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1 Introduction

ΛCDM cosmology has succeeded in explaining the existence and structure of the cosmic

microwave background (CMB), the large-scale structure (LSS), the abundances of the light

elements and the accelerating expansion of the universe. However, the nature of cold dark

matter (CDM) [1], including its production mechanism and interactions, is still not known.

There are many production mechanisms of dark matter, one of which is gravitational

particle production [2]. In this case, dark matter can be produced during inflation and

in post-inflationary phases as well. The relevant models of dark matter include Planckian

Interacting Dark Matter (PIDM) [3–7], WIMPZILLA [8, 9], SUPERWIMP [10], FIMP [11]

(the model considered in [3] can be viewed as “FIMPZILLA”).

In this paper, we focus on Superheavy Dark Matter (SHDM) [12–16], for which

mX > H. The existence of such dark matter may originate from supersymmetry break-

ing theories [17], string inspired models [18–21] or Kaluza-Klein theory of extra dimen-

sion [3, 4, 22]. The amount of gravitational dark matter production during inflation is

well known and it is roughly proportional to H3µ3e−2πµ, where µ ≡
√
m2
X/H

2 − 9/4. In

reality, after inflation, there will eventually be the radiation-dominated universe. There are

a variety of mechanisms of the so-called preheating/reheating period sandwiched between

the inflation and radiation-dominated universe [23, 24] (see [25–29] for reviews). When
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the mass of the gravitationally produced dark matter particle is large, the production rate

is in general exponentially suppressed in terms of the mass of the dark matter particle.

In this case, the produced superheavy dark matter particle may not be sufficient to ex-

plain the existing dark matter relic abundance. However, as noted recently in [30], during

an inflaton oscillation regime [31, 32], where the scale factor oscillates very rapidly, dark

matter particles with number density proportional to H3 can be produced. An analytical

approach for this case is developed recently in [33].

We discuss that there is another scenario where the number density of order H3 super-

heavy dark matter can be produced, where there is a sharp transition between the inflation-

radiation period. This may be realized in some inflationary models such as quintessential

inflation [34], as discussed later.

We will also revisit smooth transition cases by introducing the Stokes line method,

which was used in the analysis of the Schwinger effect [35]. In the community of the

gravitational dark matter production, the common method is to calculate the Bogoliubov

coefficients in the WKB approximation [36–38] which assumes that the mode functions of

the fields are close to adiabatic mode functions. Quantum transitions such as excitations

with slowly changing Hamiltonian [39–41] and particle productions in slowly changing back-

ground [42] are exponentially small, implying that the desired Bogoliubov coefficients can

not be calculated by introducing a normal series solution with integer orders. On the other

hand, the characteristics of mode functions change considerably during the universe’s ex-

pansion, and we have to identify carefully the dominant and subdominant parts in the WKB

ansatz [45] in order to interpret the Bogoliubov coefficients as particle productions. Some

researchers [35, 43–46] considered these questions and argued that the evaluations of parti-

cle productions require more information besides WKB ansatz, i.e. the Stokes phenomenon

which involves the emergence of subdominant component with negative frequency [47].

These studies imply that the Stokes phenomenon can indicate the production events and

provides results with a reasonable precision, and therefore we may adopt this interpreta-

tion. On the other hand, the ref. [48] showed that the superadiabatic approximation can

describe universal and smooth particle productions when the time evolution hits the Stokes

line. This method utilizes Dingle’s theory of asymptotic series [49]. We adopt this method

to calculate the gravitational dark matter production in a smoothly changing background.

We apply two methods to study the gravitational production of dark matter. One

is the Stokes line method. This method can boost our understanding of the analytical

structure of the dark matter production rate and trace the time evolution of the particle

being produced at each moment. The natural basis we used will result in a smooth change

in the particle number during the cosmological evolution, as opposed to the rapid oscillation

in particle number during the cosmological evolution. This is a promising method to boost

the stability of the numerical evaluations. The other method is the connection condition

of the mode function discussed in section 2.3.

There are many models for gravitationally produced dark matter with different mass

ranges and different types of interactions [50–57]. One may ask if it is possible to determine

some properties of such dark matter independently of the details of these models. One such

possibility is to make use of the cosmological collider signals [58–62]. By measuring the
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squeezed-limit non-Gaussianity, from the frequency of its oscillation, we can in principle

read off the mass of the dark matter particle. The spin information may also be read

off from the angular dependence in the squeezed limit. Note though that the frequency

depends on the inflationary Hubble scale and possible non-minimal gravitational couplings

as well. Also, the coupling between dark matter and the inflaton may affect the relic

abundance of dark matter, or correct the mass of the dark matter particle in a significant

way, as we will discuss later.

This paper is organized as follows: in section 2, we setup the model and study three

scenarios of the dark matter gravitational production in the early universe. The dark

matter relic abundance is also calculated. In section 3, we discuss associated cosmological

collider signals which may help to determine the mass of the gravitationally produced

super-heavy dark matter particle. We conclude in section 4.

2 Dark matter and its relic abundance

Consider a FRW universe with the metric ds2 = −dt2 + a2(t)dx2. We denote the dark

matter field as X. The action is

SX = −
∫
d4x
√
−g
[

1

2
(∂µX)2 +

1

2
m2
XX

2

]
, (2.1)

In this paper, we focus on the case where the dark matter field do not have self interaction.

See [56] for introduction of self interaction in the context of gravitational production of

dark matter. The current upper bound suggests σ/mX ' 1cm2g−1 ≤ 5 × 103GeV. The

cross section σ ∼ m−2
X (see [63] and references therein). The self-interaction is not severely

constrained for large masses. Possible self-interaction may be treated as an effective mass

correction.

The equation of motion for X is

Ẍ + 3HẊ − 1

a2
∇2X +m2

XX = 0 . (2.2)

We can write the field X in terms of modes as

X =

∫
d3k

(2π)3
eik·xa−3/2[fkak + f∗ka

†
−k] , (2.3)

where ak and a†−k are the annihilation and creation operators that satisfy the commutation

relations [ak, ak′ ] = 0 and [ak, a
†
k′ ] = (2π)3δ(3)(k− k′). We find

f̈k(t) + ω2
kfk(t) = 0, ω2

k =
k2

a2
+H2µ2 − 3

2
Ḣ, µ ≡

√
m2
X

H2
− 9

4
, (2.4)

where H is the Hubble parameter here. Note that Ḣ is very small in the slow-roll inflation

cases and vanishes in the case of exact de Sitter space.

We will consider three scenarios of the gravitational production of superheavy dark

matter. The production in an exact de Sitter phase is reviewed in section 2.1. We use the

Stokes line method to estimate the particle production in a toy universe in which inflation

is connected to Minkowski spacetime in section 2.2. Section 2.3 is devoted to an analysis

of a sudden transition between the inflation and radiation period.
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2.1 Slow roll inflation

In this section, we review the gravitational particle production during slow roll inflation,

approximated by a period of de Sitter expansion. This part is well known and recently

reviewed in [64]. The particle production in the presence of a background electric field is

discussed in [65].

