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1 Introduction and summary

The Witten index [1] of supersymmetric quantum mechanics,
I =Try(-1)", (1.1)

is a powerful tool to study geometric aspects of supersymmetric theories. For example, in
a 1d N = (0,2) sigma model to a compact target M endowed with a holomorphic vector
bundle E, the Witten index can be identified with the holomorphic Euler characteristic

X (M, K?e E) - /M A(TM) ch(E). (1.2)

In the presence of flavour symmetry, this can be promoted to a flavoured Witten index
that computes the equivariant holomorphic Euler characteristic.

In this paper, we study the twisted indices of 3d N = 4 supersymmetric gauge theories
on S x ¥. This can be regarded as the flavoured Witten index of the effective supersym-
metric quantum mechanics on S obtained by performing a topological twist on a genus
g Riemann surface ¥.. There are two distinct twists that utilise a U(1) subgroup from
each factor of the R-symmetry SU(2)y x SU(2)c. We refer to them as the ‘H-twist’ and
‘C-twist’ respectively.

The twisted index can be defined by

IH’C(a, q,t) = TrHH’C(—l)FaJHqJCtJt , (1.3)
where Hp ¢ is the Hilbert space of supersymmetric ground states on S1 x ¥ and

e Jyr is the generator of the Cartan subalgebra of the Higgs branch flavour symmetry

2mim

G g acting on the hypermultiplets. The associated fugacity is a = e where m are

real mass parameters.

e Jc is the generator of the Cartan subalgebra of the Coulomb branch flavour symmetry
G ¢, which is realised as a topological symmetry in the UV. The associated fugacity

2mi¢

isg=e where ( is the real Fayet-Iliopoulos parameter.

e J; is the generator of the combination U(1); = U(1)g — U(1)¢c of R-symmetries, that
commutes with the two supercharges preserved in both the H-twist and the C-twist.

The twisted indices of 3d supersymmetric gauge theories were first computed by
Nekrasov and Shatashvili [2] using the topological A-model on ¥ in the context of the
Bethe/Gauge correspondence. More recently, the twisted indices of 3d N' = 2 supersym-
metric gauge theores have also been derived from the UV Coulomb branch localisation [3-6].
The result can be expressed as a sum of contour integrals over the complexified maximal
torus of the gauge group G. When G is a product of unitary groups, as we consider in this
paper, we have

U=U*

1
7%, q,t) = W Z (—q)tr(m) JK-Res du Z;O(’p(u,a,t)Hg(u, a,t), (1.4)

meAg



where the summation is over GNO quantised flux on X, or co-character lattice Ag of the
gauge group G. The contribution from each flux sector is given by a Jeffrey-Kirwan residue
that specifies the choice of contour.

The main purpose of this paper is to provide a geometric interpretation of this contour
integral as a holomorphic Euler characteristic, as in equation (1.2). We focus on 3d N = 4
superconformal quiver theories that have isolated massive vacua in the presence of generic
mass and FI parameters. By introducing an alternative localising action, we show that the
path integral can be localised to solutions of the generalised vortex equations on ¥, which
take the schematic form

x Fy + € (MR—2[<PT,SO]—T> =0
04X =0 04Y =0 5,4(,020 (1.5)
p-X=0 ¢-Y=0 X -Y=0,

where (X,Y) are the hypermultiplet scalar fields transforming in a quaternionic represen-
tation of G and ¢ is the vector multiplet complex scalar field in the adjoint representation.
The solutions to these equations form a moduli space 9, which is a disjoint union of
topologically distinct sectors labelled by the degree of the gauge bundle

M= |J Ma, (1.6)

where A}, is the character lattice of the Coulomb branch flavour symmetry Ge.

The description of the moduli space depends on a parameter 7, valued in a Cartan
subalgebra to of the Coulomb branch flavour symmetry. Although this parameter appears
in an exact deformation of the action, we expect intricate wall-crossing behaviour in this
parameter space. In this paper, we formally take the parameter 7 — oo in a given chamber,
which is relevant for three-dimensional mirror symmetry. In this limit, 9%, has an algebraic
description as the moduli space of quasi-maps to the Higgs branch, ¥ — My, of degree
m [7].! More precisely, in the H-twist we recover the twisted quasi-maps to holomorphic
symplectic quotients introduced in [14], while in the C-twist we find a generalisation to
arbitrary genus of a construction of [15].

In order to provide a concrete interpretation of the contour integral representation of
the twisted index (1.4) in terms of the enumerative geometry of the moduli space 9, we
carefully study the massless fluctuations of the bosonic and fermionic fields around a point
p € M. From a mathematical viewpoint, these massless fluctuations can be identified with
the virtual tangent bundle to the moduli space 9t and gives rise to perfect obstruction
theory, which coincides with those considered in [14, 15]. We remark that related con-
structions have also been extensively studied in [15, 16] in the context of the K-theoretic
Donaldson-Thomas invariants of Calabi-Yau three-folds. From this discussion, we argue
that the localised path integral for the twisted index reproduces a generating function of

The moduli space of quasi-maps and their enumerative geometry have been discussed in various con-
texts, e.g., [8—13].



virtual Euler characteristics of 91, defined by

M=% " (=™ | AT™). (1.7)

meAY, D

In general, the moduli spaces M, are non-compact and these integrals are not well-
defined. However, by turning on a real mass parameter with associated fugacity ¢, we can
localise further to the compact fixed locus of the U(1); symmetry. This fixed locus £ C M
coincides with the moduli space of quasi-maps to a holomorphic Lagrangian L C Mg
known as the compact core. The virtual tangent bundle then decomposes on the fixed
locus as

TV =TLm+ Nu, (1.8)

where T'£;, is the virtual tangent bundle to the fixed locus and N is the virtual normal
bundle. The path integral then reproduces the virtual FEuler characteristic defined by
localisation with respect to the U(1); action,

~

=% (~q" / ATE) (1.9)

mEAé Lm ch (K.Nf\n/) ’

where the notation A" indicates the exterior algebra normalised by the square root of the
determinant bundle. This gives a concrete geometric interpretation to the twisted index.
In order to perform explicit calculations, we can localise further to the fixed locus
of the maximal torus Tp of the flavour symmetry G by turning on mass parameters
with associated fugacity a, which play the role of equivariant parameters. Under our
assumptions, we show that the fixed locus is a disjoint union of smooth compact spaces
M1, where I labels the fixed points on My and m € Ag is a GNO quantised flux with
tr(m) = m. Each component is given by a product of the symmetric product of the curve X,

rk(G)
My s = ] Sym™=x, (1.10)
a=1

where ny,’s are non-negative integers which depend on the twist and a component of the
magnetic flux m. On the fixed locus, the virtual tangent space decomposes as
Tvir‘

M.z = Tf)ﬁm7]+Nm7[, (111)

where Ny 1 are the virtual normal bundles and non-zero weights under the U(1); x Tx
action. The path integral then reproduces the equivariant virtual Euler characteristic via
virtual localisation,

ATy 1)
e = (=)™ / — 1.12
mgc ZI: Wy s B(ANY ) (1.12)

The intersection theory on the symmetric product of a curve is well-known [17-19] allowing
us to convert the expression (1.12) into a sum of the residue integrals. We show explicitly



that this reproduces the contour integral representation of the twisted index (1.4). In par-
ticular the fixed loci of U(1); x Ty are in one-to-one correspondence with the poles selected
by the Jeffrey-Kirwan residue integral.?

Sending ¢t — 1, the twisted index preserves four supercharges that generate a 1d
N =(2,2) and N = (0, 4) supersymmetric quantum mechanics in the H-twist and C-twist
respectively. This enables us to add further exact terms to the localising action to further
constrain the moduli space. In particular, the C-twisted index can be localised to the space
of constant maps to the Higgs branch M. In this limit, the virtual Euler characteristic is
independent of ¢ and reduces to the equivariant Rozansky-Witten invariants [22] of My,
associated with the three-manifold S x 3,

IC\Hl—/M ATMy) b (R°T* My)? | (1.13)
H

On the other hand, the H-twisted index reduces to a generating function of the Euler classes
of the G g-fixed loci,

M), = S (g3 (< )dme ) / (M 1) (1.14)

meAg I fmm,I

which is independent of the fugacity a.

An important feature of the class of 3d N = 4 supersymmetric gauge theories we
consider is the existence of mirror symmetry, which exchanges the H-twist and the C-twist
of a dual pair of theories 7 and 7. This implies the following relation between the twisted
indices of these theories,

IH[ﬂ(Qaaat) = IC[TV](a)q’t_l)‘ (115)

This provides extremely non-trivial relationship between enumerative invariants of quasi-
maps to pairs of Higgs branches My and MY, under the exchange of the degree counting
parameters ¢ and equivariant parameters a. In the limit ¢ — 1, we explicitly prove this
relation for T[SU(N)] theories, which are self-dual under mirror symmetry.

The paper is organised as follows. In section 2, we describe the class of 3d N = 4
theories we consider in this paper. In particular, we summarise the construction of the
Higgs branch Mg, which plays an important role for later discussions. In section 3, we
explain the procedure of the topological reduction of 3d N/ = 4 theories on X. For this
purpose, we review the localisation process which gives rise to the moduli space 9t and
study the algebraic description in terms of twisted quasi-maps to M. Then we study the
massless fluctuations of the bosonic and fermionic fields at a point on the moduli space 901,
from which we construct the virtual tangent bundle TV over 9. From this discussion,
we provide a geometric interpretation of the contour integral formula as the virtual Euler
characteristics constructed from TV". In section 4, we study the reduced moduli space
that preserves four supercharges and discuss the relation to the twisted indices evaluated

2The geometric interpretation of the twisted index for an A = 2 supersymmetric Chern-Simons theory
with an adjoint chiral multiplet has been studied in the references [20, 21].



D—T

Figure 1. Quiver for U(N,.) supersymmetric QCD with N, fundamental hypermultiplets.

in the limit ¢ — 1. In section 5, we explore the geometric interpretations of the twisted
indices through various concrete examples. Finally, in section 6, we study the implications
of mirror symmetry in this context, and explicitly check the proposed dualities for the
T[SU(N)] theories in the limit ¢ — 1.

2 Background and notation

2.1 Quiver gauge theories

A renormalisable 3d N' = 4 supersymmetric gauge theory is specified by a compact group G
and a linear quaternionic representation ) — we refer the reader to [23, 24| for a summary
and further background. In this paper, we will focus on unitary quiver gauge theories.

Introducing an index I = 1,..., L labelling the nodes of the quiver, this corresponds to
the choice
G=[[uv) Q=T'M (2.1)
I
where
M = @) Hom(W,, Vi) & €D Hom(V7, V) ® Q1 (2.2)
I I<J

is a unitary representation of G. Here V;, W denote complex vector spaces while Qr;
are multiplicities. In physical parlance, there is a dynamical vectormultiplet for the gauge
group G and

e Q77 hypermultiplets in the adjoint representation of U(V7),
e ()77 hypermultiplets in the bifundamental representation of U(Vy) x U(Vy) for I < J,
e and dimc W} hypermultiplets in the fundamental representation of U(Vy).

An example is the single node quiver with V = CNe, W = Cs and unitary rep-
resentation M = Hom(W, V). This is supersymmetric QCD with G = U(NN.) and Ny
fundamental hypermultiplets, as illustrated in figure 1. In the following sections 3 and 4,
we will formulate our constructions for a general unitary quiver (subject to an assumption
explained in section 2.2) but our explicit examples in section 5 will be almost exclusively
supersymmetric QCD.

In what follows, we use euclidean SU(2) spinor indices « in addition to spinor indices
A, A for the SU(2)g x SU(2)¢ R-symmetry, with uniform conventions summarized in
appendix A. With this notation, the vectormultiplet includes a gauge connection Aag,
HAB

scalar fields , and gauginos )\éA transforming in the adjoint representation of G. The



G |UM)g U)c | U1)
o |Adj| 0 0 0
o |Adj| O +1 | -1
X| M| +} 0 +3
Y| M|+ +3

Table 1. Summary of gauge and R-symmetry representations.

hypermultiplets contains complex scalars X 4 and fermionic spinors \IIé transforming in the
unitary representation M.

It will be convenient to decompose the supermultiplets under a fixed maximal torus
U(1)g x U(1)c of the R-symmetry. The vectormultiplet scalars decompose into real and
complex components o, ¢, ¢! transforming with U(1)¢ charge 0,41, —1 respectively, while
the hypermultiplet scalars decompose into a pair of complex scalars X, Y transforming
with U(1) charge +3. The charges of these fields are shown in table 1.

The flavour symmetry is a product Gg x G¢ where:

e Gy acts on the hypermultiplets. It is given by the normalizer of G inside USp(M)
modulo the gauge group G:

Gu = Nuspn) (G)/G. (2.3)

e G¢ contains topological symmetry U(1)” under which monopole operators are
charged. This may be enhanced in the IR to a non-abelian group with maximal
torus U(1)~.

We turn on associated real mass deformations valued in the Cartan subalgebras tg, to of
the flavour symmetry factors:

e Real mass parameters m € ty are vacuum expectation values for the real scalar in a
background vectormultiplet for Gp.

e Real FI parameters ( € t¢ are vacuum expectation values for the real scalar in a
background twisted vectormultiplet for G¢.

We do not consider complex mass and FI parameters in this paper.

In supersymmetric QCD, Gy = PSU(Ny) and G¢ = U(1), enhanced to Go = SU(2
when Ny=2N,. Correspondingly, we introduce real mass parameters m=(mg,...,m Nf) €
RN =1 satisfying ;mj =0 and a single FI parameter ¢ € R.

It will also be important to introduce a real mass parameter that breaks N = 4 to
N = 2 supersymmetry. Given the maximal torus U(1)y x U(1)¢ with generators Ty, Te,
we may decompose the supermultiplets under the A/ = 2 supersymmetry commuting with
the U(1); generated by

T,=Tyg —Tc. (2.4)



From this perspective, U(1); is a distinguished flavour symmetry. We can then choose an
integer R-symmetry for the N' = 2 supersymmetry algebra generated by Ry = 2Ty or
Rc = 2T. This choice is important when performing a topological twist on S! x X.

From the perspective of N’ = 2 supersymmetry o transforms in a vectormultiplet, while
@, X, Y transform in chiral multiplets whose charges are summarised in table 1. There
are also superpotentials

Wi = Try, (pXY) (2.5)

at each node whose R-charges are always +2. The real mass parameters m are now obtained
by coupling to a background N = 2 vectormultiplet for the flavour symmetry Gy while ¢
is an FI parameter for the dynamical N’ = 2 vectormultiplet.

We can now explicitly break to N/ = 2 supersymmetry by introducing a real mass
parameter m; for the distinguished U(1); flavour symmetry. This is the mass deformation
mentioned in the introduction and, as anticipated there, it will play an important role in
this paper as a localisation parameter.

2.2 Moduli spaces of vacua

The moduli space of vacua of 3d N' = 4 supersymmetric gauge theory includes a Higgs
branch and a Coulomb branch, denote by My and M respectively. They are both hyper-
Kahler, such that the R-symmetries SU(2) g7, SU(2)¢ rotate the complex structure on My,
M. Furthermore, the flavour symmetries Gp, G act by tri-hamiltonian isometries of
My, Mc.

The choice of maximal torus U(1)g x U(1)¢ selects a complex structure on My and
M. From this point of view, they are Kahler manifolds equipped with holomorphic sym-
plectic forms of weight +1 under Kéhler isometries U(1) g7, U(1)c. The flavour symmetries
G, Go act by Hamiltonian isometries of My, M¢ that leave invariant the holomorphic
symplectic form.

In this paper, we make a crucial assumption that the supersymmetric quiver gauge
theory flows to a superconformal fixed point and has isolated massive vacua when generic
real mass and FI parameters are turned on. This translates into the assumption that Mg,
M are conical symplectic resolutions with isolated fixed points under infinitesimal T}y,
Tc transformations. Furthermore, ty, to describe Kéhler resolution parameters for M,
M under the identifications

tg = H* (Mc,R),  tc = H*(My,R). (2.6)
In more physical terms:

e The mass parameters m € ty are resolution parameters for M¢ and generate an
infinitesimal Hamiltonian isometry of Mg,

e The FI parameters ( € to are resolution parameters for My and generate an in-
finitesimal Hamiltonian isometry of M.



This assumption will permeate our considerations on S x 3, allowing explicit compu-
tations to be performed while encompassing an infinite and rich class of examples. Further
motivation comes from the fact that such theories transform straightforwardly under 3d
mirror symmetry and play an important role in connection with symplectic duality [25, 26].
For further motivation and background we refer the reader to reference [24]. We will return
to this connection in section 6.

