4.5). Both parts are separated up to the two

touching points of the circles.
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Figure 4. Projections on the (x1, x2, z)-subspace (left) and on the (x1, x2, x3)-subspace (right), in

red for the surface under discussion, in green for its preimage, green extends to infinity, for red the

whole surface is shown, R = 1 and α = π
4 .

The regularised area Aε, needed for the holographic evaluation of our Wilson loop, is

now given by the double of the area of the surface (4.5) cutted at z = ε. The factor two

takes into account the second part, mentioned in footnote 6. The boundary curve of the

cutted surface is in surface coordinates (ρ, ϕ) defined by

ε =
4R2ρf(ϕ)

4R2ρ2(1 + f2) + f2
. (4.8)

The induced metric looks simpler on the preimage (4.1). Therefore we prefer to take

advantage of the isometry property of the map between (4.1) and (4.5) and calculate on the

preimage. The preimage of the boundary curve (4.8) for some values of ε is shown in figure 5.

Taking the induced metric on the preimage (4.1) from [6] we get (Bε denoting the range

of (ρ, ϕ) for which the r.h.s. of (4.8) is larger than ε.)

Aε = 2

∫
Bε

√
f4 + f2 + (f ′)2

ρ
dρ dϕ . (4.9)

We now change the integration variable ϕ to f , taking into account the symmetry (4.2)

and arrive at

Aε = 4

∫ fε

f0

df

∫ ρ+ε

ρ−ε

dρ

ρ

√
f4 + f2

f4 + f2 − f40 − f20

= 4

∫ fε

f0

U(f, f0) log
ρ+ε (f)

ρ−ε (f)
df , (4.10)

with

ρ±ε (f) =
f

2ε(1 + f2)

(
1±

√
1− ε2

R2
(1 + f2)

)
, (4.11)

fε =

√
R2

ε2
− 1 , (4.12)

U(f, f0) =

√
f4 + f2

f4 + f2 − f40 − f20
. (4.13)

– 9 –
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Figure 5. Preimages of the boundary of the cutted surface (4.5) for ε = 0.1, 0.075, 0.05, 0.01 in

red, black, blue, yellow. Again R = 1, α = π
4 .

Using ρ+ε ρ
−
ε = f2

4R2(1+f2)
and again the notation δ = ε/R this lead to

Aε = A(1)
ε +A(2)

ε +A(3)
ε , (4.14)

where the A
(j)
ε are given by

A(1)
ε = 8

∫ √
1
δ2
−1

f0

U(f, f0) log
(
1 +

√
1− δ2(1 + f2)

)
df , (4.15)

A(2)
ε = −8 logδ

∫ √
1
δ2
−1

f0

U(f, f0) df , (4.16)

A(3)
ε = −4

∫ √
1
δ2
−1

f0

U(f, f0) log(1 + f2) df . (4.17)

Straightforward estimates yield

A(2)
ε = 4 Γcusp logδ − 8

logδ

δ
+O(δlogδ) , (4.18)

A(3)
ε = 8

logδ

δ
+

8

δ
+ 4f0log(1 + f20 ) + 8 arctanf0 − 4π − 8f0

− 4

∫ ∞
f0

(
U(f, f0)− 1

)
log(1 + f2) df +O(δlogδ) . (4.19)

Above we introduced the strong coupling cusp anomalous dimension [6], see also [12],

Γcusp(α) = 2f0 − 2

∫ ∞
f0

(
U(f, f0)− 1

)
df (4.20)

=
π

2

f20√
1 + f20

2F1

(
1

2
,
3

2
, 2,
−f20

1 + f20

)
.

– 10 –
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Figure 6. Aren as a function of α in different pieces of the interval 0 ≤ α ≤ π and for µR = 3, 10, 50

in red, blue, green. The plots are generated by ParametricPlot with f0 as parameter. The dashed

line in the right picture indicates the value −4π.

A little bit more effort is necessary for A
(1)
ε . It is discussed in appendix B with the result

A(1)
ε =

4π − 8

δ
− 4 log2 Γcusp +O(

√
δ) . (4.21)

Now inserting (4.18), (4.19), (4.21) into (4.14) we arrive at

Aε =
4πR

ε
− 4Γcusp log

2R

ε
+A0 +O(

√
ε) , (4.22)

with

A0 = 4f0log(1+f20 )+8 arctanf0−4π−8f0−4

∫ ∞
f0

(
U(f,f0)−1

)
log(1+f2)df. (4.23)

Γcusp and A0 are via (4.3) and (4.4) functions of the cusp angle α.

For the construction of a renormalised area, we again have to handle the ambiguity in

the subtraction of a logarithmic divergent term by introducing a RG-scale µ

Aren = A0 − 4Γcusp log(2Rµ) . (4.24)

A numeric evaluation for three different values of µR can be seen in figure 6.

