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ABSTRACT: We calculate the production of a photon and two jets at forward rapidity
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2 — 2 processes.
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1 Introduction

One of the most important principles in QCD is factorization, the systematic separation

of short- and long-distance physics for a sufficiently inclusive cross section. The former in-

volves the scattering of quarks and gluons, and is perturbatively calculable in the presence

of a hard scale. Long-distance physics is non-perturbative and pertains, amongst others, to

the structure of the hadron in terms of these quarks and gluons, encoded in the parton dis-

tribution functions (PDF's) and fragmentation functions (FFs) which need to be extracted

from experiments, or from lattice QCD calculations. Radiative corrections are resummed



with the help of evolution equations in the hard scale, and absorbed into a renormalization
of these PDFs/FFs.

In the case of collinear factorization, there is a single hard scale, and the PDFs and
FFs are only a function of this scale and of the longitudinal momentum fraction x of the
parton. However, in less inclusive processes that depend on a second, smaller scale, these
distributions need to be generalized to include the dependence on the transverse momentum
of the parton, yielding the so-called transverse-momentum-dependent (TMD) PDFs and
FFs. These TMD PDFs/FFs are of great interest since their measurement offers insight
in the three-dimensional structure of the proton in terms of the QCD degrees of freedom.
However, in contrast to their collinear counterparts, which are believed to be universal,
they depend on the hard process under consideration and are therefore more complicated.

The radiative corrections that are considered in collinear factorization involve log-
arithms In Q?/u? in the scale, and can be resummed with the help of the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) [1-3] evolution equations. In the TMD factor-
ization framework [4-6], additional logarithms of the form In Q?/p? need to be resummed,
where p; is the small transverse momentum scale in the problem.

At very high energies, however, soft logarithms in the center-of-mass energy are ex-
pected to be dominant, necessitating a resummation and subsequently an evolution equa-
tion in rapidity instead of the scale, provided by the (linear) Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [7, 8]. BFKL involves a universal unintegrated gluon PDF, which just
like the TMDs depends on transverse momentum. One of the most fascinating aspects of
QCD at high energy or small z, is the phenomenon of saturation [9, 10]: the damping of
the steep rise of the gluon density predicted by BFKL, caused by gluon recombinations
which become important due to the high density. The low-z evolution of the gluon density
in the presence of these nonlinear interactions is described by an effective theory known as
the Color Glass Condensate (CGC), which leads to the nonlinear BK-JIMWLK evolution
equations [11-24].

Within the CGC framework, the hybrid formalism [25] is used to study single inclusive
particle production at next-to-leading order [26]-[34] and heavy-quark production [35], at
forward rapidity. In this set-up, the wave function of the projectile proton is treated in

L Perturbative corrections to this wave function are

the spirit of collinear factorization.
provided by the usual QCD splitting processes. On the other hand, the dense target is
treated in the CGC, i.e. it is defined as a distribution of strong color fields, which during
the scattering transfer transverse momentum to the propagating partonic configuration.
Recently, a lot of effort has been dedicated to the understanding of gluon TMDs in the
CGC. In particular, it was shown in [37] that nonlinear corrections are intimately connected
to the process dependence of the gluon TMDs, and that only in the linear regime can one
speak of a universal BFKL unintegrated gluon distribution. Various processes at small z
which involve two scales have been studied, such as dijet, heavy-quark pair or photon-jet
production in electron-nucleus or proton-nucleus collisions [38-47], see [48] for a recent

review. The usual approach is to calculate the cross section in the CGC, after which one

'Multiple collinear scattering effects from the projectile protons have been studied in [36].



takes the small dipole or correlation limit which corresponds to a leading-power expansion
in the ratio p? /Q? of the hard scales, with AéCD < p? < Q2. On the one hand, the analysis
of the CGC in terms of gluon TMDs allows for a better understanding of QCD dynamics
at high energy. On the other hand, once a CGC expression is obtained for a gluon TMD
in the small x limit, its nonlinear evolution in rapidity can be computed with the help of
the JIMWLK [37] or BK [49] equations. In addition, non-perturbative models such as the
McLerran-Venugopalan (MV) [50-52] or Golec-Biernat-Wiisthoff (GBW) model [53, 54]
can be used to write down analytical expressions.

In this paper, we study the process pA — jet 4 jet + v at forward rapidity in a hybrid
setup [25]. The derivation of that cross section is given in section 2. We then take, in
section 3, the correlation limit, by making a small dipole expansion, which corresponds to
a leading-power expansion in the small ratio p?/Q?, where p; = q1 +¢2+¢s3 is the vector sum
of the transverse momenta of the outgoing particles. The result can be cast in an explicit
hybrid TMD factorized formula, in which both unpolarized (F®)) and linearly-polarized
(H(i)) gluon TMDs play a role, appearing in several types ¢, distinct by their gauge-link
structure. Finally, section 4 is devoted to our conclusions.

2 Production cross section

Dijet+photon production in pA collisions can be initiated from two different channels. The
first one that we will consider is the quark initiated channel. In this process, the incoming
quark with vanishing transverse momentum in the projectile wave function, is dressed by
emitting a photon and a gluon at O(g.gs), where g. is the QED and g, is the strong
coupling constant. The photon can be emitted either before or after the emission of the
gluon. The dressed quark state, which takes into account both orderings of the photon and
gluon emissions, then scatters off the target via eikonal interactions and produces a quark,
a gluon and a photon in the final state. In general, the transverse momenta of the produced
jets are much larger than the saturation scale of the target (), and we shall thus consider
them to be hard. According to the hybrid factorization ansatz [25], the total production
cross section for this process is written as a convolution of the partonic cross section and
the quark distribution function fy(z,, ©?) inside the proton:

doPA—=799+X

:/dx fol(z lﬂ)M
d3g1d3g2d3g3 pJg\+*ps d3g1d3g2d3g3 B

(2.1)

where z,, is the longitudinal momentum fraction carried by the incoming quark, p? is the
factorization scale, and the three-momenta q, = (ql+ ,q;) are the longitudinal and transverse
momenta of the produced jets.

Recently, this process was studied in [55] focusing on specific kinematics, in which
the dominant contribution to the cross section comes from the configuration in which the
photon is radiated collinearly to the incoming quark, after which the latter splits into a
quark-gluon pair with large relative transverse momenta. In these specific kinematics, the
case in which the photon is radiated after the quark-gluon splitting was neglected. In this
paper, we have in mind to study a different kinematical regime, and for that we need study



the dijet+photon production in more generality. We shall include all the contributions
that were neglected in [55], with the exception of the instantaneous diagrams of light-cone
perturbation theory, which do not contribute to the TMD regime we want to study.

The second channel that we will consider is the gluon initiated channel. In this process,
the incoming gluon, with vanishing transverse momentum, splits into a quark-antiquark
pair with large relative transverse momenta in the projectile wave function at O(gs). Then,
at O(gegs), the incoming gluon is dressed with a photon which is emitted either from the
quark or from the antiquark. The dressed gluon state eikonally scatters off the target and
produces the final hard jets and the hard photon. Similarly to the quark initiated channel,
the total production cross section for this process can be written as the convolution of
the partonic cross section with the gluon distribution function f,(x,, u%) of the incoming
proton:

d 0.pA~>q’ylj+X

= [ ey o) BT
d3g1d3g2d3g3 pJg\+ps d3g1d3g2d3g3 )

(2.2)

with z, being the longitudinal momentum fraction carried by the gluon. Recently, this
gluon initiated channel was also studied in [56, 57] for central production,? and subsequently
in [59] in a regime where the quark (or antiquark) ends up with much less transverse
momentum than the photon it has emitted.

2.1 Quark initiated channel: ¢A — qgy + X

We start our analysis with the quark initiated channel. The partonic level cross section is
formally defined as the expectation value of the number operator in the outgoing state:

9 do14—=799+X

2m)) ——————(2m)0(pT — ¢ — ¢ — ¢
(27) d3g1d3g2d3g3( 6" —a —a3 —a3)
1
=N > ou{(@p",012]0(q;, 4y, 2| (@™, 019, L (2.3)

where the normalization 1/2N, comes from averaging over the spin and color indices of
the outgoing state in the amplitude and in the complex conjugate amplitude. The num-
ber operator is built from creation and annihilation operators of the final state particles.
Therefore, in the quark initiated channel one needs to select the Fock state containing
a quark, a gluon and a photon from the outgoing wave function, for which the number
operator is given by

0(q,.4,.45) = 74 (a)m (g, al’(a,)al(a,)b" (4,7 (g,) - (2.4)

In the above expression, w\(gl) is the annihilation operator of a dressed photon with
polarization A and three-momentum g, a?(%) is the one for a dressed gluon with color b,

polarization ¢, and three-momentum N and finally bf (g3) is the annihilation operator of

2See [58] for the eA scattering.



dressed quark with color 3, spin ¢, and three-momentum 4 It is convenient to express
the expectation value of the number operator in the mixed Fourier basis, which gives:

out<(q) [p+7 0]? |O(g17 g2’ g3) ‘ (Q) [p+7 0]?>0ut = / eiql-(yl—z1)+iqz-(y2—32)+iq3~(y3—23)

Y121 Y222 Ysz3
b
out ((@)[pF, 0127 (@ y) 1 (a s 21) 0l (a5, yo)al (a3, 22)
% 01 (a5 ys)b (g, 23) (@)l F, 02) - (2.5)

where we introduced the notation fx as a short-hand for the two dimensional integration
il d?x, a notation which will be used throughout this work. The action of the creation and
annihilation operators on the dressed states is defined in the standard way, for example in

the case of a gluon:
a}(a5 2)|(8)k3 w2l5) y = 2m 6" (ks — 05)6P (2 — 22) , (2.6)
af' (a3, 92)|0) = [(8)la5 - 1el?) (2.7)

In order to evaluate the cross section eq. (2.3), we need the expression for the outgoing
state in the quark initiated channel, which was derived in [55]. Here, we will not repeat
the derivation but rather give a sketch of it. The strategy we employ is the following
(see e.g. [60]): we start with the perturbative expression of the dressed quark state in
full momentum space, given in terms of the bare states. Then, we Fourier transform
the state into mixed (longitudinal momentum and transverse coordinate) space, and use
this expression to calculate the eikonal interaction with the target, which will give us the
outgoing state in terms of the bare states. Finally, to obtain the final expression we express
the outgoing state in terms of the dressed states. This is all done in the AT = 0 gauge.

In momentum space, the dressed quark state with longitudinal momentum p*, van-

ishing transverse momentum, color « and spin s is given in terms of the bare states as
[(@[p*,05), = Z7|(a)[p*, 013),
dk; d k1 1
270y / L FO [l i (@t — b~
X |(q) [ - kfa _kl] ’ ( )[kl 7k1]>\>0

dk; d2k .
+2% gsZ / G 0 Flag (@Sl (@l — K, —kalo]

<|(@) "~k o] 25 (@) [ ] )

k:+ d2k:1 allfr d?ksy .
+qu’y gsgeZZ/ (271')2 taﬁ

s's!"" An

’ {Féfiqg) ()l ki, @)K Ral”, (@™ — K — kg, —h1 — o]

Dy (@0 kel () Rl (@l = K — K =k — Filoor|

X ‘(Q) [p" — ki — k3, —k1 — k‘z} v (8) [k?;,k‘g];,(’)’) [k/’f,klr% - (2.8)
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Figure 1. The dressed quark state to order O(g.gs), with the two possible orderings of the photon
resp. gluon emission by the quark.

Here Z9, Z77, Z99 and Z%97 are the normalization functions. In the wave function approach,
they provide the virtual contributions to the production process, and are determined by
using the orthogonality conditions of the states [61]. Since we are focused on the tree level
production of a hard photon and two hard jets, the explicit expressions for these normal-
ization functions are not relevant for our purposes, and they can be set to identity. At this
point, we would like to emphasize that there is also an instantaneous quark contribution in
the dressed state. One should include this contribution to calculate the complete expres-
sion for the dressed quark at O(g.gs). However, as we demonstrate in appendix B, in the
correlation limit which we want to study, this instantaneous contribution is strongly sup-
pressed as long as the three outgoing particles are well separated in the transverse plane,
and we can therefore safely neglect it for our purposes.

The functions F((;,)y) and F((;;) define the momentum structure of the quark-photon
and and quark-gluon splittings. The quark-photon splitting function reads (see for exam-
ple [55]):

-1 - — kA
F((;’)‘/) (7)[k7f7k31]A’ (Q)[p+ — k‘fr’p - kl]ss’} = [] ?g(fl)m 5 (29)

with
D) = [2— €)V0, — ieMalye] | (2.10)

where o3 is the third Pauli matrix and where we have defined the longitudinal momentum

ratio & = kf /pt. The function F((;;) has the same structure as F’ ((;’)7)’ and its explicit
expression can be read off from (2.9) by exchanging (1 — 2).

The functions F'? _ and 2

(av—qsg) (ag—qv)

successive quark-photon and quark-gluon splittings, and differ in the sequence of the emis-

in eq. (2.8) define the momentum structure of

sions (see figure 1). The explicit expression for F ) in which the photon is emitted

(av—ag)’
before the gluon, reads (see for example [55])

F2 oo [(v)[kf, ki, (@)[ET ko, (@) — K — k5 p— k1 — kolowr|  (2.11)

1 - (&1p — k)
-y [ o <§1>] [Waﬁ <§1,52>] -y,
[S2(p — k1) — E1ko]”
§2(&1p — k1)? + &1(&ap — k2)? — (§2k1 — E1ka)?




with

I (61, 69) = § [
1

where the ratios of longitudinal momenta are defined as

(251 - 52)5777?55 rglt — 2677770- / ufg] s (2.12)

G=ki/pT, &L=k/pt, G=1-¢, and H=1-§& . (2.13)

As mentioned earlier, our next step is to perform a two dimensional Fourier transform
on eq. (2.8), in order to write the dressed quark state in mixed (longitudinal momentum
and transverse coordinate) space. The details of this calculation can be found in [55] and
the final result reads

(@, 01%), = / »<q>[p+,w]?>0 (2.14)
w02 [ G [ e o R@)] e )8 o @ )
X ‘(q) [p - kf_,’U]j, ) (7)[k1 7$1]A>0
dky c [ (=) . .
+9s ; / T; /w’v’xz tag [@ ¢ng (52)} A(v — x9) 5@ [w — (&u + 52562)]
<@ [~ k]l @) [k 2],

dk dk:2 s
+ngeZZ/ 2w 2w aﬁ/w,v,m,zz,m

s's!" An

x {5<2> { {(1 —~ Z) 3+ ZWH 8@ w— (&1 + £v)]

<[] | et (&) s s (60 oGna o)
0 o= {(1- ) o] - v
X [\/(%Cﬂgf(&)] [\/(257 SWh (Z) ]A/\(fﬁa—fﬂl)Aﬁ <§2,U—=’E2;Z,1’3—$1>}
< (@) [P — b — ks s (8) [ 2a] s () K] ),

Here, we have introduced the standard Weizsacker-Williams field, defined as

1 (x—y
A)\(x_y)__%(x—y)Z )

as well as the modified Weizsdcker-Williams field for two successive splittings, which we
define as

(2.15)

A)\<€1;U—l‘1§§j;$3—l‘2> 2—5& 5121—331) . (2.16)



We should remark that, in the original derivation of the dressed quark state eq. (2.14), the
Toffe time constraint [62, 63] on the lifetime of emitted pairs in the quark wave function was
taken into account [55]. This constraint provides a consistent description of the coherent
scattering of the incoming wave function on the target, which is crucial for next-to-leading
order calculations [30] since it has a direct impact on the factorization scale. However, since
our calculation is essentially a tree-level one, the Ioffe time restriction can be neglected for
our purposes.

The incoming dressed quark state scatters off the target via multiple eikonal interac-
tions, which preserve the transverse position and the spin of its components. However,
the quark and the gluon inside the dressed quark undergo a rotation in color space, which
can be encoded in a Wilson line in the fundamental resp. adjoint representation, at the
transverse position of the quark or gluon. The Wilson lines are defined in the standard
way in terms of the color fields o~ of the target as

SF,A(CU) _ rpeigfd;ﬁ"r“ag (z7F,x) , (2.17)

where 7¢ is the SU(N,) generator either in the fundamental or the adjoint representation,
as indicated in the subscript F' or A. Multiplying the kets inside eq. (2.14) with the
appropriate Wilson lines to account for the scattering, we obtain the outgoing wave function
in terms of bare states. However, the outgoing wave function needs to be expressed in
terms of the dressed states, for which the procedure and its calculation is presented in
detail in [55]. The result is:

(@ 0),,, = [ 52 >)<q>[p+,w1§> (218)

D

03 [ 5 o[ [sPo- ) [k die)] 4o o)

oo [w ~ (Gv+ &) \<q>[p kS k@)

+gsZ/dk2 /ww SBU 0) S5 (2g) — Saﬁ( )tﬁa] [\/(2;;7; ss/(‘52)] AT(v — )

<0 o = (Ev -+ &02)] (@I — K012 (@S w2l

+ gt
t9sJe Z Z/ dky dky 5 [w — (&11 + &1v)

2 27w WUT1T2T3

[

s's!" An

{1 e ol (€ e

X{ [ gﬁSgo(xg)Sid(xQ) - S tcéa .A (fl,’U — X1, = $3—$2>
- 520 - 5P ), A0 - a0}

< (@ = kT = k@)%, @) el (VKT 21])



dki dk; -
+9s9e Z Z T;_T; /wv:plxgm 6(2) [W - (52552 + 52”)}

s's"” An

X{ [ 6550 (13)S5! (22) — Sﬁﬁ(c«))tﬁg} AT (52, v = @33 2 553—961)
- [tasE s - 5P @), A0 - 2|

< (@b =k = k5 @)%, @) wali, (VT 2a))

Finally, to obtain the partonic cross section eq. (2.3), we need to calculate the expec-
tation value of the number operator in the outgoing wave function eq. (2.18). The number
operator will pick up the Fock state containing a photon, a gluon, and a quark, and there-
fore only the O(gegs) component of eq. (2.18) is relevant for our purposes. The resulting
cross section must then be averaged over the configurations of the target field a~, which
the Wilson lines depend on. We denote such CGC averages by ( - )5, with x4 referring to
the small longitudinal momentum fraction of the gluons in the target wave function. The
outcome can be organized as

dO.qA—ngJ-‘rX 1 1 1
2r)° = o 059:2m)o (0T —af — ¢ — @)
( ) d3g1d3Q2d3Q3 2N, s e( ) ( 1 2 3 >2qf 26];
X <1bef—bef + Laft—aft + Ibet—aft + Iaft—bef> ; (2.19)
TA

where the subscript “bef” stands for the contribution in which the photon is emitted before
the gluon (the first O(gegs) term in the outgoing wave function eq. (2.18)) and the subscript
“aft” stands for the case where the gluon is emitted first. The first subscript denotes the
configuration in the amplitude, the second one corresponds to the conjugate amplitude.

