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1 Introduction

1.1 From anomalies to Chern-Simons

The intimate connection between quantum anomalies and correlators of conserved currents

has a long history. In two-dimensional CFTs there are ’t Hooft anomalies (by that we

mean anomalies of continuous, global symmetries) that arise for example when the theory

includes chiral fermions. The most straight-forward way to understand and study them is

through the anomalous Ward identities in momentum space [1, 2]. More specifically chiral

and gravitational anomalies appear as contact terms in the conservation equations

pµ〈jµ(p)jν(−p)〉 ∼ εµνpµ ,

pµ〈Tµν(p)T ρσ(−p)〉 ∼ εµνpµ(pρpσ − ηρσp2) , (1.1)

where jµ is a conserved current (E.g. left/right handed chiral current) and Tµν is the

energy-momentum tensor of the theory. In [3] it was shown that the presence of gravi-

tational anomaly severely restricts the form of energy-momentum tensor correlators and

therefore leads to observable physical effects.
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If we consider three-dimensional theories, by contrast, there are no ’t Hooft anomalies

and instead one encounters the parity anomaly. The latter can be also related to two-

point functions of conserved currents through the contact terms arising from background

Chern-Simons (CS) counterterms [4]

〈jµ(p)jν(−p)〉 3 εµνρpρ ,
〈Tµν(p)T ρσ(−p)〉 3 (εµρλpλ(pνpσ − ηνσ) + (µ↔ ν)) + (ρ↔ σ) . (1.2)

In this work it was shown that in a certain normalization the fractional part of the coefficient

of these contact terms is a physical quantity for the given CFT. This result provided

a systematic tool for understanding various phases and dualities of (2 + 1)−dimensional

parity violating theories (see for example [5, 6]).

The connection between two-dimensional ’t Hooft anomalies and the CS can be made

if we place a three-dimensional theory with contact terms of the type (1.2) on a space

with a boundary [7, 8]. The CS terms are no longer gauge-invariant, with the respective

variations being proportional to gauge and gravitational anomalies at the boundary. In

the case of theory with integer CS terms, their anomalous gauge variation can be canceled

by a contribution from boundary degrees of freedom. This is known as the Callan-Harvey

mechanism [9].

As an example we can consider a theory with massive bulk fermions, which is empty

in the IR and therefore leads to integer CS terms. On the other hand, by imposing suitable

boundary conditions (see for example [10, 11]) this theory contains massless chiral edge

modes whose (integer) anomaly exactly cancels the CS variation. Notice that in this case

the anomaly inflow describes a system of decoupled CS in the bulk and boundary degrees

of freedom.

1.2 Set-up of the paper

In the present work we will consider a more general situation where the anomaly inflow

picture described above doesn’t apply. In particular we will look at a system with prop-

agating, ungapped degrees of freedom in the (2+1)-dimensional bulk. These degrees of

freedom will be subject to boundary conditions that induce nontrivial dynamics at the

edge. We will show that gauge anomalies arise that cannot be removed by neither bulk nor

boundary local counterterms and provide a general framework to compute them from the

bulk correlators. Moreover we will see that the anomaly implies an appearance of a mass-

less pole in the current correlators which we associate with the emergence of chiral edge

currents. The emergent boundary currents remind one of the quantum Hall effect but we

stress that we don’t quite reproduce all the physics of quantum Hall systems described in

the literature since the bulk is not topological. In this sense the present work goes beyond

the known results of [12, 13].

More concretely we will start from a general set-up of (2+1)-dimensional CFT

with some conserved currents corresponding to the (global) symmetries of the theory.

We will then introduce a (1+1)-dimensional boundary, which turns this theory into a

b(oundary)CFT (provided certain boundary conditions are satisfied). If we then couple

the currents to background gauge fields, the respective conservation laws will be broken by
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terms supported at the boundary. Given the fact that both the (1+1)-dimensional anoma-

lies (1.1) and (2+1)-dimensional parity anomalies (1.2) depend on the two-point functions

of the related quantities, we expect this to be the case for boundary anomalies too.1 We

will determine this relation precisely and identify the related anomalous structures.

Given the contact term nature of the anomalies it is natural to want to work in mo-

mentum space, which is sensitive to the coincident behaviour of the correlators. Indeed it

was shown recently in [16] that a wealth of information about various anomalies that could

not be accessed by other methods can be obtained by solving the momentum space Ward

identities. The study of parity-even bCFT anomalies in momentum space was initiated

in [17]. In the latter work it was shown that considering correlators with explicitly non-

conserved perpendicular momentum allows for new kinds of contact terms that precisely

account for boundary conformal anomalies. Here we will extend this work by including

parity-odd gauge and gravitational anomalies.

The main original contribution of this paper is the solution of anomalous Ward iden-

tities (3.3), (3.14) given by the equations (3.4) and (3.15) respectively. As a side result we

obtain criteria (3.12), (3.20) for the class of theories studied in this paper. Furthermore

our massless free fermion results (4.8), (4.14) are novel to the author’s knowledge.

The present work is structured as follows. In section 2 we set up the formalism of the

paper by discussing the boundary conditions for the currents and energy-momentum tensor

and their practical implementation. Here we also introduce the relevant anomalies and the

respective anomalous Ward identities in position space. Section 3 contains most of the novel

results of this paper. In it we explore the consequences of anomalous Ward identities in the

momentum space and find their particular anomalous solution. In section 4 we will present

the computation of U(1) and gravitational anomalies for free, massless (2+1)-dimensional

fermion and finally we conclude in section 5.

