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Charged-lepton-flavor violation (LFV) occurs within the standard model (SM) when neu-

trino masses are included, but since these masses are extremely small, the resulting LFV is

strongly suppressed. For this reason, processes manifesting LFV provide an ideal window

to new physics (NP), and hence quests for them are of tremendous importance. Many ex-

tensions of the SM do not preserve lepton-flavor number, and the corresponding parameters

have been tightly restricted by the negative outcomes of the various searches conducted so

far in the decays of kaons, B mesons, and charged leptons, among others [1–11]. The most

common examples of NP exhibiting LFV include leptoquarks [12–22], heavy neutrinos [23–

32], gauged U(1) extensions of the SM with their associated Z ′ gauge bosons [33–41], and

multi-Higgs models [42–48]. Interestingly, some of these NP possibilities can give rise to

lepton-flavor-universality violations of the type hinted at by recent B-physics measurements

of the quantities RK(?) and RD(?) [1, 49].

Tests of LFV in strangeness-changing (|∆S| = 1) quark transitions have a long tra-

dition in kaon physics where the experimental branching-fraction limit B(KL → e±µ∓) <

4.7×10−12 [50] can be interpreted as probing energy scales above 100 TeV [1]. Only slightly

less impressive are the constraints that have been obtained from the K → πe±µ∓ modes.

There are no corresponding limits from the light hyperon sector as far as we know, but the

recent measurement by the LHCb Collaboration of B(Σ+ → pµ+µ−) =
(
2.2+1.8
−1.3

)
×10−8 [51]

suggests that new limits from this sector could become available soon.
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Our purpose in this paper is to explore LFV in |∆S| = 1 hyperon decays in a model-

independent way and to compare the coverage of NP parameter space they offer to that

already available from kaon studies. Our work is partly motivated by the ongoing efforts

by LHCb to investigate hyperon and kaon processes [52–54].

The organization of this paper is as follows. In section 1 we consider the most general

effective Lagrangian involving quark-lepton operators of dimension six which are invariant

under the SM gauge group and can induce |∆S| = 1 transitions with LFV among the

lightest hadrons. We then briefly discuss a possible ultraviolet completion of this effective

Lagrangian in terms of leptoquarks. In section 2 we first obtain the baryonic matrix

elements pertaining to our hyperon decays of interest and subsequently derive their decay

rates. We also deal with their kaon counterparts as well as other processes without hyperons

that are affected by the same operators as a consequence of gauge invariance, such as

K → πνν̄ and µ → e conversion in nuclei. In section 3 we present our numerical analysis

and illustrate how the different processes are complementary in probing the NP of concern.

We summarize and draw our conclusions in section 4. Some technical details are relegated

to appendices.

1 Effective Lagrangian

1.1 Model-independent approach

We begin from the most general effective Lagrangian that can be built out of SM fields,

including gauge fields and a light Higgs,1 and respects the gauge symmetries of the SM, as

has been described before in the literature [2, 55]. The operators Qk that can contribute to

|∆S| = 1 transitions with LFV between down-type light fermions first occur at dimension

six (dim-6). There are several such operators [2, 55], and the Lagrangian containing them

has the form

Lnp =
1

Λ2
np

[
5∑

k=1

Cijxyk Qijxyk +
(
Cijxy6 Qijxy6 + H.c.

)]
, (1.1)

where Λnp denotes a heavy mass scale characterizing the underlying NP interactions, Cijxy1,...,6

are dimensionless and generally complex coefficients, i, j, x, y = 1, 2, 3 stand for family

indices, summation over them being implicit,

Qijxy1 = qiγ
ηqj lxγηly , Qijxy2 = qiγ

ητIqj lxγητIly , Qijxy3 = diγ
ηdj exγηey ,

Qijxy4 = diγ
ηdj lxγηly , Qijxy5 = qiγ

ηqj exγηey , Qijxy6 = liej dxqy , (1.2)

with qi and li (di and ei) representing the left-handed doublets (right-handed singlets) of

quarks and leptons, respectively, τI=1,2,3 denoting Pauli matrices, and I being summed

over.2 Accordingly, Qijxy†k = Qjiyxk , and also Cijxy∗k = Cjiyxk due to the Hermiticity of

Lnp, for k = 1, . . . , 5. We note that there are no dim-6 SM-gauge-invariant operators

comprising tensor bilinears that directly participate in down-type quark-lepton transitions,

1I.e., the linear realization of electroweak symmetry breaking.
2Hence Q1 = Q

(1)
lq , Q2 = Q

(2)
lq , Q3 = Qed, Q4 = Qld, Q5 = Qeq, and Q6 = Qleqd in the notation of [55].
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as previously observed [55–57].3 Moreover, the absence of tree-level flavor-changing neutral

currents in the SM implies that dim-6 operators made up of a quark or lepton bilinear in

combination with gauge and Higgs fields also do not contribute to Lnp.

For convenience, we can choose to work in the mass basis of the down-type

fermions, where

qi = PL

(∑
j

(
V†ckm

)
ij
Uj

Di

)
, li = PL

(∑
j(Upmns)ijνj

Ei

)
, ei = PREi , di = PRDi ,

(1.3)

with Vckm (Upmns) being the Cabibbo-Kobayashi-Maskawa quark (Pontecorvo-Maki-

Nakagawa-Sakata neutrino) mixing matrix, PL,R = (1 ∓ γ5)/2, and U1,2,3 = u, c, t,

D1,2,3 = d, s, b, ν1,2,3, and E1,2,3 = e, µ, τ referring to the mass eigenstates. We can then

express the part of Lnp containing operators Qeµk and Qµek which contribute to s → d

transitions and do not conserve electron and muon flavors as

Lnp ⊃
1

Λ2
np

6,6′∑
k=1

(
ceµk Q

eµ
k + cµek Q

µe
k

)
, (1.4)

where Q
eµ(µe)
k = Q1212(1221)

k and c
eµ(µe)
k = C1212(1221)

k for k = 1, . . . , 5, while Qeµ6 = Q1212
6 =

l1e2d1q2, Qµe6 = Q2112
6 = l2e1 d1q2, c

eµ(µe)
6 = C1212(2112)

6 , Qeµ6′ =
(
Q2121

6

)† = q1d2 e1l2,

Qµe6′ =
(
Q1221

6

)†, and c
eµ(µe)
6′ = C2121(1221)∗

6 . The Hermitian conjugates of these terms are

responsible for the corresponding d→ s transitions. Given that the tau lepton is too heavy

to appear in the final states of light hyperon decays, we do not discuss operators with the

tau field.

For our study of hyperon processes and comparison with their kaon counterparts, it

is convenient to rewrite eq. (1.4) explicitly separating parity-even and parity-odd quark

couplings as

Lnp ⊃
−1

Λ2
np

∑
`,`′

[
dγκs `γκ

(
V``′ + γ5A``′

)
`′ + dγκγ5s `γκ

(
ṽ``′ + γ5ã``′

)
`′

+ ds `
(
S``′ + γ5P``′

)
`′ + dγ5s `

(
s̃``′ + γ5p̃``′

)
`′
]

+ H.c. , (1.5)

where `(′) = e, µ but ` 6= `′ and V``′ , A``′ , S``′ , P``′ , ṽ``′ , ã``′ , s̃``′ , and p̃``′ are dimensionless

constants which can be complex. As will be seen later on, in the rates of the hyperon

and kaon decays of interest V``′ , A``′ , S``′ , and P``′ , which accompany the parity-even quark

bilinears in eq. (1.5), have no interference with ṽ``′ , ã``′ , s̃``′ , and p̃``′ , which are associated

with the parity-odd quark bilinears. These couplings are related to the coefficients defined

in eq. (1.4) by

4 V``′ = −c``′1 − c``
′

2 − c``
′

3 − c``
′

4 − c``
′

5 , 4 A``′ = c``
′

1 + c``
′

2 − c``
′

3 + c``
′

4 − c``
′

5 ,

4 ṽ``′ = c``
′

1 + c``
′

2 − c``
′

3 − c``
′

4 + c``
′

5 , 4 ã``′ = −c``′1 − c``
′

2 − c``
′

3 + c``
′

4 + c``
′

5 , (1.6)