During slow roll inflation, the scale factor is approximately a(t) = eHt = −1/(Hτ).

When inflation ends, the scale factor starts to evolve in a non-accelerated way. There are

two classes of solutions to the massive field equation of motion, corresponding to “in” state

and “out” state, respectively [58],

f in
k (t) =

√
π

4H
e−πµ/2H

(1)
iµ (−kτ) , (2.5)

fout
k (t) =

(
2H

k

)iµΓ(1 + iµ)√
2Hµ

Jiµ(−kτ) , (2.6)

where H
(1)
ν (x) is the Hankel function of the first kind, and Jν(x) is the Bessel function.

The mode functions are related via a Bogoliubov transformation as

f in
k (t) = αkf

out
k (t) + βkf

out∗
k (t) . (2.7)

Inserting the explicit expressions for the “in” state mode function and “out” state mode

function, we obtain the following expressions for the Bogoliubov coefficients

βk =

(
2H

k

)iµ eπµ/2
√

2πµ

(1− e2πµ)Γ[1− iµ]
, αk = −eπµβ∗k , (2.8)

then |βk|2 can be evaluated as

|βk|2 =
1

e2πµ − 1
. (2.9)

Then

NX =

∫ ∞
0

dk 2πk2|βk|2 . (2.10)

gives the total number of particles produced per comoving three-volume, from the past

infinity to future infinity, as shown below (see also [65]). We can focus on the time duration

when |ω′k/ω2
k| is largest. By studying the maximum value of |ω′k/ω2

k|, we know that particles

are produced mostly around the time

− kτ ∼ µ . (2.11)

Using this relation to rewrite the k integral into τ integral, we have∫ ∞
0

dk k2 = µ3

∫ 0

−∞
dτ

(
− 1

τ

)4

= µ3

∫ 0

−∞
dτ (aH)4 . (2.12)

Then the integral in (2.10) can be evaluated as

NX = 2π|βk|2µ3

∫ 0

−∞
dτ (aH)4 . (2.13)
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The production rate per unit physical four-volume can be obtained as

Γ =
H4µ32π

e2πµ − 1
. (2.14)

The physical number density of particles at each moment can be evaluated as:

nX =
1

a(τ)3

∫ τ

−∞
dτ̃a(τ̃)4Γ =

Γ

3H
. (2.15)

which is constant in time. Hence, as a particular case, nX can be regarded as the number

density at the end of inflation. Then the current DM abundance is [16]:

ΩXh
2 ' 8π

3
ΩRh

2mXnX
M2

plH
2

(
TRH

T0

)
' 1.14× 109µ3e−2πµHmXTRH

M2
pl

(2.16)

in the unit of GeV. Here ΩR and T0 are the radiation energy fraction and temperature

today. This shows that the relic density is exponentially sensitive to µ. If we further

assume that reheating happens soon enough after inflation ends, TRH '
√
HMpl/gR by

energy conservation and µ = 1, we will need H & 109 GeV in order to make X a major

component of DM. Here we assume that production during the exact de Sitter phase is

dominant and determines the eventual relic density, but it may be subdominant depending

on post-inflationary phases, as we will discuss below.

2.2 Inflation connected to Minkowski spacetime

In this section, we discuss the case where inflation is smoothly connected to Minkowski

spacetime. The particle production in this scenario would approximate the particle pro-

duction in more realistic scenarios where inflation is connected to a stage of the universe

with much lower Hubble scale (and thus approximately Minkowski), for example, radiation-

dominated universe with transition time of order H−1
ini .

We introduce the Stokes line method to compute the dark matter relic abundance. The

method utilizes the fact that the adiabatic expansion from the WKB approximation is a

factorially divergent asymptotic series which can be resummed by the Borel’s summation.

Under a proper truncation of the asymptotic series, smooth particle production is obtained

while the physical time is crossing the Stokes line of mode functions [48].

We parametrize our toy model of the scale factor evolution as

a(t) =
eHinit

1 + eHinit
. (2.17)

Note that in this subsection, Hini is the initial Hubble parameter, which is a constant and

not the Hubble parameter H ≡ ȧ/a for all times.

For t � 0, the scale factor a(t) approaches de Sitter spacetime. For t � 0, the scale

factor a(t) approaches Minkowski spacetime with a approaching unity. We would like to

use the Stokes line method to calculate the particle production in this toy model. This

study would shed some light on the particle production in the real universe. We present

the main steps in the following and leave a detailed review of this method in appendix A.

Applications of this method to the inflationary universe is also given in this appendix A.
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Figure 1. Left: tc with different k. The solid blue curve corresponds to the trajectory of tc(k) in

our toy model of smooth transition. The dashed blue curve is the corresponding trajectory for de

Sitter. Right: the Stokes lines defined in appendix A with the same conditions as the left panel.

Each Stokes line passes though tc and t∗c .

We use tc to denote the complex time on lower half-plane satisfying ωk(tc) = 0, and

fk(t) can be expressed as

fk(t) =
exp(−i

∫ t
ti
ωkdt

′)− iSk(t)exp(i
∫ t∗c
tc
ωkdt

′)exp(i
∫ t
ti
ωkdt

′ + iφ)
√

2ωk
, (2.18)

where Sk is the Stokes multiplier which indicates the moment when the Stokes line is hit,

and φ is an unimportant constant phase. Thus, the Bogoliubov coefficients are

αk(t) ≈ 1, βk(t) ≈ −iSk(t)exp

(
i

∫ t∗c

tc

ωkdt
′
)
. (2.19)

We draw the trajectory of tc solutions for both de Sitter and our inflation-Minkowski

case on the left panel of figure 1. We also draw some of the Stokes lines for different k

modes on the right panel. We then integrate eq. (2.19) numerically. The results are present

on the left panel of figure 2. The numerical results can be fitted by

nX ' 10−2H3
iniµe

−2πµ . (2.20)

The equation describes nX estimated by numerical integration well for a wide range of

mX/Hini, shown on the right panel of figure 2.

To be consistent with observations, we require

ΩXh
2 ' 8π

3
ΩRh

2 mXnX
M2

plH
2
ini

(
TRH

T0

)
' 4.31× 10−7TRH

T0

HiniµmX

3M2
pl

e−2πµ = 0.12 . (2.21)
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Figure 2. Left: log |βk| as a function of k for different mX . The exact de Sitter solutions correspond

to the dashed lines (See section 2.1) while the solid curves are evaluated from eq. (2.19). Right: nX
as a function of the mass of the dark matter mX . The red dots are from numerical integration of

eq. (2.19). The blue line is the numerical fitting result from eq. (2.20).