Let us present the explicit expressions of these contributions, starting with Ipef_pes (for
the remaining of this subsection, & denotes g;" /p™):

Thofbof = Z Z/ eiar-(y1—21)+iga-(y2—22)+igs-(y3—23) 5(2) [w/ . (511}/ +eyn)]

s's" A wu,w'v’ Y1 21,Y222,Y323

x 0P [w — (Ev + & 121)]0@ [v’ — {(1 - gﬁ)yg + 523/2}} 52 [v - {(1 - @)23 + 522«2}}

& & &1 &
x { 2E)ER ()BT (Z)wgi (Z) }A"<Z3 — 25) A (y3 — 1)
X tr [ng’?' ({1,§;w',v’,y1,y2,y3> ggg\f<§1,§—j;w7v721722723>] ; (2.20)

where tr{---} indicates the trace over the fundamental color indices. We have introduced
a compact notation, gggf, to encode the Wilson line structure in the amplitude or complex



conjugate amplitude

X &2
gbef <§17 =W, 0,21, 22, Z3>
ao

&1
_ { (1980 (23) S5 (22) — Sip(w)e] 4 ({1,1) . Z 2 — zz>
{50 - sete] -} (.21)

with the standard and modified Weizsécker-Williams fields defined in egs. (2.15) and (2.16),
respectively. Similarly, the I ¢ _ag contribution can be written

Lo agt = Z Z/ el (y1—21)+igz (y2—22)+igs-(ys—23) §(2) [w/ B (520/ + Eo10)]

s's" A wv,w'v’ Y1 21,Y222,Y323

x 6@ [w — (&v + £22)]0?) [U/{ <1£1)y3 + 613/1}] 5 [U - { <1£1)23 + §121}]
&2 &2 13 &2

x {¢zg, ()67 (€)M (f) s (5) }A%ZS o)A (g — )

&2 &
X tr [gl?tﬁ’ <£27 27 wlv ’Ul, Y1, Y2, y3> ggg <£27 ?7 W, V, 21, 22, Z3>:| ; (222)
2
with
G2 (60 Siwvmmn) = {[rCa)siien) - Se)el] A1 (@0 - 20 £z = 1)
- [tcsF(u)sgd(zz) - sF(w)td} Ay — 22)} . (2.23)

The remaining two contributions Iper_af and L pef can also be written in a compact form
by using eq. (2.21) and eq. (2.23) as

Thof—aft = Z Z/ elar-(y1—21)+ige-(y2—22)+igs-(ys—23) 5(2) [w’ _ (gﬂ/ + &1y1)]

s Ap Y WOWYY121,y222,Y323

(e S s
&1 &1 & &

- { " (&) 05T <§> SN <§> o <51>}A*<z3 — ) A7 (y3 — )

&1 )
X tr [gng)‘\ (51, Za wla U,, Y1,Y2, ?J3> gadfnjD (525 27 w,v, 21,22, 23>:| (224)
and
Lot ot = / et (i —=1)+iaz (y2—22)tigs (3=23) §2) [y — (E0" + Lo
2 ¢ Z Z wv,w' v’ Y1 21,Y222,Y323 ( )]

s's" A

x 0P[w — (Ev + &121)]0@ [v’ — { (1—&>y3 + 517;1}} 5 [v — { <1—§2> 23+ €2Z2H
€2 €2 &1 &1

x { M (&) (2) g, <§j)¢:§ﬁ’<fz>}A"<z3 — 2) AN (ys — 1)

| . )
X tr [gl?tn (527 é;w’,v’,yl,y%y;;) G (517§§wavvzlaz2az3):| . (2.25)

~10 -



Note that, in order to keep the expressions compact, we have not performed the trivial
integrations over w,w’,v and v'.

Each contribution to the production cross section of the quark initiated channel can
be written as a function of Wilson lines in the fundamental representation, in terms of the
standard dipole and quadrupole amplitudes. To this end, some color algebra needs to be
performed, with the help of the Fierz identity

1

1
1919 = — |§ur050 — —B8ugdon| | 2.2
aBlox 2[ 208 — N 0aB A] (2.26)

and the identity that relates the adjoint and fundamental representations of a unitary

matrix
S (z) = 2tr [tasF(x)tbs}(x)] . (2.27)
Then, the before-before contribution can be written as

Thofbef = / ela1-(y1—21)+ig2-(y2—22)+igs-(y3—23) §(2) [w/ _ (Elv’ + &1y1)]

v,w'v’,Y121,Y222,Y323

<0~ G+ o (1= 2 o+ Zua |5 o (1 2 )+ ]
& &1 & &1

x 8 MY (fh ?)A’?(z:a — )47 (g3 — o) [A*%v' — ) AN — ) W,
1
+AY <§1,U/ = Y1 §7*272»13 - yz)«‘lA <§1,U — 213 5—*2, z3 — 22>W£é{4)bef
& 31
- AV <€17 v —y1; Z Y3 — y2>Ax(v — )W
— A (v — 3/1)-4X (51, vV — 2135 2:2, Z3 — ZQ)Wéfé)bef] . (2.28)
1

Let us explain the compact notation that we have introduced in eq. (2.28). The functions
Whet—bet define the dipole and quadrupole structures of the before-before contribution,
accompanied by the standard or modified Weizsacker-Williams fields as indicated in the
superscripts. These functions are calculated using eqs. (2.26) and (2.27), and their explicit

expressions read

NZ -1
Wit et = =55 [s(0,0) # s(w,w') = s(v,0) = s(w, )], (2.20)
N2
Wi et = - {Q(ym2’2,23,ys)S(ZQ,y2)—8(y2,y3)3(w7y2)—8(z2,w’)8(zs,2’2)+S(w,w’)}
1
~3 [3(23, y3) — s(w,y3) — s(z3,w) + s(w, w')] , (2.30)
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N2
W](aéfA—)bef 2 |: (3/272/3) (v,yg)—s(yg,yg)s(w,yg) _8(U7w/)+$(w7w/):|

1
- 5 |:S(’U, y3> - S(U], y3) + s(w,w’) - s(v,w’)} )
= Wé’:{i)bef(zg —v,29 = U), (2.31)
(AA) NCZ / / / /
Wit Zbet = 9 {3(23722)8(2270 ) — s(23,22)8(22,w") — s(w,v") + s(w,w )}
1

— 5 50, 0) = s(za,w') = s(w, o)) + sw,w)]
- Wl()fi)bef(y:” =0,y = V), (2.32)

were we have used the standard definitions of dipole and quadrupole amplitudes:

s(z,y) = ]\1fctr [Sr(2)Sh(y)] | (2.33)
Q. y,v,w) = - x[Sp(@)Sh)Sp () Sh(w)] (234

(&
Moreover, we have calculated explicitly the product of the splitting amplitudes, by using
their definition given in eq. (2.10) and summing over the spin and polarization indices.

This product is encoded in the function M?’_\/;ﬁﬁ/ <£1, Ei) (see appendix A.4 for the details

of the calculation), defined as

ZZ{@Q(& p <&>}{ m?(?)w" (5_2)}:8/\4;”%’(&,@) (2.35)
s's” An 1 51 51

s (o 8) =0 @fie (1- ) oo
—(2- &)51(2‘52)&6&%'- (2.36)
&1/)&

The remaining after-after and the crossed contributions (after-before and before-after) are

with

computed in the same way. The explicit expression for the after-after contribution reads

Laft_aft = / eiar-(y1—21)+ige-(y2—22)+igs-(y3—23) 5(2) [w’ _ (éﬂ/ + Ea1p)]

v,w'v' Y121,Yy222,Y323

x 5 [w— (&v + 5222)]5(2) {v’—{ (1 g1>y3 + élen}] 5@ [ { < — fl) z3 + f12’1”
&2 &2 &2 &

x 8 MM (s > ?)Mz — 21)A¥ (ys — ) [A” (v = y2) AT(w — 2) WL,

AT <§2,U/ - y2, = ,y3 - y1>A’7 (Ez,v — 22; 2 , 23 — Z1>W§£A;ft

- Aﬁ/ <52) ’U/ - yQa = 793 - U - 22 aﬁAzlft
— A7 (U - ?J2)A77 (52, — 223 52 )y 23— Z1)W;’§A;ﬁ] . (2.37)
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Here, the function M;‘)‘/;ﬁﬁ, &, 1> , which accounts for the product of splitting amplitudes

&2
is given by eq. (2.36) with & and &, interchanged. We have introduced functions W agt,
which encode the dipole and quadrupole structures that accompany the standard and
modified Weizsacker-Williams fields in the after-after contribution. These functions are
very similar to their counterparts Wyes_per calculated for the before-before contribution,
egs. (2.29)—(2.32), as can be easily observed by comparing the Wilson line structures given

at the amplitude level as G2 and Qb?t in egs. (2.21) and (2.23). We obtain:

a;

WA Al

aft—aft — ¥V bef—bef 7 (2.38)
Wikt = Wiion (2 = 0,0 = 0) = Wi pes » ogs = o) (239)
Wihn = Wi (e = 0) = Wi (e = 0) | (2:40)
Wit = Wit s = v) = Wil e(ys — o) (2.41)

In a similar way, the crossed contributions (after-before and before-after) can be cal-
culated, reading;:

Lt bof = / eiar-(y1—21)+iga-(y2—22)+igs-(ys—23) 5(2) [w’ _ (521/ + Ea1p)]

U:w/’U/»ylZl yY222,Y323

x 6w — (Ev + &121)]6P) [v’—{ (1— £1>y3 + glm}] 52 [v—{ ( - §2> 23 + 5222}}
&2 &2 &1 &1

X SM?MW(&?&) A'(z3 — 2’2)14;\,@3 — 1) [Anl (v — y2)A5‘(U - Zl)W;gi‘{)ef

+«4ﬁ, (527?/ — Y23 5_71’ Yys — y1>«4A <§1,U — 213 g—? 3 — 22>W;ﬁA])3€f

&2
— A7 <€2, v — y; 2 Ys — y1>Ai(v — )W
— AT (v — y3) AN <§1, v — 21; g—i, 23 — 22)W§ﬁﬂef] : (2.42)

where the function Mvg‘;\/;ﬁﬁ/ (&1, &2) is calculated explicitly using eq. (2.10) (see appendix A.4
for the details of the calculation) and reads

M‘“:;\X/;ﬁﬁ’ (£1,8&) = [1 +& <1 — 2)] [1 +& (1 — ?)} S g

1
_Qé (& + 52)26)\>\/€ﬁﬁ, . (2.43)
§261

We would like to note that, as expected, this function is symmetric under the exchange of
&1 and &, since it appears at the cross-section level and corresponds to the product of the
amplitude in which the photon is emitted before the gluon, and the complex amplitude in
which the emission of the photon takes place after the radiation of the gluon (interchanging
the gluon and the photon also involves changing A <+ 1, under which M is also symmetric).
Once more, we define functions Wg_per Which encode the dipole and quadrupole

structure of the after-before contribution, and which again can be written in terms of
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the functions Wyet_per by exchanging the coordinates of the intermediate and final state

quarks:

AA AA

Wéft—%ef = Wl()ef )bef ; (2.44)
AA AA AA

We(mftfl)oef = W;ft l)oef<y3 —') = W]E)ef )bef(y?) — '), (2.45)
(A4)  _ (A4

Wott—bet = Whef—bef - (2.46)
AA AA

W;ft {Jef = W;ft l)oef(yi% —') = W}E)ef—)bef(y?) — '), (2.47)

where W](;:é)bef and Wé’;‘f{)bef are given in egs. (2.30) and (2.31) respectively.
Finally, we obtain the following expression for the before-after contribution:

Thofaft = / eia1-(y1—21)+iq2- (ya—22)+igs-(y3—23) §(2) [w’ _ (&v’ + &)

v,w'v’ Y1 21,Y222,Y323

B R (G i T (S Y
(

X 8 MM (€1, 65) AN (23 — 21) A7 (33 — 1) [AA (v — ) A7(0 — 22)Wini

+AY <€1, v —y1; g—? Ys — y2> (52, 23 — Z1>Wl(3éfA)aft

— A <§1, v —y1; Z, Y3 — y2>Aﬁ(U - ZQ)ngéfA—)aft

— AV (0 =) AT (52, 0= 2; 2 25— m)wlﬁi‘f"aﬁ] ‘ (2.48)

As mentioned previously, the product of splitting functions in the amplitude and conjugate
amplitude is symmetric under the exchange of the gluon and the photon, which corresponds
to &1 <> &, A <> n and A & 7, hence for this contribution the function /{/tvg)‘/;ﬁﬁ, (&1,&2)
is given by eq. (2.43) as well. Once more, the functions Whes_,g are written using the
ones calculated in the before-before contribution and performing the appropriate change
of coordinates, which gives

Wi = Wit (2.49)
Wit = Wi (25 = v) = Wi, (e — v) (2.50)
Wéfelf‘l )aft - ngef )bef ) (2.51)
Wi = Wit (25 = v) = Wit (2 = v) | (2.52)

with W}(;jé)bef and Wé‘:é)bef defined in egs. (2.30) and (2.32).

This concludes the calculation of the cross section for the production of a hard photon
and two hard jets in the quark initiated channel. The final result at the partonic level
is given by eq. (2.19), with the terms Ipef_bef, Laft—aft, laft—bet and Iper—afy presented in
egs. (2.28), (2.37), (2.42) and (2.48). In order to obtain the full cross section, the partonic
cross section should be convolved with the quark distribution function f,(z,, u?) as stated
in eq. (2.1).
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2.2 Gluon initiated channel: gA — gy + X

Let us now consider the production in the gluon initiated channel. Just like in the quark
initiated case, the partonic level cross section is defined as the expectation value of the
number operator in the outgoing gluon state:

9 dggAaq'ychrX

(2m) m(%)&f —q —a — )
= Q(NI_U S ou{ (@07 05[0(a, 0,0, @1, 0) L (253)

c,n

where the normalization factor 1/2(N2? — 1) comes from the averaging over the color and
polarization indices of the outgoing gluon state. In order to calculate the production of a
photon together with a quark-antiquark pair, we define the number operator in eq. (2.53)
as follows:

O(q,. 4, 45) = b7 (a7 ()7L ()76 (a,) i (a,)ds (a,) (2.54)

where b7 (gl) is the annihilation operator of a dressed quark with color o, spin ¢ and three-
momentum ¢, and 75(@2) is the annihilation operator of the dressed photon state with
polarization ¢ and three-momentum g,. Finally, d,’f(g3) is the annihilation operator of the
dressed antiquark with color k, spin r and three-momentum qs- The action of the creation
and annihilation operators on the dressed states and on the Fock vacuum are defined in
the standard way (see egs. (2.6) and (2.7)). As in the case of the quark initiated channel,
it is more convenient to write the expectation value of the number operator in the mixed
(longitudinal momentum and transverse coordinate) space:

(@7 0500, 0,00, @0 = [ gion =) it a2 i =)
T Y121Y222Y323

out( (@)l 015

x di*(afus)ds(aF, 28) | () 0,005 ) (2.55)

out

bi° (g, y1)bY (g, 2070 (a5 y2) s (a3, 22)

We will adopt the same road map as introduced in the quark initiated channel. Namely,
in order to evaluate eq. (2.55), we first need to calculate the outgoing wave function in
the gluon initiated channel. This will be achieved in the following way: starting from the
perturbative expression of the dressed gluon state written in terms of the bare states in
full momentum space, we perform a Fourier transform to get the mixed space expression.
This expression is then used to calculate the interaction with the target, which provides us
with the outgoing gluon wave function in terms of the bare states. Finally, we rewrite the
outgoing gluon wave function in terms of the dressed components. In this subsection, we
will only give the results of various steps of the calculation, and relegate the details to the
appendix A.1.

In full momentum space, the perturbative expression of the dressed gluon state with
longitudinal momentum p™, vanishing transverse momentum, color ¢ and polarization n at
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O(geygs) can be written as

(@)™, 005) = 2°)(8) ™, 015,

dkf Py, "
+ 25, 3 / Ot Fiy (IR k. @I — k]

x |(q >[k1+,k1] J@ - kLD,

k+ d2k1 dkd d%ks
4+ 79 <Je 2 c
o 23 | B o 5 o

(@I S . @ — K7 = = — k]

SS”

< |(@[k] k1), (kS k) (@ = b =k =k = kald)y - (2:56)

Here 79, Z%9 and Z97 are again the normalization functions which provide the virtual

+ FO @k, () kel @)% — b — i, —Fy — o] W}

contributions to the production process. As in the case of the quark initiated channel, we
neglect these contributions and set them equal to one, since here we are interested in the
tree-level production of a quark, antiquark and photon, initiated by a gluon. As in the quark
channel, the instantaneous g — ¢g7v emission will be suppressed in the correlation limit
and under the condition that the outgoing particles are well-separated, and can therefore
safely be neglected.

