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1 Introduction

One of the most intriguing features of quantum gravity is its relation to gauge theory.

Although there is substantial evidence for this duality, it is most apparent from the scat-

tering amplitude point of view. It is well known that gravity scattering amplitudes can be

reformulated as the square of the scattering amplitudes of Yang-Mills theory. This struc-

ture is originated from the KLT relation [1] in string theory and generalized to the double

copy relation [2–4] at the field theory level. Yet, apart from at perturbative level on a flat

background, such a correspondence is not fully understood.

Recently, the double copy relation has been extended to the full equations of motion

through the Kerr-Schild (KS) formalism [5], which is a powerful tool for solving the Einstein

equation by reducing it to linear equations [6–9]. The important consequence is that a class

of solutions to the vacuum Einstein equation can be represented by the square of solutions

to Maxwell theory. Thus, the KS double copy relation is valid not only at perturbative level,

but also in the non-perturbative regime. It is applied to black holes first, and extended

to a broad class of examples [10–26]. However, the KS double copy for pure Einstein

gravity cannot describe another massless NS-NS field, such as a Kalb-Ramond field or

dilaton, using the single null congruence from the conventional KS formalism. This issue

was resolved in the context of double field theory [27].
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Double field theory (DFT) [28–33] is a low energy effective field theory of strings with

manifest O(d, d) T-duality [34–37]. One of the crucial features of DFT is the doubled local

O(1, d − 1) structure groups. It inherits from the left-right sector decomposition of the

closed string, and each O(1, d − 1) group corresponds to the local Lorentz group of the

target spacetime seen by the left and right sectors respectively. Since the double copy and

KLT relations are also closely related to the left-right decomposition of the closed string,

DFT provides a useful tool for describing such a hidden structure [38, 39].

The KS ansatz for pure DFT, which consists of the massless NS-NS sector only, is

constructed in terms of a pair of null O(d, d) vectors [27]. The corresponding equations of

motion can be reduced to linear equations by restricting the DFT dilaton appropriately.

Based on this formalism, the classical double copy is extended to the entire massless NS-

NS sector, and two independent Maxwell equations are derived from the KS equations.

However, pure DFT itself cannot be a consistent low energy effective field theory of the

string because of anomaly issues. Additional Yang-Mills gauge fields or Ramond-Ramond

fields must be coupled to pure DFT to make a consistent theory.

In the present paper, we extend the KS formalism for pure DFT to the heterotic

DFT [40, 41] (see also [42] for the non-Riemannian origin). Heterotic DFT incorporates

Yang-Mills gauge theory into pure DFT in a duality covariant manner, and it is described

in terms of the O(d, d + G) gauged DFT, where G represents the dimension of the Yang-

Mills gauge group.1 The heterotic KS ansatz for the generalized metric is the same form as

in the pure DFT case and written in terms of a pair of O(d, d+G) null vectors. However,

its d-dimensional supergravity representations are quite different. One of the remarkable

properties of the heterotic KS ansatz is that the null condition can be partially relaxed in

the d-dimensional language while preserving the linearity of the field equations. We obtain

the on-shell constraint for the O(d, d+G) null vectors and DFT dilaton, which corresponds

to the geodesic condition in the usual KS formalism in GR. Using the null and on-shell

constraints together, the field equations under the heterotic KS ansatz can be reduced to

linear equations as well.

Based on the heterotic KS formalism, we investigate the classical double copy for

heterotic supergravity. Since the heterotic string is a closed string, its mode expansion

is decomposed into left and the right moving sectors, which are completely decoupled.

According to the KLT relation, the left and right moving sectors are identified with the

10-dimensional supersymmetric open string and the 26-dimensional bosonic open string

respectively, and the mismatched 16 dimensions must be compactified on an even, self-dual

lattice [43–45]. Under the field theory limit, α′ → 0, the left-right sector decomposition

implies that heterotic supergravity can be described by 10-dimensional supersymmetric

Yang-Mills theory and bosonic Yang-Mills theory with 16 adjoint scalar fields [1, 12, 46–

56]. As in [27], by assuming that there is an isometry in the KS ansatz, we establish

the single copy, which maps the KS ansatz to the gauge fields, and derive Maxwell and

Maxwell-scalar equations. Similarly, we establish the zeroth copy by deriving a free scalar

1Here, we use the term heterotic supergravity in a broad sense and consider d-dimensional gauged

supergravities described by O(d, d+G) gauged DFT rather than the ten-dimensional heterotic supergravity.

Thus we do not restrict G to the heterotic gauge group, E8 × E8 or SO(32).
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field equation, and we identify the scalar field with the abelian bi-adjoint scalar field.

Consequently, solutions of the equations of motion of heterotic supergravity under the KS

ansatz can be represented in terms of solutions of the Maxwell and Maxwell-scalar theories.

This paper is organized as follows. In section 2, we review heterotic DFT and introduce

the generalized Kerr-Schild ansatz. We show that the null condition can be relaxed in the

d-dimensional point of view and express the corresponding metric, Kalb-Ramond field

and gauge field ansatz explicitly. In section 3, we derive the on-shell constraint for the

O(d, d + G) null vectors and DFT dilaton. Then we construct the equations of motion

under the heterotic KS ansatz in a flat background. We show that the form of the equations

of motion is identical to pure DFT. In section 4, the classical double copy for the entire

massless NS-NS sector is discussed by extending the conventional one in GR. We end in

section 5 by considering some examples of the heterotic KS formalism.

2 Generalized Kerr-Schild ansatz for heterotic DFT

In this section we introduce a generalized Kerr-Schild ansatz for heterotic DFT. First

we give a brief review of heterotic DFT. Next, we consider properties of the null vectors

in the generalized tangent space. Using the null vectors, we introduce the KS ansatz for

the heterotic generalized metric and show that it is of the same form as the KS ansatz

in pure DFT. We represent the ansatz in terms of heterotic supergravity fields which are

expressed by a pair of d-dimensional vectors: null and non-null vectors. Finally, we discuss

the Buscher rule for the generalized KS ansatz and show that T-duality maps a generalized

KS ansatz to another one.

2.1 Review of heterotic DFT

We begin by reviewing heterotic DFT in terms of the O(d, d + G) gauged DFT [40, 41]

and its double-vielbein formalism [57, 58]. Here G denotes the dimension of the Yang-Mills

gauge group. Heterotic DFT provides an elegant framework combining the string NS-NS

sector and gauge fields into a single O(d, d+G) multiplet.

Note that, unlike the O(d, d) case, the O(d, d + G) is not a split real form, thus an

ambiguity arises in the parametrization of the O(d, d + G) metric JM̂N̂ [59]. There are

two different choices depending on whether the O(G) subgroup belongs to the positive or

negative eigenvalues of J . In this paper we take the negative sign convention

JM̂N̂ =

 0 δµν 0

δµ
ν 0 0

0 0 − 1
α′καβ

 , J M̂N̂ =

 0 δµ
ν 0

δµν 0 0

0 0 −α′καβ

 , (2.1)

where M̂, N̂ , P · · · are O(d, d+G) vector indices which are decomposed into d-dimensional

vector indices, µ, ν, ρ · · · , and O(G) indices, α, β, γ · · · . Here καβ is the Cartan-Killing form

for the gauge group G.

Heterotic DFT consists of two dynamical fields: the generalized metric H and the DFT

dilaton d, which are O(d, d+G) tensor and scalar fields respectively. The generalized metric
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HM̂N̂ is a symmetric O(d, d+G) element satisfying the so-called O(d, d+G) constraint

JM̂N̂ = HM̂P̂J
P̂ Q̂HQ̂N̂ . (2.2)

Solving the O(d, d + G) constraint (2.2) by assuming that the upper left corner is non-

degenerate, we get a parametrization of the generalized metric

HM̂N̂ =

 g−1 −g−1ct g−1A

−cg−1 g + cg−1ct + α′Aκ−1At A− cg−1A

Atg−1 At −Atg−1ct Atg−1A+ 1
α′κ

 , (2.3)

where cµν = Bµν − 1
2α
′Aµακ

αβ(At)βν .

We now consider the generalized frame for the heterotic DFT. The choice of

parametrization of J in (2.1) leads the following local structure group of the generalized

frame bundle2

O(1, d− 1)L ×O(1, d− 1 +G)R . (2.4)

This structure is manifestly encoded in the generalized frame fields or double-vielbein, VM̂
m

and V̄M̂
ˆ̄m. Here m,n, p, · · · are O(1, d− 1)L vector indices and ˆ̄m, ˆ̄n, ˆ̄p, · · · are O(1, d− 1 +

G)R vector indices. Each Lorentz group corresponds to the left and right moving sector of

the heterotic string respectively and plays an important role in the double copy.