In single-field slow-roll models of inflation, the initial Hubble parameter can be related

to the tensor-to-scalar ratio r as [66]

Hini = 8× 1013
√
r/0.1GeV . (2.22)

For r = 0.05, we have mX/Hini ∼ 4.93 to explain the full dark matter relic abundance.

The corresponding value for r = 0.001 is mX/Hini ∼ 4.125. We draw the parameter space

compatible with ΩDM = ΩX in figure. 3.

2.3 Sudden transition between inflation and radiation domination

In this subsection we aim at evaluating the particle production during a sudden inflation-

radiation transition, with the transition time scale ∆t � H−1
ini . Such a situation may be

realized by modifying the inflaton potential for quintessential inflation [34]. Radiation can

also be produced gravitationally, or one can also introduce coupling between the inflaton

and other fields to reheat the universe [7, 67]. See also [68]. In this case, we can parametrize

the evolution history of the universe a(τ) in the following way,

a(τ) =


− 1

Hiniτ
, when τ < τend . (2.23)

1

Hiniτ2
end

(τ − 2τend) , when τ > τend; (2.24)

such that a and ȧ are continuous. Note that in this subsection, Hini is a constant parameter

(initial Hubble parameter in the inflation stage), which is no longer interpreted as the

Hubble parameter ȧ/a after the sudden transition.
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Figure 3. The parameter space that inflation can produce enough DM according to eq. 2.21. The

gray region is forbidden by energy conservation.

The dark matter X is quantized as

Xk(t) = uk(t)ak + u∗k(t)a
†
−k . (2.25)

Let us focus on subhorizon modes with kmin ≡ amX < k, for which the mass term can be

neglected. We also assume ξ = 0 for simplicity. The mode function satisfies the Mukhanov-

Sasaki equation

(auk)
′′ +

(
k2 − a′′

a

)
(auk) = 0. (2.26)

For the modes with k � aδt−1 ≡ kmax, the solutions can be approximated as follows. First,

the above equation is solved by

uk(τ) =


Hini√
2k3

(1+ ikτ)e−ikτ , whenτ < τend . (2.27)

c1Hiniτend√
2k(τ−2τend)

e−ik(τ−2τend) +
c2Hiniτend√
2k(τ−2τend)

eik(τ−2τend), whenτ > τend; (2.28)

the coefficients c1,2 can be determined by the connecting conditions uk(τ
−
end) = uk(τ

+
end)
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τ

1
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RadiationInflation

τend
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∗

Figure 4. Sketch of the evolution of the comoving Hubble horizon in the sudden transition scenario.

and u′k(τ
−
end) = u′k(τ

+
end) as follows:

c1 =
e−2ikτend(i+ 2kτend(−1− ikτend))

2k2τend
, c2 = − i

2k2τend
. (2.29)

From these we find

|c1|2 − |c2|2 = τ2
end . (2.30)

Inserting the expression of c1 and c2 into the expression for uk(τ) when τ > τend,

uk(τ) =
e−2ikτend(i+ 2kτend(−1− ikτend))

2k2τ2
end

Hiniτ
2
end√

2k(τ − 2τend)
e−ik(τ−2τend)

− i

2k2τ2
end

Hiniτ
2
end√

2k(τ − 2τend)
eik(τ−2τend) . (2.31)

On the other hand, the mode function uk(τ) can be written as

uk(τ) = αkuout(τ) + βku
∗
out(τ) , (2.32)

where uout is the positive-frequency component of the mode function with the normalization

condition

uoutu
′∗
out − u′outu

∗
out =

i

a2
. (2.33)

So the Bogoliubov coefficients are given by

αk =
e−2ikτend(i+ 2kτend(−1− ikτend))

2k2τ2
end

, βk = − i

2k2τ2
end

, (2.34)

which satisfies the normalization condition |αk|2 − |βk|2 = 1.

We have to ensure that the produced particle does not have much backreaction on

our background described by eq. (2.23) and (2.24). So we can estimate the minimum of

– 9 –
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∆t by requiring that the energy density of the produced particles is comparable to the

inflationary vacuum energy as follows:

ρX =
1

a4(τend)

∫
2πk3dk

1

4k4τ4
end

=
2π

a4(τend)
log

(
kmax

kmin

)
1

4τ4
end

. 3M2
plH

2
ini .

That is, as long as ∆t � m−1
X e

( H
Mpl

)2

, backreaction is negligible. Now we estimate the

particle number produced in this comoving k ranging from kmin to kmax as

nX =
1

a(τend)3

∫ kmax

kmin

dk2πk2|βk|2 =
1

a(τend)3

∫ kmax

kmin

2πk2dk
1

4k4τ4
end

=
1

a(τend)3

π

2

(
1

kmin
− 1

kmax

)
1

τ4
end

. (2.35)

Assuming kmax � kmin, nX ∼ Hini
mX

H3
ini ∼ H3

ini for mX ∼ Hini. No matter what value of µ

we take, the de Sitter particle production is much less than the particle production from a

sudden inflation-radiation transition era. The corresponding DM relic abundance can be

estimated similarly:

ΩXh
2 ' 8π

3
ΩRh

2 mXnX
M2

plH
2
ini

(
TRH

T0

)
' 4.31× 10−5TRH

T0

πHinimX

6M2
pl

= 0.12 .

For instantaneous reheating case, we need mX ∼ Hini ∼ 108 GeV to produce enough DM,

which is much smaller compared to the ones in smooth transition scenarios as expected.

2.4 Comparison of three scenarios

In this section, we summarize the main results presented in section 2. We first considered

the particle production in de Sitter in section 2.1. The production is exponentially sup-

pressed in the large mass limit. We proceed to consider more realistic scenarios. Depending

on the time duration of the transition of inflation to radiation dominated universe, we use

different methods. If the transition timescale is larger than H−1
ini , the transition may be

described as a transition from an inflation to a Minkowski Universe. We study the par-

ticle production in this case in section II B. It turns out that the production rate is also

exponentially suppressed. Moreover, it is smaller than the exact de Sitter case since the

polynomial factor is smaller. This is because the subhorizon modes with large k do not

contribute to the particle production. We also studied a scenario where inflation is instan-

taneously connected to the radiation dominated universe. In other words, t � H−1
ini . We

applied the connection condition to this case and found that the production during the

transition period dominates over the production in the de Sitter phase. We summarize our

main results in this section in table 1.

3 Dark matter on the cosmological collider

Let us consider an effective field theory where the dark matter sector couples to the pri-

mordial curvature perturbation ζ in the following way [69]:

S1 = c1

∫
d4xa3ζ ′X2, S2 = c2

∫
d4xa2ζ ′ζ ′X2 . (3.1)

– 10 –
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Scenarios Method nX Hubble Mass

dS Bogoliubov transformation ∼ H3µ3e−2πµ ≥ 109 GeV mX/H ' 1.8

dS-Minkowski Stokes line method ∼ H3
iniµe

−2πµ 8× 1012 GeV mX/Hini ∼ 4.125

Sudden transition Connection condition ∼ H3
ini 108 GeV mX/Hini ∼ 1

Table 1. This table summarizes the main content of section 2.

