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ABSTRACT: Some interpretations of R () anomaly in B meson decay using leptoquark (LQ)
models can also generate top quark decays through Flavor Changing Neutral Current
(FCNC). In this work we focus on two LQs, i.e. scalar S; and vector U; which are both
singlet under the SU(2); gauge group in the Standard Model (SM). We investigate their
implications on the 3-body top FCNC decays t — c/;{; at tree level and the 2-body t — cV
at one-loop level, with ¢ being the SM leptons and V = v, Z, g being the SM gauge bosons.
We utilize the 20 parameter fitting ranges of the LQ models and find that Br(t — cl;¢;) at
tree level can reach O(107%) and Br(t — cV) at one-loop level can reach O(1071%). Some
quick collider search prospects are also analyzed.
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1 Introduction

The deviations of B meson decays from the Standard Model (SM) predictions have at-
tracted a lot of attention in the past several years [1-7]. Two significant processes are
Ry and Ry« which are defined through ratios of Branching Ratios (BRs) as follows:
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with ¢® = (p+ + p;-)? between ¢ and ¢35 in units of GeV?2. For R p(+), the world-averaged
results after the recent update from Belle Collaboration [8] are:!

Rp=0.33440.031,  Rp-=0.297+0.015, (1.2)
RIM =0.29940.003, R =0.258 +0.005, (1.3)

which are larger than the SM predictions at about 3.1 [10-15].
The latest measurements of Rx at LHCb [16] and Ry~ at Belle [17] are:?

1,6 . . 1,6 ) .
Ry = 084640 080 (stat) 001 sys.), Ry = 0967083 (stat) Pl (sys), (1)

which are smaller than the SM predictions shown below [18, 19] at around 2o.

RILLOSM _ 100 +0.01, RIEMSM = 1,00 £ 0.01. (1.5)

!These updates do not change significantly from the previous ones when considering uncertainties, i.e.
Rp = 0.407+0.046 and Rp+ = 0.306 £ 0.015 [9]. Our main conclusions in this work are not affected much,
especially for the order of magnitude in our numerical results.

QR%*I’G] cited are using the combined charged and neutral channels in Belle’s measurement. R, (.) in
other energy bins can be found in [17].



The observed deviations of RTP) > R%}% and RE) < R%\({) have motivated many in-
terpretations by imposing physics beyond the SM (see a recent review in [20] and references
therein). Many of the theoretical proposals introduce additional charged scalars [21-31]
and/or vectors [32-41] to mediate the Charged Current (CC) in Rp(.) and Neutral Current
(NC) in Ry (+), which can be realized in various UV-complete models. Recent discussions
can be found in [42-60] and also recently in [61-97].

In this work we are not going to be ambitious to explain both deviations, but limit our-
selves to R () interpretations in the leptoquark (LQ) models [98-118] and its interesting
correlations to the top quark Flavor Changing Neutral Current (FCNC) decays. Recently,
several studies investigated the implications of the six types of LQ models on R, and
R+, including three scalars {S1, Re, Ss} and three vectors {U;, Va,Us} where the sub-
script denotes 275+ 1 with T3 being the LQ’s weak isospin. Results show that three of them
are still capable of accommodating R+ excess while satisfying other flavor constraints,
i.e. SM SU(2), singlet scalar S and vector Uy, as well as SU(2);, doublet scalar Rs.

In this work we concentrate on the two SU(2), singlet scenarios, i.e. S1 and Uy, mo-
tivated by the simplicity and, as we will see later, the resulting clear correlation patterns
between R+ explanations and the top decays through FCNC. Note that the benchmark
parameters we utilize in the numerical analysis may not be able to produce the observed
Ry () anomaly. For example, requiring S; to explain R, appears to result in conflict
with R’ge = Br(B — Duv)/Br(B — Dev) [119]. On the contrary, it has been shown that
Uy can still simultaneously generate the observed R+ and Ry« [120]. Putting aside the
complexities in accommodating both anomalies, in this work we will exclusively investigate
the R interpretation and the interesting correlations with the top quark FCNC when
introducing LQ S or U;.