The heterotic double-vielbein satisfies the following defining properties

VM̂
m = PM̂N̂V

N̂m , VM̂
mηmn

(
V t
)n
N̂ = PM̂N̂ ,

(
V t
)
m
M̂JM̂N̂V

N̂
n = ηmn ,

V̄M̂
ˆ̄m = P̄M̂N̂ V̄

N̂ ˆ̄m , V̄M̂
ˆ̄m ˆ̄η ˆ̄mˆ̄n

(
V̄ t
)ˆ̄n
N̂ = −P̄M̂N̂ ,

(
V̄ t
)

ˆ̄m
M̂JM̂N̂ V̄

N̂
ˆ̄n = −ˆ̄η ˆ̄mˆ̄n .

(2.5)

Here ηmn and ˆ̄η ˆ̄mˆ̄n are the O(1, d− 1) and O(1, d− 1 +G) metrics,

ηmn = diag(−1, 1, · · · , 1) , ˆ̄η ˆ̄mˆ̄n =

(
η̄m̄n̄ 0

0 κ̄āb̄

)
, (2.6)

where η̄m̄n̄ = diag(−1, 1, · · · , 1) and κ̄āb̄ is the Cartan-Killing form for a given gauge group

G. As we will see it is related to καβ in the O(d, d + G) metric. It is obvious that VM̂
m

and V̄M̂
ˆ̄m are orthogonal to each other, because they have opposite chiralities

(V t)m
M̂ V̄ M̂ ˆ̄n = 0 . (2.7)

2If we choose the positive sign convention on J as

J =

 0 δµν 0

δµ
ν 0 0

0 0 1
α′ καβ

 ,

then the corresponding local structure group is given by O(1, d− 1)×O(1 +G, d− 1) and the kinetic term

of the gauge field has the wrong sign.
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Again, solving the defining properties in (2.5), we can represent the double-vielbein in

terms of the heterotic supergravity fields

VM̂
m =

1√
2

 eµm

eµ
m − cµνeνm

(At)αµe
µm

 ,

V̄M̂
ˆ̄m =

1√
2

 ēµm̄ 0

−ēµm̄ − cµν ēνm̄
√

2α′Aµακ
αβ(φt)β

ā

(At)αµē
µm̄

√
2
α′ (φ

t)α
ā

 .

(2.8)

where
gµν = ηmneµ

meν
n = η̄m̄n̄ēµ

mēν
n̄ ,

cµν = Bµν −
1

2
α′Aµακ

αβ(At)βν .

καβ =
(
φt
)
α
āκ̄āb̄φ

b̄
β ,

(2.9)

Note that φα
ā is an element of the O(G) subgroup of the O(1, d − 1 + G) local structure

group. We can always choose a gauge fixing that identifies φα
ā as the identity, φα

ā =

δα
ā [60]. Hereafter, we identify ā, b̄, · · · the O(G) indices with α, β, · · · , and there is no

distinction between καβ and κāb̄. Then we use the simplified parametrization of the double-

vielbein as

VM̂
m =

1√
2

 eµm

eµ
m − cµνeνm

(At)αµe
µm

 , V̄M̂
ˆ̄m =

1√
2

 ēµm̄ 0

−ēµm̄ − cµν ēνm̄
√

2α′Aµακ
αβ

(At)αµē
µm̄

√
2
α′ δα

β

 . (2.10)

We now consider the heterotic DFT action and equations of motion. As in pure DFT,

the field equations are given by geometric quantities such as the generalized Ricci scalar

and tensor. The explicit form of the heterotic DFT action in terms of the generalized

metric and DFT dilaton is

Shet =

∫
d2dXe−2d

(
L0 + Lf

)
, (2.11)

where L0 is the pure DFT Lagrangian, and Lf , which arises from the non-abelian gauging,

is the additional part containing the structure constant fM̂N̂P̂ ,

LDFT = 4HM̂N̂∂M̂∂N̂ d̂− ∂M̂∂N̂H
M̂N̂ − 4HM̂N̂∂M̂ d̂∂N̂ d̂+ 4∂M̂H

M̂N̂∂N̂ d̂

+
1

8
HM̂N̂∂M̂H

K̂L̂∂N̂HK̂L̂ −
1

2
HM̂N̂∂M̂H

K̂L̂∂K̂HN̂L̂ ,

Lf = −1

2
fN̂K̂

M̂HN̂P̂HK̂Q̂∂P̂HQ̂M̂ −
1

12
fK̂P̂

M̂fL̂Q̂
N̂HM̂N̂H

K̂L̂HP̂ Q̂

− 1

4
fN̂K̂

M̂fM̂L̂
N̂HK̂L̂ − 1

6
fM̂N̂K̂fM̂N̂K̂ ,

(2.12)

where fM̂N̂P is the totally antisymmetric structure constant parametrized as

fM̂ N̂P̂ =

{
fαβγ for (M̂, N̂ , K̂) = (α, β, γ)

0 otherwise
(2.13)
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It is important to note that we have to impose the section condition for the consistency

of the theory

∂M̂∂
M̂F = 0, ∂M̂F∂

M̂G = 0 , (2.14)

where F and G are arbitrary functions with respect to the extended coordinate XM̂ =

(x̃µ, x
µ, yα). The above condition is equivalent to imposing the following parametrization

up to a O(d, d+G) rotation

∂M̂ =

∂̃µ∂µ
∂α

 =

 0

∂µ
0

 . (2.15)

Using the parametrization of the generalized metric (2.3) and the section condi-

tion (2.15), the heterotic DFT action is reduced to the heterotic supergravity action

Shet =

∫
dx
√
ge−2φ

[
R+ 4(∂φ)2 − 1

12
HµνρHµνρ −

1

4
Tr
[
FµνFµν

]]
(2.16)

where Fµν is the field strength of the gauge field Aµ
α and Hµνρ is the three-form field

strength of the Kalb-Ramond field with the Chern-Simons three-form

Fµν = ∂µAν − ∂νAµ + g0 [Aµ, Aν ] ,

Hµνρ = 3

(
∂[µBνρ] − Tr

[
A[µ

(
∂νAρ] +

1

3
g0

[
Aν , Aρ]

] )])
.

(2.17)

The field equations of heterotic DFT are given by the vanishing of the generalized

curvature tensors: the generalized Ricci tensor, SM̂N̂ , and the generalized Ricci scalar, S.

As for the action, we can separate them into the pure DFT part and the additional part

which arises due to the gauging

S = S0 + Sf = 0 (2.18)

and

SM̂N̂ = P(M̂
K̂ P̄

N̂)
L̂
(
K0K̂L̂ +KfK̂L̂

)
= 0 , (2.19)

where S0 and K0K̂L̂ are the same as in pure DFT [27] and Sf and KfK̂L̂ are the additional

contributions containing the structure constant fM̂N̂P̂ . Note that S is the same as the

Lagrangian and K0M̂N̂ and KfM̂N̂ are given by

KK̂L̂ =
1

8
∂K̂H

M̂N̂∂L̂HM̂N̂ −
1

4

(
∂M̂ − 2∂M̂d

)(
HM̂N̂∂N̂HK̂L̂

)
− 1

2
∂(K̂H

M̂N̂∂|N̂ |HL̂)M̂

+ 2∂K̂∂L̂d+
1

2

(
∂M̂ − 2∂M̂d

)(
HM̂N̂∂(K̂HL̂)N̂ +H(K̂

N̂∂|N̂ |HL̂)
M̂
)
,

KfK̂L̂ =
1

2
f(K̂|N̂

M̂HN̂P̂∂P̂ |HL̂)M̂ −
1

2
f(K̂|N̂ |

M̂HN̂P̂∂L̂)HP̂ M̂ −
1

4
fK̂N̂

M̂fL̂M̂
N̂

+
1

2
e2d∂P̂

(
e−2dHN̂P̂HQ̂(K̂

)
fL̂)N̂

Q̂ − 1

4
fK̂M̂

P̂ fL̂N̂
Q̂HM̂N̂HP̂ Q̂ .

(2.20)
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2.2 Generalized Kerr-Schild ansatz

We start by recalling the null condition for the O(d, d) vectors in pure DFT. The inner

product is defined by the O(d, d) metric JMN , where M,N, · · · are O(d, d) vector indices.

Since O(d, d) is the maximal splitting case, one can introduce a d-dimensional null subspace,

which is the so-called maximal totally isotropic subspace [30, 61]. The dimension of the

maximal null subspace is called the Witt index or equivalently min(d+, d−), where d+

and d− are the number of the positive and negative eigenvalues of the metric. Thus the

Witt index of the O(d, d) generalized tangent space is d and one can introduce d mutually

orthogonal null vectors LM
a,

LM
aJMNLN

b = 0 , a, b, · · · = 1, 2, · · · , d . (2.21)

In general, we can divide any generalized tangent vector according to the background

chiralities with respect to the background projection operators3

LM
a = KM

a + K̄M
a , (2.22)

where Ka
M and K̄a

M are chiral and anti-chiral parts, which satisfy P0MNK
N = KM and

P̄0MNK̄
N = K̄M .