2.3 Higgs branch geometry

The Higgs branch is particularly important for consideration of the twisted index on S x 3.
We therefore explain its construction in more detail now. We first set the mass parameters
m = (0. The classical vacuum configurations are solutions to

pr—C =0 pc =0
c-X=0 ¢ X=0 ¢-X=0 o
c-Y=0 ¢.Y=0 o-.Y=0 '
[o,0] =0 [, =0,

modulo gauge transformations. Here it is understood that vectormultiplet scalars act on
(X,Y) in the representation 7% M. Finally,

pr=X -XT—YT.Y  puc=X.Y (2.8)

are the real and complex moment maps for the G action on 7*M.

Equations (2.7) may be decomposed into contributions from each node labelled by an
index I = 1,..., L. Here we are employing shorthand notation such as ¢ = {¢1,...,(z} and
pr = {{Rr1,- ., 1R, } to express the contributions from all of the nodes simultaneously.

For future applications, it is useful to reconsider the vacuum equations in the language
of N’ = 2 supersymmetry. From this perspective the vacuum equations are

pr— 20"l = (=0
p-X=0 ¢-Y=0 uc =0 (2.9)
c-X=0 o0-Y=0 [o,9]=0,

where the first line contains the D-term equations and the second line the F-term equations
associated to the superpotential W = Try (pXY'). Note that the D-term equation involves
an additional commutator compared to (2.7). However, by squaring the D-term equation
and imposing the F-term equations,

lir = 2[0", @] = 1P = llum — CII* + 4lllet, @]l + 2l - XTI2 + 200 Y2, (2.10)

which requires [¢f, ¢] = 0 separately and recovers the remaining equations in (2.7).



2.3.1 Hyper-Kahler quotient

Under our assumption of section 2.2, the FI parameter ¢ can be chosen such that G acts
freely on solutions to the vacuum equations (2.7). This typically requires that the FI
parameter lies in the complement of hyperplanes

¢ € R"\ Uy Ha, (2.11)

which split the parameter space tc = R” into chambers. In supersymmetric QCD, this
means we assume that Ny > N, and ¢ > 0 or ¢ <0.

The implies ¢ = ¢ = 0 on solutions of the vacuum equations, which would otherwise
generate unbroken gauge transformations. The remaining equations then describe the
Higgs branch as a smooth hyper-Kéahler quotient

Mg =T"MJJc G, (2.12)

is a Nakajima quiver variety [27, 28]. We note that the holomorphic symplectic form on
the Higgs branch is independent of ¢ within each chamber, while the real symplectic form
or Kahler structure depends explicitly on (.

The assumption of section 2.2 requires that

V. MH:C — MH,O (213)
is a conical symplectic resolution. The inverse image
Ly :=v0) (2.14)

is then a compact holomorphic lagrangian known as the ‘compact core’. This has a conve-
nient Kéhler quotient description as follows. The choice of chamber selects a holomorphic
Lagrangian splitting T*M = L & L*, corresponding to a decomposition of the hypermulti-
plet fields (X, Yz) where Y7, = 0 on the compact core. We then have

Luc=L//¢cG={prlL =0}/G. (2.15)

We frequently fix a chamber and omit the dependence on (, writing My and L respec-
tively for the Higgs branch and its compact core.

In supersymmetric QCD, this assumption requires that Ny > 2N,. In this case, the
Higgs branch is a cotangent bundle to the grassmannian of N.-planes in Ny complex dimen-
sions, Mg = T*G (N, Nf). The map (2.13) is the Springer resolution of the nilpotent cone
closure NV, C sl(Ny, C) labelled by p” = (N, Ny — N.). The compact core L = G(N,, Ny)
is the grassmannian base, where:

e In the chamber ( > 0, L is characterised by the decomposition (X,Yz) = (X,Y)
and corresponds to configurations with Y = 0.

e In the chamber ¢ < 0, L is characterised by the decomposition (X, Yr) = (Y, -X)
and corresponds to configurations with X = 0.



2.3.2 Algebraic description

The Higgs branch has an algebraic description as a holomorphic symplectic quotient by
omitting the D-term equation in favour of an appropriate stability condition and dividing
by complex gauge transformations.

Starting from (X,Y’) € T*M, solutions of the F-term equation cut out the subspace
u(_:l(O) C T*M. We then impose a stability condition depending on the chamber of ( €
RX\ U, H, and quotient by complex gauge transformations G¢. Under our assumptions,
stability coincides with semi-stability and we obtain a smooth quotient,

My = pg'(0)°/Ge . (2.16)

We do not describe the stability condition for a general quiver, instead focussing later on
the example of supersymmetric QCD.?

This provides an algebraic description of the tangent bundle to Mg, which will reap-
pear in section 3.4. Considering small fluctuations of the hypermultiplets (§.X,dY") com-
patible with the F-term equation, modulo infinitesimal complex gauge transformations,
generates the following complex

0—gc-5TM D gt —0 (2.17)
of trivial G¢c-equivariant vector bundles on T*M. The maps
a:0g— (6g-X,09-Y) B:(0X,0Y)— X -0Y +0X Y (2.18)

at a point (X,Y) € T*M correspond to infinitesimal complex gauge transformations and
the differential of the complex moment map respectively. On restriction to the stable locus
(1" (0)*, o is injective and 3 surjective, and equation (2.17) descends to a complex of vector
bundles on My whose cohomology is the tangent bundle,

TMpg = Ker(5)/Im(c) . (2.19)

In supersymmetric QCD in the chamber ¢ > 0, the stable locus consists of solutions
where X has maximal rank and defines a complex N,-plane in W = CVs. The holomorphic
symplectic quotient

(X,Y|X Y =0, tk(X) = N, } /GL(N,, C) (2.20)

provides an algebraic description of My = T*G(N., Ny). The tangent bundle is the
cohomology of the complex

0 — Hom(V, V) - T*Hom(W, V) -2 Hom(V, V) — 0, (2.21)

where V is the tautological complex vector bundle with fiber V' = CNe and W is the
trivial complex vector bundle with fiber W. The maps are the infinitesimal complex gauge
transformation « : dg — (69X, —Ydg) and the differential of the complex moment map
B:(0X,0Y)— XY + XoY.

3An account of the appropriate stability condition for a general quiver that is close to the perspective
taken here can be found in [29].

~10 -



2.4 Mass parameters and fixed loci

We now consider the fate of the Higgs branch vacua in the presence of real mass parameters
m¢ and m associated to flavour symmetries U(1); and G respectively.

2.4.1 U(1); mass parameter

The mass parameter m; is a vacuum expectation value for a background N = 2 vector-
multiplet for the flavour symmetry U(1);. Accordingly, the supersymmetric vacuum equa-
tions (2.7) are modified by replacing ¢ — o +m; (acting in the appropriate representation).
More precisely,

O"X—F%X:O U-Y—F%Y:O [0, 0] —mip =0 (2.22)
in view of the charges presented in table 1. The remaining supersymmetric vacua corre-
spond to configurations (X,Y, ) solving the modified vacuum equations, for which there
exists a o such that the combined infinitesimal gauge and U(1); transformation generated
by o and m; leaves the configuration invariant.

Such configurations are found by setting Y7, = 0 where T*M = L L* is the Lagrangian
splitting introduced above. It is useful to note that under the combined gauge and U(1);
transformation that leaves this configuration invariant, the hypermultiplet fields (X7, Y7)
transform with weight (0, 1). This property could be used to characterise the holomorphic
Lagrangian splitting.

Geometrically, the remaining supersymmetric vacua correspond to the fixed locus of the
U(1); Kéahler isometry of My generated by the mass parameter m;. From the discussion
above, this coincides with the compact core,

MEYD =y, (2.23)

In the algebraic description, the U(1); isometry becomes a C* action that transforms the
holomorphic symplectic form with weight +1. This will play an important role in the
definition of the enumerative invariants to be considered in section 3.

For example, in supersymmetric QCD with Ny > 2N, in the chamber ¢ > 0, the
mass deformation requires 0 = —%t1y, and ¥ = 0. Indeed, U(1); acts on the fibres
of My = T*G(N., Ny) with weight +1 such that the remaining supersymmetric vacua

coincide with the compact core, ./\/lg(l)t = G(Ne, Ny).

2.4.2 Gy mass parameters

Let us now add real mass parameters m € ty by turning on a vacuum expectation value
for a background N' = 2 vectormultiplet for the Gy flavour symmetry. The vacuum
equations (2.7) are modified by

o—=o+m+my, (2.24)

where again it is understood that the mass parameters act in the appropriate represen-
tation of U(1); x Gg. The remaining vacua now correspond to configurations (X,Y, )
solving the modified vacuum equations, for which there exists a ¢ such that the combined
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infinitesimal gauge and G x U(1); transformation generated by o and m + m; leaves the
configuration invariant.

Geometrically, the remaining vacua correspond to the fixed locus of the Ty x U(1),
isometry of My generated m +m;. The assumption of section 2.2 requires that for generic
mass parameters m, the fixed locus is a set of isolated points

MU — g1 (2.25)

The fixed points necessarily lie in the compact core. Each massive vacuum corresponds
to a configuration of rk(G) non-vanishing hypermultiplet fields chosen from X, which we
denote collectively by {Z,}. We note that in the algebraic description, Ty is promoted to
a (C*)™ () action leaving the holomorphic symplectic form invariant.

In supersymmetric QCD the flavour symmetry Gx = PSU(Ny) acts by Kéhler isome-
tries on My = T*G(N¢, Ny). Turning on generic mass parameters m = {mi,...,my,}
obeying Zivzfl m; = 0, there are (]]\\[,J: ) massive supersymmetric vacua labelled by distinct
subsets I = {iy,...,in,} C {1,..., Ny} where

vy 0g =My, 0e=0 Zg = X%, . (2.26)

They are the fixed points of a generic Ty x U(1); isometry of My and coincide with the
coordinate hyperplanes in the grassmannian base Lg = G(N, Ny).

3 Twisted theories on S x ¥

In this section, we consider A = 4 supersymmetric quiver gauge theories on S' x 3. The
construction is a special case of N' = 2 supersymmetric gauge theories on S x ¥, which
have been extensively covered starting with [3] and continuing in [5, 6]. These works
considered a localisation action where the partition function is expressed as a contour
integral in the complexified maximal torus of the gauge group G, with the contour specified
by a Jeffrey-Kirwan residue prescription. An important motivation for this paper is to
understand the geometric origin of this contour prescription, as in the original mathematical
constructions [30].

We consider here an alternative localising action akin to that introduced in [31], which
localises the path integral to solutions of generalised vortex equations on X. In this section,
we briefly review the process of the twisted reduction of the gauge theories on ¥ and study
the massless fluctuations around a point on the moduli space of solutions to these equations.
From this we will provide a general relation between the twisted indices and enumerative
invariants of the moduli space.

3.1 Topological twists

We consider an N = 4 supersymmetric quiver gauge theory on S' x ¥ with a topological
twist along a closed orientable Riemann surface ¥ of genus g. The topological twist can
be performed using either U(1)y or U(1)¢, leading to a pair of supersymmetric quantum
mechanics on S' with four supercharges, which we refer to as the H-twist and C-twist
respectively. Their properties are summarised as follows:
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e The H-twist preserves the same supersymmetry as a 1d N’ = (2, 2) supersymmetric
quantum mechanics on S with R-symmetry U(1)y x SU(2)¢

e The C-twist preserves the same supersymmetry as a 1d N/ = (0,4) supersymmetric
quantum mechanics on S with R-symmetry U(1)c x SU(2)y

Turning on the real mass parameter m;, both twists preserve a common 1d A" = (0, 2)
subalgebra that commutes with the U(1); symmetry. From the perspective of 3d N = 2
supersymmetry, we are performing topological twists on Y using the integer valued R-
symmetries generated by Ry and Rc. Both topological twists are compatible with real
mass parameters m and FI parameters (.

3.2 Localising actions

We first consider an N' = 2 supersymmetric gauge theory with gauge group G and chiral
multiplets of R-charge r transforming in a unitary representation R. After performing the
topological twist, we denote the fields in the N/ = 2 vector multiplet by

V = (0,4, \,\\, A A, D). (3.1)

This can be regarded as a 1d N/ = 2 vectormultiplet (o + iAg, A\, \, D) for the group
of gauge transformations g : ¥ — G and a chiral multiplet (94, A) transforming in the
adjoint representation where 04 denotes the anti-holomorphic covariant derivative on X.
The standard Yang-Mills lagrangian for the vectormultiplet is*

1 1 1 1 - _
Lyy = tr | 5 Fo Fop + 5(—2iFﬁ)2 + 5D2 + 5\D#012 — iADoA — iA; Doy
(3.2)
+2iA1 D1\ — 2iA1 D1\ — iAz[o, Ay] + i)[o, A]

This action is exact with respect to the two supercharges §, 5 preserved by the topological
twist on X. In addition, we can introduce a real FI parameter for each U(1) factor in the
gauge group. For example, when G = U(V) the FI parameter gives a contribution

LaalV] = —o> (D). (3.3)

Similarly, we denote the fields of the A/ = 2 chiral multiplet transforming in a representation
R by

= (¢, ¥, F). (3.4)

4Here we used frame indices
e’ = dt, el =/ 2g.zdz , el = \/29.zdZ

so that the metric on the Riemann surface is ds? = elel = 2g.zdzdZ. We also defined F,, = 0,4, —
Oy A, — i[Au, A], where *F = —2iF7 is hermitian. (Throughout the paper, we will use * to denote the
hodge dual on the 2d Riemann surface ¥.) The holomorphic derivatives and the gauginos are (5,4, A) =
(Die', Azel) and (94,A) = (Die', Aret).
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On a curve X, this reduces to a 1d N' = (0,2) chiral multiplet (¢,) transforming as a
smooth section Q%O(Pq)) and a fermi multiplet transforming as a smooth section Q%l(Pq)).
Here we define the associated vector bundle Py := K. ;/ ’® (P x g R) where P is the principal
gauge bundle on Y. We use the following lagrangian for the chiral multiplet,

Lo =¢'(—D3 —4D1 D1 + 0> +iD — 2iF1)¢ — F'F
i- o - L
= 5¥(Do + a)y — 2i(Do — o) + 2ip D1 — 2in D1y (3.5)
— iPAD + idT Ay — 2ipTAn + 2iA16,
which is also 9, S-exact. Finally the superpotential term is given by

Ly |[®] + Ly [@T] = /d20 W(®) + h.c. (3.6)

where W is a holomorphic function of chiral multiplets with total U(1)z-charge 2.

We now consider a N/ = 4 supersymmetric quiver gauge theory as described in sec-
tion 2.1. We can regard this as an A/ = 2 supersymmetric quiver theory with R-symmetry
U(1)g or U(1)¢. In particular,

e The N = 4 vectormultiplet decomposes into an N' = 2 vectormultiplet V' and an
N = 2 chiral multiplet ®, = (¢, 1,1, F,) in the adjoint representation.

e The N = 4 hypermultiplet decomposes into a pair of A' = 2 chiral multiplets denoted
by ®x = (X,¢¥x,nx,Fx) and ®y = (Y, ¢y, ny, Fy) transforming in the unitary
representations M and M™ respectively.

Accounting for the R-charges summarised in table 1, the chiral multiplets mentioned above
transform as sections of the associated bundles

P,:=(Pxcg) @Ky "

Py = (P xg M) @ K/ (3.7)
Py = (P xg M*) @ Ki/?,
where
1 H-twist
ri= (3.8)
0 C-twist.

In addition there is an N/ = 2 superpotential W = (Y, ® - X) of R-charge +2 and trans-

® These supermultiplets further decompose into 1d N = (0, 2)

forms as a section of K.
supermultiplets as detailed above.

Summing the above lagrangian contributions from these multiplets gives

1 1 1
L=—=Lym+ — (Lx + Ly + Lo) + -5 Lw + L1 (3.9)
e g 9w

5By (-,-) we always denote the natural pairing between a space and its dual.
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where we have inserted parameters e?, g? and g%V in front of the exact contributions. By
taking the limit as these parameters tend to zero, we can localise the path integral to the
critical loci of the combinations Lym, Lx + Ly + Lo and Ly separately. By imposing a
suitable reality condition for all the fields except for the auxiliary field, the path integral
localises to solutions of the following equations

«F = —iD, OaX =0 04y =0 0x0=0,
dpo =0, Fpun=Fyi=0, 0-X=0 0:Y=0 o0-¢=0, (3.10)
p-X=0 p-Y=0 X-Y=0

as found in [3, 5, 6]. This leads to a contour integral representation of the twisted index.
We consider here an alternative localising action akin to the one introduced in section
9 of reference [31] in the context of the twisted partition function of 2d N = (2, 2) theories

on S2. In particular, we add a (& + §)-exact term,

L‘H:% <5+g> [()\—1—5\) (ﬂR—2[¢T,¢]—T):| , (3.11)
whose bosonic part is

3" =i (D = 2Fy) (= 2l 0] - 7) - (3.12)

We emphasise that the parameter 7 € t* is distinct from the physical FI parameter ¢
introduced in equation (3.3). We then replace the vectormultiplet action by

1 1 /1
?/—:YM — ﬁ (62£YM +£H) (3'13)

and consider the limit as t, g — 0 such that t/g — 0, while keeping e finite. After integrating
out the auxiliary field, the path integral localises to configurations solving the following set
of ‘generalised vortex equations’ on 3,

¥ Fa+ 2 (MR—2[¢T,¢]—7):0 dao =0

04X =0 04Y =0 éAgO:O

- X=0 ¢-Y=0 X-Y=0

c-p=0 0-X=0 o-Y=0 (3.14)

where it is understood that o, ¢ and 4 act in the appropriate representation. In addition,
there are fermion zero modes in the background of such configurations. These must combine
to form 1d N = (0,2) supermultiplets whose structure will be elucidated in subsequent
sections.