This paper is organized as follows. In section 2 we briefly capture the Lagrangian
we consider for the scalar LQ S7 and the vector LQ Uy, and the effective operators they
generate in low-energy processes for Rp.). In section 3 we present the results for top FCNC
decays induced at both tree level and one-loop level. Collider search prospects are given
in section 4 and Conclusion will be given in section 5. Appendix includes full expressions
of one-loop Wilson coefficients of ¢ — ¢V at one-loop level induced by the scalar LQ 5.

2 LQ Sl and U]_ for RD(*)

In this section we briefly capture the low-energy theory in terms of effective operators
for Rp+) and the Wilson coefficients generated by the scalar LQ S; and vector LQ Uy,
respectively. Then we present the theoretical correlations between R ., and BRs of top
FCNC. We denote LQ as (SU(3).,SU(2))y which is its representation in the SM gauge
group [120, 121]. Considering the misalignments between gauge and mass eigenstates in
the quark sector, we define the left-handed quark doublet as Q; = [(VTur); dr;]T where V
is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

As mentioned earlier, we will focus on two LQs which are both singlet under the SM
SU(2)L group, i.e. scalar S; = (3,1)1/3 and vector Uy = (8,1)9/3. Their interactions with



the SM fields we consider are

Ls, = g QFinaL; S +g§§@emsl +he., (2.1)
‘C - hlL Qz’VML UH + h de'Y,ueR]Ul +h. C., (2.2)

where gijL, gll']]'{ and hle, hy j are matrices of new Yukawa interactions in the general case,
and 7o is the second Pauh matrix. We have neglected the terms of diquark couplings to
LQ to ensure the stability of proton [121]. Note again that we have chosen the form of
the left-handed quark doublet as Q; = [(VTur); dr;]” in which the down-type quarks are
mass eigenstates. Therefore it will be (Vg; L)” and (Vhy L)ij that enter the interactions
involving up-type left handed quarks.

The general low-energy effective dimension-six operators involved in B — D® 7
are [100, 110]

— Legr = (Csmdyr + CL )04, + CL 04, + C 0% + C%,0%, + C4LOY., (2.3)

with [ = 1,2, 3 being the neutrino generation index. Csy = 2v2GrVy, is the SM contri-
bution where G is the Fermi constant. Operators above are defined as

Oy, = (eLy"br) (FLyumiL) » 0%, = (Cry"br)(TLYuviL) | (2.4)
O%, = (eLbr)(Tr1L) | Ok, = (@rbr) (Fr1L) (2.5)
OT (CRU'M bL)(TRUuVVlL) (26)

The Wilson coefficients generated by S1 and Up at the energy scale p = My,q are
3 23 kS*
gingie | hipht !
C€/ = Vis + ’ CV =0, (27)
1 Z 2M2 ]\4[2]1 2
h hkS* 3 gl g23*
Lo L J1L91Rr
CSl - Z Vk ( M2 ) ) 032 - kzl Vk3 < 2M2 s (28)
! LIt
ch = Z Vi3 Sk (2.9)

For simplicity, in the following we only consider terms with £ = 3 and V33 ~ 1 for the

LQ contributions.®> We note that [110] has provided the parameter ranges for various LQ
models which can fit the R ) data (see table.Il therein), as well as how they confront
other flavor constraints. For example, a small gﬂ can help S7 pass the constraints from
B — X,wv while having available 9y Lg%%* to interpret R ). Note that there are only
two parameters in our analysis when choosing a certain generation index [, i.e. g%lL, g%ﬁ’%
for S1 and h%lL, hlf% for Uy, which is different from the more complex textures in other
works, e.g. [120, 122]. Our choices can result in clear correlations between R ) and top

FCNC decays.

3To make it consistent, in the following calculations we also ignored terms in LQ-quark-lepton couplings
that are induced by non-diagonal CKM elements, i.e. from the up-type quark mixings defined in Q; =
[(VTur): dri]*. We checked that the dropped terms are negligibly small.
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Figure 1. Tree-level top FCNC decays considered in this work, induced by SU(2) singlet scalar
LQ S; and vector LQ U;.