We can explicitly solve the chirality conditions on Ka and K̄a and parametrize them

in terms of the d-dimensional vectors l and l̄,

KM
a =

1√
2

(
g̃µν laν

laµ + B̃µν g̃
νρlaρ

)
, K̄M

a =
1√
2

(
g̃µν l̄aν

−l̄aµ + B̃µν g̃
νρ l̄aρ

)
, (2.23)

where g̃ and B̃ are the background metric and Kalb-Ramond field respectively. If we

substitute (2.23) into the null condition of LaM (2.21), we have

(Lt)aMJMNLN
b = (lt)aµg̃

µν lν
b − (l̄t)aµg̃

µν l̄ν
b = 0 . (2.24)

This implies that the norms of l and l̄ must be the same, la · lb = l̄a · l̄b.
In the generalized KS ansatz (A.1), the O(d, d) constraint (A.3) requires definite back-

ground chiralities for the null vectors. We have to project out La into Ka and K̄a by acting

on the projection operators and impose the null condition on Ka and K̄a separately. Then

one may guess the form of the generalized KS ansatz in terms of Ka and K̄a as

HMN = H0MN + κ
d∑

a,b=1

2ϕabK
a
(MK̄

b
N) , (2.25)

where κ is a formal expansion parameter that does not have any physical meaning. Ap-

parently the above ansatz seems to be consistent with all the constraints. However, there

is a serious problem.

Let us substitute the parametrizations in (2.23) into the null condition of Ka and K̄a.

The null conditions reduce to

Ka
MK

Mb = la · lb = 0 , and K̄a
MK̄

Mb = l̄a · l̄b = 0 , (2.26)

3See A for a review on the generalized KS ansatz for the usual DFT.
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and laµ is a set of mutually orthogonal null vectors (l̄aµ as well). However, the Witt index

for a vector space with Lorentzian metric signature is just one. This means that there is

no mutually orthogonal null vector for a given null vector. In other words, if we impose

both the null and the chirality conditions on the O(d, d) vectors at the same time, then it

is impossible to find a set of mutually orthogonal null vectors with more than two elements

in Lorentzian signature. Therefore, the generalized KS ansatz is simply reduced to

HMN = H0MN + 2ϕK(MK̄N) . (2.27)

We now extend the previous results to the O(d, d + G) case. First, it is natural to

assume that the generalized metric is given by the following form:

HM̂N̂ = H0M̂N̂ + κ∆M̂N̂ , (2.28)

where H0 is a background generalized metric and ∆M̂N̂ is a symmetric finite perturbation.

From the O(d, d+G) constraint (2.2), we obtain two requirements for ∆M̂N̂

∆ = P0∆P̄0 + P̄0∆P0 ,

∆2 = 0 ,
(2.29)

where P0M̂N̂ and P̄0M̂N̂ are a pair of background projection operators for a given back-

ground generalized metric H0M̂N̂

P0M̂N̂ =
1

2

(
JM̂N̂ +H0M̂N̂

)
, P̄0M̂N̂ =

1

2

(
JM̂N̂ −H0M̂N̂

)
. (2.30)

As before, we want to represent ∆ in terms of O(d, d+G) null vectors. Basically, the

properties of the null vectors are identical to the O(d, d) case. Since the Witt index is

still d even in the O(d, d+G) case, there exists up to d mutually orthogonal null vectors.

However, the requirements in (2.29) imply that ∆ consists of null vectors Ka
M̂

and K̄M̂
a

having definite background chiralities

P0M̂
N̂KN̂

a = KM̂
a , P̄0M̂

N̂K̄M̂
a = K̄M̂

a . (2.31)

Then ∆ is denoted in terms of K and K̄

∆M̂N̂ =
∑
a

Ka
(M̂
K̄a
N̂)
. (2.32)

Note that the background projection operators are parametrized in terms of the het-

erotic supergravity fields

P0 =
1

2

 g̃−1 1− g̃−1c̃t g̃−1Ã

1− c̃g̃−1 g̃ + c̃g̃−1c̃t + α′Ãκ−1Ãt Ã− c̃g̃−1Ã

Ãtg̃−1 Ãt − Ãtg̃−1c̃t Ãtg̃−1Ã

 ,

P̄0 =
1

2

 −g̃−1 1 + g̃−1c̃t −g̃−1Ã

1 + c̃g̃−1 − g̃ − c̃g̃−1ct − α′Ãκ−1Ãt −Ã+ c̃g̃−1Ã

−Ãtg̃−1 −Ãt + Ãtg̃−1c̃t − 2
α′κ− Ã

tg̃−1Ã

 ,

(2.33)
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where g̃, B̃ and Ã are the background metric, Kalb-Ramond field and gauge field respec-

tively. We can solve the chirality conditions (2.31) explicitly by using (2.33), and we have

the following parametrizations:

KM̂
a =

1√
2

 lµa

lµ
a − c̃µν lνa(
Ãt
)
αµ
lµa

 , K̄M̂
a =

1√
2

 l̄µa

−l̄µa − c̃µν l̄νa +
√

2α′Ãµακ
αβjaβ(

Ãt
)
αµ
l̄µa +

√
2
α′ j

a
α

 , (2.34)

where lµa and l̄µa are d-dimensional vectors and jaα is a scalar in the adjoint representation

of G.

The second constraint in (2.29) implies KM̂
a and K̄M̂

a satisfy the orthogonality con-

ditions among themselves,

KM̂aJM̂N̂K
N̂b = 0 , K̄M̂aJM̂N̂K̄

N̂b = 0 . (2.35)

Substituting the above parametrization into the null condition of Ka and K̄a, we have

KM̂
aJ M̂N̂KN̂

b = lµ
alµb = 0 ,

K̄M̂
aJ M̂N̂K̄N̂

b = ˆ̄lµ̂aĝµ̂ν̂
ˆ̄lν̂b = l̄µ

a l̄µb + jα
ajαb = 0 .,

(2.36)

where ˆ̄lµ̂ = (lµ, jα) and ĝµ̂ν̂ is a (d+G)-dimensional metric

ĝµ̂ν̂ =

(
gµν 0

0 καβ

)
. (2.37)

Since the Witt index for each d and (d+G)-dimensional vector space is one for Lorentzian

signature, there is no mutually orthogonal null vector for a given l and ˆ̄l. Note that lµ is

a null vector in d-dimensional spacetime, but ˆ̄lµ̂ is not a null vector in the d-dimensional

spacetime but a null vector in the (d+G)-dimensional extended vector space. This shows

that the null condition for the heterotic KS formalism can be partially relaxed, which is

completely different from the pure DFT case.

Collecting all the ingredients we have obtained so far, we spell out the heterotic KS

ansatz as follows:

HM̂N̂ = H0M̂N̂ + κϕ
(
KM̂K̄N̂ +KN̂K̄M̂

)
. (2.38)

This ansatz satisfies the O(d, d + G) constraint (2.2) automatically due to the null and

chirality properties of K and K̄ without further assumption. If we ignore the gauge sector

by setting G = 0, it reproduces the generalized KS ansatz for pure DFT.

Let us represent the generalized KS ansatz in terms of the heterotic supergravity fields.

Comparing with the parametrization of H (2.3), we can read off

gµν = g̃µν + κϕl(µ l̄ν) ,

gµν = g̃µν −
κϕ

1 + κϕ
2 (l · l̄)

l(µ l̄ν) +
1

4

( κϕ

1 + κϕ
2 (l · l̄)

)2
(l̄ · l̄)lµlν ,

Bµν = B̃µν −
κϕ

1 + κϕ
2 (l · l̄)

(
l[µ l̄ν] −

√
α′

2 Ã[µ
αlν]jα

)
,

Aµα = Ãµα +
1√
2α′

κϕ

1 + κϕ
2 (l · l̄)

lµjα ,

(2.39)
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where l · l̄ = lµg̃µν l̄
ν . As one can see, the above ansatz for the d-dimensional heterotic

supergravity fields is highly nonlinear in κ, however, the ansatz for the generalized met-

ric (2.38) is completely linear. This shows that the duality manifest approach provides a

powerful tool for describing such a hidden linear structure. If we turn off the heterotic

gauge field, ja = Ãµα = 0, then l̄µ becomes a null vector and we reproduce the KS ansatz

for pure DFT as we expected. And we will show in the next section that the corresponding

field equations can be reduced to linear form.

An interesting point in our metric ansatz is its relation to the so-called extended Kerr-

Schild ansatz [62, 63]

gµν = g̃µν + φ1kµkν + φ2

(
kµk

′
ν + k′µkν

)
, (2.40)

where φ1 and φ2 are scalar fields, and k and l satisfy

kµg̃µνk
ν = 0 , kµg̃µνk

′ν = 0 , k′µg̃µνk
′ν 6= 0 . (2.41)

This ansatz is introduced by [62] to describe CCLP black holes [64] and generalized by [63]

(see also [65] for more detailed properties). In our case, l and l̄ correspond to k and k′

respectively, however l and l̄ do not have to be orthogonal to each other. If we assume that

l and l̄ are orthogonal then φ1 and φ2 correspond to ϕ and 1
4ϕ

2 l̄ · l̄ respectively.