2 Boundary anomalies

2.1 Conserved charges and boundary conditions

Before we start let us introduce the notational conventions used in this paper. We will con-

sider a (2+1)-dimensional theory with a Lorenzian signature (+,−,−) containing a planar

boundary placed at xn = 0 (for a spacelike direction xn). The coordinate system will be

denoted by xµ = (xi, xn) with Roman letters denoting the (1+1)-dimensional coordinates

parallel to the boundary. Throughout the paper we will use the vector notation for the

momenta parallel to the boundary p↔ pi.

Let us now assume that the theory at hand has a global bulk symmetry corresponding

to a conserved current jµ

∂µj
µ = 0 . (2.1)

We would now like to construct a corresponding conserved charge. The bulk Noether

charge will satisfy

∂0Q = ∂0

∫
dx1dxnj0 = −

∫
dx1dxn∂nj

n = −
∫
xn=0

dx1jn , (2.2)

1For example it was shown recently that the boundary conformal anomalies can be fully determined

from the two-point functions of energy-momentum tensor [14, 15].
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where we used the conservation of jµ and integration by parts. This charge is conserved if

jn|xn=0 = ∂ij̃
i , (2.3)

for some local, gauge-invariant boundary current j̃i with scaling dimension ∆j̃ = 1. Since

the anomalous dimension of boundary current j̃i vanishes, it should be conserved in a

unitary bCFT and we arrive at a simpler boundary condition

jn|xn=0 = 0 , (2.4)

which is what we will assume in the present work.

If the current satisfies (2.3) we can define a conserved charge

Q′ = Q+

∫
xn=0

dx1j̃0 . (2.5)

Note that an equivalent effect is achieved by redefining the parallel components of

the current

j
′i = ji + δ(xn)j̃i (2.6)

For example (2.3) is trivially satisfied if j̃i is a conserved boundary current, which can

happen in the presence of boundary degrees of freedom charged under the symmetry group.

Next we will look at the bulk energy-momentum tensor Tµν . The translational in-

variance in directions parallel to the boundary remains preserved, which yields the two

conserved currents

∂µT
µi = 0 . (2.7)

Just as above, the corresponding bulk charges will satisfy

∂0Q
i = ∂0

∫
dx1dxnT 0i = −

∫
dx1dxn∂nT

ni = −
∫
xn=0

dx1Tni . (2.8)

Hence a conserved charge can be defined if

Tni|xn=0 = ∂j t̃
ji , (2.9)

for some local boundary operator t̃ji with the classical scaling dimension 2.2 As before the

conserved charges are obtained via a shift

Q
′i = Qi +

∫
xn=0

dx1t0i , (2.10)

which is equivalent to the redefinition of the parallel components

T
′ij = T ij + t̃ijδ(xn) (2.11)

2In general, for coupled theories with boundary RG flows, the operator t̃ij can acquire anomalous

dimension as seen in [18]. Nevertheless at a conformal fixed point in (2+1) dimensions, which is the case

considered in this paper, the anomalous dimension and l.h.s. of (2.9) have to vanish (see [19] for a more

detailed discussion of constraints imposed by the boundary conformal invariance).
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Including the boundary breaks the Lorentz group down to the single generator subgroup

SO(1, 1). By computing the corresponding Noether’s charge we find that its conservation

requires t̃ij to be symmetric.

In addition the theory can be invariant under the boundary conformal group which

also contains dilatations and the two preserved special conformal transformations. By

computing the corresponding charges and assuming (2.9) it can be shown that the operator

t̃ij has to be traceless (t̃ii = 0) and conserved (∂it̃
ij = 0) by scale and special conformal

invariance respectively. This means that in a conformal theory t̃ij can be thought of as an

energy-momentum tensor of some boundary degrees of freedom.3 The conformal invariance

is only guaranteed subject to the well known Cardy condition [21]

Tni|xn=0 = 0 . (2.12)

Throughout the majority of this paper we will focus on theories possessing a conserved,

traceless bulk energy-momentum tensor satisfying (2.12) with t̃ij = 0 for simplicity (bound-

ary degrees of freedom can always be included into the present analysis via (2.6) and (2.11)).

2.2 Background fields and variational principle

To perform computations we will treat the background fields as sources for the relevant

composite operators. More specifically we will couple jµ and Tµν to a background gauge

field Aµ and the metric gµν respectively. In order to do this we need to specify boundary

conditions for the background fields. The boundary conditions used in this paper will be

the following

∂nAi|xn=0 = 0

An|xn=0 = 0 , (2.13)

while the parallel components Ai|xn=0 ≡ Âi are not restricted.4

Similarly for the metric (in a suitable coordinate system) we impose

∂ngij |xn=0 = 0

gin|xn=0 = 0 , (2.14)

with the parallel metric gij |xn=0 ≡ g̃ij being unrestricted function of the boundary coor-

dinates. The connected correlators will be defined through functional derivatives of the

3These boundary degrees of freedom can either be a decoupled 2d CFT existing at the boundary or more

generally the boundary fields could also be coupled to the bulk through a fixed point coupling as in [20].
4If we wish to extend the background fields into the upper half-plane the boundary conditions (2.13) are

consistent with the classical parity transformations under the reflection through the boundary

An
xn→−xn→ −An

Ai
xn→−xn→ Ai
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partition function w.r.t. gauge field and the metric

jµ(x)↔ 1

i

δ

δAµ(x)
; Tµν(x)↔ 2i

δ

δgµν(x)
, (2.15)

where we will set all the background fields to zero/flat value at the end. To be able to

perform the functional differentiation we also need to define variational rule consistent

with (2.13) and (2.14). For a field φN satisfying Neumann boundary condition such a

variational rule can be defined (cf. [17]) via the method of images

δφN (x)

δφN (y)
≡ δN (x, y) ≡ δ(x− y) + δ(x̄− y) , (2.16)

where x̄ = (xi,−xn) is the position of image in the unphysical region. Note that by

definition δN reduces to the usual delta function in the lower half plane and satisfies
∂
∂xn δ

N (x, y)|xn=0 = 0.