Figure 2. One-loop top FCNC decays of t — ¢y considered in this work, induced by SU(2) singlet
scalar L.Q S;.

U1
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Figure 3. One-loop top FCNC decays of ¢ — ¢y induced by SU(2) singlet vector LQ U;. Note
that we do not calculate these diagrams in this work, due to the lack of ultraviolet completion for
vector LQ U; in our phenomenological studies. See more discussions in section 3.2.

3 LQ S; and U; for top quark FCNC

Diagrams of S1,U; contributions to top FCNC at tree level ¢t — CT*Ef and t — cv,7; are
provided in figure 1 with ¢ denoting the lepton generation index. Square brackets indicate
the chirality of couplings and replacement with particles in the round brackets generate
processes involved in R .. In figure 2 and figure 3 we also show the one-loop contributions
to top FCNC t — ¢y from S7 and Uy, respectively, in which replacing external photon
with Z boson or gluon g with applicable vertices is straightforward.

In the numerical analysis, we utilize the parameter ranges in [110] for various LQ
models which can fit the Rj.) data at 20 level (see table.Il therein). We remind ourselves
that moderate differences in the 20 ranges of parameters presented in different papers do
not affect the order of magnitude in top FCNC BRs we will discuss. To be more clear, the
parameter ranges we take from [110] in the numerical studies are summarized in table 1.
For simplicity, we assume all parameters are real in our analysis.

3.1 Tree level

One important feature in the top FCNC decay induced at tree level by LQ S7 and Uj is
that heavy LQ can be reasonably integrated out into effective coefficients in the amplitude,
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Table 1. Parameter ranges we utilize in numerical calculations, taken from table.Il of [110]. For
simplicity, we assume all parameters are real in our analysis.

ie. 91]6[%13 and h?@gm, which contribute as a whole piece in both the top FCNC decay
1

and the Rp.). This infers an interesting correlation between the two processes despite the

specific values of the couplings and LQ masses, as long as LQ masses are heavy enough to

justify the effective coefficients as good approximations of the full calculations.

The top FCNC BRs in figure 1 can be approximated as follows.

1 5 3L 23 14~18 1=1,2
Si: Br(t—cr )~ ( b >|gnglR I?=107% x T (3.1)

T Tysum \614473) 1 M2 0.16 ~0.41 [ =3

Ui: Br(t—cn,y) =

1 ( my >|h§ih§lg|2_10_6x 058 ~ 1.5 1=1,2 (3.2)
Tism \153673 /0 M7+ 17~19 1=3 '
In the above, we take the SM parameters as m. ~ m, ~ 0,m; = 172GeV and I'y gm =

1.5 GeV, while glj\ggm and %’;m are taken from table 1. The analytic expressions are
S1 U1

approximations by integrating out LQ propagators, while the numerical results are obtained
from full calculations using MadGraph [123] with model files generated by FeynRules [124].

Note again that the connection between R and top quark 3-body FCNC decays
Br(t — clil;) ~ 10~% shown above do not depend directly on the specific values of couplings
and LQ masses, but on the effective coefficients glﬁ# and hi\i’# as a whole piece. It holds

S1 Uy
well for sufficiently heavy Mrq (2 1TeV) which can justify the good approximations and
m.
TEm

suppress the high order terms o in the full calculation.

3.2 One-loop level

For t — ¢V with V = ~,g,Z at one-loop level, the amplitudes can be expressed in the
following form:

thcV = a(p?) Fﬁcvu(pl) EM(I{J, )‘) ) (33)

where pi,ps, and k denote the 4-momenta of the incoming top quark, outgoing charm
quark and the outgoing gauge boson, respectively, and €,(k, A) is the polarization vector
of the outgoing gauge boson. The vertices I'* can be decomposed as follows [125] when



external particles are on-shell:

Y, =" (PLffL + Prfir) +ioc" k,(PLff, + PrifR) . (3.4)
F?cw = iU”VkV(PLf%L + PRf%R) ) (35)
Féllcg = T‘IZ.O'“V]{;V(PLJC{ZZL + PRfjg”L) s (36)

with Pr = (1 £75), o = £[y*,7"] and T® are the SU(3) color generators with
a=1,...,8. The partial widths are