4 S``′ = −c``′6 − c``
′

6′ = −4 p̃``′ , 4 P``′ = −c``′6 + c``
′

6′ = −4 s̃``′ . (1.7)

3Since f1σκη(1 − γ5)f2 f3σ
κη(1 + γ5)f4 = 0 for any fermion fields f1,2,3,4, the only dim-6 SM-gauge-

invariant tensor-bilinear product is εac
(
l̄ai σκηej

)(
q̄cxσ

κηuy
)
, where the weak-isospin indices a, c = 1, 2 are

summed over, ε12 = −ε21 = 1, ε11,22 = 0, and uy is a right-handed up-type quark field [55].
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For c``
′

k being free parameters, V``′ , A``′ , ṽ``′ , and ã``′ are therefore linearly independent,

whereas only two of their (pseudo)scalar partners are, which may be taken to be S``′

and P``′ . We notice from eq. (1.7) that c``
′

6 ± c``
′

6′ can each accompany both parity-even

and parity-odd quark bilinears, which can of course also be understood from the explicit

expressions for the relevant parts of Q``
′

6,6′ in, say, the ``′ = eµ case: Qeµ6 ⊃ dPLs ePRµ and

Qeµ6′ ⊃ dPRs ePLµ.

To see what other processes can receive contributions from the operators Qeµ,µek in

eq. (1.4), as well as their Hermitian conjugates, in appendix A we summarize the Feynman

rules that follow from them. We then see that the decays listed below can also constrain

these NP couplings. Changes in lepton-flavor number can take place in all of these modes,

and some of them involve one or two neutrinos.

• K+ → π+νν̄ and KL → π0νν̄. In this case, the NP contributions from Q``
′

k have no

interference with the SM ones, due to their differing lepton-flavor combinations, but

cause the decay rates to rise above the SM expectations, as the neutrinos are not

detected.

• π± → `±ν, K± → `±ν, and D±(s) → `±ν. Since these are helicity suppressed in

the SM, the impact of physics beyond it will be most important on the electron

modes, ` = e. Again, the NP represented by Q``
′

k does not interfere with the SM in

these processes because it produces the ‘wrong’ neutrino flavor. Since the neutrino

flavor is not observed experimentally, these new contributions also increase the rates

over their SM values.

• µ → e conversion in nuclei and flavor-violating π0, η,D0 → `+`′−. These serve as

additional null tests of the SM, and there are ongoing searches for them.

It is worth remarking that among the operators Qijxy1,...,6 in eq. (1.2) there are those

not pertinent to dseµ interactions which can generally also influence some of the others

listed in table 4. For instance, Q1112
1 in our mass basis, specified by eq. (1.3), contributes

to (ūu, ūc)
(
ēµ, ν̄eνµ

)
couplings.4 In addressing the constraints from the preceding extra

processes, we will ignore these other operators. This may be regarded as an additional

model assumption implicit in our analysis.

1.2 Leptoquark model

To illustrate how Lnp may be generated by renormalizable NP interactions, we look at the

leptoquark (LQ) scenario. Amongst those that have been explored in the literature [12–

22], with couplings to SM fermions which conserve baryon and lepton numbers and respect

SM gauge symmetries, the LQs (with their SU(3)c × SU(2)L × U(1)Y assignments) that

can bring about Lnp are S1

(
3̄, 1, 4/3

)
, S2 (3, 2, 7/6), S̃2 (3, 2, 1/6), and S3

(
3̄, 3, 1/3

)
, which

are spinless, and V1 (3, 1, 2/3), V2

(
3̄, 2, 5/6

)
, and V3 (3, 3, 2/3), which have spin 1. The

SU(2)L doublets (triplets) S2, S̃2, and V2 (S3 and V3) each have two (three) components

4Furthermore, there are operators [2, 55] not listed in eq. (1.2) which contribute to these same couplings,

such as Qij12lu = uiγ
ηuj l1γηl2.
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having different electric charges. We can write the Lagrangian for the relevant fermionic

interactions of all these LQs as

Llq =
[
Yrr1,jy d

c
jeyS1 + Ylr2,jy qjeyS2 + Yrl2,jy djS̃

t
2 εly + Yll3,jy q

c
j ε τIlyS3,I

+
(
Zll1,jy qjγηly + Zrr1,jy djγηey

)
V η

1 + Zrl2,jy d
c
jγηV

ηt
2 εly + Zlr2,jy q

c
jγηεV

η
2 ey

+ Zll3,jy qjγητIlyV
η

3,I

]
+ H.c. , (1.8)

where the Yjy and Zjy are dimensionless free parameters which can be complex, the super-

script c indicates charge conjugation, summation over j, y, I is implicit, and ε = iτ2.

From Llq, we can then derive LQ-mediated quark-lepton couplings at tree level which

yield the operators in eq. (1.1), with their coefficients being given by

Cijxy1

Λ2
np

=
3Yll∗3,ixY

ll
3,jy

4m2
S3

−
Zll∗1,jxZ

ll
1,iy

2m2
V1

−
3Zll∗3,jxZ

ll
3,iy

2m2
V3

,
Cijxy2

Λ2
np

=
Yll∗3,ixY

ll
3,jy

4m2
S3

−
Zll∗1,jxZ

ll
1,iy

2m2
V1

+
Zll∗3,jxZ

ll
3,iy

2m2
V3

,

Cijxy3

Λ2
np

=
Yrr∗1,ixY

rr
1,jy

2m2
S1

−
Zrr∗1,jxZ

rr
1,iy

m2
V1

,
Cijxy4

Λ2
np

=
−Ỹrl∗2,jxỸ

rl
2,iy

2m2
S̃2

+
Zrl∗2,ixZ

rl
2,jy

m2
V2

,

Cijxy5

Λ2
np

=
−Ylr∗2,jxY

lr
2,iy

2m2
S2

+
Zlr∗2,ixZ

lr
2,jy

m2
V2

,
Cijxy6

Λ2
np

=
2Zll∗1,yiZ

rr
1,xj

m2
V1

−
2Zrl∗2,xiZ

lr
2,yj

m2
V2

. (1.9)

Evidently C1,...,5 can all be affected by the scalar and vector LQs, but C6 only by the

vector ones.

2 Hadronic matrix elements and decay rates

2.1 Hyperon decays

Our baryon decays of interest are B→ B′e∓µ± for BB′ = Λn,Σ+p,Ξ0Λ,Ξ0Σ0,Ξ−Σ−, all

involving spin-1/2 particles only,5 and Ω− → Ξ−e∓µ±, where Ω− is a spin-3/2 hyperon.

To determine their amplitudes, we need the baryonic matrix elements of d
(
γη, γηγ5, 1, γ5

)
s,

which can be estimated with the aid of chiral perturbation theory at leading order. Their

derivation from the chiral Lagrangian is sketched in appendix B. For B → B′e∓µ± the

results are〈
B′
∣∣dγηs∣∣B〉 = VB′B ūB′γηuB ,

〈
B′
∣∣dγηγ5s

∣∣B〉 = ūB′

(
γηAB′B −

PB′B
B0

Q̂η
)
γ5uB ,〈

B′
∣∣ds∣∣B〉 = SB′B ūB′uB ,

〈
B′
∣∣dγ5s

∣∣B〉 = PB′B ūB′γ5uB , (2.1)

where VB′B and AB′B are constants, their values for the aforesaid B′B pairs collected in

table 1, the us are Dirac spinors, Q̂ = pB−pB′ , with pX denoting the four-momentum of X,

SB′B =
mB −mB′

ms − m̂
VB′B , PB′B = AB′BB0

mB′ +mB

m2
K − Q̂2

, (2.2)

5We do not include Σ0 → ne∓µ± because their branching fractions are expected to be comparatively

much smaller due to the Σ0 width being overwhelmingly dominated by the electromagnetic channel Σ0 →
Λγ [1].
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B′B nΛ pΣ+ ΛΞ0 Σ0Ξ0 Σ−Ξ−

VB′B −
√

3
2 −1

√
3
2

−1√
2

1

AB′B
−1√

6
(D + 3F ) D − F −1√

6
(D − 3F ) −1√

2
(D + F ) D + F

Table 1. Values of VB′B and AB′B in eq. (2.1) for BB′ = Λn,Σ+p,Ξ0Λ,Ξ0Σ0,Ξ−Σ−. The

parameters D and F are from the lowest-order chiral Lagrangian.

and the other quantities are defined in appendix B. For Ω− → Ξ−e∓µ± we have

〈Ξ−
∣∣dγηγ5s|Ω−〉 = C ūΞ

(
uηΩ +

q̃η q̃κ
m2
K − q̃2

uκΩ

)
, 〈Ξ−|dγ5s|Ω−〉 =

B0 C q̃κ
q̃2 −m2

K

ūΞu
κ
Ω , (2.3)

and 〈Ξ−|dγηs|Ω−〉 = 〈Ξ−|ds|Ω−〉 = 0, where q̃ = pΩ− − pΞ− and uηΩ is a Rarita-

Schwinger spinor.