3.3 The vortex moduli space

We now consider the moduli space of solutions to the generalised vortex equations (3.14)
for the class of supersymmetric theories introduced in section 2. Recall that we consider
quiver gauge theories with G = Hle U(Ny).
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First, solutions of the generalised vortex equations form topologically distinct sectors

labelled by the flux
1
my = — TI"(F[) . (3.15)
2T »
We can equivalently write m; = ¢1(Vr) where V; denotes the vector bundle on ¥ in the
fundamental representation of U(N7). We use shorthand notation m := {m;} € Z".

The allowed fluxes m € Z% generate a lattice in the Lie algebra of the abelian part
of G. The latter can be identified with the dual of the Cartan subalgebra the Coulomb
branch flavour symmetry, t/ = REY. The flux lattice is then naturally identified with the
character lattice

A} == Hom(T¢, U(1)). (3.16)

The homomorphism ¢ — €2™{™ arises in the contribution to the path integral from the
FI parameter. Through the identification (2.6) the flux lattice is equivalently

AV >~ HQ(MH7Z) 5 (317)

which suggests that solutions of the generalised vortex equations are related to holomorphic
maps ¥ — My of degree m. We will explain below in what sense this is realised.

Second, the parameter 7 € R” appearing in the generalised vortex equations (3.14)
arises from an exact contribution to the lagrangian. In what follows, we always choose
this parameter to lie in the same connected component or chamber of the parameter space
RE\ U, H,, as the physical FI parameter .

The parameter 7 (or more precisely the combination e?7) controls the tension or inverse
size of the vortex solutions. We therefore expect an intricate dependence on 7 and Vol(X) as
the moduli space may jump when walls are crossed in the parameter space where additional
vortices may be supported.® In order to obtain a uniform description of the moduli space
of solutions to (3.14) for all fluxes m € Z%, we will send the parameter 7 — oo within the
appropriate chamber of RL\ Uq Hgy. This corresponds to an ‘infinite-tension’ limit where
an arbitrary number of vortices can be supported.

In the infinite tension limit, the magnetic flux is concentrated at a finite set of points
P on ¥. Provided we restrict to ¥ — P, the magnetic flux may be neglected in the first line
of equation (3.14) and therefore

pr =2l @l = 7. (3.18)

This is identical to the D-term equation in the N = 2 supersymmetry description of the
Higgs branch described in equation (2.9). Under the assumptions of section 2.2, solution of
the generalised vortex equations therefore have the property that for each point in ¥ — P,
0 = ¢ = 0 and they determine a point on My . Together with the remaining equations
in (3.14) this is sufficient to determine that o = ¢ = 0 everywhere.

SWe will discuss the moduli space of gauge theories at finite 7 and their wall-crossing phenomena in
upcoming work [32].
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In the infinite tension limit, it is therefore sufficient to restrict our attention to the
following system of equations

*FA—FCQ(MR—T):O
04X =0 0¥ =0 X-Y=0 (3.19)

whose solutions with a fixed degree m € Z% describe holomorphic maps ¥ — My away
from a finite set of points on . Let us then denote the moduli space of solutions to the
generalised vortex equations (3.19) modulo gauge transformations by 9. As explained
above, this is a disjoint union of topologically distinct components,

M= |J Ma. (3.20)

\
meAY

We emphasise that the moduli space encompasses both boson and fermion zero modes.
More precisely, the moduli space is parametrised by the vacuum expectation values of both
1d NV = (0, 2) chiral multiplets and 1d N/ = (0, 2) Fermi multiplets. In the following section,
we explain that the algebraic description of the solutions to these equations coincide with
that of ‘quasi-maps’.

3.4 Algebraic description

To understand the vortex moduli spaces 9, and the mathematical interpretation of the
twisted index, we consider an algebraic description of the moduli space of generalised
vortex equations (3.19) in the infinite-tension limit 7 — co. We show that this description
coincides with two variations of moduli spaces of stable quasi-maps ¥ — Mg in the H-twist
and C-twist respectively.

As for the Higgs branch, the algebraic description of the moduli space 9, is found
schematically by removing the D-term vortex equation from (3.19) in favour of a stability
condition and dividing by complex gauge transformations (under which the equation X -Y
is invariant). A solution is then represented by the following holomorphic data:

e A holomorphic G¢-bundle E on X;

e Holomorphic sections X, Y of the associated holomorphic vector bundles Ex, EFy
subject to the complex moment map constraint uc = X - Y = 0;

e Subject to a stability condition;

and modulo complex gauge transformations. We refer to a collection of such algebraic

data as (F, X,Y). This associates to each point on ¥ a point in ,u(El(O) C T*M. We can

therefore regard this algebraic data as a twisted holomorphic map ¥ — ps 1(0) of degree m.
Let us now consider the stability condition arising from the vortex equation,

x Fa+e(up —7)=0. (3.21)

The determination of the relevant stability condition depends intricately on the choice of
parameter 7 and has been studied extensively in particular examples [33-35].
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The infinite tension limit leads to a simplification in the stability condition: away from
a finite set of points on ¥ the curvature term in equation (3.21) can be ignored and the
image of the map ¥ — /J,(El(O) determined by the algebraic data must lie in the stable
locus pg'(0)*. This is precisely the stability condition introduced in [7, 14, 15] to define
quasi-maps ¥ — Mp. Accounting for the R-charges as in (3.7), in the C-twist we therefore
have an algebraic description of 9, as the moduli space of quasi-maps ¥ — Mg of degree
m € Z' as considered in [15] for the special case ¥ = CP!. In the H-twist, we have a
similar algebraic description as twisted quasi-maps as described in [14].

3.5 Virtual tangent bundle

We can further study this identification by computing the massless fluctuations around
solutions of the generalised vortex equations (3.14). By supersymmetry preserved on S1x 3,
these fluctuations must organise into supermultiplets of 1d A" = (0, 2) supersymmetry. We
will demonstrate that the massless fluctuations reproduce the structure virtual tangent
bundles or perfect obstruction theories for My, considered in [7, 14, 15].

Let us fix a point on the moduli space represented by the algebraic data (F,X,Y).
Then each of the three-dimensional chiral multiplets ¢ = X, Y, generates a pair of 1d
N = (0,2) supermultiplet fluctuations at this point:

e Chiral multiplets: (5¢, 1) € H°(Ey).
e Fermi multiplets: (ny) € H'(Ey).

In addition, the three-dimensional vectormultiplet contributes a chiral multiplet fluctuation
(5A,A) € H'(Ey), where Ey is the holomorphic vector bundle associated with the adjoint
representation, corresponding to deformations of the holomorphic vector bundle E via the
derivative operator 04, and a Fermi multiplet A € H°(Ey,) corresponding to infinitesimal
holomorphic gauge transformations.

Not all of these fluctuations remain massless. First, let us fix the holomorphic vector
bundle E and consider fluctuations of the hypermultiplets (X,Y’). For the scalar fluctu-
ations (0X,0Y), linearisation of the complex moment map equation X - Y = 0 generates
the complex of vector spaces

0 af 0 ,30 1 *
HY(Ey) — H(Ex @ By) — H (E,)", (3.22)

where the map o : §g +— (0g- X,8g - Y) is an infinitesimal complex gauge transformation
and 3% : (6X,0Y) — X - 8Y +6X - Y is the differential of the complex moment map. The
massless fluctuations of the complex scalars lie in Ker(3%)/Im(a’). We note that under

our assumptions o

is injective.

The same result must hold for the fermion components (1 x, 1y) of the chiral multiplets
by 1d N = (0, 2) supersymmetry but it is illuminating to check this explicitly. This can be
understood from the Yukawa couplings with the Fermi multiplet fluctuations A € H°(Ey,)

and n, € H'(E,). First, there is

[rovuxxh+ [0y, (3.23)
by by
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Here we denote by (-,-) the pairing between the lie algebra g and its dual g*. Other
contractions are implicit. Let us suppose that the fermion fluctuations take the form
(¥x,vy) = (e- X,e-Y) for some fermion ¢ € H°(Ey ), meaning they lie in the image of
a. Then the above contributions are proportional to

/Z i (X, V), Ae). (3.24)

By the stability condition, the real moment map cannot vanish identically on ¥ and there-
fore this coupling generates a mass for the fermions € and A. We conclude that the fermion
fluctuations (¢)x,%y) in the image of a” become massive. Second, the superpotential (2.5)
generates the Yukawa couplings

/Z<U¢7X'¢Y+¢X-Y>- (3.25)

It is clear that if the fermion fluctuations satisfy X -9y +x -Y = 0, then the sum of these
couplings vanish and these fluctuations are massless. Otherwise they pair up with 7, to
become massive. We therefore conclude that the remaining massless fluctuations (¢¥x, ¥y )
lie in Ker(°)/Im(a?). In addition there are Fermi multiplet fluctuations 7, in the cokernel
of 3°. In summary, there are massless 1d N = (0, 2) fluctuations given by the cohomology
of the complex (3.22).

Let us now return to consider fluctuations of the holomorphic bundle E via the deriva-
tive operator d4. Deformations of the holomorphic vector bundle E correspond to elements
in H'(E). However, these deformations must be such that (X,Y’) remain holomorphic sec-
tions, meaning they lie in the kernel of the map

ol HY(Ey) — HY(Ex @ Ey), (3.26)

where a! : §A — (§A-X,8A-Y). The same condition must hold for the fermion component
of the chiral multiplet (64, A), but it is again illuminating to show this directly. This follows
by noting that the Yukawa couplings

/</_\7an>+/</_\,1/771/> (3.27)
Y P

vanish when the fermion A lies in the kernel of a!.

Finally, let us consider the chiral multiplet fluctuations (§¢,v,) € H°(E,). The
complex scalar fluctuations must obey dp - X = 0 and dp - Y = 0, which means that they
lie in the cokernel of the map

B HY(Ex @ Ey) — H(E,)*, (3.28)

where ' : (A,B) = X - B+ A-Y. Under our assumptions, ¢ vanishes identically on
solutions to the generalised vortex equations and therefore 8! is surjective. Once again,
the same condition must hold for the fermion components of the supermultiplet. This time
we consider the remaining Yukawa couplings

/2:<¢<an'77Y+77X'Y>, (3.29)
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which shows that the combination of fermion fluctuations X - ny + nx - Y that are not
kernel of #! pair up with the fluctuations 1, and become massive.

In summary, the massless fluctuations around a point on the moduli space 91 of quasi-
maps ¥ — My represented by algebraic data (F, X,Y') are encoded in the cohomology of
the following pair of complexes

0 a® 10 B0 11 *
H (E) — H (EX ) Ey) — H (Ecp) (3 30)
1 .
HY(E) 25 HY(Ex @ By) 2 HO(B,)* .

This can be promoted to a complex of G x U(1); equivariant sheaves on the moduli space
M using the universal construction on 9 x 3. The starting point is the universal G-bundle
P — M x X. We then have

Rr*(P) -2 Rr*(Px & Py) - Rr*(P,)", (3.31)

where 7 : M x X — M is the other projection and the associated vector bundles Py, Py, P,
are defined as before in (3.7) using the pullback K = f*Ky, where f : 9t x ¥ — X is the
projection. Note that this mirrors the structure of the complex whose cohomology computes
the tangent bundle to My outlined in section 2.3. In the remainder of the paper, we will
mainly refer to TV as the equivariant K-theory class of the complex (3.31).

This construction coincides with the perfect obstruction theory constructed in [15] for
Y = CP! in the C-twist [14] and in H-twist on a general curve ¥ of genus g. The two
obstruction theories have remarkably different features. The obstruction theories for the
H-twist is symmetric, meaning that there is an isomorphism between the complex in degree
0in (3.31) and the dual of the complex in degree 1. This implies that the virtual dimension
of the moduli space is zero. In the C-twist the obstruction fails to be symmetric unless
the curve is elliptic, so that the canonical bundle is trivial. A Hirzebruch-Riemann-Roch
computation shows that

dimy;, (gﬁm) =

0 H-twist
(3.32)

dim (Mpg) (1 —g) C-twist.

The difference between the two twists will be particularly manifest when we will attempt
to give an interpretation of the twisted indices.

3.6 Mass parameters and fixed loci

The moduli spaces My, introduced above are in general expected to be non-compact. The
presence of massless non-compact fluctuations would render the computation of the twisted
index on S! x ¥ ill-defined. To remedy this, we introduce real mass parameters for flavour
symmetries that, as for the Higgs branch in section 2.3, will cut down the moduli space to
the fixed locus of this flavour symmetry.

The mass parameter for the U(1); symmetry associated to the breaking to N' = 2
supersymmetry is enough to ensure the twisted index on S* x ¥ is well-defined and identify
its mathematical interpretation. Further introduction of mass parameters for G g will make
the twisted index explicitly computable in our localisation scheme.
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3.6.1 U(1); mass parameters

Let us introduce the mass parameter m; for U(1);. The effect of this deformation is to
replace 0 — o + my in the generalised vortex equations (3.14), where my; acts with the
appropriate weight according to table 1. The remaining moduli space of solutions is the
fixed locus of the U(1); action on Miy,.

First recall from section 2.4 that turning on the mass parameter m; restricts the Higgs
branch to a compact holomorphic Lagrangian known as the compact core ./\/lg(l)t =Ly
This is characterised by a holomorphic Lagrangian splitting 7*M = L & L* such that he
hypermultiplet fields in L* vanish on the fixed locus and Ly = L//¢ G.

Similarly, solutions of the generalised vortex equations invariant under U(1); corre-
spond to configurations where the hypermultiplet fields in L* vanish and correspond alge-
braically to twisted quasi-maps > — Ly to the compact core. We denote the fixed locus of

(1)

the moduli space by zmﬂ * = L. Upon restriction to the fixed locus, the virtual tangent

bundle splits into two pieces
H*(E) % H*(E;)  H*(Ep.) -2 H'™*(E,)*, (3.33)

transforming with weight 0 and +1 respectively under U(1);. They can be identified with
the virtual tangent bundle to £, and the virtual normal bundle respectively. At the level

of K-theory classes we have
TV, =T¢" +tN, (3.34)

where t = €27 is the equivariant parameter for the U(1); symmetry.
In the H-twist, the tangent and normal fluctuations at the fixed locus are related by

Serre duality
H*(Ep) = H"*(Ep)*, H*(E)=H'"*(E,)* (3.35)

and NVIr = — (Tgir)v as K-theory classes. Although it is not necessary in our computations,
when the Higgs branch is a cotangent bundle we expect that the extended moduli space
including fermionic fluctuations is a shifted cotangent bundle 7*[—1]£. In the C-twist, the
virtual normal bundle NYI* can be identified with the class of the complex

H*(E® Ky)" — H*(EL ® Ky)* (3.36)
by an application of Serre duality.

3.6.2 Gy mass parameters

Let us now introduce real mass parameters m € ty and consider localisation with respect to
Ty C Gpg. Under our assumption that fixed points {v;} of My are isolated, the fixed locus
in 9N corresponds to a union of M, where the gauge group G is broken to its maximal torus

G — U1)™E) (3.37)
Then the associated degree m vector bundle £ decomposes into the sum of line bundles

E=L¢& -0 er(G) s (338)
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where deg(L;) = m;. The rk(G)-vector m = (my, -+ , My q)) is valued in the co-character
lattice Ag of the gauge group G, and satisfies the relation tr(m) = m. This implies that
each fixed locus My can be further decomposed into

M=) Mt (3.39)

meAg

Furthermore, integrating the abelianised vortex equations over X, one can show that
there are exactly rk(G) non-vanishing chiral multiplet fields Z,, a = 1,...,rk(G) at each
fixed locus I. This corresponds to the isolated vacua vy in (2.26). Then each component
of the fixed locus My, ; parametrises the holomorphic line bundle L, together with non-
vanishing holomorphic section Z,, which can be identified with the rk(G)-fold product of
symmetric products of a curve X

rk(G)
My = [[ Sym™ -V, (3.40)

a=1

This is a compact smooth Kéhler manifold of complex dimension m + rk(G)r(g — 1).

