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1 Introduction and summary

The study of non-equilibrium dynamics is becoming important both in condensed matter

physics [1–9] as well as in string theory [10–14]. One of the most interesting question in this

field is to understand patterns of thermalization in the systems which are out of equilib-

rium. For example, it is important to know under what conditions a closed quantum system

thermalizes, i.e., for a system prepared in a pure excited state, and undergoes unitary evo-

lution, determine how the late time limit of the expectation values of certain observables

are effectively described by a thermal ensemble.1 Interest in the non-equilibrium dynamics

from string theory point-of-view stems from black hole physics. The AdS/CFT correspon-

dence(or the holographic principle, in general) says that a black hole corresponds to thermal

ensemble in the boundary quantum theory, and the thermalization process in the quantum

system is conjectured to be dual to black hole formation in the bulk gravitation theory.

On the bulk gravity side it has been conjectured that black holes are fast scram-

blers [15]. This proposal led to another conjecture [16] that the chaotic behaviour, that

leads to scrambling, which is parametrized by the Lyapunov exponent λL has an upper

bound, and that upper bound is saturated by black holes. This naturally gave additional

impetus to the study of non-equilibrium dynamics in systems which exhibit chaos, espe-

cially if the Lyapunov exponent of the theory saturates the upper bound.

1The expectation values can equilibrate but the stationary limits may not be described by a thermal

ensemble, which we will observe below for q = 2 theory for which the fermion two-point functions freeze

instantaneously but its values are not described by a thermal ensemble.
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The eigenstate thermalization hypothesis (ETH) is an attempt to explain how closed

unitary quantum systems in pure excited states can thermalize [17, 18]. Thermalization

with ETH crucially involves long time averaging of the observables under consideration. It

is, however, not clear what is the precise relation between chaos and ETH. In many stud-

ies of quantum systems, thermalization is observed even without long-time averaging [3].

Thermalization has also been seen in the integrable systems without long time averaging.

The late time behaviour of integrable models is described by the generalized Gibbs ensem-

bles [19, 20]. These ensembles have fugacities turned on for several conserved charges of

the integrable system. The integrable model, by definition, is not chaotic on its own.

The Sachdev-Ye-Kitaev(SYK) model which is a (0+1) dimensional model of Majorana

fermions with all to all q-body random interactions. The q = 4 and higher models were

studied by Kitaev [4], and by Maldacena and Stanford [21]. They showed that the out

of time ordered four point correlators in these models saturate the upper bound on the

Lyapunov exponent, in addition, these models also satisfy ETH. There has been a lot

of work on this model, its variants and their bulk duals [4–6, 12, 21–48]. The q = 2

SYK model is not chaotic and also does not satisfy ETH. However, unlike integrable local

quantum systems, it does not have infinite number of conserved charges in spite of them

being exactly solvable. In fact, it has only one conserved charge which is the total energy of

the system. With this background in mind, we study non-equilibrium dynamics of excited

states in q = 2, 4, and higher SYK models.

The most convenient method for studying non-equilibrium dynamics, both theoreti-

cally [5–9, 11, 14, 49–51] and experimentally [52, 53], turns out to be quantum quench.

In other words, quantum quenches are the most convenient way of generating non-trivial

excited states of the theory. In quantum quench one abruptly changes parameters of the

Hamiltonian of the system starting from an equilibrium configuration(generally a thermal

state or the ground state) of the system. The change in the coupling generally excites the

system and the system evolves non-trivially with the final Hamiltonian. The evolution of

the system is examined by calculating the expectation values of some of the observables of

the system. If the expectation values of those observables approach the expectation values

in a thermal ensemble, the system is said to have thermalized.

Certain aspects of quantum quenches in SYK models have been studied in [5]. In this

paper, using similar numerical techniques, we will study quantum quenches in q = 2, 4,

and higher SYK models. We will consider one particular observable which is the greater

Green’s function G>(t1, t2).

G>(t1, t2) = −i
N∑
i=1

〈ψi(t2)ψi(t1)〉 (1.1)

For majorana fermions, all other two-point functions can be calculated from G>(t1, t2). The

non-trivial time evolution of G>(t1, t2) can be examined by exactly solving its equations of

motion which are the Kadanoff-Baym(KB) equations. Our analysis will involve changing

various parameters with two different kinds of time dependence. The usual quench pro-
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tocol in condensed-matter literature is changing, suddenly2 or smoothly but rapidly, the

parameters from one value to another different value. We will consider sudden change from

one value to another, which we call step quench. In addition to this, we will also study

bump quench, in which the coupling changes for a finite time interval before returning back

to the original value.3 We follow the convention q = k quench when the final hamiltonian

of the system has k fermion interaction and the couplings Jq undergo quench with q 6= k.

We will also consider only sudden limit for both step and bump quenches.

The quenches which are relevant for our main results are:

• Quenches in q = 2 theory: we use four, six and eight fermion interactions (J4, J6,

and J8 couplings) separately to quench the system for both step and bump protocols.

• Quenches in q = 4 theory: for this theory, we use J2 (two fermion interaction cou-

pling), J6, and J8 with both step and bump protocols.

For quenches in q = 4 theory, we start from finite temperature thermal states which

reduce finite-size effect drastically and ensure good numerical accuracy. For quenches in

q = 2 theory, we start from the ground state as well as from finite temperature states. We

observe that if we take the initial thermal states to be of sufficiently low temperatures, the

effect of the initial temperature becomes insignificant. We consider only the greater Green’s

function G>(t1, t2), because for the Majorana fermions, all other two point functions can

be expressed in term of G>(t1, t2) alone.

The main technical results of our analysis are as follows:

• In q = 2 theory, the two point functions do not thermalize in all the quench scenario.

But an interesting observation is that the two point functions equilibrate instanta-

neously as soon as both the time arguments are outside the quench region.

• In q = 4 theory, the two point functions thermalize for all the quench scenario.

G>(t1, t2) converges exponentially towards its equilibrium expectation value. This

exponential behaviour is observed as soon as both the time arguments are outside

the quench region.

• In q = 4 theory, we also identify two exponents, of which, one is equal to the coupling

and the other is proportional to the final temperature. The first one is the exponent

of G>(t − ta, t) as a function of t with ta fixed, while the other is the exponent of

G>(t, tb) as a function of t with tb fixed.