In numerical work, to incorporate form-factor effects not taken into account in eq. (2.1),

we will modify VB′B and AB′B to
(
1 + 2Q̂2/M2

V

)
VB′B and

(
1 + 2Q̂2/M2

A

)
AB′B, respec-

tively, with MV = 0.97(4) GeV and MA = 1.25(15) GeV, following the commonly used

parametrization in experimental analyses of semileptonic hyperon decays [58–62] and as-

suming isospin symmetry. Analogously, as the q̃2 range in Ω− → Ξ−e∓µ± is significantly

larger than the Q̂2 ones, for this decay we will make the change C → C/
(
1− q̃2/M2

A

)2
. With

the central values of the input parameters, these modifications turn out to translate into

increases of the decay rates ranging from a few percent to about 20%. The MV and MA

ranges quoted above lead to a rate uncertainty of under 3% (6%) in the spin-1/2 hyperon

(Ω−) case.6

With eq. (2.1), we can express the amplitude for the spin-1/2 hyperon decay B →
B′`−`′+ induced by the interactions in eq. (1.5) as

MB→B′` ¯̀′ = ūB′γ
ηuB ū`γη

[
VBB′``′ + γ5ABB′``′

]
v`′

+ ūB′γ
ηγ5uB ū`γη

[
ṼBB′``′ + γ5ÃBB′``′

]
v`′ (2.4)

+ ūB′uB ū`

[
SBB′``′ + γ5PBB′``′

]
v`′ + ūB′γ5uB ū`

[
S̃BB′``′ + γ5P̃BB′``′

]
v`′ ,

where

VBB′``′ = VB′B
V``′

Λ2
np

, ABB′``′ = VB′B
A``′

Λ2
np

,

SBB′``′ = SB′B
S``′

Λ2
np

, PBB′``′ = SB′B
P``′

Λ2
np

,

ṼBB′``′ = AB′B

ṽ``′

Λ2
np

, ÃBB′``′ = AB′B

ã``′

Λ2
np

,

S̃BB′``′ =
PB′B
Λ2
np

[
s̃``′ −

m` −m`′

B0
ṽ``′

]
, P̃BB′``′ =

PB′B
Λ2
np

[
p̃``′ −

m` +m`′

B0
ã``′

]
. (2.5)

6Our finding of 3% is compatible with the values of 2% or less estimated in the experimental analyses

of spin-1/2 hyperon semileptonic decays [59–62]. It is also consistent with, or smaller than, estimates of

uncertainties from higher-order corrections in chiral perturbation theory.
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Hereafter we neglect the electron mass. Defining Γ′X→Y `−`′+ ≡ dΓX→Y `−`′+/dŝ for the

differential decay rate, we then arrive at

Γ′B→B′e−µ+ =
β4λ

1/2

BB′

64π3m3
B

{[
3−2β2

3
λBB′+m̂

2
−ŝ+

m2
µ

2

(
m̂2

+ + m̂2
−
)][∣∣VBB′eµ

∣∣2 +
∣∣ABB′eµ

∣∣2]
+

[
3− 2β2

3
λBB′ + m̂2

+ŝ+
m2
µ

2

(
m̂2

+ + m̂2
−
)][∣∣ṼBB′eµ

∣∣2 +
∣∣ÃBB′eµ

∣∣2]
+ mµ Re

[
m̂2

+ M−

(
A∗BB′eµPBB′eµ − V ∗BB′eµSBB′eµ

)
− m̂2

− M+

(
Ã∗BB′eµP̃BB′eµ − Ṽ ∗BB′eµS̃BB′eµ

)]
+ m̂2

+

[∣∣SBB′eµ

∣∣2 +
∣∣PBB′eµ

∣∣2] ŝ
2

+ m̂2
−

[∣∣S̃BB′eµ

∣∣2 +
∣∣P̃BB′eµ

∣∣2] ŝ
2

}
, (2.6)

where

β =

√
1−

m2
µ

ŝ
, ŝ =

(
pe + pµ

)2
, λXY = m4

X − 2
(
m2
Y + ŝ

)
m2
X +

(
m2
Y − ŝ

)2
,

m̂2
± = M2

± − ŝ , M± = mB ±mB′ . (2.7)

Similarly, for the Ω− decay, we find

MΩ−→Ξ−` ¯̀′ =
C

Λ2
np

(
gκς +

p̂κ p̂ς
k̃2

)
ūΞu

κ
Ω ū`

[
γς
(
ṽ``′ + γ5ã``′

)
− B0 p̂

ς

m2
K

(
s̃``′ + γ5p̃``′

)]
v`′ ,

(2.8)

where p̂ = pe + pµ = q̃ and k̃2 = m2
K − ŝ. Hence

Γ′Ω−→Ξ−e−µ+ =
β4λ

1/2
Ω−Ξ−C

2M̃2

384π3Λ4
npm

3
Ω−

×
{[

3ŝ− β2ŝ+
λΩ−Ξ−

m2
Ω−

(
1

2
− β2

3
+

2k̃2 + ŝ

4 k̃4
m2
µ

)][
|ṽeµ|2 + |ãeµ|2

]
−
λΩ−Ξ−B0mµm

2
K

2 k̃4m2
Ω−

Re
(
ã∗eµp̃eµ−ṽ

∗
eµs̃eµ

)
+
λΩ−Ξ−B

2
0 ŝ

4 k̃4m2
Ω−

(∣∣s̃eµ∣∣2+
∣∣p̃eµ∣∣2)} ,

(2.9)

where M̃2 = (mΩ− + mΞ−)2 − ŝ. Thus, in our approximation of the Ω− → Ξ− matrix ele-

ments, Ω− → Ξ−e−µ+ is not sensitive to the untilded couplings Veµ and Aeµ but indirectly

still probes Seµ and Peµ in light of eq. (1.7). The differential rates of the µ−e+ modes are

obtainable from their e−µ+ counterparts by interchanging e and µ in the subscripts of Aeµ,

Seµ, Peµ, and ãeµ as well as applying Veµ → −Vµe and ṽeµ → −ṽµe.

2.2 Kaon decays

For KL,S → e∓µ± the pertinent hadronic matrix elements are

〈0|dγηγ5s|K̄0〉 = 〈0|sγηγ5d|K0〉 = −ifKp
η
K ,〈

0
∣∣dγ5s

∣∣K̄0
〉

=
〈
0
∣∣sγ5d

∣∣K0
〉

= iB0fK , (2.10)
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with fK being the kaon decay constant, while for K → πe∓µ±〈
π−
∣∣d̄γηs∣∣K−〉 = −〈π+|s̄γηd|K+〉 =

(
pηK + pηπ

)
f+ +

(
f0 − f+

)
qηKπ

m2
K −m2

π

q2
Kπ

,〈
π−
∣∣d̄s∣∣K−〉 = +

〈
π+
∣∣s̄d∣∣K+

〉
= B0f0 , qXY = pX − pY , (2.11)

where f+,0 represent form factors which are functions of q2
Kπ. Additional required matrix

elements are
〈
π0
∣∣d̄(γη, 1)s

∣∣K̄0
〉

=
〈
π0
∣∣s̄(−γη, 1)d

∣∣K0
〉

= −
〈
π−
∣∣d̄(γη, 1)s

∣∣K−〉/√2 under

the assumption of isospin symmetry, which also implies
〈
π−
∣∣d̄γηs∣∣K−〉 =

〈
π+
∣∣ūγηs∣∣K̄0

〉
.