2.3 Buscher rule

The Buscher rule is a powerful solution generating technique in supergravities. For a given

solution, we can get a new solution without solving the equations of motion when there

exists an abelian isometry. It is well known that the Buscher rule is a T-duality, and it can

be derived by applying an O(d, d + G) transformation to the generalized metric HM̂N̂ in

heterotic supergravity [60],

H′
M̂N̂

= OM̂
P̂HP̂ Q̂O

Q̂
N̂ , (2.42)

where OM̂
N̂ is an O(d, d+G) element which is given by

OM̂
N̂ =

 δµν − δµzδzν δµzδ
ν
z 0

δµ
zδν

z δµ
ν − δµzδzν 0

0 0 δα
β

 . (2.43)

Here, z is the isometry direction. Since the generalized KS ansatz (2.38) is written in terms

of O(d, d+G) vectors, the form of the ansatz should be preserved

H′
M̂N̂

= H′
0M̂N̂

+ κϕ
(
K ′
M̂
K̄ ′
N̂

+K ′
N̂
K̄ ′
M̂

)
, (2.44)

where

H′
0M̂N̂

= OM̂
P̂H0P̂ Q̂O

Q̂
N̂ , K ′

M̂
= OM̂

N̂KN̂ , K̄ ′
M̂

= OM̂
N̂K̄N̂ . (2.45)

Using (2.45) one can read off Buscher’s rule for the background fields and l and ˆ̄l. In

general, the transformation rule is nonlinear in α′, but we expand and keep only linear
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order terms. The explicit computation shows that the background fields transform as

g̃′zz =
1

g̃zz
−α′ Ãz ·Ã

t
z

g̃2
zz

,

g̃′zi =
B̃zi
g̃zz
−α

′

2

[
1

g̃zz

(
Ãz ·Ãti+

Ãz ·Ãtz
g̃zz

(
2B̃zi−g̃zi

)) ]
,

g̃′ij = g̃ij−
g̃zig̃zj−B̃ziB̃zj

g̃zz
−α

′

2

[ (
Ãz ·Ãti+

Ãz ·Ãtz
g̃zz

(
B̃zi−g̃zi

))B̃zj
g̃zz

+(i↔ j)
]
,

B̃′zi =
g̃zi
g̃zz
−α

′

2

(
Ãz ·Ãtz
g̃2
zz

g̃zi−
Ãz ·Ãti
g̃zz

)
,

B̃′ij = B̃ij+
B̃zig̃zj−B̃zj g̃zi

g̃zz
−α

′

2

[
Ãz ·Ãtz
g̃2
zz

(
B̃zig̃zj−B̃zj g̃zi

)
+

1

gzz

((
Ãi ·Ãtz

)
B̃zj−

(
Ãz ·Ãtj

)
B̃zi

)]
,

Ã′zα =
Ãzα
g̃zz
−α

′

2

Ãz ·Ãtz
g̃2
zz

Ãzα ,

Ã′iα = Ãiα−
B̃zi+g̃zi
g̃zz

Ãzα−
α′

2

[
1

g̃zz

(
Ãi ·Ãtz−

Ãz ·Ãtz
g̃zz

(
B̃zi+g̃zi

))]
Ãzα ,

(2.46)

and l and l̄ transform as

l′i = li−
(g̃zi−B̃zi)

g̃zz
lz−

α′

2

[
1

g̃zz

(
Ãz ·Ãti+

Ãz ·Ãtz
g̃zz

(B̃zi−g̃zi)
)]
lz ,

l′z =
lz
g̃zz
−α

′

2

(
Ãz ·Ãtz

)
g̃2
zz

lz ,

l̄′i = l̄i−
(
g̃zi+B̃zi

)
g̃zz

lz+

√
2α′

g̃zz
B̃zi
(
Ãz ·j

)
+
α′

2

[
Ãz
g̃zz
·
(
Ãti+

Ãtz
g̃zz

(
3B̃zi−g̃zi

))]
l̄z ,

l̄′z =− l̄z
g̃zz

+

√
2α′

g̃zz

(
Ãz ·j

)
+

3α′

2

(
Ãz ·Ãtz

)
g̃2
zz

lz ,

(2.47)

where Ãµ · Ãtν = Ãµκ
αβÃtν and Ãµ · j = Aµακ

αβjα. This shows that T-duality preserves

the form of the generalized KS ansatz and maps a generalized KS spacetime to another one.

3 Field equations

In the previous section, we introduced the heterotic KS ansatz using a pair of null O(d, d+

G) vectors. Considering a flat background, we now apply the ansatz to the equations of

motion of heterotic DFT and obtain the heterotic KS equation. Analogous to the pure

DFT case, we first derive the on-shell constraints for the null vectors and the DFT dilaton

by contracting the null vectors with the generalized Ricci tensor. We show that the KS

equations are the same as the ones for pure DFT, because all the terms containing the

structure constant do not contribute in the flat background. The resulting heterotic KS

equations are quadratic, however, we can reduce them to linear equations by restricting

the DFT dilaton. Finally, we consider a coordinate transformation which makes the DFT

dilaton trivial.
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3.1 KS ansatz in a flat background

We consider a flat background, g̃µν = ηµν , B̃ = 0, Ãµ = 0 and d0 = constant, where ηµν
is a d-dimensional flat metric, ηµν = diag(−1, 1, · · · , 1). The corresponding background

projection operators are parametrized as

P0M̂N̂ =
1

2

ηµν δµν 0

δµ
ν ηµν 0

0 0 0

 , P̄0M̂N̂ =
1

2

 −ηµν δµν 0

δµ
ν −ηµν 0

0 0 1
α′καβ

 . (3.1)

The corresponding background double-vielbein is given by

V0M̂
m =

1√
2

ẽµmẽµ
m

0

 , V̄0M̂
ˆ̄m =

1√
2

 ˜̄eµm̄ 0

−˜̄eµ
m̄ 0

0 δα
ā

 , (3.2)

where ẽµ
m and ˜̄eµ

m̄ are vielbeins for the same flat background metric ηµν , which satisfy

ẽηẽt = η and ˜̄eη̄ẽt = η. We can identify them as the identity, eµ
m = δµ

m and ēµ
m̄ = δµ

m̄.

Then the null vectors are parametrized as

KM̂ =
1√
2

lµlµ
0

 , K̄M̂ =
1√
2

 l̄µ

−l̄µ√
2
α′ jα

 (3.3)

Since the only non-vanishing component of the structure constant in (2.13) is fαβγ , it

is obvious that KM̂ and P0M̂N̂ are orthogonal to fM̂N̂P̂

P0M̂
N̂fN̂P̂ Q̂ = 0 ,

KM̂fM̂N̂P̂ = ∂Q̂K
M̂fM̂N̂P̂ = 0 .

(3.4)

In fact these constraints are too strong and all the terms containing fM̂N̂P̂ in the heterotic

DFT Lagrangian vanish, Lf = 0. If we turn-off Lf , the remaining Lagrangian is the same

as in pure DFT and the non-abelian gauge theory reduces to the abelian gauge theory.

We now derive the on-shell constraints, which play an important role in linearizing the

field equations, on the null vectors and the DFT dilaton. The constraints correspond to the

geodesic condition on the null vector in the conventional KS formalism in GR and can be

obtained by contracting the pair of null vectors with the field equations of the generalized

metric. The explicit computation shows

KM̂K̄N̂SM̂N̂ =
1

2
ϕK̄K̂K̄L̂∂K̂K

M̂∂L̂KM̂ +
1

2
ϕKK̂KL̂∂K̂K̄M̂∂L̂K̄

M̂

+ 2KK̂K̄L̂∂K̂∂L̂f = 0 .

(3.5)

Note that this is the same form as the pure DFT result [27], because Lf vanishes exactly

due to the orthogonality between KM̂ and fM̂N̂P̂ (3.4).