• We compute the thermalization rate of the effective temperature in both step and

bump quench. We show that the thermalization of the effective temperature fits an

exponential ansatz. We also find that the thermalization rate is independent of the

coupling constant.

2The smallest scale in the sudden limit is the time scale over which the couplings change.
3Although bump quenches are not well studied in condensed-matter literature, they are more relevant

to black hole physics (using AdS/CFT) than step quenches [54, 55].
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An important aspect of the present work is to check if step quenches produce special

fine-tuned pure states which looks exactly thermal. These pure states are inspired by the

Euclidean evolved boundary states of Calabrese and Cardy [56]. These states, which we

will refer to as Kourkoulou-Maldacena (KM) states below, have interesting bulk duals [30].

The details of these pure states can be found in section 2.4. We observed that the final

states of quantum quenches using disordered couplings are not KM states. But one can

use mass like terms to perform the sudden step quenches for which the final states are the

KM states.

The thermalization we observe in q = 4 theory without long time averaging, is much

more robust than what one expects from the ETH. We therefore believe that thermalization

in a chaotic system is more akin to mixing in classical systems which is a stronger condition

than ergodicity.

The outline of this paper is as follows: in section 2, we will briefly recall the SYK

model. This will also be used to fix our notation. We will write down the Schwinger-Dyson

equation for a model with both q = 2 and 4 interactions. The couplings for these terms

will have arbitrary time dependence to start with. We will then set up the Kadanoff-Baym

equations for this system which can be easily generalized for higher q models. Finally

we will briefly discuss the eigenstate thermalization hypothesis(ETH). In section 2.4, we

discuss Kourkoulou-Maldacena states with an eye on possible relation between our results

and these excited states. In section 3, we discuss various quench protocols that we study

in the SYK model and present results of our numerical computations. Section 4 contains

conclusion and discussion where we wrap up our results and discuss about ways to prepare

Kourkoulou-Maldacena states and the implications of thermalization without long-time

averaging.

2 The SYK models

We begin with a review the model studied by Sachdev et al. [5]. This will help set up

notation for subsequent sections. Our starting point is the SYK model with the hamiltonian

H that contains q-point (q even) interaction between N Majorana fermions,

H = (i)q/2
∑

1≤i1<i2<...<iq≤N
Ji1,i2,...,iqψi1ψi2 . . . ψiq (2.1)

The coupling Ji1,i2,...,iq is random with gaussian distribution, with vanishing mean value

and the width of the gaussian is given by

〈J2
i1,i2,...,iq〉 =

J2(q − 1)!

N q−1
. (2.2)

To compute correlators at finite temperature the Schwinger-Keldysh formalism is employed

in which, the observables are computed by integrating along the closed-time contour C.
The initial state is evolved along this contour both forward and backwards in time. The

contour-ordered Green’s function is defined as [5],

iG(t1, t2) = 〈TC (ψi(t1)ψi(t2))〉
= θC(t1 − t2)〈ψi(t1)ψi(t2)〉 − θC(t2 − t1)〈ψi(t2)ψi(t1)〉 (2.3)
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The correlation function in the path integral formalism is computed by inserting the com-

ponents of fields on the forward and return path of the contour. The components of the

matrix Green’s functions that we will be interested in are called greater (lesser) Green’s

functions, denoted as G>(<)(t1, t2), and are defined in the following manner4

G>(t1, t2) ≡ G(t−1 , t
+
2 ) = −i〈ψi(t2)ψi(t1)〉

G<(t1, t2) ≡ G(t+1 , t
−
2 ) = i〈ψi(t1)ψi(t2)〉 ,

(2.4)

where by t+i we mean ti on the upper contour and t−i denotes ti on the lower contour, and

the contracted index i simply denotes a sum over i. The relative minus sign above is due

to swapping of the position of two Majorana fermions under contour ordering. From the

above definitions, for Majorana fermions,

G<(t2, t1) = −G>(t1, t2) (2.5)

This relation holds even for non-equilibrium dynamics [5, 57].

This model exhibits conformal symmetry in the infrared which is spontaneously broken

by the h = 2 mode, where h is the quantum number of the SL(2) subgroup of the conformal

symmetry. This h = 2 mode has chaotic behaviour for q ≥ 4. It turns out that the h = 2

mode saturates the chaos bound λL = 2π/β [16]. The model with only q = 2 term, however,

does not have chaotic behaviour. This is clearly due to the quadratic nature of the action

and as a result the model is integrable. We are interested in studying the SYK model

with time dependent coupling which can exhibit different behaviour by virtue of having

the coupling as a function of time.

Our main object of interest is the Kadanoff-Baym equations which we will use to

analyse the non-equilibrium dynamics of the SYK model. Before we set up the Kadanoff-

Baym equations, let us consider the Schwinger-Dyson equation.

2.1 The Schwinger-Dyson (SD) equations

We will consider the time dependent Hamiltonian which describes different quench proto-

cols depending on the kind of time dependence we allow for the couplings of the theory.

To simplify the matter we will extract the time dependence of the couplings and write it

in terms of separate functions of time. For example, up to the quartic fermion interaction

i.e., q = 4, the Hamiltonian is

H(t) = i
∑
i<j

J2,ijf2(t)ψiψj −
∑

i<j<k<l

J4,ijklf4(t)ψiψjψkψl , (2.6)

where, f2(t) and f4(t) contain the time dependence of the couplings. The partition function

of this model is written in terms of the action functional,

S[ψ] =

∫
C
dt

 i

2

∑
i

ψi∂tψi − i
∑
i<j

J2,ijf2(t)ψiψj +
∑

i<j<k<l

J4,ijklf4(t)ψiψjψkψl

 . (2.7)

4We use the commutation relation {ψi, ψj} = δij . So, G>(t, t) = −i/2 and G<(t, t) = i/2.
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All the interaction terms in the SYK model couple all fermions to each other and have

random couplings. The randomness of the coupling is meant to mimic the disorder in

the system. We will average the partition function over the gaussian distributed random

couplings,

Z =

∫
Dψ

∫
DJ2,ij

∫
DJ4,ijkl P1(J2,ij)P2(J4,ijkl) exp(iS[ψ]) , (2.8)

where the gaussian weight functions, P1(J2,ij) for the quadratic coupling and P2(J4,ijkl) for

the quartic coupling have width 2J2
2/N and 12J2

4/N respectively. Usually in the quenched

disorder the integration over the random variables is carried out at the end of the compu-

tation, however, in the large N limit we can reverse the order. Carrying out the gaussian

integral over the quadratic and quartic couplings gives us the effective action

iSeff = −
∫
C
dt

1

2

∑
i

ψi∂tψi −
1

2
× J2

2

2N

∫
dt1dt2

∑
i,j

f2(t1)f2(t2)ψi(t1)ψi(t2)ψj(t1)ψj(t2)

+
3J2

4

4!N3

∫
dt1dt2

∑
i,j,k,l

f4(t1)f4(t2)ψi(t1)ψi(t2)ψj(t1)ψj(t2)ψk(t1)ψk(t2)ψl(t1)ψl(t2) .