Now the massless fluctuations transform in the tangent bundle to the fixed loci 79y 1
and the remaining fluctuations are massive. This corresponds to a decomposition of the
virtual tangent bundle

T |ony ; = T, r + N1 » (3.41)

where the virtual normal bundle Ny, ; encodes the fluctuations that have become massive
upon turning on the mass parameter. These two contributions are known as the ‘fixed’
and ‘moving’ parts and are characterised as those transforming with trivial weight and
non-trivial weight under the T x U(1); transformation generated by the mass parameters
Me, Mt.

3.7 Evaluating the partition function

The path integral of the twisted index computes the generating function of the equivariant
virtual Euler characteristic of the moduli spaces 9. This is defined by the following
integral

WO Ou) = 3 (o)™ | AT, (3.42)

meAY Dim

where A(Tvir) is the A-roof genus of the virtual tangent bundle. This quantity has been
extensively studied in [15, 16] in the context of the enumerative geometry of curves in
Calabi-Yau five-folds. The analogous construction for the four-dimensional Vafa-Witten
invariants has been recently studied in [36].

Due to the non-compactness of 9, this formula should be evaluated with a proper
virtual localisation theorem. Let us first consider the localisation with respect to the U(1),
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action, which leads to the expression

R TVlr
Dﬁ, Ovir = /
X( ) meAV (€] Ch A NV
(3.43)
= (_q)m/ A(Tgryen (Seny)
meAy, (]

Here we introduced the “symmetrised” symmetric and exterior algebras

SV = (det V)2 @ 5V, A'V = (det V) V2@ AV, (3.44)
where

V=S5V, NV=PE-1)AV (3.45)

i>0 i>0
are the symmetric and exterior algebra of V. In the H-twist, the identification of the
virtual normal bundle with N = —(Tgir)v means we can also interpret the twisted index
as a symmetrised virtual y,-genus with y = —¢.

These integrals can be explicitly evaluated by a further localisation with respect to
Ty C Gg. In turning on the real mass parameters m, we have seen that the solutions of
the BPS equations are restricted to the fixed locus 97T, which is a disjoint union of smooth
compact fixed loci. Let us denote the inclusion by oy 1 : My < M. Then the integral
decomposes as a sum of contributions from the distinct components of the fixed locus

o - ey [ A

meAG DMim, 1 Ch A Nél)

— Z/ A(TDMw 1) Ch(§°N£,I)-

mEAG

(3.46)

We note the individual contributions from the components of the fixed locus may
be interpreted as the index of the Dirac operator on the smooth space My ; twisted by
a complex of holomorphic vector bundles represented by :S’\'N]}; ;- This is an expected
form of the partition function of a finite-dimensional N = (0, 2) gupersymmetric quantum
mechanics with target space M 1.

As discussed in the previous section, under our assumptions, the fixed loci are smooth
products of symmetric products and these integrals can be evaluated explicitly. We will
explore an extensive set of examples in section 5.

3.8 Relation to contour integral formulae

One main focus of this paper is to provide a concrete geometric interpretation for the
twisted indices of 3d N = 4 theories on S' x ¥. For the class of theories we consider in
this paper, the twisted index is defined as

I[g] = Try (_1)F627ri§-J0627rim-JHtJt — Z Try,, (_1)F(_q)m627rim-JHtJt , (347)
meAY,
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where H is the Hilbert space of states on ¥. This can be decomposed into topological sectors
labelled by m € A/.. We defined ¢ = e?™¢ and multiplied by (—1)™ for each topological
sector for future convenience. m is the real mass for the Higgs branch symmetry Gp.

The twisted indices of general N/ = 2 gauge theories have been studied extensively
in [2, 3, 5, 6] from various perspectives. Below we briefly summarise the result obtained
from UV Coulomb branch localisation [3, 5, 6]. Using the 0, S-exactness of the Yang-
Mills action (3.2) and the matter Lagrangian (3.5), the path integral can be localised to
the solutions to the BPS equations by taking the limit ¢ — 0 and ¢ — 0 in a careful
way. In addition, we will add a 4, S-exact term (3.11) to the action as (3.13) and take
the limit ¢,g — 0 with ¢/g — 0 instead, in order to land on a particular bosonic moduli
space considered in section 3.2. This does not modify the procedure of the localisation
computation, except for the contribution from the asymptotic boundary of the classical
Coulomb branch which we briefly explain below and in appendix B.

After carefully integrating out the fermionic zero modes, the localised path inte-
gral can be written as a r-dimensional residue integral over the classical coulomb branch
parametrised by u = i3(0 + iap) valued in a complexified maximal torus of G:

(QWZ)rk(G vector hyper g rk(G)
I[g] = > Y JK-Res(Qu.(u),n) (=)™ 2y (u) 2y ber (u, m) H (u,m)9 d™(@y

1-loo
W U=Us p
Wel meAG ux={u;}

(3.48)
The summation is over the GNO quantized flux m valued in the co-character lattice of the
gauge group Ag, and Wy is the Weyl group of G. For G = U(k), the lattice elements
in (3.48) and (3.47) are related by tr(m) = m € Z. The one-loop determinants evaluated
at the BPS locus are

si am)+(g—1)(2r 1)
vector . (g—1)(2r—1)rk(G) (2Z Slnﬂ—a(u))
Z1loop () = (2isin ) 1_.[A(2isin7r(a(u)—mt))a(m)(gl)@’"l) (3.49)
and

hyper 22 511171' —p(u) —m; + %))P(m)—(g—l)(r—l)
Zl—loop u, m H H P CEEE
i penr (2isinT (p(u) +m; + 5t ))P( )+(g—1)(r=1)

(3.50)

where A is the set of all roots of g and p is the weights in a complex representation M of
G. Note that we adopt a symmetric quantization for the one-loop computation, because
this will be in accordance with computation of the virtual Euler characteristic constructed
from the normalised symmetric and exterior algebra (3.44). The last term in (3.48) can be
obtained from integrating out the gaugino zero modes A1, Aj:

H (u,m) = det [Hggctor( )+ HYP (4, m)] | (3.51)
a

where

Hggctor(u) _ Z aaab CO?TF(O[(’LL) - mt) (352)

= 2isin7(a(u) — my)
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and

or a cosm(p(u)+m;+my/2 cosm(—p(u)—m;+m/2
B ) = 3 5 i (ST it f2) | cosm{pt) mitmef2) )
2isinm(p(u)+m;+mye/2)  2isinm(—p(u)—m;+my/2)
(3.53)
The integrand of (3.48) has four types of singular hyperplanes in the domain of the

i peM

u-integral, where each of the hyperplane Hg is assigned a charge vector () € t*:

e There exist potential singularities where a chiral multiplet becomes massless:

Hip:{uetc‘ :I:p(u):l:m—l—%:O} (3.54)
The order of the pole is £p(m) + (¢ — 1)(r — 1) + g.
e For each o € A, there exist potential singularities at
H® = {u € tc ‘ a(u) —my = 0} , (3.55)
where the adjoint chiral multiplets in the AN/ = 4 vector multiplets become massless.
e For g > 1, we have additional singularities at

HY = {u € tc ‘ alu) = 0} , (3.56)

where the W-boson becomes massless. This singularity corresponds to the boundary
of the Weyl chamber, where the non-abelian gauge symmetry enhances.

e Finally, the integrand can have a potential singularity at
Ho, , = {u € te ) o — j:ioo} . (3.57)

The behaviour of the integrand at infinity is governed by the charge of the monopole
operators TF under the gauge and global symmetries in the theory [3, 5, 6], whose
explicit form is not needed for this paper.

The integral is given by a sum of the rk(G)-dimensional residue integral over the poles
defined by the intersections of rk(G) singular hyperplanes. The JK-integral [30, 37, 38] is
defined by the property

U=Ux

1

drk(G)u if YRS COHQ(Qla T 7Qrk(G))
= d t ) ) T

Q1(u)--- Qrk(G)(U)] { et i)

0 else

JK-Res(Qu. (u),n) [

(3.58)
where Cone(Q1, -, Q) is the positive cone spanned by the charge vectors (Q1,- -, Q).
This definition includes the charge vector (Q+ from the hyperplanes at asymptotic infini-
ties (3.57). The charges @, + of these hyperplanes can be defined by examining the integral

— 95—



of the auxiliary field D in the large u region. For G = U(1), we show in appendix B that

the natural choice is”

Qs = ™™ _ ol(x)r, (3.59)

e2

for each GNO flux sector m € Z, where 7 is the parameter we introduced in (3.11).
Each residue integral defined by (3.58) depends on the auxiliary parameter n € t*. In

this paper, we will choose
2mm

=5 + vol(X)T :=1np, (3.60)
so that the residue integral (3.48) does not pick up the poles involving the hyperplane at
asymptotic boundaries. For G = U(1) theory, one can show that the residue integral does
not depend on the choice of 7, due to the residue theorem. As discussed in section 3.3,
we will work on the chamber where 7 is sufficiently large, so that we have n > 0 for all
values of m € Z. We claim that this procedure can be generalised to the non-abelian gauge
theories considered in this paper. Note that the Jeffrey-Kirwan residue integral operation
in (3.58) is ill-defined for the poles which intersect with the W-boson singularities (3.56).
These singularities need to be properly resolved, and following [5, 6], we will exclude the
residues from these poles in the final formula.®

Integrating the D-term equation (3.19) over X, we obtain

/ * PR = 10 - (3.61)
>

From this relation we can check that the poles that passes the JK condition with the
choice (3.60) are in one-to-one correspondence with the fixed loci of the moduli space (3.40).
In particular, the real moment map condition (3.61) can be explicitly written as

S [ AotP =g, va= 1. k(G). (3.62)
i >

where the index ¢ runs over all the chiral multiplets in the theory. This equation implies
that the rk(G)-vector 7 is in the positive cone of the charge vectors {Q¢}, which is precisely
the condition that selects the charge vectors in the JK-residue integral (3.58).
Furthermore, the poles that involve the hyperplanes of type (3.55) do not contribute
to the integral as the residues of such poles always vanish due to the order of zeros in the
numerator (3.50). Therefore, for the class of theories we consider, the non-trivial contri-
butions are from the residue integrals which consist of the first type of hyperplanes (3.54)

"The definition of the charge of the pole at infinity Qq+ is different from that of [5, 6]. This is because
the localising action we used in this paper, (3.13), modifies the integral of the auxiliary field D in the large
|u®| region as discussed in appendix B.

8For non-abelian G with g > 0, the final result may depend on the choice of 7, once we exclude the
poles from the W-boson singularities. For the theories we consider in this paper, however, we will show in
section 5.4 that the uniform choice n = 1o > 0 with the residues from the W-boson singularities excluded
reproduces the correct integral representation of the Euler characteristics of the moduli spaces in the 7 — oo
chamber.
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only. They correspond to the fixed loci

rk(G)
> I Sym™atro—by, (3.63)
I a=1

parameterised by the sum of the line bundles (3.38) and non-vanishing sections thereof.
This discussion gives a geometric interpretation of the contour expressions, which we exten-
sively study with various examples in section 5. In particular, using the intersection theory
of the symmetric product of a curve ¥ studied in [17, 18], the contour integral expressions
of the twisted indices can be converted to the equivariant integrals computing the virtual
Euler characteristics discussed in section 3.7. This provides a powerful way to compute
enumerative invariants of moduli spaces of quasi-maps.

4 The limitt — 1

As discussed in section 3.1, compactifying 3d N' = 4 theories on a Riemann surface preserves
1d N = (2,2) or N = (0,4) supersymmetry in the H- and C-twist respectively. So far, we
have considered a localisation scheme which preserves a N' = (0, 2) subalgebra only. Once
we turn off the U(1); mass parameter, we can add various exact terms to the localising
action with respect to the supercharges that do not commute with the U(1); symmetry.
This further constrains the BPS moduli space and the twisted indices in the limit ¢ — 1
are expected to provide a geometric invariant for a reduced moduli space.

As we will see, the localisation scheme which preserves four supercharges turns out to
be most powerful in the C-twist, where we can reduce the bosonic BPS moduli space to
the Higgs branch itself, and the twisted indices can be interpreted as the Rozansky-Witten
invariants [22] of the Higgs branch Mp. From the 3d mirror symmetry that exchanges
the C- and H-twist, these considerations imply remarkable statements relating invariants
of very differently-looking spaces, which we elaborate on in section 6.

The notation for the fields and the supersymmetry algebra used in this section are
summarized in appendix A.

4.1 C-twist

Let us start from the C-twist. In addition to the localizing action (3.9) with the term (3.13),
we can write down additional Q-exact terms using the four supercharges in the N' = (0,4)

algebra:
t%cc,vector = 52 (leT) + 62, (AlvT) + oL (XQVT) + 6L (AQVT) , (4.1)
C
where . , . 1
V=i (50/\1 - 60)\1) T (50)\2 - 5C>\2> . (4.2)

The bosonic part of this action is a total square
1

% Fa = 206, 4l (43)
C
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If we take the limit tc — 0, the field configuration of the vector multiplet localises to the

intersection of (3.14) and
x Fy—2[p", 0] =0. (4.4)

For the hypermultiplet, we can add

1 1 ~ ~ ~ ~ o~ ~ o~
S LonpalVi X = - (=08 (s8¢, 50 +sdc.502) — 0F (V:0c,50: + vsdopis))
c

C
(4.5)
The bosonic part of this action is
1 . - _ ~ -
gﬁ%?ﬁigﬁr = 4D1 XD XP +4D; XpD1 XP + o XpXBol + ot XpXPo. (4.6)
c
Taking s¢ — 0, the path integral localizes to the equations
DiX)=DiXa=¢-Xg=¢ -Xp=0, (4.7)

which in particular implies that X“’s are covariantly constant on 3.

Combining these results, we can define the bosonic C-twisted N' = 4 moduli space
M—4 to be the space of field configurations (A, ¢, Xp) satisfying the following set of
equations:

x Fa— 20", 0] =0,
dap =0,

daXP =0, (4.8)

- Xp=¢ - Xp=0,

pr —7 =0, puc=0.
Note that the equations for the vector multiplet fields (A, ) alone define the Hitchin
moduli space [39] associated with the gauge group G. For the class of theories that we are
interested in, the BPS equations (4.8) imply ¢ = 0. Furthermore, the real moment map
condition together with the condition that the sections X 4 are covariantly constant implies
that the vector bundle E must be trivial. Therefore the bosonic moduli space reduces to

the Higgs branch My itself. Let us now look at the various contribution in the virtual
tangent bundle. The first complex (the deformation space) in (3.30) reduces to

ac -5 Mo M gt (4.9)
which defines the tangent space of Mpy. Similarly, the second complex becomes
! @ [g@ s Mmam 2 gﬂ . (4.10)

This can be identified with the g copies of the tangent bundle TMyg. In the limit ¢ — 1,
the virtual Euler characteristic gets contributions from the zero-flux sector only and is
therefore independent of ¢. In particular, we recover the holomorphic Euler characteristic
of My valued in (K'T*MH)g,

XM, O],y = x (M, (R°T"Mi)”) | (4.11)
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which is the Rozansky-Witten invaraint on ¥ x S' associated with the Higgs branch M.
Notice that the in this limit the virtual dimension (3.32) is manifest. This relation between
the twisted indices and the Rozansky-Witten invariants has been also studied in [40].

4.2 H-twist

Similarly for the H-twist, we can write down additional Q-exact terms using the four
supercharges in N = (2, 2) algebra. We choose
1 c e
7 Litieion = o (V1) + 0% (v) (4.12)
where
_
412,

As in the C-twist, the bosonic part is a sum of squares, but now takes the form

1% (5},A2 - 5},X1> . (4.13)
| * Fa +1iD|?, (4.14)

where D is the auxiliary field for the N' = 2 vector multiplet. Solving the equation of
motion for the D-term, and taking the limit t;; — 0 gives rise to the condition

* Fo+e*(ug —7) = 0. (4.15)
Therefore the H-twisted moduli space for the vector multiplet on ¥ can be viewed as the
intersection of solutions to (3.14) and (4.15), which can be written as’
* Fo+e*(ug —7) =0,
5AXA =0,
dap =l ¢] =0, (4.19)
p-Xa=0,
pc=0.

Since ¢ vanishes on the moduli space under our assumptions, the bosonic moduli space
remains the same as in the N' = 2 case. However, since ¢ decouples from the D-term
equation, the derivation of the stability condition simplifies.