2.3 Anomalous Ward identities

When coupling the theory to background fields, operator equations (2.1), (2.7) can re-

ceive c-number corrections corresponding to quantum anomalies. Since there are no bulk

anomalies of continuous symmetries in odd dimensions, these corrections therefore have to

be supported at the boundary. To derive the form of the anomaly we will assume that the

theory is classically invariant under gauge transformations and diffeomorphisms consistent

with the boundary conditions (2.13), (2.14). In particular this means that at the boundary

the gauge transformations take the usual form

Âi → ∂iα̂ (2.17)

where the boundary background gauge field is defined through a BC Âi = Ai|xn=0 and

α̂ is an arbitrary function of the parallel coordinates xi.5 Since there is no bulk anomaly

the anomalous gauge transformation of the generating functional has to be localized to

the boundary (I.e. δgaugeW =
∫
xn=0 α̂ . . . ). The form of the boundary anomaly can then

be determined by solving the Wess-Zumino consistency conditions subject to (2.17) (this

was done for example in [22, 23]), which gives the following expression for the consistent

unintegrated anomaly:

∂µ〈jµ〉 =
a∂
4π
δ(xn)εij∂iÂj . (2.18)

Similarly by varying the generating functional w.r.t. parallel diffeomorphisms we arrive at

the consistent form of the gravitational anomaly

∇µ〈Tµi 〉 =
e∂

192π
δ(xn)εkl∂j∂kΓ̂

j
li , (2.19)

where Γ̂ are the Christoffel symbols compatible with the boundary metric.6 Varying both

sides (2.18), (2.19) w.r.t. Aj(x
′), gkl(x

′) respectively we obtain anomalous Ward identities

5The function α̂ can be thought of as the boundary limit of bulk gauge transformation δAµ = ∂µα

satisfying Neumann BC.
6In the Gaussian normal coordinates, the boundary metric can be defined through the xn → 0 limit of

the bulk component gij .
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in the flat spacetime

∂µ〈jµ(x)ji(x′)〉 =
1

i

δ

δAi(x′)
∂µ〈jµ(x)〉|Aµ=0 =

1

i

a∂
4π
δ(xn)εij∂iδ

N (x, x′) , (2.20)

and

∂µ〈Tµj(x)T kl(x′)〉 = 2i
δ

δgkl(x′)
∇µ〈Tµj(x)〉|gµν=ηµν

= 2i
e∂

192π
δ(xn)εij∂i(∂

k∂l − ηkl∂2
m)δN (x, x′) , (2.21)

where the Neumann delta δN function was defined in (2.16).

3 Momentum space analysis

Following [17] we want to analytically extend the correlators into the upper half-plane

xn > 0.7 The corresponding momentum space correlators are then defined via Fourier

transform as usual. The goal of this section is to identify within the respective two-point

functions the structures responsible for (2.18) and (2.19).

3.1 Current correlator

We will start our analysis with two point functions of the conserved bulk current jµ (2.1)

subject to boundary condition (2.4). The correlators 〈jj〉 can be defined in the lower half-

space so we will analytically continue them to the unphysical upper half-space region and

then take the Fourier transform over the whole of R1,2

〈jµ(p, pn)jν(p′, p′n)〉 =

∫
ddxeipx

∫
ddx′eip

′x′〈jµ(x)jν(x′)〉 . (3.1)

Following [17] we will further take the exceptional kinematics with pn > 0, p′n = 0 which

explicitly breaks the perpendicular momentum conservation. Physically this corresponds to

an amplitude where the incoming state gets absorbed by the boundary. The correlator (3.1)

doesn’t vanish in this kinematical limit, instead it takes a form dictated by the boundary

conformal group. Based on the invariance w.r.t. translations parallel to boundary, the

momentum space correlator takes the form

〈jµ(p, pn)jν(p′, 0)〉 = δ(p+ p′)Πµν(p, pn) , (3.2)

where Πµν is some covariant tensor quantity.8 The goal of our analysis is to identify a

structure responsible for the anomaly in Πµν .

We first Fourier transform (2.20) with the exceptional kinematics p′n = 0 to get the

momentum space Ward identity

pµΠµj(p, pn) = −4i
a∂
4π
εijpi ,

p′νΠiν(p, pn) = −pjΠij = −4i
a∂
4π
εijpj , (3.3)

7In presence of branch cuts in the normal direction, we can always choose the principal branch as the

definition of the correlators.
8Note that the conserved bulk contribution proportional to δ(pn) is excluded as long as pn 6= 0.
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where we have accounted for the extra factor of 2 coming from the normalization of the

delta function on a half-line (I.e.
∫
R dx

nδ(xn) = 2
∫
R−
dxnδ(xn) = 2).