3 2\ 2 2
m m m
D(t — cZ) = B%;HQZ (1 - mtg) [<1 + 2m§> (ZLP + 1 FER1%)

m2 . . m2
=62 Re (feL Ik + [70fVh) +m7 (2 + m%) (P + 1) | 3.7)
t

3
m
Dt 1) = T (17, F7l?) (35)
mf g |2 g |2
I'(t—cg)=Cr ﬁ(\fTL| + 7Rl (3.9)

where Cr = (N2 — 1)/2N, with N, = 3 is the Casimir factor of SU(N) and we set m. = 0
for simplicity. We use FeynArts/FormCalc [126, 127] to perform the one-loop calculations
which is then linked to LoopTools [127] to obtain numerical results.

First of all, we note that in the case of vector LQ Uj, the model is non-renormalizable
by introducing a single vector LQ U;. This results in a divergent U; contribution to t — ¢V
at one-loop level, unless the ultraviolet (UV) completion is established to generate the U;
mass (see e.g. [128-134]). The approach will be model-dependent and we will not address
it further in this work. More discussions on effects of U; at one-loop level can be found
in, e.g. [118].

In the full calculations we include both the SM and the LQ contributions to take
into account the interference effects. For the LQ S; contributions, we present the full
expressions of Wilson coefficients at one-loop level in the appendix. In the heavy mass
range Mg, ~ 1TeV which indicates Mg, > m¢, m., m,, one can have approximated results,
especially for the massless gauge bosons V' = v,g. By setting m. = 0 and taking z, =
mz/Mgl,:ct = mf/Mgl, we have:

33 ,23%
£9 gsThr 91L91R
L= 1672 Mg,
1
x 35 (= 6 (22272, + 3w, + 162, +6) log v — 49, — 48), (3.10)
e Lo, gtk
LT em? T M3,
1/1
X3 (6 (ldzixr + 2 + 92 +3) + (x¢ + 1) 2, 10g5€r) ; (3.11)
fin = fin = 1fr =0, (312

where g, is the coupling of strong interaction. In the above, we have utilized Package-
X [135, 136] to perform the loop function reductions. Note that the absence of right-handed
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Figure 4. Br(t — ¢V), V = v, g, Z at one-loop level induced by SU(2) singlet scalar LQ S;. In

the left panel we choose gis g?3* = 1 as an ordinary coupling benchmark to show the decoupling

behavior of LQ S; contribution with respect to Mg, . In the right panel, we fix < 1L9 GLITE — (.87 which
is the upper bound value of numerical fitting for LQ models to explain Ry at 20 (see table 1).

Solid lines include both the SM and the L(Q contribution, while dashed lines are the SM predictions
with the CKM matrix values taken from Particle Data Group [138].

dipole current is because of the coupling textures we considered in table 1. In the case of
massive Z boson, the loop function approximations are tediously long [137] and we keep
the full expressions in the appendix.

In figure 4 we show the numerical results of Br(t — cV') with colors of red, green,
blue indicating V = =, g, Z, respectively. Solid lines include both the SM and the LQ
contribution, while dashed lines are the SM predictions with the CKM matrix values taken
from Particle Data Group [138]. In the left panel we choose ¢33 g% = 1 as an ordinary
coupling benchmark to show the decoupling behavior of LQ S contribution with respect
to (w.r.t.) Mg,. We see that when including the LQ S; contributions with Mg, ~ 1TeV,
Br(t — c¢y) (Br(t — c¢Z)) are increased by a factor of about 2000 (400) from the SM
predictions 5 x 10714 (1 x 107) to around 1 x 1071% (4 x 10~'2). However, there is only
a mild enhancement by a factor of around 3 for Br(t — cg), which is from 6 x 10712 in the
SM to around 2 x 10! when including the S; contributions. However, with sufficiently
heavy Mg, all values of Br(t — ¢V') will reduce to the SM predictions.