(2.9)

In this effective action the sum runs over all values of i, j, k, l and the combinatoric factors

take care of the ordering of fermions in each term. Following [5], we will write this effective

action in terms of auxiliary fields and convert it into a quadratic action in terms of the

fermions. The path integral in terms of the auxiliary functions, suggestively named as G(t)

and Σ(t),

Z =

∫
DψDGDΣ exp

[
−
∫
C
dt

1

2

∑
i

ψi∂tψ
i+

J2
2N

4

∫
C
dt1dt2f2(t1)f2(t2)G(t1, t2)2

−3J2
4N

4!

∫
C
dt1dt2f4(t1)f4(t2)G(t1, t2)4

+
i

2

∫
C
dt1dt2Σ(t1, t2)

(
G(t1, t2)+

i

N

∑
i

ψi(t1)ψi(t2)

)]
,

(2.10)

where,

G(t1, t2) = − i

N

∑
i

ψi(t1)ψi(t2) . (2.11)

The auxiliary field Σ is introduced so that we can implement the constraint (2.11) as

an equation of motion of Σ. This is done by implementing the constraint through the

δ-function. This procedure reduces the action (2.10) to quadratic form in terms of the

fermions. We can now integrate out the Majorana fermions and write the effective action

S[G,Σ] purely in terms of G and Σ,

S[G,Σ] = − iN
2

Tr(log
[
−i(G−1

0 − Σ)
]
) +

iJ2
2N

4

∫
dt1

∫
dt2f2(t1)f2(t2)G(t1, t2)2

− 3iJ2
4N

4!

∫
dt1

∫
dt2f4(t1)f4(t2)G(t1, t2)4 +

iN

2

∫
dt1dt2Σ(t1, t2)G(t1, t2) .

(2.12)
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An advantage of this form of the effective action is that the Schwinger-Dyson equations

can be derived as equations of motion of this action,

Σ(t1, t2) = G−1
0 (t1, t2) +G−1(t1, t2) (2.13)

Σ(t1, t2) = J2
2f2(t1)f2(t2)G(t1, t2)− J2

4f4(t1)f4(t2)G(t1, t2)3 (2.14)

A similar analysis can be carried out for the six and higher fermion interactions in an

analogous manner. Let us now consider the eq. (2.13) and take the convolution product

with G(t1, t2) from both right and left, this procedure gives us two equation,∫
C
dt3G

−1
0 (t1, t3)G(t3, t2) = δC(t1, t2) +

∫
C
dt3Σ(t1, t3)G(t3, t2) , (2.15)∫

C
dt3G(t1, t3)G−1

0 (t3, t2) = δC(t1, t2) +

∫
C
dt3G(t3, t2)Σ(t1, t3) . (2.16)

To study the Kadanoff-Baym equations besides eq. (2.15), (2.16) we will need the retarded,

the advanced and the Keldysh Green’s functions which are defined as

GR(t1, t2) ≡ Θ(t1 − t2)[G>(t1, t2)−G<(t1, t2)] , (2.17)

GA(t1, t2) ≡ Θ(t2 − t1)[G<(t1, t2)−G>(t1, t2)] , (2.18)

GK(t1, t2) ≡ G>(t1, t2) +G<(t1, t2) . (2.19)

Along these lines define the retarded, advanced self-energy in the following manner.

ΣR(t1, t2) ≡ Θ(t1 − t2)[Σ>(t1, t2)− Σ<(t1, t2)] , (2.20)

ΣA(t1, t2) ≡ −Θ(t2 − t1)[Σ>(t1, t2)− Σ<(t1, t2)] . (2.21)

In the next subsection we will use these ingredients to derive the Kadanoff-Baym equations.

2.2 The Kadanoff-Baym (KB) equations

Equations (2.15) and (2.16) can be manipulated using the real space representation of G−1
0

on the left hand side and contour deformation on the right hand side to write

i∂t1G
>(t1, t2) =

∫ ∞
−∞

dt3{ΣR(t1, t3)G>(t3, t2) + Σ>(t1, t3)GA(t3, t2)} . (2.22)

−i∂t2G>(t1, t2) =

∫ ∞
−∞

dt3{GR(t1, t3)Σ>(t3, t2) +G>(t1, t3)ΣA(t3, t2)} . (2.23)

Note that the contour starts from some time t0 and the operators are inserted in the correct

order for different values of t1 and t2 and then comes back to t0. For quenches starting

from a thermal state, the contour further goes down in the imaginary time direction for an

interval of length βi which is the inverse temperature of the initial thermal state (figure 1).

If one takes the limit t0 → −∞ then for all observables at finite time, the contribution

from the imaginary time interval can be neglected which follows from the Bogoliubov

principle of weakening correlations [58].5

5For this work, the calculation is further simplified because the free part of the Hamiltonian is zero.
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t0 t1

t2

iβ

t0 → −∞
t1

t2

Figure 1. Contour deformation for Bogoliubov principle of weakening correlations.

C

t1

t2
t2C1

t1C2

Figure 2. Contour deformation for Langreth Rules.