The function F((li—l) defines the momentum structure of the gluon to quark-antiquark
splitting. It is well known in the literature (see for example [26]), but for the sake of
completeness, the derivation of this function is presented in appendix A.l. Its explicit

expression reads

Flap @Ik k], @lp" =k p— k|| = [ - ]‘I’ZZ(&)W (2.57)

V2t (§1p — k1)?
with
UT() = (1= 26)6M8, g — i€Ma? | (258)
where the longitudinal momentum ratio is & = ki /p™. The functions F(( ) &) and
((jz_liq,y), which appear at O(ggs), define the momentum structure of two successive split-

tings: the splitting of the gluon in a quark-antiquark pair, followed by photon emission
from the antiquark, or the gluon splitting followed by photon emission from the quark, re-
spectively (see figure 2). The derivation of these two functions is presented in appendix A.1,
and the result reads

_ A
Fio oo @ Il (VIS Kol @) = K — K p = b — o]

85”

. 1 /&
el )
|:\/2Pﬁ ss (gl):| [ 2€2p+¢ 5 _ _
y (&1p — k1)7 &1[&(p — k1) — &1k3] (2.59)
(610 — k1)? &a(&1p — K1)? + §1(Eap — k2)? — (§2k1 — &1ko)? '
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p,nc
B*E1*E27S//76 Bfklstﬁ B7E17E27S//76

Figure 2. The dressed gluon state to order O(g.gs), with the photon being emitted either from
the quark (left) or from the antiquark (right).

and

_ 7,4
Fion o [@UFT )y (V[ K, (@) = b — b p = by — o

N [\/_2%\1@2”(51 +§2)} [\/262?(!5 (51%52” (2.60)

L&+ o — (ki + k)] (1= & — &)Lk — &1k)
[(fl +&)p— (k1 + k2)]2 &2(&1p — k1)? + &1 (&ap — k2)? — (ok1 — &1k2)?

SS//

with the longitudinal momentum fractions defined as in the first part of the previous
subsection: & = k;/p+, & =1—-6 and & = 1 — &. The splitting amplitudes for
gluon to quark-antiquark (\IIZZ (&1)) and for quark to quark-photon (d);\é\, (&1)) are defined
in egs. (2.58) and (2.10), respectively.

The next step is to perform the two dimensional Fourier transform on the dressed
gluon state given in eq. (2.56) in order to write it in the mixed space. We again refer to
the appendix A.2 for the details of the calculation, and write the final result as

(2)[p",0]5) / (2) (2.61)

! ) 7 _
+ 9 dfw tcﬂ/m [&2% ZZ(&J} ANw = 1) 6Pw — (a1 + &10)]

< [(@k, 21)% @[T — k02,

dki dk+ _
To9e | e tas /w {5(2)[“’_ (G ““’”‘5(2){ {<1 ) i)m +Z“H

R N PR s S

+6(2)[w—{(51+§2)v+(1—§1 €2$3} [ < 51—1—52) +£1§j£2$2}]

" {&%‘PTS”(“&)} [J(% AX(ffja )]Ai( =)

X An((l_fl —52)7U—$3;£1i_2£2,$2—$1>}
< (@kT 2] (NIkT 22 (@[T — K — k) 23]0),
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where A" and A" are the standard and modified Weizsicker-Williams fields, given in
egs. (2.15) and (2.16), as in the case of the quark initiated channel. The standard one
arises from the single splitting whereas the modified one is originated from the contribu-
tion with two successive splittings.

Just like in the quark initiated channel, from the above expression in mixed Fourier
space, the eikonal interaction with the target can be incorporated in a straightforward way
by inserting the appropriate Wilson lines, yielding the outgoing wave function in terms of
the bare components

()" 005),, = [ S5 @0 ), .
’ “ z —i) - i
+gs/d2k;/ [S}(U)tCSF(-Tl)}’B 5(2) [w—(flﬁﬂl +flv)] \(/%\Ilgg(é‘l) A'ri(v_xl)

< @Ik, 2S5 @l — K 0ld),
+ o+ X
—1—95 e/dk;[_ dk [S}(%{ﬂ)tCSF(IBl)]ﬁ

x{5(2)[w—(€1w1+§1v)]5(2)[ A= 8)es+ Eof| e et (2)

X A;\(:L"g — 19) A" <§1,v — T1; ?,.’Eg — 932>
1

+ 0P w - {(& +&)v+ (1 - & — &)az}]6? [U - {<1 - fl%&)xl i 51%52362”

(—1) i (+4) /\)\< §2 )
X WWS,S/I<§1+&) \/2&7(1)88’ & 4+&

X AS‘(J,‘Q — xl)Aﬁ ((1 —& - 52), v — I3; 515‘552’ To — 951> }
x [(@kF, 2% () [k 2ol @t — kT — ki a3)5)),

The final step is to rewrite the outgoing gluon wave function in terms of the dressed states
instead of the bare ones. A schematic derivation of this step is presented in appendix A.3,
and the result is:

("0 = [ ST k), (2.63)

/ /M Sk ey - Sid(“’ﬁd}ﬁa&2%‘1’22(&)14’7(@—371)

x 8w — (G121 + &) (@)K, 2] @ — K, 010)

dki dk; -
oo [SESE[ {6<2> - (o + &0 o= { (1= 2)oat+ 2 |

<_i) 7] (+Z) AN &2 A c . 1
X \/%qlzg’(gl)\/qus’s”(g )A ( x?) |:gq'y(£17€2aw?”axlax%x:i)]g

«
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+ 0@ [w— {(&1 + E)v+ (1 — & — &)as}] 6@ [” - { (1 - &%fz)xl i &ﬁf&m}]
(—1)

7 (1) oaf_& | 4 ) . 7
X Tp-i- \Ifg,ns,,(fl—f-éé) ,72521?_’_ ¢SS’<£1_"_£2>A (332 _:L'l) [gq,y(gl,52,10,'[),1'1,1'2,1'3)} ﬁa}

x @k, @)% (N 2ol @ — ki — k)5,

where we have introduced a compact notation when writing the quark-antiquark-photon
component of the outgoing gluon wave function. The two contributions to this component
originate either from photon emission by the antiquark or by the quark, as is indicated by
the subscript of the newly introduced function G:

[ggy(fl,f%wavvﬂfhm,w?,)]ga
= [5}(1‘3)7505“1‘1) - Sid(w)td]ﬁ AT <§1,U — T ?7333 - 902)
a 1

- [sg(v)tcsF(xl) - sg,d(w)td} FEUCEENE (2.64)

and

7
[%(&, §2;w, v, 71, T2, 563)} 5
o

= [S}Lr(xS)tCSF(xl) — S (w) d} 5aAﬁ (1 — & —&o,v — w3; &5_252,162 - $1>

- [s}(zg)tcsp(v) - sgd(w)td} AT = 3). (2.65)

The partonic cross section is once again obtained from the expectation value of the
number operator eq. (2.54) in the outgoing gluon wave function eq. (2.63). Note that,
just like in the quark initiated channel, the number operator only will only extract the
three-particle Fock state we are interested in, hence the dressed gluon and dressed quark-
antiquark states in the outgoing gluon wave function can be neglected. The result is:

do9A—=avq+X 1 1 1
o) — = @ em)é(pt —q —q¢f — ¢ ——
( ) ddgldSQQddgg 2(N02_1) s e( ) ( 1 2 3)2p+2q2+
X <Lﬁ—q’7 + lgy—gy + lgy—gy + qu—q’7>“ (2.66)

where the subscript of each term I stands for the photon radiation from the quark (¢7) or
from the antiquark (gv) - in the amplitude and in the complex conjugate amplitude.

Let us calculate each of the terms separately and discuss their properties. We start with
the contribution that stems from the emission of the photon from the antiquark both in
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the amplitude and in the complex conjugate amplitude, Iy—g (from now on, & = g; +/pt):

To gy = / elar-(y1—21)Figz-(y2—22)+igs- (y3—23) 5(2) [w' — (&1y1 + 511/)]
ww' vV'Y121Y222Y323

e e (- G o) ]

<A (1 = ) AN — ) [ )] e [ (2)] e ()
&1 &1

Xtr{ [gg’y(gla 527 wl7 UIJ Y1,Y2, y3)]j-7’ [gg'y(glﬂ 527 w,v, 21, 22, 23)]77} (267)
Similarly, the contribution that originates from the emission of the photon from the quark
both in the amplitude and in the complex conjugate amplitude reads

I — el (y1—21)+igz: (y2—22) +igs-(ys—23)
qY—qYy —
ww'vv'y121Y222Y323

)6 [w' — {(& + &)W + (1 — & — &)y3}] 0P [w — {(& + &)+ (1 - & — &)23)]

o {- S e (el o)
X [” {<1 €1+£2)y1+§1+£2y2 Tl T are) Tara

< AN (32— y1) AN (22— 21) [‘PEZI/ (&1 +&)] T (6 + &) [@QI (fl gj SQH o (61 iQ §2>

th{ G (&1, &5, 0", 1, y27y3)]j—7! G (&1, 625w, 0, 21, 22, 23)]ﬁ} (2.68)

Finally, the crossed contributions which originate from the emission of the photon from

the quark in the amplitude and from the antiquark in the complex conjugate amplitude
(or vice versa) can be written as

I B eiql-(y1fZ1)+iq2-(y2*22)+i43'(y3*23)
qy—qy —
ww/vv'y121Y222Y323

x 6w’ — (&1 + &0)]6P [w — {(&1 + &)v + (1 — & — &) 23}]

@ _J(1_& & H (2)[ {< & > & H
o {U {<1 51)y3+§1y2 e ! & +& Zl+€1+€222

x A (ys = y2) Az — 20) [WIL(6)] W (61 + &) {‘ﬁ d /<Z>] o <§1 i2 fz)

X tI‘{ [g((]_:'y(gl’ g?a U]/, U,’ Y1, Y2, yS)]%/ [g((]:'y(gl’ g?a w,v, 21, 22, 23)]77} (269)

and

I o eiq1-(y1le)+iq2-(y2722)+iq3'(y3*23)
qy—qy —
ww/vv'y121Y222Y323

x 8 [w — {(&1 + &) + (1 — & — &)y3}]6@ [w — (€121 + &10)]

R s ()
X0 [U {(1 51+52>y1+§1+52y2 g ! &1 23+§122

x AN (yp — y1) AN (23 — 22) U2 7 (& + &)U (&) [gﬁ/\,%'/ <£1§j£2)] &Y (Z)

X tr{ (G, (&1, 230,091, 9o, ys)]%/ (G5, (&1, 03w, 0, 21, 22, ZB)]ﬁ} (2.70)
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Each of these four contributions to the production cross section, egs. (2.67)—(2.70), can
be simplified by performing a similar color algebra as in the case of quark initiated channel,
with the help of identities egs. (2.26) and (2.27). Then, using the standard definitions of the
dipole and quadrupole amplitudes: egs. (2.33) and (2.34), one can organize the contribution
I3, gy to the cross section as follows:

J A elq1-(y1—21)+ig2-(y2—22) +igs-(y3—23)
qay—qy —
ww!'vv'y121Y222Y323

X 5(2)[ "= (a1 + &) [w — (G121 + Giv)]

[ RGO G i

(o= A = o) M (0, 2 ) [ A7 0 - 70 - WY,

FAT (6,0 =y 2 ,y3—y2>u4"<§1,v—21,§1 23 —Zz)Wéﬁfgw

— A7 (6 yl, = ,ys - yz)A”(v — )W
— AT () — ) A7 <€1, v — 21; g 23— % >W§f“437] (2.71)

where the functions Wg,_gy encode the dipole and quadrupole structures that accompany
the pairs of the standard and modified Weizsacker-Williams fields, indicated in the super-
scripts. As is obvious from the definition of the function Gz in eq. (2.64), it is enough to
compute the explicit expression of one of these functions, from which the remaining ones
can be obtained by the exchange of coordinates. We thus present the explicit expression

of the function W((” ;v, which reads

NZ
Wé—?i)ﬁ = 76 [s(zl,yl)s(v', v) + s(w, w')s(w, w) — s(w,y1)s(v',w) — s(zl,w')s(w,v)]

—% {1 +Q(z1,y1,v",v) — s(v', 1) — s(21, v)} , (2.72)

and the remaining ones can be written as

A
Wr(;v‘l 37 Wr(zﬁAt)n(”, = Y30 = 2) (2.73)
W) = WEA (v = ) (2.74)
AA AA
W((” 37 Wl(n «)n(v — 23) - (2.75)

Moreover, in eq. (2.71), we have performed the summation over the spin and polarization
indices of the product of splitting amplitudes, which can be computed in a straightforward
manner (see appendix A.4 for the details of the calculation):

S ot o (2o (§)) <o (6 ) om

s's’ An
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where

MO (51, 2—?) = [5% (- 51)2] [1 n <1 _ ?) }5”\’5?7?7’

+ (1 - 251)52 < £2>€M/€ﬁﬁf : (2.77)
&1 &1

The second contribution to the cross section originates from the emission of the photon
from the quark both in the amplitude and in the complex conjugate amplitude, and can
be computed in the same way:

I _ it (y1—21)+igz (y2—22)+igs: (ys—23)
qY—qv
ww'vv'y1 21Y222Y323

@ —{(G+ &)W+ (1 —& - &)ys} 6P [w—{(G + &)+ (1 — & — &)z}

IR S (S
N {(1 51+§2>y1+§1+52y2 e ! &+ & Z1+§1+52Z2

A (g = )0 ) S MET (614 €0, 2 ) [ AT g 00 = ) WY,

52 7’ 52 (AA)
AT(1— _ T(1—& — e S _
+ ( §1—82,v — y3; 2 52,3/2 y1>.A ( §1—&2,v — 23; 3 52’Z2 Z1> WorZay

& 7 (AA)
AT (1—¢& — &,0 y37m7y2 —3/1>A7'(v—zrg)VV(”_q7
_An (U/ ) (1 - 51 527 U — 23; 513‘2627 z9 — 21>W((;3V_437:| . (278)

The functions Wy, _4-, which encode the dipole and quadrupole structure of the contribu-
tion that originates from the emission of the photon from the quark both in the amplitude
and in the complex conjugate amplitude, have very similar structure as Wg,_g4, as can
be easily seen from the comparison of the functions G,, and Gg,. Therefore, in order to
compute these functions, it is again enough to perform the color algebra in one of the
terms, while the rest can be read off from the explicitly calculated one. Keeping this in
mind, we have

2
a—ay NT |:S(U7 U/)S(y3, 23) + S(w7 wl)s(wlv U)) - 3(w7 U/)S(y3a w/) - S(U’ w/)s(w, 33)

— % [1 + Q(v, v, y3, 23) — s(y3,v") — s(v, 23)] ) (2.79)

from which the remaining ones can be obtained as follows

Wee, = Wil (v = g0 = 21) (2.80)

W, = W (o =) (2.81)
AA AA

Wt(m c)n Wt(m c)n(v —z1) - (2.82)
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Moreover, in eq. (2.78), we have performed the summation over the spin and polarization
indices (see appendix A.4 for the details of the calculation):

> { (6 + )W (& +§2)}

s's’ An

w( & ov (& >} o AW < & )
X {¢ss’ <£1 + £2>¢ss’ (gl + 52 8qu 5 + 627 g n 52 (283)
where

— 271
-Mﬁm(&+&&f&)=[@+@F+u—&—@ﬂb+<ufﬁzj]yww

52 52 AN il
— [1 —2(& + 52)} s (2 i €2>e em (2.84)

Finally, the crossed contributions, i.e. photon emission from the antiquark in the am-

plitude and from the quark in the complex conjugate amplitude (or vice versa), can be
computed in a very similar way. The first contribution reads

I, — eiql-(yl721)+iq2-(y2722)+iq3-(y3*z3)
qv—qY
ww/vv'y121Y222Y323

x 8@ — (&1 + E0))0P [w — {(&1 + &)v + (1 — & — &)23}]

o e Sl (o)
o [v {<1 §1>y3—|—€1y ek ! &+ & Zl+£1+£222

x A (y3 — y2) AN (22 — 21) (—=8) MYV (€1, 62) [A" (W' = ) AT(v — z) W)

i & , & (AA)
+ A" <§17U/ -y =, y3 —y2 JAT (1 =& — &o,v — 23; m,@ — 21 |WgyZoy

S
— AT <€1> v =y g—j, ys — y2>A"(U — z)We,
— AT (0 — yp) A7 (1 =& —&2,v — z3; glgj&, 29 — z1>Wg‘3“_437} (2.85)

Obviously, the functions Wgy_4, have similar properties as those of the squared contribu-
tions, since the trace over the fundamental indices for this contribution mixes the functions
Gg¢y and Ggy. We again write explicitly the function W((WAC)W, and obtain the others by ex-
changing the coordinates:

W%‘f{)ﬂ = ]\;3 [s(v,yl)s(v’, 23) + s(w, w")s(w', w) — s(w,y1)s(v', w") — s(v,w)s(w, 23)}
- % [1 + Q(v,y1,v, z3) — s(v',y1) — s(v, 23)| , (2.86)
and:
W = WA (0 = ys,0 = 2) (2.87)
W — WA () (2.88)
WA = Wi (o ). (2.89)

~ 93 -



The product of the splitting amplitudes for the crossed contributions is different from the
one corresponding to the squared contributions, due to the fact that here the longitudinal
momentum ratios are mixed. However, the calculation can be performed following the
same lines, and yields (see appendix A.4 for the details of the calculation):

S5 {u rewe N ot (o2 ) (2) ] - sm e

s's! An
(2.90)
with
/K/lvz‘j‘/;ﬁﬁ/ (&1,&2) = [51 + (246 -D(& + 52)} (2 - z—j - 515_552) o 5T
& [61— (&1+ 52)]2 AN i
gl(é'l + 52) € € . (291)

Finally, the last contribution to the production cross section in the gluon initiated
channel is the remaining crossed term, which can be written as

I - = ia1-(y1—21)+igz-(y2—22)+igs(ys—23)
qy—qv
ww'vv'y121Y222Yy323

x 8B [w —{(&+ &N +(1-& - 52 )ys}|o — (G421 + &1v))]

2l ={(-gte)n et H(@[ W-8)=e =]

x AN (y2 — y1) AN (23 — 22) S MOV (€1, &) [A" o — yg) AT(v — 2) WL
A7 (1_&_52)72/_3/3’5 Sy 1>A (517 21’2’23_22>W(%Aq)7
—flﬁ/(l—&—52),1/—2/3,g 5 ,y2—y1>AnU—Z quL‘A;v

— AT (v — ) A7 (517 v — 21 g—i 23 — zQ)WfIf“_%] (2.92)

where the functions that encode the dipole and quadrupole structures are given by:

N2
WA = 55 [s(1,0) (s, ) + s, w')s(w'w) = s(w,0)s(s, ') = s(21, 0)s(w, 0)
1
~3 [1 + Q(21,v, y3,v) — s(y3,v) — 5(21,7))] , (2.93)
with
AA AA
W((n 3v W((n 317(1/ = Y130 = 23) (2.94)
AA AA
Wt(n 37 Wévf%(v’ = 1), (2.95)
AA AA
WA — Wi (= z) (2.96)
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The product of the splitting amplitudes is the same as the previous crossed contribution
(qy — gy contribution), and is given in eq. (2.91).