In the right panel, we fix gi}aﬁ = 0.87 which is the upper bound value of numerical

S1
fitting for LQ models to explain R ) at 20 (see table 1). To keep g1 7 gf}o’_{ perturbative in

this set-up, Mg, should not be too heavy. In the region of Mg, ~ O(1) TeV, one can learn
from eq. (3.10) and eq. (3.11) that we have small but almost stable z,,z; < O(1). When
combined with the SM contributions, Br(t — ¢V') are also fairly stable for Mg, 2 2TeV
with values around 1 x 107101 x 10711,5 x 10713 for V = ~, g, Z, respectively.

4 Collider search prospects

The 2-body top quark FCNC decays have been searched intensively at the LHC. The
current constraints on the Br(t — ¢y), Br(t — c¢g) and Br(t — c¢Z) are found to be
2x 1073 [139], 2 x 10~* [140, 141] and 2 x 10~* [142, 143], respectively. These are about six



orders of magnitude above the predicted BR values O(1071%) at one-loop level induced by
our LQ scenarios of explaining R, as presented in figure 4. Therefore, with such small
BRs there is basically no hope to detect the signals of the 2-body top quark FCNC decays
induced by S1 explanation of Rp).

As for the 3-body top quark FCNC decays at tree level, our discussions in section 3.1
show that the LQ explanation of the Rp.) can induce ¢t — cu7, t — cr7 and t — cvv with
BRs ~ 1076, In the following we perform some assessments of the search prospects for
the 3-body top FCNC decays at the future upgraded LHC with integrated luminosity of
3000 fb~! and collision energy at 13 TeV. We will first consider the cut-and-count analysis
which turns out to be not effective, then we proceed with further studies using multi-variate
analysis techniques of Boosted Decision Tree (BDT) method.

4.1 Cut-and-count analysis

The LHC is a top quark factory. With integrated luminosity of 3000fb~' and collision
energy at 13TeV, about 2.5 x 10 top quark pair events will be produced. If the LQ
explanation of the Ry can induce t — cut, t — er7 and t — cvv with BRs ~ 1079, there
will be ~ 2500 events which include at least one top quark decaying in these 3-body FCNC
modes. In order to suppress the multi-jet events and trigger the signal events, we require the
other top quark in the top quark pair event to decay leptonically (¢t — bW, W — fv). This
requirement still gives ~ 500 3-body top quark FCNC events induced by our L(Q) scenarios
of explaining R+. The dominant SM backgrounds are t¢ with both top quarks decay
through ¢ — bW, diboson production (VV), Drell-Yan process (DY) and W+jets events.

The following preselections will be applied to pick out the final state for each one of
t— cur,t— crT and t — cvv.

e Selection 1: Exactly one lepton, at least three jets including exactly one b jet and
two 7 jets.

e Selection 2: Exactly two leptons, at least one muon, at least 2 jets including exactly
one b jet and one 7 jet.

e Selection 3: Exactly one lepton and more than two jets in the final state, where one
of the jet is b-tagged, the missing transverse energy E}mss > 80 GeV.

In the event selections, our requirements include:

e The muons are required to have pr > 30(25) GeV and |n| < 2.4, while the electrons
should have pr > 35(30) GeV and |n| < 2.4 for leading (sub-leading) lepton.

e For both electrons and muons, the scalar sum of transverse momenta Hp of all
particles with pr > 0.5 GeV that lie within a cone of radius R = 0.3(0.4) around the
e(p) should be less than 25(15)% of the transverse momentum of e(fu).

e The jets are reconstructed through anti-kr algorithm with radius parameter R = 0.4.
Each should have pr > 30 GeV and |n| < 2.4.