This allows us to adopt f+,0 = f+(0)
(
1 + λ+,0 q

2
Kπ/m

2
π+

)
with λ+ = 0.0271(10) and λ0 =

0.0142(23) from KL → π+µ−ν measurements [1] as well as f+(0) = 0.9681(23) from lattice

computations [63].7 It is simple to check that the baryonic and mesonic matrix elements

detailed above satisfy the free quark relations 〈Y|dγκs|X〉qκXY = (ms − md)〈Y|ds|X〉 and

〈Y|dγκγ5s|X〉qκYX = (ms +md)〈Y|dγ5s|X〉.
The amplitude for K → `−`′+ has the form

MK→` ¯̀′ = i ū`

(
SK``′ + γ5PK``′

)
v`′ . (2.12)

After the absolute square of the amplitude is summed over the final spins, there is no

interference between the S and P terms. This leads to the decay rates

ΓKL,S→e−µ+
= ΓKL,S→µ−e+

=

(
m2
K0 −m2

µ

)2
8πm3

K0

(∣∣SKL,S eµ∣∣2 +
∣∣PKL,S eµ∣∣2). (2.13)

The expressions for SKL,S eµ and PKL,S eµ have been relegated to appendix C.

For K → π`−`′+, the amplitude is

MK→π` ¯̀′ = ū`

(
SKπ``′ + PKπ``′ γ5

)
v`′ . (2.14)

The resulting differential decay rates of K∓ → π∓µ∓e±, K∓ → π∓e∓µ±, and KL,S →
π0µ∓e± are collected in appendix C as well.

2.3 Other modes

As mentioned earlier, there are other modes that can be influenced by Qeµ,µek in eq. (1.4).

The relevant observables are affected as follows.

• Modes with two neutrinos: K+ → π+νν̄ and KL → π0νν̄. The additions to their

SM branching fractions are generated by the (d̄s)(ν̄eνµ) interaction listed in table 4,

plus its ν̄µνe counterpart, and can be read off eqs. (9) and (10) in ref. [64] to be

∆BK+ =
κ̃+

3

(
|Weµ|2 + |Wµe|2

)
, ∆BKL =

κL
12

∣∣Weµ −W ∗µe
∣∣2 , (2.15)

where the prefactors are κ̃+ = 5.17× 10−11 and κL = 2.23× 10−10 [65] and

W``′ ' 9700

(
1 TeV

Λnp

)2 (
c``
′

1 − c``
′

2 + c``
′

4

)
. (2.16)

Values of |W``′ | = O(1) are currently allowed.

7Online updates are available at http://ckmfitter.in2p3.fr.
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• The most important modification to the leptonic decay M+ → `+ν of a pseu-

doscalar meson M+ ∼ ud̄ (u = u, c and d = d, s) is from NP with LFV induced

by (pseudo)scalar operators which are not helicity suppressed. In our case, they are

of the form

L =
−CM
2Λ2

np

dγ5u ν`′PR` . (2.17)

This yields the biggest impact if ` = e, in which case the SM rate is helicity suppressed

the most. With 〈0|dγ5u|M+〉 = ifMm
2
M/(mu +md) and the M decay constant fM ,

the modification to the rate is then

∆ΓM+→e+ν =
|CM |2 f2

M m5
M

64πΛ4
np (mu +md)2

, (2.18)

analogously to eq. (2.13), the lepton masses having been ignored. Note that there is

no interference with the SM contribution as the neutrino is of the wrong flavor [14].

From the Feynman rules in appendix A, we infer

Cπ = cµe6 V ∗us , CK = ceµ∗6′ V
∗
ud , CD = cµe6 V ∗cs , CDs = ceµ∗6′ V

∗
cd . (2.19)

• µ → e conversion in nuclei and π0, D0 → e∓µ±. These arise from some of the

operators responsible for KL → e∓µ± discussed above but, according to appendix A,

are not affected by the scalar operators Q``
′

6,6′. From the general formulas in ref. [66],

we find the rate of µ− → e− conversion in nucleus N to be

B(µ−N → e−N ) =
m5
µ |VudVus|2

ωNcaptΛ
4
np

(∣∣ceµ1 − ceµ2 ∣∣2 +
∣∣ceµ5 ∣∣2)[2V (p)

N + V
(n)
N

]2
, (2.20)

where V
(p,n)
N are dimensionless integrals representing the overlap of e and µ wave-

functions for N and incorporating appropriate proton (p) and neutron (n) densities,

and ωNcapt is the rate of µ capture in N . For the meson decays, we obtain

Γπ0→e∓µ± =
f2
π

(
m2
π0 −m2

µ

)2
m2
µ |VudVus|2

128πΛ4
npm

3
π0

[∣∣ceµ1 − ceµ2 ∣∣2 +
∣∣ceµ5 ∣∣2 + (e↔ µ)

]
,

ΓD0→e∓µ± =
f2
D

(
m2
D0 −m2

µ

)2
m2
µ |VudVcs|2

64πΛ4
npm

3
D0

[∣∣ceµ1 − ceµ2 ∣∣2 +
∣∣ceµ5 ∣∣2 + (e↔ µ)

]
.

(2.21)

3 Numerical results

3.1 Hyperon and kaon constraints

Integrating Γ′B→B′e−µ+ over m2
µ ≤ ŝ ≤ (mB −mB′)

2, we arrive at the branching fractions

B
(
Λ→ ne−µ+

)
=
[
0.73

(
|Veµ|2 + |Aeµ|2

)
+1.7

(
|Seµ|2 + |Peµ|2

)
+1.8 Re

(
A∗eµPeµ − V∗eµSeµ

)
+ 1.1

(
|ṽeµ|2 + |ãeµ|2

)
+ 0.21

(
|s̃eµ|2 + |p̃eµ|2

)
− 0.27 Re

(
ã∗eµp̃eµ − ṽ∗eµs̃eµ

)]107 GeV4

Λ4
np

, (3.1)
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B
(
Σ+ → pe−µ+

)
=
[
2.3
(
|Veµ|2 + |Aeµ|2

)
+ 11

(
|Seµ|2 + |Peµ|2

)
+ 6.9 Re

(
A∗eµPeµ − V∗eµSeµ

)
+ 0.82

(
|ṽeµ|2 + |ãeµ|2

)
+ 0.49

(
|s̃eµ|2 + |p̃eµ|2

)
− 0.37 Re

(
ã∗eµp̃eµ − ṽ∗eµs̃eµ

)]107 GeV4

Λ4
np

, (3.2)

B
(
Ξ0 → Λe−µ+

)
=
[
2.4
(
|Veµ|2 + |Aeµ|2

)
+ 7.5

(
|Seµ|2 + |Peµ|2

)
+ 6.5 Re

(
A∗eµPeµ − V∗eµSeµ

)
+ 0.25

(
|ṽeµ|2 + |ãeµ|2

)
+ 0.07

(
|s̃eµ|2 + |p̃eµ|2

)
− 0.08 Re

(
ã∗eµp̃eµ − ṽ∗eµs̃eµ

)]107 GeV4

Λ4
np

. (3.3)

Compared to these results, the corresponding numerical factors in B
(
Ξ0,− → Σ0,−e±µ∓

)
turn out to be roughly at least two orders of magnitude lower, partly due to smaller phase

space, and hence are not shown. On the other hand, the Ω− decay having comparatively

greater phase space, its numbers are bigger by an order of magnitude or more,

B
(
Ω− → Ξ−e−µ+

)
=
[
5.6
(
|ṽeµ|2 + |ãeµ|2

)
+ 8.5

(
|s̃eµ|2 + |p̃eµ|2

)
− 3.6 Re

(
ã∗eµp̃eµ − ṽ∗eµs̃eµ

)]108 GeV4

Λ4
np

. (3.4)

All the results in eqs. (3.1)–(3.4) have included the form factors mentioned in subsection 2.1.