This concludes the calculation of the production cross section in the gluon initiated
channel. At the partonic level, the final result is given by eq. (2.66), where the final results of
each contribution Ig,—gy, Igy—gv, Igy—gy and Igy_gy are presented in egs. (2.71), (2.78), (2.85)
and (2.92) respectively.

3 Correlation limit and gluon TMDs

In the large—N, limit [38-41], and later keeping N, finite [37], it was shown that in the
so-called correlation limit |1 4+ ¢2| < |q1], |g2| (corresponding to nearly back-to-back jets),
the dilute-dense CGC expression for forward dijets production could be written as:

dO.qA—>dijets+X N N . o "

—Be e T —a - a) STHE, o FS)(@aq + a) (3.1)
217 22 i

dO.gA—>dijets+X . 1 i i

T, W —a)) <H59)ﬁqq * gﬂég!gg>f§g> (o +@) (32)

coinciding with the small-x limit of the TMD factorization formula for forward dijets.
In egs. (3.1)—(3.2), .7-"(52) denotes several distinct TMD gluon distributions, with different
operator definitions. They are accompanied by on-shell hard factors (i.e. evaluated with
¢1 = —q2) denoted H(g;gcd.
performs a small dipole-size expansion of the Wilson line content of the cross section

To extract those formulae from the CGC expressions, one

(which involves functions similar to our W’s), except for those dipole sizes that are Fourier
conjugate to the small transverse momentum ¢;+¢s, and those very Fourier transformations
of the resulting CGC correlators are then identified with the gluon TMDs.

It is natural to ask the question whether this equivalence between the CGC and TMD
frameworks, in the overlapping domain of availability, can be extended to three-parton
final states. The goal of the present work is precisely to answer that question, starting
with — from the color structure point-of-view — a simple process, before tackling the case
of three jets (the quark initiated cross section was recently obtained in [64]) in a future
publication. In the following, we show that one can indeed extract a TMD factorization
formula from our CGC expressions for dijet+photon production obtained in the previous
section. That is, we check that one can define a TMD regime for the 3-particle final-state,
in which eq. (2.19) in the quark initiated channel, and eq. (2.66) in the gluon initiated
channel, factorize in a similar way as egs. (3.1) and (3.2). Not surprisingly, this regime is
characterized by |P| < |q1], |q2|, |g3|, with the small transverse momentum defined as:

P=qg+q¢@+ag. (3.3)

3.1 Correlation limit: quark channel

In order to study the correlation limit in the quark initiated channel, we organize the terms
in a similar way as in the previous section, i.e. we study the correlation limit of the bef-bef,
aft-aft contributions and the crossed ones bef-aft and aft-bef separately.
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3.1.1 bef-bef contribution

In the quark initiated channel, we begin the analysis by considering the bef-bef contribution,
and start from eq. (2.20). In the correlation limit, we should expand our result in powers
of the small dipole sizes, as is discussed at beginning of this section. The dipole sizes in
this contribution are

Ty =23 — 22 , r'g:yg—yg, (3.4)

— A
Ty =0V—21, T,=U Y1

After performing the above change of variables, the bef-bef contribution reads

Ibef—bet = / €
23Y3,TgT Ty T}

~

iP-(ys—23)—qu(r}, =ry) =iQ:(rg—rg) g A5 <f 1 §2>
1 &1
&2

X Aﬁ(’l"g)Aﬁ,(’l";) tr |: E)Zl? <£17€ ,yg,rg,r ) bef(glvg Z37rg77q’y>:| 5 (36)

where we have introduced the auxiliary transverse momentum

Q=g+ ’S—ql (3.7)
&1
and performed the trivial integrations over w, w’, v and v’. The function ./\/l)‘A " accounts
for the product of the splitting amplitudes and is defined in eq. (2.36).

The function g‘géf is easily obtained from ggéf after the aforementioned change of
variable, and proper replacement of w and v (or w’ and v’). It encodes the Wilson line
structure of the amplitude for the case in which the photon is emitted before the gluon.
This function should be expanded in powers of the small dipole sizes (r4 or ) up to the
first nontrivial order, which in this case is the first order. The result of the expansion reads:

bef(gl,g ) - {wg [AA(&E) —Am)} (65,

_ r;A?\ (51,7”7; g ) [(1 - g)aiszg,td + sttd(aiglg)SZS} } . (3.8)

where from now on S, stands for the fundamental Wilson line Sp(z). Pluggin the above
result into eq. (3.6) and computing the trace over the fundamental color indices, we can
write after some color algebra the bef-bef contribution as:

Thef—bet = / eiP.(y37Z3) g1y =) =iQ:(r M)\)\ m (é 7§2> (Tg)Aﬁ/(T;)
23Y3,TgT Ty T 3

!/
v

N<:2 15 N /. / ! / 4 /. /
x2{[£lr4[ﬂ <£1, 2 g> AN )]—(1 gj) 45 (51, Z,rg)]
T BERE )

x e [(05.)(@5],)]
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15 AN RS Xt &2, ;&2
- [glr'yj |:A)\ <€1,T,Y; é.j)Tg) - A)\ (r'y):| gj JA)\ (517 75.?7 g>]

[onfe(orsgn) -]+ i)
x ]\%itr[(aism)(ajs;)}

- (s ) (0 (o)

x jietr[5i3(8i5;3)523(ajSQS)]]V.tr[S;SSQS}} (3.9)

Note that the z3 and y3 dependences only enter this expression through the Wilson lines,
and as a result, one can already recognize the definitions of two different gluon TMDs (in
the low-z limit) [38-41, 47], which will emerge after the target averaging of Ipef_pef:

/ P 5) ([(675.,)(@7S],)]) = PP / PN, (5(23,35)]),
Y323 TA Y323 A

, PipJ

= 93 (2m)* 5y Fig (A, P) (3.10)

and

/ ¢ (ys=23) <tr [Sl3 (8i523 )Sz];:s (aijS)] tr [st Sy3] >
Z3Y3 -

(2
— _2(2n) N, % Béiij(g)(xA,P) _ ;(&j _ QPP];)j)H%)(xA,P)] RNERTY
The gluon TMD defined in eq. (3.11) consists of two parts, corresponding to unpolarized
(]—}gg)) and linearly-polarized (’Hé?) distributions inside the unpolarized target. For the
so-called (fundamental) dipole gluon TMD defined in eq. (3.10), the simpler Wilson line
structure implies that H((I? = ]—"é;).
In order to get the final expression for the bef-bef contribution to the correlation limit
of the production cross section in the quark initiated channel, the integrals over 7, rg, ri/
and r’g should be performed, which can be done using the following generic integrals:

_ A 7y

Kor+iQrg AT i AA &2 K 1 i Q"Q
KT +iQre A7 (). T.A< ,r,,r>—z[5’7—2 3.12
/ o) rg AN S0ri 7o ) = IRE Qg ke @ 2] G2

iKry+iQrg A7 i g §2 A Q" 1
/TgTweK +Q An(rg) T,Y |:A)\ <£17T7;§1’T9> _AA(T’Y):| T Z@K2+651Q2

« [51& _ QW]
K2+ ¢5'Q2
(3.13)

with

co = 1?(1 _ 52) . (3.14)
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The detailed calculation of these integrals is presented in appendix C. Putting the pieces
together, we can write the bef-bef contribution as

ANmi'5i5 PYPI
<1bef_bef> = M (g 22) ¢ (2m)3 N{[H(l)} FV(za,P)  (3.15)
TA

bef-bef P2
Msar'ii[1 .. - PiPJ
H®) Z59 F(2) P — —(s59_9 (2) P
* [ :|bef bef |:26 ]:qg (QZ‘A, ) 2 <5 P2 >H ($A, ) ’

where the hard parts that accompany the TMDs are defined as

PN A 5 3 —
| = [&H" MiQsept ] + (1 - g-j)ﬂA ’"ﬂ[ql;co,Q]]

bef-bef
X [&Hﬁ;M[Q;COI,ql] + <1 - g)ﬂk;m[qum,@]
- ]\12 [&Hﬁ/;yj[Q;colaqﬂ - Zﬂxl;w[qu%, Q]]
< [glnnﬁi[Q;cgl,ql] ?H’\’m[ql,co,Q]] , (3.16)
and
) = (g0, ) (00, (3.17)

where we have introduced the compact notation IT%J k[p; co, q] given by:

%o, ql = (5 ) —— |09 —2- 22| L 3.18
lps o, ] <p2> {q2 + cop? [ @? + cop? (3.18)

Eq. (3.15) is the final result for the bef-bef contribution to the production cross section in
the quark initiated channel given in terms of gluon TMDs.

3.1.2 aft-aft contribution

The same procedure can be performed to take the correlation limit of the aft-aft contri-
bution, i.e., we first identify the dipole sizes in which we will expand to linear order, after
which we integrate them out and identify the gluon TMDs that appear. The small dipole
sizes for this contribution are:

rg =V — 22, r'g:v'—yg, (3.19)
Ty = 23— 21, T‘i{ =y3— Y1 . (3.20)

After performing this change of variables, the aft-aft contribution eq. (2.22) can be writ-
ten as

Latt—aft = /
23Y3,TgT g,y T)

5

P (y3—23) —iK- (1} =1+ ) —ig2-(rg—rg) g M(/;\X’;ﬁﬁ/ <§2, 2)
&

X AX(T',),)A;\/(T’;) tr |: ;?tn <§27g 3:9377";7 ) aft <§2;§ 23,7’9,7',7>:| (321)
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Here, we have performed the integrations over w, w’, v and v’. As before, the function
M;\)‘ " is the product of the splitting amplitudes which is defined in eq. (2.36), the
function g‘j is obtained from Qaft (eq. (2.23)) after the aforementioned change of variable

and replacement of w and v, and we have introduced the new auxiliary momentum K,
defined as:

K=q¢g+ QQQ (3.22)
3

The next step is to Taylor expand the function Qgg that encodes the Wilson line
structure of the amplitude in the case of the photon emission after the gluon emission. To
first nontrivial order in the dipole sizes, this function reads

Gon <52,§ zg,,rg,m) = [5‘27«;(61’523)# + <€1r’ + 7t )523#(82'5;3)523]
6 af 52 afs
x [An<§2,rg;§1,m> —A”(rg)} L8 181181, (0752)] A7) (3.23)
&2 &7 ap

Using the above expansion, one can compute the trace over the fundamental color in-
dices. After some color algebra and using the Fierz identity given in eq. (2.26), the aft-aft
contribution can be organized in the most convenient way as

Laft—att = /
23Y3,Tg T; 77"'Y7J

~y

el (engn) -] (enfe(engn) o))

Nitr [(3i523)(8j5!33)]

- 1 [gl '/y]An <§2a /72.—-: f,y> +§2r/gj |:A77, <§27 /7 —;7 fy) _AHI(T;)]]

3
¢
51 i & i| g7 & AT R Py j gt
X VAT a,mgs 2y ) + G | AT( €a,mgs 2oy | — AT(ry) Ntr[(f’S%)(aSyg,)}

672P-(y3—23)—iK-(r,’Y—T.y)—iqg-(r;—rg) 8,/\/1:;\5‘,"777/ <§ ! 2;1) S\(TW)AS‘/ (7“;)

X

X

\ 52 62 §2

SE &1 | i &1
- gT%YAn ( 277,‘/9;5277{)/) +Tlgj |:A77 <§27 /7 527 fly

(Er(enn) refo(enr) o

L ls.,si }—tr (51 (9'5.,)S], (ajsyg)]} . (3.24)

X

N, 23%ys

As in the case of bef-bef contribution, the integrals over the dipole sizes rg, r’g, r, and 7"'7
are factorized from the rest of the expression. They can be performed with the help of the
generic integrals given in egs. (3.12) and (3.13), and we use the same compact notation
introduced in eq. (3.18) to organize the resulting expression. Moreover, the remaining
integrals over z3 and y3 have the same structure as the definition of the TMDs introduced
in egs. (3.10) and (3.11). Hence, we can write the correlation limit of the aft-aft contribution
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to the cross section in the quark initiated channel as:

NN/t XX,?ﬁﬁ’%'ij PZP]
(Tafiare) =M (52, 5-1) g2 (2m)? NC{ )| Fig@a,P)
TA

&2 9 laft-aft P2
AN 51 . _PipJ
2 () () 2
+{H59)Lft_aﬂ [25];< (A, P) - (53 - 255 )stzg;(m,m] } (3.25)

where the hard parts are given by

;\5‘/§ﬁﬁl§ij — I _ — =y _
= [5211" ’“[K;cﬁ,qﬂ] [@H’%A%[K;cll,@]]

1 N 74 _ fl NI
T2 [fzﬂ)‘ TIK; e, o) — gH" N[ gos 1, K] ]
X [»Ezﬂ*mi [K;ei' qo] — ?HW‘ [q2; ¢1, K] ] , (3.26)
2

and

X [H;\’”i [K; cl_l,q2] _ Sl [qg;cl,K]] . (3.27)
In these expressions, the variable ¢; is defined as the following function of the longitudinal

&, &
c = 52 5 ( 52) . (3.28)

Eq. (3.25) is the final result for the aft-aft contribution to the correlation limit of the
production cross section in the quark initiated channel, given in terms of the TMDs.

momentum fractions £; and &»:

3.1.3 bef-aft contribution

The remaining two contributions are the crossed ones. We first consider the bef-aft case.
The small dipole sizes for this contribution are

rg=1v-—z, Ty = Y3 — Y2, (3.29)

Ty =23 — 21, T;:U/—yy (3.30)

After this change of variables, the bef-aft contribution given in eq. (2.24) yields:
Thofati = / eiP'(ysfzs)*i[fh'?"%*K'Tv] —1 [Q'T;*%'Tg] ] j\/lvé;\';ﬁﬁ' (€1,&)
23Y3,TgTg,TyT

X Ax(r’Y)Aﬁl(T_/g)t |: lizf)'\ (517227:%37 g7 'y> aft <§27§ 237rg7r’y>:| ; (331)

where M Al (&1,&2) is the function that accounts for the product of the splitting ampli-
tudes for the crossed contributions, defined in eq. (2.43). The transverse momenta P, Q and
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K are defined in egs. (3.3), (3.7) and (3.22). The small dipole expansion of the functions
STdN

ggef and gaft
expansion (egs. (3.8) and (3.23)) to cast the bef-aft contribution into the following form:

Thef—aft = — / e
23Y3,T g7, TyTY

X 8M’\’\ T (€1, €9) AN, AT (1 )

N? /i / / 1§ AN / /
SR S R CE ) o) - (1- 8 )rpa (0omi )
X [EZT; |:A77 <£27Tga_ > :|] 81 23 (6‘75;3)]

RYHNA B RO

2e
[aﬂ An(&,rm_ )+§2r[ (Wg,_, ) ATy )]];tr[wiszg)(ajsgis)]
)

was already performed above, hence we can simply plug in the results of this

iP-(y3—z3)—i [th T, —K'f’w] —i [Q'Tg —q2 -Tg}

52 c
+ [r;}jA/\ (fla /7§2 > [51 rt AT <§2a7"97§2 ’Y) +T; {An <52,7“g$§—;a7"7> —A”(rg)} ]
xNitr[szgsgg] tr[S1,(0'S. 3)553(&'5%)]} : (3.32)

Again, the integrations over z3 and y3 are factorized from the rest of the expression, and
the structure of the parts that depend on the dipole sizes in the amplitude and in the
complex conjugate amplitude is very similar to the bef-bef and aft-aft contributions. Thus,
the integrals over 7y, r;, r, and 1"’7 can be performed easily using the generic integrals given
in egs. (3.12) and (3.13). Once again, one recognizes the definition of the TMDs presented
in egs. (3.10) and (3.11), such that the overall result of bef-aft contribution reads

PR ANsin'sig PTPI
_ AN 2 3 H 1 3 1
<Ibef—aft>$A _Mq K (613 52) 9s (27T) NC{ [ ((]g)i| bef-aft P2 ég) (LITA, P)

AN 5 1/ .. p ipJ
(2) ij 7(2) T (2)
+[Hqg]b€f_aﬁ {25 Fog (x4, P) = 2<6 )7—[ (xA,P)” . (3.33)

with the hard parts (written in terms of the compact notation that is introduced in
eq. (3.18)) being

57 5 T AT 2
{Hgﬁ befaft [le77 M@t ] + <1 - §_1>HA " laieo.@) ]

X [ﬁ_zﬂ’\’”i (Kt a2 ]

1 o
t 32 [Elﬂn MIQiegt an] — ?HA Ul [q1,007Q]]
X [@HW (K, et ] — ?H”’M [Q%Cl;K]] : (3.34)
2
and

;\5\1;——/;“ S/ - Y.
] = (0 g0, Q] | (O[] - S0V g, K] | (335)
Y | pef.aft &2
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3.1.4 aft-bef contribution

The last contribution to the correlation limit of the production cross section in the quark
initiated channel is the aft-bef case. Its calculation is exactly the same as the bef-aft
contribution, with the amplitude and complex conjugate amplitude interchanged. The
dipole sizes are

= 'U/ — Y2, (336)

/
rg = 23— 72, f
/

Ty =0—21, T, =Ys— Y1, (3.37)

and after performing this change of variables, the aft-bef contribution can be written as:
L pot = / P (y3—23) =i [Kerh —quvo | i a2 r—Qurg | g M?X’;ﬁﬁ’(gl’ &)
23Y3,TgTy,TyT)

X Aﬁ(rg)AS\’(rfy)t |: l?tn <§2’ gl’yg’rg,r > bef <fl,§ 23,7"9,1‘7):| . (338)

Using egs. (3.8) and (3.23) for the expanded expressions of the functions g‘gjf and g’lgf’,

we obtain:

Laft—per = _/ ¢ (s =z)=i[Kort vy | il —Qs | g PN (€1,82)
23Y3 Tgrgvr’yr

!
~

ey o) 5] (ear [ a0 (s ) = 47

(oefors )] (- o)

< tr[(0752,) (@ ],)]

G o &2) st ) ]
, 1 ; .