Following [27], we impose stronger conditions that each term vanishes separately

K̄K̂K̄L̂∂K̂K
M̂∂L̂KM̂ = 0 , KK̂KL̂∂K̂K̄M̂∂L̂K̄

M̂ = 0 , (3.6)
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and

KK̂K̄L̂∂K̂∂L̂f = 0 . (3.7)

Though the above on-shell constraints involve two derivatives, we can reduce them to

a simple form with one derivative. For a concise explanation, we define a pair of vectors

such that

vP̂ = K̄M̂∂M̂KP̂ , v̄P̂ = KM̂∂M̂K̄P̂ . (3.8)

From (3.6), vM̂ and v̄M̂ are null vectors, vM̂v
M̂ = 0 and v̄M̂ v̄

M̂ = 0. Since the projection

operators are constant, these have a definite chirality,

vM̂ = P0M̂
N̂vN̂ , v̄M̂ = P̄0M̂

N̂ v̄N̂ . (3.9)

Further, one can show that vM̂ and v̄M̂ are orthogonal to KM̂ and K̄M̂ due to the null con-

dition

vM̂K
M̂ = 0 , v̄M̂K̄

M̂ = 0 . (3.10)

As we have shown in section 2.2, there are no mutually orthogonal null vectors having

the same chirality in Lorentzian signature spacetime. Thus, vM̂ and v̄M̂ must be pro-

portional to KM̂ and K̄M̂ respectively, and the on-shell constraints (3.6) reduce to the

following first order differential constraints

K̄M̂∂M̂KP̂ = α(x)KP̂ , KM̂∂M̂K̄P̂ = β(x)K̄P̂ , (3.11)

for some functions α(x) and β(x). In general, we can always set α = β = 0 by taking

appropriate rescaling for KM̂ and K̄M̂

K → h(x)K , K̄ → g(x)K̄ , (3.12)

where h and g are some functions obeying the section condition. This is analogous to the

affine parametrization for the geodesic equation, and our on-shell constraint reduces to

K̄M̂∂M̂KP̂ = 0 , KM̂∂M̂K̄P̂ = 0 . (3.13)

We now consider the on-shell constraint on f . Using (3.13), we can rewrite (3.7) as

K̄M̂∂M̂
(
KN̂∂N̂f

)
= 0 , (3.14)

or

KM̂∂M̂
(
K̄N̂∂N̂f

)
= 0 . (3.15)

There are many solutions to the constraints, but we restrict ourselves to the simplest one

KM̂∂M̂f = 0 or K̄M̂∂M̂f = 0 . (3.16)

Note that in the flat background case the DFT connection satisfies the following identities

as in pure DFT

KM̂ΓM̂N̂P̂ K̄
P̂ = 0 , K̄M̂ΓM̂N̂P̂K

P̂ = 0 , ΓM̂ M̂P̂K
P̂ = ΓM̂ M̂P̂ K̄

P̂ = 0 . (3.17)
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This implies that the partial derivatives in the on-shell constraint can be replaced by the

covariant derivative

KM̂∂M̂K̄N̂ = KM̂∇M̂K̄N̂ = 0 , K̄M̂∂M̂KN̂ = K̄M̂∇M̂KN̂ = 0 . (3.18)

If we substitute the parametrizations of KM̂ and K̄M̂ in (3.3), we get the d-dimensional

representations of the on-shell constraints

l̄µ∂µl
ν = 0 , lµ∂µ l̄

ν = 0 , lµ∂µjα = 0 , (3.19)

and

lµ∂µf = 0 , l̄µ∂µf = 0 . (3.20)

From the identities of the on-shell constraints in (3.18), the above equations can be rewrit-

ten as [57]

l̄µO+
µ lν = 0 , lµO−µ l̄ν = 0 , (3.21)

where O±µ = Oµ± 1
2Hµ and Hµνρ = 3∂[µBνρ] +3

∑16
α=1A

α
[µ∂νA

α
ρ] and the Oµ is the covariant

derivative for the total metric. Interestingly, these can be interpreted as the parallel trans-

port equations along l and l̄ with the torsionful connections, and l and l̄ generate parallel

transport to each other.

3.2 Field equations

We now apply the KS ansatz (2.38) and the on-shell constraints (3.13) and (3.16) in a flat

background to the equations of motion of heterotic DFT. Before doing so, we discuss two

special properties of the field equations under the generalized KS ansatz.

First, the generalized Ricci tensor (2.19) can be decomposed into three different parts

according to the background chiralities. By contracting the background projection opera-

tors with the generalized Ricci tensor, we have

P0K̂
M̂P0L̂

N̂SM̂N̂ = 0 , P̄0K̂
M̂ P̄0L̂

N̂SM̂N̂ = 0 , P0K̂
M̂ P̄0L̂

N̂SM̂N̂ = 0 . (3.22)

The first two equations in (3.22) are chiral and anti-chiral parts respectively, and the last

equation is a mixed chiral part. These three equations are not independent of each other,

but the chiral and anti-chiral equations can be written using the mixed chirality equation

P0K̂
M̂P0L̂

N̂SM̂N̂ = −1

2
KKK̄

M̂
(
P0L̂

P̂ P̄0M̂
Q̂SP̂ Q̂

)
,

P̄0K̂
M̂ P̄0L̂

N̂SM̂N̂ = −1

2
K̄K̂K

M̂
(
P0L̂

P̂ P̄0M̂
Q̂SP̂ Q̂

)
.

(3.23)

Thus, it is enough to solve the mixed chirality equation. We denote the independent

equations of motion as
R = S ,

RM̂N̂ = P0M̂
P̂ P̄0N̂

Q̂SP̂ Q̂ .
(3.24)

Second, as we discussed in section 3.1, the Lagrangian of the heterotic DFT Lf vanishes

under the heterotic KS ansatz in a flat background due to the orthogonality between KM̂
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and fM̂N̂P̂ (3.4). Thus the resulting action is the same form as the pure DFT action.

Interestingly, it describes heterotic supergravity with abelian gauge group, even though we

started from the non-abelian theory. Thus, Sf in (2.18) and Kf in (2.20), which contain

fM̂N̂P̂ , do not contribute. The explicit form of the field equations is

R = −2κ∂K∂L̂
(
ϕKKK̄L̂

)
+ 4κHKL̂0 ∂K∂L̂f − 4κ2HKL̂0 ∂Kf∂L̂f = 0 , (3.25)

and

RK̂L̂ =
κ

2
∂M̂∂N̂

(
ϕKN̂K̄L̂P 0K̂

M̂ − ϕKK̂K̄
N̂ P̄0L̂

M̂ − 1

2
ϕKK̂K̄L̂H0

M̂N̂

)
+ 2κP0K̂

M̂ P̄0L̂
N̂∂M̂∂N̂f + κ2HM̂N̂

0 ∂M̂f∂N̂
(
ϕKK̂K̄L̂

)
= 0 ,

(3.26)

and we refer them as heterotic Kerr-Schild equations.

In fact, it is not convenient to solve them in the above form because of redundancies in

the generalized tangent vectors. We now recast them in terms of the d-dimensional fields

by substituting the parametrization of the null vectors and the section condition

R : κ
[
∂µ∂ν

(
ϕlµ l̄ν

)
− 4�f

]
+ 4κ2∂µf∂

µf = 0 , (3.27)

Rµν : κ
[
�
(
ϕlµ l̄ν

)
− ∂ρ∂µ

(
ϕlρ l̄ν

)
− ∂ρ∂ν

(
ϕlµ l̄ρ

)
+ 4∂µ∂νf

]
− 2κ2∂ρf∂

ρ
(
ϕlµ l̄ν

)
= 0 , (3.28)

Rµα : κ
[
�
(
ϕlµjα

)
− ∂ρ∂µ

(
ϕlρjα

) ]
− 2κ2∂ρf∂

ρ
(
ϕlµjα

)
= 0 . (3.29)

Note that these equations are quadratic in κ, and all the quadratic order terms contain f .

In other words, if we turn off f , the field equations reduce to linear in κ exactly. Using this

property, we can reduce the heterotic KS equations to linear equations as explained in [27].

One caveat is that the solutions of the reduced linear equations are not an approximation,

but exact solutions of the full equations of motion. Here we briefly describe one of these

methods.

Note that unlike the generalized metric, there is no restriction on the DFT dilaton in

the heterotic KS ansatz. In general one may expect f to be expanded to arbitrary order

in κ

f =

∞∑
n=0

f (n)κn . (3.30)

If we substitute the expansion of f into the field equation, we get

R =
∞∑
n=0

R(n)κn , RM̂N̂ =
∞∑
n=0

R(n)

M̂N̂
κn , (3.31)

where the linear order equations are

R(1) = ∂µ∂ν
(
ϕlµ l̄ν

)
− 4�f (0) = 0 ,

R(1)
µν = �

(
ϕlµ l̄ν

)
− ∂ρ∂µ

(
ϕlρ l̄ν

)
− ∂ρ∂ν

(
ϕlµ l̄ρ

)
+ 4∂µ∂νf

(0) = 0 ,

R(1)
µα = �

(
ϕlµjα

)
− ∂ρ∂µ

(
ϕlρjα

)
= 0 ,

(3.32)
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and higher order equations are (n > 1)

R(n) = −4�f (n) + 4
∑
p+q

=n−1

∂µf
(p)∂µf (q) = 0 ,

R(n)
µν = 4∂µ∂νf

(n) − 2∂ρf
(n−1)∂ρ

(
ϕlµ l̄ν

)
= 0 ,

R(n)
µα = −2κ∂ρf

(n−1)∂ρ
(
ϕlµjα

)
= 0 .

(3.33)

Interestingly, we can determine lµ, l̄µ, jα and ϕ completely by using the linear order

equations only. The remaining higher order equations just define recursion relations for

the higher order f (n), for n > 1. Fortunately, we do not have to solve the cumbersome

recursion relations.