\A% DY W+jet tt t—cur | t—crt | t— cvv
Selection 1 | 9559 108095 — 1189719 28 19 0.3
Selection 2 | 5433 54047 — 839651 39 ) 0.0
Selection 3 | 296814 | 594522 | 16530371 | 64764862 140 94 102

Table 2. The number of signal and background events after selections at 13 TeV LHC with inte-
grated luminosity of 3000 fb~!. The signals are the tf events with one top quark decaying leptonically
and the other one decaying though t — cur, t — ¢77 and t — cvv induced by our LQ scenarios of
explaining Rp(-) with a universal benchmark BR ~ 1076. The W +jet events in Selection 1 and 2
are negligible because of low statistics after the requirement of b and 7 jets.

e The 7 jet tagging efficiency is 60% with a QCD jet mis-identification rate of 1% (5%)
for pr < 40GeV (pr > 40GeV). We set the b-tagging efficiency to be 68 %, and
the corresponding mis-tagging rates for the charm and light flavor jets are 0.12 and
0.01 [144].

The number of signal and background events after selections at HL-LHC are provided
in table 2, in which the W+jet events in Selection 1 and 2 are negligible because of low
statistics after the requirement of b and 7 jets. We can see that after the preliminary
selection, the tf events are the dominant SM background and they are about 10* ~ 10°
times larger than signal events. We also found that with this simple cut-and-count method
constructed above, the signal BRs above ~ 5 x 107> can be excluded at the 95% confidence
level (2 standard deviations). Therefore, the simple cut-and-count analysis is not powerful
enough for probing the 3-body top quark FCNC decay signals with BR ~ 107% induced by
our LQ scenarios of explaining Rp).

4.2 Multi-variate analysis

We proceed with some further studies using multi-variate analysis of BDT method, which
is one of the machine learning techniques with the kinematic variables of the final objects,
the angle distributions between leptons and Ej‘?iss, and so on. In our results shown in
figure 5, the input variables we consider include:

e multiplicity of jets, b jet, c jet and 7 jet

e pr, EXS of the leading lepton

pr of the leading 7 jet

H7p which includes jets, leptons and Ejnliss

pr of leptons + ER pr of leptons + 7 jet

AR(T, 0), Ap(L, BJ), Ag(, B

Ag(r + £, B

e AR(/, leading b jet)
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Figure 5. Normalized BDT output distribution for signal and background events. The signal
events tend to be close to 1 and the background events are close to —1. The training and testing
samples are indicated by the dot and the filled histograms, respectively. The training and testing
samples are compatible with each other which means there is no overfitting. We have utilized
Delphes [145, 146] to simulate the detector responses.

In order to have a smooth distribution of the output BDT, we need to loosen the event
selections. As an example, if we loosen the event Selection 1 to 1 lepton and 2 jets (one
b jet and one 7 jet) for the signal of the t — cur process, the signal significance defined
by* S/ VB goes down to 0.0138. In figure 5 when focusing on the last 10 bins of signal
and background in the MVA score distribution between [0, 1], we found that using BDT
can help the cut-and-count method give an increased significance of 0.0185. Therefore,
using the shape of the final BDT distribution we are able to increase the significance
by O(30%) compared to the cut-and-count method. However, to further increase the
sensitivity in a more comprehensive analysis, we need to perform the shape analysis with
more sophisticated statistical tools. As this involves dedicated data analysis with much
more statistics, we would leave the technical improvement in future works.

5 Conclusion

In this work we studied the correlation between the interpretations of Rj.) anomaly in
B meson decay using LQ models and the top quark FCNC decays, i.e. 3-body processes
t — cl;{; at tree level and 2-body processes t — cV' at one-loop level, with ¢ being the SM

4Systematic uncertainties are not included in this quick multi-variate analysis given the limited statistics.

~ 10 —



leptons and V' = v, Z, g being the SM gauge bosons. We focus on the scalar LQ S; and
vector LQ U; which are both singlet under the SM SU(2);, gauge group. Utilizing the 20
parameter fitting ranges of the LQ models, we find that 3-body processes Br(t — cl;il;)
at tree level can reach O(107%), and the 2-body processes Br(t — cV') induced by scalar
LQ S; at one-loop level can reach O(1071%). We also provided quick estimations of the
collider search prospects for a benchmark scenario Br(t — cf;¢;) ~ 107% at 13 TeV HL-
LHC with integrated luminosity of 3000fb~!. We found that the simple cut-and-count
method can not give promising collider signal significance, but multi-variate analysis using
BDT technique can provide reasonable improvements. More refined collider analyses are
desirable which are left for future dedicated works.
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A One-loop Wilson coefficients of t — ¢V induced by S;