< rd |4 (6 S ) )|+ &1 AA<£§>]N [(015.) (@S]
/ /. 19 n 15 /

(e (s g )+ |A7 (sms 8 ) - 470
- 1 4 ' 1

X T;A)\ (5177"7? Z,r9> ] ﬁctr [523(825%)553 (87 Sy,)] ﬁtr [SZ3Sy3]} . (3.39)

Performing the integrals over de dipole sizes using eqs. (3.12) and (3.13), and writing the
remaining integrals over z3 and ys in terms of the gluon TMDs, we find the following final
result for the aft-bef contribution:

S5r , Miai'sij PAPI
(Tatiover) = =M (61, 6) g2 (2m)° NC{ ] T @)
N7 515 1/ .. PiPJ
H@ ij (2) P)— —(s9Y _9 (2) P 40
[ [ e -5 (0 -2 Juea )]} w0

~32 -



with the hard parts

M7 515 R VI I 3 -
|:Hglg):| = [521_[)‘ " [K;611,Q2]] [511_["”\Z (Qscot ] + (1 - ?)HMZ [Q1;CO,Q]]

aft-bef 1

[m TI[K; e, o] — Znﬁ’ﬂ'j[qz;cl,m]

N2
x [&HW [Qicgt ] - ?HA’m[ql,co,Q}] , (3.41)
and
i (Z)B;Z; " [H’_\"ﬁ/j[K;cll,qg] ?nA m[qQ,cl,K]] [Hj"ﬁi[ql;co,Q]]. (3.42)

To conclude this subsection, we calculated the correlation limit of the partonic cross
section gA — qg7y, and the result is given in eq. (2.19), with the separate contributions
Ibef_bef, Iaft_aft, Ibef_aft and Iaft_bef presented in eqgs. (3.15), (3.25), (333) and (3.40),
respectively.

3.2 Correlation limit: gluon channel

Let us now study the correlation limit of the production cross section in the gluon ini-
tiated channel. Again, we distinguish four separate contributions: photon emission from
the antiquark both in the amplitude and in the complex conjugate amplitude (gy — g
contribution), photon emission from the quark both in the amplitude and in the complex
conjugate amplitude (¢y — g7 contribution) and the crossed contributions where the pho-
ton is emitted from the quark in the amplitude and from the antiquark in the complex
conjugate amplitude, and vice versa (¢y — ¢y and ¢y — gy contributions).

3.2.1 @y — ¢y contribution

We will expand in the small dipole sizes r, and 7 (in the amplitude) and 7, and 77 (in the
complex conjugate amplitude), defined as:

rq=v—21, Ty =V — Y1, (3.43)
rg =23 — %2, TE=Y3— Y2 - (3.44)

Here, 7, corresponds to the transverse size of the dipole formed by the intermediate anti-
quark (before the photon emission) and the final state quark in the amplitude. Similarly,
Ty is the transverse size of the dipole formed by the final antiquark and final photon in
the amplitude. The primed ones (rj and 77) correspond to the their counterparts in the
complex conjugate amplitude.

After the above change of variables, the gy — ¢y contribution given in eq. (2.67) can
be written as

I@V*Q’Y = / 6ip’(y3_23)_iQ'(F{i_TrJ) iqu-(ry—rq) 8M)\)\ 7’ <€17 £2>
23Y3,TqT g TqTg 3

X AX/(F/Q) Ax(fl7>t |: (6175273/37 q7 q>g_§2<§la§2§2377’q7%>] ) (345)
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where we have performed the trivial integrations over w, w’, v and v/, and where MM i’

is the function that accounts for the product of splitting amphtudes, deﬁned in eq. (2.77).
Moreover, the auxiliary hard transverse momentum () is

Q=g+ @ql : (3.46)
&1

which is the same formal expression as in the previous subsection, although now particle
1 refers to the final-state quark and particle 2 to the final-state photon. The function Qgg
encodes the Wilson line structure corresponding to the photon emission from the antiquark
in the amplitude, and is obtained from ggj (whose explicit expression is presented in
eq. (2.64)) after the replacement of w and v and the change of variable. Expanding to first
nontrivial order in powers of small dipole sizes, one obtains

g§3<€1>€2szwq,fq) =—51r;[A"<£1,rq;§?,fq> —A”(rq)} [sggtC(aiszg)} (3.47)
af 51 af

+ {gi L An <£17 Tq; Zv Fq) + glré |:Aﬁ <£1a Tq; Za fq) - Aﬁ(rq):| } [(81523)tCSZ3:| B

The next step is to plug the expanded expression given above into eq. (3.45), and per-
form the trace over the fundamental color indices. After using the Fierz identity given in
eq. (2.26), the final result reads

el z Q- (rg—T iq1-(rh—r, AN {2 X /= N/—
Tgy—gy = / P (y3—23)—iQ- (75 —7g)—iq1-(rg—rq) 8/\/1 s’ (gh _)AA ("":j) A/\(rq)
23Y3,TqT g TgTq

1"q

x{ ?/]AT)( » ;,§i7;>+§1réj[/4n (51’ /752 /> 7/ ]]

(o) efrfon) - o

+ [5_17“(? [Aﬁ/<§1,7“;; 2,7’&) - Aﬁ/(ré)} ] [5_17“3 [«477 <§1ﬂ“q; g?%) —Aﬁ(rq)} ]

x5 [y, 1,] 1[92,
- g_ﬁf'jAﬁl 51,7“:1;6—2,7":1) +éary [A” (51, /76—*2 7”’) AT (r )”
13 &’
(on{urs ) ] et
/ g =/
- §1TJ|:A77 (515 qvgj) q> - :|]

X

(o(oren)eodfilonct)- )
& 51

1 .
x5 tr[(078],)85,] tr[ Sy (9°S1,)]
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e I e )
(oo &) oo n) ]
1

X

[(ajsyg)sls(asz3)s;3}} . (3.48)

In the above equation, the dependence on the transverse dipole sizes rg, 7g, r; and Ffj is
factorized from the z3 and y3 dependence. We can therefore perform the integrations over
those dipole sizes, for which we use the results egs. (3.12) and eq. (3.13) (employing again
the definition of the pseudo-projector II*/*[p: co, ¢ given in eq. (3.18)). The result is:

Ty gy = 8 MO <§1Z> / y P (ys=2s) (3.49)
x { [ ?H”’”’j (1500, Q) — &I [ Qs 1] ]
x ZH"”\Z[ql,bg,Q] —gln*ﬁi[q;bol,ql]] e[S, 8], ] tr[(878,,)(9°S1,)]
+ | I [Q;bo_l,(h]] [élHAm[Q by 791}] r[Sy, ST, ] tr[(9°524) (07 5]
+ ?H” N [g1; b0, Q] —aHA’;”'j[sta%ql]] [Elﬂ”""[Q;ba%qﬂ]

SCCENENECENEY

+ 5111A 77[Q; by ’(h]] [gjﬂmi[ql;bo?Q] leAm[Q by =‘J1]]

1 ) .
x5 tr [(678),)S=] t[Sy, (9°S1,)]

(s, Q) - 0 ]
- B 1 . .
v \ZHW/\Z[Q bo Q] HA,m[Q;bOl,ql]]QNC [(aJSyS)SIB(a%SZS)S;,]},
where
L&, &
bo = &1 §1< 5_1) ' (350

Our next step is to perform the integrations over the remaining transverse coordinates z3
and y3. As in the case of quark initiated channel, these will be performed by using the
definitions of gluon TMDs. However, let us first manipulate this formula to put it into a
more elegant form. First, consider the first two terms in eq. (3.49), which we will denote in
the following with the superscript (1,2). It can easily be seen that the momentum structure
of the parts that multiply the double trace operator, is symmetric under the exchange of
1 <> j, since the function M;‘)‘l;ﬁﬁ/ is symmetric under the simultaneous exchanges \ < X’
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and 77 <» 7. Using this symmetry property, together with the exchange of the coordinates
z3 <> Y3, these two terms can be written as

- (6. ) (1m0 s iatal) o
[gn a0, Q) — I [Qs b 1] ]
x% / [’P (ws=23)tr[ S, 81, |t [(87S,) (9751, )] +eF Ws— Z3>tr[5yssz3]tr[(aiszs)(ajsgg)]}
Z3Y3
+ [érlﬂ’\lm/j [CRZR ] [5_11_[/\"7" [CRZaN ]
1 .
x5 /Zgyie“y?’ )tr[ Sy, SI, ] tr[(9"S-,) (97 S],)]
te P ws=2) g 1g, ST Ttr[(878,,) (8" ST, .
[ 3 y3] [( ys)( Za)]

The definition of the first TMD we thus encounter in the gluon channel is:

/ ¢iP-(ys=3) <tr[SzSS;f,] r[(({“)ijS)(aiSi3)]> (3.52)

TA

; 1/, _Pipi
= g2(2m)3N, [63]:()(:UA,P)—2<6J— 53 )H(l)(mA,P)].

Using this definition, we rewrite (after target averaging) eq. (3.51) as

<It(717€)6ﬁ> M <£ ?) S2 )3NC% (3.53)
{ [? T g1 b0, Q] — &IV (Q;bp ", a1 ] [E—TH";M (41500, Q] — &I (Q;b5 ", 1] ]
[anA TI[Qs by ,ql]] [Elnk%ﬁ"[@;bol,ql]]}

1/, PP
{ &' [ﬂ (24, P )+f£§;>(xA,—P)} —2<5w -2, )[Hgy(m,p)wgy(m,_p)}}.

We can perform similar manipulations to rewrite the third and fourth terms of the
Taylor expansion of Iz, g, eq. (3.49), which we denote with the superscript (3,4):

160 = 8 MG ™ <§1, Z) é /Z3y3 e (=) (3.54)
X{ [? 7N Tq1:b0, Q) — I [Q:bg ", a1 ] [f_lﬂ’\;"i [CRZR ]
[tr[(a’szg)s;}tr[(aﬂ' Sys)S1,] + tr[(ajsgg)sys}tr[(aiS;)Szg}]

+ [ Q¥ [Qs by 7q1}] [ZHW[qubO,Q} I [Qsby ,ql}]

l\D\l—‘,—\[\D\}—A

[ (07S.,)8},] tr[(alsg)sgg}+tr[(aislg)syg]tr[(afsjjg)szg]]}.
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Introducing the second gluon TMD which we encounter in the gluon channel:
1 iP-(y3—z i j
2/23% P 53) (4r[(675.,)S, ] 0r[(978,,)SL,] +h.c.>m
1/, PP
= —g2(2m)3 N, [ ST F D (x4, P) — 2(5” -2; )Hg?(xA,P)] , (3.55)

Eq. (3.54) can be (after target averaging) written as:
34 M/ &
<Ifﬁ)@>“ i <§ v >( 2)g3(27)° N

x 2{ [?H’? Y qribo, Q] — I [Q;bol,qﬂ] [éﬂW (@it ] ]

[&HA I [Qsby ,ql}] [ZHW[ql;bO,Q} TV Qs by ,ql]]}
X [;yifg(g)(xA,P) - ;(5”' - PPE )7—[(2)(33A,P)] . (3.56)

As noticed in [47], the two unpolarized TMDs that we introduced (}'é;) and .7-'9(3)), and
their polarized partners (”Hélg) and ’HgQg)), are related to the gluon TMD that is build from
a dipole in the adjoint representation:

4CrP? 1 P (14—
FagloaP) = 5 o [P i), (3.57)
’ 93 (27) Uy
where the adjoint dipole is defined in the standard way:
! f
da(z3,ys3;4) = m<tf [SA(Z3)SA(?J3)]>“ : (3.58)

Indeed, using the identity that relates the adjoint and fundamental representations of
SU(N.) , given in eq. (2.27), it is straightforward to realize that

FD(@a,P) + F W (@a, —P) — 2F P (24, P) = 2F,4(x4, P) , (3.59)
M (wa, P) + HG) (w4, —P) — 2H) (14, P) = 2Fogj(xa,P) . (3.60)

Thus, using egs. (3.59) and (3.60), eq. (3.56) can be cast into the following expression
in which the gluon TMDs .7-}53) and Hé? are eliminated in favor of the adjoint dipole
distribution Foq;(x2, P):

(185), =M™ (6,2 ) em .
S Q] - e Q0] | (a7 Qg al
+ [f_lﬂxﬁj (Q; b5, a1 ] [Zﬂﬁ;’\i [q1500,Q] — &IV [Q;bp ", 1] ] }

{ 5" [QJ:ad] 24, P) — F{) (24, P) — J—"gg)(xA,—P)]

1 P 2
2(5%] 53 ) [Qfadj(xA,P) —HD (24, P) — 1Y) (24, —P)” . (3.61)
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Finally, we can consider the fifth term in eq. (3.49). Using the definition of the last
gluon TMD in the gluon channel (also known as the Weizsécker-Williams gluon distribu-
tion):

TA
1/... PP
= —g? (2m)®~ [ 09 F§)(wa, P) — 2<5w—2 53 >H§2)(xA,P)}, (3.62)

the integration over z3 and y3 in this term is performed, yielding:
(5) _ v (o €2 200 13 1
<I®—<77> va Mz <§ ’§:>( 1)g; (2m) N,

[@H” N [q15 b0, Q] =TIV [Qs 051 1 ] [&
13 &

/ P (y3—23) <tr[(8i5’zg)5 ((BVSys)SJr ]>
23Y3

I [g15 b0, Q) =T Qs by !, 1] ]
i i Pip
X [25 IF3 (xa,P) — (5 I 20— )%@) (24, )] : (3.63)
Eventually, putting everything together by adding egs. (3.53), (3.61) and (3.63), we obtain:
AN £
<I¢vatﬁ>“ = Mg " <fl» S>9§(27T)3Nc

N7 5ij 1
1 7, 1
X{[Hég)hw # [2‘5 J[zf 9 @aP)+ 57 @ P 57 ﬂ

1/, .PPI\T1 1
5 <(5U -2 ) |:2H§19) (an P) + Q’Hé? (‘TAa _P) - Fg%é:;) (xA’ P):| ]

P2
AN PIPI
+[H§Zdj)}w@ SN fadj(-%‘A,P)}, (3.64)

where the hard parts are defined as

N7 5ig ,
[Hég):| m'i [?H” N g1 b9, Q] — H)\J)J[Q by ,Q1]]

i
(S s o] - P st ) | (3.65)
and
e (e -t ()
[5 Y77 [Q; by ,ql]] [ZHW;M[ql;me] S [Q: by wn}] : (3.66)

Eq. (3.64) is the final result for the gy — gy contribution to the correlation limit of the
production cross section in the gluon channel. It is written in terms of two unpolarized
TMDs: Fég), fg(g) and their linearly polarized partners Hf,g) and H§Q)7 as well as the adjoint
dipole distribution F,g4; for which the unpolarized and polarized versions coincide (as is
the case for the fundamental dipole TMD ]-"é;)). This specific structure of the result is
preserved for the other three contributions in the gluon channel, as we will see in the rest
of the analysis.
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3.2.2 ¢y — g7 contribution

Let us now study the contribution to the correlation limit of the production cross section
in the gluon channel when the photon is emitted from the quark both in the amplitude and
in the complex conjugate amplitude. In this contribution, the small parameters in which
we expand are the transverse sizes of the dipole formed by the final quark and final photon
(rq) and the dipole formed by the intermediate quark (before the photon emission) and the

/
q

dipoles in the complex conjugate amplitude. These variables are defined as

final anti-quark (7) in the amplitude. 77 and 77 denote the transverse sizes of the same

g=Uv—23, Tp=v —ys3. (3.68)

Performing this change of variables in eq. (2.68) leads to the following expression for the
qy — q7 contribution

&1+ &
X AN(rg) AV (1) tr |Gl (€1, €230, 10 71) G (€1, €23 21,74 7g) (3.69)

Ty — / P =20) K (7 —ro) —ias (=) g AN <51 + &, 52)
23Y3,7qT ) TqTy

q

Here, again we have performed the trivial integrations over w, w’, v and v'. The newly
introduced transverse momentum K is defined as

K=q¢+

3
&1+ &2 i (3.70)

and the function g‘g@ encodes the Wilson line structure for the case when photon is emitted
from the quark in the amplitude, and is obtained from Gg? given in eq. (2.65). After
performing a leading-order Taylor expansion in powers of the small dipole sizes, it reads

G(&1, 60521, 7q,Tq)ap = — (E1 + &2) T [A" <1 =& — &, Ty 525277“(1) - A"(rq)] (3.71)

&1+
x [(9°81)t°521)] 5
+ {(1 —&— &) [A" (1 — & — &2, 7g; &ﬁf&ﬂ“o - An(fﬁi)]

&%52 ro A <1 =& =&, Ty e )}[S;f(aiszl)}aﬁ .