If we combine the first equation and the trace of the second equation of (3.32), we

obtain a simple relation, �
(
ϕl · l̄ − 4f (0)

)
= 0. Then we can solve for f (0) as

f (0) =
1

4

(
ϕl · l̄ +H(x)

)
, (3.34)

where H(x) is a harmonic function, which satisfies �H = 0. To determine the harmonic

function H(x), we need to impose an appropriate boundary condition on f (0). By substi-

tuting f (0) in (3.34) into R(1)
µν , we have

�
(
ϕlµ l̄ν

)
− ∂ρ∂µ

(
ϕlρ l̄ν

)
− ∂ρ∂ν

(
ϕlµ l̄ρ

)
+ ∂µ∂ν

(
ϕl · l̄

)
+ ∂µ∂νH = 0 . (3.35)

Once we determine l, l̄, and ϕ by solving (3.35), f can be obtained by solving the dilaton

equation (3.27) instead of the recursion relations in (3.33). Furthermore, (3.27) can be

rewritten as a linear equation by the following field redefinition: ϕ′ = e−κfϕ and F = e−κf .

Then we have a linear equation

∂µ∂ν
(
ϕ′lµ l̄ν

)
+ 4�F = 0 . (3.36)

Here we used the on-shell constraints (3.19) and (3.20).

It is important to note that the solutions of (3.35) are not a perturbative but an exact

solution. We expanded f order by order in κ, but we have not expanded l, l̄, j and ϕ.

These can be solved by the linear equations (3.35) and (3.36). Therefore, the solutions

of (3.35) are exact solutions of the equations of motion of heterotic supergravity.

3.3 Comments on the DFT dilaton

So far we have only considered a flat background with Cartesian coordinates. In this

case, the background metric is constant, and the corresponding connection is trivial. We

now want to represent the field equations in a coordinate independent form by using the

covariant derivative in Riemannian geometry. In [27], the generalized KS equations are con-

structed in a general on-shell background (here we ignored the background Kalb-Ramond

field and the DFT dilaton)

R = κ
[
Õ0µÕ0ν

(
ϕlµ l̄ν

)
− 4Õµ0∂µf

]
+ 4κ2∂µf∂µf = 0 ,

Rµν =
κ

4

[
Õ0ρÕ

ρ
0

(
ϕlµ l̄ν

)
− Õρ0Õ0µ

(
ϕlρ l̄ν

)
− Õρ0Õ0ν

(
ϕlµ l̄ρ

)
+ 4Õ0µ∂νf

]
− κ2

2
∂ρfÕρ

(
ϕlµ l̄ν

)
.

(3.37)
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where Õ0µ is a covariant derivative for a flat background in an arbitrary coordinate system.

In this case the results are independent on the ordering of the covariant derivatives, because

they commute between themselves, [Õ0µ, Õ0ν ] = 0.

Note that the DFT dilaton is not a scalar field, but a density that transforms under a

coordinate transform xµ → x′µ(x) as

e−2d → e−2d′ =
∣∣∣∂x′
∂x

∣∣∣e−2d . (3.38)

We can find a new coordinate x′µ that makes the new DFT dilaton d′ vanish by requiring

that the Jacobian is e2d. ∣∣∣∂x′
∂x

∣∣∣ = e2d . (3.39)

Thus, for a given d, we can make the DFT dilaton vanish using the coordinate transfor-

mation which is obtained from (3.39).

As discussed, all the higher order terms in κ in the field equations include f . Using this

fact, if we perform a coordinate transformation satisfying (3.39), the equations of motion

become linear,

Ř = κǑ0µǑ0ν

(
ϕlµ l̄ν

)
= 0 ,

Řµν =
κ

4

[
Ǒ0ρǑ

ρ
0

(
ϕlµ l̄ν

)
− Ǒρ0Ǒ0µ

(
ϕlρ l̄ν

)
− Ǒρ0Ǒ0ν

(
ϕlµ l̄ρ

) ]
,

Řµα =
κ

4

[
Ǒ0ρǑ

ρ
0

(
ϕlµjα

)
− Ǒρ0Ǒ0µ

(
ϕlρjα

) ]
,

(3.40)

where Ǒ0µ is a covariant derivative for a flat space with the particular coordinate

where f ′ = 0.

In fact, this linearization procedure using a coordinate transformation is not practical

for solving the equations of motion, because we cannot specify the coordinate transforma-

tion without an explicit form of f . However, it is useful to analyze the single or zeroth

copy as we will see in the next section.

4 Classical double copy

One of the distinctive features of the closed string is the left-right sector decomposition.

The closed string mode expansion is decomposed into left and right movers, which are

completely decoupled, and each sector corresponds to an open string according to the KLT

relation [1]. This structure can be clearly seen in the tree level string scattering amplitudes.

The closed string tree level amplitude can be reorganized in terms of a product of two open

string tree amplitudes. Recently, this relation was generalized to the field theory level,

which is the so-called double copy structure [2–4].

In heterotic string theory, the right-mover corresponds to the ten-dimensional super-

symmetric open string, and the left-mover corresponds to the 26-dimensional bosonic open

string. The mismatched 16 dimensions must be compactified on a toroidal background.

Under the field theory limit, α′ → ∞, each open string theory reduces to Yang-Mills the-

ory. This indicates that the ten-dimensional heterotic supergravity can be described by
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the 10-dimensional N = 1 super Yang-Mills theory and the Kaluza-Klein reduction of the

26-dimensional bosonic Yang-Mills theory to 10 dimensions

Lleft = tr

[
−1

4
FµνF

µν

]
Lright = tr

[
−1

4
F̄µνF̄

µν − 1

2
D̄µX

αD̄µXα + [Xα, Xβ ][Xα, Xβ ]

] (4.1)

where Fµν and F̄µν are the Yang-Mills field strengths with respect to the Aµ and Āµ
respectively, and D̄µ is the covariant derivative with respect to Ā. Also, Xα are 16 scalar

fields in the adjoint representation.

We now describe the classical double copy including the entire bosonic sector of het-

erotic supergravity, gµν , Bµν , Aaµ and φ, through the generalized Kerr-Schild formalism. As-

sume that the full heterotic KS geometry admits at least one Killing vector ξµ which satisfies

Lξ
{
φ, g,B,A

}
= 0 . (4.2)

We can locally choose a coordinate system xµ = (xi, y) such that the Killing vector becomes

a constant, ξµ = ∂xµ/∂y = δµy , where y is the isometry direction. By definition of the Lie

derivative, all the fields are independent of the y coordinate for the constant Killing vector.

Let us recall some properties of the Killing vector field. From the torsion free condition

of the connection, a Killing vector satisfies the following identities

Oµξν = O[µξν] = ∂[µξν] . (4.3)

Thus, if we choose a coordinate system where the Killing vector is a constant, it is also

covariantly constant, Oµξν = 0. Consider the Lie derivative of an arbitrary rank-n tensor

Fµ1µ2···µn along the constant Killing vector ξµ

LξFµ1µ2···µn = ξρ∂ρFµ1µ2···µn +
n∑
i=1

∂µiξ
ρFµ1···µi−1ρµi+1···µn ,

= ξρÕ0ρFµ1µ2···µn +
n∑
i=1

Õ0µiξ
ρFµ1···µi−1ρµi+1···µn = 0 ,

(4.4)

where we have used the torsion free condition for the background connection. Since we are

assuming that the Killing vector is covariantly constant, (4.4) is reduced to

ξρÕ0ρFµ1µ2···µn = 0 . (4.5)

Finally, we also normalize lµ and l̄µ to satisfy

ξ · l = ξ · l̄ = 1 . (4.6)

Combining all the results, we can obtain the so-called zeroth and single copies.
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Single copy. Let us contract the constant Killing vector with one of the free indices of

the field equation of the generalized metric (3.37). Since Rµν is not a symmetric tensor,

we get three independent equations as follows:

ξνŘµν =
κ

4

[
Ǒ0

ρǑ0ρ

(
ϕlµ
)
− Ǒ0

ρǑ0µ

(
ϕlρ
) ]

, (4.7)

and

ξµŘµν =
κ

4

[
Ǒ0

ρǑ0ρ

(
ϕl̄ν
)
− Ǒρ0Ǒ0ν

(
ϕl̄ρ
) ]

,

ξµŘµα =
κ

4
Ǒ0ρǑ

ρ
0

(
ϕjα

)
.

(4.8)

If we identify the U(1) gauge fields with the vectors and scalars in the generalized KS ansatz

Aµ = ϕlµ , Āµ = ϕl̄µ , Xα = ϕjα . (4.9)

If we substitute these identifications into (4.8), we get linearized Yang-Mills equations or

Maxwell equations

ξµŘµν =
κ

4
Õ0

µFµν = 0 ,

ξµŘµν =
κ

4
Õ0

µF̄µν = 0 ,

ξµŘµα =
κ

4
Õ0

ρ∂ρXα = 0 ,

(4.10)

where F and F̄ are the field strengths for two independent Maxwell theories

Fµν = ∂µAν − ∂νAµ , F̄µν = ∂µĀν − ∂νĀµ . (4.11)

Obviously, these can be interpreted as the field equations for the abelianized Yang-Mills

theories in (4.1), which is the same as Maxwell theory. Since the covariant derivative is for

the flat bakcground, we can always go back to the Cartesian coordinate by the inverse of

the coordinate transformation defined in (3.39).