As mentioned, the additional supercharges do not commute with U(1); and therefore
we consider the limit ¢ — 1 of the twisted index. In this limit, the virtual x;-genus greatly

9Notice that there are interesting additional terms that could be added to the action. For example,

%c;{,vmom - éai (Rrav") (4.16)
where
V =635, (4.17)
whose bosonic part is
D1l (4.18)

This forces ¢ and ng to be covariantly constant on X, not just covariantly holomorphic. We could also add
terms coming from the hypermultiplet, giving goT - Xa=¢p- XL =0.
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simplifies to the generating function of the integral of the Euler class of the fixed loci £,
of the U(1); action

X, Ouir)], = D (—g)(—1)dmirEn) / e (Tr) . (4.20)

meAy, [Em]

For the class of the theories we consider, the localisation with respect to the Higgs branch
flavour symmetry G provides an alternative expression for the index in the ¢ — 1 limit.
Since the fixed loci My ;1 with respect to Ty C Gy are smooth and compact, the ex-
pression (4.20) can be explicitly evaluated by a computation of the sum of the Euler
characteristic of the fixed loci:

OOl = X (om0 [ e

meAg I mm,]

As discussed in the paper [41], the supersymmetric ground states in the effective quan-
tum mechanics that preserve N' = (2,2) supersymmetries are singlet under the flavour
symmetry Gp. This agrees with the result (4.21), which is independent of the equivariant
parameters m.

5 Examples

In this section, we apply the strategy outlined above to some concrete examples. We
explicitly prove that the virtual Euler characteristics of the appropriate moduli spaces of
quasi-maps, computed via equivariant localisation (3.46), reproduces the contour integral
formulae of the twisted indices derived in [3, 6] and summarised in 3.8. For each example,
we also discuss and verify interpretations that become available in the ¢ — 1 limit, where
N = 4 supersymmetry is restored, as anticipated in the previous section.

5.1 Free hypermultiplets

We start the study of our examples by briefly collecting some facts about the free hyper-
multiplet, since they are going to be useful in view of mirror symmetry. In A/ = 2 language,
the hypermultiplet corresponds to two chiral multiplets ® x and ®y, which have a U(1) gy
flavour symmetry, and which are charged as follows:

U@ | v,
X +1
Y -1

N[—= N[

For an arbitrary R-charge r, the index reads

( (t/22)""? > ey ( (£1/2/2) 1/z> g (r—1)(g-1)
=" ~ 7

5.1
1—tY2g 1—tY2/z ’ (5.1

where my and m; are the degrees of the line bundles Ly and L;, and x and ¢ are the
fugacities for U(1)y and U(1); respectively. The two factors in (5.1) correspond to the
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indices of ® x and ®y. The contribution of each N/ = 2 chiral multiplet can be understood
from the point of view of the 1d (0, 2) multiplets mentioned in (3.4). In fact, it is the index
of a 1d quantum mechanics with h%(3, K¥/? @ Ly ® Ly) chirals and b (S, K&/> @ Ly ® Ly)
fermi multiplets, whose difference is controlled by the Riemann-Roch theorem.

5.2 SQEDJ1]
Let us first consider a U(1) gauge theory with a hypermultiplet (X, Y T) having the following
charges'?
Ul UQ1): | UM UQ)e
X 1 3 3 0
2 2 (5.2)
V| -1 : : 0
%) 0 -1 0 1
The N = 2 BPS equations become
* Fa+e3(XXT—YTY —7) =0,
04X =0,Y =0, X-Y=0, (5.3)
Oap =0, - X=¢-Y=0.
The moduli space of solutions to the above equations is a disjoint union of topological
components
Mm= | Ma, (5.4)
mez

indexed by the degree of the holomorphic line bundles L associated to the connection A.
X and Y are holomorphic sections of L @ K"/2 and L~ ® K"/? respectively. Integrating
the D-term equation over 3, we can check that X is non-vanishing provided

2mm

> ==
T e2vol(X)

(5.5)
Note that this condition is equivalent to the choice 7g > 0 in the twisted index computa-
tion (3.60). Since X is a holomorphic section of a line bundle, the number of zeros of X
on ¥ is finite and equal to the degree of L ® K"/2. The remaining BPS equations imply
that Y = ¢ = 0. Therefore the moduli space in this chamber is

My ={(A,X) | *Fa+e(XXT—7)=0, 94X =0} /U(1)c - (5.6)

This space defines the moduli space of abelian vortices. The points in 9} can be
parametrised by the zeros of X, or equivalently by divisors on 3, which can be viewed
as points in the m 4 r(g — 1)-th symmetric product of ¥. Importantly, given a divisor
D € %, the line bundle L can then be recovered as O(D). Introducing the notation

Y, = Sym"¥, (5.7)

10Strictly speaking this theory falls short of the class we have previously defined in section 2.2. However,
the resolved Higgs branch is well-defined (it is a point) and the computations are still possible. This example
contains the basic building blocks needed in more elaborate examples.
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we have

My =%, , ny=m+r(g—1). (5.8)

The chamber 7 < egvol(z)
constructed from non-vanishing sections Y (when they exist) and their corresponding line

can be treated in a similar way. The bosonic moduli space is

bundles L, whereas X is set to zero. In this chamber the bosonic moduli space becomes
M=%, , no=—m+r(g—1). (5.9)

For concreteness, we will work in the chamber (5.5) for all the flux sectors m € Z by
formally sending 7 — 0o, and omit the superscript + from 9.

H-twist. In order to compute the index using virtual localisation, we need to study the
virtual tangent space to MMy,. In the H-twist, the physical fluctuations around the bosonic
moduli space are given by

(6X,1x) € HY(L ® Ki/?), (nx, Fx) € HY(L ® K?),
(6Y,¢y) € HO(L ' 0 Ky%),  (nv,Fy) e H{(L ' @ Ky/*), (5.10)
(p.1p) € HY(O), (ny, F,) € H'(O)

The virtual tangent space restricted to a point D of the moduli space (3.30) corresponds
therefore to the cohomology of the following two complexes:

o o0 o 1/2 1
HY(0) % H((0(D) & O(D)™!) @ Ky >—>H (0)", (5.11)

HY(0) 2% HY(0(D) & 0(D) ) @ KX 25 HO(0)*

where the map « is defined as multiplication by (X, —Y"), while § is defined by taking an
inner product with (Y, X). Since Y vanishes identically on the moduli space My, these
complexes split into two pieces each:

HY(0) 2% HYO(D) 0 KY?), HY(OMD) ' o KY*) L v (0, 612

HY(0) 2% HYOD) 0 KY?), HY(OMD) ' o KY?) 2 HO0)*.

Let us first consider the cohomology of the two complexes on the left hand side. The maps
a® and o' are injective and surjective respectively and therefore the cohomology can be
written as

TpMy, = ker(a') & HY(O(D) @ K¥/?) /im(a?) (5.13)

which corresponds to the tangent space of the symmetric product at the point D. It follows
that some of the massless fermionic fluctuations at the point D encoded by the complexes
span the tangent space to the bosonic moduli space, as expected [42]. By Serre duality,
it is then easy to see that the combination of the two complexes on the right of (5.12)
define the contangent space T, over the moduli space. Thus the virtual tangent space
restricted on My, is given by

Tvir|gy = TMw — T* My, (5.14)

M
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where the second factor has weight ¢ under the U(1); action. Hence, we can identify the
virtual Euler characteristic with the holomorphic Euler characteristic valued in the exterior
powers of the tangent bundle, which can be identified with the x;-genus of the moduli space
Mm. This can be computed from the ordinary index theorem:

XM, Ouir) = xe(My) = A(TMy) ch(At TO) (5.15)
M

where S* and A® are the normalised symmetric and exterior product defined in (3.44).!!
In order to relate this expression to the twisted index computation, we have to in-
troduce classes over symmetric products as well as some useful identities. First of all,
we introduce standard generators of the cohomology ring of the symmetric product >,
following [17]:
&,€ € H(X,,Z), ne€ H*(2,,Z). (5.16)

We also define the combination
g
oi=&&, i=1,---,g and ZUiZU- (5.17)
i=1

The generators &; and &/ anticommute with each other and commute with 7.'> The Chern
class of the tangent bundle T'%,, is computed in [17]:

g
o(TLn) = (4" M [0 +n—0i), (5.20)
=1

from which we obtain the Todd class:
n—2g+1 9

_ n n—0
td(TS,) = (1 — 677) ]:[1 T (5.21)

7

This formula can be simplifed by means of the following useful identity due to Don Za-
gier [18]. For any power series h(n) on X,, we have the identity

h(n)" =29+ H h(n — o) = h(n)" 9! H <1 — 7 }le,(n)>
P i=1

() (5.22)
h'(n)
= h(n)" 9 exp (—a
h(n) )~
"1n standard notation for the Hirzebruch y,-genus, this is tidimmn“‘)/zxft(imm).
2There is also one last ring relation:
€irbin - &ia€51 & -+ &y (Era&hy — 1) - (oo —m) 1" =0 (5.18)
provided
a+b+2c+qg=n-+1. (5.19)
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which follow from o2 = 0. If we choose h(n) = %, we get
n—g+1
n o o
td(TX,) = ——. 2
) <1—6”) op (6’7—1 n) (523

The A genus of the tangent bundle can be obtained from the todd class (5.23):
A(TM) = e~ TP)/2 4q (TN, )
ne="/? oot ole"+1) o (5.24)
= exp (s —— |
1—em 2(en—=1) 7

with n = ny = m+g—1. Finally, the Chern character of the exterior powers of the tangent
bundle can be obtained from (5.20). We find

Ch(x.t Tﬂnm) = (emmt — e_mmt)gfl (e—ﬁ/2+7rimt o e77/2—7rim,g)7%_294-1
’ (5.25)

)

(eﬂmt*(n*m)ﬂ _ efmmﬁ(nfai)m)

=1

where t = €27, Again using the identity (5.22), we can simplify the expression to

Ch(ﬂ.t TMy) = (eﬂ’imt — e_ﬁmt)g_l (6_77/2+7rimt _ 677/2—7rimt)nfg+1

(1 + e mt2mime) (5.26)
eXp | — 2(1 _ e—n+27rimt) '

Combining all these expressions, we now have

n (e~ (/2=mime) _ g(n/2=mims)) ) gt
(5.27)

677/2—6_77/2

X(gﬁm, @Vir) — (em'mt _efm'mt)gfl / <

<J(e’7+1) o U(l—l—e”*zmmf))
exp -

2(en—1) n 2(1—ent2mime)

The integral can be converted into the residue integral using the following identity,
also due to Don Zagier [18]. For any power series A(n) and B(7n), one can show that

/ A@)e”B® = res du A(“)(luj: uB@W) (5.28)

u=0
Note that this formula holds also for n = 0 where X, = pt. Using this identity, we find

u—mt) _ T

. , —g+1
Tim mimg\9—1 6_7”( € (u=m) Y
_ : t = t
Xt(Mw) = 27i (e e )7 res e r———

u=0

(5.29)
e2miu +1 14+ 827ri(—u+mt) g
. 5 )

(e2m'u _ 1) 2(1 — e2mi(—u+my)
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This exactly reproduces the integral formula of the twisted index in the chamber
T> #1‘1(12) One can check that the residue is non-zero in the region

—g+1<m<g-—1. (5.30)

This is consistent with the geometric observation that X,, becomes a holomorphic fibration
over the Jacobian with fiber CP™ ! when m > g — 1 [17]. In fact, the cohomology of %,
factorizes into H*(X,) = H*(CP™ ') ® H* (Jac[g]) and therefore the index vanishes in
this region since x; (Jac[g]) = 0. Multiplying by the weight (—¢)™ for each flux sector and
summing over m, we have

@) = 30 @) = (o) [A-a a6
mezZ
which agrees with the generating function of the x; genus of the symmetric product of
Y. computed in [17], up to an overall sign. Notice that as dictated by mirror symmetry,
this also agrees with the index of the C-twist of the free hypermultiplet in the absence of
background fluxes, see (5.1).
In the limit ¢t — 1, because of the relation A(TM)ch(A*TM) = (—1)3mcMe(Mf) the
virtual Euler characteristic becomes

@), = (~1)7! Z qm/ (M) = (—1)9 g~ 9H (1 — )21 | (5.32)
meZ Dlm
This reproduces the generating function of the Euler characteristic of the symmetric

product of X.

C-twist. In the case of the C-twist, the underlying moduli space is My, = Xy, The
fluctuations of the various fields on 91, can be written as follow:

(0X,9x) € H(L), (nx,Fx) € H'(L),
(OY,¢y) € HY(L™Y),  (nv,Fy) e H'(L™Y), (5.33)
(8077%) € HO(KE)v (nlvaép) € HI(KE)

where deg(L) = m. In this case, the virtual tangent bundle at a point (3.30) coincides
with!?
HY(0) — H'(L® L™")) — H'(Kyx)*

H' (0) — HY((L® L) — H(Kx)*.
Y vanishes identically in the chamber (5.8) and the complex split in various pieces. Note

furthermore that H°(L™!) is empty when m > 0. Let us first assume m > 0. Then the
virtual tangent bundle restricted to the bosonic moduli space can be written as

(5.34)

Tyir|gy = T + Nin (5.35)

M

where T, is again the tangent space of the underlying moduli space defined by the
complexes

H°(0) — H°(L), HY(O) — HY(L). (5.36)

13We omit the details about the maps, which we have already spelled out for the H-twist.
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The second component Ny is the contribution from the normal bundle, which can be
obtained from the cohomology of the remaining complex

HY (L™ - H'(Ky)*, HY(L™") — H(Kx%)*, (5.37)
which defines a smooth vector bundle whose class is
[Nm|] = —[H*(L ® Kx»)*] + [H*(Kx)"]. (5.38)

Therefore, for the C-twist, the virtual Euler characteristic computes the holomorphic Euler
characteristic valued in S®N:

(D, Orie) = / A(TI) A ch(S*NY) . (5.39)

m

Note that this can be extended to m = 0, where the moduli space is a point and the virtual
tangent space is trivial.
The characteristic classes of the normal bundle N, can be most easily computed by

introducing the universal divisor
A C Y x Sym™% (5.40)

of degree m. This is defined by the property that if we restrict to an effective divisor D on
¥ ~ ¥ x {D}, we have

which implies
O(A)lsx¢py = O(D). (5.42)

Let us denote by m and f the projection onto each factors:

Y x Sym™% (5.43)

It is useful to note that

R, (O(A) @ f*M)|p = H(Z,0(D) @ M),

a1 . o (5.44)
T (O(A) ® f*M)|p = H (,0(D)® M),

for any line bundle M on Y, where R®m, is the derived pushforward. For simplicity, we will
denote it by 7. In particular, we can write the class of the vector bundle Ny, in (5.38) as

[Nam] = —[m (O(A) ® f*Kz)*] + [H*(Kx)"]. (5.45)
The Grothendieck-Riemann-Roch formula tells us

td(T D) ch (m, (O(A) ® f*Kx)) = 7. [td(S x Sw) ch (O(A) @ fKs)] . (5.46)
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Using m,td(X X X)) = td(Zm) A metd(X), we find
ch (14 (O(A) ® f*Kyx)) = 7, [td(Z) A ch (O(A) ® f*Kx)] . (5.47)

The cohomology class of A on the product ¥ x ¥y, is computed in [19] using the Kiinneth
decomposition. We can write a class § € H?(X x Yy, Z) as

§ =620 4 o0 4 502 (5.48)
where %7 is an element of H*(X) ® H/(Xy). The result is
0 =mng +7+1n, (5.49)

where 7y, is the Kihler class on ¥, and « is an element of H(X) ® H'(Sym™¥). One can
check that they satisfy n& = ngy =73 = 0 and 42 = —2nxo. Using these identities, we find

ch(O(A)) = e + myse” — nnoe + ve'. (5.50)
The remaining factors in (5.47) can be easily computed:
td(X) =1+ (1 —g)ns, ch(f*Ks)=1+2(g—1)ns. (5.51)
Combining all these expressions, we find

ch (1. (O(A) ® f*Kx)) = (m— o +g— 1)t e, (5.52)

2mime

where t = e . From this expression, we obtain the Chern class of this bundle. Using

0? =0, we can rewrite (5.52) as

g9
ch (m (O(A) ® f*Kx)) = |(m — 1)t Le” + Zt—le’?—"i] : (5.53)
=1
which implies
g
¢(m (0(A) ® f*Kx)) = (14 n — 2mimy)™ ' [ (1 +n = 2mim; — 03). (5.54)
=1

Applying the identity (5.22), we arrive at the expression

o(e" "t —1)

2(en—mt—1) |
(5.55)

Multiplying all the contributions, the holomorphic Euler characteristic can now be

Ch(g'N];/) _ (em'mt _effrimt)lfg(e*(??ﬂ*ﬂmt) _e(fl/2*7fimt)/2)m+(9*1) exp [_

written as

o\ Mgt

X(Dﬁm @ . ):(em'mt_e—mmt)l_g/ (776 n/ ) (e_(n/z_m‘mt)_e(n/2—7rimt))m+(g—1)

y Uvir T
M

o o(e"+1) o(en2mime41)
Aexp | —— - .
e"p[ n " 2e1—1)  2(er2mmi—1)

(5.56)
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Using the identity (5.28), we can convert this formula into the residue integration

. (emj(—u—i-mt) _eﬂi(u—mt))mJFg*l

O\ S omimy _ —mimg\1—g
X(Qﬁmp OVIr) - 27”(6 € ) 52% (em'u _ e*ﬂiu)m—g“‘l

A A g (5.57)
' 627rzu_|_1 B 62wz(u—mt)+1
2(627riu_ 1) 2(62m'(u—mt) _ 1) !
which exactly reproduces the twisted index computation. One can check that
A 1 m=0
N, Ovir) = ’ 5.58
x<mv>{07 Y (559

Notice that this result is also compatible with the ¢ — 1 limit as described below (4.11), as
well as with the result of the H-twist of the free hypermultiplet in the absence of background
fluxes (5.1), in accordance with mirror symmetry.