A parity-odd solution to (3.3) consistent with Lorentz subgroup SO(1, 1) and scale

invariance can be found

Πij
an.(p, pn) = 4i

a∂
4π

[
εikpkp

j + εjkpkp
i

p2

(
1− F

(
p2

p2
n

))
+ εijF

(
p2

p2
n

)]
,

Πin
an.(p, pn) = 8i

a∂
4π

F
( p2
p2n

)
pn

εijpj , (3.4)

where p2 ≡ pipjη
ij and F is a model dependent form-factor function.9 Note that (3.4) is

only a particular solution to (3.3) in that it doesn’t include the non-anomalous, parity-even

part. The solution to non-anomalous Ward identities for position space two-point functions

of conserved bulk currents and energy-momentum tensor on spaces with planar boundaries

was found in [24] and [25].

Next we can consider the extremal limits of the solution (3.4). First we consider

the pn → 0 limit, keeping p2 finite, nonzero or pn
|p| → 0. Physically this limit describes

excitations moving parallel to the boundary. For a smooth behaviour of Πin and (i ↔ j)

symmetry of Πij in this limit we have to impose

F

(
p2

p2
n

)
pn→0
≈ 0 +O

(
p2
n

p2

)
(3.5)

and the limit of the anomalous solution (3.4) becomes

Πij
an.(p, 0) = 4i

a∂
4π

εikpkp
j + εjkpkp

i

p2
,

Πin
an.(p, 0) = 0 . (3.6)

The manifest nonlocality of this solution implies it corresponds to the behaviour of the

correlator at non-coincident points in the position space. Indeed, the first line of (3.6)

looks exactly like the anomalous, parity-odd contribution to the axial current correlator

in a (1 + 1) dimensional CFT, which is supported at non-coincident points in the position

space [26]. Physically (3.6) implies the existence of chiral currents at the boundary.10

Next we will examine the solution in the pn → ∞ limit or more precisely
|p|
pn
→ 0.

In this limit bulk excitations with momenta parallel to the boundary ’freeze out’ leaving

behind some local terms in the effective action and possibly decoupled boundary degrees

9In general when determining Πij
an., the SO(1, 1) covariance fixes the three form-factors multiplying the

parity-odd structures εikpkp
j , εjkpkp

i and εijp2 respectively. Using (3.4) and the 2d identity εikpkp
j −

εjkpkp
i−εijp2 = 0 we remain with a single form-factor that has to depend on the ratio

p2

p2n
by the conformal

invariance.
10Note that the presence of 1

p2
pole in the anomalous correlator indicates the appearance of boundary

degrees of freedom. This is somewhat similar to the way in which the axial anomaly implies the existence

of massless bound states in the spectrum of strongly coupled gauge theories [27].
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of freedom.11 In particular this means that for pn → ∞ the correlators of bulk operators

become local functions of the momentum. By inspecting (3.4) we conclude that

F

(
p2

p2
n

)
pn→∞≈ 1 +O

(
p2

p2
n

)
. (3.7)

Therefore we find that the solution to Ward identities (3.3) for
p2

p2n
� 1 has the form

Πij
an.(p,∞) = 4i

a∂
4π
εij +O

(
p2

p2
n

)
,

Πnj
an.(p,∞) = − 1

pn
8i
a∂
4π
εijpi +O

(
p2

p2
n

)
. (3.8)

Note that Πnj
an. actually corresponds to a semilocal contact term

sgn(−xn)εij∂iδ
N (x, x′) (3.9)

in the position space.12 In fact one can verify directly that (3.8) comes from a Fourier

transform of the following terms

Π̂ij
an.(x, x

′) = − a∂
4πi

εij [2sgn(−xn)∂nδ
N (x, x′) + δ(xn)δN (x, x′)] ,

Π̂nj
an.(x, x

′) =
2a∂
4πi

εijsgn(−xn)∂iδ
N (x, x′) . (3.10)

For xn ≤ 0 these are exactly the contact terms obtained by variation of the Chern-

Simons term

Seff =
a∂
4π

∫
xn≤0

A ∧ dA . (3.11)

The jump in sign of the Chern-Simons contact terms (3.10) when crossing the boundary

into unphysical region xn > 0 is perhaps expected due to parity violating nature of (3.11)

under the reflections described in Footnote 4.13

In the bulk (3.10) reduce to the expressions of [4], where it was argued that the

coefficient of the CS contact terms (mod 1) is a physical quantity in a given CFT. The

non-integer part of a∂ is therefore a property of the bulk CFT that cannot be changed by

the boundary dynamics. More concretely let BC1,BC2 be two sets of boundary conditions

for fundamental fields of the same CFT satisfying (2.3). Since the non-integer part of a∂
is fixed by the bulk the two anomalies can only differ by an integer

aBC1
∂ − aBC2

∂ ∈ Z (3.12)

In another words, only the integer part of a∂ depends on the boundary dynamics.

11This limit is analogous to the small momentum limit that can be used to study the IR effective action

in massive QFTs. In [17] it was used to expose the near-boundary behaviour of the bulk effective action for

parity-preserving theories. In the presence of anomalous boundary currents coupling to Ai (I.e. if j̃i 6= 0

in (2.6)) non-local terms of the type (3.6) survive in the pn →∞ limit of Πij .
12This follows from the Fourier transform property

∫
R e

ipxsgn(x) = 2i 1
p
.