Zeroth copy. If we contract all the free indices of Řµν in (3.40) with the Killing vector,

we get a scalar equation

ξµξνŘµν =
κ

4
Õρ0∂ρϕ = 0 . (4.12)

Following [5, 27], we identify ϕ as the abelianized bi-adjoint scalar field Φαᾱ [66, 67], which

is the so-called zeroth copy. It is the abelian version of the bi-adjoint scalar field theory.

In this section we have derived Maxwell and Maxwell-scalar field equations from the

heterotic KS equations. This shows that the generalized KS type solution can be written

in terms of solutions of the Maxwell and Maxwell-scalar theories. Remarkably, these gauge

theories are exactly those expected from the heterotic string theory point of view. This is

non-trivial evidence for the KS double copy program.
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5 Examples

5.1 Charged black string

The simplest example is the fundamental charged heterotic string solution [68]. The explicit

geometry is given by

ds2 =
1

1 +NH(r)

(
− dt2 + (dxD−1)2

)
+

q2H(r)

4N (1 +NH)2

(
dt+ dxD−1

)2
+
D−2∑
i=1

dxidxi ,

B(D−1)t =
NH(r)

1 +NH(r)
,

A
(1)
D−1 = A

(1)
t =

1√
2α′

qH(r)

1 +NH(r)
,

φ = −1

2
ln (1 +NH(r)) .

(5.1)

where H(r) is the Green function

H(r) =


1

(D − 4)ωD−3rD−4
for D > 4 ,

− 1

2π
log r for D = 4

(5.2)

The determinant of the metric is

det g = − 1

(1 +NH)2
, (5.3)

and the DFT dilaton is trivial, e−2d = 1. Since e−2d = 1 and f vanishes, the equations of

motion are completely linear.

Using the relations in (2.39), we can easily read off the corresponding lµ, l̄µ, jα and ϕ

l = dt+ dxD−1 ,

l̄ = −dt+
4N2 − q2

4N2 + q2
dxD−1 , j1 =

4qN

4N2 + q2
,

κϕ =
(4N2 + q2)H

4N
.

(5.4)

These reproduce the heterotic supergravity fields (5.1). Note that if we set q = 0, the

heterotic KS ansatz reduces to the uncharged black string geometry [27].

We now consider the single and zeroth copy for the charged black string geometry.

After taking U(1) gauge transformations, the gauge fields and scalar field are identified as

A =
(4N2 + q2)H

4N
dt ,

Ā = −(4N2 + q2)H

4N
dt , X1 = qH .

(5.5)
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These gauge fields are the higher dimensional generalization of the Coulomb potential with

the electric charges ± (4N2+q2)H
4N .

According to the zeroth copy relation, ϕ is identified with the linearized bi-adjoint

scalar field which is proportional to the harmonic function H

Φ =
(4N2 + q2)H

4N
. (5.6)

5.2 Charged dilaton black hole

In heterotic supergravity there exists a static, spherically symmetric charged BH solution

in 4-dimensional spacetime [69, 70]. It is a generalization of the charged BH solution in

Einstein-Maxwell theory to the Einstein-Maxwell-dilaton theory. In the string frame the

geometry is given by
ds2 = −λ2ψdt2 + λ−2ψdr2 + r2Φ2dΩ ,

e2φ = ψ , Ftr =
Q

r2
.

(5.7)

where

λ2 = 1− r+

r
, ψ = 1− r−

r
. (5.8)

Here, r+ and r− are free parameters related to the physical mass and charge by

M =
r+

2
, Q =

√
r+r−

2
(5.9)

In order to have the standard sphere part of the metric, r2dΩ2, we shift the radial

coordinate r to ρ = r − r−, and we have

ds2 = −λ2ψdt2 + λ−2ψdρ2 + ρ2dΩ2 . (5.10)

Again we shift the time coordinate t as

dt→ dT + (1− λ−2)dρ , (5.11)

then the metric reduces to

ds2 = ds2
0 + (1− λ2ψ)

(
dT + dρ

)(
dT +

(
1− 2(1− ψ)

1− λ2ψ

)
dρ

)
(5.12)

where ρ2 = X2 + Y 2 + Z2, and ds2
0 is a flat metric

ds2
0 = −dT 2 + dρ2 + ρ2dΩ ,

= −dT 2 + dX2 + dY 2 + dZ2 .
(5.13)

In the Cartesian coordinate the determinant of the metric is det g = −ψ2, then the DFT

dilaton is trivial as the previous example. We can recast (5.11) in the form of the heterotic

KS ansatz

ds2 = ds2
0 −

κϕ

1 + κϕ
2 (l · l̄)

l(µ l̄ν) +
1

4

(
κϕ

1 + κϕ
2 (l · l̄)

)2

(l̄ · l̄)lµlν (5.14)
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where
l = dT + dρ

l̄ = dT +
3∑
i=1

r+ − r−
r+ + r−

Xi

ρ
dXi , j1 =

2
√
r+r−

r+ + r−

ϕ = −r+ + r−
ρ

(5.15)

One can show that l, l̄ and j satisfy the on-shell constraints (3.19) and the normalization

condition (4.6).

We now consider the single/zeroth copy for the charged BH case. The single copy is

A = −M
2 +Q2

Mρ
,

Ā = −M
2 +Q2

Mρ
, X1 = −2

√
2Q

ρ

(5.16)

and the zeroth copy is

ϕ = −M
2 +Q2

Mρ
. (5.17)

Interestingly, the single and zeroth copies are each represented by Coulomb potentials with

different charges. This is not a strange result because the black hole solution is a static

and spherically symmetric solution.

6 Conclusion

In this paper, we extended the KS formalism for pure DFT to the heterotic DFT case. We

introduced the heterotic KS ansatz in terms of the pair of O(d, d + G) null vectors which

may be represented in terms of a pair of d-dimensional vectors. Unlike the pure DFT

case, we can partially relax the null condition, and one of the d-dimensional vectors is not

null. Consequently, the heterotic KS ansatz for the d-dimensional heterotic supergravity

fields is highly nonlinear, even though the heterotic KS ansatz for the generalized metric is

completely linear. However, we showed that the heterotic KS equations in a flat background

can be reduced to linear equations.

Using the heterotic KS formalism, we obtained single and zeroth copy relations for

heterotic supergravity. Since the DFT dilaton transforms as a density under the coordinate

transform, we may set it to unity. In that coordinate system, the equations of motion reduce

to linear form regardless of the value of the dilaton. By contracting a Killing vector with

one of the free indices of the equations of motion in the specific coordinate, we obtained

equations of motion for Maxwell and Maxwell-Scalar theories, which are expected from

the heterotic string theory point of view. Furthermore, if we contract all the indices with

the Killing vector, we get a scalar equation which corresponds to the linearized bi-adjoint

scalar field theory.

We considered two examples, the heterotic charged black string solution and the

charged black hole solution. We showed that these solutions fit well with the heterotic KS
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ansatz and identified the Maxwell fields and scalar fields according to the single and zeroth

copy relations. We can go further and analyze the known exact solutions for the heterotic

supergravities and their compactifications in the framework of the heterotic KS formalism

and the classical double copy by solving the linear equations. To this end, it would be

useful to construct the Killing spinor equations from the supersymmetric DFT [72–77].

One interesting feature of heterotic DFT is that α′-corrections can be included by

a simple modification of the gauge group [57, 60, 71]. If we regard the spin-connection

as a gauge field for the local Lorentz group, then we can naturally include the α′ lead-

ing order correction by adding the local Lorentz group into the gauge group. It would

be interesting future work to construct solutions of the field equations with the higher

derivative correction.

Another straightforward future direction is the extension to the Kaluza-Klein and

Scherk-Schwarz reduction of heterotic DFT and supergravity. In this case we might spec-

ulate that the null condition is completely relaxed in the lower dimensional point of view,

but the linear structure of the equations of motion is preserved. Thus one can analyze the

known solutions in the toroidal compactifications of heterotic supergravity and find new

solutions by solving the linear equations as well.
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A KS formalism for the pure DFT

The Kerr-Schild formalism in GR was generalized to pure DFT [27]. The main difference

is that the generalized KS ansatz possesses two independent null vectors. For a given

background generalized metric H0MN , the generalized KS ansatz takes the form

HMN = H0MN + κϕ
(
KMK̄N +KNK̄M

)
, (A.1)

where KM and K̄M are chiral and anti-chiral null vectors with respect to the background

chirality

P0M
NKN = KM , P̄0M

NK̄N = K̄M , (A.2)

where P0 = 1
2(J +H0) and P̄0 = 1

2(J −H0). Note that P0 and P̄0 are projection operators

by means of the O(d, d) constraint for H0. Since K and K̄ belong to different chiral vector

spaces, they should be orthogonal to each other KMK̄
M = 0.