ζk1

ζk2

ζk3

Xp

Xq

Figure 5. The Feynman diagram that contributes to the cosmological collider signal in the squeezed

limit k3 � k1 ∼ k2.

These two operators can be regarded as coming from the effective field theory of inflation,

or two terms coming from the full Lagrangian of the original quasi-single field inflation

with a constant turning trajectory [59]. Since if we consider other types of interactions,

the procedure of obtaining the characteristic signals will be similar. Thus, we focus on

these two terms for simplicity.

Due to the above interactions, the DM leaves its imprints in the primordial non-

Gaussianity. Here let us assume that mX � H. The dominant contribution to the non-

Gaussianity is from integrating out the dark matter field [70–74]. The resulting non-

Gaussianity is of the shape of general single field inflation [75] and of equilateral shape.

The magnitude of non-Gaussianity is power-law suppressed in the large-mass limit [76].

There is another type of signal, which, in magnitude, is smaller than the equilateral

shape non-Gaussianity from integrating out heavy fields. Usually they are subject to Boltz-

mann suppression e−πµ in the large mass limit. This signal, however, is more informative

and can tell us directly the mass of the dark matter field in terms of Hubble rate during in-

flation. This is the cosmological collider signal in the squeezed limit non-Gaussianity from

which we can also measure the spin of the dark matter particle. This mechanism is known

as the cosmological collider [62] and is closely related to quasi-single field inflation [58–60]

and the primordial quantum standard clocks [77–79].

Given the form of interactions, the 〈ζk1ζk2ζk3〉′ (the prime indicates that we ignore the

momentum-conservation factor (2π)3δ3(k1 +k2 +k3)) is contributed by the loop diagrams.

The dark matter loop can be attached to any of the k1, k2 and k3 legs. In the squeezed

limit k3 � k1 ∼ k2, the leading contribution to the cosmological collider signal comes

from the Feynman diagram depicted in figure 5. The technique of computing this type of
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Figure 6. The cosmological collider signal (k1/k3)2×S(k1, k3)× (
M2

PL

c1c2H2 ) as a function of the ratio

k1/k3 with µ = 2.

loop diagram is initially proposed in [62]. The application to the Standard model mass

spectrum can be found in [80–83], and it had also been applied to complex scalar fields

in [84]. The crucial point is that although in general, loop diagrams may suffer from UV

or IR divergence [85], and usually we need to introduce local counter terms to cancel the

UV divergence, the clock-signal part of the contribution does not suffer from UV or IR

divergence. The reason is that the contribution is coming from the non-local process. In

this case, we only have to use a double Fourier transformation to deal with the momentum

integral. We present the details of the computation in appendix B. It gives the standard

cosmological collider signal in the squeezed limit as

〈ζk1ζk2ζk3〉′ = c1c2Re

[
g(µ)

2−1−8iµH5

k1k2(k1 + k2)4M6
plε

3

(
k1 + k2

k3

)2iµ]
, (3.2)

where the factor g(µ) is

g(µ) =
Γ(2− 2iµ)Γ(4− 4iµ)Γ(−2iµ)4

Γ(1/2− iµ)2Γ(1/2 + iµ)2
sinh2(πµ) . (3.3)

We can express the bispectrum in terms of the dimensionless shape function

S(k1, k2, k3) [86] as

〈ζk1ζk2ζk3〉′ ≡ (2π)4S(k1, k2, k3)
1

(k1k2k3)2
P

(0)2
ζ , (3.4)

where P
(0)
ζ = 1

8π2M2
pl

H2

ε is the power spectrum of the curvature perturbation without the

correction caused by massive fields. We are particularly interested in the squeezed limit

where k1 ∼ k2 � k3. In this limit, the shape function is

S(k1, k3) = c1c2Re

[
g(µ)

23−8iµH

M2
plε

(
2k1

k3

)2iµ−2]
, (3.5)

and we plot k1/k3 × S(k1, k3) in figure 6.
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The estimator of non-Gaussianity can be defined as [82]

fNL ' 8c1c2

∣∣∣∣g(µ)
H

M2
plε

∣∣∣∣. (3.6)

The modest lower bound of fNL can be estimated for an effective field theory with

Planck scale cutoff. For such a theory, c1 ∼ H and c2 ∼ 1 (note that a 1/(
√
εMp)

factor emerges when we canonically normalize ζ). This will lead to vanishingly small

non-Gaussianities. For the toy universe of smooth transition, the typical value for fNL

is 10−24 for r = 0.05, H ∼ 1013 GeV and µ ' 4.9. For r = 0.001, H ∼ 1012 GeV and

µ ' 4.2, fNL ∼ 10−22. For the instantaneous case, the typical value for fNL is 10−10 for

the parameters we considered in the last section.

For the effective field theories which are not Planck mass suppressed, c1 can be larger

than H, c2 can be larger than 1. But too large couplings with the inflaton may change the

relic abundance. To estimate the upper bound, and thus cause inconsistencies for the dark

matter production.

Note that the two operators in (3.1) actually originates from the following two actions

S̃1 =
c̃1

Λ

∫
d4xa3φ′X2, S̃2 =

c̃2

Λ2

∫
d4xa2φ′φ′X2 . (3.7)

where c1 and c̃1, c2 and c̃2 are related via

c̃1 =
c1√
εMpl

, c̃2 =
Λ2c2

εM2
pl

. (3.8)

Now we want to consider c̃1 and c̃2 as order one constants. The bound on the scale of

the EFT should be given by the constraint that there are no overproduction of the dark

matter relic abundance. Note that the decay chanel from a single inflaton to dark matter is

kinematically forbidden since the inflaton is lighter than the dark matter. Thus, to check

the relic abundance, the leading contribution comes from the dark matter produced by

collisions of the thermalized inflaton particles.

The explicit form of the constraint depends on the details of reheating. If the inflaton

is thermalized rather efficiently during reheating, to get the correct relic abundance for

dark matter, we need

Λ & 101.5

(
Mpl

mφ

mX

1GeV

) 1
4

TRH . (3.9)

For the typical parameter space, we have Λ ≥ 105TRH. Depending on the reheating tem-

perature, Λ can take different values.