For the two-body kaon decays, we calculate the branching fractions to be

B
(
KL → e±µ∓

)
(3.5)

= τKL
(
ΓKL→e−µ+ + ΓKL→µ−e+

)
= 3.8

[∣∣ṽeµ + ṽ∗µe + 19
(
s̃eµ − s̃∗µe

)∣∣2 +
∣∣ãeµ + ã∗µe − 19

(
p̃eµ + p̃∗µe

)∣∣2]1011 GeV4

Λ4
np

,

B
(
KS → e±µ∓

)
(3.6)

= τKS
(
ΓKS→e−µ+ + ΓKS→µ−e+

)
= 6.6

[∣∣ṽeµ − ṽ∗µe + 19
(
s̃eµ + s̃∗µe

)∣∣2 +
∣∣ãeµ − ã∗µe − 19

(
p̃eµ − p̃∗µe

)∣∣2]108 GeV4

Λ4
np

,

having employed the central value of fK = 155.6(4) MeV [1]. For K → πe∓µ±, integrating

their differential rates in appendix C over m2
µ ≤ ŝ ≤ (mK −mπ)2, we obtain

B
(
KL → π0e±µ∓

)
(3.7)

= τKL
(
ΓKL→π0e−µ+ + ΓKL→π0µ−e+

)
= 2.0

{∣∣V∗eµ − Vµe
∣∣2 +

∣∣A∗eµ − Aµe
∣∣2 + 10

(∣∣S∗eµ + Sµe
∣∣2 +

∣∣P∗eµ − Pµe
∣∣2)

+ 3.5 Re
[(
Aeµ − A∗µe

)(
P∗eµ − Pµe

)
−
(
Veµ − V∗µe

)(
S∗eµ + Sµe

)]}1010 GeV4

Λ4
np

,

B
(
KS → π0e±µ∓

)
(3.8)

= τKS
(
ΓKS→π0e−µ+ + ΓKS→π0µ−e+

)
= 3.5

{∣∣V∗eµ + Vµe
∣∣2 +

∣∣A∗eµ + Aµe
∣∣2 + 10

(∣∣S∗eµ − Sµe
∣∣2 +

∣∣P∗eµ + Pµe
∣∣2)

+ 3.5 Re
[(
Aeµ + A∗µe

)(
P∗eµ + Pµe

)
−
(
Veµ + V∗µe

)(
S∗eµ − Sµe

)]}107 GeV4

Λ4
np

,
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B
(
K+ → π+e−µ+

)
(3.9)

= 8.7
[
|Vµe|2 + |Aµe|2 + 10

(
|Sµe|2 + |Pµe|2

)
+ 3.6 Re

(
A∗µePµe + V∗µeSµe

)]109 GeV4

Λ4
np

,

B
(
K+ → π+µ−e+

)
(3.10)

= 8.7
[
|Veµ|2 + |Aeµ|2 + 10

(
|Seµ|2 + |Peµ|2

)
+ 3.6 Re

(
A∗eµPeµ − V∗eµSeµ

)]109 GeV4

Λ4
np

.

We see that K → e±µ∓
(
K → πe±µ∓

)
are not sensitive to V``′ and A``′

(
ṽ``′ and ã``′

)
but

can still probe S``′ and P``′
(
s̃``′ and p̃``′

)
in light of eq. (1.7).

Currently there is not much empirical information on the lepton-flavor-violating decays

of strange hadrons. The only data available are the limits [1]

B
(
KL → e±µ∓

)
< 4.7× 10−12 ,

B
(
KL → π0e±µ∓

)
< 7.6× 10−11 ,

B
(
K+ → π+e−µ+

)
< 1.3× 10−11 ,

B
(
K+ → π+µ−e+

)
< 5.2× 10−10 , (3.11)

and B
(
KL → π0π0e±µ∓

)
< 1.7 × 10−10, all at 90% confidence level. We will ignore

the bound from KL → π0π0e±µ∓ as it has smaller phase space than the other modes

and probes the same couplings as KL → e±µ∓. The numbers in eq. (3.11) and the

corresponding formulas in eqs. (3.5)–(3.8) translate, respectively, into the upper limits[∣∣ṽeµ + ṽ∗µe + 19
(
s̃eµ − s̃∗µe

)∣∣2 +
∣∣ãeµ + ã∗µe − 19

(
p̃eµ + p̃∗µe

)∣∣2]1023 GeV4

Λ4
np

< 1.2 , (3.12){∣∣V∗eµ − Vµe
∣∣2 +

∣∣A∗eµ − Aµe
∣∣2 + 10

(∣∣S∗eµ + Sµe
∣∣2 +

∣∣P∗eµ − Pµe
∣∣2)

+3.5 Re
[(
Aeµ − A∗µe

)(
P∗eµ − Pµe

)
−
(
Veµ − V∗µe

)(
S∗eµ + Sµe

)]}1021 GeV4

Λ4
np

< 3.8 , (3.13)[
|Vµe|2 + |Aµe|2 + 10

(
|Sµe|2 + |Pµe|2

)
+ 3.6 Re

(
A∗µePµe + V∗µeSµe

)]1021 GeV4

Λ4
np

< 1.5 , (3.14)[
|Veµ|2 + |Aeµ|2 + 10

(
|Seµ|2 + |Peµ|2

)
+ 3.6 Re

(
A∗eµPeµ − V∗eµSeµ

)]1020 GeV4

Λ4
np

< 6.0 . (3.15)

To illustrate how the different bounds may constrain the couplings, we look at a few

examples in which the couplings are real and only two of the independent ones are nonzero

at a time. In figure 1, we display for Λnp = 1 TeV the allowed regions of Veµ and Vµe

(top-left plot), ṽeµ and ṽµe (top-right plot), Aeµ and Peµ (bottom-left plot), and ãeµ and

p̃eµ (bottom-right plot), subject to the kaon bounds in eq. (3.11). In the bottom-left (-

right) plot, the vertical axis implies that s̃eµ
(
Seµ
)
, which equals −Peµ

(
−p̃eµ

)
according to

eq. (1.7), is also nonvanishing and consequently influences KL → e±µ∓
(
KL → π0e±µ∓

)
,

leading to the extra constraint depicted by the orange (light cyan) area on the left (right).

For comparison, given that there are still no direct-search restrictions on hyperon

LFV, we entertain the possibility of future experimental limits of 10−10 on all of the

branching fractions in eqs. (3.1)–(3.4), inspired by the aforementioned LHCb finding on
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Figure 1. Regions of Vµe versus Veµ (top left), ṽµe versus ṽeµ (top right), Peµ versus Aeµ (bottom

left), and p̃eµ versus ãeµ (bottom right), all taken to be real, for Λnp = 1 TeV, allowed by the

experimental limits on the branching-fractions of KL → π0e±µ∓, K+ → π+e−µ+, K+ → π+µ−e+,

and KL → e±µ∓ (
indicated by KL → πeµ, K+

eµ, K
+
µe, and KL → eµ, respectively). In the left

(right) plot at the bottom, the bound from KL → e±µ∓ (
KL → πe±µ∓) is included because they

are affected by s̃eµ = −Peµ
(
Seµ = −p̃eµ

)
, from eq. (1.7). In each of the four cases, all the other

couplings are set to zero.

Σ+ → pµ+µ− [51]. Under this assumption, we acquire the areas in figure 2, which reveals

that these constraints are still much weaker than the kaon ones if fine cancelations do

not occur among the couplings. If future hyperon measurements could achieve branching-

fraction limits of 10−12 instead, the allowed regions would be reduced by a factor of 10,

from which one can infer that for limits better than 10−12 the hyperon bounds would start

to become comparable to their kaon counterparts.8

8The numbers we use to illustrate possible future LHCb bounds are based on the following. Their single

event sensitivity (ses) for Σ+ → pµ+µ− with 3 fb−1 is (2.2 ± 1.2) × 10−9 [51]. With expected collection

of 50 fb−1 in the Phase-I upgrade and assuming that the ses to modes with one muon and one electron is

within a factor of five or so, limits of order 10−10 would be possible. A further collection of 300 fb−1 in the

Phase-II, combined with expected improvements in trigger efficiency [53], leads us to speculate on possible

10−12 future limits.
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Figure 2. Allowed regions of Vµe versus Veµ (top left), ṽµe versus ṽeµ (top right), Peµ versus Aeµ
(bottom left), and p̃eµ and ãeµ (bottom right), all taken to be real, for Λnp = 1 TeV, subject to

assumed limits of 10−10 on the hyperon branching fractions in eqs. (3.1)–(3.4), labeled by Λ, Σ+,

Ξ0, and Ω−, respectively. The bottom plots take into account eq. (1.7). In each case the other

couplings are set to zero.