For the discussion below the behaviour of Aren near α = 0 and α = π is of special

interest. With the results of appendix C we get using (C.1), (C.4) and (C.8)

Aren = −4π +O(π − α) . (4.25)

Near α = 0 we find with (C.2), (C.5), (C.6), (C.16)

Aren = −4ab
logα

α
−
(
b(8 + a2) + 4ab log

2Rµ

b

)
1

α
+O(αlogα) (4.26)

= −5.742′
logα

α
−
(

9.214′ + 5.742′ log(2Rµ)
) 1

α
+O(αlogα) .

The strong oscillation of Aren in figure 6 near α = 0 is due to the fact that the leading

divergent term is positive while the nextleading divergent term is negative.7

7As long as Rµ > b
2
exp(− 8+a2

4a
) = 0.10048 . . . .

– 11 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
8

In [12] the renormalised area of the minimal surface for a boundary contour in a plane,

which is composed out of two circular arcs of radii R1, R2 forming cusps of angle α with

a distance D between the tips of the cusps, has been calculated. Comparing it with our

present result for a contour built from two semi-circles with equal radius R and forming

cusps with the same opening angle (i.e. one half of (4.24)) one finds complete agreement

since in our case D = 2R.

Both contours can be generated as an image under inversion on the unit sphere of a

suitable placed single cusp between two straight half-lines with angle α. Therefore, the

two just compared contours can be conformally mapped to each other. Moreover, both

contours are special cases of a whole set of contours with two cusps of opening angle α

composed out of circular arcs. Due to unbroken Poincaré invariance the corresponding

renormalised Wilson loops will be a function of µ,D,R1, R2, α. The only conformally

invariant parameter in this set is α. The breaking of conformal invariance is due to the

presence of the cusps. Since the cusp anomalous dimension depends also in the case of

curved wings on α only [12], one should expect that the symmetry breaking term in Aren

or Wren, respectively, depends only on µD and α. As a whole one would have a conformal

covariant expression, i.e. an invariant form for a function of µD and α which changes its

value under conformal maps only via changes of D. A partial check of this conjecture is

given by the comparison of the two special cases above.

The situation resembles that for lightlike polygons. There is a symmetry breaking term

controlled by the anomalous conformal Ward identities and, as soon as conformal invariant

parameters are available, in addition a conformal invariant remainder function [13]. In the

tetragon case there is even another aspect of analogy. All tetragons can be generated by a

conformal map of the lightlike straight half-line cusp [14, 15].

5 Summary and discussion

Concerning the motivating question posed in the introduction, our main result is the ob-

servation, that in the limit α → 0 in all three cases (2.22), (3.6) and (4.26) (via (1.2))

logWren beyond the diverging terms has no nonzero finite contribution. Hence the proce-

dure {α 6= 0, renormalise, expand for α → 0, subtract divergent terms, α = 0} yields the

same result as the procedure {α = 0, renormalise} as used in [8].

Another common feature of all three cases is found for α→ π. While logWren depends

for 0 < α < π on the RG-scale and the radii, it becomes independent of these parameters

at α = π. In the latter case the cusps disappear, and one has a smooth contour at hand,

the doubly wounded circle. In the weak coupling cases of sections 2 and 3 one gets then

four times the result for a single circle. The renormalised minimal area (4.25) becomes

twice that for a single circle.8

For large µR both the weak and strong coupling results in sections 3 and 4 show a

remarkable strong oscillation near α = 0, due to the opposite sign of the leading and

nextleading term.

8This observation on the weak and strong coupling limits (note the square root in (1.2)) is consistent

with the all order result Wdouble(λ) =Wsingle(4λ), see [16, 17].
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This opposite sign in the strong coupling case holds for all µR, but in the weak coupling

case only for large enough µR. This is a clear indication, that the interpolation for logWren

between weak and strong coupling requires a genuine function of g2, α and µR, which

cannot be factorised in a product F (g2)H(α, µR). One finds in appendix D some more

detailed discussion of this issue.