On the other hand, if the inflaton has no chance to be thermalized, the above bound

does not apply. For example, one may consider brane inflation for the sudden transi-

tion [87, 88], where the inflaton just disappears at the moment of reheating. In addition,

for smooth transition, one may consider quintessential inflation, where reheating can also

be realized by gravitational particle production, without assuming the coupling between the

inflaton and the standard model sector. In principle, dark matter can be created from the
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inflaton during kination as well, but during kination the energy density of the inflaton gets

redshifted rapidly ∝ a−6, and hence this production would not cause a problem for our esti-

mations. One can also consider a scenario where the inflaton decays to a heavy field, while

dark matter is created gravitationally at the end of inflation, and the former heavy field may

later decay to radiation to reheat the Universe. In this case the reheating temperature is

determined by the decay rate of the heavy field, and then the reheating temperature can be

chosen to be sufficiently low so that dark matter cannot get produced at the reheating. In

general, either way, we need to discuss gravitational particle production by a smooth transi-

tion from inflation to kination or an early matter domination, and applying the Stokes line

method to such situations would also be possible, though we used a smooth transition from

inflation to Minkowski spacetime for simplicity. In gravitational reheating one also needs to

worry about an overproduction of gravitons, but this issue can be circumvented by spinodal

instability of the Higgs or by introducing a sufficient number of degrees of freedom for ra-

diation gravitationally produced [68]. One can also use a scenario of [7]. We estimated the

relic abundance assuming smooth transition from inflation to radiation domination, but an

extension of that analysis to cases with a kination phase inserted would be straightforward.

Another lower bound on Λ (and thus upper limit on fNL) can be obtained from the

consideration that (3.7) does not change the dark matter mass too much (otherwise we

lose the prediction power for the mass of the dark matter particle on the cosmological

collider). For instance, if ξ ∼ 1 and R ∼ H2 this means if Λ > 104H, then this additional

term is negligible. Otherwise, the mass of dark matter on the cosmological collider will

significantly differ from the probes that we expect to use to observe dark matter now. This

limit will generically give fNL < 10−6. Thus, we expect that if the cosmological collider

signal is observed for such dark matter production scenarios, it is very likely that the

observed mass of the dark matter is strongly corrected by the inflaton coupling. However,

this conclusion depends on the coupling details between the inflaton and the dark matter.

Since we haven’t exhausted all possible couplings between the inflaton and dark matter,

rather only studied the simplest ones, it remains interesting to see if there can be dark

matter couplings with the inflaton which can naturally take large values.

The dark matter field may also leave some imprints on the power spectrum through

the relation which relates 〈ζζX2〉 and 〈ζζ〉 when the comoving momentum of ζ is soft [89].

However, these relations may not show characteristic features of dark matter, but rather

are universal for all matter components [90]. For example, one can expand the correlation

function in the series of the ratio between the soft leg and the hard leg. The leading order

gives the Maldacena consistency relation which is fixed by dilatation symmetry [91]. The

next-to-leading order is fixed by special conformal symmetry [92]. It is thus unclear how

to extract dark mater properties from these correlators.

Finally, we briefly comment possible isocurvature fluctuations from dark matter. A

field like X that is not directly coupled to the inflaton will introduce isocurvature pertur-

bation. From ref. [50], we can estimate the size of PδX as

PδX ∼
k3m4

X

2π2ρ2
X

∫
d3rei

~k·~r 〈X(~x)X(~y)〉2 . (3.10)
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Since X is a heavy field (µ > 0), X(k) ∝ ( k
aH )iµ, which has no significant k dependence. At

large scale, k → 0, PδX will be suppressed by k3. In other words, the power of isocurvature

mode is diluted by inflation with & 40 e-folds. Therefore we do not expect any large scale

isocurvature signal to be observed.

4 Conclusion

We considered three cosmological scenarios and calculated the dark matter relic abundance

produced gravitationally. Our conclusions are as follows: for exact de Sitter space, the

number density is proportional to H3µ32π
3e2πµ−1

, where µ ≡
√
m2
X/H

2 − 9/4. For a universe

where inflation is connected to a Minkowski universe, we used the Stokes line method to

calculate the dark matter relic abundance. The resulting number density is exponentially

suppressed. We fit the results numerically by eq. (2.20). For a sudden transition where

inflation is immediately connected to a radiation-dominated universe, the produced particle

number density is proportional to H3. A summary of the parameter space of each scenario

can be found in table 1.

The cosmological collider signal of the dark matter particle is discussed. We note that

with the simplest couplings between the inflaton and dark matter, for the inflaton coupling

to satisfy two conditions: (1) does not overproduce dark matter and (2) does not correct

the dark matter mass significantly, the non-Gaussianity produced is too small to observe

in future observations. It is interesting to see if there are mechanisms to boost the non-

Gaussianity of the scenario to observational range to test the scenarios of gravitationally

produced superheavy dark matter.
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A Particle production from the divergent asymptotic series method

In this appendix, we review the divergence series method and use it to study the particle

production for general FRW backgrounds. We will first summarize the result in A.1. The

summarized result will then be derived in A.2. In A.3, as a simple example, we use this

method to recover the known results for particle production in de Sitter space.

A.1 Summary of the result

To study the particle production problem, we start from the equation of motion of the

massive field, which can be rewritten as

f̈k + ω2
k(t)fk = 0, ωk(t) =

√
k2

a2
+m2 − 9

4
H2 − 3

2
Ḣ . (A.1)
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This equation, together with the instant Minkowski initial condition, defines the problem

of particle production on FRW backgrounds.

As inspired by scattering problems in quantum mechanics, the sign of ω2
k(t) determines

whether the mode function is oscillating or decaying in a “potential barrier”, and the

moments when ωk(t) = 0 are turning points. For large enough mass m, the turning points

can be complex. The phase integral along a particular complex line crossing the real axis

is connected to an exponentially small component in the mode function [48].

We denote tc as the complex time located at lower half-plane which makes ωk(tc) = 0,

together with a phase accumulated from tc

Θk(t) = −i
∫ t

tc

ωk(t
′)dt′ . (A.2)

The contour to carry out the integral will be specified in eq. (A.6).

We define the Dingle’s singulant variable

Fk(t) = 2Θk(t) . (A.3)

With these definitions, we write down the form of the approximate solution of eq. (A.1) [48]:

fk(t) ≈ exp[−Θk(ti)]
exp[Θk(t)] + iSk(t)exp[−Θk(t)]√

2ωk

=
1√
2ωk

{
exp

(
− i
∫ t

ti

ωkdt
′
)
− iSk(t)exp[−Fk(ti)]exp

(
i

∫ t

ti

ωkdt
′
)}

. (A.4)

where Sk is called the Stokes multiplier function

Sk(t) =
1

2

[
1 + Erf

(
−ImFk(t)√
2|ReFk(t)|

)]
. (A.5)

The constant factor exp[−Θk(ti)] in the first line of eq. (A.4) is for matching the adiabatic

vacuum 1√
2ωk

e
−i

∫ t
ti
ωkdt

′
when Sk → 0, and the amplitude of the negative-frequency part is

then suppressed by the exponential

Re[Fk(ti)] = Re

[
− 2i

∫ tm

tc

ωkdt− 2i

∫ ti

tm

ωkdt

]
= −i

∫ t∗c

tc

ωkdt . (A.6)

The moment when ImFk(t) = 0 corresponds to the emergence of the negative-frequency

part of the mode function, and the set of complex t satisfying this condition forms the

Stokes line [48]. In the above equation, tm is where the Stokes line intersects the real time

axis. In the integration, we first integrate from tc to tm along the Stoke line, then integrate

from tm to t along the real axis.