We will briefly explain derivation of (2.22) using the Langreth rules below. Derivation

of (2.23) follows in an analogous manner. The left hand side of (2.22) can be derived

starting from the equation (2.15), and choosing the Green’s function G(t3, t2) to be the

greater Green’s function G>(t3, t2), and integrating by parts to get

L.H.S. = i

∫
C
dt3(∂t1δC(t1, t3))G>(t3, t2)

= i

∫
C
dt3δC(t1, t3)∂t3G

>(t3, t2)

= i∂t1G
>(t1, t2) ,

(2.24)

where we have used the fact that G−1
0 is given by the derivative of the δ-function. The

right hand side of (2.15) is

R.H.S. =

∫
C
dt3Σ(t+1 , t3)G(t3, t

+
2 ) . (2.25)

Using the contour deformation in figure 2 we can rewrite (2.25) as∫
C
dt3Σ(t+1 , t3)G(t3, t

+
2 ) =

∫
C1
dτΣ(t1, τ)G>(τ, t2) +

∫
C2
dtΣ>(t1, t)G(t, t2) . (2.26)

The first term in (2.26) can be written as∫
C1
dτΣ(t1, τ)G>(τ, t2) =

∫ t1

−∞
dτΣ>(t1, τ)G>(τ, t2) +

∫ −∞
t1

dτΣ<(t1, τ)G>(τ, t2)

=

∫ ∞
−∞

dτΘ(t1 − τ)Σ>(t1, τ)G>(τ, t2)−
∫ ∞

0
dτ̃Σ<(t1, τ̃)G>(τ̃ , t2) ,

(2.27)

where, τ̃ = t1 − τ . Inserting Heaviside Θ(τ̃) function in the term involving Σ< we can

extend the integration limit from (0,∞) to (−∞,∞). After substituting τ̃ = t1 − τ , the

– 8 –
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integral remains invariant. So we get,∫
C1
dτΣ(t1, τ)G>(τ, t2) =

∫ ∞
−∞

dτΘ(t1 − τ)
(
Σ>(t1, τ)− Σ<(t1, τ)

)
G>(τ, t2) ,∫

C1
dτΣ(t1, τ)G>(τ, t2) =

∫ ∞
−∞

dτΣR(t1, τ)G>(τ, t2) .

(2.28)

Similar manipulations can be carried out for the second term in (2.26) to get,∫
C2
dtΣ>(t1, t)G(t, t2) =

∫ ∞
−∞

dtΣ>(t1, t)G
A(t, t2) . (2.29)

2.3 Eigenstate thermalization hypothesis

It has been shown that the q = 4 SYK model with Majorana fermions [13, 25] and com-

plex fermions [24] with large but finite N satisfy the eigenstate thermalization hypothesis

(ETH). Although it has been claimed [59] that q = 2 SYK model with complex fermions

satisfies ETH, it was later found that the finite N scaling in q = 2 SYK model with

Majorana fermions does not scale correctly with the system size [25]. It has therefore

been suggested that q = 4 SYK model should thermalize while the q = 2 model should

not. Our results do not conflict with this suggestion, however, note that ETH necessarily

involves long-time averaging of the observables [17, 18, 60]. Long time averaging is not

necessary for thermalization or equilibration in many scenario of quantum quenches [3],

even in free theories [14]. In fact, it is not even clear what is the relation of ETH with such

thermalization or equilibration processes which do not involve long-time averaging after

quantum quenches. Also note that in black hole collapse geometries [54, 55, 61], there is

no long-time averaging invloved. These geometries are the bulk duals of thermalization in

the corresponding boundary CFT.

2.4 Kourkoulou-Maldacena states and instantaneous thermalization

In this section we will introduce certain pure excited states in SYK models. The motivation

for constructing these states comes from the boundary state ansatz of quantum quenches

in 1D systems in the thermodynamic limit [56]. The ansatz by Calabrese and Cardy

corresponds to starting from the ground state of a gapped theory and quenching it to a

gapless theory (1+1D CFT), the final state obtained after the quench has the generic form

|CC〉 = e−κHCFT |B〉 (2.30)

where κ > 0 is a parameter fixed by the quench process, HCFT is the Hamiltonian of

the final gapless theory and |B〉 is a conformally invariant boundary state (B state) of

the CFT. We will refer to these states as Calabrese-Cardy(CC) states. Determination of

the particular B state that is relevant for the description of the post quench state of the

system for a specific quantum quench is a non-trivial problem [62]. Nevertheless, using

conformal symmetry of the final theory, it can be shown that expectation values of one-

point and two-point functions effectively thermalize, where the expectation values in the

long-time limit are described by a thermal ensemble with inverse temperature β = 4κ. In
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fact, it has been shown that finite subsystems thermalize where again the long-time limit

is described by a thermal ensemble with inverse temperature β = 4κ [7, 10]. Since the

quench process started from the ground state, the system always remains in a pure state.

An interesting aspect of this process of thermalization of subsystems is that correlation

functions of holomorphic operators of the final CFT thermalize instantaneously [14, 63].

We will now consider certain pure excited states in SYK models. These states were

first constructed by Kourkoulou and Maldacena in [30]. Considering N majorana fermions,

the analogous B states are defined as

(ψ2k−1 − iskψ2k)|Bs〉 = 0, sk = ±1, k = 1, . . . , N/2 (2.31)

Hence, there are 2N/2 number of such B states. These are high energy states. One can

produce lower energy states by evolving these B states for a finite euclidean time κ. We

will refer to these low energy states as KM states.

|KM〉 = e−κH |Bs〉 (2.32)

An interesting feature of KM states is that, in the large N limit, “diagonal” two-point

functions ψi(t1)ψi(t2) are “instantaneously thermalized”(using the 1+1D CFT terminology

used above)

〈KM |ψi(t1)ψi(t2)|KM〉 = Tr
[
e−βHψi(t1)ψi(t2)

]
, i = 1, . . . , N →∞ (2.33)

where the effective inverse temperature β = 2κ. The “off-diagonal” two-point functions

ψ2k−1(t1)ψ2k(t2) have non-trivial time dependence and decay to zero in the long-time limit.

These “off-diagonal” two-point functions are zero in a thermal ensemble. The KM states

also have interesting bulk duals in AdS2.

Unlike in 2D CFT quenches, we could not find any quench scenario with disordered

couplings where the final state is the KM state. This work was initially inspired by our

curiosity about the possibility of the KM states being the final states of step quenches

but not for bump quenches in SYK models. The negative result that the final states in

quenches in SYK models are not KM states leads to deeper understanding of the thermal-

ization process in chaotic theories. We will comment further on this issue in the concluding

section 4.