13In fact by extending the background fields into the upper half plane the contact terms (3.10) can be

obtained from a CS term with coefficient proportional to sgn(−xn). Chern-Simons terms with spacetime

dependent coefficients changing the sign accross the inteface are known to appear for example for massive

domain wall fermion theories [28].
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Let us now discuss the qualitative properties of solution (3.4). Clearly by choosing

different boundary conditions for the function F we could obtain solutions with a different

qualitative behaviour. In fact it can be shown that for generic boundary conditions for

F the solution (3.4) can be written as a linear combination of a solution satisfying (3.7)

and (3.5), a solution of the form (3.6) and another solution proportional to (3.8). These

solutions correspond to theories with decoupled boundary currents and bulk CS terms. Let

us look at some of them in more detail

• First let us consider a solution with F (∞) 6= 0 (in the pn → 0 limit). The Πin part of

this solution is not well-defined for pn → 0 and it yields antisymmetric contribution

to Πij . It can be written as a linear combination of the continuous solution satis-

fying (3.7), (3.5) plus F (∞)× (3.8). We can always subtract the CS part by hand,

which will yield a continuous solution with the coefficient a∂(1 − F (∞)). For those

reasons we expect F (∞) 6= 0 to be an integer that can be absorbed in the definition

of CS level.

• Second we can have F (0) 6= 1 (in the pn →∞ limit). Such solution can be written as

a linear combination the continuous solution plus (1−F (0))×(3.6). This corresponds

to a physical solution containing decoupled boundary currents with anomaly ã∂ =

a∂(F (0)− 1). We can get such solution for example by including free chiral fermions

at the boundary.

From the above two points we see that we can always uniquely project on the continu-

ous solution satisfying (3.5), (3.7). Therefore we will assume a∂ to be the coefficient of

the continuous solution throughout this paper. This solution interpolates between chiral

current-like behaviour of (3.6) and CS-like bulk behaviour of (3.8), which is reminiscent

of the quantum Hall effect [29] with a∂ playing the role of Hall conductance. From above

arguments we expect a∂ (including the integer part) to be a physical quantity.

3.2 Energy-momentum tensor correlator

We will now repeat the same analysis for the correlators of an energy-momentum tensor

satisfying (2.12). We will again extend the 〈TT 〉 correlators to the upper half-space and

Fourier transform them. Finiteness of this Fourier integral in the parity-even sector was

established in [17]. The energy-momentum tensor version of (3.2) reads

〈Tµν(p, pn)T ρσ(p′, 0)〉 = δ(p+ p′)Aµνρσ(p, pn) , (3.13)

for a tensor quantity Aµνρσ consistent with the boundary conformal group. Once again, we

would like to identify a structure responsible for the anomaly (2.19) within Aµνρσ. Fourier

transforming the translation Ward identities (2.21) together with the definition (3.13)

we get

pµA
µjkl = −8i

e∂
192π

εijpiP
kl

p′ρA
ijρl = −pkAijkl = −8i

e∂
192π

P ijεklpk , (3.14)

where we defined a transverse projector P ij = pipj − ηijp2.
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The general solution to (3.14) consistent with Lorentz, scale invariance and (i ↔
j), (k ↔ l) symmetry can be determined

Aijklan. (p, pn) = 8i
e∂

192π

[
1−G

(
p2

p2
n

)](
(εimpmp

j+εjmpmp
i)P kl+(εkmpmp

l+εlmpmp
k)P ij

p2

)
+8i

e∂
384π

G

(
p2

p2
n

)(
(εikPjl + (i↔ j)) + (k ↔ l)

)
Ainklan. (p, pn) = − 1

pn
8i
e∂

96π
G

(
p2

p2
n

)
P klεijpi . (3.15)

By applying the same arguments as in the section 3.1 we conclude that the function G has

the same behaviour as F at the extremal limits (3.5), (3.7). Thus we can readily determine

the behaviour of (3.15) for pn → 0,∞. Starting with the non-local limit pn → 0 we find a

solution analogous to (3.6)

Aijklan. (p, 0) = 8i
e∂

192π

(
(εimpmp

j + εjmpmp
i)P kl + (εkmpmp

l + εlmpmp
k)P ij

p2

)
Ainklan. (p, 0) = 0 . (3.16)

Just as before, the expression in (3.16) looks exactly like the Fourier transform of the

parity-odd contribution to the EMT correlators in a 2d CFT at non-coincident points [30].

Next we want to consider the pn →∞ limit. Behaviour of the parity-even contribution

to 〈TT 〉 in this limit and the associated conformal anomalies were studied in [17]. Here we

will extend this work to include parity-odd contributions. An anomalous solution to (3.14)

analogous to (3.8) has a form

Aijklan. (p,∞) = 8i
e∂

384π

(
(εikPjl + (i↔ j)) + (k ↔ l)

)
+O

(
p2

p2
n

)
;

Ainklan. (p,∞) = − 1

pn
8i
e∂

96π
P klεijpi +O

(
p2

p2
n

)
. (3.17)

As before, the above expressions correspond to semi-local contact terms in the position

space

Âijklan. (x, x
′) = − e∂

384πi
D̂ijkl[2sgn(−xn)∂nδ

N (x, x′) + δ(xn)δN (x, x′)] ;

Ânjklan. (x, x′) =
e∂

96πi
sgn(−xn)P̂ klεij∂iδ

N (x, x′) , (3.18)

where D̂ijkl = (εik(∂j∂l − ηjl∂2
m) + (i↔ j)) + (k ↔ l) and P̂ kl = ∂k∂l − ηkl∂2.