5.3 SQED|N]

Let us now generalise the previous discussion to a U(1) gauge theory with N fundamental
hypermultiplets. These theories have non-trivial Higgs-branch flavour symmetry, and they
satisfy the conditions spelled out in 2.2 provided N > 2. We assume the following charge
assignment:

| U()e U SUWN)m | UMa U)e

1 = 1
X1 2 O 2 0 (5.59)
i -1 2 O 2 0
el 0 -1 0 0 1

5.3.1 N = 2 moduli space

The BPS moduli space 9 that preserves N' = 2 supersymmetry is given by triples (A, X,Y)
which satisfy following equations:

N
« Fy + €2 (XXT—YTY—T)ZO, 0AX; =04 =0, Y X;¥;=0, (5.60)
=1

modulo U(1) gauge transformations. As in SQED[1], the moduli space of solutions decom-
poses into topological sectors

M=) M, (5.61)

mez

where m is the degree of the gauge bundle. We will work in the infinite-tension limit
T — 400, so that the moduli space is uniformly described with non-vanishing X. As
explained in section 3.4, the algebraic description of the moduli space coincides the space
of stable quasi-maps into the Higgs branch T*CPY ! (C-twist) or twisted stable quasi-maps
(H-twist).
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In order to compute the index, we consider the action of the Higgs branch flavour
symmetry Gy = PSU(N) and apply the localisation principle to the diagonal subgroup

N
ty =diag (a1, - ,an) € Ty, [Jai=1. (5.62)
=1

The variables a;’s are chosen to be completely generic, so that we have a; # a; for any pair
1,7 =1,---,N. The subgroup acts on the moduli space as

ty: (da, {Xi,Y:}) = (da, {a: X, a;'Y3}) (5.63)

In addition to the Ty action, we can also consider the action of U(1); which acts on X and
Y as multiplication by t!/2 = ™ The fixed loci of (5.62) is determined up to the action
of the gauge symmetry. In our limit, the fixed locus is a disjoint union of N components

N
omiied = | iy, (5.64)
=1

which are defined by setting all the bosonic fields to zero except for one of the X;’s:
MY = {(A, X)) * Fa+ (X, X[ —7) =0, 84X, =0}/ U(1)q. (5.65)
Note that mﬁ? can be again identified with a symmetric power of the curve X
931,(1?:2”, n=m+r(g—1), (5.66)
and that for each fixed locus there exists an inclusion
o MY - My, (5.67)

From now on, we understand the moduli space algebraically and work with its vir-
tual tangent space. The virtual tangent space at a generic point on My, is given by the
cohomology of the following complexes:

0 a® o B r1/prl—ryx
H(O)HH(Mx@My)—)H(KZ ),

(5.68)
1
HY(O) 25 HY (My @ My) 25 HO(KLT)*
Here we defined
N N
Mx=@PLoKy> and My=PL oK/ (5.69)

i=1 =1

where each summand has weight a;¢t'/2 and ai_ltl/ 2 respectively under the action of Ty x
U(1);. We recall that the maps are defined by

a: e (eXy, - ,eXn,—€Yq, -, —€Yy)
N 5.70
B (Al,---,AN,B1,~--,BN)HZAz‘Yz‘JrBz‘Xi- 610
i=1
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We notice that if we restrict to points in a component of the fixed locus im,(,f), the complexes

split into various pieces. From the first line of (5.68), we have

HY(O) — HY(L® KY/?), HY(L '@ KI/*) — H'(K'"")*,

N (5.71)
B (PrerhHekr!”| —o.
J#

From the second line, we obtain similar complexes with the degree shifted by one:

HY(0) — H\(Lo K/, H(L ' KJ/?*) — HY(KL")* —0,

N (5.72)
g (PrerHerl’| —o.
i

As explained around (5.13), we can identify the first complex of (5.71) and (5.72) as the
tangent space of the fixed locus zm,(,?. Therefore the virtual tangent space restricted to the
fixed locus can be written as

Toie| g = Y + N (5.73)
)

The second piece corresponds to the contributions from the virtual normal bundle Ng ,
which have a non-zero weight under the action of Ty x U(1);. The class of the virtual
normal bundle is

N
N] = [H* (L7 @ Ky®)] = [H* (K7 + | (Dol e kg ||, (5.74)
J#i
The first two terms )
[H* (L7 @ Ky/?)] — [H* (K%)= N, (5.75)

are the contributions from the multiplet Y? and the vector multiplet, whose Chern classes
were computed in the last section. The last summand of (5.74) contains contributions from
the hypermultiplets (X;,Y;) with j # 4, which have non-zero weights (aji,a;ilt) under

the action tg x U(1);. We will denote the contributions from these fields as Nn(f)’Xj =
[H*(L ® K;/Q)] and Néf)’yj = [H* (L' ® K;/2)] for j # i. Now the equivariant virtual
Euler characteristic can be written as
N
A, Ouir) = 3 / AT (SN
=1 s'ms“l)
N ~ . o~ o~ N ~ . ~ .
- ATy n(SUNEY) T [en(S ) en(S* )]
iy i
. . (5.76)
The Chern class of [Néf ) Xi | and [N,Ef )’Yj] for j # i can also be computed from the universal
construction discussed in the last section. We can derive
A g
c (Néf)’Xj,ij = (1 +n+ 2mimy ;)" 291 H(l + 1+ 2mimg; — 0q) (5.77)

a=1
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where we defined a; = €™ and mi; == m; —m;. Using the identity (5.22), we can write
the Chern characteristics of the symmetric powers as

~ e (—n/24mim;;) m+(r—1)(9—1) n—2mim;
ch (S'N,S)’XJV) _ ( ¢ ’ )> exp [U(e ’ “)} . (5.78)

1 — e~ (n=2mimy; 2(en—2mimji — 1)

From the multiplet Y; (j # i),

ch <§‘Nn(f)’ij) = (e(_n/2+7rimji+7rimt) _ en/2—mmji—mmt)‘“‘(T_l)(g—l)

(5.79)

o 6717+27ri(mji+mt) + 1)
- exp .
2(67n+27rz(mji+mt) o 1)

The contribution from ch (§ 'Nn(f )) is the same as the normal bundle contribution studied

in the last example. We have
ch (é\.j\v]‘g)\/) — (ewimt _ e—ﬂimt)@r_l)(g_l) (ewimt—n/Q _ e—7rimz+7]/2)m7(ril)(gil)

(5.80)

O.(e—n+27rimt 4 1):|

- exp |:2(e_77+27”‘mt — 1)

Converting this expression into the residue integral using (5.28), we find that the equivari-
ant virtual Euler characteristic can be written as

A (2r—1)(g—1)
X (M, Oyir) = 2mi (t1/2 - fl/?) g

N N (e7ri —u+mji+mg) _ eTi

D res du]]
i=1 j=1
N 1+ 627ri(fu+mj) 1+ eQm'(ufmjfmt)

Z 2(1 _ 627ri(—u+mj)) + 2(1 _ eQﬁi(u—mj—mt))

j=1

(u—m; _mt))mf(gfl)(rfl)

(
(em(u—mj) _ eﬂi(—u-ﬁ-mj))m—"_(g_l)(r_l) (581)
g

This again reproduces the integral representation of the twisted index computation.

5.3.2 The t — 1 limit

H-twist. For the H-twist, the expression (5.81) (with » = 1) can be understood as the
virtual x; genus of the U(1);-fixed locus

=P tn, (5.82)
mezZ

where £, can be identified as a space of degree m twisted quasi-maps to the compact core
CPY~!, the base of Higgs branch M. This space is parametrised by the solution (A, X;)
to the equations

«Fy+ ¢ (XXT—T) —0, 94X =0, (5.83)

modulo U(1) gauge tranformations.
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The H-twisted N' = 4 moduli space for this theory is identical to that of the NV = 2
moduli space defined in (5.61). In the limit ¢ — 1, we recover the expression for the integral
of the virtual Euler class of the fixed locus £ inside the moduli space. This quantify can be
directly computed using the alternative localisation scheme with respect to the Ty C Gy
action. Then the index can be written as a sum of the Euler characteristics of the smooth
compact fixed loci zm&? defined in (5.65). We have

> ()™M, Ovir)], Ly = (=171 ) " Z/ (5.84)

mez mezZ =1
= (1IN (g g R,

which correctly reproduces the generating function for the Euler characteristic of the N
copies of the Sym™>. Note that the residue integration at each ¢ is independent of the
equivariant parameters {a;}, which agrees with the fact that the Hilbert space of the
effective quantum mechanics is the de Rham cohomology [41].

C-twist. For the C-twist, imposing N’ = 4 BPS equations trivialises the line bundle L,
and the moduli space parametrises the solutions ({X;,Y;}) to the equation

N
XXT-Yly =7, Y X;¥;=0, (5.85)

for constant X; and Y;, modulo U(1) gauge transformation. This is the resolution of the
Higgs branch My = T*(CPV~!) inside the A" = 2 moduli space 9.

The t — 1 limit with » = 0 of the result (5.81) can be understood as the Rozansky-
Witten invariant computing the holomorphic Euler characteristic of My valued in the
vector bundle (K.T*My)g:

X, Ouir)],,, —/M A(TMH)Ach[(K'T*MH)@} . (5.86)

M is non-compact and this expression can be evaluated from the equivariant localisation
with respect to the Ty C G action. Let us consider the action of gy defined in (5.62).
When 7 > 0, the fixed loci are N isolated points, where i-th fixed point is defined by
X; # 0 and all the other bosonic fields are identically zero. From the fixed point formula
we arrive at the expression

N e~ TiM; 2
(m Ovlr)(y — 1 Z H ( 27”sz]> H (eﬂimij o e*ﬂ'imij)Qg

i=1 ji i
(5.87)
N
— H —mimij Wzmij>2(9_1) )
i=1 j#i

5.4 SQCDI[N,, Ny

We can generalise our previous analysis to non-abelian gauge groups, provided that the
fixed loci of the moduli space are products of symmetric products of the curve 3. In this
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section we present the simplest example, which is SQCD[N,, Ny| where Ny > 2N, as
discussed in section 2.2. The fields of the theory are charged as follows:

| U(Ne)e U(1); SUMN)m | U()u U)o

X L] % O % 0 (5.88)
— 1 1
Y L] 2 L] 2 0
ol adj 1 1 0 1
5.4.1 N = 2 moduli space
The N = 2 BPS equations for SQCD[N,, N¢| read
xFq + €2 (XXT — Yty — 20t ] - T) ~0
IsaX =04Y =Dz =0 (5.89)

The moduli space of solutions to BPS equations modulo gauge transformations can be
decomposed into topological sectors labelled by the degree of the holomorphic bundle in
the fundamental representation associated to the gauge bundle P:

M= Mn. (5.90)

\
meAL

We again consider the infinite-tension limit 7 — +oo. It follows from the discussion in
section 3.3 that by using a Hitchin-Kobayashi correspondence, the moduli space has the
follwing algebraic description for every m. A point of the moduli space in the component
M is given by

e A holomorphic GL(N,, C)-bundle E of degree m;

e Holomorphic sections (X,Y") of associated bundles Ex and Ey, corresponding to Ny
copies of the fundamental and anti-fundamental representation respectively;

Subject to the complex moment map condition Y - X = 0;

Subject to the stability condition that X has generically maximal rank on 3;

Modulo complexified gauge transformations.

This can be thought of as the space of stable quasi-maps into the Higgs branch My =
T*G(Ne, Ny) (C-twist) or twisted stable quasi maps (H-twist).
Let us consider the fixed points of a maximal torus Ty of the flavour symmetry, which
locally acts as
X Xtg,, Y= tgY, Oa.+ Oac, (5.91)

for ty represented as a diagonal N; x Ny matrix, and with Ac the connection on the
holomorphic bundle E¢. The fixed points are solutions to the equations

gcX = Xtg, Ygc =tuY, gz'dacgc = dag . (5.92)
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for an element of the complex gauge transformation gc € G¢. Given the stability condition
on X, gc must act non-trivially. From the last equation of (5.92), Ec decomposes at fixed
points as a direct sum of line bundles

Ec=L1&--&Ly,. (5.93)
Let us denote m, = deg(L,), which satisfy

m:ZmaeHQ(MH,Z)%Z. (5.94)

The associated bundles Ex and Fy decompose accordingly

Ex = (L1 & ®Ly)% @ K2

(5.95)
By = (Li'®- - @LJ_\/i)@Nf @ K2,

I

For later convenience, we also note that on any fixed locus Ey and Fg decompose as™

By~ |0 o@LeoL,' | and Ee= |0 o@@PLioL,' | oKy . (597)
a#b a#b

Fixed points are labelled by Ng-subsets I = {i1,--- ,in,} C {1,---, N} so that the only
non-vanishing sections are

X¢ 40, (5.98)

and fixed loci reduce to disjoint unions of N, copies of symmetric product products

Ne
mn= || (H Symma”(g—l)z) : (5.99)

(my,my,) \a=1
Z(L Mg=m

where as usual r = 1,0 for H- and C-twist respectively.

The breaking of the gauge bundle into a sum of abelian contributions makes the gen-
eralisation from SQED[N] to SQCD[N,, Ny] rather straightforward, and we will therefore
be brief, mainly working at the level of K-theory classes. We will work on the component
m = (my,--- ,my,) of the fixed locus I, which we denote M .

Y1 fact, the complexified Lie algebra decomposes under the adjoint action as

b=t @ o, (5.96)

aEege

~

where the summands can be identified with diagonal matrices (over which the adjoint action of t¢ 2
(a1,---,an) is trivial) and matrices with one single off-diagonal entry e;; (the action corresponding to
Tij > aiaj_lwij).
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Over M7 w, the virtual tangent bundle decomposes into the following contributions

Ne
(Tirlomy | = 3 (= 10 (O) + |1 (L @ K37
a=1
Ne Ny Ne Ny '
LN | (e k) [+ Y | a (1) e KYP)
a=1 j=1 a=1 j=1
e ::NXJ‘.Z ::NYJ.“
Ne
D |HNEE)| =Y | H (L' ®Ly@KY) | =Y |H (La® L")
_ ~— ~ N ——
a=1 =N,y a#b —Nd,, a#b =NV,

(5.100)

The first line includes all contributions tangent to the fixed locus (fixed part), whereas
all other contributions are normal (moving part). In order to express these contributions
in terms of characteristic classes over the fixed locus Hévél Y., let us first define the
generators of cohomology class as follow:

Na € H*(2,,,Z) and o° Zgl Pt e HY(D,,,Z). (5.101)

Then from the fixed part, we obtain the tangent bundle over the fixed locus which

contributes
N, " e_na/2 ma+("'_1)(g_1) O_aa(e’r]a + 1) oo
R _ Na€ "'~ P S e . .102
A (TmLm) al;Il <1 _ 6—%) eXP < 2(eme — 1) Na > (5.102)

The contributions from the moving part N, can be summarised as

Ne | Ny
IT | T] cr(SenxgY) Hch S NY™) Hch AN | [[ (AR NVy).  (5.103)
a=1 | j=1 j=1 = a#b

[#ia

The arguments (5.78)—(5.80) can be straightforwardly generalised to obtain the contribu-
tion from the hypermultiplets:

e~ Ma/2+mimji, Mat(r—1){o=1) o9 (eNa=2miMmjia 4 1)
exp [

Qe Vv
ch(S*NX§V) = (1 — Tz S(en T, 1) } (5.104)

and

Ch(§'NYjaV) = (e—na/2+7ri(mjia+mt) _ e”a/Q—Wi(mjia+mt))ma_(r_l)(g_l)

(5.105)

O.aa(efna+27ri(mjia+mt) + 1)
exp 2(eMat2mi(mjiqtma) _ 1)
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The contribution from the multiplet in the adjoint representation, NV, and N®,, can
be written as classes on Sym™ 70— Dx x Sym™ 9= We computed the Character-
istic classes of these contributions in appendix C. To summarise, the vector multiplet
contribution is