From eq. (A.4), the approximated Bogoliubov coefficients can be extracted as

αk(t) ≈ 1, βk(t) ≈ −iSk(t)exp

(
i

∫ t∗c

tc

ωkdt
′
)
, (A.7)

which agrees with the results shown in [35, 45, 46].
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A.2 The divergent asymptotic series method

As suggested by Dingle [49] and Berry [48], to get the particle production in (A.4), we

assume that the dominant part of eq. (A.1) has an asymptotic series solution y in terms of

a large parameter m (or using µ =
√
m2 − 9H2/4 in the cases with constant H).

yk(t) =
exp[Θk(t)]√

ωk

∞∑
j=0

b
(j)
k =

exp[Θk(t)]√
ωk

Bk , (A.8)

where b
(j)
k ∝ m

−j is the j-th order correction. Substitute the series in eq. (A.1), yielding

B̈k −
(

2iωk +
ω̇k
ωk

)
Ḃk +

3ω̇2
k − 2ωkω̈k

4ω2
k

Bk = 0 . (A.9)

It is convenient to introduce a variable Wk(t) = ω2
k(t) to investigate the analytic property

of the differential equation. With this substitution, eq. (A.9) becomes

B̈k −
(

2iW
1
2
k +

Ẇk

2Wk

)
Ḃk +

5Ẇ 2
k − 4WkẄk

16W 2
k

Bk = 0 . (A.10)

By rearranging the equation and integration by part, eq. (A.10) generates

iBk =

∫ t B̈k

2W
1
2
k

− ẆkḂk

4W
3
2
k

dt′ +

∫ t 5Ẇ 2
k − 4WkẄk

32W
5
2
k

Bkdt
′

=
Ḃk

2W
1
2
k

+

∫ t 5Ẇ 2
k − 4WkẄk

32W
5
2
k

Bkdt
′ . (A.11)

Using the fact that Wk corresponds to O(m2) and matching the orders of m in the se-

ries (A.8), we obtain a recurrence relation for b
(j)
k :

ib
(j+1)
k =

ḃ
(j)
k

2W
1
2
k

+

∫ t 5Ẇ 2
k − 4WkẄk

32W
5
2
k

b
(j)
k dt′ . (A.12)

Since the series is expanded around tc, it is reasonable to investigate the recurrence relation

around this point. Assuming that Wk is analytical around tc, we can expand in terms of

(t− tc)n:

Wk(t) = Ẇk(tc)(t− tc) +
Ẅk(tc)

2
(t− tc)2 +O(|t− tc|3) . (A.13)

By defining a variable

qk(t) =

∫ t

W
− 3

2
k Ẅkdt

′ ≈ −2Ẅk(tc)Ẇk(tc)
− 3

2 (t− tc)−
1
2 = C(t− tc)−

1
2 , (A.14)

eq. (A.12) reduces to a polynomial differential equation

− 4iẆk(tc)
1
2C3b

(j+1)
k ≈ q4

k

db
(j)
k

dqk
+

∫ qk

0

5q2
k

4
b
(j)
k dq′k , (A.15)
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where we keep only the dominant term in the integrand. This recurrence relation can be

solved by applying an ansatz b
(j)
k = b̃

(j)
k q3j

k

− 4iẆk(tc)
1
2C3b̃

(j+1)
k =

(
3j +

5

12j + 12

)
b̃
(j)
k . (A.16)

Let b̃
(0)
k = 1, the approximation for b

(j)
k near tc is then given by

b
(j)
k ≈

[
3q3
k

−4iẆk(tc)
1
2C3

]j Γ(j + 5
6)Γ(j + 1

6)

2πΓ(j + 1)
. (A.17)

This solution is quite complicated, but it is enough to know the divergent behavior when

j →∞. We rewrite eq. (A.17) in terms of the singulant variable in the large-j limit as

b
(j)
k (t) ≈ (j − 1)!

2π

1

(−2i
∫ t
tc
W

1
2
k dt

′)j
=

(j − 1)!

2πFk(t)j
. (A.18)

One can easily check that b
(j)
k ∝ O(m−j) which agrees with the ansatz of asymptotic

series (A.8), and this equation indicates that the series Bk is divergent in factorial form. We

will show that the factorial divergence is crucial since it is related to the Borel summation

which generates a subdominant term in the solution.

Now we apply Berry’s theory [48] to derive the Stokes multiplier function Sk(t) shown

in eq. (A.5) which describes the moment when massive particles emerge. To handle a

divergent asymptotic series such as eq. (A.8), the standard method [47] is to truncate the

series into a finite sum and a divergent tail as

yk(t) ≈
exp[Θk(t)]√

ωk

n−1∑
j=0

b
(j)
k −

iexp[−Θk(t)]√
ωk

[
i

2π
eFk(t)

∞∑
j=n

(j − 1)!

Fk(t)j

]
, (A.19)

assuming n is large enough so that eq. (A.18) is applicable. By comparing with eq. (A.4),

the terms inside the square bracket is the Stokes multiplier, and we then apply the Borel

summation to make the series sum meaningful. The first step is to convert the factorial

into the integral of Gamma function, and we denote the multiplier as

Sk(t) =
i

2π
eFk(t)

∫ +∞

0
ds
e−s

s

∞∑
j=n

(
s

Fk(t)

)j
=

i

2π

∫ +∞

0
ds
e
Fk(1− s

Fk
)

s

(
s

Fk

)n 1

1− s
Fk

=− i

2π

∫ +e−Arg(Fk)∞

−1
dz

(1+z)n−1e−Fkz

z
=− i

2π

∫ +∞

−1
dz
e(n−1) log(1+z)−Fkz

z
, (A.20)

where the variable changes to z = s
Fk(t)−1 in the last line, and the contour is deformed that

the upper limit is +∞. The denominator z indicates that the magnitude of the integrand

dominates at z ≈ 0, and we can choose n ≈ |Fk(t)|+ 1 such that the phase is stationary at

z ≈ 0, implying that the integral can be evaluated with saddle-point approximation. Before

proceeding the calculation of Sk(t), we first justify two conditions required by the validity

of the saddle-point approximation: |Fk(t)| has to be sufficiently close to |ReFk(t)| since
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adjusting n can only cancel the real part of the exponent, and |ReFk(t)| has to be large

enough such that eq. (A.18) is applicable. The first condition is valid when the evolution

is close to the Stokes line when ImFk(t) = 0, implying that the saddle point approximation

is valid around the particle production, and it is sufficient to explain the emergence of the

sub-dominant term in the mode function. To justify the second condition, we use the fact

that ReFk(t) is a constant on real axis and proportional to the large parameter m. For the

cases we considered in this paper, ReFk(t) is sufficiently large as long as m & H.