As before these contact terms can be obtained from the gravitational Chern-

Simons term

Sgeff =
e∂

192π

∫
xn≤0

Tr

[
ΓdΓ +

2

3
Γ3

]
, (3.19)

where the trace is taken over the matrices Γβα = Γβµαdxµ, with the sign function appearing

for the same reasons as explained under (3.11). Using the same logic we conclude that for

two bCFTs agreeing in the bulk, differing only by boundary conditions BC1,BC2 we have

eBC1
∂ − eBC2

∂ ∈ Z . (3.20)
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So again we see that the boundary conditions determine the integer part of gravitational

contact terms and the non-integer part being a physical quantity determined by the bulk

CFT [4]. In addition we expect e∂ to be a physical quantity for the same reasons as a∂
(see the discussion below (3.12)).

3.3 Anomaly cancellation

The presence of anomalies (2.18), (2.19) prevents one from gauging the global symmetries

or putting the theory on curved manifolds. It is therefore important to explore the ways

to cancel them. To illustrate the idea we will focus on the gauge anomaly (3.3) in the

following, but all the arguments can be readily applied to the gravitational anomaly too.

If a∂ ∈ Z we can cancel the anomaly (3.3) by adding boundary degrees of freedom.

This can be done by turning on an anomalous two-dimensional edge current j̃i located at

the boundary. We select the edge current so that its anomaly is precisely −a∂ ,14 and the

correct physics is described by the current j′ = j + j̃δ(xn). In practice this has an effect of

shifting the anomalous contribution (3.4) by a term proportional to (3.6). Doing this we

arrive at an anomaly-free, parity-odd term contributing to the correlator of j′

Π
′ij(p, pn) = 4i

a∂
4π
F

(
p2

p2
n

)[
εij − εikpkp

j + εjkpkp
i

p2

]
,

Π
′in(p, pn) = 8i

a∂
4π

F
( p2
p2n

)
pn

εijpj . (3.21)

Subject to (3.5) and (3.7) the above expression defines a finite, non-anomalous and non-

local contribution to the current correlator. Physically this describes a system of prop-

agating degrees of freedom both in the bulk and on the boundary. In that sense, (3.21)

is different from the usual inflow scenario of gapped theories, where we only get local CS

terms in the bulk.

Now if a∂ ∈ Q, we cannot add purely two-dimensional degrees of freedom to cancel

the anomaly as this would violate the charge quantization condition. Instead, we could

cancel it by a bulk TQFT.15 To illustrate this let us consider a∂ = 1
m for integer m 6=

±1. To cancel this anomaly we could add U(1)m coupled to the background gauge field

through the topological current (we refer the reader to appendix C of [5] for details of the

treatment of these theories coupled to background gauge fields). Since the TQFT doesn’t

have any propagating degrees of freedom, its contribution to the two-point function is of

the form (3.8) with a coefficient − 1
m , which cancels the anomaly. For F satisfying boundary

conditions (3.5), (3.7), subtracting this term from (3.4) still leads to a non-local expression

that will describe a system of physical topological as well as propagating degrees of freedom

in the bulk.

4 Free fermion example

In this section we will look at the example of free Dirac fermion in 2 + 1 dimensions with

a planar boundary placed at xn = 0 (we choose xn to be parallel with the Euclidean

14For integer a∂ this doesn’t violate the charge quantization condition and therefore is allowed.
15The author would like to thank Zohar Komargodski for suggesting this option.
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x3−direction). The action for this theory will be

S =
i

2

∫
xn≤0

d3x
√
gψ̄
↔
/Dψ , (4.1)

where Dµ is the Dirac operator and
↔
/D =

→
/D−

←
/D. This theory has a conserved U(1) current

jµ = ψ̄γµψ (4.2)

and energy-momentum tensor

Tµν =
i

4
ψ̄
(
γµ
↔
∂ ν + γµ

↔
∂ ν − 2ηµν

↔
/D
)
ψ . (4.3)

A standard way to define boundary conditions for fermions is to use projectors [31] and

impose the Dirichlet condition on half of the spinor space. In odd dimensions the (Hermi-

tian) projector can be constructed by using just the perpendicular gamma matrix (we use

the Pauli matrix representation where −iγn ≡ σ3)

Π± =
1

2
(1± σ3) (4.4)

and Dirichlet condition reads16

Π∓ψ|xn=0 = 0; ψ̄Π±|xn=0 = 0 . (4.5)

The above equation therefore defines two different boundary conditions that project away

either left/right handed component of the 2d Weyl fermion at the boundary. Note that it

can be readily verified that (4.5) implies (2.4) and (2.12). The boundary condition (4.5)

also imposes the form of the fermionic Green’s function

〈ψ(x)ψ̄(x′)〉± = Cd

(
/∂x

1

|x− x′|(d−2)
+ χ/∂x̄

1

|x̄− x′|(d−2)

)
, (4.6)

where x̄ = (xi,−xn) is the position of the image, Cd =
Γ( d

2
)

2(d−2)π
d
2

and the boundary con-

ditions (4.5) are encoded in χ = Π+ − Π− = ±σ3. By writing the above function in this

form we can readily define Feynman rules analogical to the scalar ones used in [17]. The

free propagators being replaced by fermionic ones /p

p2
and /̃p

p2
respectively and the ’vertex’

χ = ±σ3 (cf. figure 1). Let us now briefly discuss how to perform perturbative calculations

in this set up (for more details we refer the reader to the section 3.2 of [17]).17 Momen-

tum space computations work as usual with standard propagators replaced by the ones

on figure 1. The dashed line on the reflected propagator should be treated as an external

line absorbing the momentum (0, 0, 2pn) (even if it is attached to an internal propagator).