+ )
G +6&1

As in the case of the ¢y — ¢y contribution, our next step is to plug in the above expansion
into eq. (3.69) and trace over the fundamental color indices. After using the Fierz identity
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and performing some color algebra, the ¢y — ¢y contribution reads

Iy,

= P (1 —21) =K (rg—rq) —igs-(Tg—Tq) g A N7 <£1 + &, & )
o /zlyl Tl TgT “ El + ‘52

! Farl
q’ q

x AN (rg) AY (r;>{ [(51 + )7 [A"’ (1 — & — 6.7 éﬁff r;> - A’?’(r;)} ]
<((@+ e |01t 2 ) - 06| | gulsa sl (@75,)(0's,)]

+[<1—§1—§2)ij [A”'<1—§1—§2,‘;,€§f§,;) AT (7 )]

§ / /. 52 /
a6 w( _51_’52””q’51+§2’”>]

X [(1 — & — &) Ty [A" (1 — & — &2, 7g; &%&7%) - An(ﬂi)]

_l’_

o a(1-6 - 2, ) | qulsl s Jul@'s,)(0s))

—[(€1+€2)F/qj {A"(l—{l—f% T, i_Qé ; q> AT (5 )}]
X [(1 - & —52)772[#7 <1 =& — &, Ty &i?&ﬂ“q) - An(ﬁi)]

§1§j§2 < _51 ’527TQ’§ é:ig ’ Q>] 1tr[(alsz1)5731]tr[(8jsy1)511]

—[(1—51—52)775[«4’7(1—51—527_;7 © ) A7 (5 )]

X [(51 + &7 [An <1—§1—§2, g

G+&e

§ / /. 52 /
taagt A <1_€1_§2’rq’&+52’”>]

rq> —A"O’q)] ] %tr [S., (7S] )] tr[(9°S1)) Sy, ]

&2
& +&

(1l ls-erigo) -

62 / /. 52 /
51+§2 ]An (1—51—52,7“q7§ +§vrq>]

X[fﬁ,[A"<1—§1_§2,rq,§i§ ) A(F )]

&2 i
51 + §2

A"<1—§1 £a, T ’rq>] 2jlvctr[(8i5’zl)5 (875,,)S1, }}. (3.72)

3
&H+&
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The integrals over the small dipole sizes can be performed using the generic integrals given
in eq. (3.12) and (3.13), and the resulting expression reads:

L. ngM’;ﬁﬁ’< PP )/ P21 -u1)
q9Y—qY qq gl 52 §1+§2 .

X {[ (1 + &)V [K; byt gs] ] [(51 + &) IV [K; by Y, 3] ]

x Qtr (82053, ]tx[(978,,)(07S1,)]

! [51%52 7Y [ag5b1, 1] = (1= & = &) [K;bll7q3]]
g [515—5621_[77 Mazibr K] = (1 - & — &IV [Ki by gs) ]

<ot [S1,5,, ] [(975.,) (7S], )]

2
—I—[ &+ &) HA W[K bll,qg]]
1

x 51%52 as; b1, K] — (1= & — fz)ﬂxﬁi [K;b7!, gs] ]
xztr[(ﬁlszl)ST Jtr[(87S,,)S1 ]
" fligfgmw [45:61, K] — (1 — & — &)V [K; by L, g5 ]
% | (&1 + &) [K;511>Q3]] %tr[sn (@ 85)]tr[(9°51, S,)]
+ fliézﬂn g 7361, K] — v ’W[K by ,Q3]] (3.73)
( - N 1 .
% kgli?&m,m [qg;bl,K} I DD [K;bl 17q3}] 2thr[(8 Szl)S (aJSyl)sT ]}
with
B 1 &2 &
= (1-&—&) &a+& (1 &1 +§2>' (3.74)

In order to integrate over the remaining transverse coordinates y; and z1, we perform the
same manipulations that we introduced for the calculation of the gy — gy contribution.
After target averaging, the first two terms of eq. (3.73) can then be written as

i ik 6
<Iglvz)qv>“ = M (5 + &, >9§(27T)3Nc

€1+ &2
Xl{ [51%€2H77 /\J[q?”bl’ K] -(1-&~ 52)11/\77”[}{ by ,QS]]
[&1 é_E 52 Hn)\l [q37 bl) ] (1 - 51 - 52)1_[;\’777' [K7 b1_17 Q3] ]

— 41 —



[(51 + &IV [K; by ,Q3]] [(51 + &)V [K; bfla%]] }
{ 54 []—"( 24, P) + FiP (24, —P)]

. PP
<5 i 2132> {’Hé}}) (4, P) + HD (24, —P)] } : (3.75)

where we have used the ¢ <+ j symmetry of the momentum structures as well as the
definition of the gluon TMD eq. (3.52). Similarly, the third and the fourth terms of
eq. (3.73) give:

<Iéii)q7>“ = Méé\ i <5 + &2, >9§(27T)3Nc

&1 +§
X;{ [(51 + 52)11)‘ ' [K; bfl,qzﬂ ]
“la i & T [g3:1, K] = (1= & — &) [K: by gs] ]
x| (&1 + &) K; bll,qg]] }

\

1 ..
x { 50" [2fadj(xA, P) — FD (x4, P) — Fi(wa, —P)}

1/, PP
-3 (5’9 -2, > [2fadj(mA, P) — 1) (x4, P) — HD(xa, - P)} } . (3.76)
Again we have used the symmetry argument as in the case of similar terms in the gy — g7y
contribution, and written the final result in terms of the adjoint dipole distribution using

egs. (3.57), (3.59) and (3.60). Finally, we can write the last term of eq. (3.73), using the
definition of the gluon TMD eq. (3.62), as

1
Ne

(), = Mo ™ (& o, o 52) (~1)g2(2m)’

[ &1 g—i 13 79 [g3: b1, K] = TV [Ks by ' g5 ]

‘52 Y Xifi [1e. 1—1 ]
X[& 52H [q3; 01, K] =TI [K; 071, g3

1/ PP
[ 5%]}'( )(JSA, P) — 2(5” -2 Pz >H§2)(xA,P)} . (3.77)

We can now put egs. (3.75), (3.76) and (3.77) together, to write down the final expression
for the ¢y — g7y contribution to the correlation limit of the production cross section in the
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gluon channel:

<ququ>m :ngx;ﬁﬁ, <§ + &o, 2 i—f >93(27T)3Nc
X{ [Hglg)} ;AZZ ij [ 25w [Qf;g) (4, P) + %fg(? (x4, —P) — ;35(3) (24, P)}
_% <(5ij _ PPE > [ ”H(1>(xA, P) + %Hglg)(“’ ~P) — ]\%Hg)(“,p)} ]
+[H§Zdj )};_ qz N % ‘Fadj(xAvP)} ; (3.78)

with the hard parts

xx,;ﬁﬁ’ﬂj 52 11
(1) — ) . N
[Hgg} = [51 +£2Hn 7[q3; b1, K] — IV [K; by ,Q3]]

qy—qY
[&%5 17 lg3; b1, K] — [K;bl_l,qg]] , (3.79)
and
(adj) ANa'sij Nt § e p—1
[Hgg } = | (& + &) [K; 07", gs]
qQY—qY

: gli@H"’M[Q?”bl’ K] - (1-& - @I [K bll,qa]]

" fli&m asibr, K] - (1_51—52)melj[Kébl_l7Q3]]

X (51 +§2)HA%”i[K;b;1,q3]]. (3.80)

Before we conclude this subsection, we would like to emphasize that the TMD structures of
the gv — ¢y and ¢y — ¢y contributions have exactly the same form. The difference between
these two contributions only appears in the definition of the hard parts, and in the function
that accounts for the product of the splitting amplitudes: M;\A/;ﬁﬁ/. Moreover, the structure
of hard parts in both contributions exhibit a similar pattern, the difference lying in the
transverse momentum dependence of the pseudo-projectors and in the dependences on the
longitudinal momentum ratios. This can be easily observed by comparing egs. (3.64), (3.65)
and (3.66) with eqs. (3.78), (3.79) and (3.80).

3.2.3 Crossed contributions (gy — ¢y and ¢y — ¢v)

The remaining two contributions that we need to consider are the crossed ones: photon
emission from the antiquark in the amplitude with photon emission from the quark in the
complex conjugate amplitude, and vice versa.

Let us start with the gy—qy contribution. As is obvious from the last two contributions,
the small dipole sizes for this crossed contribution are

rg=21-22, rg=v"—y1, (3.81)
Tg=v— 23, fﬁjzyg—yz. (3.82)
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After performing the above change of variables, eq. (2.69) can be written as

Tgy gy = _/ eiP(ya—21)—i [Q'ﬁ}—%'ﬁi] —i [QH‘;—K'M} Sﬂg\/\/;ﬁﬁ' (&1,6)
21Y3,TqT g TaTy

1"g

x AY (7)) AN (ry e | G (0, 01w, v ) G, o 2 )| o (3:89)

where we performed the trivial integrations over w,w’,v and v’, and where the transverse
momenta Q and K are defined in egs. (3.46) and (3.70), respectively. The Taylor expansions
for ng and G¢l are already known (egs. (3.47) and (3.71)), hence we can plug them into
the above expression to calculate the first crossed contribution in the gluon channel, which
reads after some color algebra:

Toy g = / P (y3—21)—i [Q-F{rqs-fq] —i [ql-rng-rq] 8 Mvz\i’;ﬁﬁ’ (&1, @)A’_\/(%)Ax(rq)
21Y3,7qTq:Tq"

a"q
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+(1 - & — &) ;{An (1 - &1 —52,7’q§€1i2£277“q> —An(rq)] ]
><%tr[(aiszl)553]tr[(ajsy3)sgl]

- [5_17“3 [An <§1, 'éj _;> - Anl(ré)] ]
X [(51 + 52)% [-Aﬁ <1 =& =&, Ty glgj&ﬂ"q) - Aﬁ(rq)} ]
x (S, ('S5, )] e[S, (9957, )]
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X [ &2 réAﬁ<1—§1—§2,rq;£2 r>

§1+& G+& 1
+77(lj |:‘A77 (1 - 51 - §27 77(?7 515?52’ 7aq) - An(rq):| ]
1 ) .
xwtr[(azszl)sgg (aﬂsyg)sgl]} . (3.84)

We again use the generic integrals eqs. (3.12) and (3.13) to integrate over the dipole sizes,
which leads to

Igy—gy= —8 Mii’;nn’(&ljgz)/ eiP(ys—z1)

2105
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[CEMTRCEREALY (3.85)

2N

At this point we would like to mention that above expression does not have the i < j
symmetry. It is obvious that this symmetry will be restored once we combine the gv — g
with the ¢ — ¢y contributions. Therefore, we postpone introducing the gluon TMDs, and
first consider the second crossed contribution, namely ¢v — ¢y. The small dipole sizes for
this contribution are defined as

Tq=v—21, =y —y2, (3.86)
=v —ys3. (3.87)

G= 23— 22, T

,Ql\,Q\
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Expressed in these variables, eq. (2.70) can be written as

qu—zj’y _ / eiP~(y1—z3)—i [q3~F(’j—Q-Fq] —i [Kﬂ“(’]—qrrq} 8 Mv;\;\’;ﬁﬁ’ (517 52)
23Y1,TqTh,TqT

I o
q’ q

X AN () AN (1) b |GIT (64, 05, v, 7) Gil(6n, i 20, )|+ (3.88)

and using the Taylor expansions of the functions Gg7 (eq. (3.71)) and G37 (eq. (3.47)),
we get:
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Once again, we use the generic integrals introduced in egs. (3.12) and (3.13) to perform
the integrations over the dipole sizes, after which the result reads:

lgy—gv = =8 g\;\ (51752)/ e/l
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Comparing egs. (3.85) and (3.90), it is obvious that the ¢ +» 7 symmetry is restored when
the ¢v — ¢y and ¢ — ¢y contributions are added. Thus, after combining these two crossed
contributions, we can integrate over the remaining two coordinates by using the definitions
of the TMDs, and the final result of the crossed contribution reads:

<I@v—qv + qu—fﬁ>m - MQ/\ (&, 52)92(27T)3Nc

99 Cross 2 2 99 N2 99

N7’ 534 .
x{ [H(l)] i [15” [1}"(1)(35A,P) + %Fg(;) (x4, —P) — 1 Fe )(a:A,P)]

1/, .PPIN\[1 1
-3 ) [5HaP)+ g e —) - g P)|

p2
TN i PP
+[H§Zdﬂ)}cross e fadj(:cA,P)} , (3.91)

with the hard parts

AN 515 / R
)| = [?H" X [ql,bo,Q]—HW[Q;bal,ql}]

Cross

( 5 i ;i —1 ]
s b I8 K: b
X 51 n 52 [Q3a 1, ] [ » U1 7q3]
&2 7N j X ]
+ HT) AT , b , H 7” ,7 K b ,
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and

{ngdj)};\;:n it _ ?Hﬁ/;i\/g’ [Q1;b07Q} §1H)‘ J?J[Q by ,(Jl]]
« &i TN by K = (1 6 — )V bl_l,q?,]]
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\

Eq. (3.91) is the final result for the crossed contributions ¢y — ¢y and ¢y — @y, written
in terms of the unpolarized gluon TMDs fé;) and .7-"9(3), their linearly polarized partners
(’Hélg) and Hé?;)), together with the adjoint dipole distribution Fq;.

The full result of the correlation limit of the partonic cross section in the gluon initiated
channel is given by eq. (2.66), where each contribution Igy—gy, Igv—g¢vy, and Igy—gy + Igy—gy
is given in egs. (3.64), (3.78) and (3.91), respectively. Each of these contributions exhibit
the same TMD structure, the only difference being in the hard parts and in the functions

M, and Mvg.

3.3 Final factorized expressions

Combining the expressions together as described in the end of the two previous subsections,
the full cross sections can be cast into TMD factorized expressions of the form

dodA—v99+X ij pi P
- _— 9 +  +_  +  + H(l) (1) P
d3q,dPq,d%q, (P —a — gy q3>{{ ag } —53 Fag (¥4, P)
i 1( PipPI
+ [Hg;} [ 6].7?(2)(33A,P)—2(5J_2 . )ngg)(“’p)” (3.94)
do9A—aa+X w17 PP
117 197 13

+[H§?] [ 5”{2%(9)(:% )+2Fg(g)(a:A,P)f(3>(g;A,P)] (3.95)

1/ PP 1
—2<5U—2 5 ) {2H§}])(J;A,P)+2H§?(m, —P)—WH(;;)(:CA,P)} ] }

where the fundamental-dipole gluon TMD fé;), the adjoint-dipole gluon TMD F,4; and the
Weizsécker-Williams (unpolarized and linearly-polarized) distributions ]-"9(2) and Hé?;) are
defined in egs. (3.10), (3.57) and (3.62), respectively. Those TMDs are C-even: F(z4,P) =
F(za,—P) (since the action of the charge conjugation operator on the gauge fields is

CA,C = —AE [65], it is easy to see from the definitions of the gluon TMDs that for each
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of them C-parity amounts to CF(z2,P)C = F(z2,—P)). The other four gluon distributions
Fq(ﬁ), ’Héﬁ), .7-"9(;) and Hélg), defined in egs. (3.11) and (3.52), are not C-even, although in the
gluon channel eq. (3.96), ]-}g;) and Hélg) appears in a C-even combinations. In the case of
the quark channel eq. (3.94), ]:q(;) (xa,—P) and ’Hg? (xa, —P) would appear if the incoming
quark was replaced by an antiquark.

The overall hard factors given by:

NE 1 gig? { SNt & AN 5
H(z)} _ e MON (¢ S2 [ U} (3.96)
[ 99 (2m )68ql ds /\%ﬁ’ I &1 99 ] bef-bef
SO 51 xx,?ﬁﬁ’ﬂj
+M)\/\ N < , [H i }
I © & aft-aft
—~—~vy 1 AN i ST AN i
_ MWV [Hu)] {H@}
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where the various pieces of the quark-initiated channel are given in egs. (3.16)—(3.17), (3.26)—
(3.27), (3.34)—(3.35) and egs. (3.41)—(3.42), while those of the gluon-initiated channel are
egs. (3.65)—(3.66), (3.79)—(3.80), and (3.92)—(3.93).