[T Nvy) =1 (e<—na+nb>/2—m<mia—mi,,> _e(na—nw/?m(mia—mi,,))‘“‘“*“‘b“‘g
a#b a#b

—Na+1p—2mi(M4, —m;
(Jaa +O’bb _ Jab _ Uba) (6 a1y —2mi(miq —ms,) + 1)

exp (5.106)

2(6_17a+17b—27ri(mia —mib) — ]_)

Note that the exponential terms in (5.106) with positive and negative root « cancel each
other out, and we are left with a simple expression

H ch(A*NVY) = (—1)2a>0@(m) H (6(_77a+77b)/2_7ri(mia_mib) _ e(na—nb)wi(mia—mib))l*g '
a#b a#b

(5.107)
Contribution from the adjoint chiral N®,;, can be similarly written as
Nc
I[ bR Ny,
a,b=1
Ne Ma—mp—(1—2r)(g—1)

= H <€(77a—7lb)+7ri(mia —mi )+mime o (=natm)/2—mi(mi, —mib)—wimt> a— b

a,b=1

bb b b ena+7]b+27Ti(mia —myy )+2mimy 1
aa _ ab a
exp [(0"+ 0" -0 —0 (e Y ) (5.108)

We can now compute the equivariant virtual Euler characteristic, which by (3.46) can

be written as

X (M, Ovir)
= (=™ > > / A(Tp w)ch(S°NY ) - (5.109)
mez (my,mpy,) IC{1, Ny} P
> g Ma=m

where by (5.103), the integral can be expanded as

Ny
A@Drw) [T | T cR(S*NxEY) Hch (S*NYS™Y) Hch (A*N®Y) | ] h(R°NV,)
M1, m acl ']#'1 j=1 b=1 as#b

(5.110)
Combining the result from (5.102)—(5.108), these contributions are equal to

Ne
/m (H 7721@—&-(7’—1)(9—1)) A](nlv"' anNc)eXp ZgabBI,ab(nb' o 777Nc) ’ (5111)
Im

acl a,b
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where

AI(7717 T >77NC)

Ny Cf2mim,\ Mat DD
(57

1 — e~ Mat2mimys,
a€cl j=1

. (6_77a/2+7ri(mjia+mt) _ e(na/2—7ri(mjia+mt))ma_(r_l)(g_l)

H ( o(—Ta ) /2=mi(mig—miy,) _ o(na—mp)/2+mi(mi, _mib)) —mg+my+1—g

a,bel
a#b
H e(Ma=m)/2+mi(mi, —mi, )+mime _ (=natm)/2=mi(mi, —mib)—m‘mt)ma_mb_(l_%)(‘q_l)
a,bel
(5.112)
and
Bra(m, -+ ,nn.) = Hrap(m, -+ ,nn.) — Saplly (5.113)
where H;, is given by the expression
Ny o N, o ) .
1+€77’)a+2ﬂ"tm]1a c 1+67]a7770+27T’L(m7,a fm,c)+27rzmt
Hl,abzéab 22(1 —Na+2mim;; +Z —Ne+2mi(m;, —mi, )+27i
- —e e Jla) 2(1_6(7711 Net+2mi(mi, —mi, )+ 7"””75))
j=1 c#a
Ny 1_|_677a—27ri(mjia +my) Ne 1_|_€77c—77a+27ri(mic —my, )+2mimy
+ Z 2(1_ena—27ri(m]-ia +mt)) +Z 2(1 _enc—na+27ri(mic —mia)+27rimt)
j=1 c#a
1+e77a_77b+2m(mia —mib)+27r7jmt 1_'_€nb—77a—27ri(mia —mib)+27rimt

+(1_6ab)

2(1— eMa—mp+2mi(mig, *mib)+27”'mt) 2(1— e —Ta—2mi(mi, —mi, )+27rimt)

(5.114)
The last expression in (5.109) can be converted to a product of residue integrals as in the
abelian examples. We show in appendix C that the identity (5.28) over ¥, can be gener-
alised to integrals over Hf\;l Y, for any power series A(n1,--- ,nn,) and Bagp(n1, -+ ,1N.)
on vazcl Yn,, we have

N¢
/N A(m, -+ nn)exp | Y 0™ Bap(ni, -+ 1w,
LD S _
Hz:l 7 a7b71 (5.115)
A(UI,"'UNC) 9
T a0 unzo umtL Nt Cﬁt (Oap + waBap(ur, -+ s un,)) |
Then the integral (5.109) becomes
X(m7 évir)
i g
e Z (_q)Zz]zV:lea Z res --- res Al(u].) 7uNc) |:det Hl,ab(uh 7uNc):| .
u1=0 upn,=0 ab
meZNe I1c{1,~,Ns}

(5.116)
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By a redefinition of the integration variables u, — u, — m;, + m;/2 for each summand
labelled by I, the integral can be rewritten as

X(M, Ouir)
N, Ne r I
= (2mi)"e Z (—q)2a=1Ma Z H res A(ug,---,un,) [delz)t H,p(u1, -, un,)
mezZNe IC{1,—N;} 1 ta= M, —me/ a
(5.117)
where A and H is
Ne Ni o ri(—ugtmjtme/2) _ mi(ua—mj—me/2)yma—(r—1)(g—1)
Aduruw) = [T ‘ )
ot et (em(ua—mj—l—mt/Q) _ 67ri(—u+mj—mt/2))m‘l""(r_l)(g_l)
11 (i) - em(uﬂb)>_ma+mb+l_g (5.118)
a,b=1
a#b
Ne mg—mp—(1-2r)(g—1)
H (ewi(ua—ub+mt) o em(—ua-l—ub—mt)) @
a,b=1
and
Ny 1+€27ri(—ua+mj+mt/2) Ne 1+e27ri(ua—uc+mt)
- 2(1—6 mi(—ug+mj+me/ )) 2(1*6 i (Uq uc+mt))
j=1 c#a
+Zf 1+€27rz(ua mj+my/2) N Ne 1+€27‘ri(ucfua+mt) (5119)
2m (ua— mj+mt/2)) 2(1_627ri(ucfua+mt))
c#a
1+62m(ua—ub+mt) 1+627ri(ub—ua+mt)

+(1—04p)

2(1 _627ri(ua—ub+mt)) + 2(1 _627ri(ub—ua+mt))

Finally, it is straightforward to show that the residue integral together with the choice of
fixed point is the equivalent to the Jeffrey-Kirwan residue integral of the integrand with
the choice n > 0:

N,
T 1
2 <H gy /2> = O JKRes(Qu.(u),n>0). (5.120)
Ic{1,~,Ns} \a=1 S

Therefore we again proved that the equivariant virtual Euler characteristic of the moduli
space reproduces the twisted indices computation. This procedure can be generalised to
the class of the theories defined in section 2.2.

5.4.2 The limit t — 1
H-twist. The N =4 BPS equation for the H-twist is given by
«Fy + ¢ (XXT —YTY—T) —0,

IaX = 04Y = dap = [pl, 0] =0, (5.121)
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modulo U(N,) gauge transformation. If we consider localisation with respect to the U(1),
action, the fixed locus MYt is parametrised by the solutions (A, X) to the equations

« By 4 2 (XXT—T) —0, 94X =0, (5.122)

modulo U(N,) gauge transformations, which can be identified as the space of twisted quasi-
maps to the compact core inside the Higgs branch My = T*G(N,, Ny), which we denote
by £. Similarly to the SQED example, the index (5.117) with » = 1 can also be thought
of as the virtual x; genus

O, Ouie) o1 = 17(2). (5.123)

In the limit ¢ — 1, the index reduces to the generating function of the integral of the virtual
Euler class. This can be evaluated using the virtual localisation with respect to the Tx
action (5.91):

XM, Ouir)| =y = (1M 37 g Z Z / (T, 1) - (5.124)

mezZNe  (my mNc
E M=
Summing over m, we have
A N 2N.(g—1)
XM, Oyir)|r=1 = (—1)Nc(91)( f) (q1/2 - q*l/z) : (5.125)
t—1 Nc

using the generating function of the Euler numbers for a symmetric product (5.32).

C-twist. As we studied in section 4, imposing the N' = 4 BPS equations trivialises the
vector bundle E, and the moduli space reduces to the resolution of the Higgs branch My =
T*G(Ne, Ny). The index in the t — 1 limit then computes the equivariant Rozansky-Witten
invariants of the target Mpy. This can be directly computed from the m = 0 sector of the
expression (5.109), taking the ¢ — 1 limit and extracting the constant term in the power
series expansion of the characteristic classes. This procedure gives

- \2(g—1)
m Ov _ —mim; mm” 7
( 1r r 0 Z g ) (5.126)
Jerv
where IV is the complement of the index set [ in {1,---, Ny}

6 Mirror symmetry

6.1 Symplectic duality for twisted stable quasi-maps

A distinctive feature of the class of the theories we consider in this paper is mirror symmetry.
We can find a pair of UV theories 7 and 7, which are dual under exchange of the following
pairs of objects and parameters:

H-twist < C-twist
./\/lH <~ Mc
Gy < Gc¢ (6.1)
{m:} < {G}
t < t!
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The duality holds when the theory flows to the deep infrared, which is in general described

by taking the limit e? — oo. On the other hand, the description of the moduli space of

solutions to (3.14) depends on the chamber specified by a dimensionless parameter
Te2vol(X)

si1=—p (6.2)

Therefore, flowing to the deep infrared corresponds to studying the moduli space in the
limit |s| — oo. This can be alternatively described by taking the infinite tension limit,
7| — oo (with e? finite), which we have studied so far. It follows that the twisted indices
computed in this chamber are expected to exhibit the duality exchanging the parameter
as in (6.1).

Given the interpretation of the twisted indices we have offered in this paper, mirror
symmetry implies an extremely non-trivial relation between two generating functions of
enumerative invariants of twisted stable quasi-maps into a conical symplectic resolution of
the Higgs branch M. In fact, mirror symmetry implies two relations

IH(C’m’t)[ﬂ = IC(ma C’t_l)[Tv] ) (63)

and
Ic(C,m, O)[T] = Ig(m, ¢t H[TY]. (6.4)

In particular, this exchanges the equivariant parameters m and the degree counting pa-
rameters ¢ of two generating functions. We may call this symplectic duality for stable
quasi-maps.

The simplest example is the theory SQED|2], which is a self-dual theory 7 = T. The
generating functions for the first few genera are explicitly computed in [6]. For example,
the generating function for the H-twist with g = 2 is

(1+t) [tla+at =2)(g+q " —2) +4(1 —1)°]

In(g,a,t)|,_, = - 20— o)t —a-T) : (6.5)

627Ti(m1 —ma2)

2mi¢

where a = and ¢ = e This can now be interpreted as the generating

function for the equivariant virtual y; genus of £, where £ can be identified with the space
of twisted stable quasi-maps into P'. On the other hand, for the C-twist, we have
(A+ttlatat —2)(g+q¢" —2) +4(1 —t)’]

Ic(g,a,t)],_y =~ oY P Fa— . (6.6)

This corresponds to the generating function of the virtual Euler characteristic for stable
quasi-maps. It agrees with (6.5) by exchanging q <+ a and t <+ t~! as expected.
6.2 Mirror symmetry for the N/ = 4 index

As studied in section 4, the twisted indices drastically simplify in the limit ¢ — 1. The
H-twisted indices in this limit can be identified with a sum over the integrals of the Euler
class of the fixed loci

In(q) = In(g.a,t)lis = ) (—g)™ Y _(~1)mePms e(Mnr),  (67)

meAé I Mm,l
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Figure 2. T[SU(N)] theory.

which is independent of the equivariant parameters a. On the other hand, C-twisted indices
receive contributions from the degree zero sector only and therefore independent of ¢ in
the limit ¢+ — 1. The index in this limit computes the Rozansky-Witten invariants

~ ~O ®
Io(a) = Tog.a, )i = [ A(TMa) ch [(RT"Mu)™] | (6.8)
My
where My is a resolution of the Higgs branch.
Symplectic duality in this limit then takes a simple form

In(q)[T] = Ic(a)[T"], (6.9)

with the identification ¢ = a. Below we will explicitly show this identity for T[SU(N)]
theories. This class of theories plays an important role in the S-duality of the half-BPS
boundary conditions in N' = 4 Yang-Mills theory [43]. These can be represented as the
quiver in figure 2. The twisted indices of T[SU(NV)] quiver depends on the FI-parameters
Gi=1,...,N—1 for each factor of the gauge group U(1) x---x U(N —1) and the mass parameters
Mj=1,... n for the PSU(NV) flavour symmetry, which satisfies Zi\il m; = 0. This class of
theories are known to be self dual under exchanging ¢; <+ m; for all ¢, where {; = €; — €;41.

H-twist. The moduli space of T[SU(NN)] theory can be decomposed into the topological

sectors weighted by the Fl-paramaters ¢; = €27
M= U Mz q}n\‘[z:l Moy o s (6.10)
(my, my—_1)
ezZN-1

For each factor of the gauge group labelled by a =1,--- , N — 1, we denote by

1
1%:%UL&6% (6.11)
the degree of the vector bundle E, of rank a, associated with the U(a) gauge bundle P,.
Let us denote X211, Y, 1 by the bi-fundamental fields between a-th and a + 1-th nodes,
where X3! can be regarded as a a x (a+ 1) matrix whose components are Xs&igk““), and
similarly for the Y. Then the N' = 4 moduli space for the H-twist is given by the space of

solutions (Aj,---An_1,X,Y) to the equations

« Pt e (Xetxe -y e, - xe X+ ve e ) = o, 612
oAXI =0, 1 =0, Xatt w1 =0, fora=1,...,.N -1,

a

modulo U(1) x --- x U(N — 1) gauge transformation.
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Let us consider the chamber where all 7,’s are sufficiently large. As in the previous
examples, we perform the equivariant localisation with respect to the action of the flavour
symmetry gg € PSU(Ny), by turning on the mass parameters m;. If we keep these
parameters generic, on the fixed locus, each factor of the gauge group is abelianised

U(a) - U)*, fora=1,--- ,N—-1, (6.13)
and accordingly the vector bundle F, is decomposed into the sum of the line bundle
E, = La(l) DD La(a) ) (614)

on the fixed loci, where deg(Lqx)) = Mqqr) with mg = 3 ¢ my). Then the moduli space
reduces to a disjoint union of N! fixed loci labelled by a set of the index sets

{l,--- ,In—1}, where I, C{l,---,a+1}, |I,|=a. (6.15)
If we denote the element of the index set I, by iq,) With kg =1,--- ,a, then on the fixed
locus {I1,---,In_1}, the only non-vanishing bosonic fields in the chiral multiplets are
a+1(%4(kq
(k)“” #0, for a=1,---,N—1. (6.16)

To simplify the notation, let us make a choice of fixed locus defined by I, = {1,--- ,a
for all a, where the only non-vanishing bosonic fields in the chiral multiplets are X a(+ Lka)
for all k, = 1,---,a. All other fixed points can be obtained by an action of the PSU(N)
flavour symmetry. The fixed locus is described by the equations
2 a+1 a(la 2
Fugiay + ¢ (IXSGH R = 1X2040 2 =) =0, 617,
) Xs(tl)(la)—O for io=1,...a
modulo Hfl\;l U(1)® gauge symmetries, where we deﬁned XZ(_al)(a) = 0. Here XZ(JZ)@“) is a
a+1( 2 ® ® K'/2. Therefore the fixed locus
can be described as the 1 +--- 4+ N — 1 copies of the symmetric product:

N—-1 a
- H H Ema(ia)*ma+1(ia)+g*1' (6.18)

a=1 i,=1

holomorphic section of the line bundle L,;,) ® L

Then the contribution of this fixed locus to the virtual Euler characteristic in the limit
t — 1 (6.7) becomes

mi(1) Ma(1)+Ma() z 1 "my )
Z 41 4 om Zma<ia)—ma+1(ia)+9—1 :

Ma(kq) €L Ta a= 1 1a—1
for kg=1,--,a—1
a=1,- ,N—
(6.19)
It is convenient to change the summation variable as

N-1
My (ky) — Ma(k,) T Z m,,y, forall a kg, (6.20)

r=a+1
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the expression (6.19) then becomes

N-1
Z H (q1---qa)™ W (g2 - - - qq)™e®@ ...(qa)ma<a>/

ma(ka)GZ a=1 my,
for kq=1,--,a—1
a=1,-- ,N—

N-1 a

IT1Ie <2ma(ia>+9*1) :

a a=1 ig=1

(6.21)
Let us redefine

N
G = e2mi(ei—€it1) , with Z € =0, (6.22)
i=1

and sum over 1 +---+ N — 1 copies of integers m,;,). Using the relation (5.32), we find a
simple expression

N . (9-1)
H (em(eifej) o eﬂl(*€i+€j)) (623)
i#]
for the fixed locus 9M,. Since the result does not depend on the equivariant parameters
{m;}, the contribution from N! fixed locus are the same. Therefore we conclude

N ) 2(g—1)
In({e}) = (~1)NN=Dlg=1/2 ny H (eWZ(ErEJ') _ eﬂ(*éﬂréj)) 7 (6.24)

1<j

Note that the result shows the structure of the full SU(N) Coulomb branch symmetry G¢
enhanced from the UV topological symmetry U(1)N 1.