With the notations FRk = ReFk and F Ik = ImFk(t), we expand the integrand in

eq. (A.20) around z = 0 and approximate the integral from −∞ to +∞:

Sk(t) ≈ −
i

2π

∫ +∞

−∞
dz
e(n−1−Fk)z−n−1

2
z2

z

≈ − 1

2π

∫ +∞

−∞
dz

sin(F Ik z) + icos(F Ik z)

z
e−

n−1
2
z2
[
1 + (n− 1− FRk )z

]
= − i

2π

∫ +∞

−∞
dz

cos(F Ik z)

z
e−

n−1
2
z2 − 1

2π

∫ +∞

−∞
dz

sin(F Ik z)

z
e−

n−1
2
z2

− i
(n− 1− FRk )

2π

∫ +∞

−∞
cos(F Ik z)e−

n−1
2
z2

= S− −
1

2
Erf

[
F Ik√

2(n− 1)

]
− i

(n− 1− FRk )√
2π(n− 1)

e−(F Ik )2/(2n−2)

≈ S− +
1

2
Erf

[
−

F Ik√
2FRk

]
, (A.21)

where the constant

S− = − i

2π

∫ +∞

−∞
dz

cos(F Ik z)

z
e−

n−1
2
z2 , (A.22)

and we apply the fact in the last line that |n− 1− FRk | . O(1) as long as n is sufficiently

large. Physically, the initial condition requires Sk(t) = 0 when t is small, which indicates

that the correct S− should be 1/2. In the original method [48] this is handled by taking the

principal value of the integral. Here we show that one can also evaluate S− by deforming the

contour near the origin to be an infinitesimally small semicircle below the singularity z = 0.

Since the integrand is odd, only the integral over the semicircular contour contributes to

S− [93]:

S− = lim
δ→0+

1

2π

∫ 2π

π
dθ cos(F Ik δe

iθ)e−
n−1
2
δ2e2iθ =

1

2
. (A.23)

Thus Sk(t) indeed satisfies the initial condition Sk(t) ∼ 0 when t is small and F Ik (t) � 0.

Moreover, eq. (A.21) also indicates that the particle productions of massive fields are

governed by the error function, and the moment of productions is represented by the time

tm which satisfies F Ik (tm) = 0.

A.3 Example: particle production in de Sitter

We now show that eq. (A.7) does provide us a reasonable estimation of the Bogoliubov

coefficients in inflation scenario a(t) = eHt. For the massive field theory with m > 3
2H,

– 19 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
7

eq. (A.1) becomes

k2e−2Ht + µ2H2 = 0 , (A.24)

where µ =
√

m2

H2 − 9
4 , and the complex solutions which are closest to real axis are given by

tc = −
log µH

k

H
− i π

2H
. (A.25)

Given the exact phase integral

Θk(t) = −i
∫ t

tc

ωkdt
′ = −i

[
Hµ(t− tc)−

ωk(t)

H
+ µ log

(
1 +

ωk(t)

Hµ

)]
=
πµ

2
− i
[
Hµ

(
t+

log µH
k

H

)
− ωk(t)

H
+ µ log

(
1 +

ωk(t)

Hµ

)]
, (A.26)

we can derive βk in the inflation scenario

βk ≈ −iexp

(
i

∫ t∗c

tc

ωkdt
′
)
Sk(t) = −ie−πµSk(t) , (A.27)

which agrees with the definition of de Sitter temperature, and the Stokes multiplier is

Sk(t) =
1

2

[
1 + Erf

(
2Hµ

(
t+

log µH
k

H

)
− 2ωk(t)

H + 2µ log
(

1 + ωk(t)
Hµ

)
√

2πµ

)]
. (A.28)

For the mode with smaller k, it leaves horizon earlier. This is indicated by larger value of

log µH
k which makes the first term in the error function of eq. (A.28) dominates. The nu-

merical solution of the zero imaginary part of eq. (A.26) shows that the typical production

time tm(k) of each mode satisfies the relation

k

a(tm(k))µH
≈ 0.66 . (A.29)

B Details of the computation of the loop diagram

In this section, we present the details of the derivation of the cosmological collider signal

of (3.2). We used the Schwinger-Keldysh formalism [94]. Alternatively, one can use the

in-in formalism [95–97].

The quantization of the X field takes the form

Xk = vk(τ)ak + v∗k(τ)a†−k . (B.1)

Then vk is related to fk as

vk(τ) = a−3/2fk(τ) = (−τ)3/2

√
π

4
He−πµ/2H

(1)
iµ (−kτ) = αka

−3/2fout
k + βka

−3/2fout∗
k .

The second order action for the primordial curvature perturbation is

Sζ = M2
p

∫
dt

d3k

(2π)3
ε(a3ζ̇2 − k2aζ2) , (B.2)

– 20 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
7

where ε is the slow-roll parameter. Quantizing it in the following way

ζk = ukck + u∗kc
†
−k , (B.3)

where c†k, ck are the creation and annihilation operators satisfying the usual commutation

relations:

[ck, c
†
p] = (2π)3δ(3)(k− p) . (B.4)

The mode function satisfies the following equation of motion

ük + (3 + η)Hu̇k +
k2

a2
uk = 0 . (B.5)

To the lowest order in slow-roll parameter, the solution is

uk(τ) =
H

2
√
εMpl

1

k3/2
(1 + ikτ)e−ikτ . (B.6)

In order to calculate the cosmological collider signal of primordial bispectrum analyt-

ically, we first simplify the propagators for X, D++, D+−, D−+, and D−−, as

D++(τ1, τ2) = vk(τ1)v∗k(τ2)Θ(τ1 − τ2) + v∗k(τ1)vk(τ2)Θ(τ2 − τ1) , (B.7)

D+−(τ1, τ2) = v∗k(τ1)vk(τ2) , (B.8)

D−+(τ1, τ2) = vk(τ1)v∗k(τ2) , (B.9)

D−−(τ1, τ2) = v∗k(τ1)vk(τ2)Θ(τ1 − τ2) + vk(τ1)v∗k(τ2)Θ(τ2 − τ1) , (B.10)

where Θ denotes the Heaviside step function. We can analogously define four types of

propagators for ζ, G++, G+−, G−+, G−− in terms of uk(τ).