Before moving on to the other transitions without hyperons, here we address how

much the NP of interest may influence the determination of input parameters in the SM,

specifically the elements of the CKM matrix. The operators Q��′
2,6,6′ give rise to interactions

involving charged currents and densities, as indicated by the last four rows of table 4 and

partly discussed in subsection 2.3, and thus contribute to (semi)leptonic meson decays

with a neutrino in the final state that occur already at tree level in the SM but without

violating lepton flavor. Some of them are among the processes conventionally employed to

evaluate the CKM parameters. In the presence of Q��′
2,6,6′, which violate lepton flavor, each

of their measured rates would then encompass an increase of order 1/Λ4
np relative to its

SM prediction. It follows that the CKM matrix elements extracted from these decays also

undergo changes of order 1/Λ4
np, in a way analogous to renormalization of the parameters.

Since the ranges of the associated NP coefficients allowed by the current kaon constraints

treated above are very small, as can be deduced from figure 1, barring major fine-tuning
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Process
Upper limit at 90% CL on NP

contribution to branching fraction
Upper bound on

∣∣ceµ6 ∣∣( 1 TeV
Λnp

)2
π+ → e+ν 6.6× 10−7 2.4× 10−3

K+ → e+ν 1.2× 10−7 1.7× 10−4

D+ → e+ν 8.8× 10−6 0.037

D+
s → e+ν 8.3× 10−5 0.58

KL → e±µ∓ 4.7× 10−12 1.9× 10−7

Table 2. Bounds on coefficients of scalar operators Q``
′

6,6′ from processes without hyperons under

the assumption that c``
′

6,6′ are equal, real, and the only nonzero coefficients.

among the coefficients, we conclude that they have negligible effects on the determination

of the CKM matrix elements.

3.2 Other constraints

The branching fractions of other modes that can restrict the NP encoded in eq. (1.4) are [1]

B(π+ → e+ν) = (1.230± 0.004)× 10−4 ,

B(K+ → e+ν) = (1.582± 0.007)× 10−5 ,

B(π+ → µ+νe) < 8.0× 10−3 ,

B(D+
s → e+ν) < 8.3× 10−5 ,

B(π0 → e±µ∓) < 3.6× 10−10 ,

B(D0 → e±µ∓) < 1.3× 10−8 ,

B(D+ → e+ν) < 8.8× 10−6 ,

B(D+ → π+e+µ−) < 2.9× 10−6 ,

B(D+ → K+e+µ−) < 1.2× 10−6 , (3.16)

where the limits are at 90% CL. All of these modes supply much weaker constraints than

the ones already obtained from the kaon sector in the previous subsection. An illustrative

list is shown in table 2 where we compare constraints, at 90% CL, on the coefficients of

(pseudo)scalar operators Q``
′

6,6′ from only two-body decays, including KL → e±µ∓, assum-

ing that c``
′

6,6′ are equal, real, and the only nonvanishing coefficients. In the cases where

the decays are observed, the limits are obtained from the quoted experimental errors. For

the first four modes in this table, the coupling bounds are computed using eqs. (2.18)

and (2.19) with the values of decay constants and particle masses from ref. [1] and CKM

matrix elements from ref. [63]. In this particular scenario, with the maximal
∣∣ceµ6 ∣∣ from the

KL limit in the last row of the table, the corresponding hyperon branching fractions turn

out to be less than 2× 10−17.

A comparison with µ→ e conversion in nuclei and π0, D0 → e±µ∓ is also instructive.

Since Q``
′

6,6′ do not affect them, in this instance we suppose that ceµ1,5 = cµe1,5 and that these

coefficients are real and the only ones being nonzero. Based on eq. (2.20), the existing

experimental limits on µ → e conversion in various nuclei [1], and the corresponding
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Process
Upper limit at 90% CL

on branching fraction
Upper bound on

√∣∣ceµ1 ∣∣2 +
∣∣ceµ5 ∣∣2( 1 TeV

Λnp

)2
µ−Au→ e−Au 7× 10−13 9.1× 10−6

π0 → e±µ∓ 3.6× 10−10 55

D0 → e±µ∓ 1.3× 10−8 0.050

KL → e±µ∓ 4.7× 10−12 5.0× 10−6

Table 3. Bounds from processes without hyperons on ceµ1,5 = cµe1,5 if these coefficients are real and

the only ones nonvanishing.

overlap integral and ωNcapt values [66], we expect N = Au to provide the most consequential

constraints. To evaluate B(µ−N → e−N ) for this nucleus, we adopt V
(p)

Au = 0.0974,

V
(n)

Au = 0.146, and ωAu
capt = 13.07×106/s from ref. [66], and the result is displayed in table 3.

Therein we also collect the bounds from π0, D0 → e±µ∓, their rates being expressed in

eq. (2.21) with c``
′

2 = 0. Evidently, the current data on µ→ e conversion and KL → e±µ∓

can yield similarly strong constraints on c``
′

1,5. In this specific case, with the bound from the

KL decay quoted in the last row of the table, we find that the hyperon branching fractions

do not exceed 4× 10−15.

4 Concluding remarks

We have studied charged-lepton-flavor violation in strangeness-changing, |∆S| = 1, transi-

tions, paying special attention to the decays of hyperons. We start from the most general

effective Lagrangian containing dimension-six operators which are invariant under the SM

gauge group and can induce |∆S| = 1 processes with LFV. We illustrate how the operators

would appear from the exchange of leptoquarks. We then explore the contributions of

these operators to the hyperon decays as well as their kaon counterparts. This allows us

to contrast the coverage of parameter space that may be achieved in the hyperon sector

with what is known from the kaon modes. In addition, we consider other processes that

are affected by the same LFV operators when written in an SU(2)L-gauge-invariant form.

Our main results from these comparisons can be summarized as follows.

• The current experimental exclusion limit on KL → µ±e∓ places the strongest con-

straint on LFV operators with a pseudoscalar |∆S| = 1 quark bilinear. Hyperon

decays can only be competitive in this case if an exclusion at the 10−16 level is

reached for the Ω− mode. In the left panel of figure 3 we illustrate this scenario

(the vertical axis) and for the comparison use B
(
Ω− → Ξ−µ±e∓

)
< 10−12. Other

hyperon decay modes are even less competitive, as can be deduced from figure 2.

Indirectly, by implication of eq. (1.7), the same can be said of LFV operators with a

scalar |∆S| = 1 quark bilinear.

• Nevertheless, the left panel of figure 3 also reveals that in some instances there are

combinations of the (pseudo)scalar coefficients which can evade the KL → µ±e∓

restriction (the horizontal axis in this example) but which can be constrained by the

hyperon modes as well as by K → πµ±e∓. The situation, which is less extreme than

– 15 –



J
H
E
P
0
7
(
2
0
1
9
)
0
2
2

�10 �5 0 5 10

�10

�5

0

5

10

10
5 �c

6

�Μ
�c

6�

�Μ
�

1
0

5
�c

6�Μ
�

c
6
�

�Μ
�

��

KeΜ
�

K
L
��Μ

�4 �2 0 2 4

�10

�5

0

5

10

10
5 �c

1

�Μ
�c

2

�Μ
�

1
0

5
�c

1�Μ
�

c
2�Μ
� ��

Μ��

K
L
��Μ

Figure 3. Comparative constraints on combinations of LFV couplings c��
′

k from eq. (1.4) that

produce operators with definite parity, under the assumption that ceµk = cµek , they are real, Λnp = 1

TeV, and B
(
Ω− → Ξ−µ±e∓

)
< 10−12.

that in the preceding scenario, is depicted in the left panel showing that an Ω− limit

at the 10−12 level is already starting to be competitive to the currently strictest limit

from K+ → π+e−µ+.