C-twist. Once we impose the N/ = 4 BPS equation for the C-twist, the associated vector
bundle F1 & --- @& En_; trivialises. In the large 7 limit, the moduli space reduces to the
resolved Higgs branch Mg -, which can be identified as a cotangent space of a flag variety.
Similarly to the H-twist, the fixed loci of the g action are given by the choice of the
index set {I1,---,In_1}, where I, = {iq1), " ,iqn)} C {1, ,a+1}, forall a. Each fixed
locus is an isolated point, characterised by the non-vanishing bi-fundamental chiral fields

a+1(ig(ky))
Xy " #0. (6.25)

The C-twisted index in the limit ¢ — 1 gets contribution from the m = 0 sector only.
It is straightforward to compute (6.8) equivariantly at each fixed points, which gives the

expression
Ie({fm})= > I1 (e—mmijm_emﬁ/z)2‘9’*1) 11 (e_mmij/z_emmij/z)%g*l)
{(117'“71N—1)}i61N71 Z‘EIN,Q
JEIN 4 JEIY
T (et emmr2) o (6.20
i€ly
jEIY

where the summation is over N! choices of the fixed locus. I | is defined as the complement
of I,_; inside the index set {1,--- ,a}. Note that each term in the summation is invariant
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under the Weyl group Wg,, of the flavour symmetry and therefore the contributions from
all the fixed loci are identical. The expression simplifies to

. . 2(g—1
Ic({mi}) = N'] | (eﬂrzmij/? _ emmw/‘z) oy (6.27)

Comparing two expressions (6.24) and (6.27), we find an agreement
Ie({&DITSUN)]] = La ({m:i})[T[SU(N)]] (6.28)

up to an overall sign, under the identification of the parameters ¢; = m;,Vi. This agrees
with the self-dual property of T[SU(NN)] theories.

7 Conclusions and future directions

In this paper, we have demonstrated that the twisted indices of a large class of 3d N/ = 4
theories on S! x ¥ have a fascinating interpretation in enumerative geometry as generating
functions for equivariant Euler characteristics of moduli spaces of twisted quasi-maps to
the Higgs branch. Other interesting interpretations become available in the strict N/ = 4
limit £ — 1, and mirror symmetry implies surprising relations between these generating
functions. We conclude with directions for further research.

First, it should be possible to extend our computations to a larger class of gauge
theories labelled by a compact gauge group G and quaternionic representation @ = T*M,
for which the contour integral for the twisted index applies. In this case, we expect to
recover quasi-maps to the Higgs branch ‘stack’ and that it will be useful to consider virtual
localisation with respect to G to reduce the problem to integrals of characteristic classes
on the Picard stack. We expect this to make contact with the work [44]. It would further
be interesting to extend our work to theories with A/ = 2 supersymmetry. This will in
general involve additional considerations regarding topological vacua.

A second interesting extension would be to introduce background vector bundles for
the flavour symmetries G and G¢ on Y. This is relatively straightforward for G, but in
the case of G these are expected to induce vector bundles on the moduli spaces of solutions
themselves [42], and it would be of great mathematical appeal to uncover generalisations
of this phenomenon. It is also possible to study the inclusion of line operators wrapping
S1, which are similar to the above.

Finally, it is possible to fully embrace the Hamiltonian point of view and consider the
theories on R x ¥ as quantum mechanics on R. The space of supersymmetric ground states
of these quantum mechanics would provide a categorification of the enumerative invariants
we have studied here. First steps in this program were taken in [42]. In the limit ¢ — 1, we
expect a close connection to conformal blocks for the vertex operator algebras introduced
in [45, 46] including in the presence of line operators [47]. This suggests the existence of a
vast generalisation of the Verlinde formula and its extension to Higgs bundles [20].
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A Supersymmetric algebra

In this section, we summarize the supersymmetry algebra of twisted N’ = 4 theories. We
start by fixing our notation for the A" = 4 vector multiplet and the N' = 4 chiral multiplet,
and the respective decomposition into N/ = 2 multiplets. We then address the H- and C-
twist algebras in turns.'®
The N = 4 vector multiplet consists of the fields

Ve = (Am NE AB DAB) ' (A.2)

(67

The fields are subject to the reality condition as follows:

Y o (sﬁAB) : (A.3)
The multiplet decomposes into an N = 2 vector multiplet V = (A4, 7, A\, A\, A1, A7, D) and
an N = 2 chiral multiplet ®, = (¢, %y, 1y, F,) in the adjoint representation with the

identification

1 s _ 1 i .. N .
)‘:7)‘%27 )\Zi)‘%la AIZ)‘%27 Ai:)‘%lv

2
o= iy, D = Dq2,
p_ 1 1 7 51 i (A.4)
pl=—5%m, ©=5%ii Yo =AM Yo =N,
77(,0:)‘%27 7790:)‘%1, F;:7D22a Fgalel-
The N = 4 hypermultiplet consists of fields
1 _
Hp—y = <XA,XA v%Av%A) (A.5)
In terms of NV = 2 fields, we identify
(X, v = (X1, Xy), (v, x1) = (x* x1T), (A.6)
5We use the convention -
512 = —€12 = 512 = —€jy = 1 (Al)

B

where (0#)," are standard Pauli matrices.
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A.1 H-twist

The four supercharges preserved under the H-twist can be written as
14 24 _ FA
1 = CH» 2" = (- (A7)

Note that the A = 2 subalgebra is generated by C}{ and ZIQ{ For convenience, we redifine
the vector multiplet fermions as

A%A = )\A’ )‘%A = S‘Aa )‘1,1,4 = ]\i,A’ )‘2,2A = A1,A- (A.8)
The supersymmetry transformation of the vector multiplet is given by
540 = 5N — 5CiHAA
0A1 = iCiA
0A; = —iCA 41,
0pip = . (CHA +<HA)‘ +Cy i +CHB ) ;
6D = il (2D — Doy 4) — iCh [AS 6]
6D = iCi} (20104 — DoA, 1) —ich [AS ]
5D = %g}?} (2018 5 + DoXs + A 05] ) + %Z}?, (2018, 5+ Dod — [\ 0] )
oAj=—2Fi1-D)Cyi— iChDowp i+ %CH,D [SOA-C,%CD} :
dA; = (2F 1 = D) ZH,A + iEgDoﬁpgA + %ZH,D [@ACWOD} :
O, 4 = 2FyiC; — 2P Dy 4 + DaaCy,
0A; 4 = 2F0C4 + 2iCP D1y + Duly -

(A.9)
The supersymmetry transformations of the hypermultiplet can be written as
(5X1 _ _551/1173
0X> _Cg% B 7
(5X ! ) ( ~CHy g
5X2 By
HYLE _ . (A.10)
oYy 4 —iCy ADo X1 = 2iCy ;D1 X2 — i Xipp 4
0y 4 iCy 4D X2 — 2iCy 1D1X1 — iC Xopp 4 ’
0y 4 iy 4DoX " = 2y D1 XY X o 4
3ty 4 iCy 4DoX ™+ 2i¢,, D1 X" +iCBx o 4
A.2 C-twist
The four supercharges preserved under the C-twist can be written as
A A2 ¥
Gl=¢, =0 (A11)
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The N = 2 subalgebra is generated by Cé and Z% For the vector multiplet, we define
1 1

— 5. T,
84'7 280117 2 2@22» (A.12)
MI=a a2=34, Mai=Aias Aas=Ma.
The supersymmetry transformation of the vector multiplet is given by
1~ T A~
040 = 5C0Aa — 5CEAA,
5A1 = iCAAan,
§A; = —iCAA 1
1 4= 1~
do = §Cé)\A - §Cé)\A,
1~y -
dp = _QCéAi,Av
1
ol =S¢,
B 1 1 (A.13)
oDAB = ich (DlAfl3 + §D0/\B -3 [\ o] — [Af,@]) + (A& B),
~ 1 1 _
— ik <D1A{3 +5D0X” = 5 [AP 0] - [A’f,gﬂ]) + (Ao B).
VIS <_2F11 —iDgo — 2i[p, QDT]) Coa+4iCoaDipr — DaPCop,
= <2FH — iDyo + 2i[p, @TD Ceon + 4iCe,aDrpr — DaPlep,
A1 4 = (2F10 + 2iD10) Coon — 2iDowCe,a — 2iCe,a [0, 9]
0A1.4 = (2Fjg — 2iDi0) G4 — 2iDog! o a — 2iC0 a0, €]
For the hypermultiplet, we define
i 5 _ 5 _ i
B (A4
¢1 :>_<7 ¢2:77’ ¢1 :¢17 ¢2 :_wi‘
We have _
0X 4 = (c,ax + Cc,an,
oX A" = Cx+ ¢,
Sx \ ~iCE(Do +0)Xp
sv1 )\ 2i¢BD1Xp — 2iCEX et
o\ _ [ —2iCEDiXp +2iCE X py (A15)
on i¢G(Do + 0) X5 ’
oX | _ ic,p(Do — 0) X'
o)y ~2i¢o,pDrX B — 200 p X BTt
Sy 2iCc.5D1XB" + 2icc 5 X BTy
o —iCo.p(Dy — o) X B '
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B Residue integrals at the large |u| regions

In this appendix, we show that the residue integrals involving the hyperplanes of type (3.57)
does not contribute to the integral with the choice (3.60). Let us consider the localising
action we take for the vector multiplet

1

L [Lencre]. -

which is modified from the localising action used in [3, 5, 6] by additional term Ly. As
explained in section 3.2, we take the limit ¢ — 0 with e finite so that the localisation locus
for the vector multiplet is given by

«F+iD=0, D=—i <M]R —2[p", ] — 7') , 0% = constant, (B.2)

and therefore the path integral localises to the finite dimensional integral of the Cartan
zero modes u = (0 + ag) € tc. As discussed in [3, 5, 6], it is convenient to allow a
constant non-BPS mode D such that the auxiliary field localises to the field configuration
which satisfies

« F+iD =iD, where D e R". (B.3)

Then the contour integral expression can be derived from the algebra of the zero mode
multiplets V = (u,u, )\o,j\o,f)). See [3, 5, 6] for more details. The modified @Q-exact
action (B.1) affects the D integrals in the large |u| region. Let us consider G = U(1)
theory for simplicity. The boundary integral for a given 7 in the neighbourhood of the
hyperplane (3.57) is governed by the expression

dD
_—
q" lim du / -
Laaymp (7 Z t=0 Ju—stioco R+is D

(. D) exp | P50 02 = 4 (<P vl ) D)

(B.4)

where g(u,m, D) is the one-loop contribution with the non-zero D background, which
reduces to the integrand of the expression (3.48) at D = 0. Here § € tis introduced as a
regulator of the D integral, which is chosen in a way that it satisfies 1(d) < 0 for a choice
of n € t* in the definition of the JK-residue integral. [3, 41] The integral can be performed
by rescaling D — 2D and taking the limit ¢ — 0. We find

dD —i __2mm Vo r 2
b =S5 f o [ sty )
mez u—=+300 R+is D (B 5)
= —2mi sgn(n Z q" @[ < — vol(X)7 )]j{ du gm(u, m,0).
u—=£i0co

mez

If we assign the charges to the pole at infinity at each flux sector m as

Q:I:OO = ? — VO](E) s (BG)
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we can write

Tasymp (1) = —27i sgn(n) Z q" JuIS:EO%S(QiOO(u)7n) gm(u,m,0) du (B.7)
meZ

In order to match with the geometric interpretation we will choose

2
n= —Z—m +vol(D)r (B.8)

so that the boundary contribution always vanish.

C Characteristic classes on a fixed locus and their integration

In this appendix, we derive expressions for various characteristic classes of bundles on

M ) H Sym™ (C.1)

and their integration, as needed in section 5. In particular, we would like to compute (5.106)
and prove the integration formula (5.115).
We start by considering the universal divisor

A C % x Sym™y (C.2)

of degree m, which was introduced in (5.40). We denote by f and 7 the projections onto
Y and Sym™Y. respectively. Following [17], we denote classes on 3 by

€1, 76976/17 e 76/9 € H1(272)7 Ny € H2<27Z) (C3)
and as explained in the main body, standard classes on Sym™> := ¥, by
é_“g;EHl(Em,Z), n€H2(Zm7Z) (04)

By the Kiinneth decomposition, the class of the universal divisor can be written as

Al =mns +v+1n (C.5)
where v = Y9 | &le; — &el. By the ring relations of the cohomology of the symmet-
ric product (5.18) and the standard relations on the curve, we have 42 = —20ny. The

Grothendieck-Riemann-Roch theorem then impies that for any ¢ € Z
() ch[r.O(gA)] = m[td(E x S)ch(O(gA))]. (C.6)

From this we obtain

ch[m.O(gA)] = m[td(%)ch(gA)]

=m.(14 (1 — g)nx) exp(qgmns + g7y + qn) (C.7)
= m (14 (1= g)ns) (1 + qmnz) (1 + g7 — ¢°ons)e™ |
= (qm + (1 —g) — ¢*o)e.
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In order to compute the expression (5.106), we first compute the Chern class of the
line bundle 7, (O(—A,) ® O(Ap)) on Sym™* ¥ x Sym™ Y, where for notational simplicity
we omit the pullbacks by the projections on Sym™*¥, Sym™ Y. We can compute

ch[m.O(—=AL) RO (Ap)] = mi [td(X)ch(O(—Ay) @ O(Ap))]

=m(1+(1=g)ns) exp[-mans —Ya—natmpns +y+m]  (C.8)
= [-mg+my+(1—g)— (0940 — g —gba)|e=mFn2

where g
ot =g, o= ol (C.9)
i=1
which satisfy the relation v, = —20%nys. From this we obtain

o O‘bb _ O.ab _ O.ba

L—na+m

5. (O(~80) 9 O] = (1= 1y + 1) ™™D exp |
(C.10)
Let us define a function

h(na — mp) = e tmt/2 _ o(a=m=)/2 (C.11)
Then using the relation (0#®)2 = 0, we can show that the contribution from the class

[NMVYea] = [H*(L;' ® Ly)] can be written as'
(e —np)
h(1a—b)

We would now like to prove (5.115), which is a generalisation of the formula by don Za-

ch(A*NMYea) = h(n, —m) "™aT™ =0~V exp [(U“a—l—abb—aab—aba) (C.12)

gier (5.28) to integrals over M? = H§:1 Sym™+3.. We want to show that for any function
A(m, -+ ,ng) and B(n,--- i), we have

k
/ A(ni, - o) exp | > 0™ Bay(my, -+ i)
mT

wb=1 (C.13)

A(ul, s uk) g
= e et |58 G+ B, ur))
This can be demonstrated as follows. First we notice that
k g k k
exp Z By | = H H H exp (abeab)
a=1,b=1 i=1a=1b=1
g k
= H H H (1 —i—O'gbBab)
i=1a=1b=1 (C.14)

Il Y OO0 sw |

=1 | p=0all {a1, ,ap} all {b1,,bp} =1 m=1
C{l,”-,k} C{l,”-,k}

18T the appendix, we will omit the weights under the action of the flavour symmetry Ts for simplicity,
which can be reintroduced easily.
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where we used (Ufb)Q = 0 as well as the fact that ¢’s with different indices commute. We
can then make use of the identity [18]

1 :/Z nee (Hna_lo'fa> (C.15)

el

and its straightforward generalisations to products of symmetric products. They imply
that the only monomials contained in (C.14) surviving integration are the ones for which
the subsets {b1,--- ,b,} are permutations of the {a1,---,a,}. Let us denote by S, the
permutation group of p elements and suppose there is an s € Sy, so that s(a;) = b;. Then

k

ars(ay) _
H o, = Sgn
=1 l:l

?w

aan (C.16)
Therefore,

g

/WA“?l"“v"k)H Zk: > > lg[lg[(“”’mnaf)nalBalbm

i=1 | p=0all {ay,ap}all {by, by} =1 m=1
C{177k} C{177k}

A(ul, . b
= Jos - res) m Z > Dosen(s) [JuaBasay| (C17)
1 U =1 | p=0all {a1,",ap} SESp =1
C{17 7k}

g

A(ul, u
T n+1—nk+l Z 2. 2 seuls) ] [ e Busta |
=1

up=0
" p=0all {a1,,ap} SESp
{1, ,k}

where in the first line we formally divided and multiplied by 7,, with respect to (C.14). B
means of the Leibniz expansion of the determinant, this coincides with (C.13), as required.
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