Here we present the Wilson coefficients of 2-body top quark FCNC decays t — ¢V at
one-loop level induced by the scalar LQ S; in section 3.2. For the dipole current we have:

L 1
fg = g?%g%?% 167 59sMr X 02(0 mt7m M317M517 ) (Al)
[y = —91L9% gems
(301(m 0,m2, M2, m2,m2) + Cy(0,m2, m2, M2,, M3, ,m?)
+3Co(m2,0,m7, M3 ,m? m2)> (A.2)
1 e
x <3(SW - CW)Cl (mg7m2Z7 m?v Mglamzamz) (A3)

+2$12/V(302(m2,m22,mt2,M§1,m2 )+C’2(mz,mt,m MSI,MSI, ))),

fir=ftr=Ifr=0. (A.4)

Note that the absence of right-handed dipole current is because of the coupling textures
we considered in table 1.
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For the monopole current which appears for the massive gauge boson Z, we have:

FZ, = g3 25 1 e Mmsme

cw sw m2 — m?

x ((3cy — k) (Bo(m?, m2, M3,) — Bo(m?,m2, MZ,))
+2312,V(mg—mt)(300(m mZ,mt,Mgl,mz,mQ)+3C1(mg,m22,mf,]\/[§l,m3,mz)
+3C'2(mc,mz,mt,Msl,m2 )+C2(mz,mt,m Msl,Msl, ))) (A.5)

FZ. = ghB g2 1 e msmy
VR = 91L91R 3 3
9672 cyy sy mgs — m;

X(ZLS%V(BO(mz,mz,Mgl) Bo(mtjm Msl))

+(mzf )(QSWCQ(mZ,mt,m Msl,Msl, )
- 3(CW - SW)(CO(mcv mZ7mtﬂM517m72'7 m72')
A2 VB )+ oo V) ). (4)

Coefficients B;, C; in the above are defined in the general one-loop tensor integral [127,
137]:

TN p (1. pN—1,m0, ... mN—1) = (QW;Q;D /quDoqgll‘-‘-.-qDM;_f (A.7)
with the following denominators:
Dy = ¢* — m? + ie, Di = (g4 pi)? — m? + i, i=1,...,N—1. (A.8)
Then one can perform the decompositions as follows:
B, = p1,DB1, (A.9)
C, = p1,C1 + p2,Co. (A.10)

To carry out the numerical calculations with the public package LoopTools, one needs to
impose the parameter conventions of LoopTools by the following transformation:

B;i(p1,mg,m1) — Bi(p%,mg,m%), (A.11)
Ci(p1,p2, mo, m1,m2) = C;(p3, (p1 — p2)*, p3, m§, mi, m3). (A.12)

Note that the loop function coefficients presented in this appendix has been applied with
the transformation.

In all of the numerical results presented in this work, we have used the complete
expressions with loop functions. However, for Mg, ~ O(1)TeV which indicates Mg, >
myg, me, M., one can have the following compact approximations by setting m. = 0 for the
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Figure 6. The comparison of the approximations in eq. (3.10) and eq. (3.11) to the full results in
eq. (A.1) and eq. (A.2).

massless cases of photon and gluon,

oo L giL9in
L= 1672902
1
x =5 (= 6 (22270, + 32, + 162, +6) log v, — 49, — 48), (A.13)
ot em 9191k
L7162 M3
1/1
x 3 g (Ao + 20+ 92, +3) + (w0 + 1) 27 log - ), (A.14)
for=flp= fEp =0, (A.15)

where z, = m2/M gl,xt =mi/M §1' Note that we have kept the first order effect of top
quark mass m; in the expansion due to its relatively large value. To illustrate this, in
figure 6 we show the comparison of the approximations to the full results. In the cases of
massive Z boson with two external massive particles in the 3-point loop functions, even
the approximated expressions are tediously long [137] and we do not proceed with the
reductions but keeping the full expression.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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