One can show that the generalized KS ansatz (A.1) satisfies the O(d, d) constraint

automatically without further conditions on K and K̄

HJ −1H = J . (A.3)
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We can parametrize the null vectors in terms of the d-dimensional null vectors, lµ and

l̄µ, by solving the above chirality conditions (A.2)

KM =
1√
2

(
lµ

(g̃ + B̃)µν l
ν

)
, K̄M =

1√
2

(
l̄µ

(−g̃ + B̃)µν l̄
ν

)
, (A.4)

where g̃ and B̃ are the background metric and Kalb-Ramond field respectively. Further-

more, the null condition for K and K̄ implies that l and l̄ are null vectors with respect to

the background metric

lµg̃µν l
ν = 0 , l̄µg̃µν l̄

ν = 0 , (A.5)

however, l and l̄ don’t have to be orthogonal to each other.

Substituting the parametrization of K and K̄ into the KS ansatz (A.1), we get the

ansatz for the supergravity fields

(g−1)µν = (g̃−1)µν + κϕl(µ l̄ν) ,

gµν = g̃µν −
κϕ

1 + 1
2κϕ(l · l̄)

l(µ l̄ν) ,

Bµν = B̃µν +
κϕ

1 + 1
2κϕ(l · l̄)

l[µ l̄ν] ,

(A.6)

where l · l̄ = lµg̃µν l̄
ν .

The equations of motion for pure DFT are given by the generalized Ricci scalar and

tensor. We can get a further on-shell constraint by contracting the null vectors with the

generalized Ricci tensor KMK̄NRMN = 0,

KM∂MK̄N = 0 , K̄M∂MKN = 0 , KK∂Lf = 0 , K̄K∂Kf = 0 . (A.7)

Substituting the parametrization of KM and K̄M , they yield the following d-dimensional

expressions:

lµ∂µ l̄ν = 0 , l̄µ∂µlν = 0 , lµ∂µf = l̄ν∂νf = 0 . (A.8)

If we substitute the KS ansatz into the field equations and use the null and on-shell con-

straint, we get

R = −2κ∂K∂L(ϕKKK̄L) + 4κHKL0 ∂K∂Lf − 4κ2HKL0 ∂Kf∂Lf = 0 , (A.9)

and

RKL = κ
[
− 1

2
HMN

0 ∂M∂N
(
ϕKKK̄L

)
+ ∂M∂N

(
ϕKNK̄LP0K

M − ϕKKK̄
N P̄0L

M
)

+ 4P0K
M P̄0L

N∂M∂Nf
]

+ κ2HMN
0 ∂Mf∂N

(
ϕKKK̄L

)
= 0 .

(A.10)

Similarly, using the parametrization of the K and K̄, we get

R : κ
[
∂µ∂ν

(
ϕlµ l̄ν

)
− 4�f

]
+ 4κ2∂µf∂

µf = 0 , (A.11)

Rµν : κ
[
�
(
ϕlµ l̄ν

)
− ∂ρ∂µ

(
ϕlρ l̄ν

)
− ∂ρ∂ν

(
ϕlµ l̄ρ

)
+ 4∂µ∂νf

]
− 2κ2∂ρf∂

ρ
(
ϕlµ l̄ν

)
= 0 .
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[65] T. Málek, Extended Kerr-Schild spacetimes: General properties and some explicit examples,

Class. Quant. Grav. 31 (2014) 185013 [arXiv:1401.1060] [INSPIRE].

[66] R. Monteiro and D. O’Connell, The Kinematic Algebra From the Self-Dual Sector, JHEP 07

(2011) 007 [arXiv:1105.2565] [INSPIRE].

[67] F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and

Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

[68] A. Sen, Macroscopic charged heterotic string, Nucl. Phys. B 388 (1992) 457

[hep-th/9206016] [INSPIRE].

[69] D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys.

Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].

[70] G.W. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional

Theories with Dilaton Fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].

[71] A. Coimbra, R. Minasian, H. Triendl and D. Waldram, Generalised geometry for string

corrections, JHEP 11 (2014) 160 [arXiv:1407.7542] [INSPIRE].

[72] I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11

(2011) 025 [arXiv:1109.2035] [INSPIRE].

[73] I. Jeon, K. Lee and J.-H. Park, Supersymmetric Double Field Theory: Stringy Reformulation

of Supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. D 86 (2012) 089903]

[arXiv:1112.0069] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP10(2016)127
https://arxiv.org/abs/1609.05022
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.05022
https://doi.org/10.1103/PhysRevD.99.046008
https://arxiv.org/abs/1812.04053
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.04053
https://doi.org/10.1016/j.nuclphysb.2015.08.013
https://doi.org/10.1016/j.nuclphysb.2015.08.013
https://arxiv.org/abs/1504.00149
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00149
https://doi.org/10.1016/j.nuclphysb.2014.02.015
https://arxiv.org/abs/1305.2747
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.2747
https://doi.org/10.1007/JHEP07(2017)075
https://arxiv.org/abs/1612.08738
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.08738
https://doi.org/10.1007/JHEP12(2014)074
https://arxiv.org/abs/1407.0365
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0365
https://doi.org/10.1016/j.nuclphysb.2016.05.015
https://arxiv.org/abs/1509.06973
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.06973
https://doi.org/10.1103/PhysRevD.79.044004
https://arxiv.org/abs/0811.3948
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.3948
https://doi.org/10.1088/0264-9381/27/18/185024
https://doi.org/10.1088/0264-9381/27/18/185024
https://arxiv.org/abs/1002.4378
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.4378
https://doi.org/10.1103/PhysRevLett.95.161301
https://arxiv.org/abs/hep-th/0506029
https://inspirehep.net/search?p=find+EPRINT+hep-th/0506029
https://doi.org/10.1088/0264-9381/31/18/185013
https://arxiv.org/abs/1401.1060
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.1060
https://doi.org/10.1007/JHEP07(2011)007
https://doi.org/10.1007/JHEP07(2011)007
https://arxiv.org/abs/1105.2565
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2565
https://doi.org/10.1007/JHEP07(2014)033
https://arxiv.org/abs/1309.0885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0885
https://doi.org/10.1016/0550-3213(92)90622-I
https://arxiv.org/abs/hep-th/9206016
https://inspirehep.net/search?p=find+EPRINT+hep-th/9206016
https://doi.org/10.1103/PhysRevD.43.3140
https://doi.org/10.1103/PhysRevD.43.3140
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D43,3140%22
https://doi.org/10.1016/0550-3213(88)90006-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B298,741%22
https://doi.org/10.1007/JHEP11(2014)160
https://arxiv.org/abs/1407.7542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7542
https://doi.org/10.1007/JHEP11(2011)025
https://doi.org/10.1007/JHEP11(2011)025
https://arxiv.org/abs/1109.2035
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.2035
https://doi.org/10.1103/PhysRevD.86.089903
https://arxiv.org/abs/1112.0069
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0069


J
H
E
P
0
7
(
2
0
1
9
)
0
3
0

[74] O. Hohm and S.K. Kwak, N = 1 Supersymmetric Double Field Theory, JHEP 03 (2012) 080

[arXiv:1111.7293] [INSPIRE].

[75] I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy Unification of Type IIA and IIB

Supergravities under N = 2 D = 10 Supersymmetric Double Field Theory, Phys. Lett. B 723

(2013) 245 [arXiv:1210.5078] [INSPIRE].

[76] S. Angus, K. Cho and J.-H. Park, Einstein Double Field Equations, Eur. Phys. J. C 78

(2018) 500 [arXiv:1804.00964] [INSPIRE].

[77] W. Cho, J.J. Fernández-Melgarejo, I. Jeon and J.-H. Park, Supersymmetric gauged double

field theory: systematic derivation by virtue of twist, JHEP 08 (2015) 084

[arXiv:1505.01301] [INSPIRE].

– 29 –

https://doi.org/10.1007/JHEP03(2012)080
https://arxiv.org/abs/1111.7293
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.7293
https://doi.org/10.1016/j.physletb.2013.05.016
https://doi.org/10.1016/j.physletb.2013.05.016
https://arxiv.org/abs/1210.5078
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5078
https://doi.org/10.1140/epjc/s10052-018-5982-y
https://doi.org/10.1140/epjc/s10052-018-5982-y
https://arxiv.org/abs/1804.00964
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.00964
https://doi.org/10.1007/JHEP08(2015)084
https://arxiv.org/abs/1505.01301
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01301

	Introduction
	Generalized Kerr-Schild ansatz for heterotic DFT
	Review of heterotic DFT
	Generalized Kerr-Schild ansatz
	Buscher rule

	Field equations
	KS ansatz in a flat background
	Field equations
	Comments on the DFT dilaton

	Classical double copy
	Examples
	Charged black string
	Charged dilaton black hole

	Conclusion
	KS formalism for the pure DFT