We rewrite the terms in eq. (B.7) to (B.10) in terms of the Bogoliubov coefficients

defined in eq. (2.7):

vk(τ1)v∗k(τ2) = a−3/2(τ1)a−3/2(τ2)

[
|αk|2fout

k (τ1)fout∗
k (τ2) + αkβ

∗
kf

out
k (τ1)fout

k (τ2) (B.11)

+ α∗kβkf
out∗
k (τ1)fout∗

k (τ2) + |βk|2fout∗
k (τ1)fout

k (τ2)

]
,

v∗k(τ1)vk(τ2) = a−3/2(τ1)a−3/2(τ2)

[
|αk|2fout∗

k (τ1)fout
k (τ2) + αkβ

∗
kf

out
k (τ1)fout

k (τ2) (B.12)

+ α∗kβkf
out∗
k (τ1)fout∗

k (τ2) + |βk|2fout
k (τ1)fout∗

k (τ2)

]
,

from which we know that only the terms with |αk|2 and |βk|2 are different. However,

the |αk|2 and |βk|2 terms are local, thus do not contribute to the cosmological collider

signal [62, 98]. In order to understand the bispectrum in the squeeze limit, we focus on

the terms proportional to αkβ
∗
k and α∗kβk, then the four types of propagators D++, D+−,

D−+ and D−− become identical.

D(k, τ1, τ2) ≡ D++(k, τ1, τ2) = D−+(k, τ1, τ2) = D+−(k, τ1, τ2) = D−−(k, τ1, τ2)

= a−3/2(τ1)a−3/2(τ2)

[
αkβ

∗
kf

out
k (τ1)fout

k (τ2) + α∗kβkf
out∗
k (τ1)fout∗

k (τ2)

]
.
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The squeezed-limit bispectrum can be calculated for all orders in the (k1/k3) expansion

with k3 � k1 ∼ k2. Hereafter, we assume µ is real. The massive scalar propagators become

D(k, τ1, τ2) ≡ D++(k, τ1, τ2) = D−+(k, τ1, τ2) = D+−(k, τ1, τ2) = D−−(k, τ1, τ2)

= a−3/2(τ1)a−3/2(τ2)

[
αkβ

∗
k

(
2H

k

)iµ(2H

k

)iµΓ(1 + iµ)√
2Hµ

Γ(1 + iµ)√
2Hµ

Jiµ(−kτ1)Jiµ(−kτ2)

+ α∗kβk

(
2H

k

)−iµ(2H

k

)−iµΓ(1− iµ)√
2Hµ

Γ(1− iµ)√
2Hµ

J−iµ(−kτ1)J−iµ(−kτ2)

]
(B.13)

However, for simplicity, we focus on the first order in (k1/k3) expansion, where the Bessel

J function is expanded as

Jiµ(z) =
1

Γ(1 + iµ)

(
z

2

)iµ
. (B.14)

Then the propagator becomes

D(k, τ1, τ2) =
a−3/2(τ1)a−3/2(τ2)

2Hµ

[
αkβ

∗
k

(
2H

k

)iµ(2H

k

)iµ(−kτ1

2

)iµ(−kτ2

2

)iµ
(B.15)

+ α∗kβk

(
2H

k

)−iµ(2H

k

)−iµ(−kτ1

2

)−iµ(−kτ2

2

)−iµ]
.

Noting that

αkβ
∗
k

(
2H

k

)iµ(2H

k

)iµ
=
µ2Γ(−iµ)2

2πµ
, (B.16)

and we obtain

D(k, τ1, τ2) =
a−3/2(τ1)a−3/2(τ2)

4πH

[
Γ(−iµ)2

(
−kτ1

2

)iµ(−kτ2

2

)iµ
+ c.c

]
,

and also

D(p, τ1, τ2)D(q, τ1, τ2) =
1

a(τ1)3a(τ2)316π2H2

[
Γ(−iµ)2

(
pqτ1τ2

4

)2iµ

+ c.c

]
. (B.17)

On the other hand, the bispectrum is expressed as

〈ζk1ζk2ζk3〉′= 2c1c2Re

∫ 0

−∞

∫ 0

−∞

dτ1

(−Hτ1)3

dτ2

(−Hτ2)2
[∂τ1G++(k3, τ1,0)−∂τ1G−+(k3, τ1,0)]

×
∫

d3q

(2π)3
D(p,τ1, τ2)D(q,τ1, τ2)∂τ2G++(k1, τ2,0)∂τ2G++(k2, τ2,0) . (B.18)

Since p and q are constrained by momentum conservation p + q− k3 = 0,

〈ζk1ζk2ζk3〉′ = 2c1c2Re

∫ 0

−∞

∫ 0

−∞

dτ1

(−Hτ1)3

dτ2

(−Hτ2)2
[∂τ1G++(k3, τ1, 0)− ∂τ1G−+(k3, τ1, 0)]

×
∫

d3q

(2π)3

∫
d3p

(2π)3
(2π)3δ(3)(p + q− k3)D(p, τ1, τ2)D(q, τ1, τ2)

× ∂τ2G++(k1, τ2, 0)∂τ2G++(k2, τ2, 0) . (B.19)
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First we write the delta function δ(3)(p+q−k3) into an integration of exponential function

in x space and integrate out q and p by Fourier transform. To write this procedure more

explicitly, we have

F (k3) =

∫
d3p

(2π)3

∫
d3q

(2π)3
(2π)3δ(3)(p + q− k3)pmqn (B.20)

=

∫
dx

∫
d3p

(2π)3

∫
d3q

(2π)3
e−i(p+q−k3)·xpmqn , (B.21)

and the Fourier transform is given by∫
d3xeik·xx−∆ = k∆−3 , (B.22)∫
d3p

(2π)3
e−ip·xp∆ = x−∆−3 . (B.23)

Then, we integrate out x. After this procedure, we obtain

〈ζk1ζk2ζk3〉′ = 2c1c2uk1(0)uk2(0)uk3(0)Re

×
∫ 0

−∞

∫ 0

−∞

dτ1

(−Hτ1)3

dτ2

(−Hτ2)2
[∂τ1uk3(τ1)− ∂τ1u∗k3(τ1)] (B.24)

× 1

a(τ1)3a(τ2)316π2H2

[
Γ(−iµ)4

(
k2

3τ1τ2

4

)2iµ

+ c.c

]
∂τ2uk1(τ2)∂τ2uk2(τ2) ,

where we have used the fact that uk(0) = u∗k(0). Finally, we obtain the non-Gaussianity as

〈ζk1ζk2ζk3〉′ = c1c2Re

[
g(µ)

2−1−8µH5

k1k2(k1 + k2)4M6
plε

3

(
k1 + k2

k3

)2iµ]
, (B.25)

where the factor g(µ) is given by

g(µ) =
Γ(2− 2iµ)Γ(4− 4iµ)Γ(−2iµ)4

Γ(1/2− iµ)2Γ(1/2 + iµ)2
sinh2(πµ) . (B.26)
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