We therefore demonstrated, for the first time, that the matching of the CGC with
TMD factorization, in the regime where the validity region of the two formalisms overlaps
(at low-z and in the presence two ordered scales) which was first established in [38-41] for
two-particle final states, may also hold for three-particle final states. We have explicitly
worked out the case of dijet + photon production, in order to keep the color flow simple,
and plan to investigate the trijet case in the future. As expected, the gluon TMD content
is the same as for the ¢ — qg and g — qq dijet channels, with the difference that linearly-
polarized distributions appear for ¢ — qgv and g — qgy even with massless quarks. This
is due the non-zero virtuality of the intermediate (anti-)quark states, which effectively acts
as a mass.

4 Conclusion and outlook

In conclusion, we have computed the production cross section of a hard photon and two
hard jets in forward pA collisions. The computation is performed adopting the hybrid
formalism which is suitable for forward collisions. More precisely, we have considered two
different channels: the quark initiated channel and the gluon initiated one. In the former,
the quark coming form the dilute projectile emits a gluon and a photon which then scatter
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off the target via eikonal interactions, producing a photon together with a quark jet and a
gluon jet. For this channel, we have taken into account the two possible cases, depending
on whether the photon is emitted before or after the gluon in the amplitude and in the
complex conjugate amplitude. The results for the ensuing four different contributions —
bef-bef (eq. (2.28)), aft-aft (eq. (2.37)), aft-bef (eq. (2.42)) and aft-bef (eq. (2.48)) — are
calculated separately and the final result for the partonic level production cross section
in this channel is given as a sum of each of these contributions in eq. (2.19). In order to
get the full cross section, this result should be convolved with the quark PDF as stated
in eq. (2.1).

In the gluon initiated channel, the gluon coming from the dilute projectile splits into a
quark-antiquark pair and the photon is emitted either from the quark or from the antiquark
forming three particles which then scatter through the target. In this channel, the par-
tonic level production cross section is also calculated separately for the four possible cases:
photon emission from the antiquark both in the amplitude and in the complex conjugate
amplitude (gy — gy contribution, eq. (2.71)), photon emission from the quark both in the
amplitude and in the complex conjugate amplitude (g7 — ¢ contribution, eq. (2.78)) and
the two crossed contributions where the photon is radiated from the quark (or from the
antiquark) in the amplitude and from the antiquark (or from the quark) in the complex
conjugate amplitude (gy — g7y contribution eq. (2.85) and ¢y — ¢y eq. (2.92)). The partonic
level cross section is given as a sum of each of these four contributions (eq. (2.66)), and one
needs to convolve the partonic level cross section with the gluon PDF in order to get the full
cross section as stated in eq. (2.2). In both channels, the cross sections are written in terms
of the standard dipole and quadrupole amplitudes in the fundamental representation.

In the correlation limit, the transverse momenta of the three final state particles are
much larger than the saturation scale of the target, whereas their total transverse momen-
tum P is small, parametrically of the order of saturation scale. We have shown that in
this limit, the production cross section can be simplified significantly, and cast in a factor-
ized form involving transverse-momentum-dependent (TMD) gluon distributions. This is
summarized in section 3.3. We demonstrated by an explicit calculation that the correspon-
dence between the CGC on the one hand, and TMD factorization on the other hand, in the
region of overlap of both theories, remains valid beyond the simplest 2 — 2 processes that
were considered previously. Moreover, our calculation provides an important subleading
(@2aem vs. ) contribution to the forward three-jet cross section, a part of which has been
published recently [64], since forward photons are experimentally indistinguishable from
forward jets. Finally, the computation in this work constitutes a first step towards photon-
jet production at NLO, and eventually a complete NLO calculation of photon production
in the hybrid formalism, which we are presently pursuing.
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A Derivation of the outgoing gluon wave function

A.1 Derivation of the splitting functions in the gluon initiated channel

In this appendix, our primary aim is to derive the momentum space expressions of the

splitting functions, F ((22_1—517) and F, ((Z%l—qv)
appear at O(gegs) when computing the dressed gluon state.

, which account for two successive emissions, and

The interaction Hamiltonian for a gluon with three-momentum (¢ + p), color ¢ and
polarization j, splitting into quark with three-momentum p, color 8 and spin s and an
antiquark with three-momentum g, color o and spin s’ reads [26]

A, o
HOT g e /dq d’p 1 Poa = s i
I SB[ (2m)3 (27)3 2 200t + ¢t et ¢ lgt+pt O 5
< b (p*, p)d (g, et +aTp+q) (A1)

where b}, (d;r,) are the quark (antiquark) creation operators and a; is the gluon annihilation

operator. The function Fg(l_zqq,

as well as the spin and polarization structure, is defined as

which accounts for the momentum structure of the splitting,

B : 1 pi qi
P + + ]J _ £ 4 A2
g—a (P72 @la"dl] | = ETal i (A.2)
x {q+ —P" siis, i } !
+ + 5,—58 s,—s’ _ — ’
" +p Wp+q — Wp — Wy
with
2
p

Remember that, in order to compute the dressed gluon state at order g.gs, we need to
consider two cases, which differ in whether the photon is emitted from the quark or from
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the antiquark, after the splitting of the gluon in the quark-antiquark pair. We would like to
keep the momenta of the final state particles (quark, antiquark and photon) fixed. Thus,
we examine the two cases separately. Moreover, even though in this work the incoming
gluon has vanishing transverse momentum, in this appendix we will keep it more general
and only set it to zero at the very end.

e Photon emission from the antiquark

We consider the incoming gluon with three-momentum p, which splits into a quark
with three-momentum k; and antiquark with three-momentum p—#k;. Then, a photon
with three-momentum £y is emitted from the antiquark, and the momentum of the
final state antiquark is p — k1 — k2. In this setup, using eq. (A.2), the first splitting
function can simply be written as

1 + B R LA (p—k)" K
Pl . @0 k=], = i [URE -
+ _ .+ _ .+ B
O A 7 N ie””ag’_s/} ! . (A.4)
p T Wp T Why — Wp—ky

Defining the momentum ratio ¢; = k; /p* and using eq. (A.3), the above formula
can be further simplified, yielding

FOal@lk k] @b — ko~ kal| = —— Er =k g ), (A5)

s \/2pT (§1p — K1)?

nn
where W ss/

(&1) is defined in eq. (2.58).

In order to calculate the splitting function for two successive emissions, we use stan-
dard second order perturbation theory. For the second splitting, we need the inter-
action Hamiltonian for a quark (or antiquark) emitting a photon, which reads [26]

3 3 i i
Hqﬁ(”:gs/ d’p d’q 1 <¢_ﬂ> [2p+—|—q+5ij5sls_i€zja3/ gt
I (277)3 (27r)3 2v/2q+ gt pt pt +qt SSpt 4 gt

< 00"+ p+ b (0T P (e a) (A.6)

with bs being the annihilation operator for the quark and 'y; the creation operator

for the photon. Using the above interaction Hamiltonian and second order perturba-

tion theory, after renaming the momentum of the final state particles, the function
(2)

(aq—gv) Teads

An
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Defining the momentum ratios & = ky /p*, & = (1 — &), & = (1 — &) and using
eq. (A.3) to calculate the energy denominator, the splitting function F) 2

(aq—av) yields
eq. (2.59).

e Photon emission from the quark

As mentioned earlier, we would like to keep the momenta of the final state particles
in the incoming gluon wave function fixed, to have a quark with three-momentum
k1, a photon with three-momentum ks, and an antiquark with three-momentum
p — k1 — ka. Since in this case the photon is emitted from the quark, this means that
the incoming gluon with three-momentum p splits into a quark with three-momentum
k1 + ko and an antiquark with p — ky — ka. In this setup, the function that accounts
for the momentum, spin, and polarization structure of the gluon splitting into a
quark-antiquark pair reads

F @l + ko). (@ — by — ko)), = — [(p"“l—kzﬁ_(kwkz)ﬁ

2/ 2pt Lpt — ki —ky K+ kS
t—2(kf — k) - g 1
(pi 2 )577’753/,—3'/ — 1677770'?/7_811:| 0 o — o (A.8)
p 1 2 pP—R1—R2

After using eq. (A.3), the above formula can be simplified and written in a more
compact way:

il gl (@ ks + ko), (@)lp — by — k)
_ 1 [(&1+ &2)p — (k1 + k2)]”
V2t [(&1+ &)p — k1+k2]

In the second step, the quark with three-momentum £ + k4 splits into a photon with

Jow

SUT, (614 &) (A.9)

ks and a quark with k;. In this case, the function that accounts for the two successive
splittings can be written as

2 5 A
F o L lKT i, (IS ol (@l — b = K — by = o]
-1 (& +&)p— (ki +k 1 TR
= - [( 1 2) ( 1 2)] \1,77 //(£1+£2) |:_2;_ - 7_1‘_
V20 (& + &)p — (k1 + k)] o /2kf L2 M
2 + 1
%dﬁ? Mai’s +k2 4 . (A.10)
ki 4 kg ki + kg Jwp — Wy — Wy — Wp—ky—ky

which simplifies to the expression given in eq. (2.60) after using eq. (A.3).

A.2 Dressed gluon state in the mixed space

Even though it is fairly straightforward to go from the full momentum space expression to

the mixed space expression of the dressed gluon state, for the sake of the completeness we

provide the details of the calculation in this appendix. Our starting point is the pertur-

bative expression of the dressed gluon state in full momentum space given in eq. (2.56).

The explicit expressions of the splitting functions in full momentum space are given in
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egs. (2.57), (2.59) and (2.60). We would like to emphasize that these expressions are given
for the incoming gluon with nonvanishing transverse momentum, even though in our setup
it is assumed to be zero. In this appendix, we stick to the most general case, i.e. we keep
the transverse momentum of the incoming gluon nonzero, and only set it to zero at the end.

(i) bare gluon component The two dimensional Fourier transform of the bare gluon com-
ponent of the dressed gluon state can be be written in a completely trivial way:

\(g)[pﬂp]%%—/ezpw\ [P, wls), - (A.11)

(ii) bare quark-antiquark component The bare quark-antiquark component of the dressed
gluon state can be written as

. [ dkf Pk ) .
9stas | 55— (Zqu) [(Q)[kf,kl],(q)[f —lﬁ*,p—lﬁ]} (A.12)

*|(@)[kf. k]2 @[T — ke — kD),

gt / dky dky / =ik (b2 —i(p—k1) (22 +0)
B a/B 27[- (27T)2 VIx12122

<F o (@I 210 @ = K 2] @k 2 @I — k2,

Integration over ki gives 52 [zl —(z24+v— xl)} After renaming zo = w — v and
performing the trivial integral over z; by realizing the delta function, we get

c ki 2k _ n
Rl e SR ] AN CY e e ]

<|(@Ik] k1S @I+ — K p — ki),
dk; ipw _
=ontis [ G5 [ R (@I v =) @~k w ]

X ’(q) [k 21)%5 (@) [T — ki, v]0), - (A.13)

Now, we need the mixed space expression of the splitting function:

— n dzq d2 iq1-(w—2x i(g—q1)-(w—v
P (@l 0], @It =kt w—l] ! = [ G E e wmasiama o

(2
(5161 —q)" -1
(51(1 —q1)? v/ 2pt

After performing the following change of variables

Sfga—q =P, a=K, (A.15)

I (&) . (A14)

the integration over K and P factorizes and both integrals can be performed easily,
yielding

F i [@F s w=a1], @D =k w—e]] =6 [w — (€21 + &)
(i)

X\/F

T (&)AT (v — 21) , (A.16)
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where A7(v—11) is the standard Weizsécker-Williams field in coordinate space whose
expression is given in eq. (2.15). Finally, we can write the bare quark-antiquark
component of the dressed gluon state in the mixed space as

dk+ ) B . ~ B
Y TR CUR D s S CIRUCEEN

x (@&, 21]% @[t — kL, 0)2), - (A.17)

(iii) bare quark-antiquark-photon component As discussed earlier, there are two different
contributions to the quark-antiquark-photon component of the dressed gluon wave
function, depending on whether the photon is emitted from the antiquark or from the
quark. We consider each case separately and start from the emission of the photon
from the antiquark:

. /dk;fr d?ky dky d?ks
JsJetap | Ton (2m)2 27 (27)2

_ A1
X F o L@ ol (N[ Rl @[T = b — K — by — ol

< (@R kS NIk ks (@I = K — kg op — k1 — kol )

gt /dkf d?*ky dk3 d?kso / ik (1+21)—ihe-(@2-+22) —i(p—k1 —k2)-(z3+23)
- sde
a,B 27T (277)2 27T (27‘—)2 21,22,23,L1,L2,L3

SS//

_ AN
X Fl o (@I, 1), (IS z2), @+ = K = k2]

< [(@)[ki, 21)% (NS 22 @) — K — ks 23)0), - (A.18)

After renaming z3 = w — x3, we can first integrate over k1 and ks, and then over z;
and z9. The right hand side of eq. (A.18) then reads

/dk‘+ dk‘Jr —ipw
9s9e aﬁ €

2 27w W ToT3
An

1!

x Fo) [(Q) (k1w — 2 ]Ss (N)[k3w — w2l (@) [p" — Ay — k3w — 903]] .
< (@)K a1]ss (ks @als (@[T — k) — k3, s]), - (A.19)

Now, let us calculate the Fourier transform of the function F(2):

A
F((;q)_m) [(OI) [k w — 21, (V) [ks,w — 2], (@)[pT — ki — kg, w — xg]] S:" (A.20)
_ [ Pa Par 9 gy ige(w-sa)+ilg—a—g)-(was) (Z1)
= / (27'()2 (27T)2 (271‘)26(1 +ig +i(g—q1—¢ 5 +\I,7777 (‘Sl)
1 o) <§2> (&19—q1)" &1[6(q—qu) — fl(h]
V/2Eapt &1/ (&g — q1)? &2(619 — @1)* + &1(62q — @2)? — (L2q1 — €102)?

After performing the following change of variables

Sig—q =P, (A.21)
&2(0—q1) — &2 = &K, (A.22)
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the integrations over P, K, and ¢ factorize, and the integral over the latter results in
a delta function. The right hand side of eq. (A.20) can then be written as

(=1) o7 1 &
W (&) o w— 1&121 + Sawy + (1 — &1 — &)
Vo ) g i () '
2P PK _ip =) g pa oy PT K
/ P T @) B BT (A.23)
(2m)? (2m)? P? K2 + ¢y P?
with ¢ = % The integral over P and K can be performed easily (see for
1
example [55]):
PP PK p, e P K 1o
/ ezP-rJrlK-r s - _ L r ) (A.24)
(2m)2 (2m)2 P2 K2 4 cyP? (2m)2 172 12 4 ¢or'’?
Using the above formula, and realizing that
6(2) [w—{&ajl —{—52.%2—}—(1—61—52)333}] = /5(2) [U} — (€1$1 + f_l’U)] (A25)

s G YR Ol

we can write the mixed space expression of the splitting function as

FE o (@I w— a1l ) 0 — o], @I+~ K — ko )]

/5 [w — (G121 + &v)] 6@ [ {(1 — Z)ZL‘;; + Z@H (A.26)

&) it (£) s e 0 (610w i)

where A7 is the modified Weizsicker-Williams field in the coordinate space, whose

1"

definition is given in eq. (2.16).

We can now consider the second case, in which the photon is emitted from the quark.
Egs. (A.18) and (A.19) hold for this case as well. The difference between the two cases
appears when we calculate the Fourier transform of the splitting function, since their
coordinate space expressions are different:

_ An
F) o l@kF w = a1, ) w = @), @[ — K — kw0 —

2 2 2

- / (37:)12 (C;:)lz éﬂq; a1 (w—z1)+ig2-(w—x2)+i(q—q1—g2)-(w—23) ( 211 \Iﬂf’u(& + &2)
o1 S ( &2 ) [(&1+ &)q — (a1 + a2)]"
V2ept TING &) (6 + &) — (o + )]

o (1—-& — &) (&a — &g)
£2(619 — q1)? + &1(&2q — @2)? — (g1 — &192)?

ss’!