3 Quantum quenches in SYK models

The KB equations are solved numerically after discretizing the two time arguments t1 and

t2. For quenches in q = 2 theory, we could start from the ground state, since the Green’s

function oscillates and decays fast with time. For all other cases, we start with a thermal

state which gives an exponential decay of the initial data as a function of the relative time

difference. Moreover, since we start from a stationary state, all the initial data in the third

quadrant are shifted functions of the data on (t1 < 0, t2 = 0) line and (t1 = 0, t2 < 0) line.

We use a grid of the kind bounded by red coloured lines in figure 3. Since the terms far

– 10 –
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Figure 3. The red lines mark the grid used for solving the Kadanoff-Baym equations. This

corresponds to ignoring terms on the top left of the second quadrant and the bottom right of the

fourth quadrant where the values of G>(t1, t2) are negligible.

away from the diagonal fall of exponentially fast, the grid points in the second and fourth

quadrant lying outside the red coloured lines are ignored in our numerical code.

We used grids of three different sizes 2001× 1001, 3001× 1501 and 4001× 2001 points.

The computation time grows very fast with increasing grid size. We also used a fixed time

step size dt = 0.05.6 In the rest of the paper, we will suppress factors of this time step

size dt. So, unless it is explicitly mentioned all the times are measured in units of dt. In

step protocols, the quenches happen at t1 = 0 and t2 = 0. For all the cases with bump

protocol, the perturbations7 are turned on between t1 = 1 and t1 = 10, similarly between

t2 = 1 and t2 = 10 for the other direction. The KB equations are solved self-consistently

in this grid using the Predictor-Corrector method. The predicted values on line A are

calculated causally from the data on line B as shown in figure 3. The predicted values are

then corrected until the desired accuracy is obtained.

For most of quenches we are considering here, the initial data is obtained by solving

the SD equation numerically for finite inverse temperature β [5]. For step quenches in q = 2

theory in which J2 interaction is dominant, we can start from the ground state. The initial

data are obtained by solving the SD equation in the ground state (β → ∞) numerically.

In this case we use

lim
β→∞

1

1 + e−βω
= Θ(ω) =


0, if ω < 0.

1/2, if ω = 0.

1, if ω > 0.

(3.1)

6We also checked our results with dt = 0.025 to make sure some of our results are not due to finite

size numerical time steps. But we will not present any numerical results of the runs with dt = 0.025. So,

dt = 0.05 for the rest of the paper.
7Note that we are not doing any perturbative or series expansion in our calculation. The word ‘pertur-

bation’ in this context means exciting the system by turning on the source term which injects energy in

the system.

– 11 –



J
H
E
P
0
7
(
2
0
1
9
)
0
6
6

In case of the bump quench in q = 2 theory, for cases in which we start from the ground

state, the initial data is calculated using the analytic expression for G>(t1, t2). The greater

Green’s function in ground state for q = 2 theory is

G>(t1, t2) =
1

2J2(t1 − t2)
[J1(2J2(t1 − t2))− iH1(2J2(t1 − t2))] . (3.2)

Calculation of final temperature. The temperature in the long time limit is calculated

using the relation [5]

iGK(ω)

A(ω)
= tanh

(
βω

2

)
(3.3)

where GK(ω) is the Fourier transform of the Keldysh Green’s function GK(t1, t2) (2.19)

which is a function of only t1 − t2 in a thermal ensemble and A(ω) is

A(ω) = −2 ImGR(ω) (3.4)

GR(ω) is the Fourier transform of the retarded Green’s function GR(t1, t2) (2.17) which

also is a function of only t1 − t2 in a thermal ensemble.

The relation (3.3) is a result of the KMS condition which ensures [64] that

G>(ω) = −eβωG<(ω) , (3.5)

and it holds for all fermionic theories. We can therefore conclude that the system under

consideration has thermalized only if the quantity on the l.h.s. of (3.3) has tanh profile as

a function of the frequency ω. Note that for the determination of the final temperature we

also have to use the relation between greater and lesser Green’s functions (2.5).

Check for energy conservation. We also check for energy conservation to ensure that

our numerical results are correct. From (2.12), the total energy as a function of time t1 is

given by

E(t1) =

∫
C
dt2Σ(t1, t2)G(t1, t2)

=

∫ t1

−∞
dt2
(
Σ>(t1, t2)G>(t1, t2)− Σ>(t2, t1)G>(t2, t1)

)
(3.6)

In the second line, the first term arises from the upper half of the contour and the second

term arises from the lower half of the contour. We have also used (2.5) for the second term.

The quench processes we are considering, merely satisfying (3.3) in the long time limit

is not sufficient to guarantee thermalization. This is because, as we mentioned above, all

fermionic theories at finite temperature satisfy the relation (3.3). So, to check thermaliza-

tion, we first calculate the final temperature using the above relation. The SD equation of

the final theory is then solved at the calculated final temperature and in the end we check

if the generated real time two-point functions agree with the two-point functions obtained

from the quench process.
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3.1 Quenches in q = 2 SYK model

In this subsection we will study quantum quenches in which the final theory is the q = 2

SYK model, that is the model which only has 1-body (quadratic, J2) interaction. These

quenches are special cases because the two-point functions equilibrate instanteneously.

From (2.22), (2.23), for q = 2 final theory,

∂t1G
>(t1, t2) = −∂t2G>(t1, t2)⇒ G>(t1, t2) = G>(t1 + dt, t2 + dt) (3.7)

This is observed in our numerical solutions of the KB equations below. However, note that

the instanteneously equilibrated configuration is not a thermal ensemble, so the final state

cannot be a KM state.

Since, the initial theory is J2 dominant(for step quench) or a q = 2 theory, we can start

the quench from the corresponding ground state. We will present here only cases in which

J4 interaction is used to perform both step and bump quenches. We also found similar

results for quenches using J6 and J8 interactions, as we expect from (3.7). The results are

qualitatively similar for quenches starting from thermal state.

The value of the J2 coupling is always fixed at 1. We will present results for step

quench with initial J4 = 2 which is suddenly turned off at time t = 0. For bump quench,

we turn on J4 = 5 for a time duration of 9 × dt = 9 × 0.05 = 0.45 from time step t = 1

to t = 10. This same quench parameters are used for all quenches starting from different

initial temperatures including the ones starting from ground state.