• For axial-vector |∆S| = 1 quark bilinears, the situation is also not as extreme and

can be seen in the right panel of figure 3. In this case the constraint from B
(
Ω− →

Ξ−µ±e∓
)
< 10−12 is only ∼17 times weaker than the KL → µ±e∓ one and the

hyperons already become competitive at the 10−14 level.

• For vector |∆S| = 1 quark bilinears, KL → µ±e∓ no longer offers a constraint.

Presently the best restrictions on them are from KL → π0e∓µ± and K+ → π+e−µ+,

as exhibited in the top-left plot of figure 1. Although the Ω− mode is insensitive to

the vector quark bilinears, the decays of the spin-1/2 hyperons, especially Σ+ and

Ξ0, can probe them, but branching-fraction limits of order 10−13 are required to be

competitive to the kaon ones, as may be inferred from comparing the top-left plots

in figures 1 and 2.

• The most important constraints from other rare decays correspond to K+ → π+νν̄

and µ− → e− conversion in gold. Concerning the former, the impact of the couplings

is realized via eq. (2.16), and so we impose |W��′ | < 2 based on the findings of ref. [64].

Figures 4 (right panel) and 3 (right panel) place the limits from these two processes

in context.

• In figure 4, we illustrate a few selective comparisons of constraints supplied by the

different processes. The specific choices for the nonzero couplings are c��
′

1,2 (left panel),

c��
′

1,2 = c��
′

3 /2 and c��
′

6 (center panel), and c��
′

1,2 = −c��
′

3 /2 = c��
′

4 /4 and c��
′

6 (right panel).

As this and the previous figures indicate, when all the LFV couplings are present, the

different modes complement each other and they all contribute to the overall picture.
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Figure 4. Comparative constraints on selected LFV couplings in eq. (1.4), for Λnp = 1 TeV, from

current 90%-CL upper bounds on NP effects in KL → µ±e∓, K+ → π+νν̄, and µ− → e− conversion

in gold and a possible future bound of B
(
Ω− → Ξ−µ±e∓

)
< 10−12, under the general assumption

that the couplings are real and ceµk = cµek . The specific choices for the nonzero ones are described

in the text.

Acknowledgments

This research was supported in part by the MOE Academic Excellence Program (Grant No.

105R891505) and NCTS of ROC. The work of X.G.H. was supported in part by the MOST

of ROC (Grant No. MOST104-2112-M-002-015-MY3 and 106-2112-M-002-003-MY3), in

part by the Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of

Education, and Shanghai Key Laboratory for Particle Physics and Cosmology (Grant No.

15DZ2272100), and in part by the NSFC (Grant Nos. 11575111 and 11735010) of PRC.

G.V. thanks the Physics Department at National Taiwan University for their hospitality

and partial support while this work was completed. We thank Jeremy Dalseno for helpful

communications.

A Feynman rules

The various four-fermion couplings with (2quark)(2lepton) flavor structures due to Qeµ
k in

eq. (1.4) are listed in table 4. Those with the lepton flavors interchanged can be immediately

obtained from the corresponding entries in the table by applying the change ceµk → cµek . The

Hermitian conjugates of these couplings are additional ones with the quarks interchanged.

B Correspondences between quark and hadron transitions

From the chiral Lagrangian which is at lowest order in the derivative and s-quark-mass

(ms) expansions and describes the strong interactions among the lightest octet baryons

and mesons and decuplet baryons [67–69], one can extract correspondences between quark

densities or currents and hadronic transitions [70]. From the results of ref. [70] pertaining

to the |∆S| = 1 processes under discussion, one can infer [71]

d̄γηs ⇔ −
√

3

2
nγηΛ− pγηΣ

+ +

√
3

2
ΛγηΞ

0 − 1√
2
Σ0γηΞ

0 +Σ¯γηΞ
−

+ i
(
π+ ∂ηK

− −K− ∂ηπ
+
)
− i√

2

(
π0 ∂ηK

0 −K0 ∂ηπ
0
)
+ · · · , (B.1)
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Flavor
structure

Feynman rule

(d̄s)(ēµ)
(
ceµ1 + ceµ2

)
Lη⊗Lη + ceµ3 Rη⊗Rη + ceµ4 Rη⊗Lη + ceµ5 Lη⊗Rη + ceµ6 L̃⊗ R̃ + ceµ6′ R̃⊗ L̃

(d̄s)(ν̄eνµ)
(
ceµ1 − c

eµ
2

)
Lη⊗Lη + ceµ4 Rη⊗Lη

(ūu)(ēµ) VudV
∗
us

[(
ceµ1 − c

eµ
2

)
Lη⊗Lη + ceµ5 Lη⊗Rη

]
(ūc)(ēµ) VudV

∗
cs

[(
ceµ1 − c

eµ
2

)
Lη⊗Lη + ceµ5 Lη⊗Rη

]
(ūu)(ν̄eνµ) VudV

∗
us

(
ceµ1 + ceµ2

)
Lη⊗Lη

(ūc)(ν̄eνµ) VudV
∗
cs

(
ceµ1 + ceµ2

)
Lη⊗Lη

(d̄u)(ν̄eµ) V ∗us
(
2ceµ2 Lη⊗Lη + ceµ6 L̃⊗ R̃

)
(d̄c)(ν̄eµ) V ∗cs

(
2ceµ2 Lη⊗Lη + ceµ6 L̃⊗ R̃

)
(ūs)(ēνµ) Vud

(
2ceµ2 Lη⊗Lη + ceµ6′ R̃⊗ L̃

)
(c̄s)(ēνµ) Vcd

(
2ceµ2 Lη⊗Lη + ceµ6′ R̃⊗ L̃

)
Table 4. Feynman rules arising from Qeµk in eq. (1.4). In the second column, each entry is to be

multiplied by i/Λ2
np and completed with the Dirac spinors of the fermions in the first column, we

have defined Lη = γηPL, Rη = γηPR, L̃ = PL, and R̃ = PR, and the element VUiDj corresponds

to (Vckm)ij in eq. (1.3). The neutrinos being nearly massless and unobserved in decays, we display

their weak eigenstates νe = (Upmns)1jν
′
jL and νµ = (Upmns)2jν

′
jL in the first column.

d̄s ⇔
√

3

2

mΛ −mN

m̂−ms

nΛ +
mΣ −mN

m̂−ms

pΣ+ +

√
3

2

mΞ −mΛ

ms − m̂
Λ Ξ0

+
mΞ −mΣ

m̂−ms

(
Σ0 Ξ0

√
2
− Σ¯ Ξ−

)
+ B0

(
π+K− − π0K0

√
2

)
+ · · · , (B.2)

d̄γηγ5s ⇔
−D − 3F√

6
nγηγ5Λ + (D − F ) pγηγ5Σ+ − D − 3F√

6
Λγηγ5Ξ0 (B.3)

− D + F√
2

Σ0γηγ5Ξ0 + (D + F ) Σ¯γηγ5Ξ− + C Ξ¯ Ω−η +
√

2 f ∂ηK
0 + · · · ,

d̄γ5s ⇔ i
√

2B0 fK
0 + · · · , (B.4)

where mN,Σ,Ξ are isospin-averaged masses of the nucleons, Σ±,0, and Ξ0,−, respectively, m̂

is the average mass of the u and d quarks, B0 = m2
K/(m̂ + ms), with mK here being the

average mass of K0 and K−, the free parameters D, F , and C occur in the leading-order

chiral Lagrangian and can be fixed from baryon decay data, f = fK/
√

2, and the ellipses

represent terms irrelevant to our analysis.