16In Minkowski signature (+,−,−), the matrix χ = σ3 satisfies χ̄ = γ0σ3γ0 = −χ̄, which implies the

desired properties χ̄γi = γiχ, χ̄γn = −γnχ of [25, 31]. The second half of the spinor space satisfies Neumann

condition ∂nΠ±ψ|xn=0 = 0.
17A similar perturbative approach together with a more detailed discussion of boundary momentum space

was given in an earlier work [32].
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Figure 1. Fermion propagator in momentum space. Dashed line represents the momentum re-

flected from the boundary. First term corresponds to standard propagator
i/p

p2 and the second

term corresponds to the reflected propagator i/̃p
p2 with p̃ = (p,−pn). Note that the momentum

non-conservation through reflected propagator is denoted by the dashed line with pn ≡ (0, pn).

Figure 2. The two diagrams contributing to the anomalous part of 〈jj〉, 〈TT 〉 correlators. Double

lines at the edges represent operator insertions with relevant vertices defined in (4.7), (4.13). The

perpendicular loop momentum is fixed via δ(−2ln + pn + p′n).

Vertices are treated as usual - conserving all the components of momentum and the con-

sistency is achieved by including an overall delta function δ(
∑

i(pn)i), where the sum over

normal momenta includes physical external momenta as well as virtual reflected momenta

of dashed lines.18

4.1 U(1) anomaly computation

In this section we will compute the quantities of interest Πij ,Πin (cf. (3.2)) for the free

fermion example at hand. To proceed with the computation we can use the usual momen-

tum space methods and write down the usual ψ̄ψjµ vertex corresponding to the insertion

of (4.2) in the momentum space

Vµ(p, q1, q2) = iγµ , (4.7)

where q1, q2 are the momenta of incoming fermions satisfying p = q1 + q2. Next we proceed

to compute the one-loop diagrams contributing to (3.2) using the propagator on figure 1.

There will be 4 possible one-loop diagrams contributing to the 〈jj〉 correlators, however

only the diagrams on figure 2 will contribute. This is because the other two diagrams

with zero and two dashed outgoing lines are proportional to δ(pn) and therefore vanish for

pn > 0. These diagrams can now be computed after imposing the momentum conserving

delta function δ(2ln − pn) which turns the respective integral into a massive 2d bubble

with effective mass m = pn
2 (some details of how these computations work are given in the

18The dashed lines can also be attached to the internal propagators.
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appendix B of [17]). Note that the fermionic trace has to be evaluated with the insertion of

χ = ±σ3 at the dashed line vertex so the results for two boundary conditions in (4.5) differ

by a minus sign. We computed the relevant integrals and traces using ’t Hooft-Veltman

formalism [33] and verified that the divergent parts cancel out leaving us with a finite result

Πij(p, pn) = ± i

2π

[
εikpkp

j + εjkpkp
i

p2

(
1− a

(
p2

p2
n

))
+ εija

(
p2

p2
n

)]
,

Πin(p, pn) = ± i
π
a(
p2

p2
n

)εijp
j , (4.8)

where a(x2) = − 1

2
√
x2(x2−1)

ln

1+

√
x2

x2−1

1−
√

x2

x2−1

. Notice that (4.8) is exactly of the form (3.4)

since the parity-even, non-anomalous part doesn’t contribute to the diagrams on figure 2.

Furthermore we have

lim
x2→∞

a(x2) = 0 ,

lim
x2→0

a(x2) = 1 , (4.9)

which is exactly what we expect from (3.5) and (3.7). For the intermediate momenta, the

correlator (4.8) is manifestly non-local.19

By comparing (4.8) and (3.4) we can extract the value of the anomaly for two different

boundary conditions (4.5)

a±∂ = ±1

2
. (4.10)

Let us first observe that the fractional part of this anomaly exactly agrees with the result

of [4], where it was explained that the half-integer value also implies the parity anomaly in

the bulk. On the other hand by taking the pn → 0 limit of (4.8) we see that fluctuations

parallel to the boundary include an ’emergent’ chiral current with fractional charge. The

anomaly (4.10) cannot be canceled by adding boundary degrees of freedom as these would

violate the Dirac quantization condition. Instead it could be canceled by bulk degrees of

freedom, namely the U(1)2 bulk TQFT as mentioned at the end of section 3.3.

For even number of massless bulk fermions, the anomaly is an integer and we could

cancel it by chiral fermions at the boundary which was also described in section 3.3.

The integer part of (4.10) can be checked by comparing with the massive fermion

computations in the literature. Recently a contribution to anomaly from integrating out a

massive fermion was evaluated in [11], where it was found that independently of the sign

of the mass one obtains

∆a±∂ = ±1

2
. (4.11)

19Note that the branch point at x2 = 1 can be rewritten in terms of the full Minkowski 3-momentum as

x2 − 1 =
pµp

µ

p2n
= 0. It therefore corresponds to a bulk IR divergence p2 → 0. We can avoid it by choosing

to work on the principal branch where a is real and finite.
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The total IR anomaly of the massive theory is obtained by adding (4.11) to (4.10), which

is to be understood as the UV anomaly of the massless theory. Therefore we find

a±∂ massive
= a±∂ + ∆a±∂ = ±1 , (4.12)

which is exactly the value obtained in [10] by introducing Pauli-Villars fields.