The step quench happens at t = 0, the two time arguments of G>(t−100, t) are outside

the quench region if t > 100. The bump quench happens between t = 0 and t = 11 so the

two time arguments are outside the quench region if t ≥ 111. Figure 4 are plots of the real

and imaginary parts of G>(t− 100, t) as a function of time t for step and bump quenches

starting from ground states. One can see that the Green’s function freezes or equilibrates

instantaneously once the two time arguments are outside the quench regions. But the

equilibrated value is different from the thermal expectation value. Figure 5 compares

iGK(ω)/A(ω) with tanh(βfω/2) for step and bump quenches starting from initial inverse

temperature β = 10.

3.2 Quenches in q = 4 SYK model

In this subsection we will consider quantum quenches in which the final theory is q = 4 SYK

model which only has 2-body (quartic, J4) interaction. We will present results for which

the interaction terms used for the quench process is J2. We also found similar results

for quenches with J6 and J8 interactions. For the initial thermal states, we considered

three different inverse temperatures βi = 10, 20, and 30. We find that increasing the

inverse temperature from 20 to 30 does not affect the results much. This is expected

since for a fairly large β, the fermion distribution function is well represented by the step

function (3.1). So, we expect that the quench starting from β = 20 and 30 should also be

qualitatively similar and quantitatively close to the quenches starting from ground states.

Three different values of J4 are used, namely, 0.5, 1 and 1.5. For step quenches, we

start from a theory with J4 and J2. At t = 0, the J2 coupling is suddenly changed to 0.
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(a) Step quench at t = 0
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(b) Bump quench between t = 1 and t = 10

Figure 4. Plots of real and imaginary parts of G>(t − 100, t) for (a) step quench, both the time

arguments are outside the quench region for t > 100, and for (b) bump quench, both the time

arguments are outside the quench region for t ≥ 111. As we can see, the greater Green’s function

equilibrates instantaneously.

-2 -1 1 2
ω

-1.0

-0.5

0.5

1.0

iGK(ω)/A(ω)

(a) Step quench, βi = 10
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(b) Bump quench, βi = 10

Figure 5. Plots of iGK(ω)/A(ω) for the equilibrated limits of (a) step quench and (b) bump

quench. For both the quenches, we start from a thermal state of inverse temperature βi = 10. The

red lines are plots for the function tanh(βω/2) with the respective βf ’s.

For the bump quenches, starting from a theory with only J4, J2 is turned on for a time

duration of 9× dt = 9× 0.05 = 0.45 from time step t = 1 to t = 10. As mentioned above,

we will use this time interval for all bump quench protocol. Changing this time interval

does not affect our main results. Longer time interval only injects more energy into the

system resulting in higher final temperature.

Once both the time arguments are outside the quench region, we find that the greater

Green’s function thermalizes rapidly but not instantaneously, as can be seen in figure 6.

Figures 7a, 7b are two resolved plots of G>(t − 100, t) for different initial inverse tem-

peratures as a function of t for step quenches. Since the step quench happens at t = 0,

both the time arguments are outside the quench region if t > 100. Immediately after time

t crosses 100, G>(t − 100, t) changes rapidly and exponentially towards its equilibrium

thermal value. The evolutions for t > 100, both real and imaginary parts, fit exponential

functions very well. The two exponents of the two exponential fits for real and imaginary

parts are roughly equal. This behaviour is not a numerical artifact. The exponents do

not change with change in time step size. We have checked for different time step sizes

dt = 0.05 and dt = 0.025. Moreover, we have also checked energy conservation using (3.6).
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Figure 6. (a) Real part of the greater Green’s function G>(t − 100, t) in the SYK model with

quartic interaction and changing the quadratic interaction J2 following bump protocol for three

different set-up using different initial temperatures and different values of J4 and J2. (b) Imaginary

part of the same greater Green’s function G>(t− 100, t).
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(a) Step, βi = 20
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(b) Step, βi = 30

120 140 160 180 200

0.0780

0.0785

0.0790

0.0795

t

R
e
[G

(t
-
10
0,
t)
]

-0.0934

-0.0933

-0.0932

-0.0931

-0.0930

-0.0929

-0.0928

Im
[G

(t
-
10
0,
t)
]

(c) Bump, βi = 10
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(d) Bump, βi = 20

Figure 7. Real and imaginary parts of G>(t− 100, t) for different quench protocols.

Similarly, for bump quenches in figures 7c, 7d, once the two time arguments are outside

the quench region, the Green’s function thermalizes rapidly and its real and imaginary

parts fit exponential functions very well. Below, we will consider only the exponent for the

imaginary part which we will denote by γItt.

Im[G>(t− 100, t)]
post quench region−−−−−−−−−−−−→ a1 + b1e

−γIttt (3.8)

The bump quench happens between time steps t = 0 and t = 11, so the two time arguments

of G>(t − 100, t) are outside the quench region if t ≥ 111. One of the most interesting
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Figure 8. The exponent γItt as a function of J4.
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(b) Bump quench, βi = 20, βf = 7.81

Figure 9. Comparison of iGK(ω)/A(ω) (blue dots) with tanh(βfω/2) (thin red line).

numerical result of this work is that we find that

γItt = J4 (3.9)

This can be seen from figure 8 and table 1.

We also check if the final stationary limit is described by a thermal ensemble. For which

we compare iGK(ω)/A(ω) with tanh(βfω/2) for some final temperature βf . Figures 9a, 9b

are two such comparisons. Figure 9a is for step quench with J4 = 1 and step profile of

J2 = 0.03 starting from initial temperature βi = 20. Similarly, figure 9b is for bump

quench with J4 = 1 and bump profile of J2 = 0.3 from t = 1 to t = 10 starting from initial

temperature βi = 20. In all the other quenches, the stationary limit fits thermal ensemble

very well as in these two examples.

Since we observe thermalization, another observable of interest is G>(t, t2) where t2
is fixed. In the hydrodynamics limit [54] of large t, both the real and the imaginary parts

of the expectation value of this observable are again exponential functions with both the

exponents equal. We will consider the exponent of the imaginary part which we denote by

γIt. This exponent is equal to the exponent of the retarded Green’s function in a thermal

ensemble with temperature equal to the temperature of the final thermalized limit of the

quench process. We will denote the exponent of the retarded Green’s function by γret.