At the same order in the chiral expansion, the baryonic matrix elements of d̄
(
γη, 1

)
γ5s

also receive contributions from kaon-pole diagrams involving 〈0|d̄
(
γη, 1

)
γ5s|K0〉 from

eqs. (B.3) and (B.4) and vertices from the lowest-order strong chiral Lagrangian Ls. In the

latter, the pertinent terms are given by [71]

Ls ⊃
[
−D − 3F√

6
nγηγ5Λ + (D − F ) pγηγ5Σ+ − D − 3F√

6
Λγηγ5Ξ0

− D + F√
2

Σ0γηγ5Ξ0 + (D + F ) Σ¯γηγ5Ξ− + C Ξ¯ Ω−η

]
∂ηK0

√
2 f

. (B.5)
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From this and the preceding paragraphs, we arrive at the matrix elements in

eqs. (2.1), (2.3), (2.10), and (2.11) in the limit that f+,0 = 1.

Numerically, we adopt D = 0.81 and F = 0.46 determined from fitting to the data on

hyperon semileptonic decays and C = 1.7 from the measurements of strong decays of the

decuplet spin-3/2 baryons into an octet spin-1/2 baryon and a pion [1].9 Furthermore, we

use the measured hadron masses from ref. [1] and, for light meson and hyperon decays,

the light-quark mass values m̂ = (mu + md)/2 = 4.4 MeV and ms = 120 MeV at a

renormalization scale of 1 GeV. These quark masses have been rescaled from their values

at a renormalization scale of 2 GeV available from ref. [1], which are also employed in

subsection 3.2 in the evaluation of the charmed meson decays.

C Additional kaon decay formulas

With the matrix elements in eq. (2.10), for the K → `−`′+ amplitude in eq. (2.12) we obtain

S
K0eµ

= −S∗K0µe =
fK
Λ2
np

(
ṽeµmµ +B0 s̃eµ

)
, P

K0eµ
= P ∗K0µe =

−fK
Λ2
np

(
ãeµmµ −B0 p̃eµ

)
,

S
K0µe

= −S∗K0eµ =
−fK
Λ2
np

(
ṽµemµ −B0 s̃µe

)
, P

K0µe
= P ∗K0eµ =

−fK
Λ2
np

(
ãµemµ −B0 p̃µe

)
.

(C.1)

Employing the approximate relations
√

2KL,S = K0 ±K0, we then find

SKLeµ
= −S∗KLµe =

fK√
2 Λ2

np

[(
ṽeµ + ṽ∗µe

)
mµ +B0

(
s̃eµ − s̃∗µe

)]
,

PKLeµ
= P ∗KLµe

=
fK√
2 Λ2

np

[(
−ãeµ − ã∗µe

)
mµ +B0

(
p̃eµ + p̃∗µe

)]
, (C.2)

SKSeµ
= S∗KSµe

=
fK√
2 Λ2

np

[(
−ṽeµ + ṽ∗µe

)
mµ −B0

(
s̃eµ + s̃∗µe

)]
,

PKSeµ
= −P ∗KSµe =

fK√
2 Λ2

np

[(
ãeµ − ã∗µe

)
mµ −B0

(
p̃eµ − p̃∗µe

)]
, (C.3)

which go into eq. (2.13).

With the kaon-to-pion matrix elements from subsection 2.2, for K− → π−µ∓e± and

their antiparticle counterparts the S and P terms in eq. (2.14) are

Λ2
npSK−π−µe =

[
(f− − f+)mµ + 2f+ /pK

]
Vµe +B0f0Sµe , PK−π−µe = SK−π−µe

∣∣Vµe→Aµe

Sµe→Pµe
,

Λ2
npSK−π−eµ =

[
(f+ − f−)mµ + 2f+ /pK

]
Veµ +B0f0Seµ , PK−π−eµ = SK−π−µe

∣∣Vµe→Aeµ

Sµe→Peµ
,

(C.4)

Λ2
npSK+π+µe =

[
(f+ − f−)mµ − 2f+ /pK

]
V∗eµ +B0f0S

∗
eµ , PK+π+µe = SK+π+µe

∣∣Veµ→Aeµ

Seµ→−Peµ ,

Λ2
npSK+π+eµ =

[
(f− − f+)mµ − 2f+ /pK

]
V∗µe +B0f0S

∗
µe , PK+π+eµ = SK+π+µe

∣∣Veµ→Aµe

Seµ→−Pµe ,

(C.5)

9With this C value and the differential rate in eq. (2.9) suitably modified for s → uν̄e− in the SM, we

can predict B(Ω− → Ξ0ν̄e−)sm ' 0.60% in agreement with its measurement [1].
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where f− =
(
f0 − f+

)(
m2
K − m2

π

)
/ŝ. Moreover, given that MK−→π−e±µ∓ =

−
√

2MK̄0→π0e±µ∓ and MK+→π+e±µ∓ = −
√

2MK0→π0e±µ∓ , for the analogous decays

of KL and KS

Λ2
npSKL,S π0µe =

[
1

2

(
f− − f+

)
mµ + f+ /pK

]
V∓ −

1

2
B0f0 S± ,

Λ2
npPKL,S π0µe =

[
1

2

(
f− − f+

)
mµ + f+ /pK

]
A∓ +

1

2
B0f0 P∓ , (C.6)

Λ2
npSKL,S π0eµ = ∓

[
1

2

(
f+ − f−

)
mµ + f+ /pK

]
V∗∓ ∓

1

2
B0f0 S

∗
± ,

Λ2
npPKL,S π0eµ = ∓

[
1

2

(
f− − f+

)
mµ + f+ /pK

]
A∗∓ ∓

1

2
B0f0 P

∗
∓ , (C.7)

where

V± = V∗eµ ± Vµe , S± = S∗eµ ± Sµe , A± = A∗eµ ± Aµe , P± = P∗eµ ± Pµe . (C.8)

The presence of /pK in PKπ``′ implies that PKπ``′γ5 in eq. (2.14) is not the same as γ5PKπ``′ .

From these SKπ``′ and PKπ``′ formulas follow the differential decay rates10

Γ′K−→π−µ−e+ = Γ′K+→π+e−µ+

=
β4λ

1/2
K+π+ f

2
0

64π3m3
K+Λ4

np

[(
3− β2

6f2
0

λK+π+ f
2
+ +

∆4
K+π+ m

2
µ

2ŝ

)(
|Vµe|2 + |Aµe|2

)
+ ∆2

K+π+ B0mµ Re
(
A∗µePµe + V∗µeSµe

)
+
B2

0 ŝ

2

(
|Sµe|2 + |Pµe|2

)]
, (C.9)

Γ′K−→π−e−µ+ = Γ′K+→π+µ−e+

=
β4λ

1/2
K+π+ f

2
0

64π3m3
K+Λ4

np

[(
3− β2

6f2
0

λK+π+ f
2
+ +

∆4
K+π+ m

2
µ

2ŝ

)(
|Veµ|2 + |Aeµ|2

)
+ ∆2

K+π+ B0mµ Re
(
A∗eµPeµ − V∗eµSeµ

)
+
B2

0 ŝ

2

(
|Seµ|2 + |Peµ|2

)]
, (C.10)

Γ′KL→π0µ−e+ = Γ′KL→π0e−µ+

=
β4λ

1/2
K0π0 f

2
0

256π3m3
K0Λ4

np

[(
3− β2

6f2
0

λK0π0 f
2
+ +

∆4
K0π0 m

2
µ

2ŝ

)(
|V−|2 + |A−|2

)
+ ∆2

K0π0 B0mµ Re
(
A∗−P− − V∗−S+

)
+
B2

0 ŝ

2

(
|S+|2 + |P−|2

)]
, (C.11)

Γ′KS→π0µ−e+ = Γ′KS→π0e−µ+

=
β4λ

1/2
K0π0 f

2
0

256π3m3
K0Λ4

np

[(
3− β2

6f2
0

λK0π0 f
2
+ +

∆4
K0π0 m

2
µ

2ŝ

)(
|V+|2 + |A+|2

)
+ ∆2

K0π0 B0mµ Re
(
A∗+P+ − V∗+S−

)
+
B2

0 ŝ

2

(
|S−|2 + |P+|2

)]
, (C.12)

where ∆2
XY = m2

X −m2
Y .

10In this study we ignore the possibility that the coupling parameters could have both strong and weak

phases. Otherwise, the decay rates of a pair of CP -conjugate modes would generally be different, leading

to CP -violating rate asymmetries.
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