Further work related to the issues raised in this paper should concern the study of

higher order corrections, both at weak and strong coupling. It would also be very interesting

to elaborate the anomalous conformal Ward identities as acting on general polygon like

contours whose edges are circular arcs. As indicted at the end of the last section this could

deliver important structural information on Wilson loops for this subset of contours.
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A Evaluation of the integral I
(2),rest
12

The indefinite integral related to (2.18) is

J(κ, α, y) =
2 π

sinα

(
2 cos2

α

2

(
arctanh

√
2

2− y
− arctanh

√
2(1 + Sy)

2− y

)

+f+ arctan

(
g+

√
1 + Sy

2− y

)
− f− arctan

(
g−

√
1 + Sy

2− y

))
, (A.1)

with

f±= cosα
P 2+2B(P+1)+2Q(P−1)−A(P+4Q)±(2B+A−P−2Q)

√
P 2−4Q√

P 2−4Q
√

1+2P+4Q

√
2S−4Q+(2S−1)P±(2S+1)

√
P 2−4Q

, (A.2)

g±=

√
2+4P+8Q√

2S−4Q+P (2S−1)±(2S+1)
√
P 2−4Q

. (A.3)

These long expressions simplify tremendously after insertion of (2.13) and (2.19)

f+ = sign(cosα) sinα , (A.4)

f− = f+ sign

(
(κ− 1)2

κ2 + (κ− 1)2
− sin2α

)
, (A.5)

g+ =

√
2 (2κ− 1) sinα

κ
√

(κ− 1)2 − κ2sin2α+ (κ− 1)2|cosα|
, (A.6)

g− =

√
2 (2κ− 1) sinα

κ
√

(κ− 1)2 − κ2sin2α− (κ− 1)2|cosα|
sign

(
(κ− 1)2

κ2 + (κ− 1)2
− sin2α

)
. (A.7)
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Since the arctan-function is odd, the explicit sign-factors in (A.5) and (A.7) cancel, and we

can write the second line of (A.1) as (and understanding below g− without the sign-factor

in (A.7))

f+

(
arctan

(
g+

√
1 + Sy

2− y

)
− arctan

(
g−

√
1 + Sy

2− y

))
.

Then with an addition theorem for the arctan-function we get

J(κ, α, y) =
2 π

sinα

2 cos2
α

2

(
arctanh

√
2

2− y
− arctanh

√
2(1 + Sy)

2− y

)

+ f+ n π + f+ arctan

(g+ − g−)
√

1+Sy
2−y

1 + 1+Sy
2−y g+g−

 . (A.8)

Here n is an integer, whose value can depend on α, κ and y. In our integration interval

the argument of the arctanh-functions in (A.8) is larger than 1. Since one is free to add an

arbitrary constant in the indefinite integral we can replace in (A.8) arctanh(x) = 1
2 log1+x

1−x
by 1

2 logx+1
x−1 .

With √
2 (g+ − g−)

2 + g+g−
= − sign(cosα) arctan

(
tan(2α)

)
(A.9)

we then get for (2.18), i.e. J(κ, α, 2)− J(κ, α, 0),

I
(2),rest
12 = 4π

(
α− π Θ

(
α− π

2

)
− 1 + cosα

2 sinα
log

κ− 1

sinα

)
. (A.10)

The integer, left open so far in the discussion above, has been determined by comparison

with the numerical evaluation of (2.18). Its presence results in the term with the unitstep-

function.

B ε → 0 expansion of the integral A(1)
ε

This appendix is devoted to the ε → 0 expansion of A
(1)
ε defined in (4.15). To start with,

we write it as (remember δ = ε/R)

A(1)
ε = A(1,1)

ε +A(1,2)
ε , (B.1)

A(1,1)
ε = 8

∫ √1−δ2
δ

f0

(
U(f, f0)− 1

)
log
(
1 +

√
1− δ2(1 + f2)

)
df , (B.2)

A(1,2)
ε = 8

∫ √1−δ2
δ

f0

log
(
1 +

√
1− δ2(1 + f2)

)
df. (B.3)

The indefinite integral for A
(1,2)
ε is a certain combination of linear, logarithmic and arctan

terms. Inserting the boundaries, a straightforward expansion yields

A(1,2)
ε = 4

π − 2

δ
− 8f0 log2 +O(δ) . (B.4)

– 14 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
8

A
(1,1)
ε can be written as

A(1,1)
ε = 8 log2

∫ √1−δ2
δ

f0

(
U(f, f0)− 1

)
df

+ 8

∫ √1−δ2
δ

f0

(
U(f, f0)− 1

)
log

1 +
√

1− δ2(1 + f2)

2
df. (B.5)

The first term in the last equation tends to the corresponding integral extended up to

infinity plus a term O(δ). In the second term the small δ expansion of the log-term cannot

be used uniformly in the whole integration region. Therefore, we split it in two parts, one

integral over the interval (f0, 1/
√
δ) and one integral over the remainder. Then in the first

part the expansion of the log-term can be used, giving a contribution O(δ). For the second

term we use the boundedness of the log-term in the whole integration region to establish

an estimate O(
√
δ). Hence

A(1,1)
ε = 8 log2

∫ ∞
f0

(
U(f, f0)− 1

)
df +O(

√
δ) . (B.6)

With (B.1), (B.4) and the definition of Γcusp in (4.20) we get equation (4.21) in the

main text.