Im[G>(t, t2)]
t→∞−−−→ a2 + b2e

−γItt, GR(t, βf )
t→∞−−−→ a3 + b3e

−γrett (3.10)
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Figure 10. The exponent γIt as a function of γconf = π/(2βf ). γret is exactly equal to γIt as we

can see from table 1 so γret is not plotted here.

At low temperature, γIt is proportional to the final temperature.

γIt = γret ∼
π

2βf
(3.11)

In a thermal ensemble, the retarded Green’s function is a function of the relative time

difference. In the conformal limit of SYK model, the retarded Green’s function in a thermal

ensemble of inverse temperature β is

GR(t1, t2) = −i2b cos(π∆)

(
π

sinh(2π(t1 − t2)/β)

)∆

θ(t1 − t2)

(t1−t2)→∞−−−−−−−→ −i2b cos(π∆)(2π)∆ e−2π∆t/β θ(t1 − t2) (3.12)

where ∆ = 1/q = 1/4 and b = (4πJ2
4 )−1/4. In the conformal limit, the exponent is

γconf =
2π∆

β
=

π

2β
. (3.13)

Figure 10 is the plot of γIt and γconf .

At high temperatures, we find that the exponent of GR(t) gets significant correction

compared to its value at the conformal limit. The corrected value of the exponent, which

we have denoted by γret above, is calculated by solving the SD equation numerically.

Important numerical results for the step and bump quenches with J2, starting from

different initial temperatures, are summarized in table 1. We also calculate the exponent

γItt for G>(t, t − 100), G>(t − 300, t), G>(t, t − 300), G>(t − 500, t) and G>(t, t − 500).

The numerical values do not change significantly compared to the values given in table 1

for G>(t − 100, t) hence, we can conclude that G>(t − ta, t) and G>(t, t − ta) thermalize

exponentially with the same exponent for arbitrary ta.

Let us now look at the thermalization rate of the effective temperature in the case of

step as well as bump quench.8 Once the system thermalizes it acquires the final equilibrium

8We thank the anonymous referee for drawing our attention to the computation of the thermalization

rate.
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J4 Quench J2 βi βf γItt γIt γret γconf

0.5 Bump 0.1 20 18.75 0.50 0.08 0.08 0.08

0.5 ” 0.3 20 13.17 0.53 0.10 0.10 0.12

0.5 Step 0.05 20 13.48 0.53 0.10 0.10 0.12

1.0 Bump 0.1 10 9.39 1.08 0.15 0.15 0.17

1.0 ” 0.1 20 13.17 1.06 0.11 0.11 0.12

1.0 ” 0.2 20 10.22 1.06 0.14 0.14 0.15

1.0 ” 0.3 20 7.81 1.12 0.18 0.18 0.20

1.0 ” 0.3 30 12.45 1.00 0.12 0.12 0.13

1.0 Step 0.03 10 9.51 1.16 0.15 0.15 0.17

1.0 ” 0.03 20 14.53 1.16 0.10 0.10 0.11

1.0 ” 0.04 10 9.18 1.14 0.15 0.15 0.17

1.0 ” 0.04 20 13.32 1.15 0.11 0.11 0.12

1.0 ” 0.05 20 12.20 1.14 0.12 0.12 0.13

1.0 ” 0.05 30 13.39 1.18 0.11 0.11 0.12

1.5 Bump 0.1 10 8.89 1.68 0.16 0.16 0.18

1.5 ” 0.1 20 15.99 1.54 0.09 0.09 0.10

1.5 ” 0.1 30 20.05 1.53 0.08 0.08 0.08

1.5 ” 0.3 10 5.31 1.73 0.26 0.26 0.30

1.5 ” 0.3 20 6.28 1.66 0.23 0.23 0.25

Table 1. Numerical results for different quench protocols in q = 4 theory by changing J2 coupling.

The following are absolute values after taking care of the time step dt = 0.05. The value of J4 is

fixed during the entire quench process. The values of J2 are the perturbations used to perform the

different quench protocols.

temperature, which we denote as 1/βf . Following [5], we assume that the relaxation

behaviour of the effective temperature is given by

βeff(T ) = βf + α exp (−ΓT ), Γ =
C

βf
. (3.14)

The βeff settles down to the βf in the long time limit. Therefore one needs to determine

α and Γ in (3.14). To do that we make a change of variables from (t1, t2) to T = (t1 + t2),

and t = t1 − t2 and analyse the ratio of the Keldysh Green’s function with the spectral

function for different values of t but holding T fixed. We repeat this for different values of

T . It is convenient to work in the frequency space, therefore we carry out a partial Fourier

transform with respect to t and compute

iGK(T , ω)

A(T , ω)
. (3.15)

We then calculate the effective temperature by taking small ω limit of the above quantity

by fitting it to a hyperbolic tangent function as given in (3.3). The effective temperature
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Figure 11. (a) Examples of exponential fit of βeff(T ) where T is in units of 2× dt = 0.1, (b) The

thermalization rate Γ as a function of final temperature 1/βf for different values of J4 using step

as well as bump quench protocols.

obtained in this procedure is then fitted to the exponential ansatz given in (3.14). We

summarise our results in the figures 11a and 11b.

It is clear from figure 11b that like in the case of the step quench as was observed in [5],

the thermalization rate Γ for the bump quench is also proportional to the final temperature.

It is also interesting to note that the constant C is independent of the coupling J4.

4 Conclusion and discussion

We studied quench in the SYK model with different quench protocols. While we have

presented results for q = 2 theory, and q = 4 theory with step and bump quench protocols,

we have carried out this analysis for q = 6 as well as for q = 8 models. We find that the

qualitative features of the results are similar to the q = 4 cases.

We observed that the q = 2 theory does not thermalize for any of the quench scenario

we considered. We considered quenching of J4, J6, and J8 using step and bump protocol.

The initial states that we considered are thermal states of inverse temperature βi = 10, 20,

and 30 as well as the ground states. An interesting aspect of all the quenches is that

the greater Green’s function G>(t1, t2) equilibrates instantaneously as shown in (3.7). Its

expectation value freezes once both the time arguments are outside the quench region.

Although in the final states G>(t1, t2) equilibrates instantaneously, its equilibrium value is

not the same as the thermal ensemble expectation value.