(A.27)
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We perform the following change of variables to factorize the transverse momentum inte-
grals

G +&)g— (1 +q)=P, (A.28)
S — &2 =K . (A.29)

After this, the integration over ¢ gives a delta function, and the result reads:

F @k w =), 0w — o], @ 1" — b — kw0 — )]
—1 - 1 N
B (sz% Vot ) et <§1 g &)5(2) [w — {&a21 + Gama + (1~ & — &)}
2 2 . xTro—xT . w—x n 5\
/ ﬂﬁem‘(fﬂé)ﬂp' (§1+§3§) L K (A.30)
(27T)2(27T)2 P251+§2K2+C()P2’

£
1-61—62)(61+€2)°
integral given in eq. (A.24). After noting that

with ¢g = 0 . The integrations over P and K can be performed by the generic

8w — {&a1 + Eaa + (1 — & — &)23)] 2/5(2) [w—{(& + &+ (1 - & —&)rs}]

ol J( & & H
X0 [” {<1 §1+§2>“+&+&‘” ’

(A.31)
and
(w—a3)" = (&1 + &) (v —3)7 (A.32)
the mixed space expression for F((;q)—qw) reads
FO_ [@k v — o), 0) ks w — 2], @I+ — K — b —s]]

= /U‘S(Q)[w_ {G+&u+(1-& —52)1”3]5(2) [U— {(1 - 516_552)1614- £1i2£2£€2H

(=1) (+1) /\5\( 3 >x B
xm\lls,su(&%—&z)@ “\ar 6 ANz — x1)

X ATI(l—fl—fg,U—l’g;glfj&,xQ—l’l) . (A33)

Putting everything together, one can get the mixed space expression of the dressed gluon
wave function as given in eq. (2.61).
A.3 From bare to dressed components

In order to calculate the production cross section, one needs to calculate the expectation
value of the number operator in the outgoing gluon wave function. The number operator is
defined in terms of the creation/annihilation operators of the dressed photon, dressed quark
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and dressed antiquark. Therefore, the outgoing gluon wave function has to be written in
terms of the dressed components instead of the bare ones. Let us explain this procedure
in a schematic way. The dressed states can be written in terms of the bare ones up to
perturbative O(gegs) corrections as

1 _ 2 2 _
199D = 19)0 + 95 F iy la@o + 9se | Fgr 1) + Flan ooy |la070

92)p = lad)o + e[ Fip) + Fiah | laamo (A.34)

l4qv)p =~ 1a@v)o

The outgoing wave function is given by the dressed gluon state after eikonally interacting
with the target. Written schematically (cfr. eq. (2.62)), it reads

9)out = Sa(w)[g)o + gsFia Sh(v) Sk (21)]g@)o
059 [Fir oo+ Foo_ooy | Sh3)Sp (1) laav)o - (A.35)

(aq—av
We can now use eq. (A.34) to rewrite eq. (A.35) and group the dressed components. The
schematic result for the outgoing wave function in terms of the dressed components reads

9out = Sa(w)lg)p + 9:Fyg) | Sh@)Sp(e1) = Saw)]laa)p (A.36)
5. { [Sh(s)Sp(e1) = Sa(w)] Fp)_g) = [SE©)Sr (1) - Sa(w)] Fig By

(93—qv)
+[Sh(aa)Se(a1) = Sa(w) | FG)_ ) = | Sh(a2)Se(v) = Sa(w)| Fg FR) Haan)o .

which, when written in full detail, is the same as eq. (2.63).

A.4 Product of splitting amplitudes

In this appendix, we present the details of the calculation of the product of splitting
amplitudes. We start with the quark initiated channel, for this channel we have three
different structures for the product of splitting amplitudes that are listed below.

(i) Photon emission before the gluon emission both in the amplitude and complex con-
jugate amplitude:

o (&wzz,,(_) a3 een (2)

fl 5 (5351 —2516)\/\ 3 :|[(2 §1)5/\ (535/+Z§16)\/\ 3 :|

(2 -
X (57777(5 "— 1= 6””05/5// 2 — (57777 (5 "+ e 67777 Ogrgrr|
[( & g & g

= { (2-&)+ §ﬂ 5”'53@ +2i61(2 - &) ol }

5 S E s's’
MQ\A/ ,< ! )

where M&\)\ i (5 1, 52) is defined in eq. (2.36).

(A.37)
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(ii) Photon emission after the gluon emission both in the amplitude and in the complex
conjugate amplitude: the product of splitting amplitudes for this contribution can
be obtained from eq. (2.36) by simply exchanging &; <> &o.

(iii) Photon emission before the gluon emission in the amplitude and after the gluon
emission in the complex conjugate amplitude:

uul 6_1> AN % 7777*(5_2)
T (E)6) (,E o (enals (2

[(2 £9)0M g — i&reM a3, H(z 51)5M Sosr +Z§16>\/\ 3 }

X |:< 51)5»‘65 P léﬁ/\)\OB/ //:| |:< >(57777 (5§/SN —+ l§2 1 0'3/811:| 5
13 &
7 A

= (2= €)@ = )87 55 + 162N by

— €22 — €)M 03, +i€1(2 — £)8MM 0P, ']
|:<2 — é_-l> <2 52 ) 57777 5/\)\58 - 512;2 67777’ 6)\5\68/5/
3

2 1 162

_151< ’52)5m7 S — 52( 51)&?‘7’5”03,3/],
&2 & & &2

=38 /W;;\S‘,;ﬁﬁl(&, £2)

(A.38)

where ./K/lvé\j‘,;ﬁﬁ, (&1,&2) is defined in eq. (2.43).

In the gluon initiated channel, we have three different structures for the product of
splitting amplitudes:

(iv) Photon emission from the antiquark both in the amplitude and in the complex con-
jugate amplitude:

7717’* %\,_\,’* 62 €>
P (€ )p) (5) T(e))e) (§

= [(1—260)0" 6 _5 +ie" o3 _ ] [(1 — 261)0"78, _5 — ieMod ]

—S

€2\ v €2 A €2\ cAx §2 X 3
X [(2@)5 Oz +z§— O'SS/:| [( £1>5 05! *de 085] ,

— {[(1 —261)2 4+ 1]6M 655 — 2i(1 — 26;)€™ o }

{[(2_ )4 (2)° ](wusssm 2(2- ) } |

&1 & 1
(o)

(A.39)

where /\/lM i’ <§1, 5) is defined in eq. (2.77).
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(v) Photon emission from the quark both in the amplitude and in the complex conjugate

amplitude:

i’ AN §2 ua AN €2 >
v+ ol (2 )nia + e (2

= [(1—2¢ — 26)0" 65 g + i€ o2 _ ] [(1 — 261 — 262) 855y — i€ _ )]
& Yowe . & v 3 &£ \smg ;& a3
- [(2 €1+§2>5 6SS+Z§1+€26 085} [(2 §1+§2>5 s a+6" Jss} ’
_ { [(1 — 26, —26)% + 1] 51§55+ 2i(1 — 265 — 26) €M o2 }
S 2 < &2 )T AWV L os &2 <_ 3 >,\)\’ 3~}
X{KQ §1+€2> * §1+ &2 ’ 683+2Z§1+52 ? a+&)° 7

= g M (51 +o g if 52)

(A.40)

where Mé\g\’;ﬁﬁ’ <§1 + &, 51%52> is defined in eq. (2.84).

(vi) Photon emission from the quark in the amplitude and from the antiquark in the

complex conjugate amplitude:

vl el (S Jeienad(2)

_ T - niy’ . &2 AN ¢ &2 AN
= { [1—2(51 + 52)}5’77’ 05, + i€ ag,_sl} [(2 &t 52)5 0s5 + 251 n 526 ag‘g]
x [(1 = 2608775, s —iemo? ] [(? )Mss + z? Mo, ]

1 1

_ €2 7 AN S AN o
= { [1 —2(& + 52)} (2 - 514‘52)57"7 0" 0, g — mﬁ €M g o

(o & A ¢ 58 &2 _ AN 3
+2<2 §1+52)5 e /+z£1+£2 [1 2(514-52)} 5" & oy 5}

[(1 —2¢)) (? )waﬂa&_y - ?&Xenna&_s,

1

— 2(5_2 — 2> (5/\)\677770 P 122(1 — 261 )577776)\)\0—38 .8 ] )
1 1

= 8 MV (g1, &)
(A.41)

where /K/lv;?\y;ﬁﬁ/ (&1,&2) is defined in eq. (2.91).
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Figure 3. The instantaneous contribution to the gsg. term in the Fock state of the quark.

B Suppression of the instantaneous emissions in the correlation limit

Following similar steps as the ones that lead to eq. (2.11) (see e.g. [55], or appendix A.1
for the gluon-induced case), it is easy to see that the wave function for the instantaneous
contribution to the quark channel ¢ — ¢vg is equal to (see figure 3):

2 [kl @)lks] (@l — by~ )]

1 kil kT oo (B.1)
+ T )2 — 2 — _ 2
o[k ks (pT)2(ky + k3 ) &2(&1ip — k1)? + &1 (§aop — k2)? — (§2k1 — &ik2)

where the instantaneous splitting function is defined as:

(B.2)

s//s )

A .
Ot =My + 1Mo

and its product is a real number:
A A
(‘05’7’7;[(‘05’7’78 =8. <B3)

Let us now investigate the relative importance of this contribution with respect to the

others. For instance, the order g.gs process in which the quark emits first a photon and
(2)

then a gluon, is encoded in F) see eq. (2.11), and is equal to (omitting, for ease of

(av—ag)’
notation, the spin indices):
A
F2 e | (D), @)la), (@l — by — K]
L engmie e &P = B [€2(p = k1) — Euko]”
= ) rf}{gﬁb (51)@777(51752) (§1p . kl)Q 52(511) _ k1)2 —|—§1(§2p _ k2)2 _ (§2k1 — §1k2)2 .

(B.4)
Consider now the following ratio, where for the sake of our argument we neglected the
antisymmetric terms in the product of splitting functions eq. (2.36):

FOT ) ) ) Y
(av—ag)” (av—ag) _ (§1+&3) = [ ( B §2> ] (&a(p — k1) — &ik2) B
RYTR?  (61683)? St a) " (Ep—Hk)* o

The first factor in the above equation is a strictly positive function of the longitudinal
fractions &1 and & (while &3 = 1 — & — &), and is numerically very large (~ 10% — 10%).
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Hence, for the instantaneous contribution to the ¢ — ~gq process to be negligible with
respect to the contribution ¢ — ¢y — vgq, we require that:

(E2(p — k1) — E1ka)” 2 (E1p — k1) . (B.6)

Writing k3 = p— k1 — ko and &3 = 1 — & — &5 in the Lh.s., while simultaneously neglecting
p in the r.h.s. (since in the correlation limit of our interest, the sum P = p = k; + ko + k3
of transverse momenta is taken to be very small), the above inequality becomes:

(&aks — 53162)2 > k7. (B.7)

Rewriting the Lh.s. in function of the on-shell momenta k% and & in four-dimensional
spacetime, with the help of k# = (k™,k?/2k™, k), one obtains:

083 (ka + k3) (ko + k3)" > k7 . (B.8)

The term on the left hand is simply the invariant mass of the gluon and quark pair, and
the inequality corresponds to the condition that this pair has to be well separated in
transverse space.

For the contribution where the photon is emitted after the gluon, the wave function is
given by:

FE o k). @)k (@l — by — k)]

1 TRy (€2p — ka)" [1(p — k2) — Ea2kr ]
_ nn AN
9 /kfk;(ﬁ &)e™ ) (&op — k2)? &a(&1p — k1)? + &1 (Sap — k2)? — (&2k1 — E1ko)?
(B.9)
and the instantaneous contribution is subdominant as long as the following ratio is large:
@1 (2) 2
Fag—an Flag-am) ~ (& + &) (1+ &) [1+ <1_ 51) T! % (§1(p = k2) — &b . (B.10)
FOTE® (€16263)2 " & (ap — ko)’

The reasoning here is exactly the same as in the previous case, and we obtain the condition:
€1&3(k1 + k3) (k1 + k3)* > k3 (B.11)

hence this time the invariant mass of the photon-quark pair needs to be of the same order
or larger than the squared transverse momentum of the gluon.

Finally, let us consider the cases of intermediate scattering, i.e. when the quark-photon
or quark-gluon pair scatters off the shockwave, and only afterwards emits a gluon resp.
photon. In the first case, the contribution is given by the product of wave functions:

N [0/ CA | W N [(g)[m (@lp— by — k)|

_ b e g (Ep — k1) & (&(p — k1) — E1ka)" (B.12)
k:fk;rqb (2)¢ (52751) €= 2 (esp— ) §1k2)2 ‘
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Its contribution to the cross section w.r.t. the instantaneous emission is now quantified by

the ratio:
W W p) )
Flan " tae) 't Mlam) _ (6116 ) o) {1 N <1 B 62)2] 2
FATE®) (§1€283)° ! 1 !

(&2(&1p — k1)* + E1(&ap — k2)? — (Gok1 — §1k2)2)2
(€1p — k1)2(E2(p — k1) — Erkz)”

Again, the function of longitudinal momenta is a large and positive number, while the ratio

X

of transverse momenta can be simplified as follows in the correlation limit:

(E2(E1p — k1)? + E1(Eap — k2)? — (Eak1 — E1ks)?)”
(619 — k1)2(&2(p — k1) — Erka)?
-, (R + Euk3 = (Goks — §1k2)2)2 (B.13)
k2 (E2ks — E3ko)
(Eok1 — E1ko)?

K (&aks — §3k‘2)2 7

where we made use of the previous obtained conditions (B.8), (B.11). This ratio is of the

same order or bigger than one, if the following condition is satisfied:
(k1 — &1ka)® 2 K3 . (B.14)

Exactly the same reasoning holds in the case of intermediate scattering of a quark-
gluon pair.

In conclusion, the instantaneous contribution to the ¢ — ygq process is strongly sup-
pressed in the correlation limit, under the conditions (B.8), (B.11), (B.14), i.e. when none
of the outgoing particles are collinear to another. We thus impose the additional require-
ment that the three outgoing particles are well separated in the transverse plane, which
implies an approximate ‘Mercedes’ -like configuration, as illustrated in figure 4. Under
these conditions, also the instantaneous emission in the gluon channel ¢ — ¢gy can be
neglected, since in that case exactly the same reasoning applies.

C Integrals

In this appendix, we present the details of the calculation of the two nontrivial integrals
that one needs to perform in the correlation limit. The first integral is

Ifi’)‘ = /d2rgd2r,yeiK'”+iQ'TgA"(rg)r;.A’\ (51,7"7; ?,rg> ) (C.1)
1

Using the explicit expressions of the standard and modified Weizsacker-Williams fields
given in egs. (2.15) and (2.16), one can rewrite the above integral as

N0 A
. 1 e TeT r
" = s / dPrdry ATy S0 (C.2)
o) 2 2 e
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k1

ko k3

Figure 4. The ‘Mercedes’ type configuration of the outgoing particles in the transverse plane for
the process ¢ — gqvg.

For convenience, let us define

. 1 -
A A
1 = Gl (C.3)
where
= A
i 9 2 ipripT 7’”7_. r
_[1 — /d Td Telpr lp'fﬁ,rﬂm . (C4)

Here, cg = é% (1 — %), and for practical reasons we have renamed 7., and ry as r and 7,
respectively. Likewise, the conjugate momenta K and Q are renamed as p and p. Again
for convenience, we introduce a constant ag and defined the integral that needs to be

calculated as

FrA /d2rd2r P TP E A (C.5)
Lao (72 +a3] [r?2+co(P2+ad)]’
such that
=i\ . EmiA
= alolglo TP (C.6)

As the next step, we introduce Schwinger parameters and rewrite the integral as

+
i — / drd®F / " o dt I P THPT it el (@)
0

1,a0

After completing the squares in the exponent, and renaming the integration variables as

/ ip - ip
—r— £ " C.8
e =T 20+ o) (C.8)

the integral becomes:

. >\ — ;
e K € el e (e
aa 20 A(t + coo)?

oo 2 2 =2
« / dodt ¢~(+07)af =12 /40 o~ [A(t-eoa) (C.9)
0
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Now, the integrations over r’ and 7 can be performed trivially, and the result reads

Im A oo d oo dt Zﬂ-p oM . ]577]57' —(t+coo)ad
1,a0 o 3 2 3|€
20 (t + o) 2(t + cpo)

% e P 2 /4o e_p2/4(t+coa) ) (C.l())

Before we calculate the integrations over the Schwinger parameters o and ¢, we first perform
a change of variables and define o/ = p?/40, after which we perform another change of
variables where we define ¢ =t + cop?/40’. The integral now reads

—+o0o 5777‘ mJi ’ — ’ /
O T 3 AR
cop? /4o’ ¢ 2

After changing the order of the two integrations, the integration over ¢’ can be performed

in a trivial manner:

. A ptoo §m gt / _ /
iy =% [ dt [1&2 -5 ]et Bem eI/ (C.12)
’ b= Jo

The integration over ' can be performed thanks to the following formula

—+o00 B I//2
/ dt tuil eiB/t €7Ct = 2<C> K—y <2\/ BC) 9 (Cl?’)
0

where K_,, is the Modified Bessel function of the second kind, and the final result reads
jm',)\

Lag — p |:5771\/T0p Ky (’a0| V p + cop )
- —5a; Ky (\ao!vp + cop )] (C.14)

p +cp

From this, we obtain the expression for I {ﬂ’)‘ by taking the limit ag — 0:

[ = lim_ I = idrm
ap—

A ) =1 =0
2p 1[5m—2pp]. (C.15)

2 + cop? D2 + cop?

Finally, after renaming the momenta p and p back into K and Q, we arrive at eq. (3.12).
The second integral that we encounter in our calculation of the correlation limit is

Ig’i)‘ = /d2r9d27‘7 B HiQre AN (1 r,iy [A)‘ <£1, T 22, T‘g> — A)\(T‘—y):| . (C.16)
1

In order to evaluate this integral, we use the result of the first integral. First, let us write
explicitly the difference between the modified and standard Weizsacker-Williams fields,
defined in egs. (2.15) and (2.16):

1

2_ -
L)) —-1,.2°
rg+co T3

r (C.17)

QM‘QV

17
A (51,7"7; Z’T’J) — AMry) = o

— 65 —



After plugging this expression into the expression for Ig’M, we get:

i 1 o o ke tiqr, "N Th
L = — d°r dr., T TR T . C.18
2 (2m)? / g 7’3 7‘; + calr% ( )

Note that the form of the second integral is the same as the first integral given in eq. (C.2),
with the exchange of r4 <+ 7. Therefore, we can simply read off the result from eq. (C.15):

. 51 1 , A
(L A - [5*1 o TP (C.19)
p*p? + ¢y p? P2+ ¢y P2
Finally, renaming p into K and p into Q, we arrive at eq. (3.13).
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