C Analysis of the holographic result for cusp angle near zero and near π

Here we analyse the dependence of Γcusp and A0 (see (4.20) and (4.23)) on the cusp angle

α. From (4.3) and (4.4) we get

α = π +O(f0) at f0 → 0 , (C.1)

α =
b

f0
+O(f−30 )) , b =

(2π)
3
2

(Γ(14))2
at f0 →∞ . (C.2)

Therefore, to control the behaviour at the boundaries of the α interval (0, π) we have to

look at the behaviour at f0 →∞ and f0 → 0, respectively.

With the substitution f2 = f20 + z2 one can bring Γcusp into the form [6]

Γcusp = 2

∫ ∞
0

(
1−

√
z2 + 1 + f20
z2 + 1 + 2f20

)
dz . (C.3)

From there one gets easily

Γcusp =
π

2
f20 +O(f40 ) (C.4)

and

Γcusp = a f0 +O(f−10 ) , (C.5)

a = 2

∫ ∞
0

(
1−

√
1 + x2

2 + x2

)
dx = 2E(−1)−

(Γ(14))2

2
√

2π
= 1.198 . . . . (C.6)

Next we study the asymptotics of the integral in (4.23) (with the factor 4 included). After

the same substitution as above it becomes

M(f0) = 4

∫ ∞
0

(√
z2 + 1 + f20
z2 + 1 + 2f20

−

√
z2

z2 + f20

)
log(1 + f20 + z2) dz . (C.7)
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This yields straightforwardly for f0 → 0

M(f0) = O(f20 ) . (C.8)

For the other limit we write M as

M(f0) = 4f0

∫ ∞
0

(√
x2 + 1 + f−20

x2 + 2 + f−20

−
√

x2

x2 + 1

)
log
(
f20 (1 + x2) + 1

)
dx (C.9)

and get

M(f0) = a1f0logf0 + a2f0 +O
(

logf0
f0

)
, (C.10)

with

a1 = 8

∫ ∞
0

(√
x2 + 1

x2 + 2
−
√

x2

x2 + 1

)
dx = 3.204 . . . , (C.11)

a2 = 4

∫ ∞
0

(√
x2 + 1

x2 + 2
−
√

x2

x2 + 1

)
log(1 + x2)dx = 0.556 . . . . (C.12)

Both constants can be also expressed in terms of standard special functions

a1 = 8

(
1− E(−1) +

(Γ(14))2

4
√

2π

)
= 8− 4a , (C.13)

a2 =
(4 + π)(2π)

3
2

(Γ(14))2
− 8 . (C.14)

Inserting (C.8) and (C.10), (C.13) respectively into (4.23) we get for f0 → 0

A0 = −4π +O(f20 ) (C.15)

and for f0 →∞

A0 = 4a f0logf0 − (8 + a2)f0 +O
(

logf0
f0

)
. (C.16)

D Comments on the shape of the α-dependence of logWren

Here we add some comments comparing the shape of the α-dependence of logWren in

the equal radii case for weak and strong coupling. If there would be for all couplings a

factorisation logWren = F (g2)H(µR,α), then

logWren(g2, µR, α)

logWren(g2, µR, π)

would be an universal shape function independent of the coupling and normalised to one

at α = π. With (3.6) we get at weak coupling

logWren(g2, µR, α)

logWren(g2, µR, π)

∣∣∣∣
weak

=
1

π

(
α+

1 + cosα

sinα
log(4µR sinα)

)
. (D.1)
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Figure 7. Comparison of the shape of the α-dependence for strong coupling (red) and weak

coupling (blue). The red and the solid blue curve are for µR = 2. The blue dashed curves are for

µR = 3 and 4, respectively. The right picture is a zoom into the vicinity of α = π.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 8. Comparison of the shape of the α-dependence of candidates for a remainder function

for strong coupling (red) and weak coupling (blue).

At strong coupling holds via (1.2), (4.23), (4.24), (4.25)

logWren(g2, µR, α)

logWren(g2, µR, π)

∣∣∣∣
strong

= −Aren(µR,α)

4π
. (D.2)

In figure 7 we show a numeric plot of both the weak and strong coupling shape functions

for µR = 2. They differ clearly. Obviously also by playing with different RG-scales µ

no agreement can be obtained. This is another check, that there cannot exist an overall

factorisation as asked for at the beginning of this appendix.

What could be possible candidates for a remainder function (and normalised to one

at α = π) in the sense of the discussion at the end of section 4? Looking at (3.6) it could

be α
π at weak coupling, and with (4.24), (4.23), (C.16) −A0(f0)+4af0logf0−(8+a2)f0

4π at strong

coupling. We plot both functions in figure 8. A zoom into the vicinity of the crossing of

both curves shows that it is located near 1.63, i.e. not at π
2 .
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