The instanteneous equilibation or freezing that we observed is like a glassy state. It can

be shown that if the final theory have both J2 and J4 couplings, then two point functions

always thermalize. This is true even for arbitrarily small J4 coupling in the large N limit

that we are considering. We expect that this would change if we consider effects subleading

in N, where J2 and J4 couplings would truly start competing [65].

It would be interesting to identify the final state after each of these quenches. It is,

however, beyond the scope of the present work since we are working only with the equations

of motion of the G>(t1, t2) and solving them as an initial value problem. The q = 2 theory

is not chaotic and does not satisfy the ETH, nevertheless thermalization in this theory is
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Figure 12. The large t limit of greater Green’s function G>(t, tb) is calculated in the large (t1− t2)

region of the retarded Green’s function GR(t1, t2). Moreover, in this region, the system has more

or less thermalized. Hence, γIt = γret.

possible if the final state were a KM state (2.32). This, for example, happens quite often

with step quenches in 1 + 1 dimensional theories (even in integrable theories) where the

analog of KM states are the CC states (2.30).

In q = 4 theory, we find that thermalization happens in all the quench scenario we

considered. We considered quenching with J2, J6, and J8 using step and bump protocols.

The initial states are thermal states of inverse temperature βi = 10, 20, and 30. We

examined two kinds of greater Green’s functions, G>(t− ta, t) and G>(t, tb) as a function

of time t with fixed ta and tb.

When both the time arguments t − ta and t are outside the quench region, both the

real and imaginary parts of G>(t− ta, t) are exponential functions with the same exponent.

This exponent γItt is equal to the value of coupling J4 of the system. It would be interesting

to compare this result with the bulk calculation. The scalar Feynman propagator is known

to thermalize instantaneously in the AdS2-Vaidya spacetime [66, 67]. This instantaneous

thermalization is seen only for AdS2 and is not observed, say, in AdS3. There is no

analogous calculation for fermions is available in the literature.

The long time limit of both the real and imaginary parts of G>(t, tb) are exponential

functions with the same exponent. This exponent γIt is equal to the exponent γret of the

retarded Green’s function GR(t1, t2) in a thermal ensemble (3.12) with temperature equal

to the final temperature of the quench process. This is obvious at least for the imaginary

part of the G>(t, tb) since the system thermalizes. GR(t1, t2) is a simple multiple of the

imaginary part of G>(t1, t2). As one can see in figure 12, the long time limit of G>(t, tb)

is calculated in a subset of the large (t1 − t2) of GR(t1, t2).

We also studied the thermalization rate for both step and bump protocols. In both

cases we find that the thermalization rate is proportional to the final temperature 1/βf and

the proportionality constant C is independent of the coupling constant of the final theory.

One clear and important observation that we can make is that the thermalization in

q = 4 theory is not because the final state is a KM state. If the final state had been a KM
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state, G>(t− ta, t) would have thermalized instantaneously once both its time arguments

are outside the quench region.9 This is because the ‘diagonal’ two-point function that we

are considering are already thermalized in a KM state.

4.1 How to prepare KM states

The KM state, in principle, can be prepared by performing a sudden quantum quench

starting from the ground state using the extra term

Hµ(t) = iµ(1−Θ(t))

N/2∑
k=1

skψk(t)ψk+1(t) (4.1)

where sk’s specifies the particular |Bs〉 defined in (2.31). This new term has been used in

a different but related context in [30]. The argument behind this assertion is similar to the

argument provided in [68] for the preparation of thermofield double state by performing a

sudden quench. We will consider small µ limit. The full Hamiltonian before the quench at

t = 0 is

H +Hµ = (i)q/2
∑

1≤i1<i2<...<iq≤N
Ji1,i2,...,iqψi1ψi2 . . . ψiq + iµ

N/2∑
k=1

skψkψk+1 (4.2)

The ground state of the above Hamiltonian is the state which minimizes the second term.

But minimizing the second term corresponds to strong positive or negative correlation of

ψk and ψk+1 depending on the value of sk. Strong correlation of ψk and ψk+1 is the basis

of the definition of |Bs〉 in (2.31). In hindsight, it is in some sense obvious why the KM

states were not obtained from the step quench using the disordered couplings like j2,ij or

J2. This is because not just two fermions, but all the fermions were randomly and strongly

correlated in the ground states of the initial Hamiltonians.

4.2 Ergodicity versus mixing

In this work, we don’t consider long time averaging. q = 4 theory satisfies eigenstate

thermalization hypothesis(ETH). But thermalization from ETH crucially requires long

time averaging. Thermalization without long time averaging has been observed in many

other works but in most of the cases it is because the final state turns out to be a very

particular state like CC states. So, in this sense, the thermalization that we observed is

much more robust than what one expects from ETH. Thermalization with ETH follows

from quantum ergodicity. But what we observe is more akin to a quantum version of mixing.

In classical theories, mixing is a much stronger phenomenon compare to ergodicity.

Figure 13a shows ergodic evolution in the classical phase space. The initial state is described

by an ensemble concentrated in the deformed rectangle in the phase space. The volume is

conserved under time evolution due to the Liouville theorem for a closed system, but the

shape can change. For ergodic systems, the shape of the initial sample hardly changes but

9Although quenches in q = 4 theory start from thermal states, as we have noted above the results should

be qualitatively similar and quantitatively close to quenches starting from ground states.
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(a) Ergodicity (b) Mixing

Figure 13. (a) Ergodicity: the shape of the initial sample only changes slightly but sweeps out the

entire allowed region under time evolution, (b) Mixing: the initial sample spreads out and reaches

infinitesimally close to all the points in the allowed region of the phase space. Figure adopted

from [50, 69].

it sweeps out the entire allowed space under time evolution. So, a long time averaging gives

the expectation value in the micro-canonical ensemble. In mixing, as shown in figure 13b,

the initial sample spreads out and reaches infinitesimally close to all the points in the

allowed region of the phase space. So, without time averaging, mixing gives the expectation

value in the microcanonical ensemble.

Using this classical analogy, we believe that even in quantum systems, chaos is a much

stronger condition for thermalization than the eigenstate thermalization hypothesis(ETH).

Our results on thermalization in the quenched SYK model seem to suggest that quench

without long time average is a quantum analog of mixing. It would be interesting to make

this more concrete. We hope to return to this soon.
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