4.2 Gravitational anomaly computation

In this section we will present the outcome of the calculation of Aijkl, Ainkl (cf. (3.13))

analogous to the results in the previous section. A ψ̄ψTµν vertex corresponding to the

insertion of (4.3) in momentum space reads [34]

Vµν(p, q1, q2) =
1

4

(
γµ(q1 − q2)ν + γµ(q1 − q2)ν − 2ηµν(/q1

− /q2
)
)

, (4.13)

where p = q1 +q2. The computation is identical to the one in previous section with vertices

on figure 2 replaced by (4.13). The result reads

Aijkl(p, pn) = ± i

24π

[
1− b

(
p2

p2
n

)](
(εimpmp

j + εjmpmp
i)P kl + (εkmpmp

l + εlmpmp
k)P ij

p2

)
+

i

48π
b

(
p2

p2
n

)(
(εikPjl + (i↔ j)) + (k ↔ l)

)
Ainklan. (p, 0) = ∓ 1

pn

i

12π
b

(
p2

p2
n

)
P klεijpi , (4.14)

where

b(x2) =
3

x2

(
(1− x2)a(x2)− 1

)
, (4.15)

where the function a was defined below (4.8) . Note again, that the function b has the

expected behaviour

lim
x2→∞

b(x2) = 0 ,

lim
x2→0

b(x2) = 1 . (4.16)

By comparing (4.14) and (3.15) we obtain the anomaly

e±∂ = ±1 , (4.17)

whose integer character again agrees with the bulk results of [4, 35]. Note that above

computation is valid for a Dirac fermion. Had we instead considered a Majorana fermion

in computing (4.14) we would get an extra 1
2 from the symmetry factor of diagrams on

figure 2. This means that the respective anomaly would be half of the Dirac one

e±∂ (Majorana)
= ±1

2
. (4.18)

Here we find agreement with (3.20)

e+
∂ (Majorana)

− e−∂ (Majorana)
= 1 ∈ Z . (4.19)
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Before we conclude this section let us remark our direct calculation also shows that the

parity-even, conserved contribution to (4.14) vanishes. In [17] the parity-even part of Aijkl
was related to the boundary conformal anomaly proportional to R̂, which therefore has to

vanish for this example. Indeed this is what was found by a direct heat kernel computation

in [36].

5 Discussion and conclusions

In this paper we studied the consequences of anomalies (2.18), (2.19) for the two-point func-

tions of bulk operators jµ, Tµν subject to boundary conditions (2.4), (2.12) respectively. As

a result we obtained the anomalous solutions (3.4), (3.15) which relate the anomalies to flat

space correlators. In this is sense we extend the known results [24], which only consider

non-anomalous, parity even solutions. The results of section 3 should hold in a generic

bCFT subject to (2.4) and (2.12), although some care has to be taken when the theory

includes decoupled boundary degrees of freedom (cf. the discussion under (3.12)). In par-

ticular, we have shown that the coefficient of the continuous solution satisfying (3.5), (3.7)

is a physical quantity (and an analogous conclusion follows for the gravitational solution

in section 3.2).

To convince the reader of existence of such anomalous terms and their computability

we calculated the relevant correlators (3.2), (3.13) directly in momentum space using the

technique introduced in [17]. The computation revealed that terms of the form (3.4), (3.15)

indeed appear and we extracted the respective anomalies (4.10), (4.17), (4.18) from them.

The momentum space expression (3.4) (and (3.15) by extension) has a natural physical

interpretation. The pn → 0 limit (3.6) describes states that never leave the boundary and

therefore only experience the anomaly through two-dimensional boundary currents. The

states with pn > 0, on the other hand, are allowed penetrate into the bulk where they

start experiencing bulk CS currents so the anomaly appears through a linear combination

of both phenomena, which is indeed what the solution (3.4) describes.

Furthermore, given the non-trivial dependence on pn (see (4.8) and below) the so-

lutions (3.4), (3.15) have to arise from non-local bulk terms in the effective action in a

generic bCFT. In summary we see that in general it is insufficient to consider just the CS

terms in the effective action to describe the correct physics in the presence of a boundary.

To some extent this observation is similar to the known subtlety [5] that the parity-odd

contribution to the path integral of three-dimensional massless fermion is actually given

by the η-invariant rather than 1
2 times the CS term as is sometimes assumed.

Our use of momentum space techniques and the calculation methods of section 4 are

quite versatile and can be readily applied to study other anomalies. For example we checked

explicitly vanishing of the mixed gauge-gravitational anomaly of free massless fermion. An

interesting extension of this work would be to apply the present momentum space formalism

to constrain the form of potential parity-odd trace anomalies in a generic bCFT.

We also found that the dependence of a∂ , e∂ upon boundary conditions is restricted

by (3.12), (3.20). In particular in theories with boundary RG flows20 satisfying (2.4), (2.12)

20By this we understand flows with nonzero trace of t̃ij in (2.11). Such flow can be interpreted as a flow

of boundary conditions under a deformation by relevant operators at the boundary.
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at the ends of the flow, these conditions could provide extra constraints on the al-

lowed asymptotics.

Finally, we would like to remark that the connection between parity anomaly in (2+1)

dimensions and quantum Hall effect with ν = ±1
2 (cf. [37, 38]) manifests itself through (4.8)

and (4.10). Indeed the correlator (4.8) implies anomalous currents with half-integer Hall

conductance running parallel to the boundary and parity-violating CS term in the bulk.

The results of this paper have therefore potential to provide a momentum space perspective

on this and other similar boundary phenomena in condensed matter physics.
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